SKYLINE THINNING PRODUCTION RATE EQUATIONS

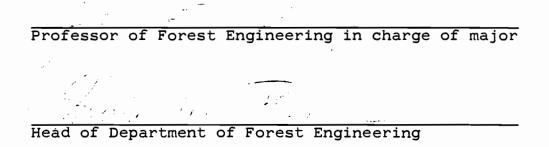
USING THE THIN SIMULATION MODEL

by

Lawson W. Starnes

A PAPER

submitted to


Oregon State University

.

in partial fulfillment of the requirements for the degree of

Master of Forestry

APPROVED:

Date paper is presented____

Typed by Jane Tour and Carol Johnsen for

Lawson W. Starnes

ACKNOWLEDGMENTS

To John E. O'Leary for his advice and encouragement as my major professor and committee member; to Dr. Eldon D. Olsen and Dr. Henry A. Froelich for their guidance and availability to serve on my committee; to Chris B. LeDoux for the hours of his time which he invested in the project by acquainting me with the THIN model and providing me with counsel throughout the project; to David Bruce, mensurationist, USDA Forest Service for his assistance concerning volume and taper equations for the log bucking model; to Dr. John F. Bell for his availability to answer my questions while constructing the log bucking model; to Don Studier, engineer, Bruce Smith, logging specialist, and Brian Kramer, engineer, all of the USDA Forest Service for their practical suggestions concerning the project; to Loren D. Kellogg for reviewing my study plan and for his suggestion to use the Skagit GU-10 prebunch configuration; and to Dr. Douglas Brodie for his advice concerning useful ranges of CUTVOL and LOGVOL. I humbly thank the researchers who developed the original turn time equations [7] [9] [10] [14] [15] [17] [18] which I have attempted to transform. Finally, I would like to thank Jane Tuor and Carol Johnsen for their help in typing this paper.

ABSTRACT

This paper shows how ten easy-to-use linear skyline thinning production rate equations were obtained by transforming existing but more cumbersome turn time equations using the THIN simulation model [11]. The equations provide reasonable approximations of delay-free hourly production for several cable yarders operating skyline thinnings under a variety of conditions. The equations have been limited to three independent variables which can be influenced by management decisions. The independent variables are relatively easy to obtain and include: cut volume per acre, average slope yarding distance, and average log volume. The production equations which were linearly regressed for user simplicity have an inherent source of error since some of the data is nonlinear. A log bucking model is presented which aids in the determination of average log volume. Suggestions for future transformations are offered.

TABLE OF CONTENTS

		<u>age</u>
	List of Tables	i
	List of Figures	iii
	Definition of Variables	vii
I.	Introduction	1
II.	Objective	4
III.	Scope	5
IV.	Project Design	7
v.	Simplifying Assumptions	15
	Stand Data	15 17 18 19 19 20 20 20 23 24 24
	Maximum Number of Logs Which Can be Skipped in a Prebunch Deck When Building A Swing Turn.	24
VI.	Equations, Nomographs and Graphs	25
	Equations	26 29 39 45 45 50

Page

TABLE OF CONTENTS - CONTINUED

•

•

VII.	Use of the Production Equation	<u>age</u> 51
	Limitations and Warnings	51 51 58 59
VIII.	Analysis	60
	 How well do Graphs of the Equations Appear to Fit Plots of the Data? Multicolinearity Do Linear or Nonlinear Relationships Exist Between Production and the Independent Variables? How Much Accuracy in Sacrificed with Linear Production Equations Since Some of the Data is Nonlinear? Would the Accuracy of the Equations be Adversely Affected by Selecting the Independent Variable TREEVOL in lieu of LOGVOL? What Range in Values of ASYD, LOGVOL and CUTVOL were Regressed Against PRoduction to Obtain the Production Equations? How Much Error Results When ASYD is assumed to Equal SL/2? Does the Independent Variable LOGVOL Have a 	60 62 63 64 66 69 69
	Symmetrical Distribution?	70
IX.	Conclusions	72
x.	Suggestions for Future Research	73 _.
	Develop Two Linear Production Equations for Each Configuration Representing Different Ranges of LOGVOL Values	73
	of the CUTVOL Range	74
	Assume More than 3 Chokers When Making THIN runs .	74
	Develop Nonlinear Equations	74

TABLE OF CONTENTS - CONTINUED

	·	Page
XI.	References	75
	Appendices	77
	Equipment Specifications	78
	BUCK Model	80
	Original Turn Time Equations	94
	Example Data File for Regression	98
	Comparative Plots and Graphs of Observed and	
	Predicted Production	102
	Scattergrams	111
	Log Volume Histograms	118

.

LIST OF TABLES

. .

۲

•

Table		Page
1	Douglas-fir Site III Stand Data by Age and Diameter Class Including Log Bucking Summary	16
2	Assumed Lead Angle Parameters	19
3	Results of Payload Analysis	21
4	Assumed Ground Profile	22
5	Number of Chokers Flown During the Original Time Studies and Number of Chokers Assumed During Simulations	23
6	Assumed and Actual Crew Size	24
-		
7	Production Rate Equations	26
8	95% Confidence Interval for Production (unadjusted) Over Range of ASYD (100-500 feet) When LOGVOL Equals 12 Cubic Feet and CUTVOL Equals 1800 Cubic Feet Per Acre	46
9	95% Confidence Interval for Production (unadjusted) Over Range of CUTVOL (1000-7500 cubic feet per acre) When ASYD Equals 450 Feet and LOGVOL Equals 12 Cubic Feet	47
10	95% Confidence Interval for Production (unadjusted) Over Range of LOGVOL (5-30 cubic feet) When ASYD Equals 450 Feet and CUTVOL Equals 1800 Cubic Feet per Acre	48
11	t-Values Indicating the Significance of Variables at the 95% Level	50
12	Suggested Adjustment Factors for Type E Delays When Desired Total Time Basis Equals Type E Delays Plus Productive Time	55

· · · · · ·

LIST OF TABLES - CONTINUED

.

Table		Page
13	Road Change Time Data	58
14	Difference in Production Estimate Which Occurs When TREEVOL is Regressed Against Production in lieu of LOGVOL	68
15	Range of LOGVOL and CUTVOL Values Linearly Re- gressed Against Production for Site III Stand Data	69

ii

LIST OF FIGURES

•

.

Figure	·	Page
1	Skyline Thinning Production Rate Nomograph for the Mini Alp Configuragion	29
2	Skyline Thinning Production Rate Nomograph for the Koller K-300 without Skidder Configuration	30
3	Skyline Thinning Production Rate Nomograph for the Koller K-300 with Skidder Configuration	31
4	Skyline Thinning Production Rate Nomograph for the Peewee Configuration	32
5	Skyline Thinning Production Rate Nomograph for the SJ-2 Configuration	33
6	Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 3 Chokers	34
7	Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 4 Chokers	35
8	Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 5 Chokers	36
9	Skyline Thinning Production Rate Nomograph for the GU-10 Prebunching Configuration	37 ⁻
10	Skyline Thinning Production Rate Nomograph for the Schield Bantam Swing Configuration .	38
11	Production Versus LOGVOL Based on Linear Production Equations	40
12	Production Versus ASYD Based on Linear Production Equations (LOGVOL = 10)	41
13	Production Versus CUTVOL Based on Linear Production Equations (LOGVOL = 10)	42

••

LIST OF FIGURES - CONTINUED

Figures		Page
14	Production Versus ASYD Based on Linear Production Equations (LOGVOL = 20)	43
15	Production Versus CUTVOL Based on Linear Production Equations (LOGVOL = 20)	44
16	Definitions of Delay and Production Time Categories	52
17	Comparison Between Observed and Predicted Production for the Mini Alp Configuration When LOGVOL is Varied	61
18	Scattergram Indicating the Presence of Multicolinearity Between the Variables CUTVOL and LOGVOL in Site III Stands	62
19	Comparison Between Linear and Nonlinear Production Equations for the Mini Alp Configuration	65
20	The Nonlinear Relationship Between TREEVOL and LOGVOL	67
21	Log Volume Histogram of a 40 Year Old Douglas-Fir Stand Thinned at 50% Intensity	71
22	Principle of Fitting Two Linear Equations to Nonlinear Data for Improved Prediction Accuracy	73
23	Comparison Between Observed and Predicted Production for the West Coast Configuration with 4 Chokers when CUTVOL is Varied	103
24	Comparison Between Observed and Predicted Production for the GU-10 Prebunch Configuration when CUTVOL is Varied	104
25	Comparison Between Observed and Predicted Production for the Schield Bantam Swing Configuration when CUTVOL is Varied	105

iv

LIST OF FIGURES - CONTINUED

.

Figrues		Page
26 [.]	Comparison Between Observed and Predicted Production for the Koller Configuration with Skidder Swing when CUTVOL is Varied .	106
27	Comparison Between Observed and Predicted Production for the Mini Alp Configuration when CUTVOL is Varied	107
28	Comparison Between Observed and Predicted Production for the SJ-2 Configuration when CUTVOL is Varied	108
29	Comparison Between Observed and Predicted Production for the Peewee Configuration when CUTVOL is Varied	109
30	Scattergrams of ASYD and LOGVOL Versus Production for the Koller Configuration Without the Skidder Swing ••••••••	111
31	Scattergrams of CUTVOL Production for the Koller Configuration Without the Skidder Swing ••••••••••••••••••••••••••••••••••••	112
32	Scattergrams of ASYD and LOGVOL Versus Production for the West Coast Tower Configuration with 4 Chokers	113
33	Scattergrams of CUTVOL Versus Production for the West Coast Tower Configuration with 4 Chokers	114
34	Scattergrams of ASYD and LOGVOL Versus Production for the Skagit GU-10 Prebunching Configuration	115
35	Scattergram of CUTVOL Versus Production for the Skagit GU-10 Prebunching Configuration	116
36	Log Volume Histogram of a 60 Year Old Douglas-fir Stand Thinned at 50% Intensity	118
37	Log Volume Histogram of an 80 Year Old Douglas-fir Stand Thinned at 50% Intensity	118

v

.

LIST OF FIGURES - CONTINUED

Figures		Page
38	Log Volume Histogram of a Douglas-fir Stand Thinned	
39	Log Volume Histogram of a Douglas-fir Stand Thinned	

vi

DEFINITION OF VARIABLES

- ASYD Average Slope Yarding Distance. Average inhaul distance of turns hooked using 100 foot (32.8 meter) incremental ranges of setting length measured in feet slope distance.
- CUTVOL Cut Volume. The average cut and yarded volume per acre in cubic feet.
- LOGVOL Average log volume in cubic feet of all logs yarded.
- EYD External Yarding Distance. The maximum inhaul distance of all turns within a setting as measured in feet slope distance along the center of the skyline corridor.
- SL Setting Length. The length in feet slope distance of a rectangular setting assumed to be 150 feet (49.2 meters) in width.
- L Setting Length. The length in feet horizontal distance of a rectangular setting assumed to be 150 feet (49.2 meters) in width.
- TREEVOL Average tree volume in cubic feet of all trees which were felled, bucked and yarded to the landing in log lengths. The term does not refer to tree length logging in this paper.

I. Introduction

This paper documents an investigation of the hypothesis that easy-to-use linear skyline thinning production rate equations can be obtained by transforming existing but more cumbersome turn time regression equations using the THIN simulation model [11]. Ten production rate equations are developed using THIN and linear regression techniques. The equations are yarder specific. Equation A is an example of a turn time equation expressed in minutes. Equation B is the transformed version of Equation A. Equation B is the delay free production rate equation for the West Coast tower rigged for uphill yarding using a standing, single span skyline and mechanical slack pulling carriage with haulback and three chokers. Equation B is expressed in cubic feet per hour.

Equation A: [9]

Turn time	= 2.77 +	.0222 (volume per turn in cubic feet)
	-	.0492 (volume per turn in cubic feet) number of logs in turn
	-	.634 (<u>numbers of logs in turn</u>) number of chokers flown)
	+	.463 $\left(\frac{1}{\text{sin lead angle}}\right)$
	+	.000144 (lateral distance in feet squared)
	+	.243 x 10^{-5} (slope yarding distance in feet squared)
	+	.0364 (carriage height in feet)

Equation B:

Production = 230.17 - .366208 (ASYD)

+ 32.3200 (LOGVOL)

+ .0286246 (CUTVOL)

Forest and logging managers often need to predict production rates of yarders in various configurations to analyze forest harvest cost problems. Although many delay free turn time equations similar to Equation A have been developed [1], forest and logging managers find most of these equations very difficult to use. The equations are difficult to use for several reasons. These include:

- Independent variables such as volume per turn and logs per turn are difficult to estimate. Peters developed a load curve method for determining average volume per turn; however, time study data is required to construct the curve [17].
- 2. Definitions for the same independent variable are not always the same for all equations, requiring the user to become familiar with the original research.
- 3. The range of values for independent variables over which the equation is valid can usually only be obtained by reviewing the original research.
- 4. The equations usually give estimates in time per turn. The user must convert time per turn into volume per hour.

5. The user must conduct further research to know how to adjust time per turn for various delays.

. : .

The methodology of transforming seven existing turn time equations into ten linear production rate equations is presented. The THIN simulation model which was developed by LeDoux and Butler is briefly described. Some of the assumptions necessary to limit the equations to three independent variables are covered in considerable detail. The resulting equations are analyzed to determine the correctness of the hypothesis. Use of the equations is discussed including an adjustment procedure for delays and road changes. Finally, suggestions for future transformations are offered.

II. OBJECTIVE

The objective of the study is to obtain equations which forest and logging managers can more readily apply to economic analyses. The equations are to represent an array of yarder configurations operating over a range of conditions. То be truly useful, input information (independent variables) must be relatively easy for managers to obtain. Independent variables to be tested in the hypothesis include cut volume per acre in cubic feet (CUTVOL), average log volume in cubic feet (LOGVOL), and average slope yarding distance (ASYD). Individual terms within the equations are to be linear for user simplicity. The equations are to be versatile and simple; providing forest and logging managers with a source of approximations for hourly skyline thinning production rates.

III. SCOPE

The scope of the project is limited to transforming existing delay free turn time regression equations which have been developed for thinning young growth stands found in the mountains of western Oregon and Washington. [7] [9] [10] [14] [15] [18] [19]. Only log length thinning is addressed. Yarder configurations are limited to the following:

Full Cycle Yarding

Yarder	Carriage	System
Mini Alp	Igland Jones single and multispan carriages	Standing skyline, single and multispan, uphill with haulback, 3 chokers
Koller with and without skidder swing	Koller SKA-l	Standing skyline, single and multispan, uphill, gravity outhaul, 3 chokers
Реежее	Unknown	Running skyline, single span, uphill with some downhill, 3 chokers
Skagit SJ-2	Christy	Live skyline, singlespan, uphill, gravity outhaul, 3 chokers
West Coast	West Coast	Standing skyline, single- span, uphill with haulback, 3, 4 and 5 chokers

Prebunch and Swing Yarding

•

•

Yarder	Carriage	System
Skagit GU-lO mounted in dump truck	None	Yarder mounted in dump truck, block in tree, 2 chokers, prebunching
Schield Bantam T-350	Maki	Live skyline, singlespan, uphill, gravity outhaul, swinging

Detailed equipment specifications are listed in the Appendix.

•

.

. .

,

IV. PROJECT DESIGN

The project design consisted of the following steps:

1. Literature review

The Oregon State University Library Information Retrieval Service (LIRS) was utilized to search the AGRICOLA* and the CAB** Abstracts for easy-to-use, yarder specific skyline thinning production rate equations. None were found.

It was decided that the THIN simulation model developed by LeDoux and Butler [11] should be tested to see if existing but more cumbersome turn time equations could be transformed into easy-to-use production rate equations. The simulation model uses random variates as input to existing turn time equations. It predicts production in either cubic feet per hour or board feet per hour for these conditions.

At this point it is appropriate to describe the THIN simulation model in more detail. The following description consists of selected excerpts from <u>Simulating Cable Thinning</u> in Young-Growth Stands by LeDoux and Butler [11]:

"THIN, written in FORTRAN IV, combines Monte Carlo and system simulation techniques and uses the subroutines of the GASP IV simulation language (Pritsker 1974) to collect and report data. Specifically, the model evaluates how alternative diameter classes, stand densities,

^{*}AGRICOLA is the cataloging and indexing data base for the U.S. National Agricultural Library (NAL).

^{**}CAB Abstracts is a comprehensive file of agricultural and biological information containing all records in the main abstract journals published by Commonwealth Agricultural Bureaux.

yarding efficiencies, external and lateral yarding distances, spatial log distributions, and prebunch-and-swing strategies affect production rates and related direct costs.

The simulation comprises three main routines. The first distributes logs over the cutting unit; the second yards or prebunches logs; and the third swings prebunched logs to a central landing."

The Log-Distribution Routine

"THIN assumes that the cutting unit is a rectangle of given dimensions. The spatial distribution of logs in the cutting unit is determined by dividing the unit into a rectangular grid. Each rectangle in the grid is approximately square, and exactly one log is assigned to each square. The number of squares (i.e., number of logs) in the grid is an input to the model and is determined from stand density, average tree size, bucking rules, and thinning intensity.

Initially, the butt end of each log is located at the center of the square to which it is assigned. The butt location is then perturbed

in both coordinates by random amounts which are distributed normally with a zero mean and standard deviation computed by multiplying the length of one square by a fraction called the spatial distribution coefficient (SPC). The value of SPC is entered as a model parameter. The volume of each log is then assigned by taking a pseudorandom observation from a truncated normal distribution. The parameters (mean, variance, minimum, maximum) of the log-size distribution are specified on the GASP control cards."

The Yarding/Prebunching Routine. "To build a turn, THIN first scans the logs in the first few rows to determine which one is closest to the yarder. This log becomes the first log in the turn, with additional logs hooked in order of increasing distance from the first-hooked log. As each log is hooked, checks ensure that it is in fact close enough to the other logs to be hooked, that a choker is available with which to hook it, and that it can be hooked without exceeding the yarder's payload capacity. If

a log is too big to be added to the current turn of logs, it will be skipped and yarded in a later turn.

