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Design of commercial aircraft structure, composed of composite material, requires the 

prediction of failure loads given large scale damage. In particular, a fuselage of 

graphite/epoxy lamination was analyzed for damage tolerance given a standard large 

crack that severed both skin and internal structure. Upon loading, a zone of damage is 

known to develop in front of a crack-tip in composite laminates; and, its material 

behavior within the damage zone is characterized as strain softening. This investigation 

sought to develop a computational model that simulates progressive damage growth and 

predicts failure of complex laminated shell structures subject to combined tensile and 

flexural load conditions. This was accomplished by assuming a macroscopic definition 

of orthotropic damage that is allowed to vary linearly through the shell thickness. It was 

further proposed that nonlocal plate strain and curvature act to force damage growth 

according to a set of uniaxial criteria. Damage induced strain softening is exhibited by 

degradation of laminate stiffness. An expression for the damage reduced laminated 

plate stiffness was derived which assumed the familiar laminated plate [AM] stiffness 

matrix format. The model was implemented in a finite element shell program for 

simulation of fracture and evaluation of damage tolerance. Laminates were character-

ized for damage resistance according to material parameters defining nonlocal strain and 

the damage growth criteria. These parameters were selected using an inverse method to 

correlate simulation with uniaxial strength and fracture test results. A novel combined-
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tension-plus-flexure fracture test was developed to facilitate this effort. Analysis was 

performed on a section of pressurized composite fuselage containing a large crack. 

Good agreement was found between calculations and test results. 
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A Non local Damage Theory for Laminated Plate  
with Application to  

Aircraft Damage Tolerance  

1. Introduction 

Damage tolerance is a design requirement common to aircraft, pipelines, and 

pressure vessels in general. It could be argued that it should be a requirement of any 

structure that effects the personal safety of humans. Should life supporting structure 

incur damage, it is desirable that the damage not progress. That is, it is desirable that the 

structure be damage tolerant. If the damage does progress, it is desirable that its growth 

be arrested by some design detail so as to prevent total failure. That is, it is desirable that 

the structure fail in a safe manner which is the essence of a fail-safe design philosophy. 

Damage tolerance analysis seeks to predict the operational load at which damage will 

grow in a dynamic manner. It is applied to ensure tolerance of damage in general and 

includes assessment of fail-safe design performance. 

The sources of damage are many. They include fatigue cracks, maintenance 

induced damage, manufacturing flaws and foreign object impact. Therefore the set of 

possible damage conditions is infinite. Standards are typically established which, if met, 

would ensure that all likely damage conditions are adequately designed for. The damage 

theory developed herein is applied to the damage tolerance analysis of a large diameter 

commercial aircraft fuselage. The standard of damage, considered herein, is a 22 inch 

long crack that severs both the fuselage skin and an underlying frame member. Such a 

large damage condition was based upon the possibility that, between scheduled 

inspections, multiple small damage sites could become interconnected into a single large 

damage site. It also served to account for possible foreign object damage. Details of the 

damage standard, such as its sharp notch-tip and its tip location mid-way between 

frames, were selected to represent a worst case condition. The standard does not 
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represent a fail-safe condition since the defined damage is distant from the frame 

members which are assumed to serve a fail-safe role. 

Behavior of an axially aligned fuselage crack is complicated by pressure induced 

bulging which looks much like a persons lips while blowing out a candle. The free edge 

of the crack face disrupts the normal equilibrium within the fuselage skin and causes an 

increased axial stress and flexure about the crack-tip. From an analytical perspective the 

behavior is strongly nonlinear. 

High performance composites have been considered for many pressure vessel 

applications including aircraft fuselage design. The fuselage application, reported upon 

herein, is composed of graphite/epoxy laminated plate. Prior to dynamic growth of a 

crack in these materials, a zone of damage is known to develop ahead of the crack-tip. In 

metals a similar zone of plasticity develops ahead of a crack-tip. Unlike metals, 

however, these materials are known to exhibit a loss of stiffness due to damage. This 

behavior has been shown to significantly influence fracture strength; however, such 

softening is difficult to experimentally characterize and the complexity of the damage 

process has motivated a wide range of analysis techniques. 

From an engineering perspective, a successful damage tolerance analysis method 

would not only be reasonably accurate but would also be affordable in application to 

large complex structure. A macroscopic model of the damage process was considered 

essential to ensuring such affordability. It has been assumed that the macroscopically 

salient feature of the damage process and subsequent fracture is the gross softening of 

the plate. This behavior is referred to as strain softening and is exhibited by a declining 

post-yield stress-strain relation. Plasticity has been successfully employed to model plate 

softening and commercial finite element programs are available for application to 

complex structure. Plasticity theory attains softening by allowing for growth of a plastic 

component of strain that results in permanent deformation. Alternatively, damage 

mechanics has been successfully employed but currently lacks the support of commercial 

finite element programs. Damage mechanics attains softening by allowing for a 

reduction in stiffness. Testing of material taken from within the damage zone of a 
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fracturing laminate suggests that stiffness degradation is significant (llcewicz et al., 

1993). A theory of damage mechanics is proposed herein for structure composed of 

highly directional laminated composite plate. 

Strain softening behavior results in a brittle-like response for a uniaxial strength 

test. Failure is localized to a narrow band of material across the width of the specimen. 

Any attempt to load the specimen beyond its ultimate strength results in damage and 

softening originating at the weakest material point. Such a condition is unstable under a 

constant load and leads to rapid failure of the specimen cross-section that includes the 

weakest point. Simultaneously, the rest of the specimen unloads and the specimen is 

severed. In finite element analysis, failure develops within a single row of elements. 

However, refinement of the finite element mesh results in an ever more narrow failure 

volume. In the limit, failure is predicted to occur with zero volume of material involved 

and no strain energy dissipated by the failure process. This analytic result is physically 

unreasonable. One way to correct this problem is to employ a nonlocal treatment of the 

material's constitutive model. This approach presumes that the response of any material 

point is dependent upon the state of stress or strain within its nonlocal neighborhood and 

not simply a function of stress or strain specific to its location. Non local finite element 

analysis of a uniaxial test of strain softening material would result in a band of material 

failure of finite width irregardless of mesh refinement. 

Macroscopic modeling of material behavior within the notch-tip damage zone 

should account for the directional nature of fracture strength within a laminate. A 

second order tensor representation of damage mechanics is proposed to establish an 

orthotropic damage effect within a plate. Flexure can induce a variation of damage 

through the plate thickness, the degree of which would depend upon the variation of ply 

orientation through the laminate thickness. Therefore it is proposed that the second-

order tensor representation of damage be allowed to vary linearly through the laminate 

thickness. The effect of such damage upon laminate stiffness is developed in Section 3. 

The kinetics of damage growth due to nonlocal strain is proposed in Section 4. The 

theory was applied to the analysis of fuselage damage tolerance. The fuselage skin 
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laminate is experimentally characterized for damage growth in Section 6. Fuselage 

damage tolerance analysis is presented in Section 7. 

Large-scale delamination can be a significant component of fuselage damage. 

This is especially true where skin is bonded to sub-structure (versus mechanically 

fastened). Large-scale delamination effects are neglected in the present analysis. 

Rather, flexure induced damage was given priority because flexure induced damage is 

expected to be a precursor to large scale delamination. 
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2. Literature Review 

Literature was reviewed for its relevance to fracture analysis of laminated 

composite shell structure. Particular focus was given to analysis of aircraft fuselage 

structure since the application of the theory reported herein was the prediction of rupture 

for a composite fuselage with large scale damage to its crown (upper quadrant). Thus 

the following literature review sought to elucidate the methods of fracture analysis 

applicable to quasi-brittle, laminar composite, thin shell structure under static load 

conditions. The theories considered do not attempt to model dynamic crack growth 

which would occur during rupture, but rather predict that rupture has occurred. 

2.1 Analysis of Fuselage Rupture 

The stress intensity factor (SIF) of linear elastic fracture mechanics (LEFM) for 

notched pressurized cylinders was first established by Folias (1965a & b) in which, 

depending upon geometry, it was shown to be of a significantly greater value than that of 

a flat plate subjected to a similar membrane loading. The notch was shown to bulge 

outward, like lips blowing air, which introduces bending ahead of the notch-tip that 

interacts with membrane forces to augment the membrane SIF. An SIF for bending 

stresses was then established by Copley & Sanders (1969). Erdogan & Kibler (1969) 

established a plasticity corrected SIF by using the Dugdale plastic strip model. He later 

demonstrated that the Crack Opening Displacement (COD) method predicts failure on a 

more consistent basis across a range of vessel notch sizes (Erdogan & Ratwani, 1972). 

The Folias theory was further applied to laminated composite pressure vessels and 

failure was predicted using the Mar-Lin fracture criterion discussed below (Ranniger et 

al., 1995). Agreement between prediction and experimental results was mixed, 
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particularly for anisotropic lamination which deviated considerably from the isotropy 

assumed by Folias. 

Finite Element Analysis (FEA) was applied to the problem in order to obtain 

results for vessel geometries outside the limits of the Folias theory and for notch sizes 

that were larger in comparison to the size of the vessel (Ehlers, 1986). For many 

practical problems, such as fuselage damage tolerance analysis, analytical results 

(including those of FEA) considerably overestimated the COD. However by including 

large deflection effects in the governing equations, within the framework of finite 

element analysis, the problem was largely addressed (Riks et al., 1989). 

Particular to metal airframe construction, Swift (1987) presented an excellent 

historical overview of fuselage damage tolerance analysis. Composite fuselage damage 

tolerance has been a recent focus of the Advanced Technology Composite Aircraft 

Structures (ATCAS) program that was directed by the National Aeronautical and Space 

Administration (NASA). In particular the work contributed by the Boeing Co. evaluated 

the capability of many fracture theories in predicting the residual strength of composite 

structure with large notches (Walker et al., 1992 & Ilcewicz et al., 1993). Large scale 

testing was conducted on a flat stiffened panel with a 14" notch under uniaxial tension 

and on a curved multi-bay section of fuselage with a 22" notch and severed frame 

(Walker et al., 1993). Of particular note was the additional failure mechanism of stiffener 

separation from skin laminate which can preempt notch failure and make experimental 

correlation problematic (Dopker et al., 1994). DuBois (1996), using a finite element 

model of the tested fuselage panel and nonlinear strain-softening spring elements along 

the crack path, over-estimated failure by 25 percent. A drawback of this analysis was 

that flexural stiffness degradation, ahead of the notch, was not addressed. 
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2.2 Laminate Fracture Theory 

Laminate fracture analysis methods can be grouped into two general groups, 

those that model individual micromechanic failure mechanisms such as matrix cracking 

or fiber breakage and those methods that are phenomenological in nature. The later type, 

being macromechanic, attempt to model the effects of damage rather than the damage 

itself. These effects can be interpreted to modify fracture toughness properties or as 

some post-yield nonlinear stress-strain behavior. Macromechanic fracture analysis is the 

focus of this thesis; however, reference will follow regarding the state and usefulness of 

micromechanic theories. Typical macromechanic theories incorporate parameters that 

are correlated with results of an affordable set of fracture tests. Being empirical, all 

theories can be made to agree with a single fracture condition. Thus the discerning 

criterion of model performance is its accuracy in application to other, more practical, 

structural configurations. 

2.2.1 Macroscopic Fracture Criterion 

A review of laminate fracture criterion was made by Walker et al., in which 

various models are compared for a large range of crack sizes (Walker, et al., 1991). The 

criterion of Mar & Lin, discussed below, was found to best predict large notch test 

results based upon parameters established from small coupon test results. 

Linear Elastic Fracture Mechanics (LEFM), based upon the theory of elasticity, 

established a square-root stress singularity distribution ahead of a notch tip. For mode-I 

loading of a notch under a plane stress condition, LEFM predicts a variation of stress 

a(r) = aVa/2r (2-1) 

where "r" refers to the distance ahead of the notch tip, a- the far-field stress, and "a" the 

half crack length. By defining a Stress Intensity Factor (SIF), K1, as 
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K = (2-2) 

it is possible to establish a critical value of the SIF which would apply to all crack sizes. 

However, LEFM suffers in that it predicts far-field failure stress values that approach 

infinity for notches of vanishing size, a result which is physically unreasonable. In 

practice, small cracks are ignored and a non-fracture strength criterion is relied upon. 

Strictly speaking, LEFM is limited to perfectly linear elastic (and thus brittle) 

material behavior. However, due to the empirical nature of LEFM, material nonlinearity 

localized to a small fracture process zone (FPZ) ahead of the notch-tip is acceptable. 

The discerning issue is whether the FPZ remains confined to the area of linear stress 

concentration, as calculated by LEFM. The Irwin and Dugdale plastic zone models are 

two methods of addressing the effects of crack blunting due to plastic yielding while 

remaining within the framework of LEFM (Irwin, 1958, Dugdale, 1960). 

To address larger scale material nonlinearity, many models have been 

entertained. Like the critical SIF of LEFM, a single parameter was sought which 

signifies fracture given any representation of material behavior within the FPZ. The 

Crack Tip Opening Displacement (CTOD) and J-integral methods provide such a 

measure. The CTOD method (Wells, 1961) employed analytical or numerical methods 

to quantify the crack tip separation. The critical CTOD value is measured at failure in a 

fracture test and is considered to be directly applicable to the full range of crack sizes 

and geometries. However, CTOD measurement requires a distinct crack which is often 

not evident in such quasi-brittle materials as laminar composites and concrete. The J-

integral method (Rice, 1968) is especially powerful in that it characterizes fracture 

(unstable FPZ growth) given a FPZ surrounded by material undergoing nonlinear elastic 

and monotonically increasing stress-strain loading. For graphite/epoxy laminates as 

well as concrete, the FPZ may be of a size that is too large for LEFM application, but it 

occurs within a field of linear elasticity and thus the J-integral method offers no special 

advantage. 
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The above analysis methods were developed for brittle or plastic material 

behavior. However, high performance laminar composites and concrete do not exhibit 

appreciable plasticity. For these materials, simple tension tests suggest brittle behavior; 

but fracture tests indicate otherwise. In particular, the material does not nucleate and 

grow a through crack as realized in metals. As a result, fracture theories have been 

developed specifically for composites. Furthermore, many of these theories address the 

short-coming associated with LEFM which predicts ever higher strength as the notch 

length approaches zero. Waddoups et al. (1971), modeled the FPZ in composites as a 

tractionless extension of the actual notch. This approach is similar to the Irwin model 

for plasticity. Length of the crack extension was considered a material property; it and 

the SIF of the extended notch are two parameters that enable correlation to both a 

fracture test and no-notch failure. 

A Point Stress (PS) criterion (Whitney & Nuismer, 1974 & 75) is another two 

parameter model; but in contrast to the method of Waddoups, the PS method avoids 

dependence upon LEFM. The PS method associates failure with the development of a 

stress equal that of the no-notch strength at some distance, do, ahead of the stress 

concentration. Linear elasticity is employed in calculating the stress field; but contrary 

to LEFM, the SW is not used as a fracture parameter. Distance parameter do represents a 

characteristic dimension for the FPZ and is assumed to be a material constant, applicable 

to all notch sizes. Based upon the general solution of an elliptical hole through an 

infinite plate, the limit-condition of a crack results in an exact expression for the notch-

tip stress according to 

ao(r) = 0- (2-3) 
Jae -r2 

The PS criterion specified that, for position r = do ahead of the notch-tip, the 

stress would equal the no-notch failure strength 0°. The criterion applied to equation 

(2-3) results in 
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1- (2-4)  

which relates the far-field fracture stress to the no-notch strength and characteristic 

dimension, do. Thus, do is quantified via correlation with a fracture test. 

A strain based method, similar to the PS method, was formulated by Poe (1983) 

in which a critical strain intensity factor and fiber failure strain are two parameters that 

enable correlation to both a fracture test and no-notch failure. A characteristic dimension 

and fiber failure strain can also serve as an equivalent set of failure parameters. The 

characteristic dimension corresponds to the distance ahead of the notch tip at which 

fracture will occur if the fiber failure strain is realized. The characteristic dimension was 

found to be relatively independent of layup and material as long as failure occurred by 

self-similar crack extension and experienced limited delamination and splitting. 

A three parameter fracture method was derived by Pipes et al. (1979) which 

employed the unnotched laminate strength and a PS type characteristic dimension that 

was made to vary relative to the notch size according to a variable exponential power. 

Use of three failure parameters improved correlation over the range of notch size results 

but required two different sized fracture tests and a unnotched strength test to quantify 

parameters. 

The above fracture methods assume a homogeneous material exhibiting linear 

stress-strain behavior. However, composites are inherently inhomogeneous, having both 

fiber and matrix constituents. Linear elastic analysis, of a crack whose tip contacts a 

neighboring material region has shown that the SIF is not of the classical square-root 

singularity form; rather it is of a singularity that is a function of the relative shear 

stiffness and Poison's ratio of the two constituents. This micromechanic consideration 

lent support to the two parameter macromechanic model of Mar & Lin (1977) in which 

the notched failure stress is of a non-classical exponential dependence upon notch 

length; that is 

o" = H(2a)-m (2-5) 
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Parameter "H" is the composite fracture toughness value and exponent "m" establishes 

the rate of stress singularity. The authors established "m" values ranging from 0.25 to 

0.35 for various laminar composites which are comparable to a value of 0.5 for 

homogeneous material. 

2.2.2 Strain Softening Models 

Unlike metals or perfectly brittle materials, high performance composites can 

exhibit a gradual reduction in resistance to deformation after surpassing some threshold 

in strain. Such behavior is not captured in load controlled tension testing because the 

softening leads to a localized and catastrophic failure. Under tension loading, strain 

softening nucleates at some flaw-like anomaly which exhibits the lowest threshold strain 

in the specimen. Softening of the nucleus, under a constant load, requires that strain 

increase over the specimen cross-section containing the flaw. Elevated strain leads to 

more material surpassing a threshold strain and localization of failure across a narrow 

section of the specimen. The specimen material outside of the band of localized 

softening undergoes simultaneous relaxation. Under most load conditions, this process 

is unstable and failure appears brittle and catastrophic. On the other hand, fracture 

testing of such material shows a gradual failure progression. This behavior has been 

associated with significant strain softening in the FPZ while material outside of the FPZ 

maintains specimen integrity. Such failure of strain softening material has often been 

referred to as quasi-brittle. 

