

AN ABSTRACT OF THE THESIS OF

Patrick C. Wingo for the degree of Master of Science in Biological and Ecological Engineering

presented on June 8, 2015.

Title: OME: A Framework for Running Spatially Explicit System Dynamics Models.

Abstract approved:

John P. Bolte

The Open Modeling Environment (OME) is a tool developed to address some known

shortcomings in ecological System Dynamics (SD) modeling research. OME provides a common

set of methods for interacting directly with spatial information, reducing the need for modelers to

create their own methods for doing so. The environment is capable of running as a standalone

program, or as a plugin to an existing tool, allowing OME to be useful in a wide range of SD

applications. This thesis demonstrates OME's capability by taking a pair of existing SD models

and running them at a speed and with an accuracy comparable to their original simulation

environments. Additionally, OME is demonstrated running as a plugin to a much larger model

simulation framework, where it provides benefits through adding additional simulation

dynamics. While much work went into OME, this is only the first phase, with performance

optimizations, increased compatibility with existing model formats, and multi-platform

implementations all being explored as future directions of development.

© Copyright by Patrick C. Wingo

June 8, 2015

All Rights Reserved

OME: A Framework for Running Spatially Explicit System Dynamics Models

by

Patrick C. Wingo

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 8, 2015

Commencement June 2015

Master of Science thesis of Patrick C. Wingo presented on June 8, 2015.

APPROVED:

Major Professor, representing Biological and Ecological Engineering

Head of the Department of Biological and Ecological Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader upon
request.

Patrick C. Wingo, Author

ACKNOWLEDGEMENTS

The author would like to thank the following people, in no particular order, for their help

throughout this project. Without out you the development of OME would not have been possible.

Prof. John Bolte, Oregon State University

Allen Brookes, USEPA.

Roel Boumans, AFORDable Futures LLC.

John Rogers, USEPA.

TABLE OF CONTENTS

Page

Introduction..1

Literature Review...7

Design Approach...17

Milestones and Useful External Tools..17

OME Model Representations..20

Modularity and Interoperability..24

Platform Targets and 3rd Party Libraries..29

SDP Implementation..32

The Utility of a Common Spatial Interface...32

The Spatial Data Provider: OME's Common Spatial Interface...33

Existing Example SDP implementations..36

Simile Model Compatibility..37

Reference Models Overview...37

Design Challenges...39

Runtime metrics and comparisons of values...41

Case Study: Extending HYGEIA using Envision..45

Premise..46

Implementation Details...47

Results...50

Discussion...53

Conclusion...55

Bibliography..58

APPENDICES...64

Appendix A: Model Conversion Directives..65

Appendix B: SDP functions and flag mappings...67

Appendix C. OME File Format Specifications...74

OME Model files (.omem)...74

TABLE OF CONTENTS (Continued)
Page

OME Control files (.omec)...90

Appendix D. OME Compatibility With Simile...96

Mapping Simile Model Components to the Equivalent in OME...96

Simile Expression Support in OME...98

OME-specific functions..101

LIST OF FIGURES

Figure	 Page

1.	 Example of a simple System Dynamics model with an icon legend...................................3

2.	 Overview of the model execution process...20

3.	 OME architecture and module boundaries for the dynamic libraries and executables that

are presently part of the OME distribution..24

4.	 Control file tags pertaining to SDP configurations..34

5.	 Broad overview of how OME and OMEAdapter relate to Envision.................................45

6.	 Interaction between OME, OMEAdapter and the SDP interface, and Envision...............47

7.	 Change in low-density developed regions from beginning to end of run..........................50

8.	 Change in medium-density developed regions from beginning to end of run...................51

9.	 Change in high-density developed regions from beginning to end of run.........................52

10.	 Changes in tree cover ratio..53

LIST OF TABLES

Table	 Page

1.	 Overview of design goals and implementation approaches...17

2.	 Time trials comparing HYGEIA and Tampa Bay Seagrass Model (TBSM) runs using

both Euler and Fourth-order Runge-Kutta (RK4) solvers between Simile and OME.......41

3.	 Comparison of values generated by Simile and OME for sentinel values in the HYGEIA

model..43

4.	 Comparison of values generated by Simile and OME for sentinel values in the Tampa

Bay Seagrass model...43

LIST OF APPENDIX FIGURES

Figure Page

11. Tag hierarchy for a typical .omem file...74

12. Tag hierarchy for a typical .omec file..90

LIST OF APPENDIX TABLES

Table Page

5. SDP behavior flags and their relevant functions..67

6. SDP model expression functions and their usage groups..71

7. Assoc tag attributes..76

8. Enum tag attributes..77

9. Flow tag attributes..78

10. Influence tag attributes...79

11. Interp_table_data tag attributes..79

12. Iterator tag attributes..80

13. Label tag attributes...81

14. Model tag attributes...82

15. Param_file tag attributes..83

16. Port tag attributes...83

17. Spawner tag attributes..84

18. Src tag attributes..84

19. State tag attributes..85

20. Table_data tag attributes..86

21. Trg tag attributes..86

22. Val tag attributes..86

23. Vararray tag attributes..87

24. Variable tag attributes..88

25. Varts tag attributes...89

26. Bp tag attributes...91

27. Dump_eval_batch tag attributes..91

28. Dump_init_batch tag attributes..91

29. Eval_break tag attributes..92

30. Field tag attributes..92

LIST OF APPENDIX TABLES (Continued)

Table Page

31. Init_break tag attributes...92

32. Inst_map tag attributes...93

33. Ome_model tag attributes..93

34. Dump_eval_batch tag attributes..93

35. Results_views tag attributes...94

36. Solver tag attributes...94

37. Spatial_provider tag attributes...94

38. Submodel tag attributes..95

39. Tree_view tag attributes...95

40. Var tag attributes..95

41. Simile model components as supported by OME..97

42. Simile expression function support in OME..99

1

Introduction

The project underlying this thesis is primarily concerned with the development,

validation, and adoption of the Open Modeling Environment (OME). OME is an implementation

of a System Dynamics (SD) model simulation engine which is intended to address a few hurdles

that ecosystem modelers may face today. OME attempts to assist the modern ecosystems-

focused SD community by providing a common interface for explicit spatial queries and a

flexible implementation designed to either work alongside or integrate with existing modeling

tools. By addressing these issues, OME will make a positive contribution to the ecosystem

modeling community.

Since a large portion of this discussion revolves around models, it is important to

establish what a model actually is. Definitions vary in their complexity, but models basically

serve an important role in scientific research at large, primarily in their abilities to assist with

understanding a real or theoretical system, predicting some future or alternate state, and

controlling for experimental or unknown values when manipulating a system (Haefner 1996).

Every model operates under a series of assumptions and constraints for which its conclusions

remain valid, and exists in a space that is a tradeoff between reality (how close a model mimics

real-world processes), precision (the degree of accuracy in produced predictions), and generality

(the range across which model results remain valid) (Haefner 1996). The balance between these

trade-offs produces a model which can be used to tease out pertinent information and highlight

relationships that are significant to the model's defining research question (Haefner 1996).

Models can also be used as communication tools by providing a way to access information

derived from complex relationships which would otherwise be obscured from a general

audience's understanding (Lane 2008). SD models in particular can be used to develop a better

understanding of a given series of processes, especially when one or more causal relationships

are emulated (Ford 1999).

As mentioned previously, OME is specifically concerned with the construction and

evaluation of System Dynamics (SD) models. SD modeling involves the study of how a system's

structure affects the change in quantified system aspects over time (Lane 2000); examples of

2

“quantified system aspects” in an ecosystem model would be nutrients, pollutants, individuals in

a population, or any other quantity that flows through and/or circulates within a system. SD

models are generally constructed from a set of graphical elements as a stock-flow diagram,

where the configuration of elements in relation to one another defines the differential equations

which drive the interactions within the model (Lane 2008). This configuration of diagram

elements also assists in model conceptualization (Lane 2008), and can be provided as a

communication aid to a larger audience who would be otherwise unable to interpret model

dynamics when represented by calculus-based equations (Lane 2008). Different implementations

vary, but all SD models contain at least these five components: Compartments, Flows, Variables,

Influences, and Source/Sinks (Lane 2008). Compartments, also referred to as state variables or

stocks, represent points of storage for quantities moving through the modeled system, and are the

components upon which the model's differential equations act upon (Lane 2008). Flows

represent the paths of values that stream through the system, and represent the rate at which a

value accumulates or dissipates within a targeted compartment (Lane 2008). Variable

components represent other values external to flow components, which can influence the values

processed within the differential equations driving the simulation (Lane 2008). Influences map

out the interactions between variables, flows, and compartments, essentially acting as roadmaps

to how all other visual pieces of the representative stock-flow diagram tie together (Haefner

1996; Lane 2008). Sources and Sinks represent quantities that enter from and exit through the

implicit boundary of the system, respectively; these quantities are not tracked by the SD model,

as their values are considered out-of-scope of the system being simulated (Lane 2008). Each of

these components are graphically represented in a consistent way: compartments are rectangular

boxes, flows are arrows with a triangle shape (or occasionally some valve-like shape) placed

partway along the line, variables are round bubbles, influences are thin or dashed arrows, and

sources/sinks have an amorphous cloud shape (Haefner 1996); see Figure 1 for an example SD

model and a legend for its icon usage. Mathematically, the collection of graphical model

components are combined into a series of differential equations which are then solved along

regular time intervals to produce the dynamics of the model, simulating the flow of

compartment-captured values through the simulated system. The representative equation that

3

each constructed differential equation can be reduced to is dX/dt=f(X,P), where X is a vector of

quantities in each compartment, and P is a vector of parameter values associated with the

compartments represented by X (Lane 2008).

Figure 1. Example of a simple System Dynamics model with an icon legend. The
model represents a two-tiered reservoir system; Water flows in to the Upper
Reservoir from an outside river, is transferred to the Lower Reservoir at a rate
denoted by the “Transfer Rate” variable, and is released from the lower reservoir
for municipal use at a rate defined by the “Release Rate” variable. Diagram
created using Simile.

While SD models have been used to answer ecological research questions since at least

the early 1970s (Sklar and Costanza 1991), there are a number of shortcomings that when

addressed could greatly increase their utility. OME primarily focuses on two such deficiencies.

The first shortcoming involves the explicit representation of spatial data. A number of SD

models utilize explicit spatial relationships as part of their model design (e.g. Ford 1999;

Costanza and Voinov 2004). Traditional SD models are inherently spaceless, and it takes

4

considerable effort to explicitly model spatial relationships within the confines of traditional SD

modeling tools (Sklar and Costanza 1991). This leaves it up to the author to construct a spatial

representation that is compatible with their model, which can lead to a lot of unnecessary work

reinventing the wheel; established and well known spatial relationships have to be redefined and

reimplemented for each modeling project (Voinov et al. 2004). By standardizing a common

interface for interacting with spatial data, the amount of work required on behalf of the model

author would be significantly decreased, and would allow for the reuse of spatial data across

models without significant modification being required. To address the possibility of spatial

standardization, four spatial usage cases were defined early in the OME design process. The first

spatial usage case is that there is no explicit spatial representation whatsoever; this is considered

the base case. The second spatial usage case is that the SD model is replicated in each cell in a

grid, which in turn represents a spatial coverage. This configuration involves no lateral

movement of information between cell models. The third spatial usage case is the same as the

second, except there is information sharing across cell boundaries; a flow out of one model's

system boundary could act as an inbound flow across an adjacent model's boundary. The fourth

spatial usage case is that explicit spatial relationships are defined within a subregion of a SD

model. It is this fourth case which was settled upon for OME's spatial interaction with existing

SD models.

The second shortcoming that OME is attempting to address is that many of the existing

SD modeling tools are largely insular and do not easily couple with other modeling tools. This

shortcoming is exemplified by STELLA, one of the more common SD modeling tools (Voinov

et al. 2004); other tools surveyed showed varying degrees of modularity and cross-tool

communication capabilities, but most of these features did not stretch much beyond the feature

set provided by STELLA. By having a SD modeling environment that is readily embeddable in

other tools, work on glue code and inter-model communication can be simplified, allowing

model authors to spend more time and resources on model details relevant to their research

question. Additional flexibility can be derived from adopting a Free and Open Source (FOSS)

distribution pattern, which can provide the ability to patch bugs on the fly, expand and customize

tools as needed on the finest scale possible, and allow for a researcher to adapt the software to

5

new and novel runtime environments (von Krogh and von Hippel 2006). The lack of a

standardized intermediate representation of SD models can make it difficult to move between

tools, or stand as a barrier to understanding between model authors who each work with a

different collection of tools; this again is best exemplified through documented experiences

working with STELLA when trying to export SD models to other SD model environments

(Voinov et al. 2004). Since all SD models have a minimum set of common stock-flow

components whose configuration define a functional model (Lane 2008), writing an intermediate

file format for storing such models would be beneficial, as it would allow for increased sharing

in between tools and authors. There are some broad model specification languages out there,

such as Unified Modeling Language (UML), but they are typically too general for the purpose of

efficiently representing the common functionality between models originating from different SD

tools (Siau and Cao 2001). The Extensible Markup Language (XML) provides a good set of

rules that define files that exist as a decent compromise between being program-structure

friendly, platform independent, and human readable (Bray et al. 2008). Some tools already

support XML representations of their models, but there is no agreed upon representation of

models stored as XML between tools (although a candidate does exist; see the Literature Review

section) (Costanza and Voinov 2004). By defining a common-ground XML model structure,

inter-tool communication will be easier to achieve by avoiding too many tool-specific attributes

and entries.

With the aforementioned shortcomings in mind, here are several questions that can be

used to measure the success of the OME project:

1.	 Can an open-sourced, modular SD modeling tool be constructed with performance and

features comparable to existing commercial counterparts?

2.	 Does adding an explicit spatial data interface and adopting a modular design simplify the

implementation of spatially-explicit SD models?

The first question stems from a point early in the design process of OME, where the ability to be

flexible as possible in OME's implementation was seen as a way to increase the utility of the tool

6

for model authors and existing modeling projects. As an extension to this thought, it is important

for OME to perform in a similar fashion to at least one existing SD modeling tool, and that any

inconsistencies can be sufficiently justified by acceptable deviations in the implementations of

the different modeling runtimes; minimizing any additional difficulties or obstacles that arise

from incorporating OME into a research project will increase the chances of its acceptance

amongst the research community. The second question needs to be satisfied in order for the

target users (ecological SD modelers) to find any utility in the outcome of this project. Both of

these questions will be answered in the context of two existing models whose authors have

expressed an interest in the benefits that this project can provide in addressing the previously-

outlined shortcomings.

To provide the foundation for further discourse, this thesis will first review previous

discussions in the literature surrounding the origins and history of SD modeling, examples of

common SD model construction and runtime software, capabilities of common purpose

languages to effectively construct and run SD models, previous attempts to bridge the gap

between SD modeling and explicit spatial data, and previous attempts at designing a modeling

framework in a highly modular fashion. Once a firm foundation for exploration is established,

the general design process for OME will be elaborated upon and justified. After the general

implementation process is presented, the discussion will focus specifically on the most novel part

of the OME project: the implementation of the Spatial Data Provider (SDP) interface. At this

point, two reference models originating from Simile will be discussed and the results of

performance tests between OME and Simile running these models will be compared. Finally, the

overarching discussion will conclude with a demonstration of how OME can increase the utility

of an existing SD model when running as a plugin to a large Envision modeling project.

Additional implementation details will be provided as a set of appendices for those who are

curious about implementation details that exist beyond the scope of the general discussion within

this thesis.

7

Literature Review

Given the wide breadth of material that needs to be covered before a detailed discussion

regarding OME can be carried out, this Literature Review will explore a number of seemingly

disparate topics that tie together under the umbrella of OME. The discussion in this section will

begin by briefly summarizing the origins and history of System Dynamics (SD) models, and

their eventual application to spatially-explicit ecosystem modeling. After that, a brief survey of

three common contemporary software tools for building and running SD models will be

presented. The ability of two programming languages popular in the Scientific modeling and

Geospatial Information Systems (GIS) realms, R and Python, to run SD model simulations using

previously-published packages for each environment is reviewed. The topic will then shift to

examples of spatially explicit ecosystem models implemented as SD models, followed by a

discussion of previous attempts to provide a consistent way to explicitly define spatial

relationships within SD models. A brief description of Envision follows, which in turn is

followed by a discussion of the importance of open source and modular design to the OME

project. The discussion will close with a brief description of another modeling tool constructed

with a modular architecture, ModCom.

System Dynamics modeling was formally introduced and defined in 1961 in Jay

Forrester's Industrial Dynamics, with the intent of emulating the flow of materials and resources

within an industrial management framework (Forrester 1961). From its inception, System

Dynamics modeling was designed to utilize the unique resources of the rapidly expanding

computational technology sector to iterate through the dynamics of a model (Forrester 1961). A

structured visual syntax has also been defined since the initial introduction of System Dynamics,

allowing for a model structure to be communicated completely through visual diagrams

(Forrester 1961). As Forrester stated, “Many people visualize interrelationships better when

these are shown in a flow diagram than they do from a mere listing of equations” (Forrester

1961); these representative flow diagrams later became known interchangeably as “Forrester

Diagrams” (Haefner 1996) and Stock-Flow Diagrams (Lane 2008). The first tool for running SD

models, DYNAMO, was introduced at this time as well (Forrester 1961). DYNAMO would take

8

a series of equations representing the relationships outlined in a stock-flow diagram, check the

equations for logical consistency, and, assuming the equations were found to be valid, compile

the equations into computer code and carry out the simulation (Forrester 1961).

Forrester's Urban Dynamics, published in 1969, expanded System Dynamics from inside

the industrial management realm into modeling the dynamics of municipal environments as an

aid in urban development policy (Forrester 1969). This successful shift into another problem

space supported the argument that System Dynamics was a viable modeling approach for

addressing questions across a large spectrum of knowledge spaces. Eventually, SD models would

begin to be applied within the Natural Sciences, particularly within ecosystem models (Sklar and

Costanza 1991). Given the structure of SD models, any spatial aspects of modeled ecosystems

were usually represented implicitly by being bundled into the organization of state variables

(Sklar and Costanza 1991). While implicit representation of spatial attributes is sufficient for

some ecosystem models, many SD ecosystem models were constructed with explicitly spatial

data attributes, a task that could only be accomplished with some difficulty (Sklar and Costanza

1991). To this day the pictorial stock-flow diagram representation of a model has proven

appealing to scientists and stakeholders alike for its effective means of communicating

relationships in an understandable fashion (Wolstenholme 1982).

