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ESTIMATION OF INTEGER - VALUED PARAMETERS 

I. INTRODUCTION 

Background 

This thesis presents a discussion of least- squares estima- 

tion in a linear regression model of parameters which are known 

a- priori to lie within a set of lattice points bounded by a convex 

polyhedral region formed by a system of linear inequalities. For 

purposes of discussion, the lattice is taken to be the points with 

integer -valued coordinates, but most of the methods and discussion 

will be valid for more general structures. 

Hammersley (4) has discussed estimation of the integer - 

valued mean of a normal distribution with reference to estimating 

the molecular weight of insulin. There are several examples of 

problems arising in the physical sciences which might require the 

extension of his work to the full linear regression model. 

By way of illustrating systems which involve integer -valued 

parameters, consider the following examples from the physical 

sciences. 

Studies in crystallography utilize x -ray diffraction tech- 

niques and the relationship 

nX = 2d sin 6 
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where X is the length of electromagnetic waves which strike the face 

of a crystal at an angle 6, and d is interplanar spacing in the 

crystal. Because of the phenomenon of interference in diffracted 

light, the parameter n is required to be an integer. 

A related problem in wave mechanics is that of a vibrating 

body. Resonance is vibration of the body at one of its natural fre- 

quencies. In the case of a vibrating string, the natural frequencies 

are known to satisfy the relationship 

fn = nqT/µ /2L 

where fn is a harmonic frequency of order n, n is an integer, 

T is tension of the system, µ is mass per unit length, and L 

is length of the string. In engineering applications of this subject to 

rigging, resonance of a particular system under a given load may 

prompt interest in determining order (n) of the harmonic at which 

resonance has occurred. 

The phenomenon of absorption and emission of light of charac- 

teristic wavelengths in atomic species is based on a discrete number 

of orbits which may be occupied by electrons. In the case of hydro- 

gen, parameters of the system are related by the equation 

mvr = nh/ 2Tr 

where m and v are mass and velocity of the electron, 
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respectively, r is radius of the orbit, h is Planck's constant, 

and n is an integer called the quantum number. 

Two principal works on the theory of estimation in such cases 

are especially pertinent to the present discussion. Hammersley (4) 

has considered the problem of estimating integer - valued parameters 

in a single -parameter family of distributions. Hocking (5) has dis- 

cussed the least- squares estimation of regression parameters con- 

strained to lie within a known convex region, but not restricted to 

lattice points. 

In this thesis we explore only one principle of estimation -- 

the least- squares principle -- without claiming any optimal proper- 

ties for the estimates so produced. In Hammersley's paper and the 

published discussion following its presentation several points are 

made concerning the single -parameter case which may tend to sup- 

port the validity of least- squares estimation in the case of linear 

regression models involving several parameters. 

Hammersley proposed to estimate the integer -valued mean 

of a normal distribution by the "rounded -off" value of the sample 

mean, that is, the integer nearest to the sample mean. In the 

single -parameter case this can easily be shown to be the least - 

squares estimate (by symmetry of the parabola defining the quadratic 

to be minimized), as well as the maximum likelihood estimate. In 

the single -parameter case, therefore, least squares estimates will 



possess properties in common with Hammersley's nearest -integer 

estimate. 

Taking the usual first step in evaluating an estimation pro- 

cedure, Hammersley determined an asymptotic expression for the 

variance of the nearest -integer estimate. In discussing the paper 

C. Stein observed that this estimate possesses a property which is 

almost that of minimizing the variance. The property is that the 

estimation procedure minimizes the maximum (with respect to the 

unknown mean) of the variance. Stein illustrates this as follows: 

Let T be any estimator, and let 

Then define 

Var (T) = fT(µ). 

g(T) = maximum fZ, (µ) . 

- oo < H. < co 

For Hammersley's estimate the function fZ,(µ) 

4 

is constant, and 

g(T) assumes a minimum value, thus making the estimate a 

If minimax variance" estimate. Stein also pointed out that there are 

estimators with smaller variance for certain values of µ, but none of 

which is uniformly better than Hammersley's estimate. 

Another interesting feature of Hammersely's estimate was 

pointed out in the discussion by D. V. Lindley. If a "loss" function 
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is defined to be zero when the correct integer parameter is chosen 

and unity when any other value is chosen, then the nearest -integer 

(least- squares) estimator is the estimator which minimizes the max- 

imum expected loss. 

