RNA extraction, Quality Assessment, and cDNA synthesis

Total RNA was extracted from blood PMN using TRIZol regent combination with miRNeasy® Mini Kit (Cat. \#217004, Qiagen). Isolated neutrophils were completely homogenized in 1 mL TRIZol reagent (Invitrogen, Carlsbad, CA) using Beadbeater twice for each 30 sec . Each tube was added into $200 \mu \mathrm{~L}$ Chloroform and put in room temperature 3 min after shaking vigorously for 15 sec . The upper phase was transferred into a new collection tube without disturbing the mid and lower phase after $12,000 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$ for 15 min centrifuge. Ethanol 100% of $750 \mu \mathrm{~L}$ was added and mixed well. All amount of liquid supernatants were pipetted into a miRNeasy mini spin column in a 2 mL collection tube, then followed manufacturer's instructions of miRNeasy® Mini Kit. DNase I digestion mix (Cat. \#79254, Qiagen) of $80 \mu \mathrm{~L}$ was added to each column to remove genomic DNA. Finally, $50 \mu \mathrm{~L}$ RNase free water were added to elute RNA and total RNA were obtained. The RNA concentration was measured with NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). The purity of RNA was assessed by ratio of optical density OD260/280, which were above 1.80 for all samples. The RNA integrity (RIN) was evaluated via electrophoretic analysis of 28 S and 18 S rRNA subunits using a 2100 Bioanalyzer (Agilent Technologies), and values were above 5.50 for all samples.

A portion of RNA was diluted to $100 \mathrm{ng} / \mu \mathrm{L}$ by adding DNase-RNase free water prior to cDNA synthesis. Complementary DNA was synthesized using $1 \mu \mathrm{~L}$ of 100 ng total RNA, $1 \mu \mathrm{~L}$ of Random Primers (Cat. \#11034731001, Roche), and $9 \mu \mathrm{~L}$ of DNase/RNase-free water. The mixture was incubated at $65^{\circ} \mathrm{C}$ for 5 min and kept on ice for 3 min . A total of $9 \mu \mathrm{~L}$ of master mix composed of $4 \mu \mathrm{~L}$ of 5X First-Strand Buffer (Cat. \#18064-022, Invitrogen), $1 \mu \mathrm{~L}$ of Oligo dT18 (Operon Biotechnologies, Huntsville, AL), $2 \mu \mathrm{~L}$ of 10 mM dNTP mix (Cat. \#18427-088, Invitrogen), 1.625 $\mu \mathrm{L}$ of DNase/RNase-free water, $0.25 \mu \mathrm{~L}(200 \mathrm{U} / \mu \mathrm{L})$ of Revert Aid Reverse

Transcriptase (Cat. \#EP0442, Thermo Scientific), and $0.125 \mu \mathrm{~L}(40 \mathrm{U} / \mu \mathrm{L})$ of RiboLock RNase Inhibitor (Cat. \#EO0382, Thermo Scientific) were added. The reaction was performed in an Eppendorf Mastercycler Gradient following such temperature program: $25^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for 60 min , and $70^{\circ} \mathrm{C}$ for 15 min . The cDNA was then diluted 1:4 with DNase/RNase-free water.

Primer Design and Evaluation

Primers were designed and evaluated as previously described (Bionaz and Loor, 2008). Briefly, primers were designed using Primer Express 3.0.1 (Applied Biosystems) with minimum amplicon size of 80 bp (amplicons of 100-120 bp were of superiority, if possible) and limited percentage of $3^{\prime} G+$ C. Major part of primer sets were designed to fall across exon-exon junctions. Then, primers were aligned against publicly available databases using BLASTN at NCBI and UCSC's Cow (Bos taurus) Genome Browser Gateway to determine the compatibility of primers with already annotated sequence of the corresponding gene. Prior to qPCR, a $20 \mu \mathrm{~L}$ PCR reaction comprised of $8 \mu \mathrm{~L}$ dilute cDNA, $10 \mu \mathrm{~L}$ Power SYBR Green PCR Master Mix (Cat. \#4367659, Applied Biosystems), $1 \mu \mathrm{~L}$ forward primer and $1 \mu \mathrm{~L}$ reverse primer was established to verify the primers. Of these, a universal reference cDNA amplified from all samples was utilized to ensure identification of desired genes. PCR product of $5 \mu \mathrm{~L}$ was run in a 2% agarose gel stained with SYBR Safe DNA Gel Stain (Cat. \#S33102, Invitrogen), and the remaining 15 $\mu \mathrm{L}$ were cleaned with a QIAquick PCR Purification Kit (Cat. \#28104, Qiagen) and sequenced at the Core DNA Sequencing Facility of the Roy J. Carver Biotechnology Center at the University of Illinois, Urbana. The sequencing product was confirmed through BLASTN at NCBI database. Only primers that did not present primer-dimer, a single band at the expected size in the gel, and had the right amplification product verified by sequencing were used for qPCR. The accuracy of a primer pair also was evaluated by the presence of a unique peak during the dissociation step at
the end of qPCR. The biological functions of all target genes are presented in Supplemental Table S1. Supplemental Table S2 shows all designed primers in this study as well as all sequence information confirmed by BLASTN. Sequencing results for all genes are reported in Table S3.