Since the introduction of DYNAMO, a number of other SD modeling software tools have

been developed. Most of the still-active SD modeling tools provide a method of creating a model

through the construction of a modified stock-flow diagram using visual means (Lane 2000).

Three common SD visual authoring tools used in ecological modeling are STELLA, Vensim,

and Simile.

STELLA was developed by High Performance Systems (now Isee Systems) and was

introduced in 1987 as the first SD modeling tool to use a visual approach to constructing stock-

flow diagrams as a means to implement models (Haefner 1996). It is still in use today, and is

presently being marketed as both an educational learning and research tool (Isee Systems). In

addition to its model constructing capabilities, STELLA contains the ability to run model

simulations, animate the flow diagram to show the changes in values, and generating results as

common graphs and charts (Isee Systems). The model representation is XML-based, and data

9

can be exported to a Comma-Separated Values (CSV) file (Isee Systems). While STELLA does

not have unique tools for constructing explicit spatial relationships within its modeling

environment (Costanza and Voinov 2004), Isee Systems does publish a compatible spatial

visualizer called Spatial Map, which allows for the graphical representation of exported array

data as a two or three-dimensional coverage (Egner 2014). Since Spatial Map is external and

strictly interacts only with outputs generated by STELLA (Egner 2014), it does not directly

contribute to SD model simulation and is thus limited in its use.

Vensim was developed by Ventana Systems and first released to the public in 1991

(Ventana Systems Inc) and was created out of the need for features that similar tools did not

provide (Ford 1999). Like STELLA, Vensim allows for the construction of a SD model using a

stock-flow diagram, and provides an environment to run model simulations and present the

results and outputs (Ford 1999). Vensim emphasizes its built-in support for the external

parameter optimization process, which uses a modified Powell Hill climbing algorithm (Ventana

Systems Inc 2014b). Another feature unique to Vensim is the built in ability to produce

“Venapps”, which are Vensim based models that are bundled within a customized user interface

frontend (Ventana Systems Inc 2014c). An interface to accept cross-application control is a

standard part of Vensim's API interface and can be accessed with a variety of programming and

scripting solutions (including Excel) (Ventana Systems Inc 2014c). Vensim does not appear to

have any built in support for explicit spatial representations beyond specific stock-flow

configurations constructed by a model's author, but its possible that such a feature may have

been overlooked.

Simile was originally developed by a research group at the University of Edinburgh

before being spun off as the product of the private company Simulistics Ltd. (Simulistics Ltd.).

Simile's visual model construction tools are straightforward and integrated with a simulation

runtime which allows for easy browsing of results (Simulistics Ltd.). Models are compiled from

C++ code, using either a system-native compiler, or a GNU compiler bundled with Simile's

distribution (Simulistics Ltd.). The execution window provides tools for displaying results in a

meaningful and accessible way (Simulistics Ltd.), allowing for a simple method of visually

verifying specific values at the conclusion of a model simulation run. The model specification

10

which Simile uses is text-based and fairly easy to understand (Simulistics Ltd.). Simile provides

built-in visualization tools which can be used to display spatial data in the form of polygons,

square grid cells, or hexagonal grid cells (Simulistics Ltd. 2014c). There are no specific tools

provided by Simile designed for representing explicit spatial relationships, but such relationships

can be constructed by the model author through the unique configuration of compartment, flow

and submodel components (Simulistics Ltd. 2014c). Simulistics recommends that association

submodels be used to map out spatial relationships (Simulistics Ltd.). Association submodels are

those that can map out conditional relationships between two other submodels through the

association via role arrow model components, optionally using specific selection criteria

(Simulistics Ltd.). While this approach may be effective, it has been acknowledged that such an

approach has a significant overhead on behalf of model authors in understanding the association

construct and details of its implementation conceptually and practically (Simulistics Ltd.).

In addition to specific SD tools, System Dynamics has also been modeled using high

level languages. Two such languages which have a strong presence in the Natural Sciences are R

and Python (Perez, Granger, and Hunter 2011). R is a language and runtime environment

designed for statistical computing and generating high-quality plots and graphs (R Foundation

2014a). The R environment is extensible and provides built in access to a module archive known

as the Comprehensive R Archive Network (CRAN) (Adler 2009). Within the CRAN, there are at

least two modules that have been used for building and running System Dynamics model

simulations: deSolve and simecol (Petzoldt). DeSolve is a package of general equation solvers

for Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), Differential

Algebraic Equations (DAEs), and Delay Differential Equations (DDEs) (Soetaert, Petzoldt, and

Setzer 2010). Simecol is a framework for building ecological model simulations in R and relies

on the deSolve module for solving simulation equations (Petzoldt and Rinke 2007). While it is

possible to write and run SD models in R, it is not necessarily an ideal environment to do so. R is

not efficient at querying data structures, handling complex data structures, or handling a data set

that is larger than the available space in memory (Adler 2009), all conditions that can arise from

particularly complex SD models as observed throughout the development of OME. Additionally,

R is an interpreted language (R Foundation 2014b), meaning that there is additional performance

11

overhead using a model written to run in its runtime environment as opposed to a language

which is compiled directly into machine code, such as C++.

Python is a high-level interpreted language and runtime environment with a solid focus

on a clear and accessible syntax (The Python Foundation 2014a). Like R, Python has support for

extension modules, most of which are accessible on the Python Package Index (PyPi) (The

Python Foundation 2014b). There has been a wide-scale adoption of Python across Geographic

Information Systems (GIS) centered disciplines due to its adoption as the primary scripting

language in ArcGIS (Perez, Granger, and Hunter 2011); Python has seen adoption across general

science disciplines as well (Environmental Systems Research Institute 2006). Presently, several

Python modules exist which provide the capability to run System Dynamics model simulations;

PyDSTool and SimPy are notable examples of such packages. PyDSTool is a Python package

that focuses on running SD models, particularly those used in biological applications, as well as

supplying some visualization and optimization tools (Clewley 2012). SimPy is a package for

running general discrete event-driven simulations, a classification which includes System

Dynamics models (Lünsdorf and Scherfke 2014). While its more general nature and its better

data handling abilities may make it a more desirable environment for running SD simulations

than R, its still fundamentally an interpreted language which leads to additional overhead and

decreasing performance when compared to compiled language (The Python Foundation 2014a).

It is possible to write performance critical sections in machine native code and link it to Python

through a native interface (Oliphant 2007), but this means that the core functionality is not

written in Python at all, but instead in some language that compiles into machine native code

(such as C++).

Spatially explicit SD models have been in use from at least the early 1970s (Sklar and

Costanza 1991). Several examples of spatially explicit research models using the Spatial

Modeling Environment (SME) appear in a collection of case studies in the book Landscape

Simulation Modeling: A Spatially Explicit, Dynamic Approach (Costanza and Voinov 2004).

SME is a project which attempts to apply explicit spatial relationships to STELLA by taking

output from STELLA, converting it to C++ code, compiling it, and running the resulting binary

in a custom runtime that executes the SD model as a unit model copied across a spatially explicit

12

grid (Costanza and Voinov 2004). One model which utilizes SME in this fashion, The Great Bay

Model, uses a unit model developed in STELLA to capture dynamics of carbon flow through

Eelgrass-centered ecosystems in the Great Bay estuary in New Hampshire for a fixed cell size

(100x100m2) (Behm, Boumans, and Short 2004). Each cell has a copy of the unit model

initialized with cell-specific values, with flux values from neighboring cells being added by SME

to represent the flow of nutrients, detritus, and consumers, satisfying spatial usage case three as

defined in the Introduction (Behm, Boumans, and Short 2004). Another implementation that uses

SME is a desert tortoise population model by Aycrigg et al., which simulates the impacts of six

different land management scenarios on desert tortoise populations in the Mojave Desert

(Aycrigg, Harper, and Westervelt 2004). The unit model simulates climate, vegetation, and

tortoise population dynamics for fixed-sized cells (1x1km2); copies of the unit model are mapped

to cells in a gridded spatial coverage by SME (Aycrigg, Harper, and Westervelt 2004). Similar to

the Great Bay Model, unit models in neighboring cells can contribute to one another, simulating

tortoise migration, which also satisfies spatial usage case three (Aycrigg, Harper, and Westervelt

2004). A different spatial usage case can be seen in the two models that are described in the

Simile Model Compatibility section, which express their explicit spatial components as a

subportion of a much larger model (spatial case number four).

The need for a unified external representation of spatially-explicit relationships has been

recognized and previous attempts have been made to address it. SME is one such project whose

approach parallels that of OME. Since lateral transfer of values between cells and their unit

model representations is supported, SME satisfies both spatial cases two and three, but most

models appear to focus on the latter case (Costanza and Voinov 2004). Another approach to

fulfill this niche is represented through SimARC. SimARC is a bridge between Simile and

ArcMap (a common GIS tool) that allows ArcMap to call a Simile's runtime environment to run

a compiled Simile model on each polygon within an ArcMap coverage, producing a new map

layer (Mazzoleni et al. 2003). Since no lateral transfer is supported between polygons, SimARC

can only satisfy spatial case two (Mazzoleni et al.). While both SME and SimARC are

addressing a similar need to OME, they differ rather significantly in a few details. The two

implementations focus on a different spatial application than OME. Specifically, they are largely

13

concerned with replicating System Dynamics across discrete units within a spatial coverage, with

SME typically being applied across a grid/raster coverage (Costanza and Voinov 2004), and

SimARC being applied across a polygon-based coverage (Mazzoleni et al. 2003). OME, in its

current implementation, focuses its spatial data management toward applications where a SD

model incorporates spatial information into its larger simulation space. As previously mentioned,

SME primarily satisfies spatial case three, SimARC only applies to spatial case two, and OME

(in its present incarnation) focuses on spatial case four. The target auxiliary tools also differ;

SME largely relies on STELLA (Costanza and Voinov 2004). while OME is currently targeting

Simile for its input source (both of these tools are designed with the possibility to use other SD

modeling tools as input sources (Costanza and Voinov 2004)). SimARC uses Simile as its input,

and its approach is to embed the model within another tool (Mazzoleni et al. 2003). OME, by

contrast, is designed to be flexible enough to use different SD tools as an input, and to both run

standalone and embedded in another tool.

An important objective of the OME project is to demonstrate SD models running as a

subcomponent of a much larger simulation framework; Envision was chosen as the target

platform for this task. Envision is an agent-based, spatially explicit integrated modeling platform

developed at Oregon State University (Oregon State University). Envision focuses on

simulations revolving around coupled human and natural systems under the projected effects of

Global Climate Change (Oregon State University). High level dynamics are driven by the

interactions between agents (decision making units for land parcels), landscapes (the spatially

explicit coverage which reflects changes during a simulation), and policies (constraints on

simulation behaviors) (Oregon State University). As a collaborative modeling platform, Envision

utilizes a plugin architecture that allows for the addition and usage of different models,

visualizers, and outputs on a per-model basis (Bolte 2014). Projects involving Envision typically

focus on futures projections of climate and resource trends with the goal of assisting in policy

decisions (Oregon State University 2014b). Further exploration of Envision as a runtime

environment will be explored in the Case Studies section.

Another objective is to provide the components of OME in an Open Source distribution

with robust documentation alongside precompiled binaries. Such a configuration can allow for a

14

higher degree of scrutiny and custom modifications on behalf of interested parties (Gwebu and

Wang 2011). In a similar vein, many of the extant SD modeling tools appear to have varying

degrees to which they can interchange or embed in other modeling environments (Simulistics

Ltd.; Ventana Systems Inc 2014b; Isee Systems). OME's initial implementation is designed to

optionally embed in an Envision project as an autonomous process. This configuration, with

Envision being a platform designed to run multiple modeling plugins within the same simulation,

allows OME to accept inputs from and output to Envision's modeling context, allowing cross-

communication between other modeling components (Oregon State University 2014b). This

cross tool integration with Envision could potentially be extended to other environments as well.

Modular ecosystem modeling framework design has been previously explored, with

ModCom being one of the more recent examples (Hillyer et al. 2003). ModCom is an ecosystem

modeling framework which provides a skeleton for constructing models out of modular

components (Hillyer et al. 2003). The central library to ModCom's framework, ModComLib,

provides interfaces that outline conformation requirements for both core modules and custom

external modules (Hillyer et al. 2003). Cross-module communication is accomplished through

the Component Object Model (COM) specification, which is an implementation-independent

method for communicating between binary applications (Hillyer et al. 2003). Each component

exposes inputs and outputs used over the course of a simulation through a series of standardized

interfaces (Hillyer et al. 2003). The interfaces include ISimObj (basic ModCom object interface),

IUpdateable (interface for periodic update messages), and IODEProvider (interface for objects

represented by one or more ordinary differential equations) (Hillyer et al. 2003). This setup

allows components to be chained together with the outputs of one or more components feeding

into the inputs of additional components; such a design allows for the addition, removal, or

swapping of components with minimal effort (Hillyer et al. 2003). Additional interfaces exist for

exposing data, inter-object communication, and reading and writing data files (Hillyer et al.

2003). ModCom and its source code were released as an open source project alongside visual

tools for constructing additional ModCom components (Hillyer et al. 2003). Both the modular

nature of ModCom and its open-source distribution are aspects that would likely prove beneficial

to OME as well.

15

To coincide with a modular and open structure of the program itself, it is important to

explore the equivalent construct for storing model details as files. There are a number of standard

file format specifications that are used to store SD models for use and distribution. A recent

entry, XMILE (XML Modeling Interchange Language) seeks to provide a universal format to be

used across the various SD modeling tools that presently exist (OASIS). XMILE is an XML-

based file format that is intended to share model definition, drawing, and runtime information

between different SD modeling environments (OASIS). The data stored in a XMILE file is

divided into three conceptual layers known as compliance levels, with each successive level

building upon the previous (Chichakly 2013). The intention behind each compliance level is to

provide a roadmap for what specific feature sets a given tool should support, with support of a

higher level layer implying support of all levels below it (Chichakly 2013). The first compliance

level (Simulation) contains the bare equations needed to run the simulation (Chichakly 2013).

The second compliance level (Display) stores all the information necessary to display and

modify the individual model components which define the equations in the first level (Chichakly

2013). The third compliance level (Interface) provides information on running the model and any

auxiliary information that can be used to describe how to display the results (Chichakly 2013).

While the compliance levels are largely conceptual, the levels are practically incorporated into

XMILE files as an attribute to the root node of the file (Chichakly, 2013). The architecture of the

file itself is conceptually constructed as three sections: Model, Presentation, and Widgets

(Chichakly 2013). The model section is synonymous with the Simulation layer; that is, the

Model section contains all the information necessary to execute the model (Chichakly 2013). The

Presentation section encompasses all the needs of the Display layer and portions of the Interface

layer, and is concerned with all aspects of lower level drawing requirements (Chichakly 2013).

The Widgets section covers any details of the Interface layer which are not covered by the

Presentation section, namely higher-level constructs such as user-interface widgets, graphs, and

tables (Chichakly 2013). The format is presently undergoing ratification by the OASIS standards

organization in order to be acknowledged as an official standardized interchange file format

(OASIS). The degree of detail that XMILE covers is greater than what is presently needed by

16

 OME, and was therefore bypassed in favor of a simpler XML-based model format that has been

in use since the early stages of development.

As has been demonstrated, there has been much previously published work that explores

the various facets that the development of OME will attempt to cover. Touching upon all of these

seemingly disparate branches of research and development has provided sufficient background to

continue the discussion by describing the reasons, decisions, and obstacles that were used to

shape OME's overall design approach.

17

Design Approach

As previously stated, OME is designed to provide a universal interface for querying

explicit spatial relationships, and to provide a modular configuration for coupling with other

tools. To achieve these goals, much planning and deliberation went in to the OME development

process. Milestones were defined to guide development, and both Simile and Envision were

incorporated into the project both as tools to assist in development and as targets for the

application of OME. Decisions regarding how to run model simulations, what external

technologies and third-party libraries to rely upon, and what platforms to target were made as

needed. The OME development process has been long and complex, and is by no means

complete. This is best exemplified by the series of milestones that have been established.

Milestones and Useful External Tools

Goal Implementation
Load and run pre-existing SD models. Conversion tools for modifying and copying Simile files into OME-ready

files.
Support for explicit spatial
representation.

Create a universal spatial data provider (SDP) interface, and provide a
syntax for querying spatial relationships within model component
expressions.

Flexibility in design. Follow principles of encapsulation and strive for modularity.
Be both capable of running standalone
and as a plugin.

Adhere to principles of modular design.

Cross-platform support. Use platform-agnostic code wherever possible, and isolate platform
specific code using preprocessor macros as necessary.

Comfortable user-interface for any tools
that require a GUI.

Use platform-native libraries for generating UI components instead of
cross platform libraries. Users on each platform have different
expectations about available UI conventions.

Table 1. Overview of design goals and implementation approaches.

When beginning the OME project, it was quickly realized that there would be a lot of

unknowns in the process, and that something useful should be produced even if none of the

original end goals were achieved. Table 1 provides an overview of some of the broad goals of

this project and the attempted methods of implementation. Thus, incremental goals were defined

as milestones that defined points in the development where a set of known features would be

18

implemented and functional enough to be utilized by future researchers or developers; these

milestone features would stand on their own even if the initial development of OME had ceased.