Hillerborg et al. (1976) pioneered the development of strain softening models for 

concrete using a simple stress-displacement relation associated with cohesive restraint 

during crack face separation. The method utilized nonlinear numerical analysis to model 

the progression of the FPZ. Hillerborg later referred to the method as the Fictitious 

Crack Model, FCM, in work which compared its performance to several other models 

discussed above (Hillerborg, 1983). The FCM method simplifies the area of potential 
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strain softening to a line along which the notch could advance. Upon reaching the 

threshold stress, material at the notch tip separates while continuing to support a lesser 

stress, representing partial ligament integrity. Further separation leads to total loss of 

resistance and advancement of the tractionless notch surface. Hillerborg employed a 

linear stress-displacement softening behavior, such as that illustrated in Figure 2.1 

which results in an blunting of the notch-tip stress distribution. The notch-tip stress 

distribution evolves under increasing load and an example snap-shot is shown in Figure 

2.2 at a stage in which material at the notch-tip location has completely exhausted its 

strain-softening potential and the stress free surface of the notch has in effect grown. 

Stress 

Displacement 

Figure 2.1 Material Stress vs. Displacement Relation of the Fictitious Crack Model. 
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Figure 2.2 Stress Distributions within the Fracture Process Zone. 

The FCM method was originally developed for concrete but later applied to 

laminated composites (Backlund & Aronsson, 1986) and various test specimen designs 

(Hollmann & Backlund, 1988). Depending on the complexity of the stress-displacement 

function, any number of parameters could be employed to characterize degradation 

within the FPZ; but at a minimum, the linear softening function is a two parameter 

model. Some have used multi-segmented-linear stress-displacement FPZ behavior 

(Carpinteri, et al., 1987 & Dopker et al., 1994) to demonstrate the insufficiency of the 

linear function of Figure 2.1 and the significance of a knee in the softening portion of the 

relationship. The previously mentioned fuselage analysis by DuBois used the FCM 

method and employed bilinear softening for membrane behavior while ignoring flexural 

softening. FCM has been widely employed due to its conceptual simplicity and 
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compatibility with commercial finite element programs. However its deficiencies are 

that the path of crack growth must be assumed apriori and it offers an incomplete 

representation of multi-dimensional continuum degradation within the FPZ volume. 

Fracture tests of concrete and composites indicate that the FPZ encompasses a 

material volume of significant width normal to the crack and yet the FCM recognizes 

none. As an alternative, Bazant (1984a) proposed a Crack Band Model (CBM) in which 

a stress-strain softening relation was proposed for characterizing the FPZ as a band of 

degraded material. The band width, normal to the crack, is considered a material 

constant and the state of strain softening is uniform across its width. The CBM and FCM 

methods are essentially equivalent if the deformation across the band width, due to 

strain, is equal to the stretch of the cohesive FCM spring. At a minimum, however, the 

CBM is a three parameter model due to the addition of the band width as a material 

constant. 

Bazant (1984a) used the CBM to demonstrate fracture specimen size effects, 

particularly for such materials as concrete and composites. Using a simplified 

interpretation of the CBM to model fracture, the general size effect law 

B *fu 
aN (2-6) 

5 7- 3 

was established based upon crack growth energy release rate considerations. The size 

effect law relates the far-field notched strength, ciN, to a non-dimensional size parameter, 

p, which is a function of specimen size and band width. Parameter fi, is the tensile 

strength and B is characteristic of the strain energy released from a complete softening of 

the material. As shown in Figure 2.3, the size effect law is consistent with the no-notch 

strengths as well as LEFM for specimen sizes much greater than that of the FPZ. 

Bazant (1994) recently investigated the size effect for fracture of composites. 

Due to its simplicity, the CBM method offered clarity to the size effect issue and 

established the importance of modeling the volume of material undergoing strain 

softening. The CBM assumes, in consideration of energy dissipation, that all material 
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within the FPZ has experienced complete softening. In reality, however, the FPZ 

includes material having only partially softened and still contributes a cohesive 

resistance to fracture. This portion of the FPZ is referred to as being active. 

Strength 
Criterion 

LEFM 

2 

Size Effect 
Law 

Log B 

Figure 2.3 Size Effect According to Crack Band Model. 

To realistically represent stress-strain softening within the FPZ, continuum 

mechanics has recognized two forms of strain softening: that associated with stiffness 

degradation (Figure 2.4a), and that associated with yield limit degradation (Figure 2.4b). 

Either or both forms of softening can evolve in a material as shown in Figure 2.5 for 

concrete loaded in tension. Yield limit degradation is associated with accumulation of 

permanent strain, no reduction in stiffness, and is modelled using the theory the of plastic 

deformation (Bazant & Lin, 1988a). Stiffness degradation is associated with progressive 

fracture and a variety of methods exist to model this behavior. The Smeared Cracking 
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Model (Bazant & Lin, 1988b) addressed stiffness degradation representative of cracks of 

a common orientation. Stiffness degraded as the secant modulus of the stress-strain 

softening relation. Stiffness degradation has also been modelled using damage 

mechanics as discussed below. Many authors have proposed methods to potentially 

model both modes of strain softening, simultaneously, for elasto-plastic fracturing 

materials (Bazant & Kim, 1979, Han & Chen, 1986, Ju, 1989, Hansen & Schreyer, 

1994). 

a) 

:13 

Strain 

b) 

Strain 

Figure 2.4 Strain Softening a) Stiffness Degradation. b) Yield-Limit Degradation. 
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Strain 

Figure 2.5	 Tensile Stress-Strain of Concrete Both Strain Softening and 
Permanent Strain Suggested (Mazars et al., 1989a). 

The Crack Band Model can be modelled using Finite Element Analysis; however 

strain softening in a I-E,A model localizes to a single row of elements. Therefore the 

element size used to model the FPZ must be of the band width size. Any other size 

would constitute a different material behavior. Dopker et al. (1994) simulated fracture of 

graphite/epoxy laminates using the yield limit degradation technique and the crack band 

model. ABAQUS, a commercial FEA code, was employing in that effort and 

incremental plasticity theory controlled bi-linear stress-strain softening behavior 

(Ilcewicz et al., 1993). The steep descent of stress in the softening behavior of the 

graphite/epoxy laminates created challenging convergence difficulties which were 

overcome using dynamic nonlinear solution techniques. The analysis correlated well 

with fracture tests and was found to be superior to the fracture criteria discussed above. 
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2.2.3 Localization Limiting Theories 

The element size limitation discussed above is undesirable because it prevents 

the investigation of behavioral detail within the FPZ. If the element size limitation were 

discarded, then upon progressive mesh refinement, the FPZ tends to localize to a region 

of vanishing volume. This would imply that structural failure ultimately occurs with no 

energy dissipation, a result which is physically unrealistic. The root of this problem is 

not numerical; but rather, for the example of static uniform tension, it is associated with 

the loss of ellipticity of the incremental equilibrium equations and bifurcation between 

paths of continued homogeneity and inhomogeneity between softening and unloading 

regimes (Rice, 1977). At the point of bifurcation, we know the orientation of 

localization but its width is left undetermined. For this reason several unconventional 

continuum theories have been considered which offer the ability to limit the width of 

strain localization and maintain ellipticity of static equilibrium equations. These include 

non-local spacial integration, micro-polar theory and displacement field enrichment 

using higher-order gradient terms. Work of de Borst & Mahlaus (1991) considered each 

of these theories 

The framework of micro-polar continuum mechanics (Eringen, 1968) was 

established by the Cosserat brothers in 1909. It has received little interest until recently. 

Micro-polar continuum mechanics differs from classical elasticity in that material points 

have additional rotational degrees of freedom and corresponding couple stresses. The 

micro-rotational stiffness is dependent upon a characteristic length parameter which 

translates into a finite width of strain localization for softening materials. Recent efforts 

have employed plastic deformation theory for strain softening material in the context of 

micro-polar continuum (de Borst & Muhlhaus, 1991). De Borst noted that those degrees 

of freedom that are particular to micro-polar theory are activated only under conditions 

of shear, a condition that is satisfied to a varying degree, in fracture. However, he 

suggests that when decohesion is the predominant failure mode, rather than frictional 

slip, the Cosserat effect is generally too weak to preserve ellipticity of the boundary 
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value problem". Micro-polar theory has been incorporated into FEA of fracture for 

linear elasticity (Kennedy & Kim, 1987); however, no work has been identified which 

incorporates strain softening and FEA of fracture. 

Incorporating nonlocal averaging into strain softening constitutive equations has 

also been shown to limit strain localization. The classical approach of nonlocal theory 

was developed in the 1960's (Kroner, 1967, Eringen & Edelen, 1972) but it did not work 

in application to strain softening materials. This lead Bazant et al., (1984b,c,d) to 

introduce certain modifications to the classical approach in the form of an imbricated 

theory. Although the theory worked, it proved to be inconvenient due to the necessity of 

modeling material as a composite of local and nonlocal continuum. It was then proposed 

that only those terms responsible for strain softening be treated in a nonlocal manner 

while the elastic behavior remains local (Pijaudier-Cabot & Bazant, 1987). This 

approach has worked well and continues to see application and development. 

For strain softening of the yield limit degradation type, the plastic strain tensor 

(Bazant & Lin, 1988a) as well as the scaler hardening-softening parameter (Stromberg & 

Ristinmaa, 1996) have acquired nonlocal form. All nonlocal analysis for strain softening 

of the stiffness degradation type has relied upon damage mechanics in which damage, 

defined as a state variable in addition to stress and strain, affects material stiffness. 

Nonlocal treatment has been applied directly to the local damage variable (Stevens & 

Krauthemmer, 1989, Xia & Tao, 1993 & Chen & Schreyer, 1994) or to the strain-based 

force behind damage growth (Pijaudier-Cabot & Bazant, 1987, Bazant & Lin, 1988b, 

Valanis, 1991, Brekelmans, 1993, de Vree et al., 1995 & Kennedy & Nahan, 1996). 

Nonlocal averaging has typically employed a radially varying isotropic weight 

function that does not evolve during strain softening (Pijaudier-Cabot & Bazant, 1987, 

Bazant & Lin, 1988b). Its shape is defined using a material characteristic length 

parameter and directly influences the ultimate width of strain localization. Recent 

application to anisotropic laminates has retained the assumption of nonlocal isotropy 

Kennedy & Nahan, 1996) without investigating its legitimacy. Other work has sought 
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to define non-isotropic nonlocal weighting by considering the micromechanic influence 

of neighborhood crack interactions (Bazant, 1994). 

Strain Localization can also be controlled by adding spacial derivatives of strain 

within the stress-strain softening relation. Local stress becomes a function of local strain 

and higher order derivatives of the strain field. The higher ordered gradient terms can be 

thought of as macro-manifestation of such micro-processes as bridging. When a material 

point reaches the threshold of softening, it is restrained from collapsing if its strain is 

elevated above that of surrounding material, as expressed by high-order strain terms. 

Such a formulation may be derived by taking a Taylor series expansion of the nonlocal 

strain integral discussed above (de Borst & Muhlaus, 1991). Strain derivatives of an 

even order characterize the symmetric nature of the strain field about a material point; 

and as such, they contribute no directional bias in limiting localization. Indeed the odd 

ordered terms, derived form Taylor expansion of a symmetric nonlocal integral, are 

identically zero. As such, the first order strain gradient enrichment (Schreyer & Chen, 

1986) is held suspect. Good results have been obtained using a second order strain 

gradient enrichment (Belytchko & Lasry, 1988, de Borst & Muhlhaus, 1991, 

Brekelmans, 1993, deVree & Brekelmans, 1995). 

Localization control, for materials of the yield limit degradation type, has been 

achieved by enriching the effective plastic strain with the spacial Laplacian of the 

effective plastic strain (de Borst & Muhlhaus, 1992 & Sluys et al., 1993). Their FEA 

formulation produced a non-symmetric tangent stiffness matrix which presents 

difficulties for adaptation of most nonlinear FEA codes. Although this approach has not 

been applied to fracture analysis, no barriers to this extension have been identified. 

2.2.4 Damage Theory  

Damage theory constitutes the definition of a damage variable and the kinematic 

description of its growth. Damage theory has been employed to model such modes of 
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failure as elastic stiffness degradation and fatigue and has been formulated along with 

plastic deformation for elasto-plastic degrading materials. Several reviews of damage 

theory are available (Krajcinovic, 1984, 1985, Chaboche, 1990, Lemaitre, 1992). 

The introduction of damage theory (Kachanov, 1958) included a scaler variable 

which represented the accumulated density of microvoids for the modeling of material 

creep rupture. Damage parameter, D, has been interpreted as the effective area lost due 

to nucleation and growth of voids or micro-cracks and evolves from a value of zero to 

unity, representing total degradation. The basic principals of damage mechanics are 

presented below for the simple one dimensional case. With respect to the uniaxially 

loaded cylinder shown in Figure 2.6, damage is defined as the ratio of damage site area 

to nominal cross-sectional area (Lemaitre, 1984); i.e., 

S,
D = (2-7) 

S  

where: 

0 <D<1 (2-7a) 

Damage varies from a value of 0 to 1, the later representing complete material 

separation and failure. This definition has lead to the concept of a damage effective 

stress associated with material located between the damage sites. The average stress 

realized by such material is 

(2-8) 
o S Sd (1 D) 

From this basic premise, damage theories have followed various paths to achieve 

significant diversity. Critical to softening of the stiffness degradation type is 

determination of a damage effective stiffness, E, and it has been arrived at using either 

of two principles. The Strain Equivalence Principle (Lemaitre, 1971) states that the 

strain associated with a damaged state under applied stress is equivalent to the strain 

associated with its undamaged state under the effective stress; i.e., 
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o 
= ((2 -9)
E E  

Entering equation (2-8) into equation (2-9) results in the damage effective stiffness 

E= E(1 -D) (2-10) 

This approach to formulation of damage effective stiffness has been used by many 

(Lemaitre, 1984, Pijaudier-Cabot & Bazant, 1987, Bazant & Lin, 1988b, Ju, 1989). The 

same formulation could be arrived through consideration of a damage effective strain, e , 

and a stress equivalence principle. However no literature has been identified which 

utilizes this equivalent approach and it will therefore not be developed herein. A 

probable reason for its lack of use is that it would offer no advantage over the traditional 

effective stress/equivalent strain approach. 

Load 

Figure 2.6 One-Dimensional Damage Model 
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Another approach uses the Principle of Elastic Energy Equivalence (Cordebois & 

Sidoroff, 1979) to arrive at the damage effective stiffness. It proposes that the strain 

energy within a damaged material is equally represented by that of damage effective 

stress acting through the nominal stiffness and that of classical stress acting through a 

damage effective stiffness; i.e., 

1 1 
= Cr (2-11)2E 2E 

Substituting the effective stress of equation (2-8) into equation (2-11) yields the damage 

effective stiffness 

--E(1 -D)2 (2-12) 

This principle has been used extensively (Cordebois & Sidoroff, 1979, Lee et al., 1985, 

Chow & Wang, 1987, Kennedy & Nahan, 1996). 

A damage effective strain can also be considered in this formulation as developed 

by Lee et al. (1985). If Ue refers to the elastic strain energy of a material, then the elastic 

strain associated with a damaged state is 

au e(a,D) a 1 } o a e (2-13)coo 00 2E E E(1 -D)2 

which is the expected result for stiffness degradation due to damage. Equation (2-13) 

can be re-arranged to identify the damage effective strain, E , as being complementary to 

the effective stress. 

al (1 D)c (1-D) = (2-14)E E  

Physically, the damage effective strain can be rationalized as the averaged state of strain 

experienced by material between damage sites. An alternate derivation of e is obtained 
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by defining damage as the ratio of deformation due to void growth of crack opening, od, 

to the total deformation, 5 (Brekelmans, 1993); i.e., 

D = ad 
(2-15)a 

The effective strain is therefore 

= 8/L 5d/L = 5/L 'OWL = e (1-D) (2-16) 

where L refers to the nominal ligament length. Little application of the effective strain 

concept has been identified in literature. However, it has been presented above because 

it is the basis of the damage theory developed herein. Having formulated a definition of 

effective strain, expression of the strain energy equivalence principle in terms of strain 

would again produce the effective stiffness relation of equation (2-12). 

The scaler one-dimensional relations of equations (2.10) and (2.12) will take on 

more complexity for the various representations of damage and material anisotropy. 

Both formulations can represent damage effects upon a material because their respective 

damage growth kinetics will be compensatory (Hansen & Schreyer, 1994). 

Damage, being an internal state variable, has an associated generalized force of 

equal order. Many have chosen a form of strain or stress as the damage force since these 

entities are familiar and offer physical clarity. For example Bazant formulated a uniaxial 

damage model for plate media (using a single fixed micro-crack orientation) and chose 

strain normal to the crack plane as the force behind the damage growth (Bazant & Lin, 

1988b). De Vree & Brekelmans (1995) employed Von Mises equivalent strain as the 

force behind their isotropic scaler damage. Other scaler damage models have employed 

an equivalent scaler strain based upon only the tensile components of principle strain 

(Stevens & Krauthemmer, 1989). For higher order damage models, individual damage 

components could be associated with independent forces and kinematics (Krajcinovic, 

1985). As an example Kennedy & Nahan (1996) utilized a second order damage tensor 
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of fixed principal orientation equal to the principal laminate axis, and each principal 

component evolved relative to the component of strain in their respective directions. 

