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1 

Introduction 

The project underlying this thesis is primarily concerned with the development, 

validation, and adoption of the Open Modeling Environment (OME). OME is an implementation 

of a System Dynamics (SD) model simulation engine which is intended to address a few hurdles 

that ecosystem modelers may face today. OME attempts to assist the modern ecosystems-

focused SD community by providing a common interface for explicit spatial queries and a 

flexible implementation designed to either work alongside or integrate with existing modeling 

tools. By addressing these issues, OME will make a positive contribution to the ecosystem 

modeling community. 

Since a large portion of this discussion revolves around models, it is important to 

establish what a model actually is. Definitions vary in their complexity, but models basically 

serve an important role in scientific research at large, primarily in their abilities to assist with 

understanding a real or theoretical system, predicting some future or alternate state, and 

controlling for experimental or unknown values when manipulating a system (Haefner 1996). 

Every model operates under a series of assumptions and constraints for which its conclusions 

remain valid, and exists in a space that is a tradeoff between reality (how close a model mimics 

real-world processes), precision (the degree of accuracy in produced predictions), and generality 

(the range across which model results remain valid) (Haefner 1996). The balance between these 

trade-offs produces a model which can be used to tease out pertinent information and highlight 

relationships that are significant to the model's defining research question (Haefner 1996). 

Models can also be used as communication tools by providing a way to access information 

derived from complex relationships which would otherwise be obscured from a general 

audience's understanding (Lane 2008). SD models in particular can be used to develop a better 

understanding of a given series of processes, especially when one or more causal relationships 

are emulated (Ford 1999). 

As mentioned previously, OME is specifically concerned with the construction and 

evaluation of System Dynamics (SD) models. SD modeling involves the study of how a system's 

structure affects the change in quantified system aspects over time (Lane 2000); examples of 
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“quantified system aspects” in an ecosystem model would be nutrients, pollutants, individuals in 

a population, or any other quantity that flows through and/or circulates within a system. SD 

models are generally constructed from a set of graphical elements as a stock-flow diagram, 

where the configuration of elements in relation to one another defines the differential equations 

which drive the interactions within the model (Lane 2008). This configuration of diagram 

elements also assists in model conceptualization (Lane 2008), and can be provided as a 

communication aid to a larger audience who would be otherwise unable to interpret model 

dynamics when represented by calculus-based equations (Lane 2008). Different implementations 

vary, but all SD models contain at least these five components: Compartments, Flows, Variables, 

Influences, and Source/Sinks (Lane 2008). Compartments, also referred to as state variables or 

stocks, represent points of storage for quantities moving through the modeled system, and are the 

components upon which the model's differential equations act upon (Lane 2008). Flows 

represent the paths of values that stream through the system, and represent the rate at which a 

value accumulates or dissipates within a targeted compartment (Lane 2008). Variable 

components represent other values external to flow components, which can influence the values 

processed within the differential equations driving the simulation (Lane 2008). Influences map 

out the interactions between variables, flows, and compartments, essentially acting as roadmaps 

to how all other visual pieces of the representative stock-flow diagram tie together (Haefner 

1996; Lane 2008). Sources and Sinks represent quantities that enter from and exit through the 

implicit boundary of the system, respectively; these quantities are not tracked by the SD model, 

as their values are considered out-of-scope of the system being simulated (Lane 2008). Each of 

these components are graphically represented in a consistent way: compartments are rectangular 

boxes, flows are arrows with a triangle shape (or occasionally some valve-like shape) placed 

partway along the line, variables are round bubbles, influences are thin or dashed arrows, and 

sources/sinks have an amorphous cloud shape (Haefner 1996); see Figure 1 for an example SD 

model and a legend for its icon usage. Mathematically, the collection of graphical model 

components are combined into a series of differential equations which are then solved along 

regular time intervals to produce the dynamics of the model, simulating the flow of 

compartment-captured values through the simulated system. The representative equation that 
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each constructed differential equation can be reduced to is dX/dt=f(X,P), where X is a vector of 

quantities in each compartment, and P is a vector of parameter values associated with the 

compartments represented by X (Lane 2008). 

Figure 1. Example of a simple System Dynamics model with an icon legend. The 
model represents a two-tiered reservoir system; Water flows in to the Upper 
Reservoir from an outside river, is transferred to the Lower Reservoir at a rate 
denoted by the “Transfer Rate” variable, and is released from the lower reservoir 
for municipal use at a rate defined by the “Release Rate” variable. Diagram 
created using Simile. 

While SD models have been used to answer ecological research questions since at least 

the early 1970s (Sklar and Costanza 1991), there are a number of shortcomings that when 

addressed could greatly increase their utility. OME primarily focuses on two such deficiencies. 

The first shortcoming involves the explicit representation of spatial data. A number of SD 

models utilize explicit spatial relationships as part of their model design (e.g. Ford 1999; 

Costanza and Voinov 2004). Traditional SD models are inherently spaceless, and it takes 
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considerable effort to explicitly model spatial relationships within the confines of traditional SD 

modeling tools (Sklar and Costanza 1991). This leaves it up to the author to construct a spatial 

representation that is compatible with their model, which can lead to a lot of unnecessary work 

reinventing the wheel; established and well known spatial relationships have to be redefined and 

reimplemented for each modeling project (Voinov et al. 2004). By standardizing a common 

interface for interacting with spatial data, the amount of work required on behalf of the model 

author would be significantly decreased, and would allow for the reuse of spatial data across 

models without significant modification being required. To address the possibility of spatial 

standardization, four spatial usage cases were defined early in the OME design process. The first 

spatial usage case is that there is no explicit spatial representation whatsoever; this is considered 

the base case. The second spatial usage case is that the SD model is replicated in each cell in a 

grid, which in turn represents a spatial coverage. This configuration involves no lateral 

movement of information between cell models. The third spatial usage case is the same as the 

second, except there is information sharing across cell boundaries; a flow out of one model's 

system boundary could act as an inbound flow across an adjacent model's boundary. The fourth 

spatial usage case is that explicit spatial relationships are defined within a subregion of a SD 

model. It is this fourth case which was settled upon for OME's spatial interaction with existing 

SD models. 

The second shortcoming that OME is attempting to address is that many of the existing 

SD modeling tools are largely insular and do not easily couple with other modeling tools. This 

shortcoming is exemplified by STELLA, one of the more common SD modeling tools (Voinov 

et al. 2004); other tools surveyed showed varying degrees of modularity and cross-tool 

communication capabilities, but most of these features did not stretch much beyond the feature 

set provided by STELLA. By having a SD modeling environment that is readily embeddable in 

other tools, work on glue code and inter-model communication can be simplified, allowing 

model authors to spend more time and resources on model details relevant to their research 

question. Additional flexibility can be derived from adopting a Free and Open Source (FOSS) 

distribution pattern, which can provide the ability to patch bugs on the fly, expand and customize 

tools as needed on the finest scale possible, and allow for a researcher to adapt the software to 
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new and novel runtime environments (von Krogh and von Hippel 2006). The lack of a 

standardized intermediate representation of SD models can make it difficult to move between 

tools, or stand as a barrier to understanding between model authors who each work with a 

different collection of tools; this again is best exemplified through documented experiences 

working with STELLA when trying to export SD models to other SD model environments 

(Voinov et al. 2004). Since all SD models have a minimum set of common stock-flow 

components whose configuration define a functional model (Lane 2008), writing an intermediate 

file format for storing such models would be beneficial, as it would allow for increased sharing 

in between tools and authors. There are some broad model specification languages out there, 

such as Unified Modeling Language (UML), but they are typically too general for the purpose of 

efficiently representing the common functionality between models originating from different SD 

tools (Siau and Cao 2001).  The Extensible Markup Language (XML) provides a good set of 

rules that define files that exist as a decent compromise between being program-structure 

friendly, platform independent, and human readable (Bray et al. 2008). Some tools already 

support XML representations of their models, but there is no agreed upon representation of 

models stored as XML between tools (although a candidate does exist; see the Literature Review 

section) (Costanza and Voinov 2004). By defining a common-ground XML model structure, 

inter-tool communication will be easier to achieve by avoiding too many tool-specific attributes 

and entries. 

With the aforementioned shortcomings in mind, here are several questions that can be 

used to measure the success of the OME project: 

1.	 Can an open-sourced, modular SD modeling tool be constructed with performance and 

features comparable to existing commercial counterparts? 

2.	 Does adding an explicit spatial data interface and adopting a modular design simplify the 

implementation of spatially-explicit SD models? 

The first question stems from a point early in the design process of OME, where the ability to be 

flexible as possible in OME's implementation was seen as a way to increase the utility of the tool 
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for model authors and existing modeling projects. As an extension to this thought, it is important 

for OME to perform in a similar fashion to at least one existing SD modeling tool, and that any 

inconsistencies can be sufficiently justified by acceptable deviations in the implementations of 

the different modeling runtimes; minimizing any additional difficulties or obstacles that arise 

from incorporating OME into a research project will increase the chances of its acceptance 

amongst the research community. The second question needs to be satisfied in order for the 

target users (ecological SD modelers) to find any utility in the outcome of this project. Both of 

these questions will be answered in the context of two existing models whose authors have 

expressed an interest in the benefits that this project can provide in addressing the previously-

outlined shortcomings. 

To provide the foundation for further discourse, this thesis will first review previous 

discussions in the literature surrounding the origins and history of SD modeling, examples of 

common SD model construction and runtime software, capabilities of common purpose 

languages to effectively construct and run SD models, previous attempts to bridge the gap 

between SD modeling and explicit spatial data, and previous attempts at designing a modeling 

framework in a highly modular fashion. Once a firm foundation for exploration is established, 

the general design process for OME will be elaborated upon and justified. After the general 

implementation process is presented, the discussion will focus specifically on the most novel part 

of the OME project: the implementation of the Spatial Data Provider (SDP) interface. At this 

point, two reference models originating from Simile will be discussed and the results of 

performance tests between OME and Simile running these models will be compared. Finally, the 

overarching discussion will conclude with a demonstration of how OME can increase the utility 

of an existing SD model when running as a plugin to a large Envision modeling project. 

Additional implementation details will be provided as a set of appendices for those who are 

curious about implementation details that exist beyond the scope of the general discussion within 

this thesis. 
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Literature Review 

Given the wide breadth of material that needs to be covered before a detailed discussion 

regarding OME can be carried out, this Literature Review will explore a number of seemingly 

disparate topics that tie together under the umbrella of OME. The discussion in this section will 

begin by briefly summarizing the origins and history of System Dynamics (SD) models, and 

their eventual application to spatially-explicit ecosystem modeling. After that, a brief survey of 

three common contemporary software tools for building and running SD models will be 

presented. The ability of two programming languages popular in the Scientific modeling and 

Geospatial Information Systems (GIS) realms, R and Python, to run SD model simulations using 

previously-published packages for each environment is reviewed. The topic will then shift to 

examples of spatially explicit ecosystem models implemented as SD models, followed by a 

discussion of previous attempts to provide a consistent way to explicitly define spatial 

relationships within SD models. A brief description of Envision follows, which in turn is 

followed by a discussion of the importance of open source and modular design to the OME 

project. The discussion will close with a brief description of another modeling tool constructed 

with a modular architecture, ModCom. 

System Dynamics modeling was formally introduced and defined in 1961 in Jay 

Forrester's Industrial Dynamics, with the intent of emulating the flow of materials and resources 

within an industrial management framework (Forrester 1961). From its inception, System 

Dynamics modeling was designed to utilize the unique resources of the rapidly expanding 

computational technology sector to iterate through the dynamics of a model (Forrester 1961). A 

structured visual syntax has also been defined since the initial introduction of System Dynamics, 

allowing for a model structure to be communicated completely through visual diagrams 

(Forrester 1961). As Forrester stated, “Many people visualize interrelationships better when 

these are shown in a flow diagram than they do from a mere listing of equations” (Forrester 

1961); these representative flow diagrams later became known interchangeably as “Forrester 

Diagrams” (Haefner 1996) and Stock-Flow Diagrams (Lane 2008). The first tool for running SD 

models, DYNAMO, was introduced at this time as well (Forrester 1961). DYNAMO would take 
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a series of equations representing the relationships outlined in a stock-flow diagram, check the 

equations for logical consistency, and, assuming the equations were found to be valid, compile 

the equations into computer code and carry out the simulation (Forrester 1961). 

Forrester's Urban Dynamics, published in 1969, expanded System Dynamics from inside 

the industrial management realm into modeling the dynamics of municipal environments as an 

aid in urban development policy (Forrester 1969). This successful shift into another problem 

space supported the argument that System Dynamics was a viable modeling approach for 

addressing questions across a large spectrum of knowledge spaces. Eventually, SD models would 

begin to be applied within the Natural Sciences, particularly within ecosystem models (Sklar and 

Costanza 1991). Given the structure of SD models, any spatial aspects of modeled ecosystems 

were usually represented implicitly by being bundled into the organization of state variables 

(Sklar and Costanza 1991). While implicit representation of spatial attributes is sufficient for 

some ecosystem models, many SD ecosystem models were constructed with explicitly spatial 

data attributes, a task that could only be accomplished with some difficulty (Sklar and Costanza 

1991). To this day the pictorial stock-flow diagram representation of a model has proven 

appealing to scientists and stakeholders alike for its effective means of communicating 

relationships in an understandable fashion (Wolstenholme 1982). 

Since the introduction of DYNAMO, a number of other SD modeling software tools have 

been developed. Most of the still-active SD modeling tools provide a method of creating a model 

through the construction of a modified stock-flow diagram using visual means (Lane 2000). 

Three common SD visual authoring tools used in ecological modeling are STELLA, Vensim, 

and Simile. 

STELLA was developed by High Performance Systems (now Isee Systems) and was 

introduced in 1987 as the first SD modeling tool to use a visual approach to constructing stock-

flow diagrams as a means to implement models (Haefner 1996). It is still in use today, and is 

presently being marketed as both an educational learning and research tool (Isee Systems). In 

addition to its model constructing capabilities, STELLA contains the ability to run model 

simulations, animate the flow diagram to show the changes in values, and generating results as 

common graphs and charts (Isee Systems). The model representation is XML-based, and data 
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can be exported to a Comma-Separated Values (CSV) file (Isee Systems). While STELLA does 

not have unique tools for constructing explicit spatial relationships within its modeling 

environment (Costanza and Voinov 2004), Isee Systems does publish a compatible spatial 

visualizer called Spatial Map, which allows for the graphical representation of exported array 

data as a two or three-dimensional coverage (Egner 2014). Since Spatial Map is external and 

strictly interacts only with outputs generated by STELLA (Egner 2014), it does not directly 

contribute to SD model simulation and is thus limited in its use.  

Vensim was developed by Ventana Systems and first released to the public in 1991 

(Ventana Systems Inc) and was created out of the need for features that similar tools did not 

provide (Ford 1999). Like STELLA, Vensim allows for the construction of a SD model using a 

stock-flow diagram, and provides an environment to run model simulations and present the 

results and outputs (Ford 1999). Vensim emphasizes its built-in support for the external 

parameter optimization process, which uses a modified Powell Hill climbing algorithm (Ventana 

Systems Inc 2014b). Another feature unique to Vensim is the built in ability to produce 

“Venapps”, which are Vensim based models that are bundled within a customized user interface 

frontend (Ventana Systems Inc 2014c). An interface to accept cross-application control is a 

standard part of Vensim's API interface and can be accessed with a variety of programming and 

scripting solutions (including Excel) (Ventana Systems Inc 2014c). Vensim does not appear to 

have any built in support for explicit spatial representations beyond specific stock-flow 

configurations constructed by a model's author, but its possible that such a feature may have 

been overlooked. 

Simile was originally developed by a research group at the University of Edinburgh 

before being spun off as the product of the private company Simulistics Ltd. (Simulistics Ltd.). 

Simile's visual model construction tools are straightforward and integrated with a simulation 

runtime which allows for easy browsing of results (Simulistics Ltd.). Models are compiled from 

C++ code, using either a system-native compiler, or a GNU compiler bundled with Simile's 

distribution (Simulistics Ltd.). The execution window provides tools for displaying results in a 

meaningful and accessible way (Simulistics Ltd.), allowing for a simple method of visually 

verifying specific values at the conclusion of a model simulation run. The model specification 
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which Simile uses is text-based and fairly easy to understand (Simulistics Ltd.). Simile provides 

built-in visualization tools which can be used to display spatial data in the form of polygons, 

square grid cells, or hexagonal grid cells (Simulistics Ltd. 2014c). There are no specific tools 

provided by Simile designed for representing explicit spatial relationships, but such relationships 

can be constructed by the model author through the unique configuration of compartment, flow 

and submodel components (Simulistics Ltd. 2014c). Simulistics recommends that association 

submodels be used to map out spatial relationships (Simulistics Ltd.). Association submodels are 

those that can map out conditional relationships between two other submodels through the 

association via role arrow model components, optionally using specific selection criteria 

(Simulistics Ltd.). While this approach may be effective, it has been acknowledged that such an 

approach has a significant overhead on behalf of model authors in understanding the association 

construct and details of its implementation conceptually and practically (Simulistics Ltd.). 