Milestones were initially set by identifying the desired end goals and working backward along

the proposed development timeline. Intermediate points, where subsets of useful features would

be considered sufficiently complete for widespread use, were identified and marked as

milestones. As development progressed and unforeseen complications were encountered,

achieved milestones were noted, while future milestones were added, adjusted, or eliminated as

needed. The initial set of milestones consisted of the following: 1) Implement a tool which can

convert Simile models into a readily accessible intermediate format; 2) implement a simulation

runtime that can handle simple, statically-defined model dynamics using an Euler or RK4-based

solver; 3) add a scripting or extension language to the simulation engine that provides support for

complex data containers; 4) increase the complexity of supported model dynamics; 5) provide

initial spatial data support via an explicit interface; 6) implement an Envision plugin using the

explicit spatial data interface; 7) add support to the Simile model converter for adapting model

logic for use with the spatial data interface; 8) add support for running some runtime processes in

parallel; 9) build a model construction suite that builds SD models directly for OME through the

use of standard stock-flow diagram iconography. The present implementation of OME only

satisfies the milestones up through milestone 7. Additional milestones were added as the

development focus was adjusted over time; the additional milestones were 4.5) Implement model

logic that can be compiled into machine code; 6.5) write a straightforward tool for running,

dumping, and visually parsing the results of an OME simulation run; and 7.5) port the existing

OME components to at least one other platform. Most of the secondary milestones have been

satisfied, with a tool for generating source code for compiled models (the ModelClassBuilder

project), the creation of OMESimRunner, and the reimplementation of the core OME coding

projects under Mac OS X. Milestones 8 and 9 were not reached simply due to time constraints on

the initial implementation stage of this project, and will be noted as future points of expansion

for any attempts to expand upon the present OME implementation.

As indicated by the aforementioned milestones, both Simile and Envision played a role in

the development process, primarily as tools to assist in the validation of the results of OME

19

simulation runs. Simile had a number of features which proved beneficial throughout the OME

development process. Simile's visual model construction tools are straightforward and integrated

with a simulation runtime which allows for easy browsing of results (Simulistics Ltd.). Models

are compiled from C++ declarations (Simulistics Ltd.), which gives the OME compiled libraries

(also compiled from C++ code) a reasonable baseline to measure performance against. Simile's

execution window provides a variety of tools for displaying results (Simulistics Ltd.), allowing

for values to be visually inspected and compared to those produced by OME when both

environments are effectively running the same model. The model file specification which Simile

uses is text-based and fairly easy to understand (Simulistics Ltd.), making it a good first target

for a conversion tool. As more complex models were incorporated into the development process,

Simile's snapshot tool proved essential, as it allowed for a multi-instanced model component to

have all of its values for a given time step exported to a CSV file. Data exported from Simile

could then be used as a reference point for comparing results between a model run in Simile and

a model run under OME. Envision was useful for further vetting OME's model simulation results

by providing a visual representation of a model's spatial coverage. By directing important values

to be displayed by the map layer constructed in Envision, the correctness of OME's runtime

could be checked on a high level by displaying any significant deviations from expected patterns

and providing a map to specific submodel instances that were having issues. For more

information about mapping values between OME's runtime and a larger coupled modeling

environment (such as Envision), see the SDP Implementation section.

20

OME Model Representations

Figure 2. Overview of the model execution process. Filled arrows represent
conversion steps from one format to another. Solid arrows are required steps in
the execution process, while dotted arrows represent optional linkages between
external components and their target processes. The dashed arrows represent the
three ways an OME model can be loaded into the runtime, one of which must be
taken: load the model file directly into the runtime, load a control file that points
directly to the model file, or load a control file that points to a compiled version of
the target model.

The modular nature of the Object Oriented Programming (OOP) design was relied upon

substantially to explore a number of potential extension languages that could be used to evaluate

model component expressions. Extension languages are designed to be embedded in larger

programs to handle subsets of logic that tend to be highly volatile or modifiable during runtime

(Ierusalimschy, de Figueiredo, and Celes 2007). An additional benefit of using an embedded

extension language is the ability to write and test or debug runtime logic while the parent

program is running. Several extension languages were experimented with until a satisfactory

21

candidate was found. MTParser (Jacques 2004) was the first extension language to be evaluated

because of its speed and relative simplicity. Unfortunately, MTParser's logic was found to be

limited to non-collection values, and it did not have a cross platform implementation. A similar

extension language implementation, muparserx (Berg 2005), was the next to be assessed, and

while it did address the shortcomings of MTParser, it was found lacking in both flexibility and

performance. Finally, Lua (Ierusalimschy, de Figueiredo, and Celes 2007) was evaluated and

found to be acceptable for implementing OME's model component expressions. Lua is an open-

source language implementation intended to act as an embedded extension language in larger

C/C++ programs (Ierusalimschy, de Figueiredo, and Celes 2007). The runtime engine is easy to

compile as a self-contained module, while the actual language itself is both well documented and

mature (Hirschi 2007). An interface for OME model components was written which allowed

Lua to interpret and execute model component update expressions. Additionally, a debugging

prompt was implemented to query model components and their states during breaks in runtime,

greatly assisting in the search for runtime bugs that were introduced during the development of

the Lua interface. Despite the advantages of using Lua as part of the model evaluation process,

performance limits were too great to overcome for larger models, so an alternative approach was

devised which relied on compiled code instead.

 Constructing model update logic as a binary library results in faster code at the cost of

flexibility. To create a binary model logic file, a model is run through a serialization tool which

produces a C++ class encompassing all initialization and update logic. The generated source

code must then be compiled as a dynamic library and linked against the OME support libraries

(namely OMERuntime and OMEDraw). An optional declaration in the Model's control file is

then used to locate the compiled library and instruct the OME engine to load it at runtime. The

expression statements from model components are generally less structured than formal C++

statements; to reconcile the two levels of structure an intermediate wrapper layer was developed

to simplify the process of model serialization without sacrificing much performance. Objects

pertaining to the wrapper layer are rapidly created and discarded; to prevent memory

fragmentation, several instances of a custom memory pool class were used. A memory pool is a

well known memory construct; it is a block of memory that is allocated by a process and is

22

divided into equal sized partitions that are continuously reused. The memory pool

implementation in OME is advantageous for the large amounts of short-lived fixed sized objects

which are constantly being created and destroyed, since retrieving a block of memory for a new

instantiation occurs in constant time and memory fragmentation is reduced across the system

since a memory pool only requests memory from the operating system when it needs to be

resized. Ideally, the serialization process would be sophisticated enough to remove any

ambiguity so that a wrapper layer would be unnecessary, but development time constraints

limited how much work could be done in this direction. Nevertheless, the

conversion/serialization code is largely encapsulated; such a future enhancement could be made

without requiring an extensive rewrite of the source code. By converting the model into C++

code, the author of the model can rely on their C++ development environment to supply a

sophisticated debugging tool (such as Visual Studio's debugger or GDB), and to thoroughly

optimize the model logic during the building of a copy intended for distribution. Unfortunately,

this approach requires an external compiler (such as Microsoft's VC++ compiler, Clang, or

gcc/g++) and compilation for each target operating system and hardware architecture.

Fortunately, nearly all of the non-user interface code is platform agnostic, and generated C++

based model logic should compile with little or no effort under any C++ compiler with support

for the C++11 standard.

 XML was decided upon as the basis for the model specification, as it is both universally

supported and relatively straightforward for others to read, understand, and process regardless of

the chosen programming language (Bishop and Horspool 2006). As stated in the Literature

Review, the open XMILE standard was skipped in favor of a custom XML-based format mostly

due to differences in complexity; XMILE is much more suitable for a fully comprehensive

modeling tool, and as such providing support even for just its first conceptual layer would be

more time consuming and involved than what was settled upon at this point in the OME project.

Nevertheless, it would be beneficial for future iterations of OME to support the XMILE file

specification to some degree, and perhaps eventually use it as a complete replacement for OME's

custom formats.

Presently, there are two XML-based file types that have been created specifically for

23

OME (parameter values can be loaded from general CSV files or Simile's .spf files). The first

(.omem) is an XML file which stores the complete model specification, while the second type

(.omec) is an XML file which handles details for controlling simulation runs, mapping specific

coverage values to objects through the Spatial Data Provider interface, managing the output of

debugging information, and any other details that are important to simulation conditions but not

specific to the model definition. A third file type (.omet) has also been defined, but it is a binary

file intended to act as a temporary file during a simulation run and is not intended to be

distributed. See Appendix C for an overview of the structure of the .omec and .omem XML

files.

All of the aforementioned details factor into the general OME model preparation and

execution process, as outlined in Figure 2. Essentially, a model must be converted from its native

format to OME's model format. This file (or its compiled representation) is then loaded into the

runtime directly, or (preferably) though the inclusion of an OME control file that is loaded into

the runtime instead. Optional parameter files are loaded into the engine at this time as well. If

OME is running as a standalone product, then a Spatial Data Provider (SDP) is optionally

included and the model is executed. If OME is running as a plugin, the parent tool is responsible

for linking in an optional SDP interface, configuring the data exchange between itself and OME,

and telling OME to execute at the necessary intervals. The divergence in behavior is possible due

to the modularity inherent in OME's design.

24

Modularity and Interoperability

Figure 3. OME architecture and module boundaries for the dynamic libraries and
executables that are presently part of the OME distribution. Solid arrows refer to
required dependencies, while dotted arrows refer to optional dependencies. The
box <compiled model> refers to a dynamic library generated from a given
author's model.

OME attempts to address the issue of little or no interoperability between existing SD

modeling tools by emphasizing a modular design approach throughout its architecture. The

design of OME is constructed following an object oriented programming (OOP) approach. The

OOP approach is a paradigm whose defining characteristics appear to fit well with the

conceptual design of a SD model. The core conceptual structure in OOP is the object, which is a

25

discrete entity with distinct attributes and behaviors (Wegner 1990). Each object has a defined

interface through which other objects can interact with, the idea being that details of an object's

implementation should not need to be known or understood by other interacting objects (Wegner

1990). This separation between the interface and the implementation encourages modularity, and

allow for the concepts of encapsulation (protecting internal data by forcing interaction through a

known interface with the knowledge that the implementation fulfills a particular relationship)

(Wegner 1990) and inheritance (creating a new object by extending the attributes and behaviors

of another extant object) (Wegner 1990); both of these concepts were used extensively when

implementing OME's model representation, runtime logic, and support code. The conceptual

interpretation of SD models lends itself to object-oriented design since the model is made up of

discrete components (Compartments, Flows, Variables, Influences, etc.) each of which contain

attributes and behaviors unique to their roles within the diagram. Modular design has also

influenced the overall development process in a few particular ways. Designing different

components with clearly delineated boundaries has allowed for progress to be made in

incremental steps; pieces of the engine can be initially implemented with moderately sufficient

solutions, and replaced later with more elegant solutions without requiring an extensive rewrite

of the codebase at large. This implement-and-replace process was beneficial during the

development of the compiled model structure and the higher-level runtime management. The

other way modularity has been used has been in the design of the runtime itself; the library

containing all core runtime components (OMERuntime) has no user-facing front end. Instead,

the library has its manager class exposed, which handles all the details of loading and running an

OME-compatible model, resulting in a runtime that is completely decoupled from any specific

front end. Such a modular design allows for the engine to run independently, or as an extension

to another modeling tool. Model execution is driven by a central event loop, which allows

outside objects to be registered to receive specific broadcast events, and to submit events of their

own. This configuration allows for outside programs to hook in to the model runtime and receive

feedback at regular intervals, or when specific events are dispatched. When OME is configured

to run as a plugin, there is an interface exposed that is designed to regulate what information can

move into and out of the model at regular intervals as defined by the parent program. The

26

coarsest level of modularity involves the division of OME into different libraries and

executables, as shown in Figure 3. This high level modularity also allows for some of the

modules to be optionally included or replaced at runtime, either through the use of configuration

files, or dynamic library linking.

The ability to extend Envision's functionality, as well as its spatial coverage management

capabilities, makes it an ideal platform to demonstrate OME's plugin configuration when coupled

with a parent program. In the case of Envision, the parent program is both controlling the SD

model execution, and acts as OME's spatial data provider. A SD model's integration into an

Envision project opens up the possibility of a SD simulation interacting with other model

simulations that are running on the same spatial coverage at the same time. This allows for

different models to represent different sets of processes which can then exchange information

with one another. OME's runtime is adapted for use by being linked into another dynamic library

known as OMEAdapter. Using Envision's EnvExtension base class, OMEAdapter provides the

necessary functions and setup code for OME to be treated as an autonomous process; an

autonomous process is a process that carries out its assigned task outside the bounds of the

central processes that make up the simulated human-decision making portion of the overall

simulation in Envision (Bolte 2014). An autonomous process entry in an Envision project (.envx)

file is then used to link in OME along with a .omec file to provide OME-specific instructions.

To provide a spatial representation method that can potentially apply to all four of the

usage cases outlined in the Introduction, OME implements an interface for querying about

information regarding a coverage's spatial details. Requests through the interface are fulfilled by

a backend implementation that varies based on the conditions under which OME is executed. For

development purposes, two interface backends have been created; the first implementation is

designed to read standalone CSV files, and is implemented as a plugin which is referenced by a

model's control file. The second implementation uses Envision as the interface backend, and is

used when OME is run as a plugin to Envision. The spatial interface is clearly delineated so that

future implementations can be developed and applied with little trouble; templates for dynamic

library hooks have also been provided so that plugin authors will be aware of which function

signatures will be required for the library linking to work. Further details regarding the

27

implementation of a spatial data interface is covered in the SDP Implementation section.

An important focus of this project is its open-source approach to development and

distribution. Open-Source Software (OSS) is a management approach that encourages communal

improvement of a software product by requiring the release of the source code alongside the

product, and licensing the source code in a way that allows open modification (Open Source

Initiative 1998). An OSS approach has a number of advantages that will encourage uptake and

maintenance of the OME environment. OSS distribution meshes well with scientific research

since publishing source code allows for transparency and critical scrutiny, both of which are

crucial to the scientific process (Bangerth and Heister 2013). Since OME's target audiences are

scientific researchers and modelers, it would make sense to follow a communication paradigm

that closely parallels one that these audiences have confidence in. The transparency and scrutiny

that an open-source project is subject to can increase the chances that potential errors or

vulnerabilities will be identified due to the likelihood that the source code is being audited by a

large group of individuals. Such openness towards auditing is an advantage over closed-source

code that can further increase confidence in results generated by OME (Gwebu and Wang 2011).

Similarly, the ability for anyone to contribute to the code can allow for specialists to apply their

unique knowledge to specific portions of OME's codebase to increase accuracy, performance,

and resource management as they see fit. Not all potential changes will be beneficial to

everyone; one advantage of open-source distributions is that they are often suitable for forking,

or copying a source code project at a given point of development to continue with a different set

of goals and objectives than the those guiding the originating project (Ruparelia 2010). The

ability to specialize on such a low level is often unavailable in closed-source tools, but is

oftentimes encouraged by open-source communities (such as github) (Gwebu and Wang 2011;

Ruparelia 2010). Open-source development is frequently accompanied by cross-platform

development (Borshchev and Filippov 2004). While OME has been initially developed under

Windows, platform agnostic code and libraries have been used wherever possible and where it

doesn't impact the user interface; this has made it straightforward to expand development to Mac

OS X and Linux environments. By having the tool exist across multiple platforms, the pool of

potential users is expanded, increasing the chances of uptake and acceptance of the model

28

development community as a whole (Ierusalimschy, de Figueiredo, and Celes 2007). Having the

source code published in its entirety opens this project up to a longer active lifespan by allowing

maintenance responsibilities to freely change hands, and by allowing it to be incorporated into

other projects where it can be of some use.

Simply publishing a project in an open source format is not enough to gain acceptance by

a community that is actively engaged and interested in providing their own contributions

(Bangerth and Heister 2013). The most obvious initial step is to host the project in a source code

repository that is both easily accessible and allows for project forking or branching; most popular

version control systems allow for (and in some cases, actively encourage) project branching

(Ruparelia 2010). Branching allows for a contributor to focus their resources in a direction that

does not impact other users; if any changes or modifications are deemed valuable, they can be

merged back into the main branch (Ruparelia 2010). Branching differs from forking in that

branching is an alternate line in the same repository as its originating branch (Ruparelia 2010),

while forking results in a completely new repository and development project (Robles and

González-Barahona 2012). Another practice that will encourage uptake and acceptance is solid

documentation throughout the entire project; most people are more inclined to engage in an

open-source project if they can easily understand how everything works together (Bangerth and

Heister 2013). Documentation on several levels is important: the source code level (individual

functions, objects, and single lines of code), the API level (what behaviors other tools can access

and how), and higher usage considerations (model and runtime configuration details). All of the

aforementioned levels of documentation are being authored alongside the source code

development for OME. Tools such as Doxygen are being used to streamline the process of

generating source code documentation from inline source code comment blocks, reducing the

overall effort required to produce meaningful developer documentation. Good adherence to

modular design allows for adjustments to one portion of the source code without interfering with

another, and is a widespread technique used for managing complexity in most large

programming projects (Bangerth and Heister 2013). Such design also allows for a contributor to

swap in their chosen solution to a specific subsection of the entire project, such as alternate

implementations of memory management schemes or common search algorithms; this has been

29

demonstrated through the development of OME's custom management schemes and the various

iterations of expression language support schemes. Finally, by actively engaging with the SD

modeling community, it is believed that interest can be stirred by both showing off the existing

features and demonstrating a responsiveness to their needs and requirements. This process has

already begun with the interaction with some model authors.

Platform Targets and 3rd Party Libraries

C++ was chosen for this project over other higher level languages commonly used in

scientific programming (notably Python, Java and C#) for several reasons. Personal experience

has shown that C++ scales well from small to large projects, and across various degrees of

abstraction (from the bit level through high level constructs). This wide range of the language's

application space allows for a project to grow in complexity and abstraction incrementally over

time, which combines nicely with OME's milestone-based development approach. C++ is well

established across a number of hardware and software platforms, with a consistent set of

implementation standards shared across multiple compilers (ISO/IEC 2011). The C++ compilers

being used in the OME development process are well calibrated for their target environments and

are capable of applying a number of performance and/or space optimizations during the

compilation process without the intervention of a programmer. No additional runtime layer is

needed for C++ programs, reducing the performance overhead and giving more control over to

the programmer. While the lack of a runtime layer means that a programmer is required to

handle the burden of implementing their own memory management scheme when programming

in pure C or C++, it has the advantage of allowing the programmer to know at all times how

memory is being handled, and to avoid large memory overheads in memory intensive processes

(such as running a complex SD model) (Hertz and Berger 2005). Finally, there is simply a

massive number of mature, well documented, and well supported support libraries that exist for

C++ due to its age and standing within the software development community. Experience with

C++ has shown that it is a language that is very sensitive to the discipline of an author's

programming practices, and most of the pitfalls associated with C++ can be avoided by strictly

30

adhering to good ones. It is through the use of good programming practices that we hope will

make OME's source code flexible, approachable, and readable.