The intuitive selection of a damage force, mentioned above, could be considered 

arbitrary. Thus, many have employed the framework of thermodynamics of dissipative 

material for greater rigor in defining the damage force as the damage energy release rate. 

Inherent in the thermodynamic formulation is the definition of material free energy 

which is often expressed as the elastic strain energy density. For example, Pijaudeir-

Cabot & Bazant (1987) used an elastic strain energy density that was dependent upon a 

scaler definition of damage through the effective stiffness relation of equation (2.10). 

This resulted in a damage force equal to the strain energy associated with the undamaged 

material stiffness. Thus, thermodynamics established yet another scaler equivalent strain 

as the damage force. The second-order damage theory of Lee et al. (1985) used the 

strain energy equivalence principle resulting in a thermodynamic damage force that was 

quadratic in strain and linearly dependent upon damage. Others have embellished upon 

the constitution of free energy to include terms representing void and micro-crack 

surface energy (Hansen & Schreyer, 1994) and damage dependent residual strain energy 

(Ramtani et al., 1992, Lesne, 1992). Thermodynamics thus offers significant flexibility 

in formulating the energy contribution to the damage process. 

The kinetics of damage evolution kinetics can be established for individual 

components of the damage tensor (Kennedy & Nahan, 1996). The damage-force 

relationship is established from experimental association with material stiffness 

reduction. Although this approach works well for defining scaler damage kinetics, its 

application to individual components of a damage tensor could lead to an unwieldy 

number of criteria and can have limitations in representing interaction effects. 

Alternatively a dissipative potential can be employed, following the theory of plastic 

flow, which defines a surface in the space of damage forces which envelopes all states 

that can be reached without any energy dissipation (i.e. without further damage growth). 

The potentials are composed of invariant scaler, quadratic or higher powered functions 

of the damage force so as to be valid irregardless of coordinate basis. Damage force 
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growth can then expand the damage surface according to the normality rule and 

consistency condition to establish a coordinated and rigorous basis for tensorial damage 

evolution (Lee et al., 1985, Ju, 1989, Hansen & Schreyer, 1994, Ramtani et al., 1992). 

2.2.5 Micromechanic Damage Theory 

Micromechanics has been used to model both stress-strain softening in general 

and the cohesive stress-displacement softening across a single macro-crack tip. The 

latter have addressed fiber bridging and pull-out strengths and their evolution with crack 

face opening (Li, 1990, Llorca & Elices, 1992). Relevant to this thesis, however, are 

those theories that characterize stress-strain softening on a progressive multi-dimensional 

continuum basis and reflect gradual material degradation. These are in contrast to 

theories of the ply elimination type which could be considered crude. The intent of this 

review is not to be complete but rather to site examples and describe the current level of 

application. 

Of three example methods, all separate damage of fibers from that of the matrix. 

The theory of Voyiadjis & Kattan (1993) employed separate phenomenological second 

order damage tensors for fiber and matrix constituents. The resultant laminate 

compliance tensor was related to such a representation of damage using the rule of 

mixtures and the principle of energy equivalence. Damage kinematics was formulated 

based upon the usual consistent and normal expansion of a damage surface that is 

quadratic in terms of the thermodynamic damage force. Numerical and experimental 

verification was not offered. 

The theory of Lo et al. (1993) employed phenomenological second order damage 

tensors to represent intraply matrix and interply delamination damage for fatigue 

degradation. Damage growth obeyed a power law relation with respect to the number of 

load cycles which is similar to the well known daJdN macro-crack fatigue growth 
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formulation. The fiber was subject to a local maximum strain failure condition.  

Numerical application was made to a cross-ply laminate with a circular cutout.  

The theory of Shahid & Chang (1995a,b) was implemented numerically and 

demonstrated using a number of laminates and fracture conditions. Their experiments 

addressed the same graphite/epoxy laminate that constitutes the fuselage skin laminate 

investigated herein. According to the theory, stiffness degradation was associated with 

three scaler damage parameters for each ply which reflected the state of matrix crack 

density, fiber/matrix debonding and fiber failure. Matrix crack damage evolved until the 

matrix cracking and fiber-matrix shear-out failure criteria were satisfied relative to 

strength parameters that evolve with damage. Matrix crack induced softening was 

computed using simplified analytical solutions for groups of three aligned orthotropic 

plies with co-oriented matrix cracks within the middle ply. Fiber damage resulted in 

progressive isotropic stiffness degradation that eventually lead to total ply failure. 

Interestingly, fiber damage was computed on an essentially nonlocal basis but was 

derived from statistical micromechanics. Fiber failure was the dominant damage mode; 

and the size of its nonlocal interaction zone was shown to be the discerning parameter in 

simulating significant differences in fracture toughness between equal laminates of 

different manufacturing origins. 

2.2.6 Flexure of Strain Softening Material 

The investigation of flexural strain softening has been limited, and no work was 

identified that specifically addressed fracture resistance given a through crack in a flexed 

plate. Of special interest is the work of Chuang & Mai (1989) in which analytical 

solutions were obtained for a beam of tension softening material under pure bending 

conditions; fracture was not considered. The beam was assumed to be homogeneous 

through its thickness and the stress-strain softening relation for tension loading was 

known. The analysis identified a moment-curvature relation that also exhibited softening 
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characteristics. Relative to a perfectly brittle material (instantaneous loss of load 

resistance at some threshold strain), strain softening was predicted to increase flexural 

strength by as much as three-fold. 

Given a beam or plate that is homogenous through its thickness, any of the 

previously discussed macromechanic strain softening models for in-plane load behavior 

could be applied to flexural problems using layered finite element analysis. The analysis 

could employ implicit or explicit layering. Implicit layering divides the cross-section of 

each element into layers; each layer is subject to a uniform strain according to its 

position from the neutral axis and the resultant element flexural stiffness is based upon 

integration of the softening in each layer. This technique was employed by Dopker et al. 

(1994), using a yield limit degradation type softening model, even though the laminate 

could not be considered homogeneous through its thickness. Explicit layering 

establishes a finite element for each layer which greatly increases the computational 

costs. 

Considering that micromechanic damage models already operate on the ply level, 

they should apply to flexural conditions without conceptual modification. The work of 

Reddy et al. (1995) is the only identified example of this type of effort. Their work also 

touched upon effects of combined tension plus flexure using conditions similar to that 

analyzed and tested as part of this thesis effort. 

No literature was identified that analyzed fracture of plates having a through-

thickness notch and subject to strain softening behavior. However, for linear elastic 

behavior of laminated composites under pure bending conditions, Zhao et al. (1993) used 

a modified form of the Point Stress (PS) fracture criterion to study flexural fracture 

strength. The usual limitations of the PS criterion were retained in this effort. Kwon 

(1993) studied the effects of partial crack closure in a composite laminate subject to 

bending. However, crack closure is not relevant to the tension dominant fracture 

considered in this dissertation. 
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2.3 Measurement of Strain Softening 

Direct measurement of the stress-strain softening behavior from a typical tension 

test is not possible due to strain and damage localization to a narrow band of the 

specimen length. Using displacement control, many authors have employed this type of 

test but results are limited to stress-displacement softening associated with the total band 

of softening material. That is, the total material experiencing strain softening must be 

treated as a row of springs. Although such results would satisfy the line-spring model 

(fictitious crack model) introduced in Section 2.2.2, they would not satisfy the objective 

of this research to characterize, on a continuum basis, the material's stress-strain 

softening behavior. 

Although not novel, Bazant & Pijaudeir-Cabot (1989) and Mazars (1989b) 

managed to obtain continuum stress-strain softening measurements using a test specimen 

designed to prevent strain and damage localization. They bonding steel bars to a 

concrete plate and loaded the combined specimen in tension. Given sufficient steel, the 

concrete can uniformly degrade while the total specimen remains stable. The stress-

strain softening of the concrete is obtained by subtracting the contribution of the elastic 

steel rods from that of the total specimen response. Having the complete stress-strain 

softening relation of the concrete, another test which allows strain localization would 

enable the determination of the materials nonlocal characteristic length (Bazant & 

Pijaudeir-Cabot, 1989). This technique has not been applied to laminated composites. 

The most common measurement of stress-strain softening has been made via 

indirect correlation of a continuum model with fracture test results. Such models must 

employ a technique for the realistic simulation of failure localization. Section 2.2.3 

identified several such techniques all of which require the experimental quantification of 

a characteristic length parameter which reflects the long-range nature of the failure 

mechanisms. Therefore, model parameters characterizing the stress-strain softening 

relation and the characteristic length musi be varied until an optimum correlation is 
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achieved with test results (Ilcewicz et al., 1993, Dopker et al., 1994, DuBois, 1996, 

Kennedy & Nahan, 1996). This method has been referred to as the Inverse Method. 

The above experimental techniques allow for the determination strain softening 

behavior given a continuous ever-increasing load. As presented, however, they do not 

enable the determination of whether strain softening is of the stiffness or the yield limit 

degrading types (see Figures 2.4a & b); it is also possible that both types of behavior 

constitute the softening behavior. The displacement controlled simple tension test could 

be interrupted during softening and load removed and re-applied to easily determine 

whether stiffness has degraded or whether permanent strain has developed. Such a 

technique has been performed upon concrete to show a combination of stiffness 

degradation and permanent strain. No application of this technique to laminated 

composites was identified in literature. 

Direct evidence of stiffness degradation was achieved for laminated composites 

using results of interrupted fracture tests (Ilcewicz et al.,1993). Large notch fracture tests 

were performed on several fuselage skin laminate candidates in which loading was 

interrupted after damage initiation and prior to specimen failure. Uniaxial specimens 

were then cut from within and outside of the fracture process zone. Subsequent tension 

testing of the damaged and undamaged coupons showed that a significant reduction in 

stiffness had developed within the damage zone. This test was performed upon the 

fuselage skin laminate that is the subject of analysis in this dissertation and it, in 

particular, was shown to exhibit stiffness degradation. 

Such experimental results do not preclude strain softening of the yield-limit 

degradation type. This type of softening would be identified by the development of 

permanent strain. In a fracture test, permanent strain would develop within the fracture 

process zone and be residual if the test was interrupted prior to specimen failure. Direct 

measurement of this residual strain using strain gages or moire interferometry could be 

attempted but such information is often compromised by failure of the gage bond or 

degradation of the surface plies. Alternatively, the permanent strain within the damage 

zone would act as a wedge lodged into the crack-tip such that when load was removed 
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the notch could not return to its original closed condition. Therefore it stands to reason 

that permanent strain could be indicated by failure of the notch to return to its original 

closed condition or if strain gages located ahead of the fracture process zone indicated 

residual extension. No evidence of this experimentation has been identified in literature. 

A review, of broad scope, addressing damage measurement methods is available 

from Lemaitre & Dufailly (1987). 
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3. Laminated Plate Damage Mechanics  

Damage mechanics has been employed, herein, to represent the effects of 

progressive degradation of laminated composite plate structure. The developed theory 

models plate softening resulting from in-plane and flexural load induced damage. A 

general discussion of damage mechanics can be found in the literature survey of Section 

2. The theory models strain softening associated with stiffness degradation and assumes 

that strain softening of the yield-limit degradation type was insignificant. This position 

is supported by experimental evidence of stiffness degradation (Ilcewicz et al., 1993) and 

the lack of evidence, in literature, for significant permanent strain associated with the 

later in high-performance composite laminates. 

The theory identifies damage as a second-order tensor. A second-order tensor 

can represent orthotropic detail whereas isotropic damage (scaler) was considered too 

simplistic for modeling degradation of orientated laminates. Fourth order damage entails 

the association of a damage components with each component of stiffness. Due to the 

complexity of the anisotropic plate stiffness associated with laminates, fourth order 

damage definition was considered unwieldy. 

The mechanics of linear laminate behavior can be represented using the well 

known classical laminated plate theory (CLPT) (Jones, 1975). This theory was extended, 

herein, to incorporate second-order damage mechanics. The resultant damage effective 

stiffness (i.e. reduced stiffness) maintained the familiar [ABD] form associated with 

CLPT; however its components are embellished with 6 components of damage. Damage 

is always referred to the principal laminate coordinate system but the principal 

orientation of each damage increment follows that of the principal strain. 

It was assumed that the variation of the damage through the plate thickness can 

be approximated as linear; this assumption is fundamental and novel. It is acknowledged 

that actual damage through a laminate is likely to be highly variable due to the number of 

damage modes possible and the assorted ply orientations and stacking sequences 
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available to lamination. But macroscopic representation of such complexity is not new 

to damage mechanics; and the suitability of this engineering approach should ultimately 

be judged by its ability to predict plate macro-behavior. The averaging nature of the 

linear damage assumption is discussed in Section 4. Plate strain, e, and damage, D, 

represent material stasis within the plane of the plate. The variations of strain and 

damage through the thickness of the plate are approximated as linear according to 

e(z) = c° + z K (3-1) 

D(z) = D° + z a (3-2) 

In equation (3-1), second-order tensors c° and K represent mid-plane strain and curvature 

respectively. Likewise, second-order tensors D° and a respectively represent bulk mid-

plane plate damage and the bulk damage gradient in equation (3-2). 

Damage, D(z), evolves from a value of zero to unity; the latter corresponds to 

complete failure of the material point. Limits exist, for the combination Wand a, so as 

to ensure that damage at the plate surface does not violate its meaningful range of zero to 

unity. These limits bound the shaded area of Figure 3.1. 

Damage mechanics has usually incorporated the concept of an effective stress 

which represents the heightened stress experienced by material between damage sites. 

As detailed in Section 2.2.4, however, damage mechanics can also be developed using 

the concept of an effective strain. Because stress is highly discontinuous through the 

thickness of a laminate while strain is linear, the following theory is developed using the 

concept of effective strain. Physically, the effective strain, E , represent the strain of a 

material ligament located between damage sites. For one-dimensional conditions, the 

effective strain is 

c = (1 D) c (3-3) 
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The classical concept of strain represents a homogenized composition of deformation 

due to void growth or crack face separation and stretch of material between damage sites. 

Representing the strain associated with material separation as Ed and recalling the 

concept of effective strain defined in equation (3-3), the classical strain concept can be 

decomposed; i.e., 

c = De +E = ed+i (3-4) 

which will be utilized later. 

t = plate thickness 
+ 1 / t 

Mid-Plane Damage, D° 

- 1 / t 

D = 1/ 2 D = 1.0-b. 

Figure 3.1 Permissible Range of Damage. 
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Returning to the relation of equation (3-3), the distribution of effective strain 

through a plate is obtained by including equations (3-1) and (3-2). The resultant 

effective plate strain 

i(z) = (1 D°) c ° +z[- ac ° +(1 D °)K] +z2[ -aK] (3-5) 

is of quadratic variation through the plate thickness. Equation (3-5) can be expressed in 
terms of effective strain components according to 

E(Z) = -0 + zk + z-cp (3-6) 

where: 
-0 (1 D eo (3-6a) 

ae°±(1 D)K (3-6b) 

cp = aK (3-6c) 

It should be noted that in the absence of damage, the effective strain, as defined in 

equation (3-6), reduces to classical plate strain that is of linear variation through the plate 
thickness. 

For two-dimensional plate continuum damage, equation (3-3) can be restated, in 
expanded matrix form (Lemaitre, 1992) 

c1- 1(z) e1- 2(z) 1 o D11(z) D12(z) 6 11 (7) 12 (Z) 
(3-7) 

161- 2(z) 62- ,(z) 0 [D12(z) D22(z)11 612(Z) 6(z) 

Damage parameters are defined relative to the principal laminate basis. For load 

conditions in which shear strain is significant in this basis, the principal orientation of 
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damage is not expected to coincide with the laminate bases and damage component DI, 

is therefor anticipated. A symmetric form of the damage matrix was employed in 

equation (3-7). This choice implies the existence of an orthogonal set of principal 

damage directions which is intuitively acceptable. 

The substitution of plate strain, Eij(z) = + z Klj , and plate damage, 

D 
I
j(z) = Dkj + z aii , into equation (3-7) produced an effective plate strain matrix that 

was not necessarily symmetric. A non-symmetric effective strain would reflect 

deformation associated with rigid body motion. Referral to equation (3-4) indicates that 

any anti-symmetric part of the effective strain would have to be negated by the anti-

symmetric part of strain associated with material separation (i.e. Ed = DE) in order to 

maintain the known symmetry of classical strain. If we assume that the principal 

directions of classical strain and damage coincide, then the strain associated with 

material separation is automatically symmetric and so too must the effective strain. The 

theory developed herein accepts this assumption and thus requires that the effective 

strain be symmetric. In practice, the kinematics of damage evolution dictate whether 

this assumption is complied with or not. Ideally, the established damage kinetics would 

ensure such a compliance and the effective strain would passively maintain symmetry. 