Quantitative PCR (qPCR)

The qPCR was conducted in triplicate as described previously (Graugnard et al, 2009). Briefly, four microliters of diluted DNA (dilution 1:4) combined with $6 \mu \mathrm{~L}$ of mixture composed of $5 \mu \mathrm{~L}$ $1 \times$ SYBR Green master mix (Cat. \#4309155, Applied Biosystems), $0.4 \mu \mathrm{~L}$ each of $10 \mu \mathrm{M}$ forward and reverse primers, and $0.2 \mu \mathrm{~L}$ of DNase/RNase-free water were added in a MicroAmp ${ }^{\text {TM }}$ Optical 384-Well Reaction Plate (Cat. \#4309849, Applied Biosystems). A 6-point standard curve plus the nontemplate control (NTC) together with three replicates of each sample were run to detect the relative expression level. The reactions were conducted in ABI Prism 7900 HT SDS instrument (Applied Biosystems) following the conditions below: 2 min at $50^{\circ} \mathrm{C}, 10 \mathrm{~min}$ at $95^{\circ} \mathrm{C}, 40$ cycles of 15 s at $95^{\circ} \mathrm{C}$ (denaturation), and 1 min at $60^{\circ} \mathrm{C}$ (annealing + extension). The presence of a single PCR product was verified by the dissociation protocol using incremental temperatures to $95^{\circ} \mathrm{C}$ for 15 s , then $65^{\circ} \mathrm{C}$ for 15 s . The threshold cycle (Ct) data were analyzed and transformed using the standard curve with the 7900 HT Sequence Detection Systems Software (version 2.2.1, Applied Biosystems). The final data were normalized with the geometric mean of the 3 ICGs, as reported previously (Moyes et al, 2010).

Relative mRNA Abundance of Genes within PMN

Efficiency of qPCR amplification for each gene was calculated using the standard curve method $\left(\right.$ Efficiency $\left.=10^{(-1 / \text { slope })}\right)$. Relative mRNA abundance among measured genes was calculated as previously reported (Bionaz and Loor, 2008), using the inverse of PCR efficiency raised to $\Delta \mathrm{Ct}$ (gene abundance $=1 / \mathrm{E}^{\Delta \mathrm{Ct}}$, where $\Delta \mathrm{Ct}=\mathrm{Ct}$ of tested gene - geometric mean Ct of 3 ICGs).

Overall mRNA abundance for each gene among all samples of the same PMN was calculated using the median $\Delta \mathrm{Ct}$, and overall percentage of relative mRNA abundance was computed from the equation: $100 \times$ mRNA abundance of each individual gene / sum of mRNA abundance of all the genes investigated. Supplemental Table 4 shows the qPCR performance among the genes measured in PMN.

Additional file 1: Table S1. Gene symbol, gene name, and description of the main biological function and biological process of the targets analyzed in PMN.

Symbol	Name	Summary description from NCBI
GOLGA5	Golgin A5	Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intraGolgi retrograde transport
GPX1	Glutathione peroxidase	This gene encodes a member of the glutathione peroxidase family. Glutathione peroxidase functions in the detoxification of hydrogen peroxide, and is one of the most important antioxidant enzymes in humans
GSR	Glutathione reductase	This enzyme is a homodimeric flavoprotein. It is a central enzyme of cellular antioxidant defense, and reduces oxidized glutathione disulfide (GSSG) to the sulfhydryl form GSH, which is an important cellular antioxidant
ITGAM	Integrin, Alpha M	This gene encodes the integrin alpha M chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form a leukocyte-specific integrin referred to as macrophage receptor 1 ('Mac-1'), or inactivated-C3b (iC3b) receptor 3 ('CR3')
LTA4H	Leukotriene A4 Hydrolase	Leukotriene A4 hydrolase, (LTA4 hydrolase, LTA4H) is a zinc-dependent epoxide hydrolase which hydrolyzes LTA4 to form LTB4 during leukotriene biosynthesis. The enzyme is the only member of the leukotriene biosynthetic pathway which is mainly cytoplasmic
NFKB1	Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B- Cells 1	NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis
OSBPL2	Oxysterol binding protein-like 2	Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate

$\left.\begin{array}{lll}\hline \text { RXRA } & \text { Retinoid X receptor, alpha } & \begin{array}{l}\text { Receptor for retinoic acid. Retinoic acid receptors bind as } \\ \text { heterodimers to their target response elements in response to } \\ \text { their ligands, all-trans or 9-cis retinoic acid, and regulate }\end{array} \\ \text { gene expression in various biological processes }\end{array}\right\}$

	Transcription 3	cellular responses to interleukins
TLN1	Talin 1	This gene encodes a cytoskeletal protein that is concentrated in areas of cell-substratum and cell-cell contacts. The encoded protein plays a significant role in the assembly of actin filaments and in spreading and migration of various cell types, including fibroblasts and osteoclasts
TLR4	Toll-like receptor 4	Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). Acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. Also involved in LPS-independent inflammatory responses triggered by $\mathrm{Ni}(2+)$. These responses require nonconserved histidines and are, therefore, species-specific
TNF	Tumor necrosis factor alpha	This gene encodes a multifunctional proinflammatory cytokine that belongs to the tumor necrosis factor (TNF) superfamily. This cytokine is mainly secreted by macrophages
VCL	Vinculin	Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting proteins involved in anchoring Factin to the membrane

Additional file 1: Table S2. GeneBank accession number, hybridization position, sequence and amplicon size of primers used to analyze gene expression by qPCR

Accession \#	Gene	Primers ${ }^{1}$	Primers ($5^{\prime}-3$)	bp^{2}
NM_001098007.1	GOLGA5	F. 1370	GAGCTACAGCAGCAAGTCAAAGTG	103
		R. 1472	CTTTAGACTGGAGTATTCGAGTAGCT	
NM_174076.3	GPX1	F. 325	CCCCTGCAACCAGTTTGG	121
		R. 445	CTCGCACTTTTCGAAGAGCAT	
NM_001114190.2	$G S R$	F. 1555	CGCTGAGAACCCAGAGACTTG	100
		R. 1654	AAACGGAAAGTGGGAACAGTAAGTA	
NM_001039957.1	ITGAM	F. 268	GGCTTGTCTCTTGCATTTGCT	95
		R. 362	CCATTTGCATAGGTGTTCTCCTT	
NM_001034280.1	LTA4H	F. 1042	ACATTTGTGGACGACTGTTTGGT	100
		R. 1141	TGGGTCTCCCCAAAAGTCTTT	
NM_001076409.1	NFKB1	F. 172	TTCAACCGGAGATGCCACTAC	95
		R. 266	ACACACGTAACGGAAACGAAATC	
NM_001035020.2	OSBPL2	F. 196	TGCCGTCACAGGCTTTGAC	100
		R. 295	CCATTACTTGCTGGTGTCCACAT	
XM_881943.5	RXRA	F. 1215	TGTCCCCGATGAGCTTGAAG	131
		R. 1347	GAGGCGTACTGCAAACACAAGT	
NM_001113725.2	S100A8	F. 41	CAAATCCTTGGACACCATGCT	100
		R. 140	GGCGTGGTAATTCCCTTTTTT	
NM_001034315.1	SAHH	F. 887	TGTCAGGAGGGCAACATCTTT	109
		R. 995	AGTGCCCAATGTTACACACAATG	
NM_174182.1	SELL	F. 588	CTCTGCTACACAGCTTCTTGTAAACC	104
		R. 691	CCGTAGTACCCCAAATCACAGTT	
NM_001014958.1	SMUG1	F. 258	CAGCTACGTGACCCGCTACTG	117
		R. 374	CGGACTACACTCACTTCACCAAAG	
XM_005201085.1	SOD1	F. 268	GGCTGTACCAGTGCAGGTCC	101
		R. 368	GCTGTCACATTGCCCAGGT	
NM_201527.2	SOD2	F. 620	TGTGGGAGCATGCTTATTACCTT	95
		R. 714	TGCAGTTACATTCTCCCAGTTGA	
NM_001012671.2	STAT3	F. 3804	GGTAGCATGTGGGATGGTCTCT	110
		R. 3913	GCATCCCTAGAAACTCTGGTCAA	
XM_005210127.1	TLN1	F. 1108	TTCCTGCCCAAGGAGTATGTG	100
		R. 1207	AGCGTACCTTGGCCTCAATCT	
NM_174198.6	TLR4	F. 555	TGCGTACAGGTTGTTCCTAACATT	110
		R. 664	TAGTTAAAGCTCAGGTCCAGCATCT	