 While the C++ Standard Template Library (STL) was utilized for various data structures

and containers, several third party libraries were employed for various subtasks. The were a

number of criteria that were considered when making the decision to include third-party libraries.

The first criterion was whether or not the library had a cross-platform implementation; the

intention is to avoid any unnecessary hurdles in expanding OME to other platforms. The second

criterion is whether or not the library is simple and focused on a singular task. The less a library

attempts to take on, the easier it is to understand and troubleshoot. The third criterion is whether

or not the library comes as a source code distribution. This is important for debugging since it

allows for the tracing of library logic, and if necessary, allows for customizations to be made.

The final criterion is whether or not the license for the library is compatible with the distribution

plan for OME. This is out of respect for the authors of these libraries and their wishes in how

they are used. With these four criteria in mind, three third-party libraries are included in the

distribution. The first, Lua (http://www.lua.org), has been previously discussed; it is distributed

as source code, has a straightforward application programming interface (API), and an OME-

compatible license. The second library is TinyXML-2

(http://www.grinninglizard.com/tinyxml2/), a simple, lightweight library for parsing and writing

XML-compliant files (Thomason 2014). TinyXML-2 eschews some of the more advanced XML

features, such as document type definitions (DTDs) and extensible stylesheet language (XSL)

support, for the sake of simplicity (Thomason 2014). TinyXML-2 is distributed as source code

under the zlib license (Thomason 2014), which is compatible with OME's distribution. The final

third-party library is Shiny (https://code.google.com/p/shinyprofiler/), a compact C++ and Lua

profiler (Abedi 2007). Shiny relies on preprocessor macros to poll specific points within a target

program's source code; while this means that the target source code must be modified and

recompiled every time a new portion of code needs to be profiled, it also means that all profiling

code can be disabled by setting the SHINY_PROFILER macro to FALSE during compilation

(Abedi 2007). The assembled polling data is collected in simple human-readable text files(Abedi

2007), which can then be read by a developer, or parsed with an external tool (the OME

https://code.google.com/p/shinyprofiler
http://www.grinninglizard.com/tinyxml2
http:http://www.lua.org

31

distribution comes with a series of Python scripts used to generate performance graphs from

Shiny's output). Shiny is distributed as source code and project makefiles under the MIT license,

which is compatible with the needs of the OME project.

Writing OME in C++ means that the project needs to be compiled for each platform that

it is run on, but this is not a large hurdle. As previously mentioned, nearly all of the non-user

interface code is written in a platform-agnostic fashion, relying on the STL and the C++11

standard. There are few places where platform-specific code is required, specifically with

runtime loading of dynamically linked libraries, and a handful of places where a function needs

to communicate directly with the operating system (such as evaluating file paths). In these cases,

the proper code for each environment is selected either through the use of preprocessor macros,

or the inclusion of alternate source code files within project files and/or makefiles. Code

concerned with user interface organization is the exception; it was decided during the design

process that it would be best to use a platform's native user interface (UI) framework to

encourage the specific look-and-feel associated with that environment, at the cost of some

increase in development time. Practically this means that under Windows user interface portions

are written using the WinForms frameworks with a special variant of C++ known as C++/CLI,

while under Mac OS X user interface code was written in Objective-C++ and utilizing the Cocoa

framework. Due to time constraints and no single outstanding UI framework option, no GUI was

constructed for Linux systems. However, if time permitted Linux UI toolkits would be compared

and contrasted, and one would be selected based on which one best fit the design decisions made

in OME; likely candidates would be GTK+, QT, wxWidgets, and Tk. To maximize code

reusability, all UI specific code is separated as much as possible from any data handling

structures provided by other OME libraries; all native UI implementations are expected to access

the same model data structures and saved data visualization details regardless of their origins.

Also, it is worth noting that OME development has almost exclusively target 64-bit processor

architectures, as they are both abundant and better suited for larger data problems than 32-bit

processor architectures. There is theoretically nothing standing in the way of compiling OME for

any architecture that a compiler supports, but time and resource constraints have limited the

exploration of building and running OME on alternate architectures.

32

SDP Implementation

The Utility of a Common Spatial Interface

A significant motivation for this project was the desire for a standardized method for

implementing and accessing explicit spatial data from outside of a SD model's composition. The

utility of such an implementation has arisen from real world applications; despite being

inherently spatially unaware, ecological researchers and modelers have implemented their own

solutions for utilizing spatial data in SD models (Ford 1999); a few examples of spatially explicit

SD models using one solution, SME, are provided in the Literature Review section. When a

model author comes up with their own solution to a spatial data representation problem, the

burden of implementation is on them, which increases the amount of time and resources needed

to successfully implement the model (Voinov et al. 2004). Such implementations are often

redefining well known and commonly used relationships, and could benefit from standardization

across various models (Voinov et al. 2004). Unfortunately, custom solutions to spatial

relationships are often incompatible between models, making it very difficult to reuse the effort

put in to a potentially standardized problem (this has been particularly noted in the reasoning

behind building the SME environment for STELLA) (Voinov et al. 2004). Developing a

standardized method of spatial representation would address some of the problems previously

outlined. If a model is simulating a process common to a number of spatial environments, then a

standardized spatial interface would allow the model to be applied to a different region by simply

changing the spatial coverage input. This could also work the other way; multiple models

working on the same coverage could influence each other by speaking through the same common

spatial interface, allowing for more intricate interactions to be captured. By having a

standardized spatial interface, modelers would only require knowledge of an opaque interface for

requesting information about the coverage; details about the coverage implementation would be

irrelevant to the model author. Without the need to focus on spatial implementation

considerations, more time and resources can be spent towards factors that directly assist in

answering the model's research question.

33

With the aforementioned issues in mind, a viable common interface should be able to

satisfy the following requirements:

1.	 The model should not be required to have knowledge of the specifics of the spatial

coverage, but should have the option to query such specifics if desired.

2.	 The model should be able to inquire about the values of attributes for any given spatial

coverage record.

3.	 The model should have the option to modify or add attributes to the spatial coverage.

By satisfying these three requirements, a common interface would be both flexible and simple

enough to implement in SD models while making it a straightforward to couple with arbitrary

spatial coverages.

The Spatial Data Provider: OME's Common Spatial Interface

The solution to a common interface in OME is the Spatial Data Provider (SDP). The SDP

is an interface for SD model logic to query for information on common spatial relationships. The

implementation of the SDP can vary, but is expected to be responsible for loading, interpreting,

and handling queries about a spatial coverage representation. Additionally, the implementation

side of the SDP is intended to be defined either as a self-contained, standalone module or an

interface to another tool in which OME is embedded. While the model can query for specific

spatial coverage attributes (such as the method of coverage representation), it is not strictly

necessary; instead, each “unit”, be it a point, grid cell, polygon, or some other coverage-

designated discrete unit, can be accessed by its index and can return data about itself, such as its

area or the indices of its neighboring units. Spatial records and their attributes are represented as

they are in the standard dBASE (.dbf) files: the entire spatial record collection is presented as a

relational table, where each discrete unit is a “record” or “row”, and each attribute is a “column”

(Environmental Systems Research Institute 1998). By standardizing record access and coverage

queries through the SDP interface, requirement 1 is satisfied, with various “getter” and “setter”

functions satisfying requirements 2 and 3, respectively. By creating a standardized interface for

34

querying spatial data, model authors can focus on what makes their model a novel approach,

rather than the (sometimes complicated) logistics of defining explicit spatial relationships as a

part of the SD model diagram.

OME provides a C++ application programming interface (API) which defines the

functionality that a SDP implementation must define, as well as a series of model expression

functions that can be used to access the SDP interface during model runs. A full description of

how to report implemented SDP functionality, the SDP API functions, and the SDP model

expression functions can be found in Appendix B; what follows is a much more general

overview of how to utilize a SDP from a model running within OME.

<spatial_provider>
<coverage_mapping>

<submodel>*
<var>*

<inst_map>*

Figure 4. Control file tags pertaining to SDP configurations. Bold tags are
required, while italicized tags are optional. Tags followed by an asterisk (*) may
occur more than once within their positions.

The coupling between a Spatial Data Provider and a SD model begins within an OME

control file. A control file contains two xml nodes relevant to mapping explicit spatial data

(Figure 4). The first node of interest, <spatial_provider>, provides the path to the compiled

SDP implementation and any attributes and/or sub-nodes which are necessary to properly

initialize it for use with the provided model. This node may be omitted if OME is running as a

plugin and the parent program handles all of the SDP details. The second relevant node,

<coverage_mapping>, describes the mapping between model components and SDP records and

attributes, and how values are shared between the model and the spatial coverage. Single-value

model components can be directly mapped to coverage attributes in a one-to-one

correspondence, but a model component containing multiple values for a single spatial unit must

have any significant sub values directly mapped to a coverage attribute using the <inst_map>

node (see Appendix C for tag details). There are four designated relationships between coverage

35

attributes and model components that can be mixed and matched: initialize a coverage attribute

from a model component, initialize a model component from a coverage attribute, update a

coverage attribute from a model component when its value changes, and update a model

component from a coverage attribute when its value changes. Submodels can be specified to take

their initial number of instances from the total number of records in the spatial coverage; this

means that one or more submodels can directly map their unique instances to each

polygon/cell/point in the spatial coverage, using the instance number to reference a

corresponding record. While this is a common practice, it is not strictly necessary; since spatial

records are referenced by index, any record could be referenced anywhere in the model. The

<coverage_mapping> node may be omitted if there is no direct mapping between model

components in the SD model and the spatial coverage; spatial queries can still be made, there

will just be no implicit value sharing between model components and spatial coverage attributes.

For a more detailed description of the <spatial_provider> and <coverage_mapping> nodes in

the OME control file, see Appendix C.

For more than the most basic data exchanges between mapped model components and

explicit spatial attributes, explicit methods for querying spatial relationships must be defined.

OME provides several functions which are defined for use within model component expressions.

The set of functions can be categorized into the following behavior-based groups: 1) querying

details about the whole coverage, 2) querying about details for a specific attribute across all

spatial records, 3) getting and/or setting values specific attributes in a specific spatial record, and

4) querying about spatial relations between spatial records. The first group contains functions

that request details like the number of records, the type of coverage, and the spatial extents of the

coverage. The second group contains functions that query the attribute index for a column title,

and the minimum and maximum values for a given attribute across all records. The third group is

essentially getters and setters for individual attributes in a given record. The fourth group is

presently primarily concerned with neighbor relationships, focusing on querying or summarizing

information about the records that are directly adjacent to a specific record in the spatial

coverage. For a complete breakdown of SDP-related functions and the usage groups to which

they belong, see Appendix B. These functions can be included in any model update expression

36

like any other expression function. For example, a submodel whose instances are intended to

map one-to-one to a coverage could collect the total area taken by the neighbors of the associated

spatial record to one of the instance's variable components by using the expression:

SDPGetNextToArea(index(1))

For more examples of accessing the SDP from model expressions, see details about the Tampa

Bay Seagrass Model in the Simile Model Compatibility section.

Existing Example SDP implementations

As previously mentioned, when an OME model with explicit spatial requests is

evaluated, a SDP implementation must be provided for the interface; this is accomplished either

by specifying an implementation in the model control file (in a stand-alone run), or having a

parent tool providing the implementation when OME is loaded as a plugin (in the case of an

embedded run). There are two implementations of the SDP which have been used throughout

OME's development process: CSV Spatial Data Provider and the Envision OME Adapter. CSV

Spatial Data Provider is a stand-alone SDP implementation written as a means to test features as

the project advanced in its development. This provider takes a CSV file and interprets it

depending on settings in the model control file. Grid and polygon representations are supported,

and Lua scripts can be used to describe neighbor relationships. The SDP itself is provided by an

external dynamically-linked library that is referenced by the provided OME control (.omec) file.

In contrast to the standalone CSV-based SDP, the Envision OME Adapter is a plugin module for

Envision that embeds OME as part of the runtime Environment. Envision provides access to the

coverage in a project's active context using the SDP interface. OME is also capable of using the

SDP interface to update specified values in Envision as needed. The SDP in this case is bundled

within the OMEAdapter plugin and is passed directly to the OMERuntime, ignoring any

<spatial_provider> tags provided by the .omec file. Both of these SDP implementations are

provided by dynamically-linked libraries which utilize the previously-mentioned SDP API.

37

Simile Model Compatibility

The reference models provided for this project were developed using Simile, which is

discussed in the Literature Review. Since part of the OME development process has involved

modifying and running existing models, it is a worthwhile exercise to compare the performance

of the reference models when executed under Simile and OME separately. What follows is a

brief overview of the reference models, a short discussion on some of the technical challenges

that arose during the development process, and some simple performance comparisons between

each of the reference models running under Simile and OME.

Reference Models Overview

The initial focus for this portion of the project was to get two different SD models

running in OME, and then have them run under Envision using the OMEAdapter plugin and an

Envision-native spatial coverage. Both SD models contained some explicit spatial aspect, and

had runtime submodels which were static (submodel instances were not multiplied or removed at

any point during simulation runs). Both models were also intended to run with an Euler's method

integration solver, but would run with a RK4 solver as well. The two models that were selected

for this project were HYGEIA and a draft version of John Rogers' Tampa Bay Seagrass Model.

HYGEIA is a written by Roel Boumans for predicting the rate in the rise in reported

adverse health effects in the greater Austin area due to regional changes fueled by Global

Climate Change induced heat stress (Boumans et al. 2014). This model is considered complete

and has been published (Boumans et al. 2014). The model is the smaller of the two, but still

contains a moderate number of model components. The spatial representation is solely used for

output, and consists of 696 polygons defined in a CSV file representing the greater Austin area.

Each polygon corresponds to an instance of a specific sub model container within the model.

 The Tampa Bay Seagrass Model is an unpublished draft model produced by Dr. John

Rogers as part of his work for the Gulf Ecology Division of the USEPA, and is used as part of

the OME development process with permission. The model is intended to simulate the growth

38

and nutrient flow of seagrass in the Tampa Bay. The model's draft status is beneficial for OME's

development since it allowed for testing of behaviors under developmental conditions prior to

extensive model design optimizations. The model is also quite large, with just over 3,000 model

components. The spatial representation coverage for this model consisted of nearly 50,000

hexagonal cells in an irregular configuration representing the area occupied by the northern third

of Tampa Bay; each cell is defined by its central point as listed in an accompanying CSV.

Similar to HYGEIA, each cell in the hex coverage corresponds with an instance of a specific

submodel component. Unlike HYGEIA, however, the explicit spatial relationships are part of the

simulation, with neighbor cells contributing to the dynamics of one another.

The overall Simile-to-OME workflow (as diagrammed in in Figure 2 in the Design

Approach) is designed to allow for the remapping of a custom explicit spatial data representation

in a Simile model to be mapped to the SDP interface calls; this remapping occurs during the

conversion to OME's model filetype. To prepare an existing model to work with the SDP, a few

steps need to be taken. First, the spatial components of the existing SD model must be identified

and given instructions on how their structure will change to work with the SDP; these

instructions should contain the new model expression utilizing one of more of the

aforementioned SDP expression functions to query for spatial data. This is accomplished in

Simile models by adding custom conversion instructions to the Comments field of affected

model components (see Appendix A). As a Simile model is processed by the OME conversion

tool (SMLConverter), custom conversion directives are scraped from the comments field in

Simile model components and incorporated into the resulting model output.

Each model and their associated coverage files needed specific modifications before

being suitable for running as a part of OME. For HYGEIA, the CSV file inputs were left as is; no

interpretation of neighbor relationships between polygons was performed, as such relationships

were not used as part of the model. A copy of the coverage was converted to a polygon .shp file

for use with Envision by reconstructing the polygons using the values in the source CSV. A few

model components were moved, and a submodel used for processing spatial data was removed

39

using some custom conversion syntax. No variable expressions were directly modified since

output to Envision would be handled by a coverage mapping (see the SDP Implementation

section).

The Tampa Bay Seagrass model required slightly more effort. To speed up independent

neighbor testing, a column was added to the CSV coverage listing the neighbors for a given

record; the equation used to find neighbors was functionally equivalent to the model selection

criteria used in the originating model to determine neighbors. CSV interpretation was otherwise

handled by the control document. A polygon-based .shp file was generated by constructing a

hexagon-shaped polygon for each center point found in the CSV (the dimensions of the hexagon

grid cell was determined by the distance between the center points of two hexagons and some

simple trigonometry). Model augmentation was handled by converter control statements, which

removed a relation/association model used to determine neighbors, and rewrote an expression to

request neighbor information from the Spatial Data Provider (SDP) instead of the

aforementioned removed submodel.

Design Challenges

Each model introduced unique challenges to OME that resulted in changes to the

underlying runtime architecture. The first major hurdle introduced was memory fragmentation;

as the update equations are solved and temporary values are allocated and freed from the

computer's memory manager, available memory is often divided into smaller and smaller blocks

and intermingled with allocated regions. Over time, this produces a noticeable spike in memory

consumption and a drastic increase in runtime. This problem was resolved by allocating all

temporary values from pools of memory put aside for constant reuse; at the end of every

expression, the content of the pools is marked as free so that all the pool's memory is available in

the next expression. This approach stabilized memory use and performance for arbitrarily long

model runs. Another early roadblock was the massive amount of memory each instance of a

given submodel would consume; this was due to each instance of a submodel making a complete

copy of all internal components and their attributes. This was wasteful, as all the model

40

dynamics were concerned about were the present values contained within each instance; all other

model component attributes were more or less consistent across submodel instances. Initially,

each submodel instance was responsible for an instance value for each component contained

within the submodel. Values were further decoupled by having all instanced values within the

model stored in a single, massive data structure, while relegating submodel instance objects to

tracking instance condition flags (flags would indicate if a model instance is active, newly

created, or dead). Besides greatly reducing the memory footprint of each submodel instance,

storing all model component values in a single monolithic structure had other advantages,

namely value coherence (closely related values are stored near each other in memory, which is

beneficial for optimizing for CPU caching architectures) and simplifying record keeping and

recall.