The simulator then uses a regression equation to compute turn time for the turn of logs just hooked. Regression coefficients are obtained from field studies such as those mentioned earlier, each field study yielding particular coefficient values; thus, any choice of values is related to a base set of operating and stand conditions. Independent variables in the regressions vary with the equipment and forest conditions being simulated but typically include slope yarding distance, number of logs per turn, lateral yarding distance, and turn volume. After each turn is yarded, its attributes are collected and stored; the process is repeated until no more logs remain to be yarded. Upon completion, summary statistics of the yarding operation are reported.

The prebunch-and-swing logic of the simulator handles prebunching of logs in a fashion similar to that of single-stage yarding. However, logs on the left and right sides of the cutting unit are yarded to separate decks.

The number of decks on either side is determined by an input parameter that specifies the distance between successive decks." The Swing Routine. "Once the prebunch routine has yarded all the logs to decks, THIN initiates the swing operation, starting with the decks closest to the landing. Logs are removed from a deck in roughly the reverse order to which they arrived. As each turn is built, the simulator checks that sufficient chokers are available and that turn volume is within the swing machine's payload. If a log is too large to be added to those already hooked, it may be skipped. The simulator then tries hooking the log placed on the deck just before the one skipped. An input parameter governs how many logs may be skipped in building any one turn. When a complete turn has been built, logs are transported to the central landing. Again, the turn time is computed via a regression equation specific to the swing system of interest."

An unpublished users' manual for THIN has been prepared by Butler and LeDoux [5].

2. Selection of Independent Variables

In order to limit the number of THIN simulation runs required per equation to a reasonable number, it was desirable to limit the number of independent variables per equation to three. The independent variables selected were CUTVOL, LOGVOL, and ASYD as previously defined on page vii. These variables were selected because they meet three important criteria:

- Their values are relatively easy for managers to obtain.
- Their values can often be influenced by management decisions.
- They significantly affect production.
- 3. Simplifying Assumptions

To limit the number of independent variables to three, simplifying assumptions for THIN were necessary in the following areas:

> Stand data Initial entry thinnings Thinning intensity Bucking rule Log pertubation parameters Lead angle parameters Setting dimensions Maximum distance from first hooked log to succeeding logs Wood density System payload of yarder Number of chokers flown Crew Carriage height Maximum number of logs which can be skipped in a prebunch deck or any one turn

See Section v, page 15, for additional information concerning the simplifying assumptions.

4. Generation of Stochastic Production Data

Stochastic production data was generated by the THIN model for 5 different thinning intensities in 5 different age classes at 10 different average slope yarding distances for each configuration. A range in CUTVOL data from 355 to 7535 was achieved by considering 5 different thinning intensities ranging from 10 to 50 percent. A range in LOGVOL data from 6.2 to 30.0 was achieved by considering 5 different age classes ranging from 40 to 120 years. See Table 15 page 69. A total of 250 data points were developed for each full cycle yarding configuration. It was necessary to omit data points including LOGVOL values in the range of 18.2 to 30.0 for the prebunch and swing configurations due to an inconsistency which sometimes occurs in the present version of the THIN model when maximum log weight exceeds allowable payload.

5. <u>Regression</u>

The data for each configuration was regressed into a linear production rate equation. It was decided that accuracy would be sacrificed if necessary to obtain linear equations. The reason for the decision was user simplicity. An example regression file consisting of 250 data points for the West Coast configuration with 4 chokers is listed in the Appendix. Note that logs per setting was converted to cut volume per acre. The production equations resulting from regression are listed in Table 7, page 26.

V. SIMPLIFYING ASSUMPTIONS

Stand Data

USFS Technical Bulletin 201 [13] stand and height tables were used to construct five fully stocked McArdle Site III Douglas-fir (pseudotsuga menziesii (Mirb.) Franco) stands at the age classes 40, 60, 80, 100, and 120 years. Each stand was then "thinned" at intensities of 10, 20, 30, 40 and 50 percent for a total of 25 different cutting senarios. It was assumed that each thinning was an initial entry. It was assumed that an equal percentage of stems were removed from each two-inch (5.1 centimeters) diameter class. The smallest diameter class was 6.5 inches (16.5 centimeters). Table 1 is a summary of the stand and bucking data. Form class estimates were obtained by comparing tree volumes obtained from the BUCK model to Table C-2, Conversion Factors for the Pacific Northwest Forest Industry [8].

	ACE 40 V			60 V	ears		80 V	ears		100	Years	·	120	Years	
חמט	AGE $\frac{40 \text{ Y}}{\#\text{TREES}}$	ears TOTHT*	FC**	#TREES	TOTHT	FC	#TREES	TOTHT	FC	#TREES		FC	#TREES	TOTHT	FC
DBH	#IREE5	10111"	<u> </u>	#IKEES	10111	ru	#INEED	10111	ru	TREED	10111	10	TINED	IOIIII	10
6.5	75	62	.68	54	67	.72	14	70	.72	-	-		-	-	
8.5	129	71	.68	67	78	.72	29	84	.74	15	86	.74	6	86	.75
10.5	54	79	.73	73	87	.77	35	95	.80	21	99	.81	10	101	.81
12.5	16	85	.75	55	95	.79	39	104	.82	24	109	.83	16	114	.84
14.5				39	102	.80	37	111	.82	26	118	.82	19	123	.83
16.5				18	107	.80	32	117	.81	26	125	.81	19	130	.82
18.5				9	111	.78	22	122	.80	23	130	.80	20	138	.81
20.5							14	127	. 79	21	136	.80	18	144	.78
22.5							10	134	. 78	13	140	.76	15	148	.77
24.5										8	145	.75	13	153	.76
26.5										7	149	.74	7	157	.75
28.5													5	160	.74
30.5													4	164	.73
	VOLUME (CuFT OLUME (CuFt)				11.9 4.2			18.09 3.5			24.30 3.43			30.04 3.48	
	MAX LOG VOLUME (CuFt) 18.63		47.54		72.05		94.63		124.27						
	STD DEV OF LOG VOLUME 3.17		9.31		15.74		21.46		27.18						
AVG DBH (inches)	8.02		10.80		13.69		16.22		18.36					
TOT BUCK		3556			766		10,925				13,221		15,080		
# LOGS **		573			64		604		544		502				
	LENGTH (ft)	29.1		31.6			32.4			33.9		34.4			
MEAN TREE	VOLUME (CuF	't) 9.5			24.	3		47.	L		71.9			99.3	5

TABLE 1. Douglas-fir Site III Stand Data by Age and Diameter Class Including Log Bucking Summary

* TOTHT is defined as total tree height in feet

** FC is defined as Girard form class

*** TOT BUCK VOL is defined as the total volume in cubic feet of the entire stand when bucked into logs having a minimum small and diameter of 4 inches inside bark.

**** #LOGS is defined as the total number of logs obtained when the entire stand is felled and bucked.

Log Parameters

The following log parameters are required to operate the THIN simulation model:

mean log volume
minimum log volume
maximum log volume
standard deviation of log volume
total number of logs in the setting

These parameters were obtained by "bucking" the previously described cut trees into logs. A log bucking simulation model, BUCK, was developed by the author for this purpose. The model can be executed on the Hewlett Packard 41CV hand held computer. Inputs include tree diameter at breast height, total tree height, Girard form class and number of trees in each diameter class. The model determines the merchantable length (M) of each tree from a l foot stump to a 4 inch top. The merchantable length (M) is then bucked into log lengths according to the following bucking rule:

Merchantable <u>Length (</u> M) in feet	No. Logs <u>per tree</u>	Butt log <u>length</u>	2nd lot length	3rd log length	
M ≤ 40.6	1	М	-	- ,	_
40.6 < M ≤ 81.2	2	M/2	M/2	-	-
81.2 < M <u><</u> 121.8	3	40.6	$\frac{M-40.6}{2}$	$\frac{M-40.6}{2}$	-
121.8 < M ≤ 162.4	4	40.6	40.6	<u>M-81.2</u> 2	<u>M-81.2</u>

Log volume and number of logs are accumulated until all trees are bucked. Butt and upper bole log volumes are computed using equations developed by David Bruce [3] [4]. The model determines inside bark diameters at both ends of each upper bole log by assuming a paraboloid bole. Stump diameter inside bark is determined using a relationship between it and diameter breast height [2]. Complete documentation of the log bucking model can be found in the Appendix.

Log Purterbation Parameters in x and y Directions

mean	0.0	feet
minimum	-10.0	feet
maximum	10.0	feet
standard deviation	1.0	feet
spacial distribution	.2	feet
coefficient		

LeDoux and Butler [11] define log purterbation and spacial distribution coefficient as follows:

"Initially the butt end of each log is located at the center of the square to which it is assigned during the THIN log-distribution routine. The butt location is then perturbed in both coordinates by random amounts which are distributed normally with a zero mean and standard deviation computed by multiplying the length of one square by a fraction called the spacial distribution coefficient."

Lead Angle Parameters

A lead angle term was included in four of the original turn time equations. Lead angle is treated as a stochastic variable by the THIN model when a lead angle term is included in the turn time equation. Assumed lead angle parameters are listed in Table 2.

TABLE 2. Assumed Lead Angle Parameters (degrees)

	Lead Angle						
Yarder Configuration	Mean	Minimum	Lead Angle Maximum	Standard Deviation			
West Coast	51.0	0.1	118.0	21.9			
Peewee	51.0	0.1	118.0	21.9			
Skagit SJ-2	51.0	0.1	118.0	24.0			
Schield-Bantam T-350	110.8	65.0	158.0	21.9			
Others		ad angle ime equat	term did no	t appear i			

Setting Dimensions

Settings were assumed to be 150 feet (45.7 meters) in width by 1000 feet (304.8 meters) in length slope distance. This yields an area of 3.35 acres (1.39 hectares) when the dimensions are converted to horizontal distances. Data for the assumed ground profile is listed in Table 5 on page 23.

Maximum Distance Permitted From First Hooked Log to Succeeding Logs

A value of 45 feet (13.7 meters) was assumed because LeDoux and Butler used the same value with good results during THIN validation tests [11].

Wood Density

A value of 53.7 pounds per cubic foot (689.7 kilograms per cubic meter) was assumed because Gabrielli used the same value during his original time study [7].

System Payload of Yarder

An assumption was made that one representative ground profile would be a valid means of comparision for all yarder configurations. Payloads were computed for each yarder configuration. Payloads were computed on the Hewlett Packard 9845 desk top computer utilizing the USFS Forest Engineering Institute skyline analysis programs SAP and MSAP. Line sizes used in the payload analysis were the same as those used during the original time studies. (Yarder specifications are listed in the Appendix.) Results of the payload analysis are listed in Table 3. Data for the assumed ground profile is listed in Table 4.

	, <u>, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Intermediate	Support Height	Tall Tr	ee Height	Payload	
	System	(feet)	(meters)	(feet)	(meters)	(lbs)	(kg)
Full Cycle Yard	ing:						
Mini Alp	standing multispan	35	10.7	13	4.0	3291	1493
Koller	standing multispan	35	10.7	13	4.0	2817	1278
Peewee	running	NA				3655	1658
Skagit SJ-2	live singlespan	NA		40	12.2	3051	1384
West Coast	standing singlespan	NA		40	12.2	8609	3905
Swing Yarding:							
Schield Bantam					_		
T-350	live singlespan	NA .		40	12.2	4036	1831

:

TABLE 3. Results of Payload Analysis

A payload of 2500 pounds (1134 kg) was assumed for the prebunch configuration.

TABLE 4. Assumed Ground Profile Data (distances in feet)

Serrain Point	Slope Dist.	% Slope	x Coordinate	y Coordinate	Remarks
1	30	0	0.00	1000.00	landing
2	170	-40	30.00	1000.00	
3	200	-20	187.84	936,86	
4	200	-30	383.96	897.64	intermediate sup- port location for Mini Alp and Kolle
5	200	-15	575.52	840.17	Height = 35 feet.
6	200	-5	773.31	810.50	
7	200	5	973.06	800.52	tail spar location

.

.

Number of Chokers Flown

.

Three chokers were assumed for all full cycle configurations except that three, four and five chokers were assumed for the West Coast yarder. Three chokers were assumed for the swing configuration and two chokers were assumed for the prebunch configuration. Table 5 lists number of chokers flown during the original time study and the number of chokers assumed during THIN simulation.

<u>TABLE 5</u>. Number of Chokers Flown During the Original Time Studies and Number of Chokers Assumed During Simulation

	Original Time Study	Simulation
Mini Alp	2	3
Koller with and withou Skidder swing	t 2	3
Peewee	3	3
Skagit SJ-2	3	3
West Coast	4	3, 4 and 5
Prebunch	2	2
Swing	2	3

Crew

Only one turn time equation included a term for crew size. When a turn time equation does not include a term for crew size, it is not necessary to assume a crew size to operate the THIN model. The size of the crew which logged during the original time study is inherent to the equation. Table 6 lists assumed crew sizes for simulation and actual crew sizes used during the time studies [7] [9] [10] [14] [15] [17] [18].

TABLE 6. Assumed and Actual Crew Size

	Assumed Crew Size	
	for Simulation	Actual Crew Size
Mini Alp	NA	2 to 3
Koller with and without skidder	landing crew l rigging crew 2	2 to 5
Peewee	NA	unknown
Skagit SJ-2	NA	4
West Coast	NA	4
Schield Bantam (swinging)	NA	3 to 4
Skagit GU-10 (Prebunching)	NA	3

Carriage Height

10 feet (3.3 meters)

Maximum Number of Logs Which Can Be Skipped in a Prebunch Deck When Building A Swing Turn

4 logs

VI. EQUATIONS, NOMOGRAPHS and GRAPHS

Table 7 lists production rate equations resulting from the transformation process. For convenience, nomographs have been constructed which yield graphical solutions to the equations. All of the production rate equations are based on McArdle site class III. The original turn time equations are listed in the Appendix.

TABLE 7.	Skyline Thinn	ing Production	Rate
	Equations for	Several Cable	Yarders

	1
YARDER CONFIGURATIONS	LINEAR PRODUCTION EQUATION IN CUFT/HR (DELAY FREE)
Mini Alp, standing, single and multispan with haul- back, uphill, 3 chokers Igland Jones single and multispan carriages	Production = 338.200 - 0.293377 (ASYD) + 6.19002 (LOGVOL) + 0.0103255 (CUTVOL) R^2 = .7827 $CI_{.95}$ = 292-310 when AYD = 450 LOGVOL = 12 CUTVOL = 2000
Koller K-300, standing, single and multispan, gravity outhaul, uphill, 3 chokers, Koller SKA-1 carriage, without skidder	Production = 412.205 - 0.382514 (ASYD) + 9.28024 (LOGVOL) + 0.007906 (CUTVOL) R^2 = .8310 $CI_{.95}$ = 357-377 when AYD = 450 LOGVOL = 12 CUTVOL = 2000
Koller K-300, standing, single and multispan, gravity out- haul, uphill, 3 chokers, Koller SKA-1 carriage, with John Deere 440-C choker skidder swing away from Koller landing.	Production = 462.303 - 0.456691 (ASYD) 10.5027 (LOGVOL) .00877636 (CUTVOL) R ² = .8346 CI _{.95} = $389-412$ when AYD = 450 LOGVOL = 12 CUTVOL = 2000
Peewee, running, single, up and down 3 chokers	Production = 409.360 - 0.407874 (ASYD) + 9.76918 (LOGVOL) + 0.0137733 (CUTVOL) R ² = .8044 CI _{.95} = 359-383 when AYD = 450 LOGVOL = 12 CUTVOL = 2000

YARDER CONFIGURATIONS	LINEAR PRODUCTION EQUATION IN CUFT/HR (DELAY FREE)
Skagit SJ-2, live, single- span, gravity outhaul, uphill, 3 chokers, Christy carriage	Production = 354.997 - 0.200124 (ASYD) + 5.95503 (LOGVOL) + 0.01044 (CUTVOL)
	R^2 = .6240 $CI_{.95}$ = 347-368 when ASYD = 450 LOGVOL = 12
	CUTVOL = 2000
West Coast, standing, single- span, haulback, uphill, 3 chokers, West Coast carriage	Production = 230.170 - 0.366208 (ASYD) + 32.3200 (LOGVOL) + 0.0286246 (CUTVOL)
	R^2 = .8876 CI _{.95} = 492-529 when ASYD = 450 LOGVOL = 12
	CUTVOL = 2000
West Coast, standing, single span, haulback, uphill, 4 chokers, West Coast carriage	Production = 333.169 - 0.389712 (ASYD) + 31.2752 (LOGVOL) + 0.0391625 (CUTVOL) R ² = .8950 CI _{.95} = 593-630
	when ASYD = 450 LOGVOL = 12 CUTVOL = 2000
West Coast, standing, single- span, haulback, uphill, 5 chokers, West Coast carriage	Production = 384.671 - 0.381842 (ASYD) + 27.8719 (LOGVOL) + 0.0551664 (CUTVOL)
	$R^2 = .8743$ CI_95 = 638-677 when ASYD = 450 LOGVOL = 12 CUTVOL = 2000

· .

.