NM_173966.3	TNF	F. 367	CCAGAGGGAAGAGCAGTCCC	114
		R. 480	TCGGCTACAACGTGGGCTAC	
NM_001191370.1	VCL	F. 1778	CATCTCAGCTCCAAGACTCCTTAAA	103
		R. 1880	TTGATGGGAGTCGTGGTATCAC	

[^0]Additional file 1: Table S3. Sequencing results of PCR products from primers of genes designed in this study

Gene	Sequence
GOLGA5	CCGATCCAGCTTGGACTCCTCTAGCAGGAATTAGCTGACTACAAGCAAAAAGCTACTCG AATACTCCAGTCTAAAGGA
GPX1	GAACGAGAGATCCTGAATTGCCTGAAGTACGTCCGACCAGGCGGCGGGTTCGAGCCCA ACTTTATGCTCTTCGAAAAGTGCGAG
GSR	GGCCAGCTGGACCAGTAGACCTTCGGGAAGGAACCAAATCATCACGTTTACTTACTGT TCCCACTTTCCGTTT
ITGAM	CGACTCTGCGTCGTGCGTGTGCCCACAGGTCACCAAATTTGCAAGGAGAACACCTATG CAAATGGAA
LTA4H	GAAGAGTCATTTCCGGCTCGTGGGCGGAGTGGAGAACTCCAGAATTCGATAAAGACT TTTGGGGGAGACCCAACCCCTTT
NFKB1	CGATATCTTCGTGTCAAGCAAAAGTATTCGCAACACTGGAAGCACGAATGACAGATG CCTGTATACGGGGCATCAGAAGGCCGTA
OSBPL2	CTTCCGGGAATTTCAGAGGCGAATCAGAGACTCACTGGCGTGATTCATGTGGACACC AGCAAGTAATGGA
RXRA	ACAGCATTGAGGCAATGGAGCGCAGAGCGGGCAGGCGCAGCAGCAGCTTGGCGAAC CTTCCTGGCTGCTCGGGGTACTTGTGTTTGCAGTACGCCTCA
S100A8	ATCTTTACCCTCTGACTTTGCTAATCGGATCTTCACAGAAAGCGGACACTTGGTGCTAG TTACGATCAATCAGGATGGTGGAATTAACT
SAHH	CTGTACTGCATCATTCTTGGCCAGCACTTTGAACAGATGAAGGATGATGCCATTGTGTG TAACATTGGGCACT
SELL	ACGGGCCATGGACAATGTGTGGAAGTCATCAATAATTACACCTGCGTGCCCGTGATTT GGGGGGACCTCCGGAA
SMUG1	AGCAAGTGCTCTTCTTGGGCATGAACCCAGGACCCTTTGGCATGGCCCAGACGGGGGT GCCCTTTGGTGAAGTGAGTGTAGTCCGA
SOD1	GTCCAAAAACCGGTGGGCCAAAAGATGAAGAGAGGCATGTTGGAGACCTGGGCAATG TGACAGCT
SOD2	GCATGTTTGGCCGATTATCTGAGGCCATTTTGGAATGTGATCAACTGGGAGAATGTAA CTGCAATAC
STAT3	GCATCCCTCTACGAGCACGGCTAGATGTGGTCGGCTACAGCCATCTTGTCTCAGTTGA CCAGAGTTTCTAGGGATGCAA
TLN1	ACCCCGTCCGCAATTCCTTCTCTACGTGCAGGCACGAGATGCCTAGGAAATGGCTCCC ATCCTGTCTCCTCTGCTAAAGGCC
TLR4	TGCGATGGAGCTGAATCTCTACAAATCCCCGACAACATCCCCATATCAACCAAGATGC TGGACCTGAGCTTTAACTA

VCL GCAGTAGACCGGAGTCGGGAGGCAGTACCTCAGGAGGTGTCAGATGTTTTCAGTGAT ACCACGACTCCCATCAACACTTT

Additional file 1: Table S4. Sequencing results of genes using BLASTN (http://www.ncbi.nlm.nih.gov) from NCBI against nucleotide collection ($\mathrm{nr} / \mathrm{nt}$) with total score