The Tampa Bay Seagrass Model revealed an issue with the initial method for generating

the update statements for each iteration of the model. The naive approach involved using the

network of influences to generate an ordering of how each model component would be

processed. Every time a submodel boundary was crossed, a for-loop was generated in the update

expressions to update each instance (a submodel cannot necessarily be processed all at once if

there are components outside of the submodel that both rely on some submodel components and

are a dependency for other submodel components). This approach worked fine for small models,

but for the Tampa Bay Seagrass Model, there were 19 for-loops generated for a the submodel

with nearly 50,000 instances where a single loop would suffice. This situation created a large

enough performance bottleneck to be considered unacceptable, so smarter pre-processing was

necessary. Initially, a class was written to explicitly deal with building chunks of statements that

could be run together and minimized the generation of for loops. While this process worked, it

was slow, complicated, and difficult to modify when new edge cases were encountered. The

present solution is much simpler; all component expressions are sorted based on the influence

hierarchy as before, but, based on the assumption that the expression list is mostly sorted, a

simple comparison sort algorithm is used to adjust the final position based on a few simple

heuristics. This approach is faster, simpler, easier to maintain, and produces desirable results.

With this final approach there are only two loops with nearly 50,000 instances, which results in

41

acceptable performance. The HYGEIA model introduced a different issue; that of efficient list

operations. The original approach for manipulating lists was both wasteful and slow. A series of

container types using a single common interface were devised; some were true list containers,

while others were mappings into the value storage space, utilizing the previously mentioned

value coherence to minimize the value mapping overhead. A number of implementations were

iterated through until the present approach was arrived at. While the present approach is still a bit

slower than Simile's equivalent operations, it is a bit more flexible and still runs in a period of

time that has been deemed acceptable.

Runtime metrics and comparisons of values

To provide insight into the differences of running the two reference models with their

native environment (Simile) and the experimental environment (OME), a series of tests were

devised. The first set of tests were temporal: comparing simulation run time between OME

running under several configurations and contrasting with the equivalent configurations under

Simile. For the OME runs, compiled models were used, as Simile runs models compiled as C++

by default (Forrester 1968). Durations for each tool were recorded differently: for OME, the

RawEngine executable was automated with a batch script and run against a set of control files

(one for each test); RawEngine reports the duration of the simulation in seconds after each run.

For Simile, a stopwatch was used; timing started after parameters were loaded and the model was

compiled and initialized (indicated by a green status dot in Simile's execution window), and

stopped when Simile had run through the duration set for the testing period. The HYGEIA model

was run from time 0 through time 365 with a step interval of 1, while the Tampa Bay Seagrass

Model was run from time 0 through time 300 with a step interval of 0.3. All tests were carried

out in sequence on the same computer running Windows 7. The outcomes of the time trials are

shown in Table 2.

42

Model, Integration method Simile time (s) OME time (s) % Difference
Hygea, Euler 84 1039 1237%
Hygea, RK4 208 4158 1999%
TBSM, Euler 408 167 41%
TBSM, RK4 1265 620 49%

Table 2. Time trials comparing HYGEIA and Tampa Bay Seagrass Model
(TBSM) runs using both Euler and Fourth-order Runge-Kutta (RK4) solvers
between Simile and OME. HYGEIA runs much faster under Simile, while the
Tampa Bay Seagrass Model runs almost twice as fast under OME.

As can be seen, HYGEIA runs faster under Simile, while the Tampa Bay Seagrass Model

runs faster under OME. Generally, it is expected that models will run faster under Simile as it is

a much more mature and polished tool. List operations, of which there are many in HYGEIA,

run very slow in OME. The Tampa Bay Seagrass Model results however, are a bit surprising.

Without full knowledge of the implementation details of Simile's simulation engine, the reasons

for the better performance under OME are inconclusive. However, the increased performance in

OME is likely due to how the explicit spatial relationships are handled when compared to Simile,

either due to the preprocessing of neighbor relationships or the reliance on the SDP for handling

details regarding explicit spatial relationships.

The second test involved identifying a set of sentinel values from each model and

comparing their values at the end of equivalent Simile and OME test runs. The list of sentinel

variable values for HYGEIA and the Tampa Bay Seagrass Model generated under Simile and

OME are provided in Table 3 and Table 4, respectively. The runs were under the same

conditions as the time trial tests, except that a variant of the HYGEIA model with all stochastic

elements removed was used in order to ensure that any deviance in value was not due to

intentional variability within the model (the Tampa Bay Seagrass Model does not have any

stochastic model elements in the provided incarnation). Sentinel values were chosen based on

their ability to capture overall activity within the greater model and showed active dynamics

throughout the simulation time frame when integrated with Euler's method and/or RK4.

43

HYGEA Simile OME OME Deviance
Variable Euler RK4 Euler RK4 Euler RK4

Pollution Level[1]
cumulative morbidity[1]
cumulative morbidity[2]
cumulative morbidity[3]
cumulative morbidity[4]
cumulative morbidity[5]
Total Mortalities[1]
Total Mortalities[2]
Total Mortalities[3]
Total Mortalities[4]
Total Mortalities[5]

0.35
0

0.00051
0
0
0
0

2.1539
0
0
0

0.175
0.2123
0.4575

38.2141
3.5157
394.56

912.4123
2074.5118

50321.4642
2132.0221
244601.96

0.35
0

0.00051
0
0
0
0

2.1539
0
0
0

0.175
0.2123
0.4575

38.2141
3.5157
394.56

912.4123
2074.5118

50321.4642
2132.0221
244601.96

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

Table 3. Comparison of values generated by Simile and OME for sentinel values
in the HYGEIA model. Bracketed ([]) values following the variable name refer
the specific submodel instance from which the variable value was extracted from.

Tampa Bay Seagrass Simile OME OME Deviance
Model Variable Euler RK4 Euler RK4 Euler RK4

sumPC
SL[1]
PC[369]
PC[370]
PC[371]
Light1[1]
Light1[2]
Light1[3]
Light1[4]
Light1[5]

166460797
8.106

72674.7433
72678.217
48650.873

67673.3
74015.89

101517.649
113212.808

12637.764

N/A
8.0933

N/A
N/A
N/A

67132.09
74548.173
100868.82
113171.34

126216.841

15338848
8.106

70944.7133
70321.0587
46129.9185

67673.3
74015.89

101517.649
113212.808

12637.764

N/A
8.0936

N/A
N/A
N/A

67132.09
74548.173

100691.559
113348.674
126216.841

90.79%
0.00%
2.38%
3.24%
5.18%
0.00%
0.00%
0.00%
0.00%
0.00%

N/A
0.00%

N/A
N/A
N/A

0.00%
0.00%
0.18%
0.16%
0.00%

Table 4. Comparison of values generated by Simile and OME for sentinel values
in the Tampa Bay Seagrass model. Bracketed ([]) values following the variable
name refer the specific submodel instance from which the variable value was
extracted from. fields marked with "N/A" indicate invalid values introduced into
the simulation. The appearance of these values during the application of the RK4
solver reflects the early draft nature of this version of the Tampa Bay Seagrass
Model, and should not be construed as a reflection of the validity of the model
when it is completed and published.

For the HYGEIA tests, there were no significant deviations between the selected sentinel

values regardless of the solver used. The Tampa Bay Seagrass Model, however had some

noticeable deviations between the sentinel variable results generated under Simile and OME.

The variable with the largest deviation, sumPC, is the result of summing nearly 50,000 values at

each time step; even minor deviations in rounding errors between the two environments can

44

result in a significant difference. It is worth noting that when an experimental solver

implementation with a degree of rounding error correction is used, the deviation is reduced, but

not eliminated (the experimental solver is available in the OME distribution, as the HiRes solver,

but was not used for these tests as it has not been thoroughly vetted). Also, a number of sentinel

values report invalid values when integrating with the RK4 method. This behavior is consistent

between Simile and OME, and therefore the report deviance is zero percent. However, if the

invalid values had not been introduced during the simulation run it is likely that a deviance

between OME and Simile generated values would be reported for the afflicted model variables.

While OME needs to emulate some of Simile's behaviors in order to ensure that the

models produce similar results, they are not identical; consequently there will be some deviations

between the values that are produced for OME and Simile (for a breakdown of the differences

between Simile and OME with regards to model components and expression functions, see

Appendix D). Nevertheless, the results of the value comparisons demonstrates that often times

the values produced by the two environments are identical, and in cases where the values deviate

from one another, they are still quite close. With a reasonable demonstration of performance

established, we can now demonstrate benefits that are open to a SD model when run within the

Envision modeling framework.

45

Case Study: Extending HYGEIA using Envision

OME has the capacity to run as a part of Envision, interacting with it through the

Autonomous Process plugin interface (see Figure 5). This exchange of data provides the

opportunity to extend the functionality of a System Dynamics (SD) model by allowing one or

more of Envision's various mechanisms to modify the value of SD model components,

effectively acting as one or more external inputs. To demonstrate this capability and its potential

to extend the utility of an existing SD model, a simple example has been contrived.

Figure 5. Broad overview of how OME and OMEAdapter relate to Envision.
OMEAdapter encapsulates the OME simulation engine, and conforms to
Envision's Autonomous Process interface; from Envision's perspective, OME
operates as just another Autonomous Process Module.

46

Premise

Each explicit spatial unit in HYGEIA contains a proportional representation of 15

different landcover types which are defined as part of the parameter input at the beginning of the

simulation run. The landcover proportions remain static throughout the run and have an influence

on a number of dynamics, such as the reported tree cover ratio, the cumulative air pollution

levels for different compounds, and the regional windspeed. While it is perfectly reasonable to

treat land covers as static values as part of the collection of assumptions that define the model,

land covers realistically do change gradually. In a developed area (such as the greater Austin area

that HYGEIA simulates), it is not unusual for the density of developed regions to increase over

time. HYGEIA has four classes of developed landcover: open land, low-density developed,

medium-density developed, and high-density developed. Thus, if simulations under HYGEIA

were to be modified to simulate the succession from low-density to medium-density

development and from medium-density to high-density development using a few simple rules,

there should be a noticeable shift in dynamic and/or period-specific model outputs.

To simulate succession events during a simulation run, a pair of Envision's policies are

used for defining conditions and behaviors, while an actor is defined which will determine the

frequency at which the policies are applied. The general idea is that if the proportion of low-

density or medium-density developed landcover is above some threshold, it may have its

proportion transferred to the next highest tier of developed land cover (medium-density

developed or high-density developed, respectively). This would be analogous to a spontaneous

spurt of development in a region that is sufficiently developed to sustain the activity.

47

Implementation Details

Figure 6. Interaction between OME, OMEAdapter and the SDP interface, and
Envision. Pink, yellow, and green boxes refer to processes performed by OME,
OMEAdapter and Envision, respectively. Blue capsules represent external files,
with nested capsules representing internal file linkages. Thick arrows show
process invocations across process domain boundaries, while thin arrows
represent the process invocations within domains. Dotted Arrows represent the
reading and writing of external files. Dashed arrows represent requests from OME
to either read or write spatial data from Envision which are mediated through
OMEAdapter's implementation of the SDP interface (see the SDP Implementation
section). Note that the SDP spatial requests (the dashed lines) are optional, and not
all models will utilize each point of communication.

For the sake of reproducibility, a strictly deterministic variant of the HYGEIA model

(HYGEIA-Determ) was used with all the stochastic components set to static values. The

48

communication between HYGEIA and Envision is best described within the context of Figure 6,

which summarizes the interactions between OME, the OMEAdapter and SDP interface, and

Envision during a simulation run. The process of running HYGEIA under Envision actually

starts within an Envision project (.envx) file, where the HYGEIA spatial coverage is added as a

layer, and the OMEAdapter is specified as an autonomous process. As part of the specification of

OMEAdapter in the Envision project file, an initialization string is provided which is the path to

the OME control file (.omec) for OMEAdapter to load. For this case study, the OME control file

specifies a precompiled version of the HYGEIA-Determ model.

The Envision project file is loaded when Envision starts up. During this process, the

OMEAdapter initialization function is invoked; the initialization function configures the OME

simulation engine for running as a plugin, provides it with the OME control file path that was

defined in the Envision project file, and registers a Spatial Data Provider (SDP) to be used. This

SDP lives within the OMEAdapter and interprets OME spatial queries in the context of the

current Envision MapLayer. For more information on SDP usage, see the section titled SDP

Implementation, and/or Appendix B. The OME Engine initialization involves loading the data

specified in the OME control file, initializing several containers, and priming the OME Event

handler. The HYGEIA-Determ Envision project file defines three policies and an associated

actor which are loaded by Envision during the Initialization process as well; these policies and

the associated actor are intended to simulate development succession using fields that are defined

in the HYGEIA-Determ model and are shared between OME and Envision using the SDP

interface. The policies are defined to be trigger the low-to-medium developed density land cover

transition if a polygon has low-density developed land being greater than 10% of its landcover.

Similarly, the transition from medium-to-high density developed land is triggered by a medium-

developed density being greater than 20% of a polygon's landcover. The actor which evaluates

these policies is set to apply them to any given valid region on an average of once every 3 years.

When the user begins a simulation run in Envision, the OMEAdapter's run initialization

function is called. This function handles two tasks; the first is to determine how many time steps

to run the OME simulation for every simulation step in Envision. Envision typically runs in

yearly timesteps, while a HYGEIA iteration represents a single day (this is specified by the

49

“time_units” attribute in the .omec's <ome_model> tag; see Appendix C for more details). In

this case, the OMEAdapter determines that each time Envision asks it to run for one of its

iterations, it will tell the OME engine to run for 365 iterations before returning. The second task

is to tell OME to prepare for a simulation run. This triggers a sequence of events in OME. First

the external parameter files are applied; in the case of HYGEIA-Determ, the original HYGEIA

Simile parameter file (.spf) is used to load specific parameter values, and all .csv files pointed to

by the .spf or internally by model components are loaded and applied at this time as well. The

next step has OME request values from the SDP to use to initialize model components as

specified in the <coverage_mapping> tag in the control file (see SDP Implementation and/or

Appendix C); HYGEIA does not require any initializations from the spatial coverage, so this step

is skipped. Next, OME runs it's internal initialization step, configuring model components for the

beginning of a simulation. After this, OME tells the SDP in the OMEAdapter that it wants to

initialize any specified fields from values derived during its initialization process; in the case of

HYGEIA-Determ this includes all the fields which represent each polygons proportional land

coverage, as well as a few fields used for visualizations (e.g. Tree Cover Ratio).

Once all components have initialized for a run, Envision will begin its simulation loop.

For HYGEIA-Determ, Envision is set to run for 5 years; this will translate to 1825 days in the

OME-side of the run. Envision will apply the actors and policies determined by previously

mentioned probabilities, and will then invoke OMEAdapter's Run function. This function tells

OME to run for 365 iterations before returning control back to Envision. Once OME runs for the

specified period, values are synchronized through the SDP interface based on the specifications

provided in the OME control file; for HYGEIA-Determ, any landcover proportions that are

changed in Envision through the application of policies are imported through the SDP and used

to update the appropriate value in the OME representation of the model. After OME completes

its synchronization step, control is returned to Envision, which continues to carry out it

simulation loop.

When Envision finishes running its simulation, its post-run and cleanup processes call

OMEAdapter's End run function, which in turn calls OME's cleanup function. This releases some

of the temporary memory used by OME and forces a final synchronization update. Once this is

50

done, Envision can generate several outputs which can then be displayed and/or written out to

.csv, .shp, or image files. For HYGEIA-Determ, several map coverages are displayed in the post-

run results view in Envision, which are then screen captured and used for the discussion in the

following results section.

Results

A simulation was run using the HYGEIA-Determ model as described in the previous

section. Several results were generated and are displayed here. Figures 7 to 9 shows the

differences in low, medium, and high density land covers before and after the five year

simulation run. Figure 10 shows regions where the tree cover ratio has changed over the five

year period.

Figure 7. Change in low-density developed regions from beginning to end of run.
The map on the left represents the amount of low-density development at the
beginning of the run, while the map on the right represents the amount of low-
density development after five years of simulation. Darker shades represent a
greater proportion of the polygon covered by low-density development. Note the
lighter patches in the center of the map on the right which are absent from the map
on the left; these polygons had their low-density development reallocated into the
medium-density development coverage. Maps generated using Envision.

51

Figure 8. Change in medium-density developed regions from beginning to end of
run. The map on the left represents the amount of medium-density development at
the beginning of the run, while the map on the right represents the amount of
medium-density development after five years of simulation. Darker shades
represent a greater proportion of the polygon covered by medium-density
development. Polygons which are lighter on the right had their medium-density
developed regions reallocated to high density-developed regions, whereas
polygons that are darker on the right had their low-density developed regions
added to their medium-density developed regions. Maps generated using Envision.

52

Figure 9. Change in high-density developed regions from beginning to end of run.
The map on the left represents the amount of high-density development at the
beginning of the run, while the map on the right represents the amount of high-
density development after five years of simulation. Darker shades represent a
greater proportion of the polygon covered by high-density development. Polygons
on the right that appear darker than they appear on the left have had their medium-
density developed land cover proportions added to their high-density amounts.
Maps generated using Envision.

53

Figure 10. Changes in tree cover ratio. Each colored polygon has had its tree
cover ratio value changed at some point during the five year simulation run in
Envision. The darker the shade the greater the new ratio is. Each tree cover ratio
change is due to a shift in the polygon's land cover proportions. If this map were
the result of running without the changes to the landcover, no polygons would be
shaded. Maps generated using Envision.

Discussion

For the purposes of this study, the values of the actual change are unimportant; this is a

purely contrived example. The fact that Envision is capable of changing a static component of

the original model in a reasonable manner is significant, as it shows that not only can Envision

54

work with data originating from OME, but that it can also modify data within OME as well. The

only fields allowed to take values directly from Envision were the 15 landcover type

percentages. By just changing these values, other dependent processes are affected, as

represented by the changes in the Tree Cover Ratio for the modified regions. The changes may

seem small, but that is an artifact of how this model runs in Envision: even though the SD model

ran for 1,825 iterations, Envision only ran for five. Thus, the opportunity for the Actor entity to

pick regions to be modified only occurred five times. Longer runs would likely produce more

variation in coverage, but would not necessarily contribute to the point here, which is that model

communication between OME and Envision can be treated as a two-way street.

The mechanics of the bidirectional communication between OME and Envision are

sound, as has been demonstrated by this short case study. Future expansion or incorporation into

a genuine Envision stakeholder project could provide much more practical utility for relatively

little effort on behalf of the modeling group. By introducing OME into the Envision plugin

ecosystem, the strengths of system dynamics can be used and/or extended without limiting the

inherent flexibility that makes Envision ideal for stakeholder projects.