One peculiar feature of such estimation problems is the fact 

that one may choose as his estimate exactlythe true parameter point. 

In classical estimation in continuous parameter spaces this event 

happens with probability zero, and asymptotic results are stated in 

terms of E -intervals about the true parameter. For the case in 

which the parameter is constrained to lattice points, however, the 

property of consistency, for example, is measured in terms of the 

convergence of the probability that the estimate exactly coincides 

with the parameter. Hammersley showed that this probability is of 

extremely small order in n, much smaller than in the case of 

estimation in the continuous parameter space. 

Exploring the possibility of finding a sufficient estimate, 

Hammersely showed that no integer -valued sufficient estimate exists. 

In the discussion period, however, it was observed by C.A. B. Smith 

that while an integer -valued sufficient statistic may not exist, this 

does not invalidate the sufficiency of the sample mean and variance. 

The above arguments then make a good case for the use of 

least- squares in the single -parameter problem. The purpose of this 

thesis is to investigate computational and other aspects of the 
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least- squares estimation procedure for several parameters con- 

strained to lattice points. In so doing, the author acknowledges 

existence of competing criteria which may be applied to estimation 

problems of this kind; however, a critical evaluation of alternative 

procedures would be the subject of another study. 

Classical Least Squares Estimation 

In the usual linear regression problem, the estimation of a 

p- coordinate vector- valued1 parameter 

Pi 

PP, 

is based on n scalar observations Y1, , Yn which have 

2 means 

E(Yi) = 

j=1 

1 

X.., i = 1,2,, n, (1.1) 
i 

Throughout this thesis, whenever a symbol is to indicate a vector, 
that symbol will be underlined. All vectors are assumed to be 
column vectors. Matrices are represented by capital letters with 
dimensions indicated in the text. 

2 The letter E is reserved exclusively to denote the mathematical 
expectation operator. 

P 



and variances Cr 2. The constants 

7 

X.. are assumed to be fixed 
1J 

and known. In the following discussion they will form an nxp 

matrix X of rank p < n. The assumption that X is of "full" 

rank may be made without loss of generality; cases not of "full" 

rank may be reduced to the above case as discussed by Graybill (2) . 

The value of o-2 is assumed not to depend on the values of the con- 

stants X.., which frequently are called the design parameters. 
13 

The design parameters . play the role of independent 
XiJ 

variables, whereas the Y. are dependent variables. It is further 

assumed that the Y., which are subject to stochastic variations, 

may be written 

Yi ß.X.. + E., i = 1,2,''',n (1.2) 
J 1.3 1 

2 
where the "errors" E, have mean zero, variances o- , and are 

uncorrelated. In order to conveniently test statistical hypotheses 

and form confidence regions it is frequently assumed that the E. 

are normally distributed. 

The least squares method of estimation of the parameter 

is based on the minimizing of the quadratic form 

Q(.E) = (Y - Xß)'(Y - Xß) (1.3) 

with respect to ß. Elementary calculus gives as the minimizing 

7 =1 

P 



value of 2 the least squares estimate 

where 

In the following S 

symmetric, p x p, 

= (X'X)-1X'y = 5 X'y 

S X'X 

will be known as the design matrix. S is 

non -singular, and positive definite. 

8 

(1. 4) 

If the . 
i 

are normally distributed, then the least squares 

estimate ß has a multivariate normal distribution with mean 

and covariance matrix 

;tß 0-25-1 

For the details of the above discussion, the reader is refer- 

red to Graybill (2). 

Restricted Parameter Spaces 

In his Ph. D. dissertation (5), Hocking considered the least - 

squares estimation of regression parameters which are known to be 

within a convex subset of p- dimensional Euclidean space. He con- 

sidered the evaluation of the estimates, tests of statistical hypotheses 

about them, and the determination of confidence sets for them. 

In this thesis, the parameter space is considered to be 

t 

= . 