YARDER CONFIGURATIONS	LINEAR PRODUCTION EQUATION IN CUFT/HR (DELAY FREE)
Prebunch with truck mounted Skagit GU-10, block rigged in tree, 2 chokers	Production = 483.729 - 0.780594 (ASYD) + 41.0603 (LOGVOL) + 0.0247655 (CUTVOL) R^2 = .8707
	CI.95 = 654-695 when AYD = 450 LOGVOL = 12 CUTVOL = 2000
Swing with Schield Bantam T-350, live, singlespan, gravity outhaul, 3 chokers, Maki carriage	Productivity = 445.268 - 0.98319 (ASYD) + 47.8492 (LOGVOL + 0.0238875 (CUTVOL R ² = .9738
.	CI _{.95} = 827-866 when AYD = 450 LOGVOL = 12 CUTVOL = 2000

-

,

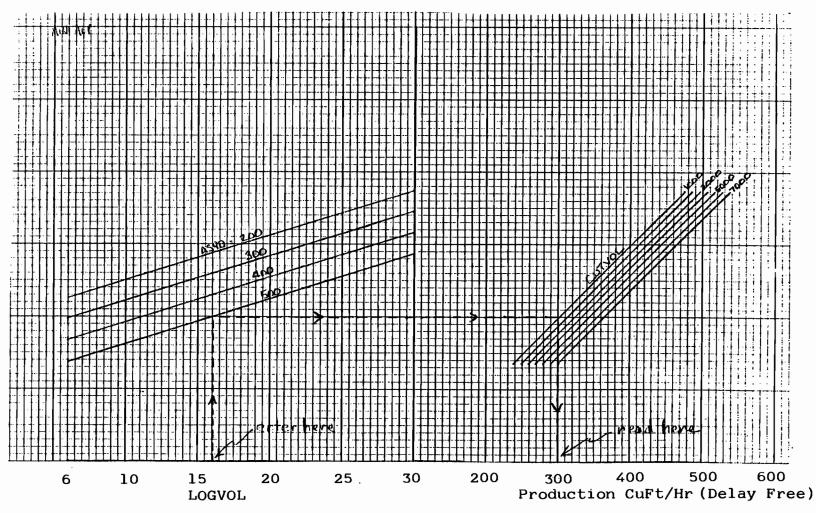
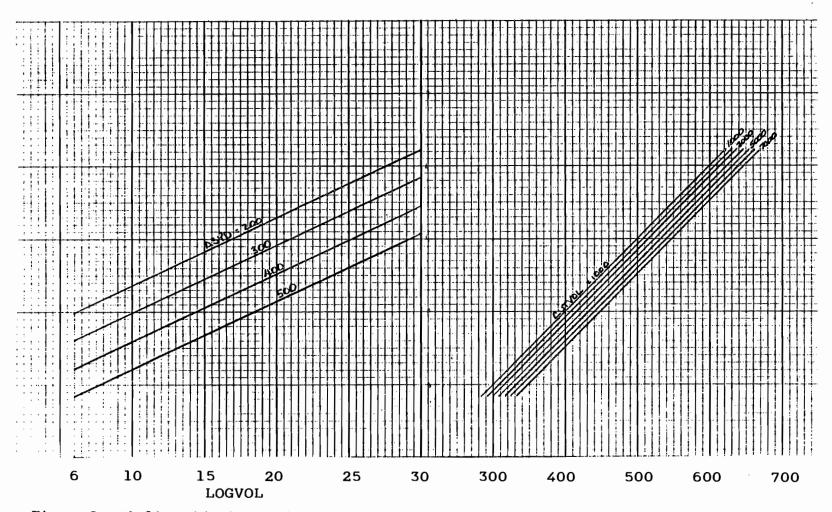
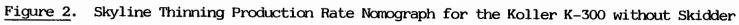
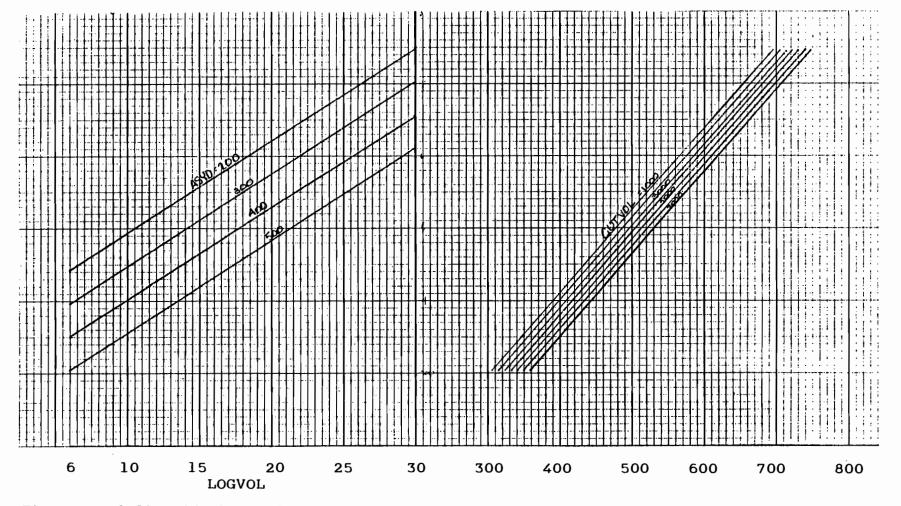
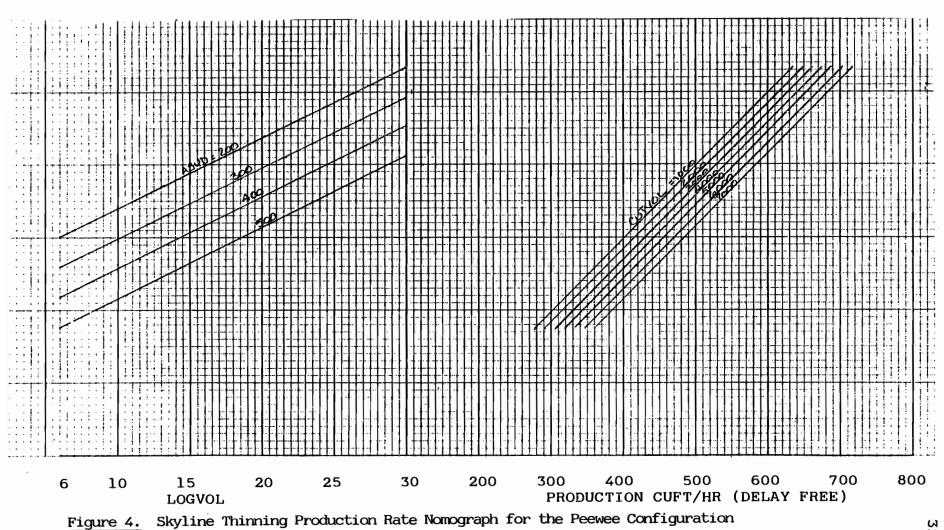





Figure 1. Skyline Thinning Production Rate Nomograph for the Mini Alp Configuration



÷

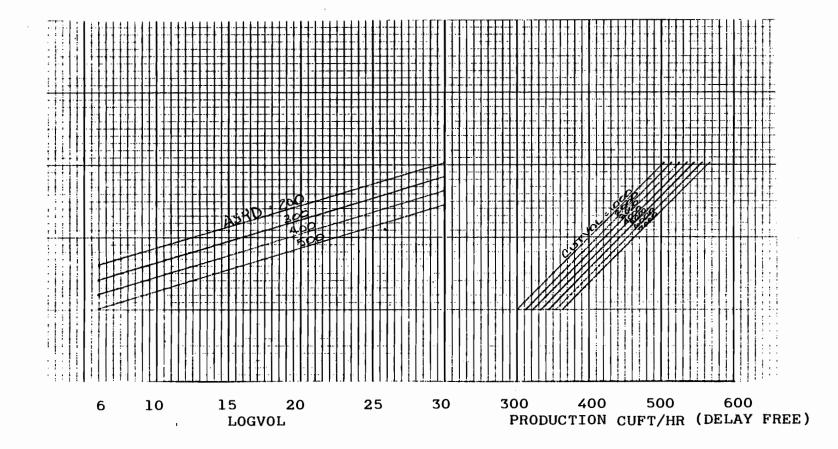


Figure 5. Skyline Thinning Production Rate Nomograph for the SJ-2 Configuration

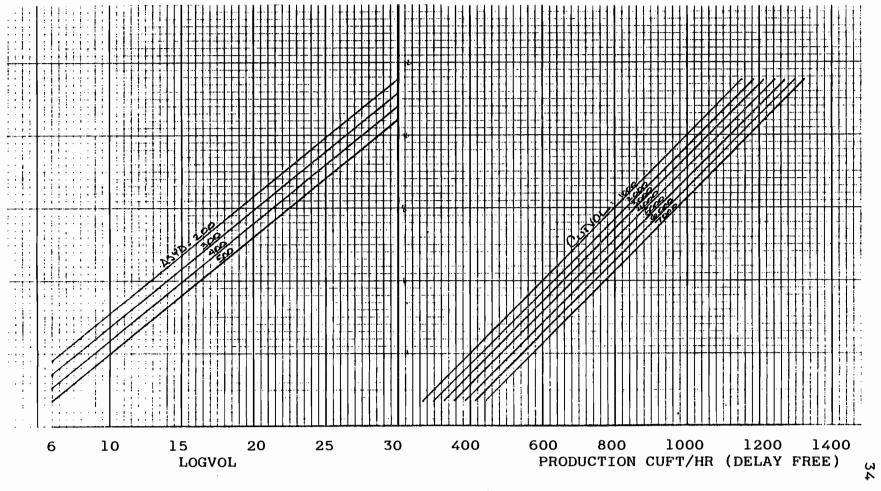
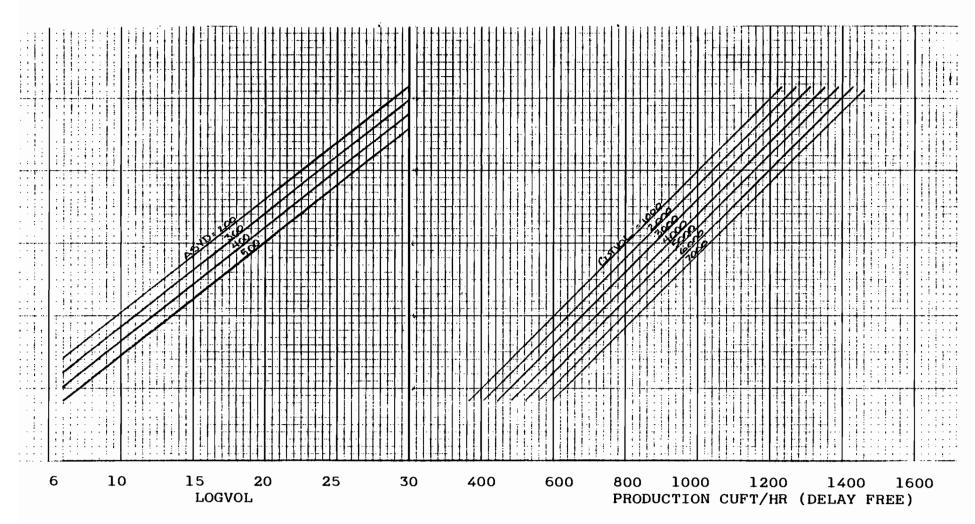



Figure 6. Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 3 Chokers

Figure 7. Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 4 Chokers

и 35

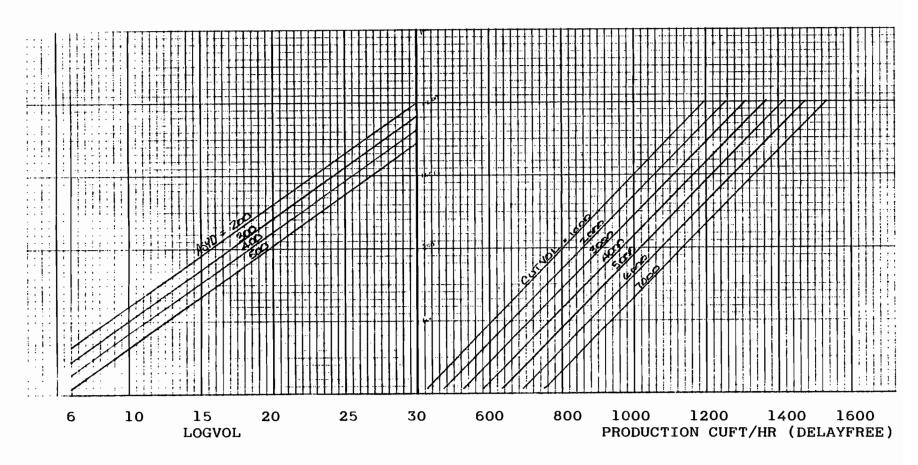
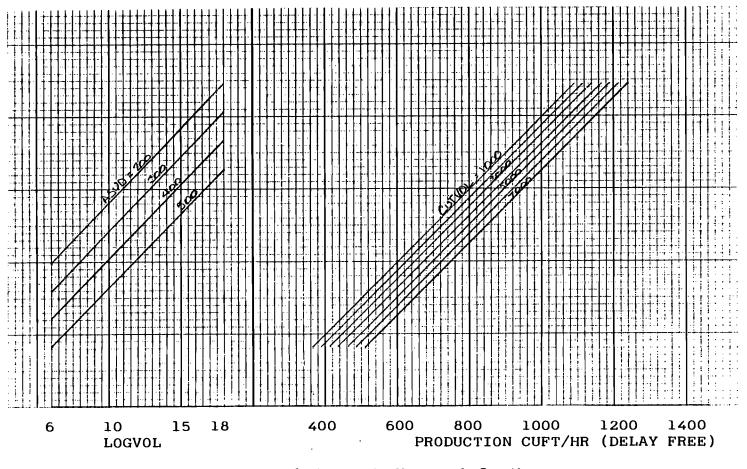
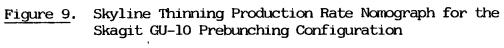




Figure 8. Skyline Thinning Production Rate Nomograph for the West Coast Configuration with 5 Chokers

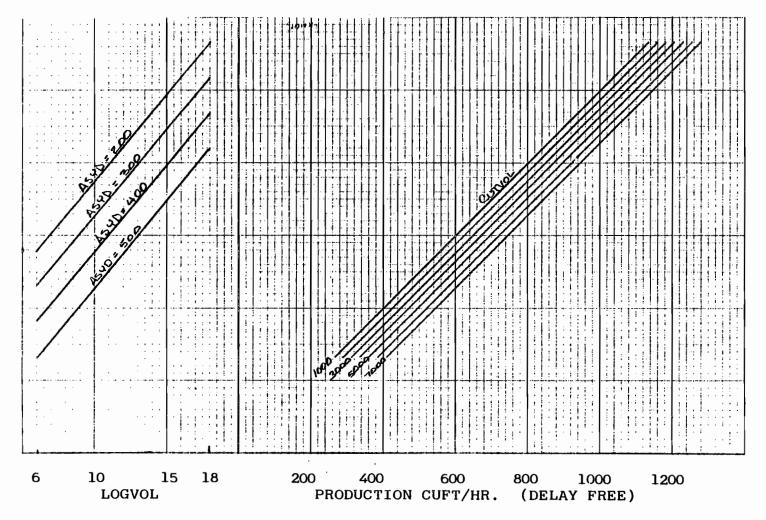


Figure 10. Skyline Thinning Production Rate Nomograph for the Schield Bantum Swing Configuration.

Graphs

Figures 11 through 15 are graphs of production in cubic feet per hour (unadjusted) based on the linear production rate equations. The absissa of the graphs represent ranges of values for LOGVOL, ASYD or CUTVOL while the remaining two independent variables are held constant. The independent variables take on the following values when held constant:

LOGVOL = 10 or 20 cubic feet

ASYD = 450 feet

CUTVOL = 3500 cubic feet per acre

The graphs indicate that the equations behave in accordance with the following expected engineering principles:

-Production increases when LOGVOL is increased -Production decreases when ASYD is increased -Production increases when CUTVOL is increased -Production increases as chokers are added until payload capacity is reached provided additional logs are available for hooking.

The differences between yarder configurations indicated in Figures 11 through 15 are not solely due to hardware. Differences in crew training, experience level and supervision make it difficult to make pure comparisons between the yarder configurations. The fact that the original time studies were not all conducted under identical stand, terrain and weather conditions may also be responsible for some of the differences.