Gene	Best hit in NCBI	Score
GOLGA5	Bos taurus golgin A5 (GOLGA5), mRNA	120
GPX1	Bos taurus glutathione peroxidase 1 (GPX1), mRNA	145
GSR	Bos taurus glutathione reductase (GSR), mRNA	127
ITGAM	Bos taurus integrin, alpha M (complement component 3 receptor 3 subunit) (ITGAM), mRNA	71.6
LTA4H	Bos taurus leukotriene A4 hydrolase (LTA4H), mRNA	78.8
NFKB1	Bos taurus nuclear factor of kappa light polypeptide gene enhancer in Bcells 1 (NFKB1), mRNA	89.7
OSBPL2	Bos taurus oxysterol binding protein-like 2 (OSBPL2), mRNA	104
RXRA	Bos taurus retinoid X receptor, alpha (RXRA), transcript variant 4, mRNA	158
S100A8	Bos taurus S100 calcium binding protein A8 (S100A8), mRNA	51.8
SAHH	Bos taurus adenosylhomocysteinase (AHCY), mRNA	125
SELL	Bos taurus selectin L (SELL), mRNA	82.4
SMUG1	Bos taurus single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), mRNA	154
SOD1	Bos taurus superoxide dismutase 1, soluble (SOD1), mRNA	105
SOD2	Bos taurus superoxide dismutase 2, mitochondrial (SOD2), mRNA	82.4
STAT3	Bos taurus signal transducer and activator of transcription 3 (acute-phase response factor) (STAT3), mRNA	107
TLN1	Bos taurus talin 1 (TLN1), mRNA	73.4
TLR4	Bos taurus toll-like receptor 4 (TLR4), mRNA	125
TNF	Bos taurus tumor necrosis factor (TNF), mRNA	116
VCL	Bos taurus vinculin (VCL), mRNA	89.7

Additional file 1: Table S5. qPCR performance among the genes measured in PMN

Gene	Median Ct	Median $\Delta \mathrm{Ct}^{\mathrm{a}}$	Slope	$\mathrm{R}^{2 \mathrm{~b}}$	Efficiency $^{\mathrm{c}}$	Relative $\%$ mRNA abundance $^{\mathrm{d}}$
GPX1	8.58	-14.71	-3.47	0.99	1.94	4.37
GSR	9.18	-11.80	-3.60	0.99	1.90	0.24
ITGAM	4.67	-14.61	-3.69	0.94	1.87	3.96
LTA4H	26.59	0.12	-3.02	0.95	2.10	$1.59 \mathrm{E}-06$
NFKB1	6.68	-14.23	-3.19	0.97	2.06	2.72
RXRA	5.71	-15.28	-3.06	0.97	2.12	7.77
S100A8	6.69	-16.86	-3.46	0.99	1.94	37.60
SAHH	7.15	-12.80	-3.14	0.97	2.08	0.65
SELL	12.65	-11.21	-3.14	0.97	2.08	0.13
SOD1	9.35	-11.78	-3.39	0.94	1.97	0.23
SOD2	19.29	-7.08	-3.17	0.99	2.07	$0.21 \mathrm{E}-02$
STAT3	8.38	-14.29	-3.17	0.97	2.07	2.89
TLN1	5.69	-16.91	-3.37	0.96	1.98	39.42
TLR4	24.51	-2.12	-3.12	0.97	2.09	$1.50 \mathrm{E}-05$
TNF	27.20	-8.54	-4.75	0.96	1.62	0.01
VCL	25.71	-0.83	-3.05	0.99	2.06	$4.10 \mathrm{E}-06$

${ }^{\text {a }}$ The median $\Delta \mathrm{Ct}$ was calculated as [Ct gene - geometric mean of Ct internal controls] for each sample.
${ }^{\mathrm{b}} \mathrm{R}^{2}=$ coefficient of determination of the standard curve.
${ }^{\mathrm{c}}$ Efficiency is calculated as $\left[10^{(-1 / \text { Slope })}\right]$.
${ }^{d}$ Detailed information about calculation of relative mRNA abundance is referred to supplemental materials and methods.

[^0]: ${ }^{1}$ Primer direction (F - forward; R - reverse) and hybridization position on the sequence.
 ${ }^{2}$ Amplicon size in base pair (bp).