R 
n 

= 
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restricted to a convex polyhedral subset of p -space obtained by 

imposing the m linear inequalities 

Aß <C (1. 5) 

where A is an mxp matrix of rank m < p. The introduction 

of these m linear constraints complicates the determination of the 

least squares estimates considerably. Should the unrestricted min- 

imizing value of Li of Q(ß) satisfy the constraints, it would also 

be the restricted minimizing value, but if p3 does not satisfy (1.5), 

then procedures involved more than differential calculus are neces- 

sary. One known method of finding the restricted minimum of Q(R3) 

is the quadratic programming algorithm of Wolfe (10) discussed in 

detail also by Hadley (3). 

As an additional restriction on the parameter space, suppose 

that the only reasonable values for 3 are those where all coordi- 

nates are integers. This further complicates the location of the 

minimum of Q(ß), since the only values considered must satisfy 

both the linear inequalities and have integer -valued coordinates. 

Two numerical examples are presented for p = 2 in 

Part IV. In these examples, the restricted parameter set is shown 

graphically. 

The basic problem of this thesis is, therefore, the determina- 

tion of least squares estimates of regression parameters known to be 



l0 

integers and to satisfy certain linear inequalities. (By setting 

m = 0 one can study the problem of estimating otherwise uncon- 

strained integer -valued parameters). 
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II. DETERMINATION OF LEAST -SQUARES ESTIMATES 

In the following we discuss the location of the minimum of the 

quadratic form QT), defined above, over the restricted parameter 

set where the coordinates of ß must be integers and must satisfy 

the linear inequalities A ß <C . 

One naive method would be to find the unrestricted least- 

squares estimate "i and round each coordinate ß to its nearest 

integer. This method has two drawbacks: (1) while may satis- 

fy the linear constraints, the estimate so constructed may not; and, 

more seriously, (2) the estimates so constructed may not actually 

be the least- squares integer, as evidenced by the numerical exam- 

ples in Part IV. 

As an alternative we propose the integer - quadratic program- 

ming technique of Kunzi and Oettli (8). This method combines the 

usual quadratic programming algorithms with a "cutting plane" ap- 

proach similar to that of Gomory (1) for linear programs. For 

purposes of the discussion of this method, we rewrite 

Q(fi) = Y'Y - 2Y' Xfi + .Li'S.E (2. 1) 

since Y'Y does not involve Li, by letting T = 2X' Y we may 

equivalently consider the minimization of 

Q*( .Li) = ß'SL.i - T'fi . (2. 2) 

J 

. 

. 

it 
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Before explicitly giving the algorithm, let us consider a geometrical 

description for the case p = 2 as illustrated in Figure 1. Suppose 

the unrestricted minimum of Q *(ß) is outside the admissible do- 

main. Since S is positive definite, Q *(ß) is strictly convex and 

its horizontal cross -sections are ellipses. Let ß be the uncon- 

strained minimum (the least squares solution). All the ellipses have 

their centers at 

from the center 

ß 

ß 

Expand one of these ellipses, say Q*(ß (1)), 

to the first point with integral coordinates 

which also satisfies the linear constraints. 

The iterative procedure consists of expanding, at each step, 

the ellipse and its circumscribed polyhedron pk (Figure 1) until 

this polyhedron meets a feasible parameter point with integral coor- 

dinates; this point is identified by the symbol ß(k +1) Let X be 

the parameter of expansion; the polyhedron p(k)(X) circumscribes 

the ellipsoid Q *(X). Extreme points of pk may be removed from 

consideration by cutting the circumscribing polygon p 
k with a 

hyperplane through the point _3 k +1 and tangent to Q *(X) at some 

point (k +1) The result is a new polyhedron with (k +1) faces. 

If, for X = X(k 
+1) the point R(k +1) with integral coordinates is 

exactly at the point pk(X), then is outside of 
p(k+1)((k+1)) 

and the expansion begins again. The optimal point must belong to the 

polyhedron and to the ellipsoid. The initial polyhedron is merely a 

half- space, having a hyperplane tangent to the ellipsoid as its only 

n 

p(k +1) 
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Figure 1. Illustration for the case p = 2 . 

ß2 
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surface. 