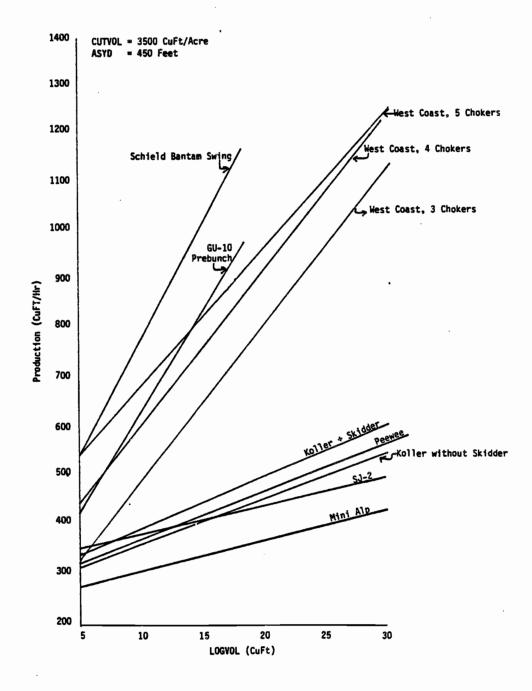


Figure 11. Production Versus LOGVOL Based on Linear Production Equations

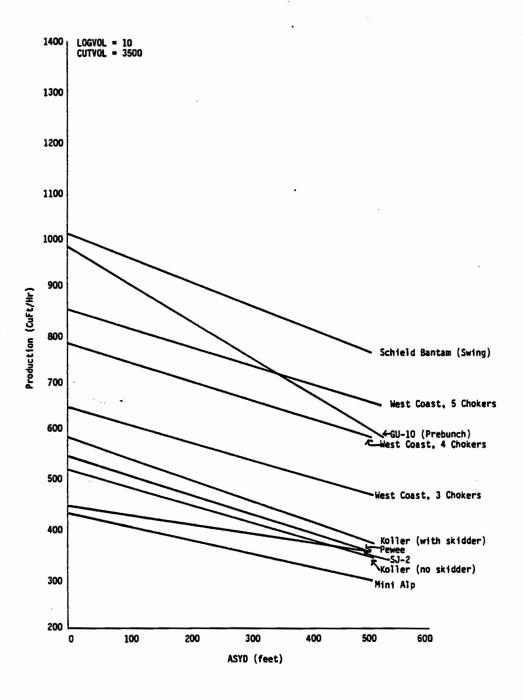


Figure 12: Production Versus ASYD Based on Linear Production Equations

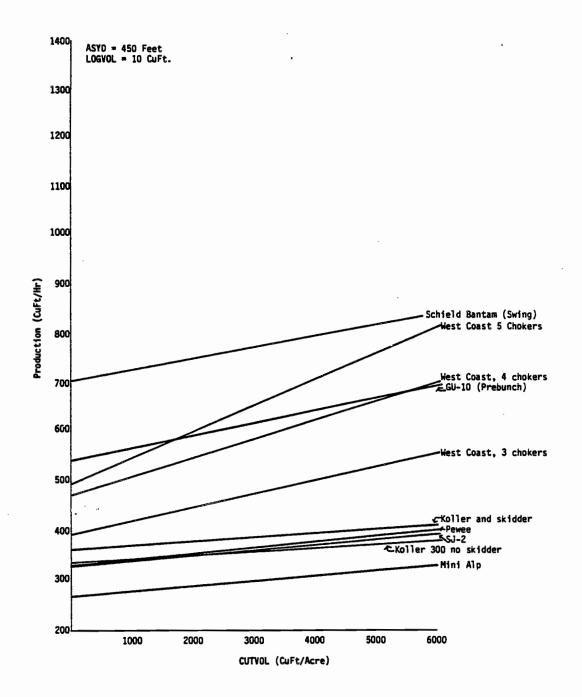


Figure B. Production Versus CUTVOL Based on Linear Production Equations

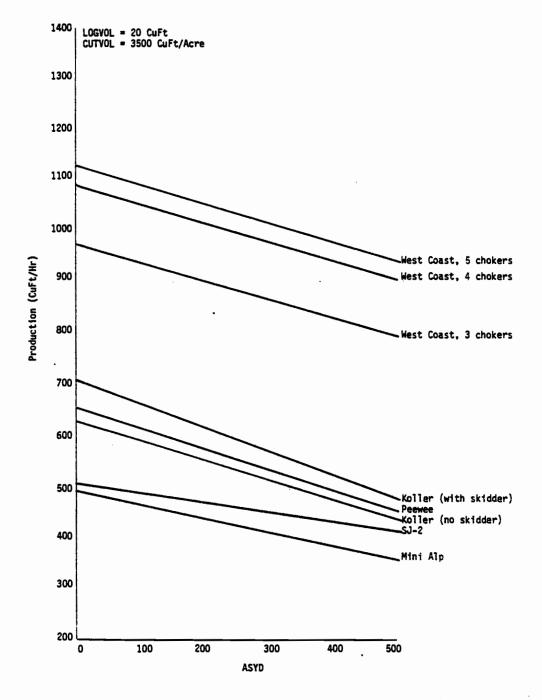


Figure 14. Production Versus ASYD Based on Linear Production Equations

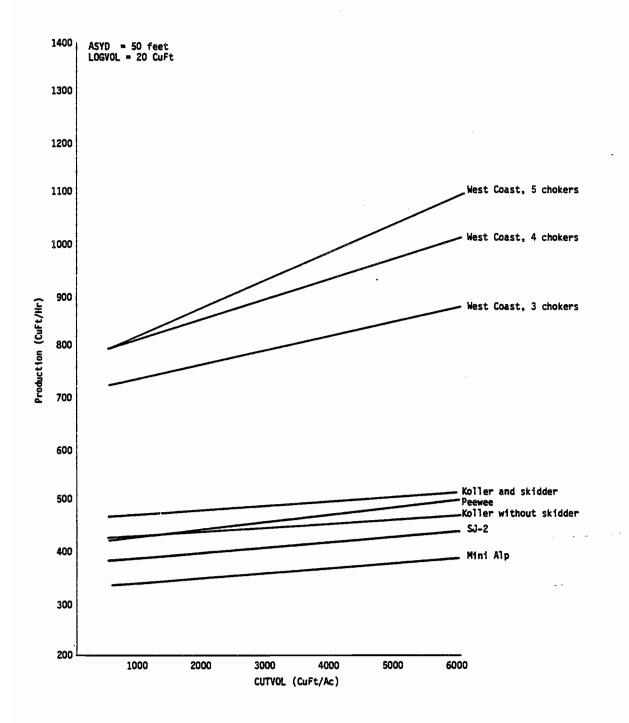


Figure 15. Production Versus CUTVOL Based on Linear Production Equations

R² Values

There are two R^2 values associated with each yarder configuration. The R^2 value for the original turn time equation is a measure of how much variation between predicted and observed turn times is explained by the turn time equation. The R^2 value for the newly developed production rate equation is a measure of how much variation between predicted and observed THIN production rates is explained by the production rate equation. The R^2 values listed in Table 7 are a measure of only the latter.

Confidence Limits

There are two confidence levels associated with each configuration. Confidence limits for the turn time equations can be obtained from the original research [7] [9] [10] [14] [15] [17] [18]. Confidence limits for the production rate equations as related to the THIN production data are listed in Tables 8, 9, and 10. The tabulated production rate confidence limits are at the 95% level. Tables 8, 9, and 10 list confidence limits for production when two independent variables are held constant and the third is varied over a range of values approximately corresponding to the same values which were fed into the THIN model. When held constant, the values of the independent variables were as follows:

> ASYD = 450 feet CUTVOL = 1800 cubic feet per acre LOGVOL = 12 cubic feet

YARDER CONFIGURATION	100 FT	200 FT	300 FT	400 FT	500 FT
Mini Alp	385-415	361-384	333-353	304-323	275-293
SJ-2	409-441	391-419	373-397	354-376	335-336
Peewee	493-529	454-485	415-443	394-418	376-401
Koller	485-515	448-474	412-435	374-395	337-357
Koller + Skidder	541-576	498-528	454-480	409-433	364-387
West Coast, 3 Chokers	605-660	572-620	539-581	504-542	468-505
West Coast, 4 Chokers	713-767	677-724	641-686	604-641	566-602
West Coast, 5 Chokers	750-810	716-768	681-727	645-686	608-647
Bunch GU-10	908-978	835-895	762-812	687-731	610-652
Swing Schield Bantam	976-1050	832-996	888-942	844-888	799-834

TABLE 8.95% Confidence Interval for Production (delay free) Over Range of Average Slope
Yarding Distance (100-500 feet) When Average Log Volume Equals 12 Cubic Feet
and Cut Volume Per Acre Equals 1800 Cubic Feet Per Acre

TABLE 9. 95% Confidence Intervals for Production (Delay free) Over Range of Cut Volume 1000-7500 Cubic Feet Per Acre When ASYD Equals 450 Feet and LOGVOL Equals 12 Cubic Feet

YARDER CONFIGURATION	1000	2000	3000	4000	5000	6000	7000
Mini Alp	280-301	292-310	302-321	309-334	316-348	323-362	352-384
5J-2	335-359	347-368	356-379	364-393	370-407	376-423	384-446
Peewee	343-371	359-383	371-397	382-415	391-433	399-452	411-482
Koller	348-371	357-377	364-386	369-397	373-409	377-421	381-440
Koller + Skidder	378-405	389-412	397-422	402-434	406-447	410-461	415-483
West Coast, 3 Chokers	461-503	492-529	519-559	542-593	546-629	584-666	614-722
West Coast, 4 Chokers	551-593	593-630	631-670	665-715	697-761	728-808	774880
West Coast, 5 Chokers	579-625	638-677	691-734	741-795	788-858	834-922	902-1019
Bunch GU-10	621-679	654-695	675-724	687-762	696-802	Not Avai	able
Swing Schield Bantam	799-845	827-866	848-892	865-923	880-956	(Beyond 1 range)	THIN data

.

TABLE 10. 95% Confidence Intervals for Production (delay free) Over Range of Log Volume (10-30 CUFT) When ASYD Equals 450 Feet and CUTVOL Equals 1800 Cubic Feet per Acre

YARDER CONFIGURATION	10	15	20	25	30
Mini Alp	277-297	309-326	338-359	366-393	392-429
5J-2	331-355	363-383	391-415	416-449	441-484
Peewee	335-362	386-409	432-460	476-513	519-568
Koller	336-358	384-403	429-451	471-502	512-553
Koller + Skidder	365-391	419-441	470-496	517-55 3	564-611
West Coast, 3 Chokers	420-461	584-619	742-784	879-953	1049-1124
West Coast, 4 Chokers	521-561	680-715	833-874	982-1038	1129-1204
Nest Coast, 5 Chokers	569-613	711-749	847-892	978-1040	1108-1189
Bunch GU-10	865-942	764-822		Not Availab	le
Swing Schield Bantam	725-766	962-1009		(Beyond THI	N data range

The value of yarder specific production equations can be partially appreciated by noting that very little overlapping of production rates occurs between the yarder configurations listed in Tables 8, 9, and 10.

Significance of Variables

The variables ASYD, LOGVOL, and CUTVOL are significant at the 95% level in all of the production equations. The most significant variable in the West Coast Yarder and Schield Bantam Swing equations is LOGVOL. ASYD is the most significant variable in the other equations. CUTVOL is the least significant variable in all of the equations. Table 11 lists the t-values for each regression term in the equations.

TABLE 11. t-values Indicating the Significance of Variables at the 95% Level

YARDER CONFIGURATION	CONSTANT	LOGVOL	ASYD C	UTVOL
Mini Alp	31.779	11.447	-23.300	4.431
SJ-2	28.031	9.254	-13.356	3.765
Peewee	28.498	13.384	-23.999	4.379
Koller	34.426	15.253	-27.001	3.016
Koller + Skidder	33.471	14.964	-27.946	2.902
West Coast, 3 Chokers	10.463	28.914	-14.071	5.943
West Coast, 4 Chokers	15.343	28.345	-15.169	8.238
West Coast, 5 Chokers	16.201	23.101	-13.592 1	0.612
Bunch GU-10	14.996	15.437	-22.195	2.771
Swing Schield Bantum	16.976	29.121	-17.220	4.264

VII. USE OF THE PRODUCTION EQUATIONS

Limitations and Warnings

The equations have an inherent source of error and are only approximations of hourly production. The user must understand that the equations have the following limitations:

- The production estimates obtained from the equations are delay free. (See Adjustment for Delays)
- The equations are linear approximations of nonlinear data, and some error is inherent to the equations as a result.
- Values of independent variables must not be outside of the data base ranges used during THIN simulation. These ranges are listed in Table 15.
- An error may occur when it is assumed that ASYD for the setting equals SL/2. This error occurs when the log distribution within the setting is not uniform. For example, it was found that ASYD = 497 feet instead of 500 feet when SL = 1000 feet during the simulation runs for the West Coast Tower configuration with four chokers.
- The production equations are based on assumptions which have been stated in Section V, page 15.
 The equations may not be valid when applied to conditions which differ from the stated assumptions.

Adjustments for Delays

Production estimates obtained from the linear production equations presented in this paper and listed in Table 7 are unadjusted for delays. The user may wish to adjust the estimates for various types of delays. Figure 16 defines several broad categories of delays as well as productive time.

A =	experimental delay time
B =	initial move in and rig up time
C =	final rig down and move out time
D =	road and landing change time
E =	other delay time attributed to delays such as:
	personal mechanical resetting chokers to free hangup sorting rigging landing delays repositioning turn on deck moving carriage stop breaking line line fouled on drum
F =	productive time attributed to the following activities: outhaul lateral out hook lateral in inhaul unhook

Figure 16. Definitions of Delay and Production Time Categories (Time in Minutes)

Table 12 lists suggested correction factors for type E delays when the desired total time basis equals E+F. The correction factors are based on delays observed during the time studies. [7] [9] [10] [14] [15] [17] [18].

Equation 1 can be used to find the hourly production rate in cubic feet adjusted for type E delays.

$$PROD_{E} = PROD \left[1 - \left(\frac{E}{E+F}\right) \right]$$
 Equation 1

- Where $PROD_E$ = Hourly production rate in cubic feet adjusted for type E delays.
 - - E = (Defined in Figure 16)

F = (Defined in Figure 16)

The use of Equation 1 is demonstrated in the following example:

Given: LOGVOL = 19 CUTVOL = 2500 1000 SL = Required: Find the hourly skyline thinning production rate of the West Coast tower configuration with 4 chokers adjusted for type E delays. Solution: First determine ASYD for the rectangular setting by assuming: ASYD ~ SL/2 (See section VII, page 51 concerning this assumption) ASYD \simeq 500 Using the production rate equation listed in Table 7 for the West Coast configuration with 4 chokers, find the delay free hourly production rate: PROD = 333.169 - 0.389712(500)+31.2752(19)+0.0391625(2500)PROD = 830 cuft/hrNext find the correction factor for type E delays in Table 12: $1 - (\frac{E}{E+F}) = 0.78$ Finally, solve Equation 1 to obtain the hourly production rate adjusted for type E delays: $PROD_{F} = 830(0.78)$

 $PROD_{E} = 647 \text{ cuft/hr}$

TABLE 12. Suggested Adjustment Factors for Type E Delays When Desired Total Time Basis Equals Type E Delays Plus Productive Time

Configuration	Correction Factor = $1 - (\frac{E}{E+F})$
Mini Alp	.76
SJ-2	.79
Peewee	.83 .
Koller without skidder swing	unknown
Koller with skidder swing	unknown
West Coast	.78
Prebunch	unknown
Swing	.81

Equation 2 can be used to adjust production for type D and E delays when the desired total time basis equals D+E+F.

 $\begin{array}{l} \mbox{PROD}_{D+E} = \begin{tabular}{l} \hline 0.00344* \mbox{CUTVOL*L} \\ \hline \hline 0.00344* \mbox{CUTVOL*L} + \end{tabular} + \end{tabular} \end{t$

The use of Equation 2 is demonstrated in the following example:

delays.

Solution:

From the previous example: PROD = 830 From the previous example:

$$G = 1 - (\frac{E}{E + E}) = 0.78$$

Next find the average road change time from Table 13.

average road change time = 253 minutes Finally, solve Equation 2 to obtain the hourly production rate adjusted for type D and E delays.

 $PROD_{D+E} = \frac{.00344 \ (2500)(973)}{.00344 \ (2500)(973)} + \frac{253}{60}$

$$PROD_{D+E} = \frac{488 \text{ cuft/hr}}{488 \text{ cuft/hr}}$$

Equation 3 can be used to adjust production for type D and E delays when the desired total turn time basis equals D+E+F. Equation 3 is helpful when delay percentages quoted in the literature [18] include road change times; however, some error is likely to occur unless the average SL of the time study equals the SL of the setting in question.

$$PROD_{D+E} = \left[1 - \left(\frac{D+E}{D+E+F}\right)\right] PROD \qquad Equation 3$$

The term $\left(\frac{D+E}{D+E+F}\right)$ = .39 for the GU-10 prebunch configuration when average SL = 802 feet (244.4 meters).

The use of Equation 3 is demonstrated in the following example:

Required: Find the approximate hourly production rate of the Skagit GU-10 rigged for prebunching and adjusted for type D and E delays.

Solution: First determine ASYD:

ASYD
$$\simeq$$
 SL/2

ASYD \simeq 400

Using the production rate equation listed in Table 7 for the Skagit GU-10 prebunching configuration, find the delay free hourly production rate:

PROD=483.729 - 0.780594(400) + 41.0603(26) + 0.0247655(3500) PROD=997 cuft/hr

Finally, solve Equation 3 using the suggested value of 0.39 for the term $(\frac{D+E}{D+E+F})$ found on page 57.

$$PROD_{D+E} = \begin{bmatrix} 1 & - & .39 \end{bmatrix} 997$$

$$PROD_{D+E} = \underline{608 \text{ cuft/hr}}$$

Road change time was found to vary with EYD for the Mini Alp Configuration [15]. It is logical to suspect that the same may be true for the other configurations; however, regression equations for road change times were not developed during the original time studies. Table 13 is a summary of road change time data collected during the time studies. [7] [9] [9] [15] [18]

TABLE 13. Road Change T	'ime I	Data
-------------------------	--------	------

Configuration	Average Road Change Time (Min)	
Mini Alp	46.5455 ln(EYD)-162	
Koller	unknown	
Peewee	216	
SJ-2	84	
West Coast	253	
Skagit GU-10 prebunching	108	
Schield Bantam Swinging	unknown	

Cubic Feet to Board Feet Conversion

The problems of attempting to convert production in cubic feet per hour to production in board feet per hour are many. Some loss in accuracy is nearly assured during the conversion. If a conversion between cubic feet and board feet is necessary, one approach suggested by Dykstra [6] is to consider the relationship between average log size and the conversion ratio. Dykstra has included some helpful average log volume data from 15 different stands in his article [6]. An excerpt of a portion of the data from seven Douglas-fir stands with the smallest reported average log volumes in Dykstra's Table 1 follows:

Average Log	Volume	<u>Conversion Ratio</u>
Cubic Feet (Smalian)	Board Feet (Scribner)	
12.9 15.5 15.9 20.1 25.2 24.0	51.5 61.6 72.2 89.7 117.9 102.6	4.0 4.0 4.5 4.5 4.7 4.3
32.6	168.8	4.2

If average log volume in cubic feet is regressed against conversion ratios, the following equation results with an $R^2 = .76$:

Conversion ratio = 3.34 + .053 (LOGVOL)

Obtaining LOGVOL

The BUCK model can be used to determine LOGVOL for any timber stand. Inputs include dbh, total height in feet, Girard form class* and the number of trees in each dbh class.

^{*} Girard form class in this paper is defined as the ratio of the diameter inside bark at the top of the first 32 foot log above the stump to dbh.

VIII. ANALYSIS

How Well Do Graphs of the Equations Appear to Fit Plots of Data?

The R² values and confidence limits listed in Tables 7, 8, 9 and 10 are two indications of goodness of fit. A third indication can be obtained by comparing data plots with graphs of the equations. Figure 17 compares plots of data points with the graph of the Mini Alp equation. Additional comparative plots and graphs can be found in the Appendix. Only 5 or 10 data points can be plotted for comparison with graphs of the equation using this technique. Based on this small sample size; however, one may suspect that some of the data is nonlinear which hampers goodness of fit.