However, to avoid this rigid requirement, only the symmetric part of any effective strain 

will be carried forward from this juncture. It is expected that the effective strain 

resultant from any chosen kinematic damage evolution law would not significantly 

deviate from the assumed coincidence of damage and classical strain. The symmetric 

effective strain can be established as 

[E(z)] = [e + Z [k] SM + z [(p], (3-8)sum sym VM 

where: 
-0 [ED ]T-0 [e [C[c sym (3-8a)

2 

[k] [K]T[k] sym (3-8b)
2 
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[p] + [jP]T 
[(1)i syn, (3-8c)

2 

Executing the above symmetry operation, rearranging the relation of effective 

strain into Voight notation and conversion from tensorial shear strain to engineering 

shear strain, the effective second-order strain can be restated as 

ND 0Co 

= -Na NDK° (3-9) 

leK 
0 -Na(P 

where 

1 -DI°, 0 -DIV2 

= 
0 1 D,°, -Di°2/2

[ND] (3-10) 
0 ,,o\

(D11 D221  
D1°2 -D Ict, 1-

2  

and 

all 0 a1,12 

[Na] = 0 a al, /2 (3-11)  

all ail (ail 4. a-,2)/2 

Classical Laminated Plate Theory, CLPT, relates plate strain to resultant plate 

stresses according to what has usually been referred to as the [ABD] stiffness matrix. 
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However, because the damage tensor has been designated by "D", the laminate bending 

stiffness sub-matrix will be re-designated using the letter C and the laminate stiffness 

matrix well be referred to as [ABC]. According to CLPT, stress is related to strain 

according to 

{mN A B 
(3-12)B C 

where N refers to in-plane plate force per unit length; and M is plate bending moment 

per unit length. Sub-matrices A, B and C refer to in-plane, extension-bending coupling 

and the bending stiffnesses respectively. If Q1(z)represents stiffness in the plane of the 

plate at any position through the plate thickness, and (Q,J)k represents that of the kth ply, 

then stiffnesses can be formulated (Jones, 1974) as 

n 

+ti2 Q1.(Z)]dZ = E 9,;), (zk (3-13a)zk_i)t/2 k=1 

1 ITIN \ 2 2 \B.. = f :22 0 (z)] z dz = pi) (zk zki) (3-13b)2k -1 j k 

cii = f [Qii(Z)1 Z2 dz = (Qi;). (z1 (3-13c) 
3 k=l j k 

If quadratic strain and complementary quadratic stress resultant terms are 

considered, an extension of CLPT would relate the stress to strain according to 

A B C c°  

B C E (3-14)  
C E F  L 
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The quadratic strain component, cp, is absent from plate theory because experimental 

measurements support the assumption that this term is negligible for linear elastic 

material behavior. Quadratic strain implies a quadratic deformation profile through the 

plate thickness. The quadratic resultant load term, L, is the second moment of stress 

through the plate thickness per unit length. L exists in a general laminated plate 

irregardless of whether the plate displacement profile is assumed linear or quadratic. To 

date, this term has been of little practical importance. Stiffnesses E and F are derived in 

a manner like that of stiffnesses A, B and C of equations (3-13a,b,c). Stiffnesses E and 

F are therefore 

E.. r +t/2 [Qij(z)] z 3 dz = 1 ti (Qii) (Z: i)
k4 k=1 

+ t/2 
F.. (z)] 4 dz = 4-1)f_t/2 5 k=1 k1-1 

The effective laminate stiffness can be formulated using the elastic energy 

equivalence hypotheses (Cordebois & Sidoroff, 1979) summarized in equation (2-9). 

This hypothesis states that the elastic strain energy of the damaged material is the same 

in form as that of an undamaged material except that the stresses or strains are replaced 

by their effective counterparts. For an anisotropic laminate, this hypothesis is 

formulated as 

A B C 
B C E B 

(3-16) 
C E F leK 

The effective stiffness matrix, [ABC] , represents the damage reduced laminate stiffness. 

Substitution of equation (3-9) into equation (3-16) enables the definition of this effective 

stiffness 
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ND A B C ND 0 

Na ND B C E -Na ND (3-17) 

0 -Nc, C E F 0 Na 

Individual sub-matrices of [ABC] can be expanded according to equation (3-18) 

in which it is apparent that the development of damage brings the quadratic stiffness 

terms, E11 and F11, into play. 

NTD : A : ND 2NTD : B : Nc, + N: :C:Na (3-18a) 

= N TD : B : ND 2NTD : C : Na + N: : E : Na (3-18b) 

= NTD : C : ND 2NTD : E : Na + N: : F : Na (3-18c) 

Expansion of the effective stiffness sub-matrices, equations (3-18a,b & c), can be found 

in Appendix A for a symmetric (B = E1 = 0) and balanced laminate influenced by a 

general case of damage. 

To appreciate the influence of damage on laminate stiffness, consider the case in 

which the principal damage basis is coincident with that of the laminate (i.e., D12 = a12 = 
0.). For this condition cracks can be conceptualized to developed in orientations normal 

to the principal laminate directions. Considering damage in the primary laminate 

directions, a few significant components of the effective laminate stiffness are 

Di1)4-C110C11A11 A11(1 °2 2 (3-19a) 

= -2C11(1 -Di°1)ccii (3-19b)B11 

= CI 1(1 1)(1)1)2+FI cx11 (3-19c) 
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To verify the above relations, consider the following thru-thickness variation of 

the effective laminate in-plane stiffness due to the assumed uniaxial damage condition. 

On ( z ) = [Q11(z)](1 D11(z))2 = [Q11(z)](1 DI°, z a11) (3-20) 

Equation (3-20) can be integrated through the thickness of the plate, as directed in 

equations (3-13a,b & c), to verify the relations of equations (3-19a,b & c). 

To further appreciate the influence of damage on the laminate stiffness, the 

relations of equation (3-19a,b & c) were non-dimensionalized and plotted in Figures 3.2 

through 3.4. The diamond pattern, within the plots, corresponds to the permissible 

range of the damage shown in Figure 3.1. Variation of the in-plane and bending 

stiffnesses, shown in these figures, demonstrate that the mid-plane damage term, D°, is 

much more dominant than the damage gradient term, a. This result was expected since 

these stiffnesses represent even variations of stiffness about the plate mid-plane whereas 

the damage gradient terms represents the influence of an odd stiffness variation. 

Prior to damage, the extension-bending coupling stiffness component Bli does 

not exist for a symmetric laminate. However, should a damage gradient develop, so too 

would a damage effective stiffness 11 according to equation (3-19). A physical 

appreciation for this damage effect can be had by comparing it to the B11 stiffness for the 

same plate with one half of the laminate removed and the other half in perfect condition. 

Application of tension to the plate centroid would generate curvature according to a 

extension-bending coupling stiffness that will be referred to herein as B. Figure 3.3 is 

a plot of the damage effective extension-bending interaction stiffness term i311 

normalized with respect to B' of the half-plate case. As expected, both the mid-plane 

damage and damage gradient terms exhibit strong influence upon 131 . Within the range 

of permissible damage coordinates, the maximum effective interaction component, 1311, 

was 2/3 that of the half-plate case. Considering the extreme asymmetry of the half-plate 

case, the potential influence of damage on the development of extension-bending 

interaction is significant. 



42 

1.5 

10 

0.2 

0.4 

lifiCi,p1_2 
.11 

0.6 

0.8.4 

wage do -10 &\6' , GO' 
amaz 

0.1 0.2 0.3 0.4 0.5 0.6 
Mid-plane Damage 

Figure 3.2 Normalize Effective In-plane Stiffness A11 / A11 versus Damage. 
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Figure 3.4 Normalize Effective Bending Stiffness e / C11 versus Damage. 
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The components of effective stiffness, for a general damage condition, are too 

complex to illustrate (see Appendix A). Additionally, the various components of 

damage should evolve in a concerted manner according to a user chosen damage 

kinematics model. Such a model may limit the permutations of damage. The subject of 

damage kinematics is addressed in the following section. 
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4. Plate Damage Kinetics  

Damage kinetics must be proposed for governing the growth of damage. Unlike 

the principled development of damage mechanics, significant creative freedom is 

commonly exercised in the development of damage growth kinetics. This creative 

license is warranted due to the lack of experimental guidance and lack of scientific 

consensus on the physical operatives influencing damage. Two basic methods exist to 

define the kinetics of damage evolution. The theory developed herein chose to employ 

nonlocal strain as the force behind damage growth; the concept of nonlocal strain is 

developed below. This theory proposes simple uniaxial damage growth functions 

depending on the dominant strain condition within the principal laminate basis. 

Alternatively the thermodynamics of dissipative materials could have been employed to 

identify the damage force and establish a rational orchestration for the relative evolution 

of the damage tensor. Of these two methods, the uniaxial criterion is more straight 

forward in implementation and possibly more intuitively transparent. While the 

thermodynamic approach is rigorous in its physical foundation, it is still very much a 

product of the researcher's creative influences. A discussion of damage kinetics and 

methods practiced can be found in the literature review of Section 2. 

Strain was chosen as the force behind damage growth because not only can an 

intuitive association be made between strain and material cracking (i.e. damage), but as 

discussed in Section 3, the principal direction of damage and strain should coincide in 

order to ensure symmetry of the effective strain matrix. This condition of coincidence 

can best be ensured by defining the evolution of damage with respect to strain. The 

intuitive argument could also be made for using the resultant plate stresses as the force 

behind damage; but for a generally anisotropic laminate, the condition of coincidence 

could not be ensured using such a definition. Also, the variation of strain through the 

thickness of a composite plate is of a continuous linear variation whereas stress is highly 

discontinuous. Thus strain can serve as a more straight-forward, intuitively transparent, 
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cause of macroscopic damage. Finally, employing strain as the damage force allows for 

the resultant progressive damage theory to serve as a direct extension of laminate failure 

criteria such as the maximum strain, Tsai-Hill or Tsai-Wu criteria expressed in terms of 

strain (Jones, 1975). 

A simple damage growth scheme is proposed in the following sections that is 

akin to the maximum strain failure criterion (Jones, 1975) and based upon the nonlocal 

form of mid-plane strain and curvature. The scheme includes a two criteria, one is 

activated if shear is insignificant within the principal laminate basis. For this case, the 

principal damage basis is coincident with that of the laminate. The other criterion 

represents shear dominate loading; and as such, damage is assumed to grow according to 

pure shear conditions. This scheme does not guarantee the coincidence of the principal 

damage and strain but does maintain an approximate alignment. As discussed in Section 

3, the effective plate stiffness, equation (3-17), was based upon the symmetric part of the 

damage effective strain in order to support the freedom just exercised. The above 

simple damage growth scheme is developed below in two stages. Section 4.2 is limited 

to conditions void of curvature. Section 4.3 represents an extension to conditions of 

combined extension plus curvature. 

Conventional numerical analysis of strain softening materials encounters the 

problem of progressive failure localization to a material volume of vanishing size. Such 

failure progresses with zero energy dissipation, a result which is physically unrealistic. 

The fundamental problem has been identified to be the loss of ellipticity of the 

incremental equilibrium equations and bifurcation between material paths of continued 

homogeneity versus inhomogeneity associated with softening and unloading regimes 

(Rice, 1977). This issue and several remedies are discussed in the literature review of 

Section 2. Of the known remedies, the nonlocal approach was chosen for support of the 

theory developed herein. Specifically, strain, in its role as the force behind damage 

growth, was treated by the nonlocal method (Pijaudiier-Cabot & Bazant, 1987). In all 

other respects, material state variables such as strain and stress are treated as local. 
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4.1 Non local Strain 

All kinematic relations, developed in this section, refer to the nonlocal form of 

strain as designated by a bar cap (i.e. e ). This designation should not be confused with 

the tilde designation given to the effective strain developed in the section 3. Nonlocal 

mid-plane plate strain can be defined (Pijaudier-Cabot & Bazant, 1987, Bazant & 

Cedolin, 1991, Kennedy & Nahan, 1996) as 

oe j(x,y) ffA oa( -x, -y, lch) e,(,11) (4-1)
Ar(x,y) 

which integrates classical plate strain over a two-dimensional range, as illustrate in 

Figure 4.1, to obtain the nonlocal strain for all material focal points of location (x,y). 

111 
Ich / 2 

Nonlocal Range 

1Y 

4.1Figure 4.1 Nonlocal Range for Each Material Point. 

The function 6.)(-x, my, 16) defines the weight or influence that a distant 

material point (,/-1) has in contributing to the nonlocal strain of the material focal point 

(x,y). The characteristic length parameter, lch, establishes the range size and is 
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considered a material property. Function (.A.)(-x, my, 1,h) could simply represent a 

constant weighting applicable to a range of finite size defined by the characteristic length 

16. However, a smooth variation of weight from the region of influence to that of none, 

has been shown to improve solution convergence in numerical analysis (Bazant & 

Cedolin, 1991). The nonlocal range could be of any shape but a circular range is 

assumed which suggests isotropy of directional influence. A more complex nonlocal 

range configuration, such as elliptical, would require experimental determination of 

additional parameters. The weight function chosen for the analysis herein is of a smooth 

bell-shape form, as suggested by Bazant & Cedolin (1991), and defined as 

(--x)2 + (11 -y)26)(-x, rt -y) = (4-2)1 
(0.9086*16)2 

12 

The profile of this weight function is illustrated in Figure 4.2. The term 0.90869,h in the 

denominator of equation (4-2) represents the maximum radius of the smooth nonlocal 

range. Its value was identified by forcing the total integrated weight of equation (4-2) to 

equal to that of a unit weight function (i.e., co = 1) integrated over a circular nonlocal 

range of diameter lch. 

-1 -0.5 0 0.5 1 

Normalized Range Coordinate, ti/lch or /1,t, 

Figure 4.2 Profile of Nonlocal Weight Function. 
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Function Ar(x,y) equals the total integrated weight; i.e., 

Ar(x,y) = flA TI-y) d dr (4-3) 

used to normalize the nonlocal integration of equation (4-1). As mentioned above, the 
total weight of equation (4-2) is equal to that of the unit weight function over an circular 
area of diameter lch. Therefore Ar of equation (4-3) is equal to rc(Ich/2)2 so long as the full 

nonlocal range is contained by the plate structure of interest. 

Finally, nonlocal curvature k was defined in the same manner as that defined 

above. It was assumed that the same characteristic length would apply to both nonlocal 
mid-plane strain and curvature. 

4.2 Simple Damage Kinetics for Non-flexural Conditions 

The damage kinetics developed in this section assumes that curvature effects are 
insignificant, and as such no damage gradient evolves. Such conditions include the 
common case of in-plane loading of symmetric laminate. Extension to conditions of 

significant curvature is made in Section 4.3. Unless otherwise stated, the following 
sections 4.2 and 4.3 always refer to the nonlocal treatment of strain and refer to the 
principal laminate basis. 

The following simple damage growth scheme includes a shear strain criterion and 

a set of criteria corresponding to principal strain aligned with principal laminate basis. 

This later set will be developed below followed by the shear strain criterion. These 
criteria are exclusive of each other in that either shear governs damage growth or the 

extensional strain in the principal laminate directions do. As such, either the nonlocal 
shear strain or the diagonal strain component act as the force behind damage growth. 

For conditions of insignificant shear, the diagonal components of mid-plane 

damage are made dependent upon their respective counterparts of nonlocal strain 
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(con)
D1°1 = (4-4a) 

f2(022)	 (4-4b) 

Although a specific definition of these functions is not necessary for the development of 

the following damage kinetics, a specific functional form is presented as follows to assist 

concept clarity. It is also the form utilized later for experimental damage 

characterization of laminates. The specific form of the mid-plane damage growth 

function utilized in this analysis is shown in Figure 4.3. 

0	 0.01 0.02 0.03 

Non local Mid-Plane Strain, i 

Figure 4.3 Uniaxial Damage Growth Function. 

This function assumes that no damage develops below a strain corresponding to failure 

in a uniaxial stress test. The damage would then evolve from a value of zero to unity, the 

later of which represents total laminate degradation and failure. 

The uniaxial damage growth functions, f1 and f2, are assumed independent and 

were represented herein by the exponential relation 
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Di?, = 0 for: -e?ii < cr (4-5a) 

e 1/2cr (-0 cr)Cii -ai E 
1 for: > eciriii (4-5b)-o 

E 

the form of which is represented in Figure 4.3. In equation (4-5), subscript "i" refers to 
the major or minor principal laminate direction 1 or 2; no tensor component summation 

is intended in the relations. The term e refers to the critical uniaxial failure strain. 

Constant "a," is the sole parameter governing the rate of damage accumulation in 

equation (4-5) and is considered a material property. Many forms of the damage growth 

function have been presented in the literature. No attempt is made herein to determine 
the best functional form. Equation (4-5) is a single parameter function which 

simplified the search for optimal material damage characterization. 

Substitution of equation (4-5) into the effective in-plane stiffness relation of 

equation (3-19a) and simplification to a plate condition of initial isotropy results in the 
stress-strain softening behavior 

E o 
11 I 1 

e for: < e Cr (4-6a)
1 v2 ii 

cr
al (1 f (e0 0 E cr -a1 (41 -Eciri) for: -eon > (4-6b)))- e ell e1 1 11 1 I 

1 v- 1 v-

which is plotted in Figure 4.4 for three examples of the damage accumulation parameter 
all. The inverse of the above conversion would also be possible; that is, given the stress-

strain softening function, the damage-strain relation could be determined. 
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Figure 4.4 Example Stress-Strain Softening Behavior. 

For conditions in which shear is dominant, damage is assumed to evolve 

according to a state of pure shear deformation. Pure shear strain in the principal laminate 

basis can be resolved by a 45 degree coordinate axis rotation to its principal bi-axial 

strain basis. As shown in Figure 4.5, the sign of the shear strain determines which of the 

principal strain components is tensile and which is compressive. 

With respect to the principal strain basis of the pure shear condition, only that 

component of damage coincident with the tensile strain is assumed to evolve. Note that 

the condition of coincidence between principal damage and pure shear strain principal 

basis is upheld. Being a second order tensor, the above uniaxial damage can easily be 

transformed back to the principal laminate basis according to the transformation law 

[D1.2 [Qr. [D okC.y [Q] (4-7) 

in which Q represents the orthogonal rotation tensor whose matrix components 

correspond to directional cosines relating the two axis systems (Lai et al., 1978). 



54 

21 2A 
x 

NCY 

/ / 
/ / Y /. /\ /

\./ 
-"Y I: 

[e61 
L -b(Y 

[D01 
Y 

= 

1 o 

21'12 

D x°, 01 

0 0 

[601 
L -k,Y 

[Dol 
y 

= 

[1 o 
2Y1-

-1 0 

0 0 

0 D° ry 

0 1 

Positive Shear (y12 ) 0) Negative Shear (Yu. ( 0) 

Figure 4.5 Principal Strain and Proposed Damage for Pure Shear Condition. 