In addition to specific SD tools, System Dynamics has also been modeled using high 

level languages. Two such languages which have a strong presence in the Natural Sciences are R 

and Python (Perez, Granger, and Hunter 2011). R is a language and runtime environment 

designed for statistical computing and generating high-quality plots and graphs (R Foundation 

2014a). The R environment is extensible and provides built in access to a module archive known 

as the Comprehensive R Archive Network (CRAN) (Adler 2009). Within the CRAN, there are at 

least two modules that have been used for building and running System Dynamics model 

simulations: deSolve and simecol (Petzoldt). DeSolve is a package of general equation solvers 

for Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), Differential 

Algebraic Equations (DAEs), and Delay Differential Equations (DDEs) (Soetaert, Petzoldt, and 

Setzer 2010). Simecol is a framework for building ecological model simulations in R and relies 

on the deSolve module for solving simulation equations (Petzoldt and Rinke 2007). While it is 

possible to write and run SD models in R, it is not necessarily an ideal environment to do so. R is 

not efficient at querying data structures, handling complex data structures, or handling a data set 

that is larger than the available space in memory (Adler 2009), all conditions that can arise from 

particularly complex SD models as observed throughout the development of OME. Additionally, 

R is an interpreted language (R Foundation 2014b), meaning that there is additional performance 
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overhead using a model written to run in its runtime environment as opposed to a language 

which is compiled directly into machine code, such as C++. 

Python is a high-level interpreted language and runtime environment with a solid focus 

on a clear and accessible syntax (The Python Foundation 2014a). Like R, Python has support for 

extension modules, most of which are accessible on the Python Package Index (PyPi) (The 

Python Foundation 2014b). There has been a wide-scale adoption of Python across Geographic 

Information Systems (GIS) centered disciplines due to its adoption as the primary scripting 

language in ArcGIS (Perez, Granger, and Hunter 2011); Python has seen adoption across general 

science disciplines as well (Environmental Systems Research Institute 2006). Presently, several 

Python modules exist which provide the capability to run System Dynamics model simulations; 

PyDSTool and SimPy are notable examples of such packages. PyDSTool is a Python package 

that focuses on running SD models, particularly those used in biological applications, as well as 

supplying some visualization and optimization tools (Clewley 2012). SimPy is a package for 

running general discrete event-driven simulations, a classification which includes System 

Dynamics models (Lünsdorf and Scherfke 2014). While its more general nature and its better 

data handling abilities may make it a more desirable environment for running SD simulations 

than R, its still fundamentally an interpreted language which leads to additional overhead and 

decreasing performance when compared to compiled language (The Python Foundation 2014a). 

It is possible to write performance critical sections in machine native code and link it to Python 

through a native interface (Oliphant 2007), but this means that the core functionality is not 

written in Python at all, but instead in some language that compiles into machine native code 

(such as C++). 

Spatially explicit SD models have been in use from at least the early 1970s (Sklar and 

Costanza 1991). Several examples of spatially explicit research models using the Spatial 

Modeling Environment (SME) appear in a collection of case studies in the book Landscape 

Simulation Modeling: A Spatially Explicit, Dynamic Approach (Costanza and Voinov 2004). 

SME is a project which attempts to apply explicit spatial relationships to STELLA by taking 

output from STELLA, converting it to C++ code, compiling it, and running the resulting binary 

in a custom runtime that executes the SD model as a unit model copied across a spatially explicit 
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grid (Costanza and Voinov 2004). One model which utilizes SME in this fashion, The Great Bay 

Model, uses a unit model developed in STELLA to capture dynamics of carbon flow through 

Eelgrass-centered ecosystems in the Great Bay estuary in New Hampshire for a fixed cell size 

(100x100m2) (Behm, Boumans, and Short 2004). Each cell has a copy of the unit model 

initialized with cell-specific values, with flux values from neighboring cells being added by SME 

to represent the flow of nutrients, detritus, and consumers, satisfying spatial usage case three as 

defined in the Introduction (Behm, Boumans, and Short 2004). Another implementation that uses 

SME is a desert tortoise population model by Aycrigg et al., which simulates the impacts of six 

different land management scenarios on desert tortoise populations in the Mojave Desert 

(Aycrigg, Harper, and Westervelt 2004). The unit model simulates climate, vegetation, and 

tortoise population dynamics for fixed-sized cells (1x1km2); copies of the unit model are mapped 

to cells in a gridded spatial coverage by SME (Aycrigg, Harper, and Westervelt 2004). Similar to 

the Great Bay Model, unit models in neighboring cells can contribute to one another, simulating 

tortoise migration, which also satisfies spatial usage case three (Aycrigg, Harper, and Westervelt 

2004). A different spatial usage case can be seen in the two models that are described in the 

Simile Model Compatibility section, which express their explicit spatial components as a 

subportion of a much larger model (spatial case number four). 

The need for a unified external representation of spatially-explicit relationships has been 

recognized and previous attempts have been made to address it. SME is one such project whose 

approach parallels that of OME. Since lateral transfer of values between cells and their unit 

model representations is supported, SME satisfies both spatial cases two and three, but most 

models appear to focus on the latter case (Costanza and Voinov 2004). Another approach to 

fulfill this niche is represented through SimARC. SimARC is a bridge between Simile and 

ArcMap (a common GIS tool) that allows ArcMap to call a Simile's runtime environment to run 

a compiled Simile model on each polygon within an ArcMap coverage, producing a new map 

layer (Mazzoleni et al. 2003). Since no lateral transfer is supported between polygons, SimARC 

can only satisfy spatial case two (Mazzoleni et al.). While both SME and SimARC are 

addressing a similar need to OME, they differ rather significantly in a few details. The two 

implementations focus on a different spatial application than OME. Specifically, they are largely 
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concerned with replicating System Dynamics across discrete units within a spatial coverage, with 

SME typically being applied across a grid/raster coverage (Costanza and Voinov 2004), and 

SimARC being applied across a polygon-based coverage (Mazzoleni et al. 2003). OME, in its 

current implementation, focuses its spatial data management toward applications where a SD 

model incorporates spatial information into its larger simulation space. As previously mentioned, 

SME primarily satisfies spatial case three, SimARC only applies to spatial case two, and OME 

(in its present incarnation) focuses on spatial case four. The target auxiliary tools also differ; 

SME largely relies on STELLA (Costanza and Voinov 2004). while OME is currently targeting 

Simile for its input source (both of these tools are designed with the possibility to use other SD 

modeling tools as input sources (Costanza and Voinov 2004)). SimARC uses Simile as its input, 

and its approach is to embed the model within another tool (Mazzoleni et al. 2003). OME, by 

contrast, is designed to be flexible enough to use different SD tools as an input, and to both run 

standalone and embedded in another tool. 

An important objective of the OME project is to demonstrate SD models running as a 

subcomponent of a much larger simulation framework; Envision was chosen as the target 

platform for this task. Envision is an agent-based, spatially explicit integrated modeling platform 

developed at Oregon State University (Oregon State University). Envision focuses on 

simulations revolving around coupled human and natural systems under the projected effects of 

Global Climate Change (Oregon State University). High level dynamics are driven by the 

interactions between agents (decision making units for land parcels), landscapes (the spatially 

explicit coverage which reflects changes during a simulation), and policies (constraints on 

simulation behaviors) (Oregon State University). As a collaborative modeling platform, Envision 

utilizes a plugin architecture that allows for the addition and usage of different models, 

visualizers, and outputs on a per-model basis (Bolte 2014). Projects involving Envision typically 

focus on futures projections of climate and resource trends with the goal of assisting in policy 

decisions (Oregon State University 2014b). Further exploration of Envision as a runtime 

environment will be explored in the Case Studies section. 

Another objective is to provide the components of OME in an Open Source distribution 

with robust documentation alongside precompiled binaries. Such a configuration can allow for a 



 

  

  

  

 

 

 

 

  

 

 

 

 

 

 

14 

higher degree of scrutiny and custom modifications on behalf of interested parties (Gwebu and 

Wang 2011). In a similar vein, many of the extant SD modeling tools appear to have varying 

degrees to which they can interchange or embed in other modeling environments (Simulistics 

Ltd.; Ventana Systems Inc 2014b; Isee Systems). OME's initial implementation is designed to 

optionally embed in an Envision project as an autonomous process. This configuration, with 

Envision being a platform designed to run multiple modeling plugins within the same simulation, 

allows OME to accept inputs from and output to Envision's modeling context, allowing cross-

communication between other modeling components (Oregon State University 2014b). This 

cross tool integration with Envision could potentially be extended to other environments as well. 

Modular ecosystem modeling framework design has been previously explored, with 

ModCom being one of the more recent examples (Hillyer et al. 2003). ModCom is an ecosystem 

modeling framework which provides a skeleton for constructing models out of modular 

components (Hillyer et al. 2003). The central library to ModCom's framework, ModComLib, 

provides interfaces that outline conformation requirements for both core modules and custom 

external modules (Hillyer et al. 2003). Cross-module communication is accomplished through 

the Component Object Model (COM) specification, which is an implementation-independent 

method for communicating between binary applications (Hillyer et al. 2003). Each component 

exposes inputs and outputs used over the course of a simulation through a series of standardized 

interfaces (Hillyer et al. 2003). The interfaces include ISimObj (basic ModCom object interface), 

IUpdateable (interface for periodic update messages), and IODEProvider (interface for objects 

represented by one or more ordinary differential equations) (Hillyer et al. 2003). This setup 

allows components to be chained together with the outputs of one or more components feeding 

into the inputs of additional components; such a design allows for the addition, removal, or 

swapping of components with minimal effort (Hillyer et al. 2003). Additional interfaces exist for 

exposing data, inter-object communication, and reading and writing data files (Hillyer et al. 

2003). ModCom and its source code were released as an open source project alongside visual 

tools for constructing additional ModCom components (Hillyer et al. 2003). Both the modular 

nature of ModCom and its open-source distribution are aspects that would likely prove beneficial 

to OME as well.  
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To coincide with a modular and open structure of the program itself, it is important to 

explore the equivalent construct for storing model details as files. There are a number of standard 

file format specifications that are used to store SD models for use and distribution. A recent 

entry, XMILE (XML Modeling Interchange Language) seeks to provide a universal format to be 

used across the various SD modeling tools that presently exist (OASIS). XMILE is an XML-

based file format that is intended to share model definition, drawing, and runtime information 

between different SD modeling environments (OASIS). The data stored in a XMILE file is 

divided into three conceptual layers known as compliance levels, with each successive level 

building upon the previous (Chichakly 2013). The intention behind each compliance level is to 

provide a roadmap for what specific feature sets a given tool should support, with support of a 

higher level layer implying support of all levels below it (Chichakly 2013). The first compliance 

level (Simulation) contains the bare equations needed to run the simulation (Chichakly 2013). 

The second compliance level (Display) stores all the information necessary to display and 

modify the individual model components which define the equations in the first level (Chichakly 

2013). The third compliance level (Interface) provides information on running the model and any 

auxiliary information that can be used to describe how to display the results (Chichakly 2013). 

While the compliance levels are largely conceptual, the levels are practically incorporated into 

XMILE files as an attribute to the root node of the file (Chichakly, 2013). The architecture of the 

file itself is conceptually constructed as three sections: Model, Presentation, and Widgets 

(Chichakly 2013). The model section is synonymous with the Simulation layer; that is, the 

Model section contains all the information necessary to execute the model (Chichakly 2013). The 

Presentation section encompasses all the needs of the Display layer and portions of the Interface 

layer, and is concerned with all aspects of lower level drawing requirements (Chichakly 2013). 

The Widgets section covers any details of the Interface layer which are not covered by the 

Presentation section, namely higher-level constructs such as user-interface widgets, graphs, and 

tables (Chichakly 2013). The format is presently undergoing ratification by the OASIS standards 

organization in order to be acknowledged as an official standardized interchange file format 

(OASIS). The degree of detail that XMILE covers is greater than what is presently needed by 
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 OME, and was therefore bypassed in favor of a simpler XML-based model format that has been 

in use since the early stages of development. 

As has been demonstrated, there has been much previously published work that explores 

the various facets that the development of OME will attempt to cover. Touching upon all of these 

seemingly disparate branches of research and development has provided sufficient background to 

continue the discussion by describing the reasons, decisions, and obstacles that were used to 

shape OME's overall design approach. 
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Design Approach 

As previously stated, OME is designed to provide a universal interface for querying 

explicit spatial relationships, and to provide a modular configuration for coupling with other 

tools. To achieve these goals, much planning and deliberation went in to the OME development 

process. Milestones were defined to guide development, and both Simile and Envision were 

incorporated into the project both as tools to assist in development and as targets for the 

application of OME. Decisions regarding how to run model simulations, what external 

technologies and third-party libraries to rely upon, and what platforms to target were made as 

needed. The OME development process has been long and complex, and is by no means 

complete. This is best exemplified by the series of milestones that have been established. 

Milestones and Useful External Tools 

Goal Implementation 
Load and run pre-existing SD models. Conversion tools for modifying and copying Simile files into OME-ready

files. 
Support for explicit spatial
representation. 

Create a universal spatial data provider (SDP) interface, and provide a
syntax for querying spatial relationships within model component
expressions. 

Flexibility in design. Follow principles of encapsulation and strive for modularity. 
Be both capable of running standalone
and as a plugin. 

Adhere to principles of modular design. 

Cross-platform support. Use platform-agnostic code wherever possible, and isolate platform
specific code using preprocessor macros as necessary. 

Comfortable user-interface for any tools
that require a GUI. 

Use platform-native libraries for generating UI components instead of
cross platform libraries. Users on each platform have different
expectations about available UI conventions. 

Table 1. Overview of design goals and implementation approaches. 

When beginning the OME project, it was quickly realized that there would be a lot of 

unknowns in the process, and that something useful should be produced even if none of the 

original end goals were achieved. Table 1 provides an overview of some of the broad goals of 

this project and the attempted methods of implementation. Thus, incremental goals were defined 

as milestones that defined points in the development where a set of known features would be 
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implemented and functional enough to be utilized by future researchers or developers; these 

milestone features would stand on their own even if the initial development of OME had ceased. 

Milestones were initially set by identifying the desired end goals and working backward along 

the proposed development timeline. Intermediate points, where subsets of useful features would 

be considered sufficiently complete for widespread use, were identified and marked as 

milestones. As development progressed and unforeseen complications were encountered, 

achieved milestones were noted, while future milestones were added, adjusted, or eliminated as 

needed. The initial set of milestones consisted of the following: 1) Implement a tool which can 

convert Simile models into a readily accessible intermediate format; 2) implement a simulation 

runtime that can handle simple, statically-defined model dynamics using an Euler or RK4-based 

solver; 3) add a scripting or extension language to the simulation engine that provides support for 

complex data containers; 4) increase the complexity of supported model dynamics; 5) provide 

initial spatial data support via an explicit interface; 6) implement an Envision plugin using the 

explicit spatial data interface; 7) add support to the Simile model converter for adapting model 

logic for use with the spatial data interface; 8) add support for running some runtime processes in 

parallel; 9) build a model construction suite that builds SD models directly for OME through the 

use of standard stock-flow diagram iconography. The present implementation of OME only 

satisfies the milestones up through milestone 7. Additional milestones were added as the 

development focus was adjusted over time; the additional milestones were 4.5) Implement model 

logic that can be compiled into machine code; 6.5) write a straightforward tool for running, 

dumping, and visually parsing the results of an OME simulation run; and 7.5) port the existing 

OME components to at least one other platform. Most of the secondary milestones have been 

satisfied, with a tool for generating source code for compiled models (the ModelClassBuilder 

project), the creation of OMESimRunner, and the reimplementation of the core OME coding 

projects under Mac OS X. Milestones 8 and 9 were not reached simply due to time constraints on 

the initial implementation stage of this project, and will be noted as future points of expansion 

for any attempts to expand upon the present OME implementation. 