The equations for the Mini Alp, Koller, Peewee and Skagit SJ-2 configurations tend to over estimate delay free production when LOGVOL = 6.2 and ASYD = 450. An under estimate tends to occur when LOGVOL = 11.9 and ASYD = 450. The West Coast equations are apparently least hampered by this problem.

AYD = 450 CUT VOL/ACRE - 1800

LEGEND

Θ	Stochas	stic	data
	Linear	equa	ition

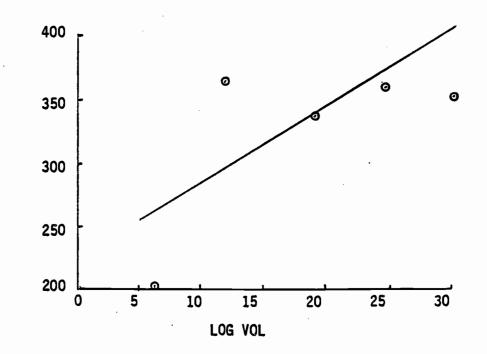


Figure 17. Comparison Between Observed and Predicted Production for the Mini Alp Configuration when LOGVOL is Varied. Production Data was Generated by the THIN Model.

Multicolinearity

Some multicolinearity exists between CUTVOL and LOGVOL. Multicolinearity can be detected by observing a change in the LOGVOL coefficient when CUTVOL enters the linear production equation. For example the LOGVOL coefficient changed from 10.4098 to 9.2803 when CUTVOL entered the equation for the Koller configuration without the skidder. The correlation value between the two variables was .6156. Figure 18 is a scattergram of the two variables.

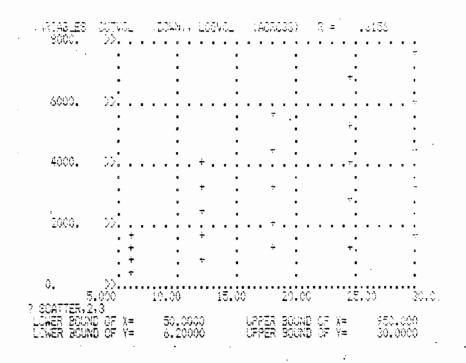
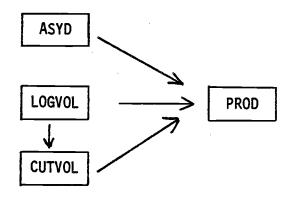
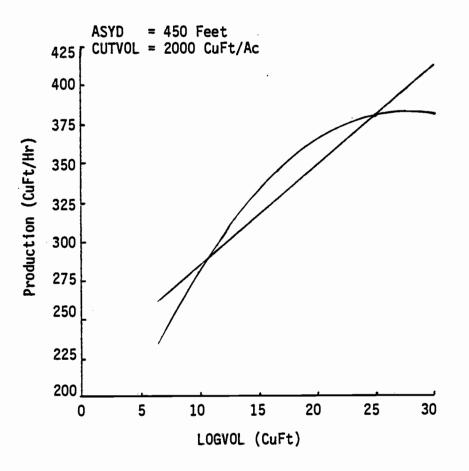



Figure 18. Scattergram Indicating the Presence of Multicolinearity Between the Variables CUTVOL and LOGVOL in Site III Stands

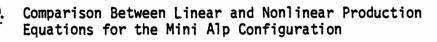
A diagram of the effects which the three independent variables have on production and on each other is as follows:

Do Linear or Nonlinear Relationships Exist Between Production and the Independent Variables?

Data trends can often be detected by plotting all existing data on a two dimensional coordinate system. Such graphs are sometimes referred to as scattergrams [16]. Scattergrams are especially helpful when only a small number of data points would result if all but one of the independent variables are held constant. This is the case for the data sets representing the yarder configurations. Figures 30 through 35 are scattergrams for the Koller configuration without the skidder swing, the West Coast configuration with 4 chokers and the Skagit GU-10 prebunching configuration. Figures 30 through 35 can be found in the Appendix. A visual inspection of the scattergrams leads one to suspect that some of the data is nonlinear.

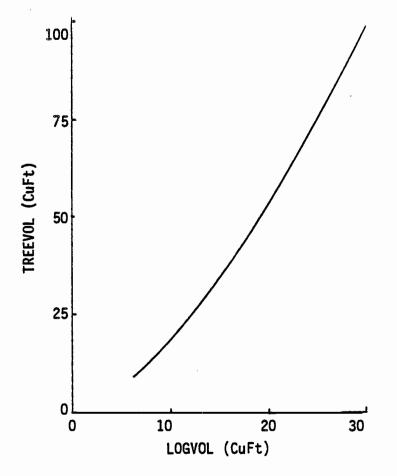

How Much Accuracy is Sacrificed with Linear Production Equations Since Some of Data is Nonlinear?

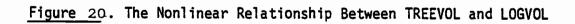
One must ask how much accuracy is sacrificed with linear production equations when some of the data is nonlinear. One way to evaluate this question is to develop a nonlinear equation and compare it with its linear counterpart.


A nonlinear form for the Mini Alp configuration follows: Production (CuFt.Hr) = 259.414 - .486089 ASYD + 18.6834 LOGVOL + .0300731 CUTVOL + .000192712 ASYD SQ - .344172 LOGVOL SQ - .000002859 CUTVOL SQ

The R^2 value for the nonlinear form is .8430 while the R^2 value for the linear form is .7827. By using the linear form a sacrifice in R^2 value of .0603 occurs.

Figure 19 is a graphic comparison of the linear and nonlinear production equations for the Mini Alp when ASYD = 450 feet, CUTVOL = 2000 cubic feet per acre and LOGVOL is varied from 6.2 to 30.0 cubic feet. Under these conditions, a maximum difference of 34 cubic feet per hour in delay free production occurs when LOGVOL = 6.2 cubic feet.


Figure 19.



Would the Accuracy of the Equations be Adversely Affected by Selecting the Independent Variable TREEVOL in Lieu of LOGVOL?

The selection of the independent variable TREEVOL in lieu of LOGVOL will adversely affect the accuracy of the linear production rate equations. Figure 20 is a graph of TREEVOL versus LOGVOL which illustrates that TREEVOL and LOGVOL are not linearly related. The THIN model generates stochastic production data based on log volume parameters and not tree volume parameters. Therefore, a loss in accuracy occurs during the regression process when TREEVOL values are substituted for the corresponding LOGVOL values. Table 14 is a measure of the loss in accuracy which occurs when the independent variable TREEVOL is regressed in lieu of LOGVOL against production for the West Coast configuration with four chokers. The equation for the West Coast configuration with four chokers using TREEVOL as an independent variable follows:

> Production = 487.128 - .389712 ASYD (CuFt/Hr) + 7.84875 TREEVOL + .044582 CUTVOL

		I	ndependent Varia	able in Equation	
Stand Age	LOGVOL (CuFt)	Correspondeng TREEVOL (CuFt/Hr)	LOGVOL Production (CuFt/Hr)	TREEVOL Production (CuFt/Hr)	Difference (CuFt/Hr)
40	6.21	9.51	430	476	-46
60	11.92	24.30	609	592	17
80	18.09	47.09	802	771	31
100	24.30	71.86	996	965	31
120	30.04	99.21	1176	1180	-6

.

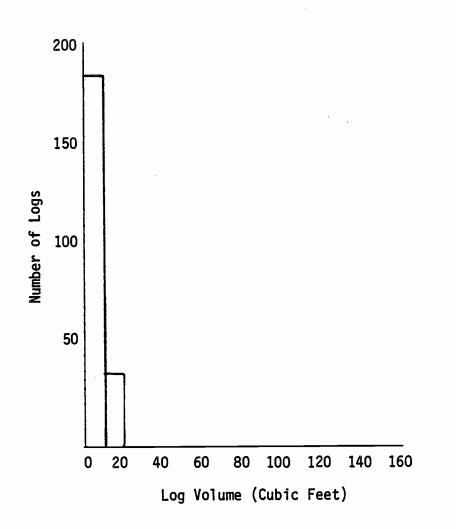
TABLE 14. Difference in Production Estimate Which Occurs When TREEVOL in Lieu of LOGVOL is Regressed Against Production (West Coast Tower with 4 Chokers, ASYD Equals 450 Feet, CUTVOL Equals 2000 CuFt/Hr)

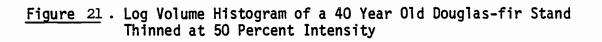
What Range of Values of ASYD, LOGVOL and CUTVOL were Regressed Against Production to Obtain the Production Equations?

The ASYD values linearly regressed against production ranged from 50 to 950 feet. The range of LOGVOL and CUTVOL values linearly regressed against production are listed in Table 15 for site III stand data.

<u>TABLE 15</u>. Range of LOGVOL and CUTVOL Values Linearly Regressed Against Production for Site III Stand Data.

Stand Age	LOGVOL			CUTV	OL	
				THINNING	INTENSI	<u>гү</u>
		10%	20%	30%	40%	50%
40	6.2	355	711	1066	1421	1776
60	11.9	764	1528	2292 [·]	3056	3820
80	18.1	1093	2186	3280	4374	5466
100*	24.3	1322	2644	3966	5288	6610
120*	30.0	1506	3012	4518	6024	7530
*Data for st prebunch an	tand ages lend swing equ		-	is not	included	in the


How Much Error Results When ASYD is Assumed to Equal SL/2?


To be useful for most economic analysis, the production equations must apply to entire settings and not to just one turn of logs. To apply the equations in this paper to entire rectangular settings, it is convenient to assume that ASYD \simeq SL/2. Two conditions must be met if this assumption is to be valid. First, the relationship between production and ASYD must be linear; secondly, the log distribution must be uniform. The first condition has been met by virtue of linear regression. All of the production equations have linear ASYD terms. The second condition will rarely be met; however, the error may be tolerable in homogenous stands. For example it was found that ASYD = 497 feet instead of 500 feet when SL = 1000 feet during the simulation runs for the West Coast Tower configuration with 4 chokers.

Does the Independent Variable LOGVOL have a Symmetrical Distribution?

Figures 21, 36, 37, 38 and 39 are the histograms of log volume for site III stands of Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) at age classes 40, 60, 80, 100 and 120 years, respectively, when thinned at 50 percent intensity and bucked in accordance with the previously described bucking rule. These figures indicate that LOGVOL has a nonsymmetrical distribution. See Appendix for Figures 36, 37, 38 and 39.

It is helpful to know the distribution of independent variables. Obviously, a mid-range value of LOGVOL would not be the correct weighted average value to use in a linear regression term. The correct mean LOGVOL value to be used in linear regression terms can be obtained by using the previously described log bucking model BUCK.

IX. CONCLUSIONS

The THIN model was successfully used to generate yarder-specific stochastic production data which were subsequently regressed into ten linear production rate equations. With one minor exception, the THIN model functioned well during its role in the transformation process. It was found that when maximum log volume exceeded allowable payload, turn weight sometimes exceeded maximum log weight. This occurred when prebunch and swing turns were being simulated, but did not occur when full cycle yarding turns were being simulated.

The linear equations suffer from an inherent inaccuracy in that much of the data is nonlinear. A strong nonlinear relationship exists between production and LOGVOL data at the low end of the LOGVOL range in several of the configurations. Goodness of fit has been hampered by linearly regressing this nonlinear data. The equations for the Mini Alp, Koller, Skagit SJ-2, and Peewee configurations tend to overestimate delay free production when LOGVOL equals either 6.2 or 30.0 and ASYD = 450. An under estimate tends to occur when LOGVOL = 11.9 and ASYD = 450. A difference of 34 cubic feet per hour was found to exist between linear and nonlinear equations for the Mini Alp configuration when ASYD = 450 feet, LOGVOL = 6.2 cubic feet and CUTVOL = 2000 cubic feet per acre.

X. SUGGESTIONS FOR FUTURE TRANSFORMATIONS

Develop Two Linear Production Equations for Each Configuration Representing Different Ranges of LOGVOL Values

The purpose of two equations is improved accuracy. The principle is illustrated in Figure 22.

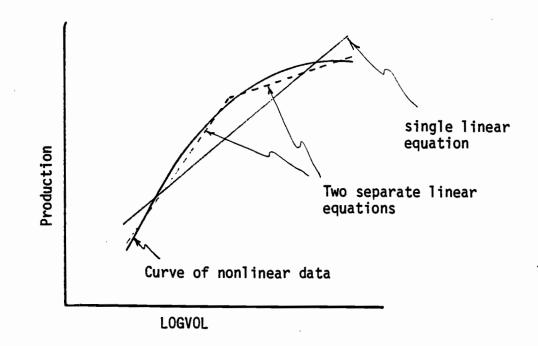


Figure 22. Principle of Fitting Two Linear Equations to Nonlinear Data for Improved Prediction Accuracy

Omit Low Intensity Thinning Data to Avoid the Stronger Nonlinear Relationship Which Occurs Between Production and CUTVOL at the Low End of the CUTVOL Range

It is suspected that the accuracy of the production equations presented in this paper could have been improved if the 10% thinning intensity had been omitted.

Assume More Than Three Chokers When Making THIN Runs

The effect would be to more fully utilize the allowable system payload when operating in small timber. LeDoux has used the THIN model to answer the question of how many chokers to fly in cable thinnings. [12]

Develop Equations with Nonlinear LOGVOL and CUTVOL terms while leaving the ASYD Term Linear

A considerable sacrifice of user simplicity would occur if a nonlinear ASYD term were included.

XI REFERENCES

- Aubuchon, R. R. 1982. Compendium of cable yarding production equations. Master of Forestry Paper, Oregon State Univ., Corvallis, Oregon 136 p.
- 2. Bones, J. T. 1960. Estimating D.B.H. from stump diameter in the Pacific Northwest. U.S. Dept. Agr., Forest Science, PNW Research Note No. 186. Portland, Oregon. 2 p.
- Bruce, David. 1982. Butt log volume estimators. Forest Sci. 28(3):489-503.
- 4. Bruce, David, 1983. Personal memo.
- 5. Butler, D. A. and LeDoux, C. B. 1982. Thin: a cable yarding simulation model - user's manual. (Unpublished) Sch. For., Oregon State University, Corvallis, Oregon 15 p.
- Dykstra, D. P. 1978. Some observations on roundwood metrication. Forest Products J. 28(2):18-20.
- 7. Gabrielli, R. M. 1980. Cable thinning in young forests with average DBH of 5-8 inches: a cast study. M.F. Thesis, Sch. For., Oregon State University, Corvallis, Oregon. 106 p.
- 8. Hartman, D. A., Atkinson, W. A., Bryant, B. S., and Woodfin, R. O. 1976. Conversion factors for the Pacific Northwest forest industry. College of Forest Resources, Univ. of Wash., Seattle, Washington. 112 p.
- 9. Keller, R. R. 1979. Prebunching with a low investment skyline yarder in thinnings. M.S. Thesis, Sch. For., Oregon State University, Corvallis, Oregon. 138 p.
- 10. Kellogg, L. D. 1976. A case study of prebunching and swinging, a thinning system for young forests. M.F. Thesis, Sch. For., Oregon State University, Corvallis, Oregon. 88p.
- 11. LeDoux, C.B., and C.A. Butler. 1981. Simulating cable thinning in young-growth stands. Forest Sci. 27(4):745-757.
- 12. LeDoux, C.B. 1981. How many chokers to fly in cable thinnings? a question for simulation. Forest Products J. 31(11):54-58.

- 13. McArdle, R.E., Meyer, W.H., and Bruce, Donald, 1949 (rev). The yield of Douglas-fir in the Pacific Northwest. U.S. Dept. Agr., Tech. Bull. No. 201.
- 14. McIntire, John C. 1981. The effect of swinging and sorting with a skidder on yarding and loading efficiency in small diameter Douglas-fir. M.S. Thesis, Sch. For., Oregon State University, Corvallis, Oregon. 71 p.
- 15. Neilson, D.A. 1977. The production potential of the Igland-Jones Trailer Alp yarding in thinning young-growth northwest conifers: a case study. M.S. Thesis, Sch. For., Oregon State University, Corvallis, Oregon, 82 p.
- 16. Nie, Norman H. et al. 1975. SPSS, Statistical Package for the Social Sciences, 2nd Edition, McGraw-Hill, Inc.
- 17. Peters, P.A. 1974. A new approach to yarding cost analysis. Skyline Logging Symposium Proceedings. University of Washington, Seattle, Washington. 45-51.
- 18. Pursell, W.W. 1979. A production study of the peewee yarder during a skyline thinning operation. M.S. paper. Sch. For., Univ. of Wash., Seattle, Washington.
- 19. Zielinski, Carl R. 1980. Operational prebunching: A logger's application to reduce thinning costs. Master of Forestry paper, Oregon State University, Corvallis, Oregon. 96 p.

APPENDIX

· · · · ·

. . .

.

.

Equipment Specifications

•

.