For positive shear strain, transformation of the induced uniaxial damage to the 
principle laminate basis results in the matrix 

0 [1 11  
1/2 Dxx [D "1,2 (4-8a) 

For negative shear strain, the corresponding transformed damage is 

0 { -111 

[D11, = 1/2 Dyy (4-8b)-1 1 
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Obviously all transformed terms are of equal absolute value and are assumed to 

evolve uniformly relative to the nonlocal shear strain. A single growth function for the 

uniaxial damage component can be constructed relative to the nonlocal laminate shear 

strain. A check on the sign of the shear strain enables the appropriate transformation to 

equations (4-8a) or (4-8b). The kinetics of shear based damage have thus been 

established. The function 

cr 1/2 

Y12 -a1, (7012 y )
D ° 1 (4-9)f3 (1'°12) e 

o  
YI2  

was chosen for this analysis, to represent damage evolution under conditions of positive 

shear. The same function, f3, and associated parameters would apply to negative shear 

induce damage, D. Consistent with the definition of damage functions f1 and f1 of 

equation (4-5), equation (4-9) employed the critical pure shear failure strain, ycir, , and a 

unique damage accumulation parameter a12 that serves as a material property. 

Input of either equation (4-8a) or (4-8b) into the effective in-plane shear stiffness 

component A66, detailed in Appendix A, results in the same relation; that is 

A66 = A +v) (Dxx )2 / 4 + (2 Dx°)2 / 4 (4-10)66 (1-v) 

According to equation (4-10) the effective shear stiffness evolves from the nominal (no 

damage) value to a third of this value corresponding to complete shear induced damage. 

From pure shear tests, ultimate specimen failure would indicate that the effective shear 

stiffness should eventually vanish. The resultant finite value of the derived effective 

shear stiffness represents a material saturated with cracks of + or -45 degree orientation 

(depending on the sign of imposed shear). Assuming infinitesimal strain and linear 

material behavior, such a medium would exhibit considerable shear stiffness in the 0/90 

degree basis (Jones, 1975). Thus the above realized residual of effective stiffness is a 
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product of the proposed model of damage kinetics under pure shear conditions and not a 

result of the derived relation for the damage effective stiffness, equation (3-18). 

For the shear stiffness to vanish, a state of isotropic damage must evolve. 

Considering the biaxial compressive plus tensile nature of the principal strain associated 

with pure shear conditions shown in Figure 4.5, the compressive strain component would 

be required to induce damage equal that of the tensile component. It is possible that the 

compressive component of strain could induce softening of a compressive instability 

nature. However, the theory developed herein has assumed only fracture or void induced 

softening which is less probable under compressive loading. Therefore, instead of 

imposing isotropic damage kinetics on the pure shear strain condition, the proposed 

uniaxial damage model was put forward as being true to the intent of damage mechanics. 

Its lack of complete stiffness degradation is noted and further study is encouraged to 

resolve the issue. 

Both extensional damage modes, characterized by equations (4-4a & b), can 

develop independently without conflict. However according to equation (4-8), the 

uniaxial shear damage is represented by the same damage components as that of the 

extensional mode. Thus conflict arises over control of such damage components should 

both damage modes realize their threshold strain values. Although such conditions were 

not realized in the simulations reported upon herein, the following protocol is proposed 

for completeness. Should the shear threshold strain be realized first, it should maintain 

control of the damage components, for that material point, for the duration of the 

simulation. Otherwise, the two extensional damage modes (equations (4-4a & b)) 

should exercise complete control of the mid-plane damage components. This protocol 

locks in place whichever damage mode is registered first. Neighboring material points 

can be controlled by different damage modes. Such a protocol is offered for its 

simplicity and is recognized as being far from complete. 
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4.3 Damage Kinetics for Conditions of Combined Extension 
+ Curvature 

Considering the novelty of the proposed linear plate damage function, 

D(z) = D° + z a, and the uncharted waters of damage induced by curvature, a rigorous 

functional development of the kinetics of such damage is justified. For non-curvature 

condition, the damage growth shown in Figure 4.3 was assumed with considerable 

confidence due to the large body of literature applied to strain softening under in-plane 

load conditions. No such wealth of experience is available for damage growth under 

conditions of plate curvature. 

In laminated plate, damage resistance is expected to vary from ply to ply through 

the thickness. A general functional relation between uniaxial damage and strain can be 

formulated as 

D(z) = g(z,e(z)) (4-11) 

The coordinate z appears explicitly in equation (4-11) to account for the variability of the 

damage strain relation from layer to layer. Strain e (z) is included in equation (4-11) 

because it has been established as the basic force behind damage growth. It is expected 

that actual damage would be highly variable or even erratic through the plate thickness. 

The damage model developed herein, however, assumed a simple linear variation of 

damage (equation (3-2)). Therefore the linear damage parameters D° and a must 

represent the best linear fit of what actually transpires. Thus, mid-plane damage, D°, was 

defined as 

D 0 = _1_ f +tr2 g(z,c(z)) dz (4-12)
t -t/2 

representing the average value of damage through the plate thickness. 
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Similarly, the damage gradient parameter, a, was defined as 

r ,t/2 [dg(z,e(z))1 
(4-13)  

t -t/2 dz 

representing the average derivative of damage with respect to position through the plate 

thickness. Being defined as averaged values, such parameters would be considered 

representative of the bulk laminate. The damage gradient can be expanded to reveal a 

dependency upon curvature, K. 

*t/2 ag(z, e(z)) ag(z, e(z))a = 1 dz (4-14)
t f-tr2 az ae(z) 

If g(z,e(z)) were defined according to a general family of functions, then the 

functional relationships between the bulk damage coefficients and plate strain could be 

established. The general damage function, g(z,e(z)), can be expanded in a power series 

fashion. To maintain complete generality, an infinite number of series terms would be 

required. Instead, a limited number of terms are proposed 

g(z,e(z)) = a + b e(z) + c (e(z))-2 + d (e(z))3 (4-15) 

where coefficients a, b & c are quadratic in z; i.e. a = ao + aiz + a,z 2, 
b = bo + biz + b,z 2, c = Co + CIZ + CiZ 2. For simplicity, the coefficient d is made 

constant; i.e. d = do. Although equation (4-15) represents a limited functional family, 

the inclusion of higher powered terms were found to generate terms of higher order 

products of curvature and strain which were not necessary for identifying a basic 

functional form. In rationalizing the possible variations of damage, no damage should 

exist under zero strain conditions; therefore coefficient a(z) must be zero for all values of 

z (i.e. a0 = al = a, = 0). For symmetric laminates, damage resistance should also be 

symmetric, and thus coefficients b1 and cl must be zero. 
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Substituting equation (4-15) into equation (4-12) yields the relation of equation 
(4-16) as the bulk mid-plane damage parameter. 

2tD° ( b + b2 CO + ( c 0 + C2 t2 ) (et + do (03 
1 2 

(4-16)  

t 2 t4 
_ +  

12 80 12  
+ Co C, K2 + ( do t ) 3e°K 2 

The first three terms of equation (4-16) represent mid-plane damage in the absence of 

curvature and thus can be replace by a general functional relation developed in the 

previous section (Section 4.2) and generally expressed as D° = f (e° ). The remaining 

terms are common in their relation to the square of curvature. Had higher order terms 

been included in equation (4-15), additional higher even powers of curvature would have 

appeared in equation (4-16). Equation (4-16) can therefore be simplified as 

D° = f(e°) + Eh ) K 2t (4-17) 

The apparent dependence of mid-plane damage, CO, on curvature, K, makes 

physical sense considering that even for mid-plane strain below the damage threshold 

value, Ccur, the presence of curvature could increase tensile strain in one-half of the plate 

thickness to levels sufficient to cause damage. Such a lop-sided damage profile would 

contribute to the averaged sense of the mid-plane damage. 

For purposes of analysis, a specific functional form is proposed as shown in 
Figure 4.6 for characterizing mid-plane damage growth due to conditions of combined 

tension plus flexure. 
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Figure 4.6	 Proposed Mid-Plane Damage Growth Function Due to Extension + 
Curvature (only One quadrant of Damage Surface Shown). 

For zero curvature, the above surface reduces to the curve shown in Figure 4.3. The 

initial damage growth threshold is assumed to be of an elliptical interaction between the 

critical mid-plane strain value and a critical pure curvature value. The damage 

accumulation rates are distinctly different for pure in-plane strain versus pure curvature 

conditions. Between these extremes, the damage growth rate varies sinusoidally such 

that its peak and minimum values correspond to the conditions ofpure strain and pure 

bending. The proposed function was formulated as 
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Di Iji 0 for: 0 < zii < 1 (4-18a) 

D101 [ 1 

2 
-a e" (z 11/21) for: 2ii > 1 (4-18b) 

where: 
oeii(1-c) 

Cr 
ell 

-c) 
v cr 

1/2 

+ c (4-18c) 

c = d ( cos( 2ri
2 

rc ) + 1 ) (4-18d) 

Tl = 
ICtan-1( k" 

/ 
" 

0 cr 
(4-18e) 

This formulation reduces to equations (4-6) or (4-9) for conditions of no curvature. The 

combined effect of strain and curvature upon mid-plane damage growth is assumed to 

vary in an elliptical manner according to equation (4-18c). The damage growth rate 

varies according to equation (4-18d). 

Since uniaxial pure bending tests of a laminate may reveal damage growth over a 

significant range of increasing curvature, the threshold value, Kicir, is assumed in 

equation (4-18) to equal that curvature associated with damage initiation. Such a value 

could be determined from test results corresponding to the initial loss of linearity 

between applied moment versus resultant curvature. Analytically, such a value could be 

associated with first ply failure according to some ply failure criterion. Parameter "d" 

relates the damage accumulation rate parameters for pure bending versus the pure 

tension load conditions. For d = 0, their parameters are equal and successive cross-

sections of the damage surface, at varying levels of damage, would generate concentric 

ellipses. The surface of Figure 4.6 is based upon d = 0.7 (for purpose of example only) 

and its successive cross-sections start as elliptical and subsequently deviate as shown in 

the damage contour plot of Figure 4.7. 
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Figure 4.7 Damage Contours for Proposed Damage Function. 

Definition of damage gradient growth is assisted by the concept of damage 

compliance; i.e., 

t t 2 dD ° ( bo + b2 ) + 2 ( co + c2 (e°) + 3 do (E°)2 (4-19) 
de° 12	 12 

Relative to the particular damage function of Figure 4.3, the damage compliance takes 

the form shown in Figure 4.8. 



63 

400 

300 

200 

100 

0  

0	 0.01 0.02 0.03 

Nonlocal Mid-Plane Strain, 

Figure 4.8 Example Damage Compliance (for: e" = .0095, a = 600) 

Expansion of the bulk damage gradient, defined in equation (4-14), using the 

series of equation (4-15), integrating through the plate thickness and recognizing the 

relation of equation (4-19), the damage gradient relation can be formulated as 

a = 2K [s	 + t 2TO + K 3( 2d0) (4-20a) 

b, c,
where T(eu) = +2 eu +	 (4-20b)

12 12 

The last term of a, being cubic in curvature, should be of relative insignificance and was 

neglected. Had higher order terms of the power series been considered, their resultant 

contribution to the bulk damage gradient would also have been neglected for the same 

reason. 

The bulk mid-plane damage, D°, reflects an averaged value according to equation 

(4-12). Under flexural conditions, however, the near-surface damage compliance should 

be more influential upon the evolution of damage gradient than should the damage 

compliance of material at the mid-plane. Function T(0), defined in equation (4-20b), 

can be shown to represent the difference between the averaged through thickness damage 
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compliance, S, and that of material specific to the mid-plane. Of greater physical 

significance, however, is the influence of near-surface damage compliance over the 

averaged value, S. Assuming that this influence evolves in a manner similar to that of 

the averaged damage compliance, it could then be approximated as equal to S multiplied 

by an experimentally determined constant, v; i.e., 

T = v SH (4-21) 

The damage gradient is then a product of the damage compliance, S, curvature, 

K, and the factor, 1 + vt2, the later of which represents the influence of near-surface 

compliance variation from S; i.e., 

a = 2KS {1 + vt (4-22) 

Constant v would be determined from tests in which both extension and flexure 

transpire. 

For two dimensional plate continuum, no coupling is assumed to exist between 

extensional and twist related damage gradient terms. Also, no coupling is assumed 

between the two orthogonal extensional damage terms. The resultant matrix of plate 

damage gradient would be expressed as 

SI [1 + vi It 2] 0 0 

0 S2, [1 + v2it 0 (4-23) 

0 0 S12[1 + vi2t 

The damage compliance, S9, and material constant, v11, in equation (4-23), do not cause 

damage to develop, this role is held solely by nonlocal curvature, K. Rather they filter 

the influence of curvature on the growth of a damage gradient. 

Damage compliance, Su, is of zero value both before the initiation of damage, 

Du, and as damage approaches unity (complete failure). Therefore, according to 

equation (4-22), the same must be true for the damage gradient. This feature makes 
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physical sense considering the limits, placed on the damage gradient, that are necessary 

to maintain values of damage, D(z), within the range of zero to unity. This issue was 

discussed in Section 3 and the permissible range of damage gradient versus mid-plane 

damage is shown in Figure 3.1. Consequently, the damage gradient, a, should rise and 

fall as curvature increases but remain within the confines of the permissible range 

defined by Figure 3.1. 

The bulk mid-plane damage, D°, evolves according to the uniaxial damage-strain 

relation of equation (4-18). Damage is a dissipative phenomena, thus the increments of 

mid-plane damage were not allowed to contract. No attempt is made herein to model 

the possible return of stiffness associated with compressive closure of cracks. 

Damage gradient, a1, is linearly dependent upon the corresponding components 

of curvature, Ku (equation (4-23)). As with the mid-plane damage strain dependency, the 

effect of curvature upon growth of a damage gradient is also of a non-contracting 

dissipative nature. No critical threshold of curvature is assumed for damage gradient 

growth; rather, its initiation is controlled by the damage compliance term S which in turn 

is a derivative of mid-plane damage D°. Therefor a can not develop until D° does. But 

once D° has been initiated, a will be initiated by any degree of curvature. Finally, 

parameter vu should be identified experimentally from a range of values so as to correlate 

simulation to experimental results and such that the permissible range of damage, shown 

in Figure 3.1, is not violated. 
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5. Finite Element Analysis  

The finite element analysis (FEA) method was utilized for simulation of fracture 

tests which included notched uniaxial specimens and a large notched section of fuselage. 

For this purpose, an available FEA program was modified to incorporate the damage 

theory presented in Section 3 and 4. A detailed description of the original program can 

be found in Figueiras & Owen (1984). An 8-node, isoparametric, quadrilateral shell 

element was employed. Each node exhibited 5 degrees of freedom, 3 translations and 2 

rotations; nodal rotation about the shell normal direction did not apply. Transverse shear 

deformation effects were included as well as geometric nonlinearity due to large 

deflections. 

The modified program was capable of modelling strain softening of the stiffness 

degradation type according to the damage model presented in Section 3 and 4. Gaussian 

integration was employed for efficient computation of element stiffness. In support this 

computation, nonlocal strains were computed at each Gauss point for purposes of 

computing damage. Therefore, a nominally uniform shell element can develop non-

uniform stiffness due to a variation of damage among its Gauss points. 

The original program was constructed for implicit layered analysis of plasticity 

effects. Implicit layering defines a plate element as the sum of multiple layers each of 

which could plastically yield, or in this case damage, independently of the others and 

contribute a variable degree of stiffness to the total plate behavior. This construction 

was retained for analysis of progressive damage so as to minimize programming efforts; 

however, such an approach significantly compromised the potential efficiency of the 

damage theory. That is, the proposed damage theory defined damage and the effective 

[ABC] stiffness on the basis of a bulk laminate representation. Such definition offers 

benefits with regard to computational efficiency and reduced memory requirements. It 

might be expected that layered PEA, defined for a single layer, would reduce to such a 

bulk representation; but such is not the case due to its lack of flexural stiffness definition 
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within any single layer. Rather it relies upon the in-plane stiffness of stacked layers to 

generate such stiffness. Many finite element programs have been formulated for bulk 

representation of laminated plate behavior using the well known [ABC] stiffness matrix. 

However such programs were not available as a source for modification. 

Thirteen layers were defined for the plate element which corresponds to the 13 

plies of the subject laminate. Such layering insured that the resultant element stiffness 

would be consistent with the [ABC] stiffness, derived using CLPT, which a cornerstone 

of the proposed damage theory. Plate damage, defined by terms of mid-plane damage D° 

and damage gradient a, was translated into layer damage according to 

0D..(zk ) = 
i j 

+ zk a.. (5-1) 

where coordinate zk refers to the position of the kth layer (ply) relative to that of the 

laminate mid-plane. The damage effective ply stiffness was thus determined by 
substitution of equation (5-1) into 

= N : Q : N (5-2) 

where 

1-D1 i(zk) 0 -D12(zk)/2 

0 1 -D22(zk) -D12(zk)/ 2
[ND] (5-3) 

(Di i(zk) + D22(zk))
-D12(zk) -D12(zk) 1 

2 

where() refers to the ply stiffness transformed to the principal laminate basis. Equation 

(5-2) is a suitable simplification of the effective stiffness equation (3-18a). Since 

damage is still defined by the damage terms D° and a and since each ply is represented as 
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an independent layer, accurate representation of the effective bulk laminate stiffness, 

equation (3-17), is assured. It should be stressed that the above layered definition of 

damage and effective stiffness is an artifact of the original FEA program and proper FEA 

programming of the damage theory would be of a non-layered bulk representation. 

5.1 FEA Theory 

Theoretical development of the finite element method, used herein, can begin 

with the basic constitutive relation between stress and strain for the damaged material. 