55

Conclusion

The Open Modeling Environment (OME) was created as an attempt to address

shortcomings that are common with System Dynamics (SD) modeling tools. The two novel

aspects, a focus on modularity and a common interface for spatially explicit data, were the

components that most directly addressed known shortcomings. To reiterate, the two research

question presented at the beginning of this thesis were:

1.	 Can an open-sourced, modular SD modeling tool be constructed with performance and

features comparable to existing commercial counterparts?

2.	 Does adding an explicit spatial data interface, adopting a modular design, and using a

middle-of-the-road model file format simplify the implementation of spatially-explicit

SD models?

Regarding the first question, the answer is arguably yes, albeit with some limitations.

OME was constructed mostly from scratch at the beginning of this project and is presently

capable of converting and running some Simile models (including the two reference models used

throughout this study), running as a standalone application or as a plugin to Envision, producing

values that are closely in line with the source models running under Simile, and incorporating

spatial data from standalone CSVs or from Envision's runtime environment. However, time and

resource constraints limited the extent of implementation details: there are some significant

Simile features and model components that remain unimplemented in OME (see Appendix D),

the only plugin interface exists for Envision (and is somewhat underdeveloped), derived values

do not completely match the equivalent values produced in the originating Simile environment,

and the spatial data provider (SDP) implementations are limited to a few fringe or simple

implementations.

Regarding the second question, the answer is definitely yes based on what has been

demonstrated in the Simile Compatibility Details and Case Study sections. An explicit spatial

representation allowed for submodels representing spatial geometries to be be completely

56

excised from both reference models, simplifying them by reducing the total number of model

components. In the case of the Tampa Bay Seagrass Model, moving the explicit spatial

information into an external SDP simplified the update process of the model, reducing the time it

took for the model to run. Additionally, incorporating the reference models into the Envision

environment was a simple process involving enabling the plugin in an Envision modeling

project, identifying the control file to read, and adding a few lines to the control file itself to

describe how the two environments would exchange information. The effort applied to

modifying these few files is vastly outweighed by the potential increase in utility provided by

interoperability with the Envision modeling framework.

While a significant amount of functionality already exists within OME, its current state is

intended to just be the first iteration in the overall development lifecycle; as such, there is

significant room for expansion and improvement. The first and perhaps most obvious

improvement would be to increase overall compatibility with Simile's functionality. Along the

same lines, it would be desirable to get models from other SD modeling tools (such as Vensim

and STELLA) successfully converted and running under the OME framework. Presently, a full

implementation of OME exists on Windows, a nearly full implementation exists on Mac OS X,

and no implementation has been built for Linux; building full implementations of OME on the

latter two platforms could increase the available audience who would see utility in OME, as not

all research projects are carried out with just Windows-based tools. Overall performance could

also use some work toward improvement; further optimizations could be made throughout the

source code, particularly with list handling and other update expression operations. One potential

set of optimizations would involve implementing a parallel execution scheme; many portions of

the code are structured in such a way to make it straightforward to restructure them for parallel

processing, and running code in parallel has the potential to increase performance on multi-core

machines. Finally, implementing a full graphical interface complete with SD iconography for

OME would be beneficial for the overall project, as it would round it out as a full SD modeling

environment. SD models have had a standardized graphical representation since their original

inception (Forrester 1968), and having a graphical frontend would allow for a canvas that could

57

be used to increase overall communication and potentially allow for authoring models without

reliance on outside tools.

SD models are beneficial to the study of ecological models, but the tools and concepts

that make up the SD modeling environment are still relatively young and are undergoing gradual

refinement. OME's introduction to this environment will provide another step in the evolution

and maturation of SD models and their respective tools.

58

Bibliography

Abedi, Aidin. 2007. “Shiny FAQ.” Source Code Documentation.

https://code.google.com/p/shinyprofiler/.

Adler, Joseph. 2009. R in a Nutshell: A Desktop Quick Reference. Edited by Mike Loukides. 1st
ed. Sebastopol,CA: O’Reilly Media, Inc.

Aycrigg, Jocelyn, Steven J. Harper, and James D. Westervelt. 2004. “Simulating Land Use
Alternatives and Their Impacts on a Desert Tortoise Population in the Mojave Desert,
California.” In Landscape Simulation Modeling: A Spatially Explicit, Dynamic Approach,
edited by Robert Costanza and Alexey Voinov, 1st ed., 249–74. New York, New York,
USA: Springer.

Bangerth, Wolfgang, and Timo Heister. 2013. “What Makes Computational Open Source
Software Libraries Successful?” Computational Science & Discovery 6 (1): 015010.
doi:10.1088/1749-4699/6/1/015010.

Behm, Pamela, Roelof M.J. Boumans, and Frederick T. Short. 2004. “Spatial Modeling of
Eelgrass Distribution on Great Bay, New Hampshire.” In Landscape Simulation Modeling:
A Spatially Explicit, Dynamic Approach, edited by Robert Costanza and Alexy Voinov, 1st
ed., 173–96. New York, New York, USA: Springer.

Berg, Ingo. 2005. “Muparser - A Fast Math Parser Library.”
http://articles.beltoforion.de/article.php?a=muparserx.

Bishop, Judith, and N. Horspool. 2006. “Cross-Platform Development: Software That Lasts.”
Computer 39 (10): 26–35. doi:10.1109/MC.2006.337.

Bolte, John. 2014. Envision Developer’s Manual. Oregon State University.
http://envision.bioe.orst.edu.

Borshchev, Andrei, and Alexei Filippov. 2004. “From System Dynamics to Agent Based
Modeling.” Simulation 66: 25–29.
http://www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.borshchevfilippo
v04.pdf.

http://www.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabmcompared.borshchevfilippo
http:http://envision.bioe.orst.edu
http://articles.beltoforion.de/article.php?a=muparserx
https://code.google.com/p/shinyprofiler

  

59

Boumans, Roelof J.M., Donald L. Phillips, Winona Victery, and Thomas D. Fontaine. 2014.
“Developing a Model for Effects of Climate Change on Human Health and Health–
environment Interactions: Heat Stress in Austin, Texas.” Urban Climate 8: 78–99.
doi:10.1016/j.uclim.2014.03.001.

Bray, Tim, Jean Paoli, Eve Maler, and Sun Microsystems. 2008. “Extensible Markup Language
(XML) 1.0 (Fifth Edition).” W3C Recommendation 0: 1–37.
http://www.w3.org/TR/2008/REC-xml-20081126.

Chichakly, Karim. 2013. XMILE : An XML Interchange Language for System Dynamics.

Clewley, Robert. 2012. “Hybrid Models and Biological Model Reduction with PyDSTool.”
PLoS Computational Biology 8 (8): e1002628. doi:10.1371/journal.pcbi.1002628.

Costanza, Robert, and Alexey Voinov. 2004. “Landscape Simulation Modeling: A Spatially
Explicit, Dynamic Approach.” Modeling Dynamic Systems.

Egner, Joanne. 2014. “Version 9.1.3 Update Key Features.” Making Connections: Iss Systems
Blog. Accessed August 12. http://blog.iseesystems.com/stella-ithink/version-9-1-3-now-
available/.

Environmental Systems Research Institute. 1998. “ESRI Shapefile Technical Description.”
doi:10.1016/0167-9473(93)90138-J.

———. 2006. “About Getting Started with Writing Geoprocessing Scripts.” ArcGIS Desktop
Help 9.2. http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?
TopicName=About_getting_started_with_writing_geoprocessing_scripts.

Ford, Andrew. 1999. Modeling The Environment: An Introduction to System Dynamics
Modeling of Environmental Systems. Washington, D.C.: Island Press.

Forrester, Jay W. 1961. Industrial Dynamics. Harvard Business Review.
http://hdl.handle.net/2027/mdp.39015000457070.

———. 1968. “Industrial Dynamics—A Response to Ansoff and Slevin.” Management Science
14 (9): 601–18. doi:10.1287/mnsc.14.9.601.

———. 1969. Urban Dynamics. 1st ed. Cambridge: The M.I.T. Press.

Gwebu, Kholekile L., and Jing Wang. 2011. “Adoption of Open Source Software: The Role of
Social Identification.” Decision Support Systems 51 (1). Elsevier B.V.: 220–29.
doi:10.1016/j.dss.2010.12.010.

http://hdl.handle.net/2027/mdp.39015000457070
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm
http://blog.iseesystems.com/stella-ithink/version-9-1-3-now
http://www.w3.org/TR/2008/REC-xml-20081126

60

Haefner, James W. 1996. Modeling Biological Systems: Principles and Applications. New York:
Chapman & Hall.

Hertz, Matthew, and Emery D. Berger. 2005. “Quantifying the Performance of Garbage
Collection vs. Explicit Memory Management.” Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications - OOPSLA ’05. New York, New York, USA: ACM Press, 313.
doi:10.1145/1094811.1094836.

Hillyer, Charles, John Bolte, Frits van Evert, and Arjan Lamaker. 2003. “The ModCom Modular
Simulation System.” European Journal of Agronomy 18 (3-4): 333–43. doi:10.1016/S1161-
0301(02)00111-9.

Hirschi, A. 2007. “Traveling Light, the Lua Way,” no. October.

Ierusalimschy, Roberto, Luiz Henrique de Figueiredo, and Waldemar Celes. 2007. “The
Evolution of Lua.” Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages - HOPL III. New York, New York, USA: ACM Press, 2–1 – 2–
26. doi:10.1145/1238844.1238846.

Isee Systems. “STELLA: Systems Thinking for Education and Research.”
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx.

ISO/IEC. 2011. “ISO/IEC 14882:2011: Information Technology – Programming Languages –C+
+.” Geneva: International Organization for Standardization.

Jacques, Mathieu. 2004. “An Extensible Math Expression Parser with Plug-Ins - CodeProject.”
Code Project. http://www.codeproject.com/Articles/7335/An-extensible-math-expression-
parser-with-plug-ins.

Lane, David C. 2000. “Diagramming Conventions in System Dynamics” 51 (2): 241–45.

Lane, David C. 2008. “The Emergence and Use of Diagramming in System Dynamics: A
Critical Account.” Systems Research and Behavioral Science 25 (1): 3–23.
doi:10.1002/sres.826.

Lünsdorf, Ontje, and Stefan Scherfke. 2014. “Welcome to SimPy.”
http://simpy.readthedocs.org/en/latest/index.html.

Mazzoleni, S, F Giannino, M Colandrea, M Nicolazzo, F Di Agraria, and J Massheder. 2003.
“Integration of System Dynamics Models and Geographic Information Systems.” In
Modelling and Simulation 2003, 600:304–6.

http://simpy.readthedocs.org/en/latest/index.html
http://www.codeproject.com/Articles/7335/An-extensible-math-expression
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx

  

  

  

61

Mazzoleni, S, F Giannino, M Mulligan, D Heathfield, M Colandrea, and M Nicolazzo. “A New
Raster-Based Spatial Modelling System : 5D Environment.”

OASIS. “OASIS XML Interchange Language (XMILE) for System Dynamics TC.”
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xmile.

Oliphant, Travis E. 2007. “Python for Scientific Computing.” Computing in Science &
Engineering 9 (3): 10–20. doi:10.1109/MCSE.2007.58.

Open Source Initiative. 1998. “The Open Source Definition | Open Source Initiative.”
http://opensource.org/definition.

Oregon State University. “Envision: About Envision.” http://envision.bioe.orst.edu/About.aspx.

———. 2014b. “Envision: Home Page.” Accessed October 11. http://envision.bioe.orst.edu.

Perez, Fernando, Brian E. Granger, and John D. Hunter. 2011. “Python: An Ecosystem for
Scientific Computing.” Computing in Science & Engineering 13 (2): 13–21.
doi:10.1109/MCSE.2010.119.

Petzoldt, Thomas. Dynamic Simulation Models – Is R Powerful Enough ?

Petzoldt, Thomas, and Karsten Rinke. 2007. “Simecol : An Object-Oriented Framework for
Ecological Modeling in R.” Journal of Statistical Software 22 (9): 1–31.
http://www.jstatsoft.org/v22/i09.

R Foundation. 2014a. “What Is R?” Accessed January 12. http://www.r-project.org/about.html.

———. 2014b. “R FAQ: Frequently Asked Questions on R.” Accessed February 12.
http://cran.r-project.org/doc/FAQ/R-FAQ.html.

Robles, Gregorio, and JesúsM. González-Barahona. 2012. “A Comprehensive Study of Software
Forks: Dates, Reasons and Outcomes.” In Open Source Systems: Long-Term Sustainability
SE - 1, edited by Imed Hammouda, Björn Lundell, Tommi Mikkonen, and Walt Scacchi,
378:1–14. IFIP Advances in Information and Communication Technology. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-33442-9_1.

Ruparelia, Nayan B. 2010. “The History of Version Control.” ACM SIGSOFT Software
Engineering Notes 35 (1): 5. doi:10.1145/1668862.1668876.

Siau, Keng, and Qing Cao. 2001. “Unified Modeling Language: A Complexity Analysis.”
Journal of Database Management 12 (1): 26–34.

http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://www.r-project.org/about.html
http://www.jstatsoft.org/v22/i09
http:http://envision.bioe.orst.edu
http://envision.bioe.orst.edu/About.aspx
http://opensource.org/definition
http:doi:10.1109/MCSE.2007.58
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xmile

     

     

  

62

Simulistics Ltd. “Simulistics: History.” doi:sim.

———. “Simulistics: Simile at a Glance.” http://www.simulistics.com/overview.htm.

———. 2014c. “Running Models : Working with Visualisation Tools : Polygon Diagram.”
Accessed August 12. http://www.simulistics.com/help/run/tools/polygons.htm.

———. “Simulistics: Land-Use Change.”
http://www.simulistics.com/examples/landuse/landuse.htm.

———. “Simulistics: Model Diagram Elements : Role Arrow : Two Role Arrows from Different
Submodels.” http://www.simulistics.com/help/concepts/object/role/dual.htm.

———. “Simulistics: Working with Submodels : Introduction to Association.”
http://www.simulistics.com/help/submodels/association/introduction.htm.

Sklar, Fred H, and Robert Costanza. 1991. “The Development of Dynamic Spatial Models for
Landscape Ecology: A Review and Prognosis.” In Qualitative Methods in Landscape
Ecology: The Analysis and Interpretation of Landscape Heterogeneity, edited by MG
Turner and RH Gardner, 239–88. New York: Springer-Verlag.

Soetaert, Karline, Thomas Petzoldt, and Woodrow Setzer. 2010. “Solving Differential Equations
in R: Package deSolve.” Journal of Statistical Software 33 (9): 1–25.
http://www.jstatsoft.org/v33/i09/.

The Python Foundation. 2014a. “General Python FAQ.” Accessed February 12.
https://docs.python.org/2/faq/general.html.

———. 2014b. “PyPI - the Python Package Index.” Accessed February 12.
https://pypi.python.org/pypi.

Thomason, Lee. 2014. “TinyXML-2 Documentation.”
http://www.grinninglizard.com/tinyxml2docs/index.html.

Ventana Systems Inc. “Vensim: Vensim History.” http://vensim.com/vensim-history/.

———. 2014b. “Vensim Brochure.” Accessed December 11. http://vensim.com/vensim-
brochure/.

———. 2014c. “Vensim® Applications.” Accessed August 12. http://vensim.com/vensim-
applications/.

http://vensim.com/vensim
http://vensim.com/vensim
http://vensim.com/vensim-history
http://www.grinninglizard.com/tinyxml2docs/index.html
https://pypi.python.org/pypi
https://docs.python.org/2/faq/general.html
http://www.jstatsoft.org/v33/i09
http://www.simulistics.com/help/submodels/association/introduction.htm
http://www.simulistics.com/help/concepts/object/role/dual.htm
http://www.simulistics.com/examples/landuse/landuse.htm
http://www.simulistics.com/help/run/tools/polygons.htm
http://www.simulistics.com/overview.htm

63

Voinov, Alexey, Carl Fitz, Roelof Boumans, and Robert Costanza. 2004. “Modular Ecosystem
Modeling.” In Landscape Simulation Modeling: A Spatially Explicit, Dynamic Approach,
edited by Robert Costanza and Alexey Voinov, 1st ed., 19:43–76. New York: Springer.
doi:10.1016/S1364-8152(03)00154-3.

Von Krogh, Georg, and Eric von Hippel. 2006. “The Promise of Research on Open Source
Software.” Management Science 52 (7): 975–83. doi:10.1287/mnsc.1060.0560.

Wegner, Peter. 1990. “Concepts and Paradigms of Object-Oriented Programming.” ACM
SIGPLAN OOPS Messenger 1 (1): 7–87. doi:10.1145/382192.383004.

Wolstenholme, E . F . 1982. “System Dynamics in Perspective.” The Journal of the Operational

Research Society 33 (6): 547–56.

64

APPENDICES

65

Appendix A: Model Conversion Directives

In order to augment System Dynamics models during the conversion process, a simple

command syntax has been implemented. The modification directives are intended to be

implemented on a per-model component basis, with the actual commands being placed in a field

that has no effect on the model execution within its native environment. The upshot to this

approach is that an originating model can be modified to make the appropriate changes during

the OME conversion process while still being able to function normally within its native

environment.

Presently, conversion tools only exist for models originating from Simile. Each Simile

model component has a “comments” field which is reserved for free text to be used for any

further annotation required by the author. It is within this field that conversion directives can be

defined and are extracted from during a model's conversion from Simile's native format to

OME's intermediate XML format.

To denote the beginning of OME conversion directives within a free text field, the string

(excluding the quotes) “--!!OME:” is used; the ending of the block (again excluding the quotes)

is denoted by the string “!!--”. Each directive within the directive block is prefixed with an at

('@') symbol. Some directives require an argument; in this case, a colon (':') separates the

command from the argument.

Here are a pair of examples of OME conversion directive blocks:

Omit an object:

--!!OME:@omit!!--

Mark an object as init only and change the update expression to read time (the

object will now record the start time):

--!!OME:@initOnly@expression:time()!!--

66

The following are the directives that will be processed by the conversion tool (text enclosed by <

and > denote arguments):

omit - Removes the object from the model and any associated influences. If omit is applied to a

submodel, all objects contained within a submodel are removed as well. Removing a

submodel can be useful particularly when a spatial coverage is replacing association-

linked models used for determining neighbors.

move:<mdlName> - Move the model component to the model referred to by the name supplied

by the <mdlName> argument. This will break any influences to/from the object.