As indicated by the aforementioned milestones, both Simile and Envision played a role in 

the development process, primarily as tools to assist in the validation of the results of OME 
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simulation runs. Simile had a number of features which proved beneficial throughout the OME 

development process. Simile's visual model construction tools are straightforward and integrated 

with a simulation runtime which allows for easy browsing of results (Simulistics Ltd.). Models 

are compiled from C++ declarations (Simulistics Ltd.), which gives the OME compiled libraries 

(also compiled from C++ code) a reasonable baseline to measure performance against. Simile's 

execution window provides a variety of tools for displaying results (Simulistics Ltd.), allowing 

for values to be visually inspected and compared to those produced by OME when both 

environments are effectively running the same model. The model file specification which Simile 

uses is text-based and fairly easy to understand (Simulistics Ltd.), making it a good first target 

for a conversion tool. As more complex models were incorporated into the development process, 

Simile's snapshot tool proved essential, as it allowed for a multi-instanced model component to 

have all of its values for a given time step exported to a CSV file. Data exported from Simile 

could then be used as a reference point for comparing results between a model run in Simile and 

a model run under OME. Envision was useful for further vetting OME's model simulation results 

by providing a visual representation of a model's spatial coverage. By directing important values 

to be displayed by the map layer constructed in Envision, the correctness of OME's runtime 

could be checked on a high level by displaying any significant deviations from expected patterns 

and providing a map to specific submodel instances that were having issues. For more 

information about mapping values between OME's runtime and a larger coupled modeling 

environment (such as Envision), see the SDP Implementation section. 
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OME Model Representations
 

Figure 2. Overview of the model execution process. Filled arrows represent 
conversion steps from one format to another. Solid arrows are required steps in 
the execution process, while dotted arrows represent optional linkages between 
external components and their target processes. The dashed arrows represent the 
three ways an OME model can be loaded into the runtime, one of which must be 
taken: load the model file directly into the runtime, load a control file that points 
directly to the model file, or load a control file that points to a compiled version of 
the target model. 

The modular nature of the Object Oriented Programming (OOP) design was relied upon 

substantially to explore a number of potential extension languages that could be used to evaluate 

model component expressions. Extension languages are designed to be embedded in larger 

programs to handle subsets of logic that tend to be highly volatile or modifiable during runtime 

(Ierusalimschy, de Figueiredo, and Celes 2007). An additional benefit of using an embedded 

extension language is the ability to write and test or debug runtime logic while the parent 

program is running. Several extension languages were experimented with until a satisfactory 
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candidate was found. MTParser (Jacques 2004) was the first extension language to be evaluated 

because of its speed and relative simplicity. Unfortunately, MTParser's logic was found to be 

limited to non-collection values, and it did not have a cross platform implementation. A similar 

extension language implementation, muparserx (Berg 2005), was the next to be assessed, and 

while it did address the shortcomings of MTParser, it was found lacking in both flexibility and 

performance. Finally, Lua (Ierusalimschy, de Figueiredo, and Celes 2007)  was evaluated and 

found to be acceptable for implementing OME's model component expressions. Lua is an open-

source language implementation intended to act as an embedded extension language in larger 

C/C++ programs (Ierusalimschy, de Figueiredo, and Celes 2007). The runtime engine is easy to 

compile as a self-contained module, while the actual language itself is both well documented and 

mature (Hirschi 2007). An interface for OME model components was written which allowed  

Lua to interpret and execute model component update expressions. Additionally, a debugging 

prompt was implemented to query model components and their states during breaks in runtime, 

greatly assisting in the search for runtime bugs that were introduced during the development of 

the Lua interface. Despite the advantages of using Lua as part of the model evaluation process, 

performance limits were too great to overcome for larger models, so an alternative approach was 

devised which relied on compiled code instead. 

  Constructing model update logic as a binary library results in faster code at the cost of 

flexibility. To create a binary model logic file, a model is run through a serialization tool which 

produces a C++ class encompassing all initialization and update logic. The generated source 

code must then be compiled as a dynamic library and linked against the OME support libraries 

(namely OMERuntime and OMEDraw). An optional declaration in the Model's control file is 

then used to locate the compiled library and instruct the OME engine to load it at runtime. The 

expression statements from model components are generally less structured than formal C++ 

statements; to reconcile the two levels of structure an intermediate wrapper layer was developed 

to simplify the process of model serialization without sacrificing much performance. Objects 

pertaining to the wrapper layer are rapidly created and discarded; to prevent memory 

fragmentation, several instances of a custom memory pool class were used. A memory pool is a 

well known memory construct; it is a block of memory that is allocated by a process and is 
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divided into equal sized partitions that are continuously reused. The memory pool 

implementation in OME is advantageous for the large amounts of short-lived fixed sized objects 

which are constantly being created and destroyed, since retrieving a block of memory for a new 

instantiation occurs in constant time and memory fragmentation is reduced across the system 

since a memory pool only requests memory from the operating system when it needs to be 

resized. Ideally, the serialization process would be sophisticated enough to remove any 

ambiguity so that a wrapper layer would be unnecessary, but development time constraints 

limited how much work could be done in this direction. Nevertheless, the 

conversion/serialization code is largely encapsulated; such a future enhancement could be made 

without requiring an extensive rewrite of the source code. By converting the model into C++ 

code, the author of the model can rely on their C++ development environment to supply a 

sophisticated debugging tool (such as Visual Studio's debugger or GDB), and to thoroughly 

optimize the model logic during the building of a copy intended for distribution. Unfortunately, 

this approach requires an external compiler (such as Microsoft's VC++ compiler, Clang, or 

gcc/g++) and compilation for each target operating system and hardware architecture. 

Fortunately, nearly all of the non-user interface code is platform agnostic, and generated C++ 

based model logic should compile with little or no effort under any C++ compiler with support 

for the C++11 standard.

 XML was decided upon as the basis for the model specification, as it is both universally 

supported and relatively straightforward for others to read, understand, and process regardless of 

the chosen programming language (Bishop and Horspool 2006). As stated in the Literature 

Review, the open XMILE standard was skipped in favor of a custom XML-based format mostly 

due to differences in complexity; XMILE is much more suitable for a fully comprehensive 

modeling tool, and as such providing support even for just its first conceptual layer would be 

more time consuming and involved than what was settled upon at this point in the OME project. 

Nevertheless, it would be beneficial for future iterations of OME to support the XMILE file 

specification to some degree, and perhaps eventually use it as a complete replacement for OME's 

custom formats. 

Presently, there are two XML-based file types that have been created specifically for 
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OME (parameter values can be loaded from general CSV files or Simile's .spf files). The first 

(.omem) is an XML file which stores the complete model specification, while the second type 

(.omec) is an XML file which handles details for controlling simulation runs, mapping specific 

coverage values to objects through the Spatial Data Provider interface, managing the output of 

debugging information, and any other details that are important to simulation conditions but not 

specific to the model definition. A third file type (.omet) has also been defined, but it is a binary 

file intended to act as a temporary file during a simulation run and is not intended to be 

distributed. See Appendix C for an overview of the structure of  the .omec and .omem XML 

files. 

All of the aforementioned details factor into the general OME model preparation and 

execution process, as outlined in Figure 2. Essentially, a model must be converted from its native 

format to OME's model format. This file (or its compiled representation) is then loaded into the 

runtime directly, or (preferably) though the inclusion of an OME control file that is loaded into 

the runtime instead. Optional parameter files are loaded into the engine at this time as well. If 

OME is running as a standalone product, then a Spatial Data Provider (SDP) is optionally 

included and the model is executed. If OME is running as a plugin, the parent tool is responsible 

for linking in an optional SDP interface, configuring the data exchange between itself and OME, 

and telling OME to execute at the necessary intervals. The divergence in behavior is possible due 

to the modularity inherent in OME's design. 
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Modularity and Interoperability
 

Figure 3. OME architecture and module boundaries for the dynamic libraries and 
executables that are presently part of the OME distribution. Solid arrows refer to 
required dependencies, while dotted arrows refer to optional dependencies. The 
box <compiled model> refers to a dynamic library generated from a given 
author's model. 

OME attempts to address the issue of little or no interoperability between existing SD 

modeling tools by emphasizing a modular design approach throughout its architecture. The 

design of OME is constructed following an object oriented programming (OOP) approach. The 

OOP approach is a paradigm whose defining characteristics appear to fit well with the 

conceptual design of a SD model. The core conceptual structure in OOP is the object, which is a 
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discrete entity with distinct attributes and behaviors (Wegner 1990). Each object has a defined 

interface through which other objects can interact with, the idea being that details of an object's 

implementation should not need to be known or understood by other interacting objects (Wegner 

1990). This separation between the interface and the implementation encourages modularity, and 

allow for the concepts of encapsulation (protecting internal data by forcing interaction through a 

known interface with the knowledge that the implementation fulfills a particular relationship) 

(Wegner 1990) and inheritance (creating a new object by extending the attributes and behaviors 

of another extant object) (Wegner 1990); both of these concepts were used extensively when 

implementing OME's model representation, runtime logic, and support code. The conceptual 

interpretation of SD models lends itself to object-oriented design since the model is made up of 

discrete components (Compartments, Flows, Variables, Influences, etc.) each of which contain 

attributes and behaviors unique to their roles within the diagram. Modular design has also 

influenced the overall development process in a few particular ways. Designing different 

components with clearly delineated boundaries has allowed for progress to be made in 

incremental steps; pieces of the engine can be initially implemented with moderately sufficient 

solutions, and replaced later with more elegant solutions without requiring an extensive rewrite 

of the codebase at large. This implement-and-replace process was beneficial during the 

development of the compiled model structure and the higher-level runtime management. The 

other way modularity has been used has been in the design of the runtime itself; the library 

containing all core runtime components (OMERuntime) has no user-facing front end. Instead, 

the library has its manager class exposed, which handles all the details of loading and running an 

OME-compatible model, resulting in a runtime that is completely decoupled from any specific 

front end. Such a modular design allows for the engine to run independently, or as an extension 

to another modeling tool. Model execution is driven by a central event loop, which allows 

outside objects to be registered to receive specific broadcast events, and to submit events of their 

own. This configuration allows for outside programs to hook in to the model runtime and receive 

feedback at regular intervals, or when specific events are dispatched. When OME is configured 

to run as a plugin, there is an interface exposed that is designed to regulate what information can 

move into and out of the model at regular intervals as defined by the parent program. The 
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coarsest level of modularity involves the division of OME into different libraries and 

executables, as shown in Figure 3. This high level modularity also allows for some of the 

modules to be optionally included or replaced at runtime, either through the use of configuration 

files, or dynamic library linking. 

The ability to extend Envision's functionality, as well as its spatial coverage management 

capabilities, makes it an ideal platform to demonstrate OME's plugin configuration when coupled 

with a parent program. In the case of Envision, the parent program is both controlling the SD 

model execution, and acts as OME's spatial data provider. A SD model's integration into an 

Envision project opens up the possibility of a SD simulation interacting with other model 

simulations that are running on the same spatial coverage at the same time. This allows for 

different models to represent different sets of processes which can then exchange information 

with one another. OME's runtime is adapted for use by being linked into another dynamic library 

known as OMEAdapter. Using Envision's EnvExtension base class, OMEAdapter provides the 

necessary functions and setup code for OME to be treated as an autonomous process; an 

autonomous process is a process that carries out its assigned task outside the bounds of the 

central processes that make up the simulated human-decision making portion of the overall 

simulation in Envision (Bolte 2014). An autonomous process entry in an Envision project (.envx) 

file is then used to link in OME along with a .omec file to provide OME-specific instructions.   

To provide a spatial representation method that can potentially apply to all four of the 

usage cases outlined in the Introduction, OME implements an interface for querying about 

information regarding a coverage's spatial details. Requests through the interface are fulfilled by 

a backend implementation that varies based on the conditions under which OME is executed. For 

development purposes, two interface backends have been created; the first implementation is 

designed to read standalone CSV files, and is implemented as a plugin which is referenced by a 

model's control file. The second implementation uses Envision as the interface backend, and is 

used when OME is run as a plugin to Envision. The spatial interface is clearly delineated so that 

future implementations can be developed and applied with little trouble; templates for dynamic 

library hooks have also been provided so that plugin authors will be aware of which function 

signatures will be required for the library linking to work. Further details regarding the 
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implementation of a spatial data interface is covered in the SDP Implementation section. 

An important focus of this project is its open-source approach to development and 

distribution. Open-Source Software (OSS) is a management approach that encourages communal 

improvement of a software product by requiring the release of the source code alongside the 

product, and licensing the source code in a way that allows open modification (Open Source 

Initiative 1998). An OSS approach has a number of advantages that will encourage uptake and 

maintenance of the OME environment. OSS distribution meshes well with scientific research 

since publishing source code allows for transparency and critical scrutiny, both of which are 

crucial to the scientific process (Bangerth and Heister 2013). Since OME's target audiences are 

scientific researchers and modelers, it would make sense to follow a communication paradigm 

that closely parallels one that these audiences have confidence in. The transparency and scrutiny 

that an open-source project is subject to can increase the chances that potential errors or 

vulnerabilities will be identified due to the likelihood that the source code is being audited by a 

large group of individuals. Such openness towards auditing is an advantage over closed-source 

code that can further increase confidence in results generated by OME (Gwebu and Wang 2011). 

Similarly, the ability for anyone to contribute to the code can allow for specialists to apply their 

unique knowledge to specific portions of OME's codebase to increase accuracy, performance, 

and resource management as they see fit. Not all potential changes will be beneficial to 

everyone; one advantage of open-source distributions is that they are often suitable for forking, 

or copying a source code project at a given point of development to continue with a different set 

of goals and objectives than the those guiding the originating project (Ruparelia 2010). The 

ability to specialize on such a low level is often unavailable in closed-source tools, but is 

oftentimes encouraged by open-source communities (such as github) (Gwebu and Wang 2011; 

Ruparelia 2010). Open-source development is frequently accompanied by cross-platform 

development (Borshchev and Filippov 2004). While OME has been initially developed under 

Windows, platform agnostic code and libraries have been used wherever possible and where it 

doesn't impact the user interface; this has made it straightforward to expand development to Mac 

OS X and Linux environments. By having the tool exist across multiple platforms, the pool of 

potential users is expanded, increasing the chances of uptake and acceptance of the model 
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development community as a whole (Ierusalimschy, de Figueiredo, and Celes 2007). Having the 

source code published in its entirety opens this project up to a longer active lifespan by allowing 

maintenance responsibilities to freely change hands, and by allowing it to be incorporated into 

other projects where it can be of some use. 

Simply publishing a project in an open source format is not enough to gain acceptance by 

a community that is actively engaged and interested in providing their own contributions 

(Bangerth and Heister 2013). The most obvious initial step is to host the project in a source code 

repository that is both easily accessible and allows for project forking or branching; most popular 

version control systems allow for (and in some cases, actively encourage) project branching 

(Ruparelia 2010). Branching allows for a contributor to focus their resources in a direction that 

does not impact other users; if any changes or modifications are deemed valuable, they can be 

merged back into the main branch (Ruparelia 2010). Branching differs from forking in that 

branching is an alternate line in the same repository as its originating branch (Ruparelia 2010), 

while forking results in a completely new repository and development project (Robles and 

González-Barahona 2012). Another practice that will encourage uptake and acceptance is solid 

documentation throughout the entire project; most people are more inclined to engage in an 

open-source project if they can easily understand how everything works together (Bangerth and 

Heister 2013). Documentation on several levels is important: the source code level (individual 

functions, objects, and single lines of code), the API level (what behaviors other tools can access 

and how), and higher usage considerations (model and runtime configuration details). All of the 

aforementioned levels of documentation are being authored alongside the source code 

development for OME. Tools such as Doxygen are being used to streamline the process of 

generating source code documentation from inline source code comment blocks, reducing the 

overall effort required to produce meaningful developer documentation. Good adherence to 

modular design allows for adjustments to one portion of the source code without interfering with 

another, and is a widespread technique used for managing complexity in most large 

programming projects (Bangerth and Heister 2013). Such design also allows for a contributor to 

swap in their chosen solution to a specific subsection of the entire project, such as alternate 

implementations of memory management schemes or common search algorithms; this has been 
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demonstrated through the development of OME's custom management schemes and the various 

iterations of expression language support schemes. Finally, by actively engaging with the SD 

modeling community, it is believed that interest can be stirred by both showing off the existing 

features and demonstrating a responsiveness to their needs and requirements. This process has 

already begun with the interaction with some model authors. 