DETAILED EQUIPMENT SPECIFICATIONS FOR

YARDER CONFIGURATIONS USED DURING SIMULATION

Yarders/Towers							Carriages				
Hake	Tarder Tower	System	Tower Height # Guylines	SI.	Length ML	/Dismeter HB	Other	Make	Name Model No.	Yarder Drums Used	Weight
Igland Jones	Trailer Alp powered by John Deere 2640 70 h.p. farm tractor	Standing skyline, single and multi- span with haulback, uphill, 3 chokers	23.7 ft. (7.2 meters) 3	2600 ft. 5/8 ina. (800 meters) (16 mm)	1800 ft. 3/81ns. (550 meters) (9.5 mm)	1800 ft. 3/8 ins. (550 meters) (9.5 mm)		igland Jones	• •	3 3	35 1bs. (16 kg. 60 1bs. (36 kg.
Koller	Koller 300	Standing skyline, single and multi- span gravity out- haul, uphill, 3 chokers	20 ft. (6 meters) 2	1100 ft. 5/8 ins. (340 meters) (16 mm)	1300 ft. 3/6 ins. (400 meters) (9.5 mm)			Koller	SKAI	2	330 1bs. (150 kg.
Same as above	Same as above	Same as above but with skidder swing to truck landing using John Deere 440-C skidder	Same as above		Same a	a above			Same an above	•	
Experimental USFS	Peexee	Running skyline, single span, uphill and downhill, 3 chokers	37 ft. (11.3 motors)		1200 ft. 1/2 ins. (365 meters) (12.5 mm)	1200 ft. 1/2 ina. (365 mstera) (12.5 mm)	1200 ft. 1/2 ins. (365 meters) (12.5 mm)	,	nown	3	
Skagit	SJ2-R Hobile Thinning Yarder	Line akyline, single span, gravity outhsul, uphill, 3 chokers	40 ft. (12.2 meters) 2		700 ft. 5/8 ins. (213 meters) (16 mm)	1000 ft. 9/16 ina. (304 metera) (14.3 mm)		Christy	Regular (hand alack pulling)	2	340 1bs. (154 kg.
Interstate Tractor, Inc.	Weat Coast Falcon	Standing akyline, singlespan, haul- back, uphill, 3,4, or 5 chokers	49 ft. (14.9 meters) 3	2000 ft. 1 ing. (610 meters) (25.4 mm)	1200 ft. 3/4 ins. (365 meters) (19.1 run)	2200 ft. 9/16 ins. (670 meters) (14.3 mm)	1600 ft. 7/16 ins. (428 meters) (11.1 mm)	West Coast	West Cosst (dropline)	4	1430 lbs. (649 kg.
Skagit	GU-10 Rigged Tree	Prebunch with truck mounted GU-10, block rigged in tree, 2 chokers	No tower		not used	1100 ft. 7/16 ins. (335 meters) (11.1 mm)			No carriage u	sed	
Schield-Bantes	1- 350	Swing, line skyline, gravity outhaul, 3 chokers	30 ft. (9.1 metere)	1000 ft. 3/4 ins. (305 meters) (19.1 mm)	900 ft. 5/8 ins. (275 seters) (16 mm)	1600 ft. 7/16 ins. (482 motors) (11.1 mm)		Maki		2	

BUCK Model

.

•

•

,

,

BUCKING PROGRAM

LBL: BUCK SIZE: 024 HP 41CV + PRINTER IF AVAILABLE March 28, 1983 L.W. Starnes

The program simulates bucking a stand of second growth Douglas-fir trees into logs following an assumed bucking rule. The intended use of the program is to determine log volume statistical parameters and number of logs which are required to operate the THIN simulation model [11]. A one foot stump height and a 4 inch diameter inside bark top are assumed for merchantability standards. Upper stem taper follows that of a paraboliod. Cubic foot log volumes are computed using equations developed by Bruce [3] [4] after assumptions are made for diameter inside bark at a one foot stump height. A sample printout follows:

- - - -336=8.00 HT=60,00 NUNTREES=3, 309 #FF*-T=43.3F 7. - . #4 122=4.27 DSTUMP=7.84 **DS21=7.68** FC=0,76 DBH=14.00 HT=90.00 VUNTREES=1.0 *ERCHT=73.70 121=24.62 V22=18.99 STUMP=13.71 3\$21=10.03 TOTYOL=69.53 HUNLOGS=8.00 ENGTH=25.47 "EAN=8.69 "IN=4,27 HOY=24 40 115... 11

Inputs include the following:

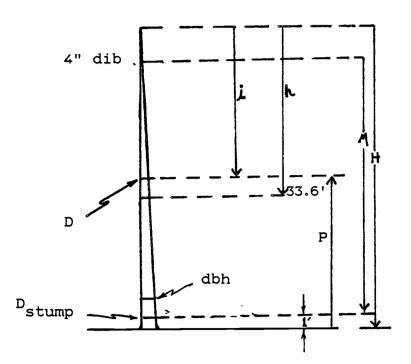
FC	 Form class expressed as decimal
	(enter form class 72 as .72)
DBH	- Diameter breast height inches
HT	- Total tree height in feet
NUMTREES	- Number of trees with DBH, Ht. and FC as
	input above

Outputs include the following:

TOTVOL	 Total volume of all logs bucked
NUMLOGS	- Total number of all logs bucked
LENGTH	- Average length of logs bucked
MEAN	- Average log volume
MIN	- Minimum log volume
MAX	- Maximum log volume
SDEV	- Standard deviation of log volume about
	the mean

Storage register assignments:

01	FC
02	DBH
03	НТ
04	D STUMP
05	M
06	NO. LOGS IN TREE
07	DS31 OR DS21 OR DS41
08	DS32 OR DS42
10	MIN LOGVOL
11	Statistical Register
12	"
13	"
14	11
15	"
16	11
17	MAX LOG VOLUME
19	TOTAL MERCH LENGTH ALL TREES
20	DS43
21	ISG Register (Current)
23	Original ISG Register


Example Problem:

Find the log volume parameters, total volume, total number of logs, and average log length for the following four trees:

	<u>Diameter Class</u> 8 14	<u>Total Height</u> 60 90	<u>Form Class</u> .74 .76	<u>Number of Trees</u> 3 1
KEYS		DISPLAY	PRINTER	
XEQ (AL .74 8 60 3	PHA BUCK ALPHA R/S R/S R/S R/S	FC? DBH? HT? NUMTREES?	FC=0.74 DBH=8.00 HT=60.00 HUNTREES=3.00 HERCHT=43.35 V21=7.04 V22=4.27 DSTUNP=7.84	
Y .76 14 90 1	R/S R/S R/S	MORETREES? FC? DBH? HT? NUMTREES?	BS10HF-7.04 DS21=7.68 FC=0.76 DBH=14.00 HT=90.00 NUMTREES=1.00 NERCHT=73.70 V21=24.62 V22=10.99 DSTUMP=13.71 DS21=10.03	
			TOTVOL=69.53 WUHLOGS=8.00 LENGTH=25.47 NEAN=8.69 NIN=4.27 NRX=24.62 SDEV=6.82	

BUCKING MODEL EQUATIONS

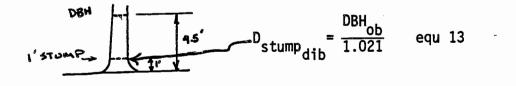
Diagram and definition of notation:

н	= Total tree height from ground to tip
dbh	= Diameter breast height measured 4.5 feet above
	the ground
М	= Merchantable length measured from 1 foot stump
	to 4 inch inside bark top.
P	= Distance from ground to point of interest on the stem
i	= Length measured downward from tip to point of interest
h	= Distance from tip to top of first 32 foot log
	(trim allowance = 0.6 feet)
1	= ratio of i/h
d	= diameter expressed as decimal fraction of diameter
	of top of first log. d is used to obtain diameter
	inside bark in inches at the first point of interest.
D	-
D	= diameter inside bark at point of interest
FC	= Girard form class expressed as decimal fraction
	for 32 foot logs.
~	
Dstump	= Diameter inside bark at the top of the stump.
	Assumed stump height = 1 foot.

To find D: $d = \ell^{3/4}$ eau 1* D = d(dbh)(FC)equ₂ i = H-Pequ 3 $\ell = i/h$ equ 4 substituting 3 into 4: $\mathcal{L} = \frac{H-P}{h}$ equ 5 h = H - 33.6equ 6 substituting 6 into 5: $\mathcal{L} = \frac{H-P}{H-33.6}$ equ 6 substituting 1 into 2: $D = \ell^{3/4} (dbh) (FC)$ equ 8 substituting 7 into 8: $D = (\frac{H-P}{H-33.6})^{3/4} (dbh) (FC)$ equ 9

To find M:

$$4 = \left(\frac{H-P}{H-33.6}\right)^{3/4} dbh(FC) equ 10$$


 $M = P-1 \rightarrow P = M+1 \qquad equ 11$

substituting 11 into 10 and rearranging:

. . .

$$M = H-1-(H-33.6) \left[\frac{4}{dbh(FC)} \right]^{4/3} equ 12$$

Equation 1 is an approximation of stem diameter expressed as a decimal fraction of the diameter of the top of the first 32 foot log. The equation approximates a paraboloid which describes the stem diameter of second growth Douglas-fir from 17.6 feet above the ground to a 4 inch top. The equation was suggested by David Bruce during a telephone conversation 1/4/83. Determination of Stump Diameter Inside Bark:

Bucking Rule:

Let M = Merchantable Length (From 1' Stump to 4" top)

Merchanta	ble Length (Ft)	<u># Logs</u>	Buttlog Length	2nd Log Length	3rd Log Length	4th Log Length
Case 1	M <u><</u> 40.6	1	М	-	-	-
Case 2	40.6 < M <u><</u> 81.2	2	M/2	M/2	-	-
Case 3	81.2 < M <u><</u> 121.8	3	40.6	<u>M-40.6</u> 2	<u>M-40.6</u> 2	-
Case 4	121.8 < M	4	40.6	40.6	<u>M-81.2</u> 2	<u>M-81.2</u> 2

Determination of Log Diameter Inside Bark at Small End:

Notation same as before except:

Psjk = Point of interest at small end of log k in case j
Dsjk = Diameter inside bark at small end of log k in case j
Vjk = Volume (CuFT) of log k in case j

Determination of Small End Log Diameter

Case 1:
$$D_{S11} = 4$$

Case 2: $P_{S21} = \frac{M}{2} + 1$
 $D_{S21} = \left[\frac{H - \frac{M}{2} + 1}{H - 33.6}\right]^{3/4} (dbh)(FC) = 4$
 $P_{S22} = M + 1$
 $D_{S22} = \left[\frac{H - M + 1}{H - 33.6}\right]^{3/4} (dbh)(FC)$
Case 3: $P_{S31} = 40.6 + 1 = 41.6$
 $D_{S31} = (\frac{H - 41.6}{H - 33.6})^{3/4} (dbh)(FC)$
 $P_{S32} = \frac{M - 40.6}{2} + 41.6$
 $D_{S32} = \left[\frac{H - \frac{M - 40.6}{2} + 41.6}{H - 33.6}\right]^{3/4} (dbh)(FC)$
 $P_{S33} = M + 1$
 $D_{S33} = \left[\frac{H - M + 1}{H - 33.6}\right]^{3/4} (dbh)(FC) = DS_{22} = 4$
Case 4: $P_{S41} = 40.6 + 1 = 41.6$
 $D_{S41} = \left[\frac{H - 41.6}{H - 33.6}\right]^{3/4} (dbh)(FC)$

$$P_{S42} = 40.6 + 40.6 + 1.0 = 82.2$$

$$D_{S42} = \left[\frac{H-82.2}{H-33.6}\right]^{3/4} (dbh) (FC)$$

$$P_{S43} = 82.2 + \frac{M-81.2}{2}$$

$$D_{S43} = \left[\frac{H-82.2 + \frac{M-81.2}{2}}{H-33.6}\right]^{3/4} (dbh) (FC)$$

$$P_{S44} = M+1$$

 $D_{S44} = \left[\frac{H-(M+1)}{H-33.6}\right]^{3/4} (dbh) (FC)$

Note that
$$D_{S11} = D_{S22} = D_{S33} = D_{S44} = 4$$

Determination of Log Volume:

•

Case 1:

$$V_{11}^{=} .005454154 \text{ M} [.75(4)^{2} + .25 (D_{stump})^{2}]$$

Case 2: $V_{21}^{=} .005454145(\frac{M}{2})[.75(D_{S21})^{2} + .25 (D_{stump})^{2}]$
 $V_{22}^{=} .005454145(\frac{M}{2})[.4][16 + \frac{4D_{S21}}{2} + D_{S21}^{2}]$
Case 3: $V_{31}^{=} .005454154 (40.6)[.75(D_{S31})^{2} + .25 (D_{stump})^{2}]$
 $V_{32}^{=} .005454154 (\frac{M-40.6}{2})(.4)[(D_{S32})^{2} + (\frac{D_{S32})(D_{S31})^{2}}{2} + (D_{S31})^{2}]$
 $V_{33}^{=} .005454145 (\frac{M-40.6}{2})(.4)[16 + (4)(D_{S32}) + (D_{S32})^{2}]$

Case 4:

7.

$$V_{41} = .005454145 (40.6)[.75(D_{S41})^{2} + .25 (D_{stump})^{2}]$$

$$V_{42} = .005454145 (40.6)(.4)[(D_{S42})^{2} + \frac{(D_{S42})(D_{S41})}{2} (D_{S41})^{2}]$$

$$V_{43} = .005454154 (\frac{M-81.2}{2})(.4)[(\frac{D_{S43})(D_{S42}}{2} + (D_{S42})^{2}]$$

$$V_{44} = .005454154 (\frac{M-81.2}{2})(.4)[(D_{S44})^{2} + \frac{(4)(D_{S43})}{2} + (D_{S43})^{2}]$$

Note that:
$$D_{S11} = D_{S22} = D_{S33} = D_{S44} = 4$$

۰.

...

.*

01+LBL "BUCK"	56 -	189 XEQ 88
02+LBL 11	57 *	110 RCL 03
03 CLRG	58 CHS	111 82.2
84 FIX 2	59 1 60 -	112 -
85 1988	61 RCL 03	113 RCL 03
86 STO 18	62 +	114 33.6
67 CLS	63 STO 95	115 -
08 0 09 Entert	00 510 00	116 /
OF ENIERT	64+LBL 12	117 .75
10+LBL 01	65 RCL 05	118 Ytx
11 8	66 ST+ 19	119 RCL 02
12 STO 21	67 RCL 21	129 *
13 ADV	68 ISG 21	121 RCL 01
14 "FC?"	69 GTO 12	122 *
15 PROMPT	70 RCL 23	123 STO 98
16 "FC="	71 STO 21	124 X+2
17 ARCL X	72 RCL 85	125 RCL 08
18 AVIEN	73 "HERCHT="	126 RCL 07 127 *
19 STO 91	74 XEQ 99	127 ÷
29 °08H?°	75 40.6	129 RCL 07
21 PROMPT	76 X()Y	139 Xt2
22 "DBH="	77 X(=Y?	131 +
23 ARCL X	78 GTO 82	132 .4
24 AVIEN	79 81.2	133 *
25 STO 02	80 X<>Y	134 49.6
26 "HT"	81 X<=Y?	135 *
27 PROMPT	82 GTO 03	136 .005454154
28 "HT="	83 121.8	137 *
29 ARCL X	84 X<>Y	138 -442=-
30 AVIEN	85 X(=Y?	139 XE0 09
31 STO 03	86 GTO 05	149 STO 22
32 "NUNTREES?"	87+LBL 13	
33 PROMPT	88 4	141+LBL 15
34 "NUNTREES="	89 ST+ 86	142 RCL 22
35 ARCL X	90 RCL 21	143 E+
36 AVIEN 77 1999	91 ISG 21	144 RCL 21
37 100 0 38 /	92 GTO 13	145 ISG 21
30 / 39 .001	93 RCL 23	146 GTO 15
40 -	94 STO 21	147 RCL 23
41 STO 21	95 XE9 10	148 STO 21
42 STO 23	96 "¥41="	149 RCL 22
43 RCL 02	97 XEQ 89	150 XEQ 08
44 1.821	98 ENTERT	151 RCL 05
45 /	99 STO 22	152 81.2
46 STO 84		153 -
47 4	1 00+ LBL 14	154 2
48 RCL 02	101 RCL 22	155 /
49 /	182 St	156 82.2
56 RCL 01	103 RCL 21	157 + 158 CHS
51 /	104 ISG 21	150 CHS 159 RCL 93
52 1.3333	185 GTO 14	160 +
53 Y+X	106 RCL 23	161 RCL 03
54 RCL 83	107 STO 21	162 33.6
55 33.6	108 RCL 22	163 -

164 /	222+LBL 17	279 -
165 RCL 82	223 RCL 22	288 2
166 *	224 E+	281 /
167 RCL 81	225 RCL 21	282 41.6
168 *	226 ISG 21	283 +
169 STO 20	227 GTO 17	284 CHS
178 Xt2	228 RCL 23	285 RCL 03 286 +
171 RCL 28	229 STO 21	287 RCL 83
172 RCL 88 173 *	230 RCL 22	288 33.6
174 +	231 XEQ 08	289 -
175 RCL 88	232 RCL 84	290 /
176 Xt2	233 *DSTUMP=*	291 .75
177 +	234 XEQ 09	292 YTX
178 .4	235 RCL 87	293 RCL 82
179 *	236 -BS41=-	294 *
188 RCL 05	237 XEQ 09	295 RCL 81
181 81.2	238 RCL 08	296 *
182 -	239 -1 542=*	297 STO 88
183 2	240 XEQ 89	298 Xt2
184 /	241 RCL 20 242 "D\$43="	299 RCL 87
185 *	242 1543-1 243 XEQ 89	388 Xt2
186 .005454154	244 "NORETREES?"	391 +
187 *	245 ROH	382 RCL 87
188 "V43="	246 PROMPT	393 RCL 88
189 XEQ 89	247 RDFF	394 *
198 STO 22	248 ASTO X	385 2
	249 -4-	306 /
191+LBL 16	258 ASTO Y	387 +
192 RCL 22	251 X=Y?	388 .4 389 *
193 E+ 194 RCL 21	252 GT0 81	310 RCL 05
195 ISG 21	253 GTO 84	311 48.6
196 GTO 16		312 -
197 RCL 23	254+LBL 85	313 2
198 STO 21	255+LBL 18	314 /
199 RCL 22	256 3	315 *
200 XEQ 88	257 ST+ 96	316 .005454154
281 4	258 RCL 21	317 *
282 RCL 28	259 ISG 21	318 -432=-
283 *	268 GTO 18	319 XEQ 09
284 16	261 RCL 23	320 STO 22
285 +	262 STO 21 263 XEQ 10	
206 RCL 20	264 - 10	321+LBL 28
207 X12	265 XEQ 89	322 RCL 22
208 +	266 STO 22	323 S+
209.4	200 510 22	324 RCL 21
210 *	267+LBL 19	325 ISG 21
211 RCL 05	268 RCL 22	326 GTO 28
212 81.2	269 2+	327 RCL 23
213 -	279 RCL 21	328 STO 21
214 2	271 ISG 21	329 RCL 22
215 /	272 GTO 19	330 XEQ 08 331 RCL 08
216 * 217 .005454154	273 RCL 23	331 KUL 60 332 X12
	274 ST0 21	332 16
218 * 219 *V44=*	275 RCL 22	333 10
229 XEQ 89	276 XEQ 88	335 4
221 STO 22	277 RCL 05	336 RCL 08
	278 48.6	337 *

. •

•

•

.