Influences can be restored using the influenceTo: and influenceFrom: directives.

initOnly - Explicitly marks an object to only be evaluated once at the beginning of a simulation.

This can be useful for optimization reasons.

influenceTo:<objName> - Create a new influence from the current model component, to the

component identified by <objName>. Can be used to patch holes in the model created by

the omit command.

influenceFrom:<objName> - Create a new influence from the model component specified by

<objName> to the current component. Can be used to patch holes in the model created

by the omit command.

expression:<newExpr> - Override an object’s expression with the one supplied in the

<newExpr> argument. This is useful for patching holes from the omit expression and

adding Spatial Data Provider commands to the converted model.

expectsSpatial – Indicates that a submodel is expected to have its number of initial instances set

by a SDP at runtime.

67

Appendix B: SDP functions and flag mappings

The Spatial Data Provider (SDP) interface uses a series of flags to inform the parent

environment of a given SDP implementation's capabilities. Descriptions of the flags and their

associated functions are described below.

Flag Description Flag-Specific Required C++ Functions
NONE The default NULL value.
POINT_SUPPORT Supports a point grid-based

coverage.
HEX_SUPPORT Supports a hexagon grid-based

coverage.
GRID_SUPPORT Supports a square grid-based

coverage.
GetCellSize()

POLY_SUPPORT Supports a hexagon grid-based
coverage.

QUERY_SUPPORT Advanced Queries are
supported. Syntax of query is
specific to SDP implementation.

NextTo()
NextToArea()
Within()
WithinArea()
GetNextTo() - only if

NEIGHBOR_SUPPORT
and ITR_SUPPORT are set.

GetWithin() - only if ITR_SUPPORT is set.
NEIGHBOR_SUPPORT Basic neighbor queries are

supported.
GetNeighbors()
GetNeighborCount()
GetNeighborRecord()
GetNextTo() - only if QUERY_SUPPORT

and ITR_SUPPORT are set.
ITR_SUPPORT Forward iterators can be

requested.
GetIterator()
GetNextTo() - only if QUERY_SUPPORT

and NEIGHBOR_SUPPORT
are set.

GetWithin() - only if QUERY_SUPPORT is
set.

BI_ITR_SUPPORT Forward and reverse iterators
can be requested.

GetIterator()

READ_ACCESS Values can be read from the
SDP.

GetData() - all overloads.
GetDataMinMax()

WRITE_ACCESS Values can be written to the
SDP.

SetData() - all overloads.

RW_ACCESS Equivalent to READ_ACCESS |
WRITE_ACCESS

GetData() - all overloads.
GetDataMinMax()
SetData() - all overloads.

Table 5. SDP behavior flags and their relevant functions.

68

C++ API functions Descriptions

The following are brief summaries of the functions associated with the Spatial Data Provider

interface. For a more detailed description of these functions, see the OME source code, or the

auto-generated Doxygen documentation.

AddFieldCol(<label>, <...>) - Add a new column/record field with with <label> and initialized

according to the additional arguments in <...>, which vary depending on which

overloaded function is being used.

GetCapabilities() - Queries the SpatialDataProvider for its supported capabilities, which returns

any combination of the flags in the above table.

GetCellSize(<width>,<height>) - On return, sets <width> and <height> to a grid cell's

standard width and height, or returns false if SDP is not representing a gridded coverage.

GetColumnCount() - Returns the total number of fields per spatial record. Required for all

implementations.

GetData(<record index>,<attribute index>,<value>) - If both <record index> and <attribute

index> are valid, populates <value> on return. Otherwise, returns false.

GetDataMinMax(<attribute index>,<minValue>,<maxValue>) - If <attribute index> is a

valid index <minValue> and <maxValue> are populated by the minimum and maximum

values found in that attribute across all records, respectively. If <attribute index> is -1,

the minimum and maximum values across all attributes and records are retrieved. If

<attribute index> is invalid and not -1, false is returned.

69

GetExtents(<xMin>, <xMax>, <yMin>, <yMax>) - Populates <xMin>, <xMax>, <yMin>,

and <yMax> with the minimum and maximum extents of of the x and y axes. Required

for all implementations.

GetFieldCol(<label>) - Retrieve the index of the column who is named <label> or -1 if no

column with that name exists. Required for all implementations.

GetIterator(<kind>) - returns an iterator that moves either forward or backward through records

based on the type of iterator specified by <kind>.

GetNeighborCount(<record index>) - Returns the total number of neighbors for the record at

<record index>.

GetNeighborRecord(<record index>, <neighbor>) - Returns the record index of the nth

<neighbor> of the record at <record index>. This can be used in conjunction with

GetNeighborCount() to iterate through all neighboring records.

GetNeighbors(<record index>,<count>) - Returns a list of indices for the total number of

neighbors for the record at <record index>, with <count> containing the total number of

indices returned.

GetNextTo(<record index>,<count>) - retrieves an iterator to a record of all neighbors of the

record at <record index>, optionally populating <count> with the total number of

records found.

GetRowCount() - Returns the total number of spatial records. Required for all implementations.

70

GetWithin(<record index>,<query>,<distance>) - Retrieve an iterator to records within

<distance> from the record at <record index> which satisfy <query>, whose syntax is

SDP-dependent.

Load(<filename>,<optional expression parser>) – Attempts to load parser data from a file

pointed to by <filename>, with an optional expression parser being passed in as well.

Returns a flag indicating success or failure.

NextTo(<index>, <query>) - Returns true if the spatial component at <index> has any

neighbors that satisfy the <query> whose syntax is SDP-dependent. Otherwise, returns

false.

NextToArea(<index>,<query>) - Return the total area of all neighbors of the record at <index>

that satisfy <query>, whose syntax is SDP-dependent.

Save(<filename>,<flags>) - Attempts to save data to a file at <filename>, using any optional

<flags> that are interpreted by the specific SDP. Returns a flag indicating success or

failure in saving the file.

SetData(<record index>,<attribute index>,<value>) - Set the value of the attribute at

<attribute index> for the record at <record index> to <value>.

Within(<index>,<query>,<distance>) - Returns true if any records within <distance> from the

record at <index> satisfy <query>, whose syntax is SDP-dependent. Otherwise, returns

false.

WithinArea(<index>,<query>,<distance>) - Returns the total are of all records within

<distance> from the record at <index> that satisfy <query>, whose syntax is SDP-

dependent.

71

Model Component Expression SDP Functions

The following functions are for use within the expressions used to for updating model

component values. All expression functions that interact directly with the loaded SDP are

prefixed with “SDP”. A “spatial representation unit” refers to the base unit of representing a

section of space; typically this is a grid cell or a polygon.

Function Usage Group(s)
SDPGetBooleanData 3
SDPGetCapabilityFlags 1
SDPGetCellSize 1
SDPGetColumnCount 1
SDPGetExtents 1
SDPGetFieldCol 2
SDPGetDataMinMax 1,2
SDPGetIntData 3
SDPGetNumberData 3
SDPGetRowCount 1
SDPGetStringData 3
SDPListCapabilities 1
SDPNextTo 4
SDPNextToArea 4
SDPNextToIDs 4
SDPNextToValues 4
SDPSetData 3
SDPWithin 4
SDPWithinArea 4

Table 6. SDP model expression functions and their usage groups. The usage
groups are: 1) querying details about the whole coverage, 2) querying about
details for a specific attribute across all spatial records, 3) getting and/or setting
values specific attributes in a specific spatial record, and 4) querying about
spatial relations between spatial records.

SDPGetBooleanData(<row>,<column>) - Return boolean value for <column> in <row>, or

nil/NULL if it doesn't exist.

SDPGetCapabilityFlags() - Return the flag markers for capabilities of SDP. See Table 5 for a

list of possible flags.

72

SDPGetCellSize() - Return the extents (width, height) for a given cell in a gridded coverage.

SDPGetColumnCount() - Return the number of columns of attributes within the SDP.

SDPGetExtents() - Return the four values representing the extents of the spatial coverage: the

minimum x-value, the maximum x-value, the minimum y-value, and the maximum y-

value.

SDPGetFieldCol(<label>) - Return index of column with the header matching <label>, or -1 if

no column matches.

SDPGetDataMinMax(<index>) - Return the minimum and maximum values within the column

at <index>, or the minimum and maximum values for all numeric columns in the

coverage if <index> is -1.

SDPGetIntData(<row>,<column>) - Return the integer value for the attribute in <column> and

<row>, or nil/NULL if it doesn't exist.

SDPGetNumberData(x,y) - Return the floating-point value for the attribute in <column> and

<row>, or nil/NULL if it doesn't exist.

SDPGetRowCount() - Return the number of rows in spatial data provider.

SDPGetStringData(<row>,<column>,<maxChars>) - Return a string value representation for

the attribute in <column> and <row>, limiting the length of the returned string to

<maxChars>. If the record or value does not exist, nil/NULL is returned instead.

SDPListCapabilities() - Return A string listing all flagged capabilities.

73

SDPNextTo(<row>,<query>) - Return true if any neighbors next to the spatial representation

unit at <row> validate <query>.

SDPNextToArea(<row>) - Return the total area of all neighbors next to the spatial

representation unit at <row>.

SDPNextToIDs(<row>) - Return array of row ids for all neighbors of the spatial representation

unit at <row>.

SDPNextToValues(<row>,<label>) - Return array of values for the attribute column whose

header matches <label> for all neighbors next to the spatial representation unit at <row>.

SDPSetData(<row>,<column>,<value>) - Set value of the attribute in <column> for <row> to

<value>.

SDPWithin(<row>,<query>,<dist>) - Return true if any spatial representation units are within a

distance of <dist> from the spatial representation unit at <row> validate <query>.

SDPWithinArea(<row>,<query>,<dist>) - Return area of all spatial representation units are

within a distance of <dist> from the spatial representation unit at <row> validate

<query>.

74

Appendix C. OME File Format Specifications

OME makes use of two custom XML files: OME model file (.omem), which contains a model's

definition and parameter linkages, and the OME control file (.omec), which contains information

pertinent to running a model, linking to external data sources, and displaying results. What

follows is some general documentation of the two xml specifications. Please note that OME is

still under development, and that the file specification may have changed as of this writing. For a

more in-depth description of these XML specifications, see the omem.xsd and omec.xsd XML

schema files in the OME source code distribution.

OME Model files (.omem)

The OME model file contains the declaration of the overall model structure and any interlinkages

between components. The root element of the model file is <ome>, and the general tag structure

is outlined in Figure 11 below.

<ome>
<param_file>
<model>

<description>

<tables>

<table_data>*
<interp_table_data>*

<enumerations>
<enum>*

<val>*
<variables>

Figure 11. Tag hierarchy for a typical .omem file. Bold tags are required, while
italicized tags are optional. Tags followed by an asterisk (*) may occur more than
once within their positions. The ellipse (…) at the end of the hierarchy represents
the recursive nature of the <model> tag, as it may contain any number of
<model> tags within itself.

75

<variable>*
<description>

<vararray>*
<description>

<varts>*
<description>

<states>
<state>*

<description>
<flows>

<flow>*
<description>

<influences>
<influence>*

<description>
<labels>

<label>*
<description>

<iterators>
<iterator>*

<description>
<modelports>

<port>
<description>
<subsources>

<src>*
<subtargets>

<trg>*
<outsources>

<src>*
<outtargets>

<trg>*
<assocports>

<assoc_port>
<description>
<subsources>

<src>*
<subtargets>

<trgs>*
<outsources>

<src>*

Figure 11 (Continued).

76

<outtargets>
<trg>*

<assocs>
<assoc>*

<description>
<spawners>

<spawner>*
<description>

<submodels>
<model>*

…

Figure 11 (Continued).

<assoc> Link which defines the intersecting relationship between two submodels; analogous to

Simile's Role arrow. Attributes are listed in table 7.

Attribute Required Description
extents No The width and height in graphical units of the

element.
id Yes Universally unique identifier of model element.
in_object Yes Source object of the submodel association.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.
name No Human-readable label of object.
origin No Origin in OME drawing system.
out_object Yes Target object of the submodel association.
source No ID of link's source object.
target No ID of link's target object.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 7. Assoc tag attributes.

<assoc_port> Point at which a submodel association links to a submodel. Used for when a

submodel association links two submodels that are separated by several nested

submodels. Attributes are listed in table 8.

77

Attribute Required Description
extents No The width and height in graphical units of the

element.
id Yes Universally unique identifier of model element.
in_object Yes Source object of the submodel association.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name No Human-readable label of object.
out_object Yes Target object of the submodel association.
source No ID of link's source object.
target No ID of link's target object.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 8. Assoc_port tag attributes.

<assocports> Collection of <assoc_port> tags in a submodel. No attributes.

<assocs> Collection of <assoc> tags in a submodel. No attributes.

<description> Human readable annotation of model object. No attributes.

<enum> An enumerated collection type within the containing submodel. Attributes are listed in

table 9.

Attribute Required Description
name Yes The name of the enumerated class.

Table 9. Enum tag attributes.

<enumerations> Collection of <enum> tags in a submodel. No attributes.

78

<flow> Element representing a System Dynamics model Flow arrow. Attributes are listed in

table 10.

Attribute Required Description
ctrl_pt1 No Control point influencing shape of curve.
ctrl_pt2 No Control point influencing shape of curve.
id Yes Universally unique identifier of model element.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name No Human-readable label of object.
source No ID of link's source object.
target No ID of link's target object.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 10. Flow tag attributes.

<flows> Collection of <flow> tags in a submodel. No attributes.

<influence> Element representing a System Dynamics model influence arrow. Attributes are

listed in table 11.

79

Attribute Required Description
ctrl_pt1 No Control point influencing shape of curve.
ctrl_pt2 No Control point influencing shape of curve.
id Yes Universally unique identifier of model element.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name No Human-readable label of object.
role No Presently serves no purpose (deprecate?).
source No ID of link's source object.
target No ID of link's target object.
units No Units of measure associated with element.
use_curr_val No If true, retrieve the value from the source object

before it updates, rather than after.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 11. Influence tag attributes.

<influences> Collection of <influence> tags in a submodel. No attributes.

<interp_table_data> Instance of table data which defines ranges for interpolation; analogous to

Simile's graph construct. Attributes are listed in table 12.

Attribute Required Description
bound_mode Yes Flag denoting how to deal with values that lie

outside of the table's bounds (Document flags?).
column No The column from source CSV file to pull values

from.
data Yes Cached values to use to populate table in case

source file cannot be located.
dimensions Yes The dimensions of the table; either 1D or 2D.
filename No The name or path to the file used to populate the

table.
id Yes Unique identifier of table within parent submodel.
interp_mode Yes Flag denoting method of interpolation between

anchored values (Document flags?).
lower_bound Yes Lower bound of the range of values

encapsulated by table.
upper_bound Yes Upper bound of the range of values

encapsulated by table.

Table 12. Interp_table_data tag attributes.

80

<iterator> Stand in for Simile's Alarm component; presently only partially implemented.

Attributes are listed in table 13.

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
expr Yes Expression used to update element value.
extents No The width and height in graphical units of the

element.
external_init No If true, element expect an initial value from an

external source (such as a parameter file).
id Yes Universally unique identifier of model element.
init_only No If true, element is only evaluated during the

initialization processes.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

max_value No Maximum expected value of element.
min_value No Minimum expected value of element.
name Yes Human-readable label of object.
origin No Origin in OME drawing system.
table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 13. Iterator tag attributes.

<iterators> Collection of <iterator> tags in a submodel. No attributes.

<label> Simple label object to annotate visual representations of model. Attributes are listed in

table 14.

81

Attribute Required Description
extents No The width and height in graphical units of the

element.
id Yes Universally unique identifier of model element.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name No Human-readable label of object.
origin No Origin in OME drawing system.
text No Text to apply to label (Deprecate and move from

attribute to element?).
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 14. Label tag attributes.

<labels> Collection of <iterator> tags in a submodel. No attributes.

<model> Component that represents a discrete unit of encapsulation of model components.

Models can optionally represent multiple instances. Attributes are listed in table 15.

82

Attribute Required Description
expects_spatial No Hint to OME tools that a submodel expects to

have its initial number of instances set by a
Spatial Data Provider.

extents No The width and height in graphical units of the
element.

id Yes Universally unique identifier of model element.
init_instances No The submodel's initial number of instances.
inner_box No The bounding scale within which to draw OME

submodel components.
int_method No The submodel's preferred integration method.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name No Human-readable label of object.
origin No Origin in OME drawing system.
step_size Yes The submodel's preferred temporal step size.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 15. Model tag attributes.

<modelports> Collection of <port> tags in a submodel. No attributes.

<ome> Root element of the .omem file. No attributes.

<outsources> Collection of links that point into a <port> or <assoc_port> from outside of its

parent submodel. No attributes.

<outtargets> Collection of links that point away from a <port> or <assoc_port> from outside

of its parent submodel. No attributes.

<param_file> Identical to the <param_file> tag in the .omec file, and can be used to override

parameter mappings in the linked model file. Attributes are listed in table 16.

83

Attribute Required Description
filepath Yes Path to parameter file (either .spf or .csv)
target_model_path No Path through model heirarchy to target root

model for parameter file. Defaults to the root
model.

Table 16. Param_file tag attributes.

<port> Interface between model components that exist on either side of a submodel boundary.

Attributes are listed in table 17.

Attribute Required Description
evaluated No If true, the aggregate value of all model

components (and all their instance values) linked
to the Submodel port are recorded during an
update step.

extents No The width and height in graphical units of the
element.

id Yes Universally unique identifier of model element.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.
name No Human-readable label of object.
origin No Origin in OME drawing system.
source No ID of link's source object.
target No ID of link's target object.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.
Table 17. Port tag attributes.

<spawner> Model element used to spawn or kill submodel instances; analogous to Simile's

channel model components. Attributes are listed in table 18.

84

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
expr Yes Expression used to update element value.
extents No The width and height in graphical units of the

element.
id Yes Universally unique identifier of model element.
init_only No If true, only evaluated on initialization.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
is_conditional No If true, Spawner is evaluated to determine

whether a given submodel instance should be
evaluated at a given timestep.

is_loss No If true, Spawner subtracts instances rather than
adding them.

label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name Yes Human-readable label of object.
origin No Origin in OME drawing system.
per_instance No If true, Spawner is evaluated for each submodel

instance; otherwise it is only evaluated once per
update.

stochastic No If true, a degree of randomness is applied to the
Spawner's value accumulation process.

table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.
Table 18. Spawner tag attributes.