Platform Targets and 3rd Party Libraries 

C++ was chosen for this project over other higher level languages commonly used in 

scientific programming (notably Python, Java and C#) for several reasons. Personal experience 

has shown that C++ scales well from small to large projects, and across various degrees of 

abstraction (from the bit level through high level constructs). This wide range of the language's 

application space allows for a project to grow in complexity and abstraction incrementally over 

time, which combines nicely with OME's milestone-based development approach. C++ is well 

established across a number of hardware and software platforms, with a consistent set of 

implementation standards shared across multiple compilers (ISO/IEC 2011). The C++ compilers 

being used in the OME development process are well calibrated for their target environments and 

are capable of applying a number of performance and/or space optimizations during the 

compilation process without the intervention of a programmer. No additional runtime layer is 

needed for C++ programs, reducing the performance overhead and giving more control over to 

the programmer. While the lack of a runtime layer means that a programmer is required to 

handle the burden of implementing their own memory management scheme when programming 

in pure C or C++, it has the advantage of allowing the programmer to know at all times how 

memory is being handled, and to avoid large memory overheads in memory intensive processes 

(such as running a complex SD model) (Hertz and Berger 2005). Finally, there is simply a 

massive number of mature, well documented, and well supported support libraries that exist for 

C++ due to its age and standing within the software development community. Experience with 

C++ has shown that it is a language that is very sensitive to the discipline of an author's 

programming practices, and most of the pitfalls associated with C++ can be avoided by strictly 
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adhering to good ones. It is through the use of good programming practices that we hope will 

make OME's source code flexible, approachable, and readable.

 While the C++ Standard Template Library (STL) was utilized for various data structures 

and containers, several third party libraries were employed for various subtasks. The were a 

number of criteria that were considered when making the decision to include third-party libraries. 

The first criterion was whether or not the library had a cross-platform implementation; the 

intention is to avoid any unnecessary hurdles in expanding OME to other platforms. The second 

criterion is whether or not the library is simple and focused on a singular task. The less a library 

attempts to take on, the easier it is to understand and troubleshoot. The third criterion is whether 

or not the library comes as a source code distribution. This is important for debugging since it 

allows for the tracing of library logic, and if necessary, allows for customizations to be made. 

The final criterion is whether or not the license for the library is compatible with the distribution 

plan for OME. This is out of respect for the authors of these libraries and their wishes in how 

they are used. With these four criteria in mind, three third-party libraries are included in the 

distribution. The first, Lua (http://www.lua.org), has been previously discussed; it is distributed 

as source code, has a straightforward application programming interface (API), and an OME-

compatible license. The second library is TinyXML-2 

(http://www.grinninglizard.com/tinyxml2/), a simple, lightweight library for parsing and writing 

XML-compliant files (Thomason 2014). TinyXML-2 eschews some of the more advanced XML 

features, such as document type definitions (DTDs) and extensible stylesheet language (XSL) 

support, for the sake of simplicity (Thomason 2014). TinyXML-2 is distributed as source code 

under the zlib license (Thomason 2014), which is compatible with OME's distribution. The final 

third-party library is Shiny (https://code.google.com/p/shinyprofiler/), a compact C++ and Lua 

profiler (Abedi 2007). Shiny relies on preprocessor macros to poll specific points within a target 

program's source code; while this means that the target source code must be modified and 

recompiled every time a new portion of code needs to be profiled, it also means that all profiling 

code can be disabled by setting the SHINY_PROFILER macro to FALSE during compilation 

(Abedi 2007). The assembled polling data is collected in simple human-readable text files(Abedi 

2007), which can then be read by a developer, or parsed with an external tool (the OME 

https://code.google.com/p/shinyprofiler
http://www.grinninglizard.com/tinyxml2
http:http://www.lua.org
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distribution comes with a series of Python scripts used to generate performance graphs from 

Shiny's output). Shiny is distributed as source code and project makefiles under the MIT license, 

which is compatible with the needs of the OME project. 

Writing OME in C++ means that the project needs to be compiled for each platform that 

it is run on, but this is not a large hurdle. As previously mentioned, nearly all of the non-user 

interface code is written in a platform-agnostic fashion, relying on the STL and the C++11 

standard.  There are few places where platform-specific code is required, specifically with 

runtime loading of dynamically linked libraries, and a handful of places where a function needs 

to communicate directly with the operating system (such as evaluating file paths). In these cases, 

the proper code for each environment is selected either through the use of preprocessor macros, 

or the inclusion of alternate source code files within project files and/or makefiles. Code 

concerned with user interface organization is the exception; it was decided during the design 

process that it would be best to use a platform's native user interface (UI) framework to 

encourage the specific look-and-feel associated with that environment, at the cost of some 

increase in development time. Practically this means that under Windows user interface portions 

are written using the WinForms frameworks with a special variant of C++ known as C++/CLI, 

while under Mac OS X user interface code was written in Objective-C++ and utilizing the Cocoa 

framework. Due to time constraints and no single outstanding UI framework option, no GUI was 

constructed for Linux systems. However, if time permitted Linux UI toolkits would be compared 

and contrasted, and one would be selected based on which one best fit the design decisions made 

in OME; likely candidates would be GTK+, QT, wxWidgets, and Tk. To maximize code 

reusability, all UI specific code is separated as much as possible from any data handling 

structures provided by other OME libraries; all native UI implementations are expected to access 

the same model data structures and saved data visualization details regardless of their origins. 

Also, it is worth noting that OME development has almost exclusively target 64-bit processor 

architectures, as they are both abundant and better suited for larger data problems than 32-bit 

processor architectures. There is theoretically nothing standing in the way of compiling OME for 

any architecture that a compiler supports, but time and resource constraints have limited the 

exploration of building and running OME on alternate architectures. 
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SDP Implementation 

The Utility of a Common Spatial Interface 

A significant motivation for this project was the desire for a standardized method for 

implementing and accessing explicit spatial data from outside of a SD model's composition. The 

utility of such an implementation has arisen from real world applications; despite being 

inherently spatially unaware, ecological researchers and modelers have implemented their own 

solutions for utilizing spatial data in SD models (Ford 1999); a few examples of spatially explicit 

SD models using one solution, SME, are provided in the Literature Review section. When a 

model author comes up with their own solution to a spatial data representation problem, the 

burden of implementation is on them, which increases the amount of time and resources needed 

to successfully implement the model (Voinov et al. 2004). Such implementations are often 

redefining well known and commonly used relationships, and could benefit from standardization 

across various models (Voinov et al. 2004). Unfortunately, custom solutions to spatial 

relationships are often incompatible between models, making it very difficult to reuse the effort 

put in to a potentially standardized problem (this has been particularly noted in the reasoning 

behind building the SME environment for STELLA) (Voinov et al. 2004). Developing a 

standardized method of spatial representation would address some of the problems previously 

outlined. If a model is simulating a process common to a number of spatial environments, then a 

standardized spatial interface would allow the model to be applied to a different region by simply 

changing the spatial coverage input. This could also work the other way; multiple models 

working on the same coverage could influence each other by speaking through the same common 

spatial interface, allowing for more intricate interactions to be captured. By having a 

standardized spatial interface, modelers would only require knowledge of an opaque interface for 

requesting information about the coverage; details about the coverage implementation would be 

irrelevant to the model author. Without the need to focus on spatial implementation 

considerations, more time and resources can be spent towards factors that directly assist in 

answering the model's research question. 
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With the aforementioned issues in mind, a viable common interface should be able to 

satisfy the following requirements: 

1.	 The model should not be required to have knowledge of the specifics of the spatial 

coverage, but should have the option to query such specifics if desired. 

2.	 The model should be able to inquire about the values of attributes for any given spatial 

coverage record. 

3.	 The model should have the option to modify or add attributes to the spatial coverage. 

By satisfying these three requirements, a common interface would be both flexible and simple 

enough to implement in SD models while making it a straightforward to couple with arbitrary 

spatial coverages. 

The Spatial Data Provider: OME's Common Spatial Interface 

The solution to a common interface in OME is the Spatial Data Provider (SDP). The SDP 

is an interface for SD model logic to query for information on common spatial relationships. The 

implementation of the SDP can vary, but is expected to be responsible for loading, interpreting, 

and handling queries about a spatial coverage representation. Additionally, the implementation 

side of the SDP is intended to be defined either as a self-contained, standalone module or an 

interface to another tool in which OME is embedded. While the model can query for specific 

spatial coverage attributes (such as the method of coverage representation), it is not strictly 

necessary; instead, each “unit”, be it a point, grid cell, polygon, or some other coverage-

designated discrete unit, can be accessed by its index and can return data about itself, such as its 

area or the indices of its neighboring units. Spatial records and their attributes are represented as 

they are in the standard dBASE (.dbf) files: the entire spatial record collection is presented as a 

relational table, where each discrete unit is a “record” or “row”, and each attribute is a “column” 

(Environmental Systems Research Institute 1998). By standardizing record access and coverage 

queries through the SDP interface, requirement 1 is satisfied, with various “getter” and “setter” 

functions satisfying requirements 2 and 3, respectively. By creating a standardized interface for 
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querying spatial data, model authors can focus on what makes their model a novel approach, 

rather than the (sometimes complicated) logistics of defining explicit spatial relationships as a 

part of the SD model diagram. 

OME provides a C++ application programming interface (API) which defines the 

functionality that a SDP implementation must define, as well as a series of model expression 

functions that can be used to access the SDP interface during model runs. A full description of 

how to report implemented SDP functionality, the SDP API functions, and the SDP model 

expression functions can be found in Appendix B; what follows is a much more general 

overview of how to utilize a SDP from a model running within OME. 

<spatial_provider> 
<coverage_mapping> 

<submodel>* 
<var>* 

<inst_map>* 

Figure 4. Control file tags pertaining to SDP configurations. Bold tags are 
required, while italicized tags are optional. Tags followed by an asterisk (*) may 
occur more than once within their positions. 

The coupling between a Spatial Data Provider and a SD model begins within an OME 

control file. A control file contains two xml nodes relevant to mapping explicit spatial data 

(Figure 4). The first node of interest, <spatial_provider>, provides the path to the compiled 

SDP implementation and any attributes and/or sub-nodes which are necessary to properly 

initialize it for use with the provided model. This node may be omitted if OME is running as a 

plugin and the parent program handles all of the SDP details. The second relevant node, 

<coverage_mapping>, describes the mapping between model components and SDP records and 

attributes, and how values are shared between the model and the spatial coverage. Single-value 

model components can be directly mapped to coverage attributes in a one-to-one 

correspondence, but a model component containing multiple values for a single spatial unit must 

have any significant sub values directly mapped to a coverage attribute using the <inst_map> 

node (see Appendix C for tag details). There are four designated relationships between coverage 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35 

attributes and model components that can be mixed and matched: initialize a coverage attribute 

from a model component, initialize a model component from a coverage attribute, update a 

coverage attribute from a model component when its value changes, and update a model 

component from a coverage attribute when its value changes. Submodels can be specified to take 

their initial number of instances from the total number of records in the spatial coverage; this 

means that one or more submodels can directly map their unique instances to each 

polygon/cell/point in the spatial coverage, using the instance number to reference a 

corresponding record. While this is a common practice, it is not strictly necessary; since spatial 

records are referenced by index, any record could be referenced anywhere in the model. The 

<coverage_mapping> node may be omitted if there is no direct mapping between model 

components in the SD model and the spatial coverage; spatial queries can still be made, there 

will just be no implicit value sharing between model components and spatial coverage attributes. 

For a more detailed description of the <spatial_provider> and <coverage_mapping> nodes in 

the OME control file, see Appendix C. 

For more than the most basic data exchanges between mapped model components and 

explicit spatial attributes, explicit methods for querying spatial relationships must be defined. 

OME provides several functions which are defined for use within model component expressions. 

The set of functions can be categorized into the following behavior-based groups: 1) querying 

details about the whole coverage, 2) querying about details for a specific attribute across all 

spatial records, 3) getting and/or setting values specific attributes in a specific spatial record, and 

4) querying about spatial relations between spatial records. The first group contains functions 

that request details like the number of records, the type of coverage, and the spatial extents of the 

coverage. The second group contains functions that query the attribute index for a column title, 

and the minimum and maximum values for a given attribute across all records. The third group is 

essentially getters and setters for individual attributes in a given record. The fourth group is 

presently primarily concerned with neighbor relationships, focusing on querying or summarizing 

information about the records that are directly adjacent to a specific record in the spatial 

coverage. For a complete breakdown of SDP-related functions and the usage groups to which 

they belong, see Appendix B. These functions can be included in any model update expression 
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like any other expression function. For example, a submodel whose instances are intended to 

map one-to-one to a coverage could collect the total area taken by the neighbors of the associated 

spatial record to one of the instance's variable components by using the expression: 

SDPGetNextToArea(index(1)) 

For more examples of accessing the SDP from model expressions, see details about the Tampa 

Bay Seagrass Model in the Simile Model Compatibility section. 

Existing Example SDP implementations 

As previously mentioned, when an OME model with explicit spatial requests is 

evaluated, a SDP implementation must be provided for the interface; this is accomplished either 

by specifying an implementation in the model control file (in a stand-alone run), or having a 

parent tool providing the implementation when OME is loaded as a plugin (in the case of an 

embedded run). There are two implementations of the SDP which have been used throughout 

OME's development process: CSV Spatial Data Provider and the Envision OME Adapter. CSV 

Spatial Data Provider is a stand-alone SDP implementation written as a means to test features as 

the project advanced in its development. This provider takes a CSV file and interprets it 

depending on settings in the model control file. Grid and polygon representations are supported, 

and Lua scripts can be used to describe neighbor relationships. The SDP itself is provided by an 

external dynamically-linked library that is referenced by the provided OME control (.omec) file. 

In contrast to the standalone CSV-based SDP, the Envision OME Adapter is a plugin module for 

Envision that embeds OME as part of the runtime Environment. Envision provides access to the 

coverage in a project's active context using the SDP interface. OME is also capable of using the 

SDP interface to update specified values in Envision as needed. The SDP in this case is bundled 

within the OMEAdapter plugin and is passed directly to the OMERuntime, ignoring any 

<spatial_provider> tags provided by the .omec file. Both of these SDP implementations are 

provided by dynamically-linked libraries which utilize the previously-mentioned SDP API. 
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Simile Model Compatibility 

The reference models provided for this project were developed using Simile, which is 

discussed in the Literature Review. Since part of the OME development process has involved 

modifying and running existing models, it is a worthwhile exercise to compare the performance 

of the reference models when executed under Simile and OME separately. What follows is a 

brief overview of the reference models, a short discussion on some of the technical challenges 

that arose during the development process, and some simple performance comparisons between 

each of the reference models running under Simile and OME. 

Reference Models Overview 

The initial focus for this portion of the project was to get two different SD models 

running in OME, and then have them run under Envision using the OMEAdapter plugin and an 

Envision-native spatial coverage. Both SD models contained some explicit spatial aspect, and 

had runtime submodels which were static (submodel instances were not multiplied or removed at 

any point during simulation runs). Both models were also intended to run with an Euler's method 

integration solver, but would run with a RK4 solver as well. The two models that were selected 

for this project were HYGEIA and a draft version of John Rogers' Tampa Bay Seagrass Model. 

HYGEIA is a written by Roel Boumans for predicting the rate in the rise in reported 

adverse health effects in the greater Austin area due to regional changes fueled by Global 

Climate Change induced heat stress (Boumans et al. 2014). This model is considered complete 

and has been published (Boumans et al. 2014). The model is the smaller of the two, but still 

contains a moderate number of model components. The spatial representation is solely used for 

output, and consists of 696 polygons defined in a CSV file representing the greater Austin area. 

Each polygon corresponds to an instance of a specific sub model container within the model. 

 The Tampa Bay Seagrass Model is an unpublished draft model produced by Dr. John 

Rogers as part of his work for the Gulf Ecology Division of the USEPA, and is used as part of 

the OME development process with permission. The model is intended to simulate the growth 
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and nutrient flow of seagrass in the Tampa Bay. The model's draft status is beneficial for OME's 

development since it allowed for testing of behaviors under developmental conditions prior to 

extensive model design optimizations. The model is also quite large, with just over 3,000 model 

components. The spatial representation coverage for this model consisted of nearly 50,000 

hexagonal cells in an irregular configuration representing the area occupied by the northern third 

of Tampa Bay; each cell is defined by its central point as listed in an accompanying CSV. 

Similar to HYGEIA, each cell in the hex coverage corresponds with an instance of a specific 

submodel component. Unlike HYGEIA, however, the explicit spatial relationships are part of the 

simulation, with neighbor cells contributing to the dynamics of one another. 