< 1°

. .

91

, . . ,

338 2	398 RCL 83	4EDAI DI
339 /	399 +	459+LBL 460 RCL
348 +	400 RCL 83 481 33.6	461 E+
341 .4	482 -	462 RCL
342 * 343 RCL 85	483 /	463 ISG
344 48.6	494 .75	464 GTO
345 -	485 YtX	465 RCL
346 2	486 RCL 82	466 STO
347 /	487 *	467 RCL 468 XEQ
348 *	468 RCL 81 489 *	469 RCL
349 .005454154	410 STO 87	478 151
350 * 351 *V33=*	411 812	471 XEQ
352 XE9 89	412 .75	472 RCL
353 STO 22	413 \$	473 *15
	414 RCL 84	474 XEQ
354+LBL 21	415 Xt2	475 *HORETR
355 RCL 22	416 -25	476 AON 477 PRO
356 E+	417 *	478 AOF
357 RCL 21	418 + 419 RCL 85	479 RST
358 ISG 21	429 2	489 ""
359 GTO 21 368 RCL 23	421 /	481 AST
361 STO 21	422 *	482 X=Y
362 RCL 22	423 .005454154	
363 XEQ 88	424 *	484 GTO
364 RCL 64	425 * 121=*	100.101
365 "BSTUMP="	426 XEB 89	485+LBL
366 XEQ 09	427 STO 22	486+LBL 487 1
367 RCL 87	428+LBL 23	488 ST4
368 "B\$31="	429 RCL 22	489 RCL
369 XEQ 09 370 RCL 88	438 2+	498 IS
371 "BS32="	431 RCL 21	491 GT(
372 XEQ 89	432 ISG 21	492 RCI
373 MORETREES?	433 GTO 23	493 ST
374 RON	434 RCL 23	494 RCI
375 PROMPT	435 ST0 21	495 Xt
376 ROFF	436 RCL 22	496 .25 497 *
377 ASTO X	437 XEQ 88 438 RCL 87	498 4
378 °Y.	439 X12	499 Xt
379 ASTO Y 388 X=Y?	449 RCL 87	588 .7
381 GTO 81	441 4	581 *
382 GTO 04	442 *	582 +
	443 2	583 RC
383+LBL 83	444 /	584 *
384+LBL 22	445 +	585 .895
385 2	446 16	586 * 587 *V
386 ST+ 66	447 + 448 .4	588 XE
387 RCL 21	449 *	509 51
388 ISG 21 389 GTO 22	458 RCL 85	••••
399 RCL 23	451 2	51 8+ LB
391 STO 21	452 /	511 RC
392 RCL 65	453 *	512 24
393 2	454 .005454154	513 RC
394 /	455 *	514 19
395 1	456 "¥22="	515 61
396 +	457 XEQ 89	516 RC 517 ST
397 CHS	458 STO 22	011 01

~

518 RCL 22 519 XEQ 88 528 RCL 84 521 "BSTUMP=" 522 XEQ 89 523 "NORETREES?" 524 AON 525 PROMPT 526 AOFF 527 ASTO X 528 °Y* 529 ASTO Y 538 X=Y? 531 GTO 81 532+LBL 04 533 ADV 534 ADV 535 RCL 11 536 *TOTVOL=* 537 XEQ 09 538 RCL 86 539 "NUMLOGS=" 548 XE9 89 541 RCL 19 542 X()Y 543 / 544 "LENGTH=" 545 XEQ 09 546 HERH 547 "HERH=" 548 XEQ 89 549 RCL 18 550 "HIH=" 551 XE9 89 552 RCL 17 553 *MAX=* 554 XEQ 09 555 SDEV 556 "SDEV=" 557 XEQ 09 558 GT0 11 559+LBL 08 560 ST0 18 561 RCL 10 562 X<>Y 563 X<=Y? 564 GTO 86 565 GTO 87 566+LBL 86 567 STO 10 568+LBL 07 569 RCL 17 570 RCL 18 571 X)Y? 572 STO 17 573 RTN

575 ARCL X 576 AVIEN 577 RTN 578+LBL 10 579 RCL 03 580 41.6 581 -582 RCL 03 583 33.6 584 -585 / 586 .73 587 Y1X 588 RCL 02 589 * 590 RCL 01 591 * 592 STO 07 593 X12 594 .73 595 * 596 RCL 04 597 X12 598 .25 599 * 600 + 601 40.6 602 * 603 .005454154 604 * 605 RTN 606 END

574+LBL 89

Original Turn Time Equations

Original Turn Time Equations

RIGINAL TURN TIME EQUATION IN INUTES (DELAY FREE)
urn Time = 1.6932 + .005119 (slope yarding dis- tance in feet) + .025653 (lateral distance in feet) + .2783 (number of logs in turn) R ² = .29
urn Time = 1.3969 + .00391347 (slope yarding distance in feet) + .0178717 (lateral distance in feet) + .429317 (number logs in turn) + .0151707 (turn volume in cubic feet) 381483 (number in rig- ging crew) 0941052 (number in land- ing crew) 307468 (one for skidder) R ² = .5369
urn Time = .6144 + .00475 (slope yarding distance in feet) + .00053 (lateral distance in feew squared) + .28694 (number of logs in turn) + .00563 (lead angle) R ² = .6157

ORIGINAL TURN TIME EQUATION IN . MINUTES (DELAY FREE)
Turn Time = 2.1832 + .00248 (slope yarding distance in feet)
perpendicular lateral distant + .00662 (
$R^2 = .3566$
Turn Time = 2.77 + 0.222 (volume per turn in abic feet 0492 (volume per turn in abic feet number of logs in turn 634 (number of logs in turn 634 ($\frac{number of logs in turn}{number of chokers flown}$) + .463 ($\frac{1}{\sin leed}$ angle + .000144(lateral distance in feet squared) + .243 x 10 ⁻⁵ (slope yarding dis- tance in feet squared) + .0364 (carriage height in feet) R ² = .565

.

.

YARDER CONFIGURATION	ORIGINAL TURN TIME EQUATION IN MINUTES (DELAY FREE)
Prebunch with truck mounted Skagit GU-10, block rigged in tree, 2 chokers, site III	Turn Time = 1.2142 + .0154 (lateral distance in feet) + .0016 (slope yarding distance in feet) R ² = .43
Swing with Schield Bantam T-350, live, singlespan, gravity outhaul, 2 chokers, Maki carriage	Turn Time = 1.0935 + .0040312 (slope yarding dis- tance in feet) + .00519 (lead angle) + .0092485 (turn volume in cubic feet) R^2 + .34

•

•

Example Input Data File for Regression (West Coast tower, configuration with 4 chokers)

.

200	6/24/13 6/24/13	10552	Cotvor	AL	PROD	-	LOSSIZE	CUTVOL/AC
283	050	5.30	0555					
249	150	/	1 , 1		<u>520</u> 734	050	11.9	0764
332	250	-1-	1-/1			150	┼──┼┈──	
246	250		┨╼╌┽╼╾╼┥		473	250	<u>+-</u> ;	
245	#50	\rightarrow			495	350	+	
		-/	┼─┼──┤	· •	616	45	+ <u>-</u>)
23/	550		┼╌┿╼╍╌┥	i e e e	699	550	·	
2.80	650	\rightarrow	┼╌ ╎ ╴		358	450	<u> </u>	<u> </u>
234	750 850	 (_	+ - +		493	750	<u> </u>	L
205		<u>⊢-}</u>	┝-)!		349	850	<u> </u>	<u> </u>
169	250	·			378	950		
457	050	┝- (0710		760	1 050	;	1527
455	150	\vdash	-		619	150		-1
377	250				628	250	:	
381	350		<u> </u>		469	350		
406	450				682	450		
351	550)		623	550	1	
325	650	Ŀ			562	650		
272	750	\cdot			646	1 750		(
262	850				445	850	<u> </u>	
225	950				4177	950	 † _	├──- -
447	0.50		1066		805		1	2 291
383	150		1		692	150		6671
374	250			• -	640	250		
402	350	1			733	T	+	
361	450	<u>†</u> {-	+-+- 1			. 350	• <u>-</u>	•···
345	550	; } -			776	450		
317	650				. 444	1	+ <i>†</i>	├
268	750		┝─┼──┥		690_	650	┢╴╌┿╾──	<u>├──</u> }
274		†-{	+++		_561_	750	<u> </u>	┝━-┝───
227	<u>850</u> 950	<u>├</u>	+		496	850		<u>├</u>
447		; / -			479	950	<u> </u>	<u>. </u>
	0.50	++-	1421		871	1-0.50	<u> </u>	3058
439	150	<u>+</u>	+ (-)		-789-	1_(50_	<u> </u>	└── ┥───
398	250	 _			_750	250	<u></u>	\
395	350	+-+	++		727	350	L)
387	450	+	+ $+$		729	450		
37/	550	+			668	550		
335	650	+	1-1-		615	65.9		
2/3	750	\square			643	750		
273	850				508	850	1]
259	950		1		449	950		
447	050		1776		881	050		3821
400	150	I	· · · · ·		776			1
408	250	1			248			(
373	350			1	759	350	1 -1 -	
325	450		1.1		688	450	<u>†</u> [····	
347	530			1. Sec. 1. Sec	644	550	1)
333	650			· .	601	450		t (
321	750			_	522			
289	850		+-+-				·	!(
261	950		- + -		<u> </u>	950	·	·

·]]

		<u>1-1</u>	LE NAME	: WC4LO	6	SHEET	Zor	3 DATE
260	ASYD	10652	Cot voc/AC		PROD .	ASYD .	LOGISIZE	CUTVOL/AC
772	050	18.1	1091		965	050	24.3	1320
990	150	(1040	150		1300
703	250				1240	250		(
887	350		· \	· •	1072	350		
570	450				195	450		
703	550				752	550	<u> </u>	
1018	650				714	650	/	
708	750				636	750		
617	850				948	850		
549	950				694	1 9:0	<u>i - i</u>	
1239	050		2198			0.50		2647
1027	150		1				- i -	
960	250				1279	i		
988	350				1195			
1011	450							
949	550				1082	1		
878	650		\		10.56			
778	750				1019	650		
780	250				_1022	1		
602	a 50				934	\$50	┝─┝──┝	
1010					946			
994	050		3279			Q 50 -		3967
	150			- <u>-</u> .	1582			
<u></u>	250			•	1151	250	┝━━┾─┼	
950	350	<u> </u>			1307	. 350 _	/	
932	450				1199	450		
885	550		 !		1.296	550		
854	450				1087	650		
753	750		\rightarrow		974	750		
762	850		-+		949	2:50		
773	950		_ ' '		822	950		
1076	09		4375		1390	050		5286
1106	150				1321	150		(
1088	250				1355	650		
1159	350				1211	350		
1010	450				1213	1		
974	550				1123			
218	650				1154			
<u> 874</u>	750				959	750		
161	850				969	850		
705	950				880	950	i.	
1133	0.50		5.416		1.4.33			6.606
1026	150		i i		1310	_ 150	· · · · · ·	
1080	250				1330	250		
1123	350				1273		• • • • •	
987	450				1	150		
915	_550_				1071	450		
888	650				112	550		··· -
816	750			-		650		
803	850					750	+	
694	1 950	┝╾╼┫़─╇			1002	التينية ا	1 2 '	

<.*:*

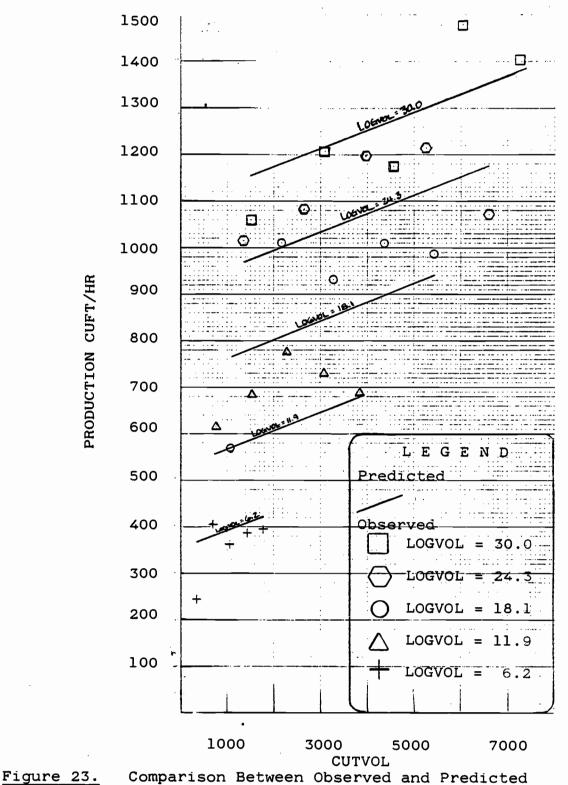
?

100

۰,

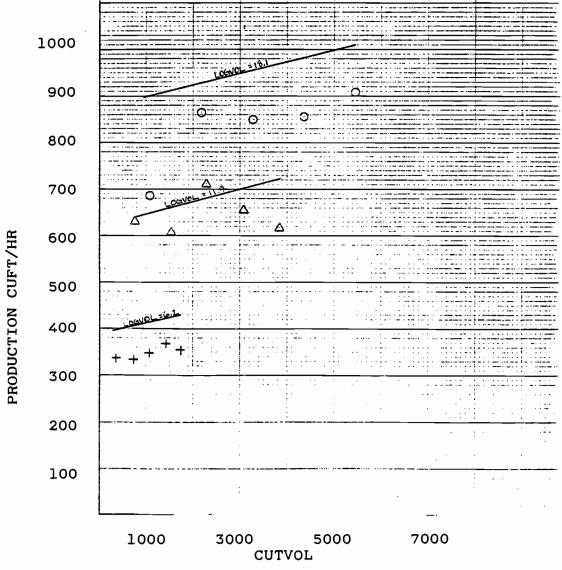
						•		•.	
		F	ice NAME	: WC4	LOG	SHEFT	3 3	DATE	
200	ASYD	10052	Costvor/1	<u> </u>		F			7-
986	050	30.0	1504			•			
1348	150	1							
1330	250								
973	350								
1060	450								
1257	_550_								
1020	650								
920	750.								
818	850								
805	950								
1207	050		3008		:				
1404	150	\vdash	+						
1196	250								
1459	350	+							
1209	450								
1146	550	∲ ∮	/···						
1199	650	·	$\left \right $						
1217	750	+ -	++-						
1452	850	₩	+						
856	950	+-				•			
1375	250	+	4521						
1522	150	+	+						
1262	250	<u> </u>	+ $+$ $+$						
1195	350	<u> </u>	+++						
1175	450								
1267	550	$\left\{ \right\}$	+						
12.21	650	÷	┤━╋──┥						
1051 1054		++	++-1						
954	<u>850</u> 950	1.1	++-+						
/329	0.50	11	6025	•					
1296	150	++	6063						
1476	250								
1528	350	++-							
1480	450	++	+						
12.39	550	11							
1246	650								
999	750								
_/033	850								
925		TT							
1491	050	1	7529	-					
157	-								
/537	250								
1273									
1404			I						
12.26	550			*					
1093	650	17							
1136	750								
1118	850								
972									

,


•••

1 1

Comparative Plots and Graphs


of Observed and Predicted Production

.