The complete algorithm involves the following steps: 

Step 1. Determine the unrestricted minimum L3 by the 

method of least- squares. If ß is an integer, the solution is com- 

plete. If not, go to: 

Step 2. Solve for ß(1), the solution of the quadratic pro- 

gram not restricted to be integers. If ß(1) is an integer, the 

problem is finished and ß(1) is the optimum solution. If not, 

proceed to: 

Step 3. A set of integral values 13 (10 for k > 2 can be 

determined by iteration, according to the recurrence rule: 

At the beginning, set ß (1) = 
(1); then with ß(1¿ -1) and 

(note that 3 = ß ) we have to solve the mixed linear 

programming problem with integer coefficients. 

Minimize X (a scalar unrestricted in sign), 

subject to the conditions: 

Aß<C 

t13 - aj < b. (j = 1, 2, ,k-1) 

where 

(2. 3) 

J - J 

ß(k 1) 
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tJ 

a. 
J 

b. 

= -T + 

= 
t' (f3 - 

= t 

(J) 

-13) - 

(p x 1 vector) 

(scalar) 

(scalar) 

This problem may be transformed into the successive solution of 

linear programs purely in integers. Let (ß(k), X. (k)) be the solu- 

tion of this program (a system of p +l values). Then set 

where 

and begin a new cycle. 

Step 4. If 

stop, and ß(m) 

(k) = ß + (k) µk( - ) (2. 6) 

1/2 
[ (1) {Q(ß)- n 

= Q)Q((k-Qm(ß)1} 

R(m) = ß(k), for k < m -1, the iterations 

is the optimal solution. 

Since Step 3 is an all- integer programming problem, 

Gomory's (1) requirement that all the coefficients appearing in the 

linear program be rational must be satisfied. If the quantity µk 

is irrational, a rational approximation would have to be formed. In 

the case where the unrestricted solution satisfies the linear con- 

straints, the algorithm will not start with a half -space but with a 

polyhedron determined by suitably chosen surfaces. 

k 
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III. DISTRIBUTION OF THE LEAST SQUARES ESTIMATE 

In any estimation problem the criteria for choosing any par- 

ticular estimator are based on the sampling distribution of the vari- 

ous possible estimates. It is well known (see reference (2)) that the 

usual least squares estimates in the unrestricted parameter space 

have the desirable property of being minimum variance unbiased esti- 

mates. Finding the exact sampling distributions of estimates re- 

stricted to lattice points, however, is so involved that there appears 

little hope of finding explicit closed expressions for such distribu- 

tions. Hammersley observed, however, that consistency of integer - 

valued estimates, at least in the one -dimensional case is very easy 

to verify; he further noted the consistency to be of special type -- in- 

stead of considering the probability of being within some small 

neighborhood of the true parameter point, one may consider the 

probability of achieving the parameter point exactly. Hammersley 

was unable in the one -dimensional case to find small - sample distri- 

butions of his estimates; the task appears to be insurmountable in 

higher dimensions. 

Large sample consistency of the least- squares estimate is, 

however, quite easy to prove. Letts be the restricted least 

squares estimate obtained by the method of the previous section, 

and consider the following theorem. 
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Theorem: Let the sample size n be increased in such a way that 

for some pxp positive definite matrix So, the equality 

S 
So 

n o 

holds for all n, where S is the design matrix. Then 

(3. 1) 

P(ß = (3) - 1 as n - 00. (3. 2) 

Before proving the theorem let us make the observation that the con- 

dition imposed on S is merely one to preserve its full rank. 

While it would be possible to have the matrix S be of full rank for 

every finite n and to have the limiting matrix value of (S /n) be 

of less than full rank, a more reasonable requirement which real- 

izes the full potential of the observations at each successive stage is 

that given. Furthermore, as observed during the course of the proof, 

all that is necessary is that IS/n1 be bounded away from zero. 

In the case of a simple linear regression where p = 2, Xil = 1, 

and Xi2 
= 

S 

n 

1 Ti 2 
X 

n 

The condition on S merely has the effect of bounding EXi 2 /n 

Xi, 



away from zero and infinity. 