The overall Simile-to-OME workflow (as diagrammed in in Figure 2 in the Design 

Approach) is designed to allow for the remapping of a custom explicit spatial data representation 

in a Simile model to be mapped to the SDP interface calls; this remapping occurs during the 

conversion to OME's model filetype. To prepare an existing model to work with the SDP, a few 

steps need to be taken. First, the spatial components of the existing SD model must be identified 

and given instructions on how their structure will change to work with the SDP; these 

instructions should contain the new model expression utilizing one of more of the 

aforementioned SDP expression functions to query for spatial data. This is accomplished in 

Simile models by adding custom conversion instructions to the Comments field of affected 

model components (see Appendix A). As a Simile model is processed by the OME conversion 

tool (SMLConverter), custom conversion directives are scraped from the comments field in 

Simile model components and incorporated into the resulting model output. 

Each model and their associated coverage files needed specific modifications before 

being suitable for running as a part of OME. For HYGEIA, the CSV file inputs were left as is; no 

interpretation of neighbor relationships between polygons was performed, as such relationships 

were not used as part of the model. A copy of the coverage was converted to a polygon .shp file 

for use with Envision by reconstructing the polygons using the values in the source CSV. A few 

model components were moved, and a submodel used for processing spatial data was removed 
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using some custom conversion syntax. No variable expressions were directly modified since 

output to Envision would be handled by a coverage mapping (see the SDP Implementation 

section). 

The Tampa Bay Seagrass model required slightly more effort. To speed up independent 

neighbor testing, a column was added to the CSV coverage listing the neighbors for a given 

record; the equation used to find neighbors was functionally equivalent to the model selection 

criteria used in the originating model to determine neighbors. CSV interpretation was otherwise 

handled by the control document. A polygon-based .shp file was generated by constructing a 

hexagon-shaped polygon for each center point found in the CSV (the dimensions of the hexagon 

grid cell was determined by the distance between the center points of two hexagons and some 

simple trigonometry). Model augmentation was handled by converter control statements, which 

removed a relation/association model used to determine neighbors, and rewrote an expression to 

request neighbor information from the Spatial Data Provider (SDP) instead of the 

aforementioned removed submodel. 

Design Challenges 

Each model introduced unique challenges to OME that resulted in changes to the 

underlying runtime architecture. The first major hurdle introduced was memory fragmentation; 

as the update equations are solved and temporary values are allocated and freed from the 

computer's memory manager, available memory is often divided into smaller and smaller blocks 

and intermingled with allocated regions. Over time, this produces a noticeable spike in memory 

consumption and a drastic increase in runtime. This problem was resolved by allocating all 

temporary values from pools of memory put aside for constant reuse; at the end of every 

expression, the content of the pools is marked as free so that all the pool's memory is available in 

the next expression. This approach stabilized memory use and performance for arbitrarily long 

model runs. Another early roadblock was the massive amount of memory each instance of a 

given submodel would consume; this was due to each instance of a submodel making a complete 

copy of all internal components and their attributes. This was wasteful, as all the model 
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dynamics were concerned about were the present values contained within each instance; all other 

model component attributes were more or less consistent across submodel instances. Initially, 

each submodel instance was responsible for an instance value for each component contained 

within the submodel. Values were further decoupled by having all instanced values within the 

model stored in a single, massive data structure, while relegating submodel instance objects to 

tracking instance condition flags (flags would indicate if a model instance is active, newly 

created, or dead). Besides greatly reducing the memory footprint of each submodel instance, 

storing all model component values in a single monolithic structure had other advantages, 

namely value coherence (closely related values are stored near each other in memory, which is 

beneficial for optimizing for CPU caching architectures) and simplifying record keeping and 

recall. 

The Tampa Bay Seagrass Model revealed an issue with the initial method for generating 

the update statements for each iteration of the model. The naive approach involved using the 

network of influences to generate an ordering of how each model component would be 

processed. Every time a submodel boundary was crossed, a for-loop was generated in the update 

expressions to update each instance (a submodel cannot necessarily be processed all at once if 

there are components outside of the submodel that both rely on some submodel components and 

are a dependency for other submodel components). This approach worked fine for small models, 

but for the Tampa Bay Seagrass Model, there were 19 for-loops generated for a the submodel 

with nearly 50,000 instances where a single loop would suffice. This situation created a large 

enough performance bottleneck to be considered unacceptable, so smarter pre-processing was 

necessary. Initially, a class was written to explicitly deal with building chunks of statements that 

could be run together and minimized the generation of for loops. While this process worked, it 

was slow, complicated, and difficult to modify when new edge cases were encountered. The 

present solution is much simpler; all component expressions are sorted based on the influence 

hierarchy as before, but, based on the assumption that the expression list is mostly sorted, a 

simple comparison sort algorithm is used to adjust the final position based on a few simple 

heuristics. This approach is faster, simpler, easier to maintain, and produces desirable results. 

With this final approach there are only two loops with nearly 50,000 instances, which results in 
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acceptable performance. The HYGEIA model introduced a different issue; that of efficient list 

operations. The original approach for manipulating lists was both wasteful and slow. A series of 

container types using a single common interface were devised; some were true list containers, 

while others were mappings into the value storage space, utilizing the previously mentioned 

value coherence to minimize the value mapping overhead. A number of implementations were 

iterated through until the present approach was arrived at. While the present approach is still a bit 

slower than Simile's equivalent operations, it is a bit more flexible and still runs in a period of 

time that has been deemed acceptable. 

Runtime metrics and comparisons of values 

To provide insight into the differences of running the two reference models with their 

native environment (Simile) and the experimental environment (OME), a series of tests were 

devised. The first set of tests were temporal: comparing simulation run time between OME 

running under several configurations and contrasting with the equivalent configurations under 

Simile. For the OME runs, compiled models were used, as Simile runs models compiled as C++ 

by default (Forrester 1968). Durations for each tool were recorded differently: for OME, the 

RawEngine executable was automated with a batch script and run against a set of control files 

(one for each test); RawEngine reports the duration of the simulation in seconds after each run. 

For Simile, a stopwatch was used; timing started after parameters were loaded and the model was 

compiled and initialized (indicated by a green status dot in Simile's execution window), and 

stopped when Simile had run through the duration set for the testing period. The HYGEIA model 

was run from time 0 through time 365 with a step interval of 1, while the Tampa Bay Seagrass 

Model was run from time 0 through time 300 with a step interval of 0.3. All tests were carried 

out in sequence on the same computer running Windows 7. The outcomes of the time trials are 

shown in Table 2. 
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Model, Integration method Simile time (s) OME time (s) % Difference 
Hygea, Euler 84 1039 1237% 
Hygea, RK4 208 4158 1999% 
TBSM, Euler 408 167 41% 
TBSM, RK4 1265 620 49% 

Table 2. Time trials comparing HYGEIA and Tampa Bay Seagrass Model 
(TBSM) runs using both Euler and Fourth-order Runge-Kutta (RK4) solvers 
between Simile and OME. HYGEIA runs much faster under Simile, while the 
Tampa Bay Seagrass Model runs almost twice as fast under OME. 

As can be seen, HYGEIA runs faster under Simile, while the Tampa Bay Seagrass Model 

runs faster under OME. Generally, it is expected that models will run faster under Simile as it is 

a much more mature and polished tool. List operations, of which there are many in HYGEIA, 

run very slow in OME. The Tampa Bay Seagrass Model results however, are a bit surprising. 

Without full knowledge of the implementation details of Simile's simulation engine, the reasons 

for the better performance under OME are inconclusive. However, the increased performance in 

OME is likely due to how the explicit spatial relationships are handled when compared to Simile, 

either due to the preprocessing of neighbor relationships or the reliance on the SDP for handling 

details regarding explicit spatial relationships. 

The second test involved identifying a set of sentinel values from each model and 

comparing their values at the end of equivalent Simile and OME test runs. The list of sentinel 

variable values for HYGEIA and the Tampa Bay Seagrass Model generated under Simile and 

OME are provided in Table 3 and Table 4, respectively. The runs were under the same 

conditions as the time trial tests, except that a variant of the HYGEIA model with all stochastic 

elements removed was used in order to ensure that any deviance in value was not due to 

intentional variability within the model (the Tampa Bay Seagrass Model does not have any 

stochastic model elements in the provided incarnation). Sentinel values were chosen based on 

their ability to capture overall activity within the greater model and showed active dynamics 

throughout the simulation time frame when integrated with Euler's method and/or RK4. 
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HYGEA Simile OME OME Deviance 
Variable Euler RK4 Euler RK4 Euler RK4 

Pollution Level[1] 
cumulative morbidity[1] 
cumulative morbidity[2] 
cumulative morbidity[3] 
cumulative morbidity[4] 
cumulative morbidity[5] 
Total Mortalities[1] 
Total Mortalities[2] 
Total Mortalities[3] 
Total Mortalities[4] 
Total Mortalities[5] 

0.35 
0 

0.00051 
0 
0 
0 
0 

2.1539 
0 
0 
0 

0.175 
0.2123 
0.4575 

38.2141 
3.5157 
394.56 

912.4123 
2074.5118 

50321.4642 
2132.0221 
244601.96 

0.35 
0 

0.00051 
0 
0 
0 
0 

2.1539 
0 
0 
0 

0.175 
0.2123 
0.4575 

38.2141 
3.5157 
394.56 

912.4123 
2074.5118 

50321.4642 
2132.0221 
244601.96 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Table 3. Comparison of values generated by Simile and OME for sentinel values 
in the HYGEIA model. Bracketed ([ ]) values following the variable name refer 
the specific submodel instance from which the variable value was extracted from. 

Tampa Bay Seagrass Simile OME OME Deviance 
Model Variable Euler RK4 Euler RK4 Euler RK4 

sumPC 
SL[1] 
PC[369] 
PC[370] 
PC[371] 
Light1[1] 
Light1[2] 
Light1[3] 
Light1[4] 
Light1[5] 

166460797 
8.106 

72674.7433 
72678.217 
48650.873 

67673.3 
74015.89 

101517.649 
113212.808 

12637.764 

N/A 
8.0933 

N/A 
N/A 
N/A 

67132.09 
74548.173 
100868.82 
113171.34 

126216.841 

15338848 
8.106 

70944.7133 
70321.0587 
46129.9185 

67673.3 
74015.89 

101517.649 
113212.808 

12637.764 

N/A 
8.0936 

N/A 
N/A 
N/A 

67132.09 
74548.173 

100691.559 
113348.674 
126216.841 

90.79% 
0.00% 
2.38% 
3.24% 
5.18% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

N/A 
0.00% 

N/A 
N/A 
N/A 

0.00% 
0.00% 
0.18% 
0.16% 
0.00% 

Table 4. Comparison of values generated by Simile and OME for sentinel values 
in the Tampa Bay Seagrass model. Bracketed ([ ]) values following the variable 
name refer the specific submodel instance from which the variable value was 
extracted from. fields marked with "N/A" indicate invalid values introduced into 
the simulation. The appearance of these values during the application of the RK4 
solver reflects the early draft nature of this version of the Tampa Bay Seagrass 
Model, and should not be construed as a reflection of the validity of the model 
when it is completed and published. 

For the HYGEIA tests, there were no significant deviations between the selected sentinel 

values regardless of the solver used. The Tampa Bay Seagrass Model, however had some 

noticeable deviations  between the sentinel variable results generated under Simile and OME. 

The variable with the largest deviation, sumPC, is the result of summing nearly 50,000 values at 

each time step; even minor deviations in rounding errors between the two environments can 
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result in a significant difference. It is worth noting that when an experimental solver 

implementation with a degree of rounding error correction is used, the deviation is reduced, but 

not eliminated (the experimental solver is available in the OME distribution, as the HiRes solver, 

but was not used for these tests as it has not been thoroughly vetted). Also, a number of sentinel 

values report invalid values when integrating with the RK4 method. This behavior is consistent 

between Simile and OME, and therefore the report deviance is zero percent. However, if the 

invalid values had not been introduced during the simulation run it is likely that a deviance 

between OME and Simile generated values would be reported for the afflicted model variables. 

While OME needs to emulate some of Simile's behaviors in order to ensure that the 

models produce similar results, they are not identical; consequently there will be some deviations 

between the values that are produced for OME and Simile (for a breakdown of the differences 

between Simile and OME with regards to model components and expression functions, see 

Appendix D). Nevertheless, the results of the value comparisons demonstrates that often times 

the values produced by the two environments are identical, and in cases where the values deviate 

from one another, they are still quite close. With a reasonable demonstration of performance 

established, we can now demonstrate benefits that are open to a SD model when run within the 

Envision modeling framework.  
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Case Study: Extending HYGEIA using Envision 

OME has the capacity to run as a part of Envision, interacting with it through the 

Autonomous Process plugin interface (see Figure 5). This exchange of data provides the 

opportunity to extend the functionality of a System Dynamics (SD) model by allowing one or 

more of Envision's various mechanisms to modify the value of SD model components, 

effectively acting as one or more external inputs. To demonstrate this capability and its potential 

to extend the utility of an existing SD model, a simple example has been contrived. 

Figure 5. Broad overview of how OME and OMEAdapter relate to Envision. 
OMEAdapter encapsulates the OME simulation engine, and conforms to 
Envision's Autonomous Process interface; from Envision's perspective, OME 
operates as just another Autonomous Process Module. 
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Premise 

Each explicit spatial unit in HYGEIA contains a proportional representation of 15 

different landcover types which are defined as part of the parameter input at the beginning of the 

simulation run. The landcover proportions remain static throughout the run and have an influence 

on a number of dynamics, such as the reported tree cover ratio, the cumulative air pollution 

levels for different compounds, and the regional windspeed. While it is perfectly reasonable to 

treat land covers as static values as part of the collection of assumptions that define the model, 

land covers realistically do change gradually. In a developed area (such as the greater Austin area 

that HYGEIA simulates), it is not unusual for the density of developed regions to increase over 

time. HYGEIA has four classes of developed landcover: open land, low-density developed, 

medium-density developed, and high-density developed. Thus, if simulations under HYGEIA 

were to be modified to simulate the succession from low-density to medium-density 

development and from medium-density to high-density development using a few simple rules, 

there should be a noticeable shift in dynamic and/or period-specific model outputs. 

To simulate succession events during a simulation run, a pair of Envision's policies are 

used for defining conditions and behaviors, while an actor is defined which will determine the 

frequency at which the policies are applied. The general idea is that if the proportion of low-

density or medium-density developed landcover is above some threshold, it may have its 

proportion transferred to the next highest tier of developed land cover (medium-density 

developed or high-density developed, respectively). This would be analogous to a spontaneous 

spurt of development in a region that is sufficiently developed to sustain the activity. 



 

 
 

 

 

 

47 

Implementation Details
 

Figure 6. Interaction between OME, OMEAdapter and the SDP interface, and 
Envision. Pink, yellow, and green boxes refer to processes performed by OME, 
OMEAdapter and Envision, respectively. Blue capsules represent external files, 
with nested capsules representing internal file linkages. Thick arrows show 
process invocations across process domain boundaries, while thin arrows 
represent the process invocations within domains. Dotted Arrows represent the 
reading and writing of external files. Dashed arrows represent requests from OME 
to either read or write spatial data from Envision which are mediated through 
OMEAdapter's implementation of the SDP interface (see the SDP Implementation 
section). Note that the SDP spatial requests (the dashed lines) are optional, and not 
all models will utilize each point of communication. 

For the sake of reproducibility, a strictly deterministic variant of the HYGEIA model 

(HYGEIA-Determ) was used with all the stochastic components set to static values. The 
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communication between HYGEIA and Envision is best described within the context of Figure 6, 

which summarizes the interactions between OME, the OMEAdapter and SDP interface, and 

Envision during a simulation run. The process of running HYGEIA under Envision actually 

starts within an Envision project (.envx) file, where the HYGEIA spatial coverage is added as a 

layer, and the OMEAdapter is specified as an autonomous process. As part of the specification of 

OMEAdapter in the Envision project file, an initialization string is provided which is the path to 

the OME control file (.omec) for OMEAdapter to load. For this case study, the OME control file 

specifies a precompiled version of the HYGEIA-Determ model. 

The Envision project file is loaded when Envision starts up. During this process, the 

OMEAdapter initialization function is invoked; the initialization function configures the OME 

simulation engine for running as a plugin, provides it with the OME control file path that was 

defined in the Envision project file, and registers a Spatial Data Provider (SDP) to be used. This 

SDP lives within the OMEAdapter and interprets OME spatial queries in the context of the 

current Envision MapLayer. For more information on SDP usage, see the section titled SDP 

Implementation, and/or Appendix B. The OME Engine initialization involves loading the data 

specified in the OME control file, initializing several containers, and priming the OME Event 

handler. The HYGEIA-Determ Envision project file defines three policies and an associated 

actor which are loaded by Envision during the Initialization process as well; these policies and 

the associated actor are intended to simulate development succession using fields that are defined 

in the HYGEIA-Determ model and are shared between OME and Envision using the SDP 

interface. The policies are defined to be trigger the low-to-medium developed density land cover 

transition if a polygon has low-density developed land being greater than 10% of its landcover. 