IGI = [0] tel (5-4) 

In finite element formulation, the principal laminate basis may be orientated at some 
angle 0 relative to the global coordinates x and y. We can transform stresses and strains 
through the usual transformation relations (Jones, 1975) to get 

fol = [To] 01 (5-5) 

and 

{E} = Fri WI (5-6) 

where, the prime basis refers to global coordinate system; and, 

lat 1 T ra/ a/ t/= 1 

I x y xy -I (5-7) 

(5-8)  
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cos'e sin20 2sin0 cos° 
[T0] = sin20 cos20 -2sine cost) (5-9) 

-sine cos° sine cos° cos20 sin20_ 

cos20 sin20 sine cos° 
[T,[ = sin20 cos20 -sine cos() (5-10) 

-2sin0 cost) 2sine cost) cost -sin20_ 

Combining equations (5-4), (5-5), and (5-6) gives the constitutive relation in the global 

coordinate basis; that is, 

{a'} = W- 1 1 EI 1 (5-11) 

where 

[C' I = [To] [C ] [TE] . (5-12)1 

To develop a finite element formulation for progressive damage analysis, we 

begin with the principle of virtual work (Bathe, 1982) 

f {E'}T {a') dV f 1011f1 ds (5-13)= 1; 
s 

where 1E'l is the strain associated with the virtual displacement (1_41, til Is is the virtual 

displacement of the surface of the body, and { f) is the traction on the surface of the 

body. We will develop this analysis for an 8-node quadrilateral shell element. Using the 

usual shape functions of this element (Figueiras & Owen, 1984), we can express the 

displacement [4, within an element "m" in terms of the nodal displacement 1U1 as 

{u }m = [L]. {U} . (5-14) 
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Applying the strain-displacement relations to equation (5-14), we arrive at the following 

relation (Hinton & Owen, 1977) between strain and nodal displacement 

{Elm = [B], {U} . (5-15) 

Substituting equation (5-14) and (5-15) into equation (5-13) gives 

E f [min,' fo'lm dVm = E I [LiTs {f}m dSm . (5-16) 
Vm m mSm 

Substituting equation (5-11) into equation (5-16) gives 

( E f [B].,1,, [ lm [B]. dVm) {U} = E f [Lg {f }m dSm . (5-17) 
m V JS m 

We now set 

[K] = E f [B]rm [--&]m [B]. dVm , (5-18) 
m Vm 

{R} = E f [Lfs {f}mcism . (5-19) 
m i sm m 

Thus 

[K] {U} = {R} (5-20) 

where [K] is the stiffness matrix and {R } is the generalized nodal load matrix. After 

damage initiates, equation (5-20) represents a nonlinear system of algebraic equations 

because [K] is a function of the nodal displacement vector U due to strain induced 

damage. Equation (5-20) can be solved iteratively using the Newton-Raphson method 

(Bathe, 1982). It was found that convergence difficulties arose for materials whose 

stress-strain curves had softening regimes with steep slopes. To overcome these 

difficulties, the viscous relaxation technique was called upon (Webster, 1980). A small 
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amount of viscous damping was introduced into the analysis and the problem was treated 

as being dynamic (without inertia effects) so that equation (5-20) was replaced by 

[Cd] {U} + [K] {U} = {R} (5-21) 

where [Cd] is the damping matrix and {U} is the time derivative of {U}. To solve the 

above differential equations numerically, we used the trapezoidal rule of time integration 

(Bathe, 1982), that is, 

t +At {U} _ tful At ( tuul + '`°' {U} )/2 (5-22) 

where the superscript in front of the variable indicates the time at which it is evaluated. 

For the damping matrix we employed Rayleigh damping, i.e., 

[Cd] = 13 [K] (5-23) 

A damping value of p = 0.01 sec' for a time step At = 1 sec eliminated the 

convergence problems and also reproduced results that were within a fraction of a 

percent of previous static calculations. 

The FEA employed an 8-node Serendipity shell element and reduced 2x2 

Gaussian integration. Literature indicated that higher order elements exhibit greater 

nonlinear material influence whereas lower order elements (4-node) tend to exhibit 

brittle behavior (Dopker et al., 1994). A reduced 2x2 integration was employed, rather 

than 3x3 integration, to avoid the potential problem of artificial stiffening associated 

with 3x3 integration applied to thin shells (Hinton & Owen, 1977). 2x2 integration is 

also less computationally expensive. Subsequent examination of this option indicated no 

problems with 3x3 integration for the conditions analyzed. 3x3 integration actually 

conveyed greater nonlinear behavior and produced slightly higher fracture strengths 

given the same material properties. 
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5.2 Non local Strain Computation 

Local strain values were determined for each Gauss point within the finite 

element model using conventional Gaussian integration. Non local strains were also 

evaluated for each Gauss point based upon a summation of local strains within its 

nonlocal region. The summation represented a discrete form of the integration defined in 

equation (4-1). The nonlocal summation utilized a weighting matrix analogous to the 

weighting function of equation (4-2) and depicted in Figure 4.2. Construction of the 

weighting matrix required determining which Gauss points lay within the nonlocal range 

of each and every Gauss point. The size of the nonlocal range depended upon the size of 

the characteristic length lch which was considered a material property. Weight values 
were then assigned, according to equation (4-2), for each component of the weight 

matrix. Non local strain was thus determined for each Gauss point based upon a 

summation of the weighted local strains. 

The above nonlocal summation required two cases of special treatment: where a 

Gauss point's nonlocal range reached beyond the structures edge and also were the range 

reached across a model's symmetry boundaries. The first condition was easily addressed 

by accepting the limited range defined by the limits to the structural geometry. In this 
case, the value of the total integrated weight, defined in equation 4-3, was reduced 
accordingly. 

Non local treatment across a symmetry boundary was made possible by 

establishing a dummy mesh across the boundary. This mesh was assigned zero stiffness 
and its nodes were fully constrained; therefore, it made no physical contribution to the 

solution. However, for purposes of determining nonlocal strain for Gauss points within 

the main body of the model, the local strain of the main body were assigned to the 

dummy Gauss points using a symmetry protocol. The dummy mesh needed to be of a 

span no greater than the outer radius of the nonlocal region. Its Gauss points were 

included in defining the weight matrices and thus their geometric positions were 
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significant. Thus the dummy mesh needed to be an exact mirror reflection of the mesh 

with which it shared the symmetry boundary. 

The above dummy mesh method, or some other method, is needed only if 

symmetry boundary conditions are utilized. Given sufficient resources, all problems can 

be modelled without resorting to the symmetry technique; and many problems are such 

that symmetry can not be assumed. However, the technique does serve to make many 

important computations affordable. It is unlikely that the proposed dummy mesh 

approach seriously compromises the benefit of taking advantage of symmetry in 

structural modelling. The dummy mesh method was utilized because of its simplicity. 

Other methods of nonlocal treatment across a symmetry boundary are possible which 

could be more eloquent and efficient. 
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6. Experimental Characterization of Damage Growth  

For a specific laminate, damage growth may be characterized by experiment to 

quantify the nonlocal characteristic length, damage threshold strains and damage rate 

parameters proposed in Section 4. Threshold strains, cic; and Kiicr are determined from 

uniaxial tension and pure bending (4 point bend) tests. Testing for the damage 

accumulation rate parameters, au, d1 and vu, is complicated by the tendency for strain 

softening materials to experience localization of the damage phenomenon. Such 

behavior, in a simple uniaxial tension test, is interpreted as brittle failure. The resultant 

strength is sensitive only to the threshold of damage initiation and not the body of the 

damage function itself. Fracture, however, exhibits damage nucleation at the crack tip 

and subsequent growth prior to gross failure. Simulation of such behavior is sensitive to 

all of the damage parameters of concern. By performing multiple fracture tests and 

subsequent simulations, a best fit selection of the nonlocal characteristic length and 

damage growth rate parameters can be attained. This approach is referred to as the 

Inverse Method and was discussed in the literature review of Section 2.3. 

Damage is characterized, herein, for the graphite/epoxy laminate which served as 

skin to the large transport aircraft fuselage developed under the Advanced Technology 

Composite Aircraft Structure (ATCAS) program as directed by the National 

Aeronautical and Space Administration (NASA). Specifically, damage tolerance 

analysis of the fuselage crown (upper quadrant) was the purpose behind this damage 

theory. The laminate (designated as Crown-3 within the ATCAS program) consists of 

13 plies of [45/-45/90/0/60/-60/90/-60/60/0/90/-45/45] layup and .096 inch nominal 

thickness. Lamination utilized the tow process in which narrow strips of the 

graphite/epoxy tape (tows) are placed using computer controlled tooling. The 0 degree 

ply corresponds to the fuselage axial direction. The critical damage tolerance condition 

is specified as a large axially aligned crack that grows due to loading in the 

circumferential (hoop) direction. The hoop direction is designated the 2-axis of the 
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principal laminate basis. Thus, characterization of the damage growth 

1),°, = function( 4, , K2, )and a21 = function (K22) was critical. 

Each ply consisted of AS4 graphite fibers and 938 epoxy resin constituents 

constructed in a tape form. The resin is of 350 degree Fahrenheit cure had no toughening 

additives. The cured laminate exhibited approximately 57% fiber volume (Walker et al., 

1991). Resultant ply stiffness properties were E1 = 19.62 Msi, E2 = 1.36 Msi, G12= 0.72 

Msi, and v12 = 0.32. 

An initial attempt at characterizing damage, for non curvature conditions, was not 

successful. It employed a technique that has so far been demonstrated only on concrete 

(Bazant & Pijaudier-Cabot, 1989, Mazars et al., 1989b). Using a simple tension 

specimen, strain localization can be prevented and damage constrained to distribute 

uniformly over the entire specimen length, by sandwiching the specimen between 

material layers of greater elastic strain capability. As damage grows, the specimen 

material softens, and load is supported by the outer sandwich layers. In this way, 

catastrophic failure is prevented upon the onset of damage. Application to the above 

Crown-3 laminate was unsuccessful due to inadequate suppression of damage 

localization. Considering the potential of the technique however, the experience is 

described in Section 6.1. Further efforts along this avenue are warranted. It should be 

recognized that no such method has been identified in the literature for flexural 

conditions. 

Using the Inverse Method, damage will first be characterized for non-curvature 

conditions in Section 6.2. Such conditions enable the determination of the nonlocal 

characteristic length, threshold mid-plane strain and extensional damage rate parameters. 

Relevant strength and fracture tests were performed by the Boeing Company and Oregon 

State University. Simulation was performed using the nonlinear finite element analysis 

(FEA) defined in Section 5. 

Curvature conditions are subsequently considered in Section 6.3, using the 

Inverse Method, to evaluate the remaining rate parameters, (1,j and vo. Parameter dij 

relates the mid-plane damage growth to curvature while vu relates the damage gradient 
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growth to curvature. A novel fracture test was developed which involved both tension 

and curvature. As rationalized in Section 4, curvature should influence growth of both 

the mid-plane D°, and the damage gradient, a. It is not possible to experimentally 

differentiate between these aspects of damage. In other words, only one damage 

parameter can be determined from a single test method. Since two damage parameters 

require quantification, each were evaluated assuming the absence of the other damage 

effect. Results should indicate the relative influence that these two aspects of damage 

growth have upon fracture. This qualitative characterization of damage will impose a 

degree of uncertainty upon the analysis of fuselage damage tolerance. In the future, 

however, the growth of these two aspects of damage, D° and a, may be related by 

recognizing their mutual dependence upon the damage resistance of a laminate's outer 

plies. 

6.1 Experiment - Direct Measurement of Stress-Strain Softening 

Direct measurement of strain softening was attempted using the experimental 

technique demonstrated by Bazant & Pijaudier-Cabot(1989) and Mazars et al. (1989b) in 

application to concrete. Application of the technique, to the Crown-3 laminate, failed to 

prevent strain localization and results were useless. However, experimentation on yet 

another graphite/epoxy laminate yielded results of interest. Considering the technique's 

potential for direct characterization of damage growth, further efforts are warranted. 

The technique was based upon the simple tension test. To avoid the usual mode 

of specimen failure, in which strain and damage localize to a narrow band and load 

resistance is lost in an apparent brittle manner, the specimen was sandwiched by a two 

laminates of greater elastic deformation capability. That is, the usual catastrophic loss of 

load transfer is prevented by the integrity of the sandwich face laminates. In these 

experiments, a graphite/epoxy (gr/ep) laminate is sandwiched between two laminates of 

glass/epoxy (gi /ep). As damage initiates, at some point within the gr/ep laminate, the 
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point softens and load is shunted around the point and into the gl/ep. In this way, 

damage is constrained to develop uniformly over the specimen length. The gl/ep 

laminate was selected because of its greater elastic strain capability and its thickness was 

selected to ensure sufficient stiffness. Eventually, the gr/ep laminate would attain 

complete and uniform failure. 

The stress-strain softening behavior of the gr/ep laminate would be extracted 

from the total specimen behavior by subtracting the predictable linear elastic behavior of 

the gl/ep sandwich face laminates. Ideally, surface mounted strain gages could be used 

to measure the sandwich strain. However, an extensometer spanning a significant 

section of the sandwich specimen length is preferred so as to maximize the measured 

effects of strain softening and to avoid sensitivity to any localized anomaly. 

Experimentation on the Crown-3 laminate failed to constrain damage localization 

and the usual brittle nature of failure prevailed. The 1.0 inch wide specimen was 

sandwiched between two laminates of gl/ep which offered greater elastic strain 

capability. The combined stiffness of the gl/ep laminate was equal to that of the nominal 

Crown-3 laminate in its hoop direction. The sandwich was bonded uniformly using a 

general purpose, good strength, aerospace grade epoxy (Scotch-Weld 2216 by 3M). The 

gl/ep was intended to be of uniaxial fiber orientation, however, the delivered product 

contained 15% lateral fiber orientation. Such was not desired because the resultant 

lateral stiffness could restrain lateral deformation of the gr/ep and cause something other 

than uniaxial load conditions within it. Although undesired, this aspect was not a likely 

cause of the experimental failure. Rather it was expected that the initiation of damage, 

within the sandwiched Crown-3 laminate, was too energetic and caused failure of the 

epoxy bond. 

A second laminate of gr/ep was tested which, due to its lower stiffness and lower 

damage threshold strain, was expected to release less energy during its damage process. 

This laminate was also sandwiched using the same gl/ep laminate and epoxy adhesive as 

described above. Tension testing of the sandwich specimen again resulted in insufficient 

suppression of damage localization some results are of interest. By subtracting the 
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elastic behavior of the gl/ep face laminates from the total specimen stress-strain 

behavior, the stress-strain softening of the gr/ep laminate was determined. However, the 

best example of its resultant stress-strain softening behavior is shown in Figure 6.1. The 

test employed displacement control. The mechanism involved in the abrupt loss of load 

is not known but it seems safe to assume that constraint of damage and strain 

localization was not of the desired uniformity. 

15.00	 Material: Graphite/Epoxy (T300/F263) 
Layup: (45/-45/0/0/45/90/-45/0)S 
Load Direction: 90 Degrees 

10.00 

Undesired 
_m Discontinuity 
Zi) 5.00 

0.00 
0 2000 4000 6000 8000 

micro-strain 
10000 12000 14000 

Figure 6.1 Example Stress-Strain Softening via Sandwich Tension Test. 

6.2 Damage Characterization for Non-Curvature Conditions 

According to the damage kinetics of Section 4, no damage gradient can develop 

in the absence of curvature (i.e. au = 0 ). Also, mid-plane damage, D°, would be a 

function cf only mid-plane strain as defined by equation (4-5) or (4-8) (depending on 

whether or not shear is dominant). To completely characterize damage, the threshold 
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strains, cciri , e,cr, and ycir,, nonlocal characteristic length, lch, and damage accumulation 

rate parameters a11, a22 and a12 require quantification. The extensional threshold strains 
cr Creii and e are determined as the failure strains derived from uniaxial 0 and 90 degree 

tension tests of the laminate. Several tests could be employed to determine the shear 

threshold strain, yclr,; the cheapest but possibly less accurate of which would be a 

uniaxial, off-axis (possibly 45 degree off-axis), tension test. Similarly, it is proposed that 

the rate parameters, a11, a22 and a12, as well as the characteristic length, lch, be determined 

from 0, 90 and 45 degree fracture tests, respectively. 

6.2.1 Test Results 

Results from a limited number of tests were made available from the NASA 

directed ATCAS program. Test results refer to the "Crown-3" graphite/epoxy laminate 

which served as skin to the fuselage developed under the ATCAS program. No further 

tests could be performed due to a lack of stock laminate. 

Uniaxial strength and fracture test results were made available by the Boeing 

Company, a participant in the ATCAS program. Specifically, no-notch and notched 

fracture strength test results were made available for the axial and hoop directions of the 

laminate. No off-axis tests were performed and therefore no shear damage 

characterization was possible. Although the finite data set made characterization of 

shear damage impossible, such was not needed in determining the damage tolerance of 

the subject fuselage crown panel. This was because the fuselage damage tolerance load 

condition was one of pressure which induced a state of bi-axial tensions and no shear. 

Shear does develop due to the presence of a notch. But analysis suggested a magnitude 

insufficient to cause damage. In addition, post-test examination indicated that damage 

did not develop in the area of maximum shear. Had damage tolerance of the fuselage 

side quadrant been the issue, shear damage characterization might be critical due to the 

significant shear realized during aircraft maneuver conditions. A complete list of tests 
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performed by the Boeing Company, for the Crown-3 laminate as well as others, can 

found in Walker et al. (1996). Results utilized herein are shown in Table 6.1. The S6 

and S7 laminates will be referred to in later discussion. 

Detail None Notched 
Notch Length (in.) NA NA 0.25 0.75 0.88 0.88 2.00 2.50 12.00 
Width (in.) 1.00 2.00 1.00 3.00 3.50 4.00 8.00 10.00 60.00 
Length (in.) 10.00 12.00 12.00 12.00 12.00 8.00 24.00 30.00 150.00 
W/2a NA NA 4.00 4,00 4,00 4.57 4.00 4.00 5.00 

Laminate Strength (Ks') 
Crown 3 Hoop 83.67 65.45 50.88 51.98 42.06 38.90 22.51 

Crown 3 Axial 58.03 35.03 30.03 
S6 Hoop 90.42 * 31.10 
S7 Hoop 42.31 *_ 25.70 
* Tests performed by Oregon State Univers ty 
NA = Not Applicable 

Table 6.1 Experimental Crown-3 Laminate Uniaxial Strengths (Ksi). 