Production for the West Coast Configuration with 4 Chokers when CUTVOL is Varied (ASYD = 450)

Comparison Between Observed and Predicted Production for the GU-10 Prebunch Configuration when CUTVOL is Varied (ASYD = 450)



Figure 25. Comparison Between Observed and Predicted Production for the Schield Bantam Swing Configuration when CUTVOL is Varied (ASYD = 450)

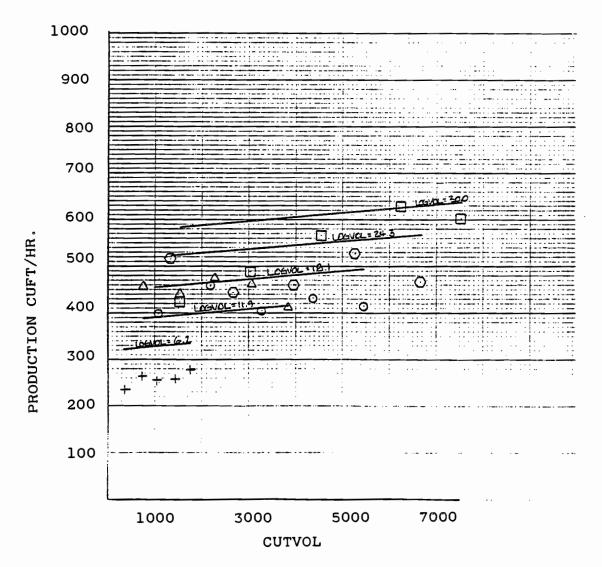
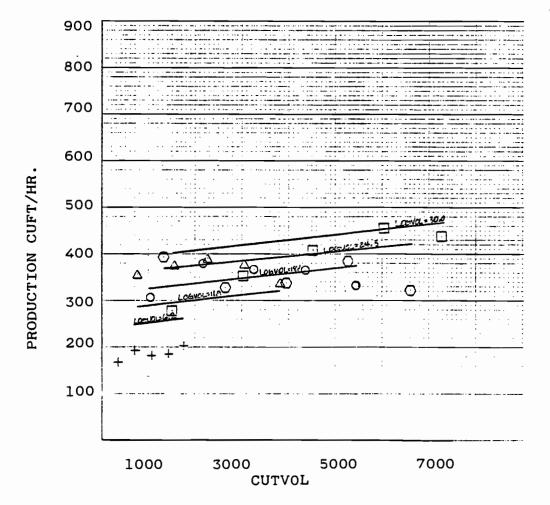
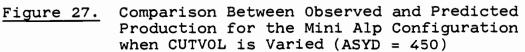
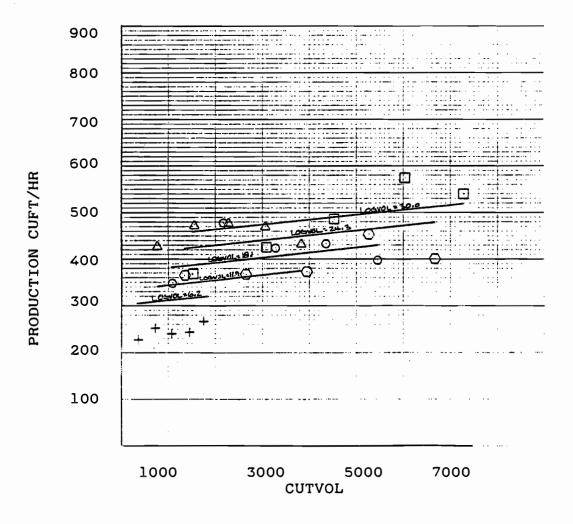





Figure 26. Comparison Between Observed and Predicted Production for the Koller Configuration with Skidder Swing when CUTVOL is Varied (ASYD = 450)

 $\frac{Figure 28.}{Production for the SJ-2 Configuration} When CUTVOL is Varied (ASYD = 450)$

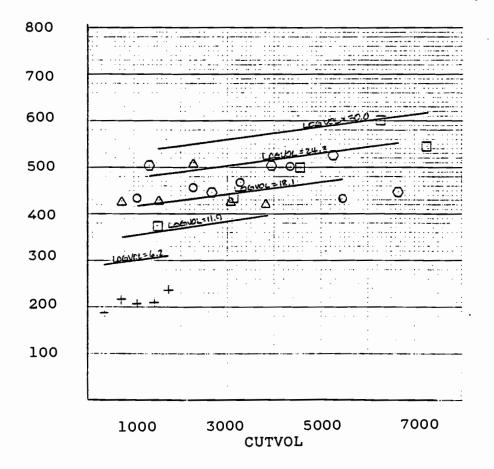


Figure 29. Comparison Between Observed and Predicted Production for the Peewee Configuration without the Skidder Swing (ASYD = 450)

Scattergrams

· ·

.

.

·

9 808, Jan 2, 1 Lomar Bound of X= - Eq. 0000 - Upper Bound of X= - Tec. 000 - Lomar Bound of Y= - 129.000 - Upper Bound of V= - 389,000

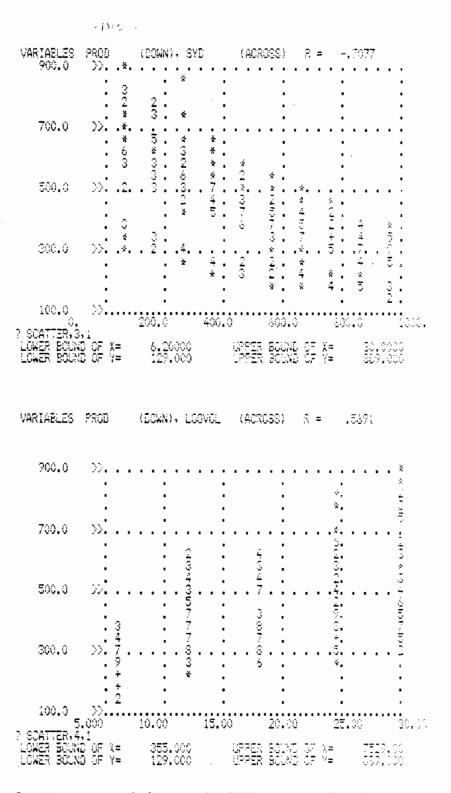


Figure 30. Scattergrams of ASYD and LOGVOL Versus Production for the Koller Configuration Without the Skidder Swing

VARIABLES	PR03	(20Ww), C	UTVOL (ACA	1668) R =	-1.6	
200.0	D					*
	,	。 አ			1	
				. ?	. * *	
			: 2	•		
700.0	- x !		• •	• 2	•	• *
1.5.4.4		••••		^		
	•	**	*.2 3	• • • • • •	• * 2	• * •
	•	×.			,	• ,
	•	**	*. *		. * * *	· ` ·
		ž , ž	ž.		• *	e X
500.0	⇒> .	* .2.*2 .	. 2 *	8 <u>12</u> .	. 2 *	* 2
			2.* 4	.*		, *
		3 * *3	2.* 4 3.2 2	. 2 4	. :	
		3 **3	2.8 2.2	2 2 28	. * 1 2	. * ×
		3 *.*3 * 3.*3 * 3 *.33 *	2 * 2 2 4 2 4 3			2 ¥
300.0	»s.		43.2 2 24.2 4 3.****		• • • • •	• •
					• • • • •	*
	• •	3 0.3*2 3 2.2 2 2 0.2 3	*. **	• •	. 4	• •
	. 2	23.23	•	•	•	• 1
			•	•	•	• •
	*	÷.	•	•	1	• •
100.0						
0.		1250.	2500.	2723.	5000.	
7 SCATTER-3						
LCAER BOOM	5 OF X= 5 SF Y=	6.20000	(195 <u>5</u>)	R 2003 C (25 k=	20.000	• •
LOWER BOUN	5 GF Y=	355.000	02953	N BOOND OF Y=	7529.0	9
						-

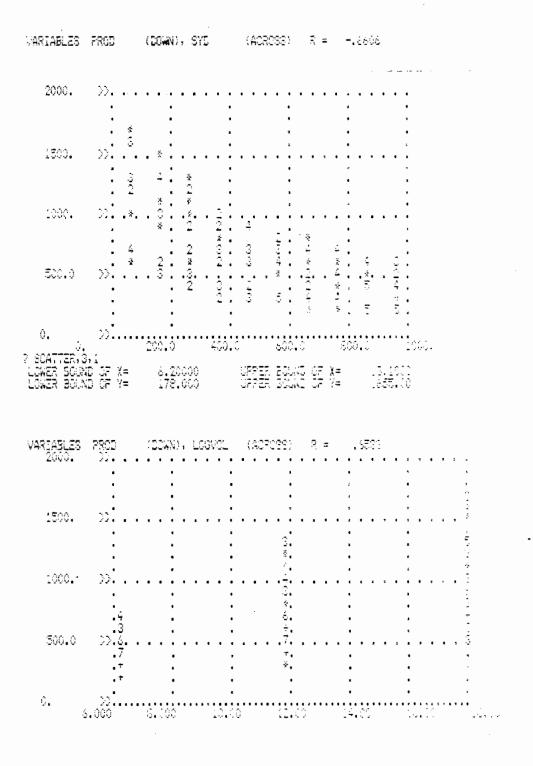
.

-

ŧ

•

Figure 31. Scattergram of CUTVOL Versus Production for the Koller Configuration Without the Skidder Swing


			-			
LOWER BOUN Lower Boun	D OF X= D OF Y=	50.000 169.00		UPPER I UPPER I	BOUND OF X= Bound of Y=	950.000 1575.00
VARIABLES	PROD	(NAUN), 9	i Y Ti	CACROS	5) R =	3135
	>>					
20001		•••••	••••	• • • •	• • • • •	•••••
	•	•	•		•	• •
	•	•	. •		a	• •
	•	* -	•		•	• •
1500.	» * .	*	2 .		•	• •
1300.				•*• • •	• • • • •	• • • • • •
	. 3	3. *	- •	*	•	• •
	. 2	4.3	3.	. 4	• 3 *	• •
	. 3	. 5	3.	4 2	. 3 *	• _ •
	2	* . 2	3.			
1000.		. 5*.				3 2 .
	. 2	•	*.	* 4		. 35.
	. 3	2.*	•	*		. 4 3.
	•	3.*	4.			. * 3.
	•	. 2		2 3	. 3 3	* *
500.0	>>*.	. *	. * .		2	3 3 .
	. 4	3.5	4.	4 2	• *	. * 3.
	. *	* . *		_	. 5 4	
		- *	* -	* *	- * *	
	•	• •	•		•	•••••
		•			•	• •
ō.	»		-			
· 0. 0.	» 	200.0	400.0	 О б		00.0 1000.
Ũ.		200.0	400.(0 ó		00.0 1000.
0. ¹ ŠCATTER,J	.1	~	· · · · · ·	·	<u> </u>	
	.1 D OF X=	6.2000	Q	UPPER I	BOUND OF X=	30.0000 30.0000 1375.00
0. ¹ Scatter, j Lower Boun Lower Boun	,1 D OF X= D OF Y=	6.2000 169.00	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00
0. Scatter.j Lower Boun Lower Boun Variables	,1 D OF X= D OF Y= PROD	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X=	30.0000 1375.00
0. SCATTER.J Lower Boun Lower Boun Variables	,1 D OF X= D OF Y=	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00
0. SCATTER.J Lower Boun Lower Boun Variables	,1 D OF X= D OF Y= PROD	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00
0. Scatter.j Lower Boun Lower Boun Variables	,1 D OF X= D OF Y= PROD	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00
0. Scatter.j Lower Boun Lower Boun Variables	,1 D OF X= D OF Y= PROD	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00
0. SCATTER.J LOWER BOUN Lower Boun Variables 2000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00 .8762
0. SCATTER.J Lower Boun Lower Boun Variables	,1 D OF X= D OF Y= PROD	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00 .8762
0. SCATTER.J LOWER BOUN Lower Boun Variables 2000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I	BOUND OF X= Bound of t=	30.0000 1375.00 .8762
0. SCATTER.J Lower Boun Lower Boun Variables 2000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER.J LOWER BOUN Lower Boun Variables 2000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER.J LOWER BOUN Lower Boun Variables 2000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPPER I UPPER I (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPPER 1 UPPER 1 (ACRO) 	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1373.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPFER 1 UPPER 1 (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPFER 1 UPPER 1 (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPFER 1 UPPER 1 (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0 0 LOGVOL	UPFER 1 UPPER 1 (ACRO)	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER,J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPFER 1 UPPER 1 (ACRO) (ACRO) 	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER.J LOWER BOUN LOWER BOUN VARIABLES 2000. 1500. 1000.	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPFER 1 UPPER 1 (ACRO) (ACRO) 	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762
0. SCATTER.J LOWER BOUN VARIABLES 2000. 1500. 1000. 500.0	,1 D OF X= D OF Y= PROD >>	6.2000 169.00 (DOWN),	0	UPFER 1 UPPER 1 (ACRO) (ACRO) 3 6 + 9 8 6 3 *	BOUND OF X= BOUND OF Y= SS) R =	30.0000 1375.00 .8762

<u>Figure 32</u>. Scattergrams of ASYD and LOGVOL Versus Production for the West Coast Tower Configuration with 4 Chokers

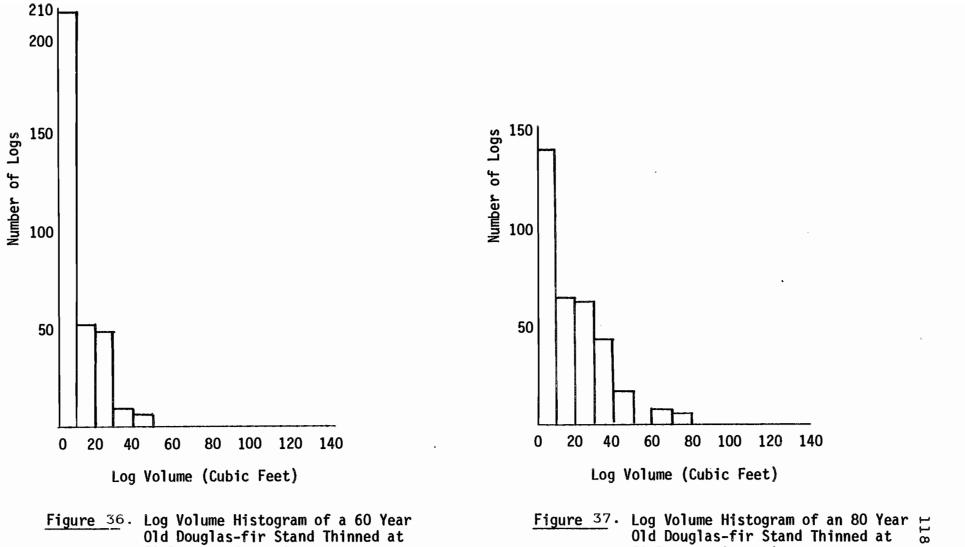
OWER BOUNT					355.0								UND						525						
OWER BOUNI	0 OF	Υ=			167.0	00			Ü	PPI	ĸ	BI	JUND	ŪF	{=			1.	575	5.0	20				
	555	.		, .		-	171	••••				100		Ð				7.3 =	ŧ						
ARIABLES					IOWN),	5	919	VUL		(4(195		R	-		٠ò،	9.	5						
2000.	11	s 9	e	٥	6 8 8	6	٥	0	5 G	•	•	۰		6		8	•	*		8	a	∎ B	8		•
		٥			8				e				•			•					8				•
		•			•				•				•			•					•				•
		•			•				•				Ð			•					•				•
1500		•			•				•				•			•				-	8				:¥: ⊶,
1500.	>>	• •	8	•	• • •	e	۰	•	• •	*	•	•	• •	•	* •	•	-	•	•	J	•	• •	•	٠	~ *
		2			. 3				•*	*			• *		2	•	2 *			2	•	** 3			* *
		•						*	.2	=	*		. 2		2 3	•	2			2	•	5			*
		•			.* .**			*	.2	2	Ť		2		3 2	•		3		6	٠	2			т 3
1000.	>>	•			.2.33			À	.2.	_	3		- *	.2		•	2	2		2	•	.3.			ວ ະ
1000.	- //		•	•	*.2*		•	5	.2		3		,**	ية • *		•	*	2	•	*	e	*	•	•	4.
		a			*. 3			÷ 4	• 4		3		。**			•	-	2			•	4			c
		•		2	3.24			3	•	3	J		.2	2		•		*			•				•
				*	2.*3			à	•	2			.2			ð					•				•
500.0	\rightarrow	•		à	.*			5	•	ية. غذ			3	_		•	_	_	_	_	•		_		
300.0	//		•	8	5.62	-	•	-	•••	*	8	•		•	• •		•	•	•	•		• •	•	•	
		•	4	4	4.4				•	•															
			ó	*	*.								*	*											
		:	-	-																					
0.	\rightarrow	-							-																
v. v.			•••	·	230.			25(1.1			-	730.			50	ŪŪ		_	_	ò.	3ú.			750

* SCATTER.4.1

Figure 33. Scattergram of CUTVOL Versus Production for the West Coast Tower Configuration with 4 chokers

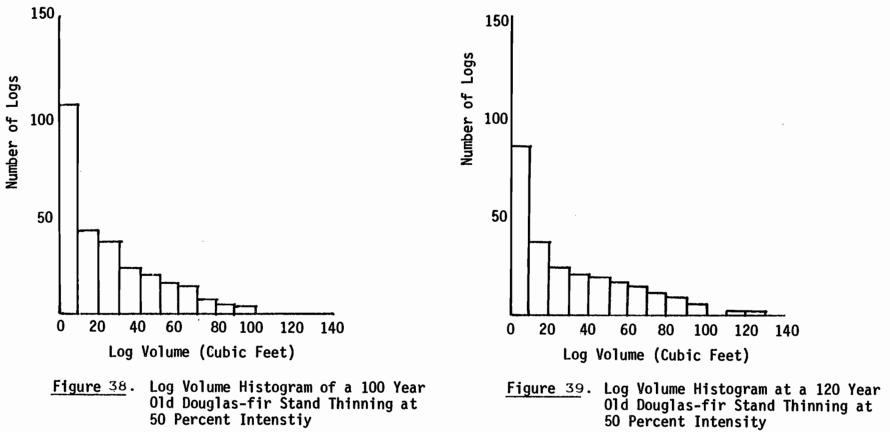
. .

r


Figure 34. Scattergrams of ASYD and LOGVOL Versus Production for the Skagit GU-10 Prebunching Configuration

ARIABLES 2000.	ೇವರಿ	(3	(NN)	ಂಗಳಂ):	(ACF	R053	ii li	3 =		,	24					
4000.	••••	•••	••••	•••	•••	•	•	••	• •	•	• •	• •	•	• •	· ·		•
	8		•		•			•			•						
			:		. *			•	÷		•	÷		•	ę		•
1500.	»	• •	*.	•••		•	•	• •	• •	•		• •	•		• •	1	
			:	ž	. *			* *		÷	•	<u>,</u>		•	۲		•
	•		*. :		: *	ŝ		•	ŝ		•			Ŧ	ž		•
1000.	».			,÷	• •	* . .	•	•_•		2. N	•••	*.		••	.×.		;
			:		• -	ž		. 4	- -	*	•	ž V		•	*		:
	9	-, *	.6	≪2 x ≩≩	. ş	2				2	•	1		•	÷		
5.0 . 0	∷		.4.	*2.			•	• - • •	•••	Ē.				•	, .		:
	•	* *	•.• .4		• •	~		•-		2	•			,			
	•	4 4 3 3		1							•			•			
5.			•		•			•			, 			:			•
Ů.		10	<i>.</i> 0.	20	÷0.		30	ം.		-	С.,	•••			2.		

Figure 35. Scattergram of CUTVOL Versus Production for the Skagit GU-10 Prebunching Configuration


.

Log Volume Histograms

50 Percent Intensity

Figure 36. Log Volume Histogram of a 60 Year Old Douglas-fir Stand Thinned at 50 Percent Intensity