Proof: Let L3 m be any point in the restricted parameter space 

with Consider the random variable 

Wn = [Q(P) - QV] 

= 
nY'X(ß 

-(3 *) + (3*'SoL3* - ß'Soß 

Note that W is a linear function of Y and since 

then 

(3. 3) 

E (Y) = XLi (3. 4) 

- E(W n) X( Li = ñ' X' - .ft*) ) + atiSox i' So3 

= 2(3 ' So(R - fi*) + ).1/41 
03 - ß' óft 

= (ß - k''`)i ó(p. - ß*) > 0 (3. 5) 
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since S 
0 

is positive definite. Furthermore, since the covariance 

matrix of Y is 0- 2 I, 

2 Var(Wn) _ (-2 ) (p. - _ft*)' X' I X(. - .ft*) 

4 
= ñ[ (ft -L*)' ó(ft- ):()] 

and 

(3. 6) 

_ft* 4 L.i . 

n 

o- 



Var(W 
n 

) -' 0 as n -- oc. 
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Using Tchebysheff's inequality, we see that Q(V) - Q(ß) tends in 

probability to a positive number, therefore 

p(Q(ßm) > Q(ß) )-1 (3.7) 

for any 13* Li . Since ß is the point in the restricted param- 

eter space which minimizes 

p( i .L = .u,() _,- 0 

for all ß* p3 and hence 

p(ß = ß) -'1. 

Q(ß), 

(3. 8) 

(3. 9) 

The theorem is proved, and consistency of the restricted least 

squares estimate is established. 

In order to fully investigate other large and small sample 

properties of the least- squares and other estimation procedures, 

further analysis is required beyond the scope of this thesis. In the 

small sample case, one appropriate method would seem to be the 

Monte Carlo simulation of the process, comparing the accuracy (by 

some standard) of this procedure to others. Such an analysis would, 

of course, require formulating other criteria and approaches, a 

# 

# 
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large task in itself. The complexity of the mathematical analysis 

required is clearly of high degree, but this author hopes to pursue 

the problem more fully at some later date. 
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IV. NUMERICAL EXAMPLES 

Example 1. In order to illustrate the estimating method presented 

above, let us consider the following artificial example for the case 
P1 

p = 2. The objective is to find integer -valued estimates of ß = 
132 

subject to the constraints 

that is, 

1 

0 

1 

1 

ßl+ß2<5 

ß2<3 

< 
5 

3/ 

Figure 2 shows these constraints and the admissible parameter 

points. 

Suppose that 

X = 

1 0 

1 4 

1 1 

1 2 

1 3 

1 o 

Y = 

2 

3 

8 

10 

15 

5 

11 

8 

2 

5 

[ 

l 

2 

1 3 
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/ 

admissible region 

+ß2 = 5 

o 

II 

=3 

Figure 2. Admissible points of Example 1. 

í7 

3 



whereupon 

S = 

X'Y = 

10 17 
S_1 

1 
45 -17 

17 45 161 -17 10 , 

69 

168 

We therefore must minimize 

Q(L3) = 641 - [138- 336] 
(:11+ 

+ Rl 
2 

] 

10 17 

17 45 

Solving for the unrestricted least- squares estimator, we find 

[pi) 

and Q((3) = 4. 927 

1. 547 

3. 149 
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This is the point 00 in Figure 2. 

After three iterations using Wolfe's method for quadratic 

programming [ Hadley (3, p. 221 -230)] , we obtain as the co- 

ordinates which minimize the function, subject to the linear but not 

the integral constraints, the point 

' (1) 

t (1) 
= 

R1 

R(1) 
. 2 

[1.8071 
3. 000 

for which Q(Ri(1)) = 5. 6. This is the point Ol in Figure 2. 

_ 

Pli 
R2 P 

, 

j 

p2 
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By solving a sequence of integer programs, we now find the 

restricted minimum of Q(ß). To begin, we set the equalities 
(1) ß(1) and p = , whence 

t(1) = 

0.140 

-4. 562 

0.716 

b1 = -14. 149 

and our first integer program becomes; 

Minimize X(1) = X 
(1) 

- X(1) X 
(1) 

X 
(1) 

> 
1 2 1 2 - 

Subject to ßl +ß2 <5 

P2 
< 3 

- 6. 372 ß2 - (X(1) - X(21)) < -19. 761 and 

are integers. 

After two iterations, the above procedure yields 

X(1) = 0.645 

.(2) 
ß(2) 0 

P2 3 
2 

and Q(Li(2)) = 36. This is the point 0 in Figure 2. 