6.2.2 Simulation - Nonlinear Finite Element Analysis 

Nonlinear finite element analysis (FEA) was programmed, as defined in Section 

5, to simulate the various fracture tests. Simulation results were dependent upon the 

values given to the various damage parameters. Multiple simulations then enabled 

identification of the best set of parameters for correlating the theory to test results. To 

this end, a one-quarter symmetric model of the center-notched fracture specimen was 

created as shown in Figure 6.2. The model is shown in a state of deformation due 

uniaxial extension. The known symmetry of the induced deformation was taken 

advantage of in order to reduce the model size and computational expense. The area of 

mesh shown below the lateral symmetry boundary represents the dummy mesh added for 
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the sole purpose of calculating nonlocal strains (discussed in Section 5.2). The dummy 

mesh was given zero stiffness and was fully constrained; it therefore made no direct 

contribution to the solution. No dummy mesh was added to the longitudinal symmetry 

boundary because conditions for damage do not develop in this area. 

The analysis employed displacement control of the specimen ends to generate 

tension. To achieve solution accuracy at minimum cost, a series of mesh densities were 

exercised in search of acceptable solution convergence. For example, three mesh 

densities were analyzed for the 2.5 inch notch fracture and their load versus displacement 

results for are shown in Figure 6.3. Apparently, reducing the damage zone element size 

from .156 inches to .078 inches only effected the results by 1.05 percent. In this case, it 

was decided that costs associated with computation of the finest mesh were not justified 

by a 1.05 percent solution refinement. Thus the .156 inch element size was carried 

forward in all calculations of the 2.5 inch notch fracture. Similarly, the 0.875 inch notch 

and 12.0 inch notch fracture models resulted in damage zone element size selection of 

0.1094 inch and .1875 inch respectively. 

6.2.3 Damage Parameter Selection 

A method for evaluating a laminate's damage parameters (threshold strains, 

characteristic length and damage growth rate) is presented below with application to the 

Crown-3 laminate. Damage threshold strain was simply determined from uniaxial no-

notch tension testing. The nonlocal characteristic length and damage rate parameters 

were determined from fracture tests. The effort focused on laminate hoop directed 

parameters because of their significance in analysis of fuselage tolerance to a large notch 

of axial alignment. 

Simulation of hoop fracture, caused by hoop directed loading of an axial notch, 

registered only hoop directed damage, D7°.,. Likewise, only axial damage developed for 

an axially loaded fracture. Therefore, for a given fracture test loaded in the i-direction 
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Figure 6-2 Quarter Symmetry Finite Element Model of Fracture Specimen 
Deformed Shape. 
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Notch-tip Failure 
Elem. Size Load 

Line type (in.) (Kips) % Duff. 

0.313 40.39 10.7 
0.156 36.87 1.05 

30	 0.078 36.49 0 

V a2 20 

0	 0.02 0.04 0.06 0.08 

Applied Displacement (inches) 

Figure 6.3	 Displacement Controlled Simulation of 2.5 inch Notch Fracture 
Results for Three Mesh Densities. 

and associated threshold strain, ;7, the corresponding simulated fracture strength can be 

plotted as a surface over the field of damage parameters lch and a. Correlation of the 

surfaces, with test results, enables the selection of a set of damage parameters leh and a 

that apply to all conditions of fracture in the i-direction. 

The damage threshold strain values are determined from the no-notch test values 

of Table 6.1. The uniaxial test, loaded in the hoop direction, can be expressed by the 

undamaged bulk-laminate in-plane compliance matrix,[S], i.e., 

S11 S12 0 0 

0 
612 

Sr S2, 0 (3, (6-1) 

0 0 S33 0 
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where stress a, is tensile, strain en is compressive and 0 is extensional. Strain e() can 

be expected to become critical long before en because Poissons' ratio ensures a much 

lesser compressive strain. Also, literature has shown any compressive damage threshold 

to be significantly greater than the extensional counterpart. Thus the laminate failure 

stress, reported in Table 6.1, can be directly related to a corresponding threshold strain of 

the same direction. Laminate compliance components S12 and S22 are determined from 

inversion of the [ABC] matrix (Jones, 1975). Such analysis of the no-notch tests 

resulted in threshold strains of eel`, = 0.01101 and E22 = 0.00948 (laminate axial and 

hoop directions respectively). 

The remaining damage parameters were determined from correlation of 

simulation with results of fracture tests. Variation of the nonlocal characteristic length, 

lch, and damage rate parameters, an, allow a surface of strength to be defined via 

simulation. An example of such a surface is shown in Figure 6.4 corresponding to the 

2.5 inch hoop fracture simulation. This surface must satisfy conditions on strength for 

limit values of lch and a22. A zero value of the rate parameter a22 results in a never 

decreasing stress-strain relation, according to equation (4-6), which is similar to ideal 

plasticity. Such a condition would eventually result in a uniform variation of stress, 

across the notched section of the specimen, equal to the no-notch strength a°. Specimen 

notch strength would then depend upon its width to notch length ratio. A ratio of four 

was incorporated into the fracture specimens which would translate into a notched failure 

stress of 0.75* o° for a22 = 0. The same would result from an infinite characteristic 

length, which would effectively eliminate the influence of the local notch stress riser. A 

zero lch and infinite rate parameter represents an ideally linear brittle material which 

would have no fracture strength at all. The surface of Figure 6.4 satisfies these 

conditions and is shaped to fit (least square criterion) simulations based upon 

intermediate coordinates of the damage parameters, (1,h, a22). 
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Figure 6.4 Fitted Surface of Simulated Strengths. 

The surface of Figure 6.4 was based upon a least square fit of a nonlinear 

function to simulation results. It conveys a global effect of damage parameter selection 

on specimen fracture strength. However the fit was not considered sufficiently accurate 

for use in selecting the best parameter pair for all fracture conditions. Therefore a 

limited range of the damage parameter coordinate was considered and a linear strength 

function was selected to exactly correlate with three strategically selected simulation 

results. The range [0.0 ( lch ( 0.8 inch and 150 ( aii ( 2000] was identified to capture a 

broad range of strengths and to include strain softening behavior reported upon in the 

0 

http:S.V0`...e.%.11
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literature. The range of the damage rate parameter is shown in Figure 4.4 in terms of its 

effect on the stress-strain softening relation. Although the linear surface function is fully 

characterized by correlation to three simulation results, its correlation with intermediate 

simulations has been demonstrated to be good as shown in the section plots of Figure 6.5 

ad 6.6. It is apparent from these figures that simulated strength is much more sensitive to 

variation of the characteristic length than it is to the damage rate parameter greater than a 

value of 150. The divergence of the simulated and fitted strength of Figure 6.5, for small 

lch values, is an artifact of element size in simulation. The finite element size in 

simulation was unable to reflect effects of vanishing lch. 

60 

50 

40 

30 

0 
20 

0	 Simulated Strengths 
Fitted Surface Profile 

10 

oo 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 

Characteristic Length, lch (inch) 

Figure 6.5	 Simulated Strength Surface Fit to Variation of Non local 
Characteristic Length, lch. 
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Figure 6.6 Simulated Strength Surface Fit to Variation of Damage Rate, a;;. 

In the context of the above simulated strength surface, a fracture test result would 

be represented by a level plane. These surfaces are shown in Figure 6.7. The 

intersection of these surfaces is a curve whose damage parameters equate simulation to 

test results. This method was applied to the 0.875, 2.5 and 12.0 inch notched hoop-

fracture tests and a 0.875 inch notched axial-fracture test. Resultant parameter solution 

curves are shown in Figure 6.8. It is apparent, from these solution curves, that no single 

characteristic length value will exactly correlate with all test results. 
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Figure 6.8 Parameter Solution Curves for each Fracture Test. 
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It is not clear, from the curves of Figure 6.8, which parameter set best correlates 

to the various test results. Since the determination of fuselage damage tolerance is the 

objective, the analysis should focus on the hoop fracture results. Therefore, disregarding 

the axial fracture curve, two combinations of lch and a2, were chosen. One combination 

(lch = 285, a22 = 150) can be selected as the only identifiable intersection between the 

established solution curves (2.5 and 12.0 inch notched hoop fracture curves). This 

parameter pair is likely the best selection for extending the analysis to the 22.0 inch 

notched fuselage panel. Another parameter pair could be rationalized on the basis of 

using only the 0.875 and 2.5 inch notched fracture curves. It is desirable, from the 

perspective of economy, to minimize the size and number of the fracture tests. Larger 

sized notches require larger test specimens which require larger, ever more expensive, 

test facilities and material supplies. If limited to the smaller two fracture test results, a 

combination (lch = .3, a22 = 600) can be selected. This parameter pair was selected to 

roughly match the larger 2.5 inch notched result while minimizing the error associated 

with the 0.875 inch notch. Assuming availability of only the two smaller notched 

fracture test data, this parameter pair is likely the best selection for extending the analysis 

to the 22.0 inch notched fuselage panel. It is recognized that this selection process is 

somewhat arbitrary. Hopefully future tests of the type described in Section 6.1 will make 

this process unnecessary. 

As mentioned earlier, simulated fracture was assumed to coincide with the peak 

load associated with specimen resistance to extension. It was found that, for the damage 

parameter set (lch = .3, a22 = 600), peak load was realized with little area of damage for 

the smaller notched tests. However, the 12 inch notch test realized a significant area of 

damage at peak load as shown in Figure 6.9. The damage zone, as represented in Figure 
6.9, is of a length that is roughly twice its width (approximately 2 x 0.8 inches). In 

either case, however, only a small increase in load was realized during damage growth. 

This is not to say that damage mechanics has little effect on fracture strength; rather, it 

has significant effect especially thru the nonlocal characteristic length parameter which 

dictates that a significant area of material must be elevated above the threshold strain 
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value before damage can initiate. After damage has initiated, the acute strain softening, 

represented by a2, = 600, results in a somewhat rapid loss of load within the damage 

zone. A lower damage rate value would produce tougher results because, for the same 

nonlocal strain profile, greater resistance would be retained within the damage zone. 

0.6 
D22 parameter 
12.0" notch 
Peak load cond.0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

6 7 8 9 10 11 

x coordinate (inch) from center 

Figure 6.9 Damage Zone Contour Plot Fracture of 12 inch Notch Specimen. 

Predicted fracture strengths are plotted, against crack size and test results, in 

Figure 6.10. The damage model, based upon the parameter set (lch = .285, a22 = 150), 

shows good correlation with test results. Correlation of simulation to test results is 

quantified in Table 6.2. 
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Figure 6.10	 Predicted Fracture Strengths versus Test Results Crown-3, 
Hoop Direction. 

Damage Parameters Notch Length (inches) 
'eh a,1 0.00 0.88 2.50 12.00 

, 
Damage Theory 0.285 150 83.60 56.62 38.89 21.14 
Damage Theory 0.300 600 83.60 54.76 38.33 19.78 
LEFM NA NA Infinity 51.90 30.57 13.95 
Test Average NA NA 83.63 51.90 38.99 22.25 
NA = Not Applicable 

Table 6.2	 Simulated and Tested Fracture Strengths. 

Having established the characteristic length in favor of hoop simulation accuracy, 

the axial damage rate parameter can be selected on the basis of minimizing the error 

associated with axial-fracture simulation. A value of an = 2000 was identified. 
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6.3 Damage Characterization for Extension + Curvature Conditions 

It was proposed, in Section 4.3, that curvature be the force behind growth of both 

the bulk mid-plane damage, D°, and damage gradient, a. Their functional relationships 

were proposed in equations (4-18) and (4-23), respectively. These functions introduced 

two new parameters, "du" and "vu" respectively, that were intended to enable the 

correlation of simulation and tension plus flexural fracture (T+FF) test results. However, 

two such parameters cannot both be determined from a test in which their respective 

aspects of damage are indistinguishable. Nevertheless, the relative influence of each 

aspect can be qualitatively studied. Fracture simulation which suppresses the influence 

of curvature on the growth of D° would enable an influence study of the damage gradient 

and its parameter "vu". Likewise, suppression of the damage gradient would enable 

study of the D° dependence on curvature and its parameter "du". Such an approach is 

presented below. It is expected that future efforts will relate the influences that curvature 

has on both the mid-plane damage and damage gradient such that only one rate 

parameter is needed to characterize the influence of curvature upon damage. 

Fracture tests were again employed, to characterize damage under conditions of 

curvature, because unlike simple strength testing, fracture strength was expected to be 

sensitive to all aspects of damage growth. A pure bending strength test was expected to 
identify the threshold of curvature associated with damage initiation. This threshold 

value was utilized in equation (4-18) to define mid-plane damage, D°, dependence on 

curvature. A direct measurement of curvature induced softening, like the sandwich 

tension technique of Section 6.1, is desirable. However, no such test method has been 

identified that can prevent localization of damage under flexural conditions and thereby 

induce a distributed failure of heightened sensitivity to damage characteristics. Instead, 

the T+FF test was developed that generated a broad field of uniform extension and 

curvature within a notched laminate. Such a test incorporated nonlinearities of both 
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material and geometric nature. No reference to this type of test has been identified in 

literature. Further description of the test can be found below in Section 6.3.1 with 

reference to further detail in Appendix B. 

Unfortunately, no Crown-3 laminate was available for experimentation. 

However, two laminates, of very close relation to the Crown-3 laminate, were made 

available. These laminates, which are referred to as S6 and S7 laminates (consistent 

with ATCAS program designation), are of the same material batch, cure and layup as the 

Crown-3 laminate. However, differences in strength were realized and attributed to a 

reduction in laminate resin content (reduced thickness). The S6 and S7 laminates were 

subjected to conventional 2.5 inch center-notched hoop fracture tests by the Boeing 

company. The severed halves of these failed specimens were the laminate that was made 

available for further testing. Pulse echo, nondestructive examination, identified no 

internal delamination that could compromise further testing. S6 and S7 laminate 

strengths are listed in Table 6.1 for uniaxial tension loading. Results of the T+FF test of 
these laminates are presented below in Section 6.3.1. Unfortunately, no pure bending 

test was performed for determining a damage initiation threshold curvature. And no 

tension plus flexure strength test (no-notch test) was conducted which might have 

validated the assumed elliptic shape of the threshold interaction curve as defined in 
equation (4-18). 

As explained above, simulation looked at the effects of curvature induced mid-

plane damage growth separate from the investigation of effects of curvature induced 

damage gradient growth. Both simulations utilized the nonlocal definition of curvature 

which was calculated using the characteristic length lch that was determined from results 

of the tension-only fracture tests. The influence of nonlocal curvature on mid-plane 

damage growth showed greater influence on fracture strength than did the influence on 

damage gradient. This is to be expected because mid-plane damage significantly effects 

both extensional and flexural stiffness within the damage zone while the damage 

gradient significantly effects only the extension-bending coupling stiffness, as discussed 

in Section 3. The influence of curvature on mid-plane damage, D°, was principally 
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effected by the shape of the assumed elliptical threshold interaction curve. Results of 
these simulations are detailed in Sections 6.3.3 and 6.3.4. 

Simulation of the T+FF test was based upon the nonlinear Finite Element 

Analysis (FEA) developed in Section 5. Unlike the tension-only fracture simulations 

however, simulation of the T+FF test incorporated a significant geometrically nonlinear 

effect. As shown in Figure 6.14, the simulation tracked very well the test's nonlinear 

load progressions. 

Correlation between simulation and test results was made difficult by a deficit of 

fracture tests. Only two tests were performed on the S7 laminate: a tension-only 0.875 

inch center-notched fracture test and a T+FF 0.875 inch center-notched fracture test. The 
T+FF test induced a far-field strain, about the notch, that was tensile through-out the 

laminate thickness so as to avoid crack closure complications. At failure, one surface 

strain was about twice that of the other. The T+FF test failed at an axial load 95.9% that 
of the tension-only test for the S7 laminate. 

Three T+FF fracture tests were performed on the 0.875 inch center-notched S6 

laminate specimens. The average failure of the T+FF test was 96.6% that of the tension-

only test for the same specimen configuration. Simulation that modeled damage gradient 

growth could not account for this reduction in strength. Simulation of curvature induced 

mid-plane damage growth produced results similar to that of the tests and exact 

correlation could be possible if given the test support necessary to quantify the damage 

parameters. 

6.3.1 Test Results 

The Boeing Company had provided experimental strengths of the S6 and S7 

laminates for tension-only fracture as listed in Table 6.1 (Walker et al., 1996). Boeing 

further provided to Oregon State University the severed halves of these failed specimens 

from which 0.875 inch notched fracture specimens and uniaxial tension strength 
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specimens were manufactured. The tension-only strength and fracture results are listed 

in Table 6.1. Based upon the experimental data of Table 6.1, a comparison of S6 and S7 

fracture strengths with that of the Crown-3 laminate indicates that the S6 laminate and 

especially the S7 laminate were significantly less damage tolerant. Both the S6 and S7 

laminates were intended to duplicate the Crown-3 laminate but due to differences in 

layup machinery, prepreg age and resultant laminate resin content, exact duplication was 

not achieved. The material batch, layup and cure process were identical for all three 

laminates. 

A novel tension plus flexure fracture (T+FF) test was developed and tests were 

performed on the S6 and S7 laminates. The test utilized the conventional center-notched 

fracture specimen design. Specifically, the specimens incorporated a 0.875 inch notch 

and a width of 4 inches. A simple illustration of the T+FF test is shown in Figure 6.11. 

Specimen extension was forced using an Instron screw-drive test machine. Specimen 

curvature was generated via the common 4-point bend approach using the transverse 

load and bridge structure shown in Figure 6.11. This load was generated by a small 

hydraulic actuator and monitored using a custom made, ring type, load cell. The 

transverse load was introduced to the test specimen through a platform which contacted 

the specimen using two rods separated by one inch, which spanned the specimen notch. 