Similarly, the transition from medium-to-high density developed land is triggered by a medium-

developed density being greater than 20% of a polygon's landcover. The actor which evaluates 

these policies is set to apply them to any given valid region on an average of once every 3 years. 

When the user begins a simulation run in Envision, the OMEAdapter's run initialization 

function is called. This function handles two tasks; the first is to determine how many time steps 

to run the OME simulation for every simulation step in Envision. Envision typically runs in 

yearly timesteps, while a HYGEIA iteration represents a single day (this is specified by the 
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“time_units” attribute in the .omec's <ome_model> tag; see Appendix C for more details). In 

this case, the OMEAdapter determines that each time Envision asks it to run for one of its 

iterations, it will tell the OME engine to run for 365 iterations before returning. The second task 

is to tell OME to prepare for a simulation run. This triggers a sequence of events in OME. First 

the external parameter files are applied; in the case of HYGEIA-Determ, the original HYGEIA 

Simile parameter file (.spf) is used to load specific parameter values, and all .csv files pointed to 

by the .spf or internally by model components are loaded and applied at this time as well. The 

next step has OME request values from the SDP to use to initialize model components as 

specified in the <coverage_mapping> tag in the control file (see SDP Implementation and/or 

Appendix C); HYGEIA does not require any initializations from the spatial coverage, so this step 

is skipped. Next, OME runs it's internal initialization step, configuring model components for the 

beginning of a simulation. After this, OME tells the SDP in the OMEAdapter that it wants to 

initialize any specified fields from values derived during its initialization process; in the case of 

HYGEIA-Determ this includes all the fields which represent each polygons proportional land 

coverage, as well as a few fields used for visualizations (e.g. Tree Cover Ratio). 

Once all components have initialized for a run, Envision will begin its simulation loop. 

For HYGEIA-Determ, Envision is set to run for 5 years; this will translate to 1825 days in the 

OME-side of the run. Envision will apply the actors and policies determined by previously 

mentioned probabilities, and will then invoke OMEAdapter's Run function. This function tells 

OME to run for 365 iterations before returning control back to Envision. Once OME runs for the 

specified period, values are synchronized through the SDP interface based on the specifications 

provided in the OME control file; for HYGEIA-Determ, any landcover proportions that are 

changed in Envision through the application of policies are imported through the SDP and used 

to update the appropriate value in the OME representation of the model. After OME completes 

its synchronization step, control is returned to Envision, which continues to carry out it 

simulation loop. 

When Envision finishes running its simulation, its post-run and cleanup processes call 

OMEAdapter's End run function, which in turn calls OME's cleanup function. This releases some 

of the temporary memory used by OME and forces a final synchronization update. Once this is 
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done, Envision can generate several outputs which can then be displayed and/or written out to 

.csv, .shp, or image files. For HYGEIA-Determ, several map coverages are displayed in the post-

run results view in Envision, which are then screen captured and used for the discussion in the 

following results section. 

Results 

A simulation was run using the HYGEIA-Determ model as described in the previous 

section. Several results were generated and are displayed here. Figures 7 to 9 shows the 

differences in low, medium, and high density land covers before and after the five year 

simulation run. Figure 10 shows regions where the tree cover ratio has changed over the five 

year period. 

Figure 7. Change in low-density developed regions from beginning to end of run. 
The map on the left represents the amount of low-density development at the 
beginning of the run, while the map on the right represents the amount of low-
density development after five years of simulation. Darker shades represent a 
greater proportion of the polygon covered by low-density development. Note the 
lighter patches in the center of the map on the right which are absent from the map 
on the left; these polygons had their low-density development reallocated into the 
medium-density development coverage. Maps generated using Envision. 
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Figure 8. Change in medium-density developed regions from beginning to end of 
run. The map on the left represents the amount of medium-density development at 
the beginning of the run, while the map on the right represents the amount of 
medium-density development after five years of simulation. Darker shades 
represent a greater proportion of the polygon covered by medium-density 
development. Polygons which are lighter on the right had their medium-density 
developed regions reallocated to high density-developed regions, whereas 
polygons that are darker on the right had their low-density developed regions 
added to their medium-density developed regions. Maps generated using Envision. 
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Figure 9. Change in high-density developed regions from beginning to end of run. 
The  map on the left represents the amount of high-density development at the 
beginning of the run, while the map on the right represents the amount of high-
density development after five years of simulation. Darker shades represent a 
greater proportion of the polygon covered by high-density development. Polygons 
on the right that appear darker than they appear on the left have had their medium-
density developed land cover proportions added to their high-density amounts. 
Maps generated using Envision. 
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Figure 10. Changes in tree cover ratio. Each colored polygon has had its tree 
cover ratio value changed at some point during the five year simulation run in 
Envision. The darker the shade the greater the new ratio is. Each tree cover ratio 
change is due to a shift in the polygon's land cover proportions. If this map were 
the result of running without the changes to the landcover, no polygons would be 
shaded. Maps generated using Envision. 

Discussion 

For the purposes of this study, the values of the actual change are unimportant; this is a 

purely contrived example. The fact that Envision is capable of changing a static component of 

the original model in a reasonable manner is significant, as it shows that not only can Envision 
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work with data originating from OME, but that it can also modify data within OME as well. The 

only fields allowed to take values directly from Envision were the 15 landcover type 

percentages. By just changing these values, other dependent processes are affected, as 

represented by the changes in the Tree Cover Ratio for the modified regions. The changes may 

seem small, but that is an artifact of how this model runs in Envision: even though the SD model 

ran for 1,825 iterations, Envision only ran for five. Thus, the opportunity for the Actor entity to 

pick regions to be modified only occurred five times. Longer runs would likely produce more 

variation in coverage, but would not necessarily contribute to the point here, which is that model 

communication between OME and Envision can be treated as a two-way street. 

The mechanics of the bidirectional communication between OME and Envision are 

sound, as has been demonstrated by this short case study. Future expansion or incorporation into 

a genuine Envision stakeholder project could provide much more practical utility for relatively 

little effort on behalf of the modeling group. By introducing OME into the Envision plugin 

ecosystem, the strengths of system dynamics can be used and/or extended without limiting the 

inherent flexibility that makes Envision ideal for stakeholder projects. 
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Conclusion 

The Open Modeling Environment (OME) was created as an attempt to address 

shortcomings that are common with System Dynamics (SD) modeling tools. The two novel 

aspects, a focus on modularity and a common interface for spatially explicit data, were the 

components that most directly addressed known shortcomings. To reiterate, the two research 

question presented at the beginning of this thesis were: 

1.	 Can an open-sourced, modular SD modeling tool be constructed with performance and 

features comparable to existing commercial counterparts? 

2.	 Does adding an explicit spatial data interface, adopting a modular design, and using a 

middle-of-the-road model file format simplify the implementation of spatially-explicit 

SD models? 

Regarding the first question, the answer is arguably yes, albeit with some limitations. 

OME was constructed mostly from scratch at the beginning of this project and is presently 

capable of converting and running some Simile models (including the two reference models used 

throughout this study), running as a standalone application or as a plugin to Envision, producing 

values that are closely in line with the source models running under Simile, and incorporating 

spatial data from standalone CSVs or from Envision's runtime environment. However, time and 

resource constraints limited the extent of implementation details: there are some significant 

Simile features and model components that remain unimplemented in OME (see Appendix D), 

the only plugin interface exists for Envision (and is somewhat underdeveloped), derived values 

do not completely match the equivalent values produced in the originating Simile environment, 

and the spatial data provider (SDP) implementations are limited to a few fringe or simple 

implementations. 

Regarding the second question, the answer is definitely yes based on what has been 

demonstrated in the Simile Compatibility Details and Case Study sections. An explicit spatial 

representation allowed for submodels representing spatial geometries to be be completely 
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excised from both reference models, simplifying them by reducing the total number of model 

components. In the case of the Tampa Bay Seagrass Model, moving the explicit spatial 

information into an external SDP simplified the update process of the model, reducing the time it 

took for the model to run. Additionally, incorporating the reference models into the Envision 

environment was a simple process involving enabling the plugin in an Envision modeling 

project, identifying the control file to read, and adding a few lines to the control file itself to 

describe how the two environments would exchange information. The effort applied to 

modifying these few files is vastly outweighed by the potential increase in utility provided by 

interoperability with the Envision modeling framework. 

While a significant amount of functionality already exists within OME, its current state is 

intended to just be the first iteration in the overall development lifecycle; as such, there is 

significant room for expansion and improvement. The first and perhaps most obvious 

improvement would be to increase overall compatibility with Simile's functionality. Along the 

same lines, it would be desirable to get models from other SD modeling tools (such as Vensim 

and STELLA) successfully converted and running under the OME framework. Presently, a full 

implementation of OME exists on Windows, a nearly full implementation exists on Mac OS X, 

and no implementation has been built for Linux; building full implementations of OME on the 

latter two platforms could increase the available audience who would see utility in OME, as not 

all research projects are carried out with just Windows-based tools. Overall performance could 

also use some work toward improvement; further optimizations could be made throughout the 

source code, particularly with list handling and other update expression operations. One potential 

set of optimizations would involve implementing a parallel execution scheme; many portions of 

the code are structured in such a way to make it straightforward to restructure them for parallel 

processing, and running code in parallel has the potential to increase performance on multi-core 

machines. Finally, implementing a full graphical interface complete with SD iconography for 

OME would be beneficial for the overall project, as it would round it out as a full SD modeling 

environment. SD models have had a standardized graphical representation since their original 

inception (Forrester 1968), and having a graphical frontend would allow for a canvas that could 
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be used to increase overall communication and potentially allow for authoring models without 

reliance on outside tools. 

SD models are beneficial to the study of ecological models, but the tools and concepts 

that make up the SD modeling environment are still relatively young and are undergoing gradual 

refinement. OME's introduction to this environment will provide another step in the evolution 

and maturation of SD models and their respective tools. 
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Appendix A: Model Conversion Directives 

In order to augment System Dynamics models during the conversion process, a simple 

command syntax has been implemented. The modification directives are intended to be 

implemented on a per-model component basis, with the actual commands being placed in a field 

that has no effect on the model execution within its native environment. The upshot to this 

approach is that an originating model can be modified to make the appropriate changes during 

the OME conversion process while still being able to function normally within its native 

environment. 

Presently, conversion tools only exist for models originating from Simile. Each Simile 

model component has a “comments” field which is reserved for free text to be used for any 

further annotation required by the author. It is within this field that conversion directives can be 

defined and are extracted from during a model's conversion from Simile's native format to 

OME's intermediate XML format. 

To denote the beginning of OME conversion directives within a free text field, the string 

(excluding the quotes) “--!!OME:” is used; the ending of the block (again excluding the quotes) 

is denoted by the string “!!--”. Each directive within the directive block is prefixed with an at 

('@') symbol. Some directives require an argument; in this case, a colon (':') separates the 

command from the argument. 

Here are a pair of examples of OME conversion directive blocks: 

Omit an object: 

--!!OME:@omit!!--

Mark an object as init only and change the update expression to read time (the 

object will now record the start time): 

--!!OME:@initOnly@expression:time()!!--
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The following are the directives that will be processed by the conversion tool (text enclosed by < 

and > denote arguments): 

omit  - Removes the object from the model and any associated influences. If omit is applied to a 

submodel, all objects contained within a submodel are removed as well. Removing a 

submodel can be useful particularly when a spatial coverage is replacing association-

linked models used for determining neighbors. 

move:<mdlName> - Move the model component to the model referred to by the name supplied 

by the <mdlName> argument. This will break any influences to/from the object. 

Influences can be restored using the influenceTo: and influenceFrom: directives. 

initOnly - Explicitly marks an object to only be evaluated once at the beginning of a simulation. 

This can be useful for optimization reasons. 

influenceTo:<objName> - Create a new influence from the current model component, to the 

component identified by <objName>. Can be used to patch holes in the model created by 

the omit command. 

influenceFrom:<objName> - Create a new influence from the model component specified by 

<objName> to the current component. Can be used to patch holes in the model created 

by the omit command. 

expression:<newExpr> - Override an object’s expression with the one supplied in the 

<newExpr> argument. This is useful for patching holes from the omit expression and 

adding Spatial Data Provider commands to the converted model. 

expectsSpatial – Indicates that a submodel is expected to have its number of initial instances set 

by a SDP at runtime. 
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Appendix B: SDP functions and flag mappings 

The Spatial Data Provider (SDP) interface uses a series of flags to inform the parent 

environment of a given SDP implementation's capabilities. Descriptions of the flags and their 

associated functions are described below. 

Flag Description Flag-Specific Required C++ Functions 
NONE The default NULL value. 
POINT_SUPPORT Supports a point grid-based 

coverage. 
HEX_SUPPORT Supports a hexagon grid-based 

coverage. 
GRID_SUPPORT Supports a square grid-based 

coverage. 
GetCellSize() 

POLY_SUPPORT Supports a hexagon grid-based 
coverage. 

QUERY_SUPPORT Advanced Queries are 
supported. Syntax of query is 
specific to SDP implementation. 

NextTo() 
NextToArea() 
Within() 
WithinArea() 
GetNextTo() - only if 

NEIGHBOR_SUPPORT 
and ITR_SUPPORT are set. 

GetWithin() - only if ITR_SUPPORT is set. 
NEIGHBOR_SUPPORT Basic neighbor queries are 

supported. 
GetNeighbors() 
GetNeighborCount() 
GetNeighborRecord() 
GetNextTo() - only if QUERY_SUPPORT 

and ITR_SUPPORT are set. 
ITR_SUPPORT Forward iterators can be 

requested. 
GetIterator() 
GetNextTo() - only if QUERY_SUPPORT 

and NEIGHBOR_SUPPORT 
are set. 

GetWithin() - only if QUERY_SUPPORT is 
set. 

BI_ITR_SUPPORT Forward and reverse iterators 
can be requested. 

GetIterator() 

READ_ACCESS Values can be read from the 
SDP. 

GetData() - all overloads. 
GetDataMinMax() 

WRITE_ACCESS Values can be written to the 
SDP. 

SetData() - all overloads. 

RW_ACCESS Equivalent to READ_ACCESS | 
WRITE_ACCESS 

GetData() - all overloads. 
GetDataMinMax() 
SetData() - all overloads. 

Table 5. SDP behavior flags and their relevant functions. 
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C++ API functions Descriptions 

The following are brief summaries of the functions associated with the Spatial Data Provider 

interface. For a more detailed description of these functions, see the OME source code, or the 

auto-generated Doxygen documentation. 

AddFieldCol(<label>, <...>) - Add a new column/record field with with <label> and initialized 

according to the additional arguments in <...>, which vary depending on which 

overloaded function is being used. 

GetCapabilities() - Queries the SpatialDataProvider for its supported capabilities, which returns 

any combination of the flags in the above table. 

GetCellSize(<width>,<height>) - On return, sets <width> and <height> to a grid cell's 

standard width and height, or returns false if SDP is not representing a gridded coverage. 

GetColumnCount() - Returns the total number of fields per spatial record. Required for all 

implementations. 

GetData(<record index>,<attribute index>,<value>) - If both <record index> and <attribute 

index> are valid, populates <value> on return. Otherwise, returns false. 

GetDataMinMax(<attribute index>,<minValue>,<maxValue>) - If <attribute index> is a 

valid index <minValue> and <maxValue> are populated by the minimum and maximum 

values found in that attribute across all records, respectively. If <attribute index> is -1, 

the minimum and maximum values across all attributes and records are retrieved. If 

<attribute index> is invalid and not -1, false is returned. 
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GetExtents(<xMin>, <xMax>, <yMin>, <yMax>) - Populates <xMin>, <xMax>, <yMin>, 

and <yMax> with the minimum and maximum extents of of the x and y axes.  Required 

for all implementations. 

GetFieldCol(<label>) - Retrieve the index of the column who is named <label> or -1 if no 

column with that name exists. Required for all implementations. 

GetIterator(<kind>) - returns an iterator that moves either forward or backward through records 

based on the type of iterator specified by <kind>. 

GetNeighborCount(<record index>) - Returns the total number of neighbors for the record at 

<record index>. 

GetNeighborRecord(<record index>, <neighbor>) - Returns the record index of the nth 

<neighbor> of the record at <record index>. This can be used in conjunction with 

GetNeighborCount() to iterate through all neighboring records. 

GetNeighbors(<record index>,<count>) - Returns a list of indices for the total number of 

neighbors for the record at <record index>, with <count> containing the total number of 

indices returned. 