3 

al = 

I 

1 

l 

= 

J 

o 

0. 196(3 

Pl, P2 
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The multiplier p.3 is then found to be 0. 147 and 

P (3) = 

which leads us to the following 

3. 127 

Minimize x(2) = X(2) - 
2) 

Subject to ßl + 132 < 5 

132 
< 3 

-3. 741 ßl - 6. 863 ß2 - (Ait) A22)) < 27. 398 and 

ßl, ß2 are integers. 

Solution of this minimization problem gives the results 

and Q(ß(3)) = 6. 

X(2) = -0. 673 

(3) 

(3) L l 
(3) 

The solution ß(3) 

Again, by calculation we have 

(4) 1.906 

3. 044 

The new integer program is : 

2 

3 

is the point 0 in Figure 2. 

µ4 = 0. 792 and 

- 

2 

= 
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Minimize X (3) x(1 3) X(23) 

Subject to ßl + 132 < 5 

132 < 3 

3. 796ßl + 8. 764 ß2 - 0. 341(X 3) - X2)) < 33. 006 and 

ßl' P2 
are integers. 

The solution of the new integer program is 

(4) 
ß(4) 

1 

P2 2 

2 

3 1 

which is seen to be the same as ß (3). Thus the linearly constrained 

integer -valued estimate of i3(4) ; that is 

and Q(ß) is equal to 6. 

Example 2. 

[P(14) 

P2 2 

2 

3 

In Example 1, we have made a restriction ß3 < 3. 

In that example, it was not necessary to use integer programming. 

In the example we use the data presented in Example 1, but modify 

the constraints to be 

----, 

(4) 

- 
2 

P ° 
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ß1+(32 < 5 

ß2 < 2.5 

ß1 > 0 

132 > 

and ßl, ß2 are integers. 

Note that ß in a regression model is not necessarily non -negative. 

Because any number may be written as the difference of two non- 

negative numbers, the restriction R> 0 may always be imposed, 

provided the numbers of parameters is increased accordingly. 

Wolfe's method gives the solution of this quadratic program, after 

four iterations, as 

2. 5 

2. 5 

and Q(13(1)) = 12. 25 from which we find 

t(1) _ 

-3 

-26 

= 14.015 a 
1 

b1 = -86. 515 

Therefore, the next problem is to solve the following: 

0 

p(t l)' 

p(2) 
z 



Minimize X = X1 - X2 

Subject to ßl+Pz < 5 

132 
< 2. 5 

28 

-3 ßl - 26 ß2 - 14. 015 (X1 -X2) < -86. 515 

ßl, P2' X11 X2 > 0 

and ßl, ß2 must be integers. 

Using the Simplex method for linear programming we obtain 

ßl = 2. 5; P2 = 2. 5 and Xi =1 . 

Since 131 and 132 both appeared in the basic set, they must be 

integers, but the slack variables ß3, P4 (which are introduced to 

make the inequality constraints as equalities ones) are not neces- 

sarily integers. Therefore this problem belongs to the mixed 

integer- continuous variable class, According to Gomory's 

algorithm [Hadley (3, p. 282 -285)) we introduce 

P3 
+ 

134 
> 0. 5 

as the first cut which gives 

Since 

ß1 =2; ß2= 2.5 and ß3 =0.5. 

ß2 
is not integral, another cut should be introduced 

which is found to be 



Then we find 

134 
> 0. 5. 

3 

2 

which gives Q(13( 2 ) = 29. 

Again, as in Example 1, we calculate 

µ2 = 0. 552 

and 

'(2) 2. 349 

2. 515 

-5. 510 

[_29. 784 

a2 = 14.464 

b2 = -102. 324 

By the same procedure we obtain 

ß(3)^ 
1 

ß(3) = 

Hence ß (3) = 13(2) so that 

=P(3) = 

29 

P 
(2) 

= 

2)-, 

C:1 

^ß(3r- 

ß 
( 3) 
2 

1 

p(2) 
2 

t( 2) 

(3) 
132 

1 

- - 
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will be the restricted least - squares estimate. 

Figure 3 provides a sketch of Example 2. Point 00 is, as 

before, the unrestricted least- squares estimate. Point Li) is the 

least- squares estimate where _ft is restricted by the linear in- 

equalities. Point O is the integer least- squares estimate. The 

ellipse sketched in Figure 3 is the cross section of 

Q(ß) = Qa) 

to show the "shape" of the quadratic form Q(Li) . 
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