<spawners> Collection of <spawner> tags in a submodel. No attributes.

<src> Reference to source object pointing to the containing <port> or <assoc_port>. Attributes

are listed in table 19.

Attribute Required Description
name No ID of referenced object.

Table 19. Src tag attributes.

85

<state> Represents a State Variable/Compartment/Stock in a System Dynamics model;

analogous to Simile's Compartment. Attributes are listed in table 20.

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
expr Yes Expression used to update element value.
extents No The width and height in graphical units of the

element.
id Yes Universally unique identifier of model element.
init_condition No The starting value of the State Variable.This is

necessary if no influence is used to retrieve an
initialization value.

internal No Denotes element's visibility to external tools; if
true, element is hidden from outside tools.

label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

name Yes Human-readable label of object.
origin No Origin in OME drawing system.
table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 20. State tag attributes.

<states> Collection of <state> tags in a submodel. No attributes.

<submodels>Collection of <model> tags in a submodel. This results in a recursive tree of

submodels, each defined by a <model> tag. No attributes.

<subsources> Collection of links that point into a <port> or <assoc_port> from inside of its

parent submodel. No attributes.

<subtargets> Collection of links that point away from a <port> or <assoc_port> from inside of

its parent submodel. No attributes.

86

<table_data> Instance of table data to be linked with an Evaluable model element. Attributes are

listed in table 21.

Attribute Required Description
column No The column from source CSV file to pull values

from.
data Yes Cached values to use to populate table in case

source file cannot be located.
dimensions Yes The dimensions of the table; either 1D or 2D.
filename No The name or path to the file used to populate the

table.
id Yes Unique identifier of table within parent submodel.

Table 21. Table_data tag attributes.

<tables> Collection of <table_data> and <interp_table_data> tags in a submodel. No

attributes.

<trg> Reference to target object pointing away from the containing <port> or <assoc_port>.

Attributes are listed in table 22.

Attribute Required Description
name No ID of referenced object.

Table 22. Trg tag attributes.

<val> A value representation belonging to an enumerated (<enum>) type. Attributes are listed in

table 23.

Attribute Required Description
name Yes The name/value for an enumerated value.

Table 23. Val tag attributes.

<vararray> Special variable that defines an n-dimensional array of values across a single

instance. Attributes are listed in table 24.

87

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
dimensions No List of dimensions defining how to access the

VarArray's values.
expr Yes Expression used to update element value.
extents No The width and height in graphical units of the

element.
external_init No If true, element expect an initial value from an

external source (such as a parameter file).
id Yes Universally unique identifier of model element.
init_only No If true, element is only evaluated during the

initialization processes.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

max_value No Maximum expected value of element.
min_value No Minimum expected value of element.
name Yes Human-readable label of object.
origin No Origin in OME drawing system.
table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
value No List of whitespace-delimited values to populate

Vararray with. Can be empty.
version No Informational; the current revision number for the

element.

Table 24. Vararray tag attributes.

<variable> Represents an intermediate value which affects model dynamics. Attributes are listed

in table 25.

88

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
expr Yes Expression used to update element value.
extents No The width and height in graphical units of the

element.
external_init No If true, element expect an initial value from an

external source (such as a parameter file).
id Yes Universally unique identifier of model element.
init_only No If true, element is only evaluated during the

initialization processes.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

max_value No Maximum expected value of element.
min_value No Minimum expected value of element.
name Yes Human-readable label of object.
origin No Origin in OME drawing system.
table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 25. Variable tag attributes.

<variables> Collection of <variable>, <vararray>, and <varts> tags in a submodel. No

attributes.

<varts> Special variable that updates its value over time instead of using an equation. Attributes

are listed in table 26.

89

Attribute Required Description
as_int No If true, value is to be treated as an integer

instead of a floating point number.
ask_val No If true, element will request a parameter value

before constructing its own.
extents No The width and height in graphical units of the

element.
external_init No If true, element expect an initial value from an

external source (such as a parameter file).
fixed_val No Value to use with the "fixed" mode.
id Yes Universally unique identifier of model element.
init_only No If true, element is only evaluated during the

initialization processes.
internal No Denotes element's visibility to external tools; if

true, element is hidden from outside tools.
interval No The time series update interval.
label_origin No Origin of label in OME drawing system.
last_modified No Informational; date of element's last modification.

max_value No Maximum expected value of element.
min_value No Minimum expected value of element.
mode No Method by which to resolve values between

interval steps. Allowed values are “nearest”,
“interpolate”, “last”, and “fixed”.

name Yes Human-readable label of object.
origin No Origin in OME drawing system.
table No ID of associated EvalTable or EvalInterpTable.
units No Units of measure associated with element.
validated No If true, object has been validated (Deprecate?).
version No Informational; the current revision number for the

element.

Table 26. Varts tag attributes.

90

OME Control files (.omec)

The OME control file is responsible for details pertaining to setting up and executing a model

declared in a .omem file. The general tag structure is outlined in Figure 12 below.

<ome_ctrl>
<debug>

<dump_init_batch>
<dump_eval_batch>
<init_break>

<bp>*
<eval_break>

<bp>*
<spatial_provider>
<coverage_mapping>

<submodel>*
<var>*

<inst_map>*
<solver>
<param_file>*
<ome_model>
<results_views>

<tree_view>*
<fields>

<field>*
<multival_view>*

<fields>
<field>*

Figure 12. Tag hierarchy for a typical .omec file. Bold tags are required, while
italicized tags are optional. Tags followed by an asterisk (*) may occur more than
once within their positions.

Detailed Element descriptions

<bp> An entry for a single break point when running a model using interpreted expressions.

Attributes are listed in table 27.

91

Attribute Required Description
enabled Yes If true, break on the associated line; otherwise,

do nothing.
line Yes The line to break on.

Table 27. Bp tag attributes.

<coverage_mapping> Provides details on how to map the targeted model's components to a

spatial coverage's fields/columns. This entry can still be present when

<spatial_provider> when OME is operating as a plugin to another model simulation tool

since it is expected that the parent tool will take care of any coverage linkages. No

attributes.

<debug> This section contains information for dumping evaluation scripts and breakpoints to

activation throughout a run. Only applies to simulation runs in interpretive mode;

compiled model runs are not supported. No attributes.

<dump_eval_batch> Dump the update script generated during an interpretive model run. The

default path is “evalBatch.lua”. Attributes are listed in table 28.

Attribute Required Description
path No Path to batch dump save location.

Table 28. Dump_eval_batch tag attributes.

<dump_init_batch> Dump the initialization script generated during an interpretive model run.

The default path is “initBatch.lua”. Attributes are listed in table 29.

Attribute Required Description
path No Path to batch dump save location.

Table 29. Dump_init_batch tag attributes.

<eval_break> Breakpoints to apply to generated update script during interpretive model run.

Break points can either be specified in a separate file or directly in the element using the

92

<bp> tag. Attributes are listed in table 30.

Attribute Required Description
path No Path to text file containing whitespace-delimited

line numbers.

Table 30. Eval_break tag attributes.

<field> Individual entry for a represented results view field. Attributes are listed in table 31.

Attribute Required Description
color Yes RGB channel triplet defining the field's color;

each channel value falls in [0,1].
id Yes The ID of the model component to include.

Table 31. Field tag attributes.

<fields> A collection of <field> elements. No attributes.

<init_break> Breakpoints to apply to generated initialization script during interpretive model

run. Break points can either be specified in a separate file or directly in the element using the

<bp> tag. Attributes are listed in table 32.

Attribute Required Description
path No Path to text file containing whitespace-delimited

line numbers.

Table 32. Init_break tag attributes.

<inst_map> The mapping of a specific instance of the parent <var> value to a Spatial coverage

column. Attributes are listed in table 33.

Attribute Required Description
index Yes 1-based index of specific instance value to

assign to sdp_column.
sdp_name Yes The name of the field in SDP.

Table 33. Inst_map tag attributes.

93

<multival_view> View type which shows all values for a single component. No attributes.

<ome_ctrl> The root element. No attributes.

<ome_model> Provides path to .omem file to execute, as well as overrides for start time, stop

time, time step, and report interval. This tag also optionally provides a path to the

compiled version of the model, if it exists. Attributes are listed in table 34.

Attribute Required Description
compiled_name No Path to a compiled version of the model, minus

the file extension (.dll or .dynlib).
filepath Yes Path to the .omem model definition file.
interval No Override Model's step interval.
relative_step_size No Override Model's relative step size.
report_interval No Override Model's report interval.
start_time No Override Model's start time.
step_size No Override Model's step size.
stop_time No Override Model's stop time.
time_units No Temporal units to apply to model.

Table 34. Ome_model tag attributes.

<param_file> Identical to the <param_file> tag in the .omem file, and can be used to override

parameter mappings in the linked model file. Attributes are listed in table 35.

Attribute Required Description
filepath Yes Path to parameter file (either .spf or .csv)
target_model_path No Path through model heirarchy to target root

model for parameter file. Defaults to the root
model.

Table 35. Dump_eval_batch tag attributes.

<results_views> A collection of sub-elements which outline details for different output views.

This section is typically only used by environments that have advanced methods for

displaying results (such as OMESimRunner). Attributes are listed in table 36.

94

Attribute Required Description
selected_only No If true, only display selected fields.

Table 36. Results_views tag attributes.

<solver> Provides details on preferred solving method and the preferred solver variant.

Attributes are listed in table 37.

Attribute Required Description
method Yes Integration solving method; either “euler” or “rk4”.

type No The solver variant to use; either “default”, or
“hires”.

Table 37. Solver tag attributes.

<spatial_provider> Provides a path to an SDP's dynamic library and provide additional

initialization arguments to be passed on to the SDP module, if necessary. Attributes are

listed in table 38.

Attribute Required Description
library_path Yes Path to dynamic library storing the SDP.

Table 38. Spatial_provider tag attributes.

<submodel> Identifies any relationships that exist between the submodel and any SDP fields

within the <coverage_mapping> tag. Attributes are listed in table 39.

Attribute Required Description
id Yes, if name is

absent
The unique id of the sub-model.

instance_per_unit No If true, the model component only updates the
SDP field.

name Yes, if id is absent The human-readable name of the sub-model.

Table 39. Submodel tag attributes.

<tree_view> Details for an instance of a tree results view, which lays out the included fields in a

structure that reflects the model hierarchy. Attributes are listed in table 40.

95

Attribute Required Description
selected_only No If true, only display selected fields.
sort_dir No Sort direction; 0=ascending, 1=descending.
sort_mode No Sorting components and submodels;

0=components first, 1=models first, 2=mixed.

Table 40. Tree_view tag attributes.

<var> Mapping between SDP field and submodel component. Attributes are listed in table 41.

Attribute Required Description
bidirectional No If true, updates to one value in the var pair

updates the other.
mapto_id Yes, if mapto_name

is absent.
Unique id of sub-model component.

mapto_name Yes, if mapto_id is
absent.

Human-readable name of sub-model component

sdp_name Yes The name of the field in SDP.
update_only No If true, the model component only updates the

SDP field.

Table 41. Var tag attributes.

96

Appendix D. OME Compatibility With Simile

For OME to be of any initial use, the projected needed to target models that already

existed. Both reference models were written and executed in the Simile modeling framework

(see the Literature Review section for a brief description of Simile). Since all model update

expressions and model components beyond the basic universal System Dynamics pieces were

Simile-centric, it is pertinent to reimplement behaviors and structural pieces that the models rely

on to work. What follows is a description of how the Simile's model structure meshes with that

defined by OME, the extent of OME model expression function compatibility with that found in

Simile, and a few functions defined for OME's expression syntax which have no equivalent in

Simile.

Mapping Simile Model Components to the Equivalent in OME

Table 42 shows how Simile model components map to their equivalents in OME. The

compatibility between Simile and OME components has fluctuated over time, with the biggest

shift occurring when focus on supporting dynamic allocation and deallocation of submodel

instances was reduced in priority in favor of ensuring that the static model behavior in the

reference models would be sufficiently supported within a reasonable timeframe. Increasing

compatibility with Simile, as well as adding support for System Dynamics models that originate

from other environments, are goals for future development.

97

Simile Component Supported? OME Equivalent Notes
Alarm No IterConditional Implementation was started, but

never completed.
Compartment Yes StateVar
Condition Yes Spawner Functionality consolidated into

Spawner class.
Creation Process Partial Spawner Functionality consolidated into

Spawner class.
Functionality is present, but likely
broken; has not been tested in a
while.

Destruction Process Partial Spawner Functionality consolidated into
Spawner class.
Functionality is present, but likely
broken; has not been tested in a
while.

Event No N/A Discrete Event injection is not
supported.

Flow Yes Flow
Ghost No N/A Not relevant to model runtime.

Ghost connections are mapped to
represented model component by
SMLConverter.
There are plans to implement an
OME equivalent to this for result
summary purposes, but it has yet to
be implemented.

Immigration Process Partial Spawner Functionality consolidated into
Spawner class.
Functionality is present, but likely
broken; has not been tested in a
while.

Influence Yes Influence
Reproduction Process Partial Spawner Functionality consolidated into

Spawner class.
Functionality is present, but likely
broken; has not been tested in a
while.

Role Arrow Partial SubmodelAssoc Functionality is present, but has not
been thoroughly tested.

Squirt No N/A Discrete Event injection is not
supported.

State No N/A Discrete Event injection is not
supported.

Table 42. Simile model components as supported by OME. The list of model
components are taken from Simile 6.x.

98

Simile Component Supported? OME Equivalent Notes
Submodel Yes Model Most, if not all, functionality should

be present.
Text Yes SimpleLabel A container for text-only labels is

present, in anticipation of a future
System Dynamics diagram canvas,
but presently is not used since Text
labels have no bearing on model
dynamics.

Variable Yes Variable
VarArray
TimeSeriesVar

Variable types are broken up by
functionality. Variables representing
a collection of values are
represented by VarArrays. Variables
that change their value solely based
on simulation time are represented
by TimeSeriesVars. All other
Variable components are
represented by Variables.

Table 42 (Continued).

Simile Expression Support in OME

Since OME is expected to understand Simile-derived System Dynamics models, most, if

not all expression functions in Simile would need to be reimplemented in OME. This was done

mostly through trial-and-error, with testing primarily focused on the functions used in reference

models. Table 43 outlines the degree of compatibility between Simile and OME expression

functions.

99

Simile Function OME Compatibility Notes
abs Yes Uses C implementation.
acos Yes Uses C implementation.
all Yes
any Yes
asin Yes Uses C implementation.
at_init Yes Implemented, but not in the most

efficient way.
atan Yes Uses C implementation.
atan2 Yes
binome Yes Uses C++11 STL implementation.
ceil Yes
channel_is Yes Minimally tested.
colin Yes Minimally tested.
const_delay Yes
cos Yes Uses C implementation.
cosh Yes Uses C implementation.
count Yes
default Yes Untested.
dies_of Yes Untested.
dt Partial Just returns step size, which in OME is

static throughout simulation and across
sub-model components.

element Yes
exp Yes Uses C implementation.
factorial Yes May break with large numbers.
first Yes Untested.
firsttrue Yes OME returns 0 if no element is

evaluated to true; this may not be the
same behavior as Simile.

floor Yes
fmod Yes Uses C implementation.
following Yes Untested.
for_members_of_type No Unknown behavior.
gaussian_var Yes Uses C++11 STL implementation of a

normal distribution.
graph Yes Directly maps to InterpTable() function

in OME, as the function technically
interpolates across a table of values.

greatest Yes
howmanytrue Yes Minimally tested.
hypergeom Yes Custom implementation; minimally

tested.
hypot Yes Uses right-triangle formula.
in_preceding No
in_progenitor No
index Yes

Table 43. Simile expression function support in OME.

100

Simile Function OME Compatibility Notes
init_time Partial Presently just grabs start time from

SimManager; this will need to be
changed when dynamic model instance
allocation is reintroduced.

int Yes
interpolate Yes Untested.
iterations No Linked to Alarm components in Simile.

The equivalent is not currently
implemented in OME.

last Yes Untested.
least Yes
log Yes Uses C implementation.
log10 Yes Uses C implementation.
makearray Yes May be missing some Simile behavior.
max Yes
min Yes
ordinals Yes Untested.
parent Yes Untested.
pi Yes Implemented as constant.
place_in Yes Minimally tested.
poidev Yes Uses C++11 STL implementation of a

Poisson distribution.
posgreatest Yes Minimally tested.
posleast Yes Minimally tested.
pow Yes Uses C implementation.
preceding Yes Untested.
prev Yes
product Yes
product3 Yes Untested.
rand_const Partial Presently just calls rand_var, returning a

different random value each time.
rand_var Yes Uses C++11 STL implementation of a

uniform distribution
rankings Yes Minimally tested.
round Yes
sgn Yes
sin Yes Uses C implementation.
sinh Yes Uses C implementation.
size Yes Untested.
sqrt Yes Uses C implementation.
stop Partial In OME, reports error to event system,

which then broadcasts the errors for
any event handlers listening. More
testing is needed.

Table 43 (Continued).

101

Simile Function OME Compatibility Notes
subtotals Yes Minimally tested.
sum Yes
table Yes
tan Yes Uses C implementation.
tanh Yes Uses C implementation.
time Yes
transform3 Yes Untested.
var_delay Yes OME does not impose the same

restrictions on var_delay() as Simile
does; this may change in the future.

with_colin Yes Untested.
with_greatest Yes Untested.
with_least Yes Untested.

Table 43 (Continued).

OME-specific functions

The following are a handful of OME-specific expression functions which have no

equivalent Simile implementations.

valuesFromInstances(<variable>,<inds>) - Retrieves a list of values for <variable> populated

with the value from the parent model instances pointed to by the indexes in the list

<inds>.

getAsTable(…) - Takes a variable number of arguments and returns a list object which has

packaged the values.

upgroup(<variable>,<level>) - Retrieve a list of values for <variable> by up-scoping <level>

number of submodels. Primarily used to reconcile operations on model components that

exist at different submodel depths

omecleanup() - Deallocation function which should not be called directly.