GetNextTo(<record index>,<count>) - retrieves an iterator to a record of all neighbors of the 

record at <record index>, optionally populating <count> with the total number of 

records found. 

GetRowCount() - Returns the total number of spatial records.  Required for all implementations. 
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GetWithin(<record index>,<query>,<distance>) - Retrieve an iterator to records within 

<distance> from the record at <record index> which satisfy <query>, whose syntax is 

SDP-dependent. 

Load(<filename>,<optional expression parser>) – Attempts to load parser data from a file 

pointed to by <filename>, with an optional expression parser being passed in as well. 

Returns a flag indicating success or failure. 

NextTo(<index>, <query>) - Returns true if the spatial component at <index> has any 

neighbors that satisfy the <query> whose syntax is SDP-dependent. Otherwise, returns 

false. 

NextToArea(<index>,<query>) - Return the total area of all neighbors of the record at <index> 

that satisfy <query>, whose syntax is SDP-dependent. 

Save(<filename>,<flags>) - Attempts to save data to a file at <filename>, using any optional 

<flags> that are interpreted by the specific SDP. Returns a flag indicating success or 

failure in saving the file. 

SetData(<record index>,<attribute index>,<value>) - Set the value of the attribute at 

<attribute index> for the record at <record index> to <value>. 

Within(<index>,<query>,<distance>) - Returns true if any records within <distance> from the 

record at <index> satisfy <query>, whose syntax is SDP-dependent. Otherwise, returns 

false. 

WithinArea(<index>,<query>,<distance>) - Returns the total are of all records within 

<distance> from the record at <index> that satisfy <query>, whose syntax is SDP-

dependent. 
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Model Component Expression SDP Functions 

The following functions are for use within the expressions used to for updating model 

component values. All expression functions that interact directly with the loaded SDP are 

prefixed with “SDP”. A “spatial representation unit” refers to the base unit of representing a 

section of space; typically this is a grid cell or a polygon. 

Function Usage Group(s) 
SDPGetBooleanData 3 
SDPGetCapabilityFlags 1 
SDPGetCellSize 1 
SDPGetColumnCount 1 
SDPGetExtents 1 
SDPGetFieldCol 2 
SDPGetDataMinMax 1,2 
SDPGetIntData 3 
SDPGetNumberData 3 
SDPGetRowCount 1 
SDPGetStringData 3 
SDPListCapabilities 1 
SDPNextTo 4 
SDPNextToArea 4 
SDPNextToIDs 4 
SDPNextToValues 4 
SDPSetData 3 
SDPWithin 4 
SDPWithinArea 4 

Table 6. SDP model expression functions and their usage groups. The usage 
groups are: 1) querying details about the whole coverage, 2) querying about 
details for a specific attribute across all spatial records, 3) getting and/or setting 
values specific attributes in a specific spatial record, and 4) querying about 
spatial relations between spatial records. 

SDPGetBooleanData(<row>,<column>) - Return boolean value for <column> in <row>, or 

nil/NULL if it doesn't exist. 

SDPGetCapabilityFlags() - Return the flag markers for capabilities of SDP. See Table 5 for a 

list of possible flags. 
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SDPGetCellSize() - Return the extents (width, height) for a given cell in a gridded coverage. 

SDPGetColumnCount() - Return the number of columns of attributes within the SDP. 

SDPGetExtents() - Return the four values representing the extents of the spatial coverage: the 

minimum x-value, the maximum x-value, the minimum y-value, and the maximum y-

value. 

SDPGetFieldCol(<label>) - Return index of column with the header matching <label>, or -1 if 

no column matches. 

SDPGetDataMinMax(<index>) - Return the minimum and maximum values within the column 

at <index>, or the minimum and maximum values for all numeric columns in the 

coverage if <index> is -1. 

SDPGetIntData(<row>,<column>) - Return the integer value for the attribute in <column> and 

<row>, or nil/NULL if it doesn't exist. 

SDPGetNumberData(x,y) - Return the floating-point value for the attribute in <column> and 

<row>, or nil/NULL if it doesn't exist. 

SDPGetRowCount() - Return the number of rows in spatial data provider. 

SDPGetStringData(<row>,<column>,<maxChars>) - Return a string value representation for 

the attribute in <column> and <row>, limiting the length of the returned string to 

<maxChars>. If the record or value does not exist, nil/NULL is returned instead. 

SDPListCapabilities() - Return A string listing all flagged capabilities. 
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SDPNextTo(<row>,<query>) - Return true if any neighbors next to the spatial representation 

unit at <row> validate <query>. 

SDPNextToArea(<row>) - Return the total area of all neighbors next to the spatial 

representation unit at <row>. 

SDPNextToIDs(<row>) - Return array of row ids for all neighbors of the spatial representation 

unit at <row>. 

SDPNextToValues(<row>,<label>) - Return array of values for the attribute column whose 

header matches <label> for all neighbors next to the spatial representation unit at <row>. 

SDPSetData(<row>,<column>,<value>) - Set value of the attribute in <column> for <row> to 

<value>. 

SDPWithin(<row>,<query>,<dist>) - Return true if any spatial representation units are within a 

distance of <dist> from the spatial representation unit at <row> validate <query>. 

SDPWithinArea(<row>,<query>,<dist>) - Return area of all spatial representation units are 

within a distance of <dist> from the spatial representation unit at <row> validate 

<query>. 
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Appendix C. OME File Format Specifications 

OME makes use of two custom XML files: OME model file (.omem), which contains a model's 

definition and parameter linkages, and the OME control file (.omec), which contains information 

pertinent to running a model, linking to external data sources, and displaying results. What 

follows is some general documentation of the two xml specifications. Please note that OME is 

still under development, and that the file specification may have changed as of this writing. For a 

more in-depth description of these XML specifications, see the omem.xsd and omec.xsd XML 

schema files in the OME source code distribution. 

OME Model files (.omem) 

The OME model file contains the declaration of the overall model structure and any interlinkages 

between components. The root element of the model file is <ome>, and the general tag structure 

is outlined in Figure 11 below. 

<ome> 
<param_file> 
<model>
 

<description>
 
<tables>
 

<table_data>* 
<interp_table_data>* 

<enumerations> 
<enum>* 

<val>* 
<variables> 

Figure 11. Tag hierarchy for a typical .omem file. Bold tags are required, while 
italicized tags are optional. Tags followed by an asterisk (*) may occur more than 
once within their positions. The ellipse (…) at the end of the hierarchy represents 
the recursive nature of the <model> tag, as it may contain any number of 
<model> tags within itself. 
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<variable>* 
<description> 

<vararray>* 
<description> 

<varts>* 
<description> 

<states> 
<state>* 

<description> 
<flows> 

<flow>* 
<description> 

<influences> 
<influence>* 

<description> 
<labels> 

<label>* 
<description> 

<iterators> 
<iterator>* 

<description> 
<modelports> 

<port> 
<description> 
<subsources> 

<src>* 
<subtargets> 

<trg>* 
<outsources> 

<src>* 
<outtargets> 

<trg>* 
<assocports> 

<assoc_port> 
<description> 
<subsources> 

<src>* 
<subtargets> 

<trgs>* 
<outsources> 

<src>* 

Figure 11 (Continued). 
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<outtargets> 
<trg>* 

<assocs> 
<assoc>* 

<description> 
<spawners> 

<spawner>* 
<description> 

<submodels> 
<model>* 

… 

Figure 11 (Continued). 

<assoc> Link which defines the intersecting relationship between two submodels; analogous to 

Simile's Role arrow. Attributes are listed in table 7. 

Attribute Required Description 
extents No The width and height in graphical units of the

element. 
id Yes Universally unique identifier of model element. 
in_object Yes Source object of the submodel association. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 
name No Human-readable label of object. 
origin No Origin in OME drawing system. 
out_object Yes Target object of the submodel association. 
source No ID of link's source object. 
target No ID of link's target object. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 7. Assoc tag attributes. 

<assoc_port> Point at which a submodel association links to a submodel. Used for when a 

submodel association links two submodels that are separated by several nested 

submodels. Attributes are listed in table 8. 
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Attribute Required Description 
extents No The width and height in graphical units of the

element. 
id Yes Universally unique identifier of model element. 
in_object Yes Source object of the submodel association. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name No Human-readable label of object. 
out_object Yes Target object of the submodel association. 
source No ID of link's source object. 
target No ID of link's target object. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 8. Assoc_port tag attributes. 

<assocports> Collection of <assoc_port> tags in a submodel. No attributes. 

<assocs> Collection of <assoc> tags in a submodel. No attributes. 

<description> Human readable annotation of model object. No attributes. 

<enum> An enumerated collection type within the containing submodel. Attributes are listed in 

table 9. 

Attribute Required Description 
name Yes The name of the enumerated class. 

Table 9. Enum tag attributes.
 

<enumerations> Collection of <enum> tags in a submodel. No attributes.
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<flow> Element representing a System Dynamics model Flow arrow. Attributes are listed in 

table 10. 

Attribute Required Description 
ctrl_pt1 No Control point influencing shape of curve. 
ctrl_pt2 No Control point influencing shape of curve. 
id Yes Universally unique identifier of model element. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name No Human-readable label of object. 
source No ID of link's source object. 
target No ID of link's target object. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 10. Flow tag attributes. 

<flows> Collection of <flow> tags in a submodel. No attributes. 

<influence> Element representing a System Dynamics model influence arrow. Attributes are 

listed in table 11. 
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Attribute Required Description 
ctrl_pt1 No Control point influencing shape of curve. 
ctrl_pt2 No Control point influencing shape of curve. 
id Yes Universally unique identifier of model element. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name No Human-readable label of object. 
role No Presently serves no purpose (deprecate?). 
source No ID of link's source object. 
target No ID of link's target object. 
units No Units of measure associated with element. 
use_curr_val No If true, retrieve the value from the source object

before it updates, rather than after. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 11. Influence tag attributes. 

<influences> Collection of <influence> tags in a submodel. No attributes. 

<interp_table_data> Instance of table data which defines ranges for interpolation; analogous to 

Simile's graph construct. Attributes are listed in table 12. 

Attribute Required Description 
bound_mode Yes Flag denoting how to deal with values that lie

outside of the table's bounds (Document flags?). 
column No The column from source CSV file to pull values

from. 
data Yes Cached values to use to populate table in case

source file cannot be located. 
dimensions Yes The dimensions of the table; either 1D or 2D. 
filename No The name or path to the file used to populate the

table. 
id Yes Unique identifier of table within parent submodel. 
interp_mode Yes Flag denoting method of interpolation between

anchored values (Document flags?). 
lower_bound Yes Lower bound of the range of values

encapsulated by table. 
upper_bound Yes Upper bound of the range of values

encapsulated by table. 

Table 12. Interp_table_data tag attributes. 
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<iterator> Stand in for Simile's Alarm component; presently only partially implemented. 

Attributes are listed in table 13. 

Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
expr Yes Expression used to update element value. 
extents No The width and height in graphical units of the

element. 
external_init No If true, element expect an initial value from an

external source (such as a parameter file). 
id Yes Universally unique identifier of model element. 
init_only No If true, element is only evaluated during the

initialization processes. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

max_value No Maximum expected value of element. 
min_value No Minimum expected value of element. 
name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 13. Iterator tag attributes. 

<iterators> Collection of <iterator> tags in a submodel. No attributes. 

<label> Simple label object to annotate visual representations of model. Attributes are listed in 

table 14. 
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Attribute Required Description 
extents No The width and height in graphical units of the

element. 
id Yes Universally unique identifier of model element. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name No Human-readable label of object. 
origin No Origin in OME drawing system. 
text No Text to apply to label (Deprecate and move from

attribute to element?). 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 14. Label tag attributes. 

<labels> Collection of <iterator> tags in a submodel. No attributes. 

<model> Component that represents a discrete unit of encapsulation of model components. 

Models can optionally represent multiple instances. Attributes are listed in table 15. 
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Attribute Required Description 
expects_spatial No Hint to OME tools that a submodel expects to

have its initial number of instances set by a
Spatial Data Provider. 

extents No The width and height in graphical units of the
element. 

id Yes Universally unique identifier of model element. 
init_instances No The submodel's initial number of instances. 
inner_box No The bounding scale within which to draw OME

submodel components. 
int_method No The submodel's preferred integration method. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name No Human-readable label of object. 
origin No Origin in OME drawing system. 
step_size Yes The submodel's preferred temporal step size. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 15. Model tag attributes. 

<modelports> Collection of <port> tags in a submodel. No attributes. 

<ome> Root element of the .omem file. No attributes. 

<outsources> Collection of links that point into a <port> or <assoc_port> from outside of its 

parent submodel. No attributes. 

<outtargets> Collection of links that point away from a <port> or <assoc_port> from outside 

of its parent submodel. No attributes. 

<param_file> Identical to the <param_file> tag in the .omec file, and can be used to override 

parameter mappings in the linked model file. Attributes are listed in table 16. 
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Attribute Required Description 
filepath Yes Path to parameter file (either .spf or .csv) 
target_model_path No Path through model heirarchy to target root

model for parameter file. Defaults to the root
model. 

Table 16. Param_file tag attributes. 

<port> Interface between model components that exist on either side of a submodel boundary. 

Attributes are listed in table 17. 

Attribute Required Description 
evaluated No If true, the aggregate value of all model

components (and all their instance values) linked
to the Submodel port are recorded during an
update step. 

extents No The width and height in graphical units of the
element. 

id Yes Universally unique identifier of model element. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 
name No Human-readable label of object. 
origin No Origin in OME drawing system. 
source No ID of link's source object. 
target No ID of link's target object. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 
Table 17. Port tag attributes. 

<spawner> Model element used to spawn or kill submodel instances; analogous to Simile's 

channel model components. Attributes are listed in table 18. 
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Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
expr Yes Expression used to update element value. 
extents No The width and height in graphical units of the

element. 
id Yes Universally unique identifier of model element. 
init_only No If true, only evaluated on initialization. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
is_conditional No If true, Spawner is evaluated to determine

whether a given submodel instance should be
evaluated at a given timestep. 

is_loss No If true, Spawner subtracts instances rather than
adding them. 

label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
per_instance No If true, Spawner is evaluated for each submodel

instance; otherwise it is only evaluated once per
update. 

stochastic No If true, a degree of randomness is applied to the
Spawner's value accumulation process. 

table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 
Table 18. Spawner tag attributes. 

<spawners> Collection of <spawner> tags in a submodel. No attributes. 

<src> Reference to source object pointing to the containing <port> or <assoc_port>. Attributes 

are listed in table 19. 

Attribute Required Description 
name No ID of referenced object. 

Table 19. Src tag attributes. 
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<state> Represents a State Variable/Compartment/Stock in a System Dynamics model; 

analogous to Simile's Compartment. Attributes are listed in table 20. 

Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
expr Yes Expression used to update element value. 
extents No The width and height in graphical units of the

element. 
id Yes Universally unique identifier of model element. 
init_condition No The starting value of the State Variable.This is

necessary if no influence is used to retrieve an
initialization value. 

internal No Denotes element's visibility to external tools; if
true, element is hidden from outside tools. 

label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 20. State tag attributes. 

<states> Collection of <state> tags in a submodel. No attributes. 

<submodels>Collection of <model> tags in a submodel. This results in a recursive tree of 

submodels, each defined by a <model> tag. No attributes. 

<subsources> Collection of links that point into a <port> or <assoc_port> from inside of its 

parent submodel. No attributes. 

<subtargets> Collection of links that point away from a <port> or <assoc_port> from inside of 

its parent submodel. No attributes. 
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<table_data> Instance of table data to be linked with an Evaluable model element. Attributes are 

listed in table 21. 

Attribute Required Description 
column No The column from source CSV file to pull values

from. 
data Yes Cached values to use to populate table in case

source file cannot be located. 
dimensions Yes The dimensions of the table; either 1D or 2D. 
filename No The name or path to the file used to populate the

table. 
id Yes Unique identifier of table within parent submodel. 

Table 21. Table_data tag attributes. 

<tables> Collection of <table_data> and <interp_table_data> tags in a submodel. No 

attributes. 

<trg> Reference to target object pointing away from the containing <port> or <assoc_port>. 

Attributes are listed in table 22. 

Attribute Required Description 
name No ID of referenced object. 

Table 22. Trg tag attributes. 

<val> A value representation belonging to an enumerated (<enum>) type. Attributes are listed in 

table 23. 

Attribute Required Description 
name Yes The name/value for an enumerated value. 

Table 23. Val tag attributes. 

<vararray> Special variable that defines an n-dimensional array of values across a single 

instance. Attributes are listed in table 24. 
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Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
dimensions No List of dimensions defining how to access the

VarArray's values. 
expr Yes Expression used to update element value. 
extents No The width and height in graphical units of the

element. 
external_init No If true, element expect an initial value from an

external source (such as a parameter file). 
id Yes Universally unique identifier of model element. 
init_only No If true, element is only evaluated during the

initialization processes. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

max_value No Maximum expected value of element. 
min_value No Minimum expected value of element. 
name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
value No List of whitespace-delimited values to populate

Vararray with. Can be empty. 
version No Informational; the current revision number for the 

element. 

Table 24. Vararray tag attributes. 

<variable> Represents an intermediate value which affects model dynamics. Attributes are listed 

in table 25. 
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Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
expr Yes Expression used to update element value. 
extents No The width and height in graphical units of the

element. 
external_init No If true, element expect an initial value from an

external source (such as a parameter file). 
id Yes Universally unique identifier of model element. 
init_only No If true, element is only evaluated during the

initialization processes. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

max_value No Maximum expected value of element. 
min_value No Minimum expected value of element. 
name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 25. Variable tag attributes. 

<variables> Collection of <variable>, <vararray>, and <varts> tags in a submodel. No 

attributes. 

<varts> Special variable that updates its value over time instead of using an equation. Attributes 

are listed in table 26. 
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Attribute Required Description 
as_int No If true, value is to be treated as an integer

instead of a floating point number. 
ask_val No If true, element will request a parameter value

before constructing its own. 
extents No The width and height in graphical units of the

element. 
external_init No If true, element expect an initial value from an

external source (such as a parameter file). 
fixed_val No Value to use with the "fixed" mode. 
id Yes Universally unique identifier of model element. 
init_only No If true, element is only evaluated during the

initialization processes. 
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools. 
interval No The time series update interval. 
label_origin No Origin of label in OME drawing system. 
last_modified No Informational; date of element's last modification. 

max_value No Maximum expected value of element. 
min_value No Minimum expected value of element. 
mode No Method by which to resolve values between

interval steps. Allowed values are “nearest”,
“interpolate”, “last”, and “fixed”. 

name Yes Human-readable label of object. 
origin No Origin in OME drawing system. 
table No ID of associated EvalTable or EvalInterpTable. 
units No Units of measure associated with element. 
validated No If true, object has been validated (Deprecate?). 
version No Informational; the current revision number for the 

element. 

Table 26. Varts tag attributes. 
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OME Control files (.omec) 

The OME control file is responsible for details pertaining to setting up and executing a model 

declared in a .omem file. The general tag structure is outlined in Figure 12 below. 

<ome_ctrl> 
<debug> 

<dump_init_batch> 
<dump_eval_batch> 
<init_break> 

<bp>* 
<eval_break> 

<bp>* 
<spatial_provider> 
<coverage_mapping> 

<submodel>* 
<var>* 

<inst_map>* 
<solver> 
<param_file>* 
<ome_model> 
<results_views> 

<tree_view>* 
<fields> 

<field>* 
<multival_view>* 

<fields> 
<field>* 

Figure 12. Tag hierarchy for a typical .omec file. Bold tags are required, while 
italicized tags are optional. Tags followed by an asterisk (*) may occur more than 
once within their positions. 

Detailed Element descriptions 

<bp> An entry for a single break point when running a model using interpreted expressions. 

Attributes are listed in table 27. 
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Attribute Required Description 
enabled Yes If true, break on the associated line; otherwise, 

do nothing. 
line Yes The line to break on. 

Table 27. Bp tag attributes. 

<coverage_mapping> Provides details on how to map the targeted model's components to a 

spatial coverage's fields/columns. This entry can still be present when 

<spatial_provider> when OME is operating as a plugin to another model simulation tool 

since it is expected that the parent tool will take care of any coverage linkages. No 

attributes. 

<debug> This section contains information for dumping evaluation scripts and breakpoints to 

activation throughout a run. Only applies to simulation runs in interpretive mode; 

compiled model runs are not supported. No attributes. 

<dump_eval_batch> Dump the update script generated during an interpretive model run. The 

default path is “evalBatch.lua”. Attributes are listed in table 28. 

Attribute Required Description 
path No Path to batch dump save location. 

Table 28. Dump_eval_batch tag attributes. 

<dump_init_batch> Dump the initialization script generated during an interpretive model run. 

The default path is “initBatch.lua”. Attributes are listed in table 29. 

Attribute Required Description 
path No Path to batch dump save location. 

Table 29. Dump_init_batch tag attributes. 

<eval_break> Breakpoints to apply to generated update script during interpretive model run. 

Break points can either be specified in a separate file or directly in the element using the 
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<bp> tag. Attributes are listed in table 30. 

Attribute Required Description 
path No Path to text file containing whitespace-delimited

line numbers. 

Table 30. Eval_break tag attributes.
 

<field> Individual entry for a represented results view field. Attributes are listed in table 31.
 

Attribute Required Description 
color Yes RGB channel triplet defining the field's color; 

each channel value falls in [0,1]. 
id Yes The ID of the model component to include. 

Table 31. Field tag attributes. 

<fields> A collection of <field> elements. No attributes. 

<init_break> Breakpoints to apply to generated initialization script during interpretive model 

run. Break points can either be specified in a separate file or directly in the element using the 

<bp> tag.  Attributes are listed in table 32. 

Attribute Required Description 
path No Path to text file containing whitespace-delimited

line numbers. 

Table 32. Init_break tag attributes. 

<inst_map> The mapping of a specific instance of the parent <var> value to a Spatial coverage 

column. Attributes are listed in table 33. 

Attribute Required Description 
index Yes 1-based index of specific instance value to

assign to sdp_column. 
sdp_name Yes The name of the field in SDP. 

Table 33. Inst_map tag attributes. 
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<multival_view> View type which shows all values for a single component. No attributes. 

<ome_ctrl> The root element. No attributes. 

<ome_model> Provides path to .omem file to execute, as well as overrides for start time, stop 

time, time step, and report interval. This tag also optionally provides a path to the 

compiled version of the model, if it exists. Attributes are listed in table 34. 

Attribute Required Description 
compiled_name No Path to a compiled version of the model, minus

the file extension (.dll or .dynlib). 
filepath Yes Path to the .omem model definition file. 
interval No Override Model's step interval. 
relative_step_size No Override Model's relative step size. 
report_interval No Override Model's report interval. 
start_time No Override Model's start time. 
step_size No Override Model's step size. 
stop_time No Override Model's stop time. 
time_units No Temporal units to apply to model. 

Table 34. Ome_model tag attributes. 

<param_file> Identical to the <param_file> tag in the .omem file, and can be used to override 

parameter mappings in the linked model file. Attributes are listed in table 35. 

Attribute Required Description 
filepath Yes Path to parameter file (either .spf or .csv) 
target_model_path No Path through model heirarchy to target root

model for parameter file. Defaults to the root
model. 

Table 35. Dump_eval_batch tag attributes. 

<results_views> A collection of sub-elements which outline details for different output views. 

This section is typically only used by environments that have advanced methods for 

displaying results (such as OMESimRunner). Attributes are listed in table 36. 
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Attribute Required Description 
selected_only No If true, only display selected fields. 

Table 36. Results_views tag attributes. 

<solver> Provides details on preferred solving method and the preferred solver variant. 

Attributes are listed in table 37. 

Attribute Required Description 
method Yes Integration solving method; either “euler” or “rk4”. 

type No The solver variant to use; either “default”, or 
“hires”. 

Table 37. Solver tag attributes. 

<spatial_provider> Provides a path to an SDP's dynamic library and provide additional 

initialization arguments to be passed on to the SDP module, if necessary. Attributes are 

listed in table 38. 

Attribute Required Description 
library_path Yes Path to dynamic library storing the SDP. 

Table 38. Spatial_provider tag attributes. 

<submodel> Identifies any relationships that exist between the submodel and any SDP fields 

within the <coverage_mapping> tag. Attributes are listed in table 39. 

Attribute Required Description 
id Yes, if name is 

absent 
The unique id of the sub-model. 

instance_per_unit No If true, the model component only updates the
SDP field. 

name Yes, if id is absent The human-readable name of the sub-model. 

Table 39. Submodel tag attributes. 

<tree_view> Details for an instance of a tree results view, which lays out the included fields in a 

structure that reflects the model hierarchy. Attributes are listed in table 40. 
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Attribute Required Description 
selected_only No If true, only display selected fields. 
sort_dir No Sort direction; 0=ascending, 1=descending. 
sort_mode No Sorting components and submodels;

0=components first, 1=models first, 2=mixed. 

Table 40. Tree_view tag attributes.
 

<var> Mapping between SDP field and submodel component. Attributes are listed in table 41.
 

Attribute Required Description 
bidirectional No If true, updates to one value in the var pair

updates the other. 
mapto_id Yes, if mapto_name

is absent. 
Unique id of sub-model component. 

mapto_name Yes, if mapto_id is
absent. 

Human-readable name of sub-model component 

sdp_name Yes The name of the field in SDP. 
update_only No If true, the model component only updates the

SDP field. 

Table 41. Var tag attributes. 
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Appendix D. OME Compatibility With Simile 

For OME to be of any initial use, the projected needed to target models that already 

existed. Both reference models were written and executed in the Simile modeling framework 

(see the Literature Review section for a brief description of Simile). Since all model update 

expressions and model components beyond the basic universal System Dynamics pieces were 

Simile-centric, it is pertinent to reimplement behaviors and structural pieces that the models rely 

on to work. What follows is a description of how the Simile's model structure meshes with that 

defined by OME, the extent of OME model expression function compatibility with that found in 

Simile, and a few functions defined for OME's expression syntax which have no equivalent in 

Simile. 

Mapping Simile Model Components to the Equivalent in OME 

Table 42 shows how Simile model components map to their equivalents in OME. The 

compatibility between Simile and OME components has fluctuated over time, with the biggest 

shift occurring when focus on supporting dynamic allocation and deallocation of submodel 

instances was reduced in priority in favor of ensuring that the static model behavior in the 

reference models would be sufficiently supported within a reasonable timeframe. Increasing 

compatibility with Simile, as well as adding support for System Dynamics models that originate 

from other environments, are goals for future development. 



  

 

 

 

 

 

 

  

 

 

  
     

 

  
     

   

    
   

   

    
  

    
 

 

  
     

 

  
     

  
 

   

   

97 

Simile Component Supported? OME Equivalent Notes 
Alarm No IterConditional Implementation was started, but 

never completed. 
Compartment Yes StateVar 
Condition Yes Spawner Functionality consolidated into 

Spawner class. 
Creation Process Partial Spawner Functionality consolidated into 

Spawner class. 
Functionality is present, but likely 
broken; has not been tested in a 
while. 

Destruction Process Partial Spawner Functionality consolidated into 
Spawner class. 
Functionality is present, but likely 
broken; has not been tested in a 
while. 

Event No N/A Discrete Event injection is not 
supported. 

Flow Yes Flow 
Ghost No N/A Not relevant to model runtime. 

Ghost connections are mapped to 
represented model component by 
SMLConverter. 
There are plans to implement an 
OME equivalent to this for result 
summary purposes, but it has yet to 
be implemented. 

Immigration Process Partial Spawner Functionality consolidated into 
Spawner class. 
Functionality is present, but likely 
broken; has not been tested in a 
while. 

Influence Yes Influence 
Reproduction Process Partial Spawner Functionality consolidated into 

Spawner class. 
Functionality is present, but likely 
broken; has not been tested in a 
while. 

Role Arrow Partial SubmodelAssoc Functionality is present, but has not 
been thoroughly tested. 

Squirt No N/A Discrete Event injection is not 
supported. 

State No N/A Discrete Event injection is not 
supported. 

Table 42. Simile model components as supported by OME. The list of model 
components are taken from Simile 6.x. 
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Simile Component Supported? OME Equivalent Notes 
Submodel Yes Model Most, if not all, functionality should 

be present. 
Text Yes SimpleLabel A container for text-only labels is 

present, in anticipation of a future 
System Dynamics diagram canvas, 
but presently is not used since Text 
labels have no bearing on model 
dynamics. 

Variable Yes Variable 
VarArray 
TimeSeriesVar 

Variable types are broken up by 
functionality. Variables representing 
a collection of values are 
represented by VarArrays. Variables 
that change their value solely based 
on simulation time are represented 
by TimeSeriesVars. All other 
Variable components are 
represented by Variables. 

Table 42 (Continued). 

Simile Expression Support in OME 

Since OME is expected to understand Simile-derived System Dynamics models, most, if 

not all expression functions in Simile would need to be reimplemented in OME. This was done 

mostly through trial-and-error, with testing primarily focused on the functions used in reference 

models. Table 43 outlines the degree of compatibility between Simile and OME expression 

functions. 
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Simile Function OME Compatibility Notes 
abs Yes Uses C implementation. 
acos Yes Uses C implementation. 
all Yes 
any Yes 
asin Yes Uses C implementation. 
at_init Yes Implemented, but not in the most

efficient way. 
atan Yes Uses C implementation. 
atan2 Yes 
binome Yes Uses C++11 STL implementation. 
ceil Yes 
channel_is Yes Minimally tested. 
colin Yes Minimally tested. 
const_delay Yes 
cos Yes Uses C implementation. 
cosh Yes Uses C implementation. 
count Yes 
default Yes Untested. 
dies_of Yes Untested. 
dt Partial Just returns step size, which in OME is

static throughout simulation and across
sub-model components. 

element Yes 
exp Yes Uses C implementation. 
factorial Yes May break with large numbers. 
first Yes Untested. 
firsttrue Yes OME returns 0 if no element is 

evaluated to true; this may not be the
same behavior as Simile. 

floor Yes 
fmod Yes Uses C implementation. 
following Yes Untested. 
for_members_of_type No Unknown behavior. 
gaussian_var Yes Uses C++11 STL implementation of a

normal distribution. 
graph Yes Directly maps to InterpTable() function

in OME, as the function technically
interpolates across a table of values. 

greatest Yes 
howmanytrue Yes Minimally tested. 
hypergeom Yes Custom implementation; minimally

tested. 
hypot Yes Uses right-triangle formula. 
in_preceding No 
in_progenitor No 
index Yes 

Table 43. Simile expression function support in OME. 
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Simile Function OME Compatibility Notes 
init_time Partial Presently just grabs start time from

SimManager; this will need to be
changed when dynamic model instance
allocation is reintroduced. 

int Yes 
interpolate Yes Untested. 
iterations No Linked to Alarm components in Simile.

The equivalent is not currently
implemented in OME. 

last Yes Untested. 
least Yes 
log Yes Uses C implementation. 
log10 Yes Uses C implementation. 
makearray Yes May be missing some Simile behavior. 
max Yes 
min Yes 
ordinals Yes Untested. 
parent Yes Untested. 
pi Yes Implemented as constant. 
place_in Yes Minimally tested. 
poidev Yes Uses C++11 STL implementation of a

Poisson distribution. 
posgreatest Yes Minimally tested. 
posleast Yes Minimally tested. 
pow Yes Uses C implementation. 
preceding Yes Untested. 
prev Yes 
product Yes 
product3 Yes Untested. 
rand_const Partial Presently just calls rand_var, returning a

different random value each time. 
rand_var Yes Uses C++11 STL implementation of a

uniform distribution 
rankings Yes Minimally tested. 
round Yes 
sgn Yes 
sin Yes Uses C implementation. 
sinh Yes Uses C implementation. 
size Yes Untested. 
sqrt Yes Uses C implementation. 
stop Partial In OME, reports error to event system,

which then broadcasts the errors for 
any event handlers listening. More
testing is needed. 

Table 43 (Continued). 
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Simile Function OME Compatibility Notes 
subtotals Yes Minimally tested. 
sum Yes 
table Yes 
tan Yes Uses C implementation. 
tanh Yes Uses C implementation. 
time Yes 
transform3 Yes Untested. 
var_delay Yes OME does not impose the same

restrictions on var_delay() as Simile
does; this may change in the future. 

with_colin Yes Untested. 
with_greatest Yes Untested. 
with_least Yes Untested. 

Table 43 (Continued). 

OME-specific functions 

The following are a handful of OME-specific expression functions which have no 

equivalent Simile implementations. 

valuesFromInstances(<variable>,<inds>) - Retrieves a list of values for <variable> populated 

with the value from the parent model instances pointed to by the indexes in the list 

<inds>. 

getAsTable(…) - Takes a variable number of arguments and returns a list object which has 

packaged the values. 

upgroup(<variable>,<level>) - Retrieve a list of values for <variable> by up-scoping <level> 

number of submodels. Primarily used to reconcile operations on model components that 

exist at different submodel depths 

omecleanup() - Deallocation function which should not be called directly. 