=>.  

Figure 6.11 Illustration of Combined Tension Plus Flexure Fracture (T+FF) Test. 
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Such a 4-point bend approach, and simultaneous Instron machine control, generated a 

uniform field of combined tension plus flexure (no transverse shear) across the specimen 

notch area. A photograph of the test assembly is shown in Figure 6.12. 

It was desired to generate a tension dominant state of strain within the specimen 

such that flexure was not so great as to induce compression and associated crack closure. 

Such a load condition is relevant to that realized by fuselage crown structure. Two 

methods of load control were experimented with; the more simple approach also 

required less performance of the load actuator system. This test was conducted upon 

three S6 fracture specimens to produce the nonlinear curvature versus mid-plane strain 

trajectories shown in Figure 6.13. A summary of the S6 laminate test results are listed in 

Table 6.3. The test was also performed on a single S7 laminate specimen. Additionally, 

a tension-only fracture test was performed on an identical S7 specimen and simple 

uniaxial tension strengths were tested for both laminates. A summary of these test 

results as well as load cell and strain gage data plots can be found in Appendix B. 

As suggested by the strain trajectories shown in Figure 6.13, the T+FF test 

included two load intervals. First tension-only load was applied up to approximately 

75% of the specimens fracture strength. At this point, the Instron cross-head position 

was fixed and the transverse hydraulic load was actuated. The resultant curvature was 

coupled with increasing tension due to the nonlinear geometric effects associated with 

such loading of an axially constrained plate. As indicated in Figure 6.13, some curvature 

developed in the specimen during the initial interval of axial loading. This effect, 

although not detrimental to meaningful test results, was not desired. The cause of such 

drift is thought to be associated with the use of single-shear grips for holding the 

specimen's ends. Single shear clamps lack the self-aligning property of double-shear 

grips. For this reason, double-shear grips are typically used. The bolted single shear grip 

assembly included shimming for attaining the desired axial load alignment; but this 

proved cumbersome and was likely insufficient. The single-shear grip was used because 

it could be fashioned in a more compact design for use in the limited work space otfered 
by the Instron machine. 
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Figure 6.12 Photo of Tension plus Flexure Fracture (T+FF) Test Assembly. 
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Figure 6.13 Far-field Strains Generated by three Tension plus Flexure 
Fracture (T+FF) Tests (S6 Laminate). 

First Far-field 

Notch 
Audible 

Damage Cross-head 
Axial 

Failure 
Trans. 
Failure 

Mid-plane 
Failure 

Far-field 
Failure 

Laminate Length Width Thickness Load Lock Load Load Load Strain Curvature 
Coupon (in.) (in.) (in.) (Kips) (Kips) (Kips) (Kips) (xE-6) (xE-6/in.) 

S6-2 0.862 3.970 0.093 11.60 14.00 16.21 1.48 5290. 27050. 
S6-5 0.862 3.970 0.093 10.30 14.00 16.92 1.70 5390. 27960. 
S6-6 0.863 3.960 0.093 11.30 14.00 16.95 1.81 5620. 37350. 
S7-1 0.864 3.987 0.090 11.40 12.05 15.41 1.73 5030. 37244. 

Table 6.3 Summary of S6 Laminate T+FF Test Results. 
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Another load control approach was tested which proved both more complicated 

and required greater stroke length than was available in the hydraulic actuator. It also 

began by axially loading the specimen up to some high percentage of its fracture 

strength. However, in this approach the cross-head position is controlled, while the 

transverse load was applied, in order to maintain a constant axial load. That is, the 

Instron cross-head position was adjusted to negate the nonlinear interaction noted in the 

other test approach. Such a control required somewhat sophisticated feedback control of 

the Instron machine. This was accomplished by a program based upon the LabView 

symbolic simulation and control software. This test control approach also required 

greater stroke length of the transverse load actuator in order to fail the specimen. The 

small actuator employed offered only a 1.0 inch stroke. Such a compact actuator was 

needed to minimize the weight and size of the T+FF test assembly so as to render its 

frequent installation and removal form the Instron machine a manageable job for one 
person. 

6.3.2 Simulation - Nonlinear Finite Element Analysis 

The T+FF test was simulated using the nonlinear finite element analysis (1-.EA) 

defined in Section 5. A model was developed which expanded upon that used for 

simulating the tension-only test. Specifically, geometric nonlinearity was addressed and 

the compliance of the axial load introduction assembly also had to be modeled. As 

before, displacement control was employed and failure was associated with a reduction 
of resistance to deformation. 

Transverse loading of an axially constrained plate is a classic problem of 

geometric nonlinearity. Should transverse deformation exceed one-tenth of the plate 

thickness, the problem is considered geometrically nonlinear. The transverse 

deformation in the T+FF test was on the order of 100 times that. Being axially 

constrained, the imposition of curvature must also impose a simultaneous stretch. To 
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address this aspect of the problem, total Lagrangian formulation, of the deformation 

relations, was employed to account for large deflections and moderate rotations. 1-EA 

results, for a simple geometrically nonlinear pin-pin beam problem, compared very well 

to solutions using the commercial FEA program COSMOS/M. 

The axial deformation of the fracture specimen was controlled by movement of 

the Instron cross-head. Linkages joined the T+FF test assembly, of Figure 6.11, to the 

Instron cross-head above and to its foundation below. These linkages ensured that no 

moment load was introduced to the test assembly and that a single line of action existed 

between the assemblies attachment to the Instron foundation and cross-head. However, 

the linkages introduce compliance into the system such that the locking of the cross-head 

position does not lock the axial separation between the hinges of the T+FF test assembly. 

Rather, some small axial displacement is possible. This compliance had to be modelled 

in order to simulate the nonlinear interaction between the applied transverse load and 
induced axial tension. 

The same finite element mesh, shown in Figure 6.2, was used to represent the 

fracture specimen. This mesh was expanded to model the specimen grips which 

connected the specimen to the hinge. Details of the grip, such as fasteners and its single 

shear load transfer, were not considered critical. The grip stiffness was large and was 

modeled as such. The mesh was further extended to model the axial linkage assembly 

and its compliance. The actual stiffness of the linkage assembly was not known. 

Instead, its stiffness was varied until the simulated nonlinear load response matched that 
of the test. Such a correlation is only possible prior to the initiation of damage and 

associated material nonlinearity. The excellent match between simulation and test is 
evident in Figure 6.14. 
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Figure 6.14	 Simulated and Tested Transverse versus Axial Load Path 
Tension plus Flexure Fracture Test. 

6.3.3 Results of Simulation Study 

Simulation was performed only for fracture tests of the S6 laminate. First the 

laminate stiffness and tension-only fracture properties had to be established using the 

method detailed in Section 6.2. The S6 laminate hoop stiffness and the damage 

threshold hoop strain, ec,r,, were obtained from uniaxial tension tests (see Appendix B). 

The resultant threshold hoop strain was found to be e2,= 0.00975. Simulation of the 

tension-only fracture test enabled characterization of the nonlocal characteristic length, 

lch, and mid-plane damage rate parameter, a22 as defined in Section 6.2. Correlation of 

simulation with test results, for the 2.5 inch center-notched specimen, enabled the 

definition of a parameter solution set represented by a single curve in the space of lch and 

a72. Such a solution set does not suggest any single parameter pair as being best. 

Therefore, the rate parameter was selected as being equal to that of the Crown-3 laminate 

and the corresponding characteristic length was then quantifiable. The S6 laminate 

tension-only damage parameter pair was thus established as (lch = .226 inches, a22 = 600). 
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It is desirable to compare results of the T+FF test to that of the tensile-only test 

using the same specimen size. The T+FF test was performed on a specimen of S6 

laminate, having a 0.875 inch notch and a 4 inch width. Unfortunately, no tension-only 

fracture test was performed for this notch size. The simulated 0.875 inch notch tension-

only fracture strength was 18.12 kips based upon damage parameters determined from 

the 2.5 inch notch fracture test results. It is likely that this value of strength would over-

predict an experimentally determined 0.875 inch notch fracture strength. This 

expectation relates to the over-prediction of strength realized in Section 6.2 for the 0.875 

inch notch specimen of Crown-3 laminate as listed in Table 6.2. If a similar trend is 

assumed for the S6 panel, a tension-only fracture test, of the 0.875 inch center-notched 

specimen, would have resulted in a strength of 17.28 kips. For the same specimen, the 

average T+FF fracture strength was 96.6% of this value. Both the T+FF and the tension-

only test conditions were tested for the S7 laminate and a 95.9% retention of tensile 
strength was realized. 

As previously stated, the effects of curvature, upon the growth of mid-plane 

damage and the growth of damage gradient, must be considered separately. Therefore, a 

simulation of the T+FF test was conducted using a model for which curvature affected 

only the mid-plane damage growth according to equation (4-18). No damage gradient 

was allowed to evolve. The damage threshold curve, defined in the space of nonlocal 

mid-plane strain and curvature, was assumed elliptical and defined using E22 and K 2c2r as 

its axis intercepts. As mentioned above, E,2 was determined from a uniaxial tension test. 
No uniaxial pure bending test were conducted to quantify lcc2 . Rather, an estimate was 
made of K;; corresponding to that curvature which induced a fiber strain equal to 

E2, according to Classical Laminated Plate Theory (Jones, 1975). This equated to a 

damage threshold curvature of K2c2r= +/- 0.2928 (1/inch). 

After exceeding the elliptical threshold interaction curve, simulated growth of the 

mid-plane damage is controlled by the damage rate parameter, a22 = 600, and parameter 

"d22" of equation (4-18). Parameter "d22" represents the deviation of curvature damage 

rate from that of mid-plane strain damage rate. A value of zero refers to no difference. 
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A negative value refers to a higher curvature induced damage rate. Simulations of the 

T+FF test were performed in which the value of parameter "d,2" was varied. Results, 

listed in Table 6.4, show a simulated retention of 97.3% of tension strength, for the value 

d22 = -.5. As shown in Figure 6.15, this value of "d" induced the greatest pure curvature 

damage growth rate. The mid-plane damage surface, corresponding to equation (4-18) 

but specific to the S6 laminate, is shown in Figure 6.16. The asterisk, identified on this 

surface, represents the damage and strain coordinate for a material point within the 

damage zone at the point of maximum load restraint (i.e. failure). The complete history 

of this material point is traced as the dashed line in Figure 6.17. This contour plot, of the 

mid-plane damage, shows the damage threshold ellipse as the solid line. Again, an 

asterisk identifies the point of specimen failure. Because the test condition was one of 

tension dominance, the damage rate corresponding to mid-plane strain was dominant; 
that is, parameter a22 was dominant over d22. 

Curv. Tension Max. Max. 
Damage Damage Characteristic Tension Transverse 
Param. Param. Length Load Load 

d a I (Kips)** (Kips) 
0.5	 600 0.226 17.65 2.15 
0 600 0.226 17.65 2.15 

-0.5 600 0.226 17.63 2.14 
** Compare to simulated tension-only failure load = 18.12 Kips. 

Table 6.4	 Simulated T+FF Test Strengths Curvature Induced Mid-Plane 
Damage, D°, Modeled. 
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Figure 6.15 Effect of "d22" on Pure Bending Mid-plane Damage Growth Function. 
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Figure 6-17	 Panel S6 Mid-plane Damage Function and Simulated Trajectory of 
Material Point within Fracture Process Zone for T+FF Test 
Conditions (* = failure condition) 

Simulation of damage gradient growth effects was also performed on the T+FF 

test. The gradient, a22, was simulated to grow relative to the state of curvature, K22, and 

damage compliance, S22 (see Figure 4.8), according to equation (4-23). No effect of 

curvature, upon mid-plane damage D22, was allowed. Two values of parameter v22 

where utilized for simulation, v22 = -100 and -85. Results, listed in Table 6.5, show 

little difference from the simulated tension-only fracture strength. Also, it turns out that 

the damage gradient, for material within the damage zone (i.e. fracture process zone), far 

exceed the permissible range defined by Figure 3.1. Damage growth trajectories are 
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plotted in Figure 6.18 for a sample point within the damage zone. It should be noted that 
although the permissible range of damage is initially violated, further growth corrects the 
problem. The suddenly high value of damage gradient is a result of the damage 

compliance term, S, shown plotted in Figure 4.8. A third simulation was conducted in 
which artificial control was imposed upon the gradient growth by not allowing it to 

exceeded the permissible region of Figure 3.1. Results of this "limit controlled" analysis 

are also plotted in Figure 6.18 and its fracture strength result is listed in Table 6.5. 

According to the simulated T+FF results in Table 6.5, the effects of modeling a 

damage gradient are minor or non-existent, especially when constrained to comply with 

the permissible damage range of Figure 3.1. Maximum load (i.e. failure) corresponded 

to a damage zone in which the mid-plane damage ranged from 0.0 to 0.3 for the 0.875 

inch notch test. Referral to Figure 6.18 shows that the corresponding range of damage 
gradient was very active within the damage zone at failure. Its corresponding effect upon 

the extension-bending coupling stiffness, ti22, is illustrated in Figure 3.3. Apparently the 
uncontrolled gradient simulations developed extension-bending coupling far in excess of 
what was permissible. The controlled simulation attained a coupling of about 2/3 the 

maximum permissible. Therefore all three simulations generated a significant damage 

gradient effect within the damage zone; however, its effect upon fracture strength was 

minimal. The simulated S6 laminate fracture represents behavior of a brittle material. 

For materials that exhibit slower damage growth, a larger active damage zone would 
develop prior to failure. The damage gradient would have a greater opportunity to affect 
fracture strength for such materials. 
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Curvature 
Damage Tension Max. Max. 
Gradient Gradient Damage Characteristic Tension Transverse 

Parameter Control Param. Length Load Load 
v . a I (Kips) ** (Kips) 

-85 None 600 0.226 17.95 2.28 

-100 None 600 0.226 18.02 2.31 

-100 Limit * 600 0.226 18.13 2.36 
* Gradient limited to permissible range detailed in Figure 3.1  

Compare to simulated tension-only failure load = 18.12 Kips  

Table 6.5	 Simulated T+FF Test Strengths Curvature Induced Damage 
Gradient, a, Modelled. 
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Figure 6.18 Damage Gradient versus Mid-plane Damage Growth, within the 
Fracture Process Zone, for Three Gradient Controls 
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7. Fuselage Damage Tolerance 

A section of commercial airplane fuselage, shown in Figure 7.1, was analyzed 

and tested for hoop directed damage tolerance. Its design represented fuselage crown 

structure (top quadrant). Testing provided experimental data regarding the response of 

complex structure to progressive damage (Walker et al., 1996). Strain gage data 

suggests that significant notch-tip damage began at 83% of the final failure pressure. 

Post failure inspection revealed large-scale debonding of the skin from the frame 

members. Damage theory analysis, using the previously established damage parameters, 

predicted failure pressures that were between 8 and 10 percent below that of the test 

failure pressure. 

Figure 7.1 Fuselage Crown Panel Test Article. 

The panel represents a section of large diameter fuselage (122 inch outer radius). 

The skin is reinforced with J-shaped frames running circumferentially and hat-shaped 
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stringers running axially. A 22 inch crack runs axially from the center of one bay to the 

center of its neighbor, severing both the skin and a frame member. The skin, referred to 

as the Crown-3 laminate, was previously defined in Section 6. The stringers are 

composed of a 15-ply laminate of graphite/epoxy (0.110 inch thick) with a 

[45/90/-45/0/45/-45/0/90/0/-45/45/0/-45/ 90/45] lay-up. Its lamina stiffness properties 

are E1 = 19.6 Msi, E2 = 1.36 Msi, G12 = 0.72 Msi, and v12 = 0.32. The frame members are 

composed of a woven graphite/epoxy with a thickness of 0.115 inch and moduli E1 = 

6.23 Msi, E2 = 8.89 Msi, G12 = 1.66 Msi, and v12 = 0.144. 

The panel was constrained in the circumferential direction but not longitudinally; 

so that when pressurized, no axial load developed. Such a condition was the most severe 

possible from the perspective of hoop fracture and represented fuselage pressure loading 

plus axial compression due to flight maneuver loading. The fuselage damage tolerance 

requirement, for such a condition, specified that 8.85 psi be supported (Walker, 1993). 

Testing was conducted at NASA LaRC and utilized a pressurized box, the top of 

which was covered and sealed by the fuselage panel. Pressure was generated in a static 

manner except that once depressurization was sensed, the pressure control valve was 

fully opened to maintain as much pressure upon the failure process as possible. Such 

control should better represent the pressure capacity of the total large-diameter fuselage. 

The crown panel failed at a pressure of 9.29 psi. Strain gage data had been 

collected from which a damage history can be surmised. Some doubt is healthy in 

interpreting such data because damage events can release energy sufficient to 

compromise strain gage integrity. Gage sensitivity and vulnerability was obviously 

greatest closest to the notch tip. Gages were placed ahead of both tips of the notch 

(designated tip A & B). Prior to any evidence of damage, strain gage data indicated that 

tip-A was only slightly more strained than tip-B. At 5 psi, the gage closest to tip-A 

(approx. 0.1 inch ahead of tip) registered a damage event. A second gage, 0.39 inches 

ahead of tip-A, registered its initial damage event at 7.1 psi. At 8.2 psi, damage was 

registered broadly in that tip-B showed damage in gages located at 0.10, 0.39 and 4.0 

inches ahead of the tip. The gage 4.0 inches ahead of gage-A also registered its initial 
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damage event at 8.2 psi. Post-failure analysis suggested that a final damage zone of 

about 1.5 inches was developed at failure. Such analysis also identified large scale 

debonding of the circumferential frame members from the skin. The damage that 

originated at the notch tip was found to have traveled across and beyond the debonded 

frame members to the fasteners that attached the axial load introduction doublers at the 

panel edge. Examination of strain gage data suggests that the skin did not debond from 

the circumferential frames prior to failure. That is, the skin probably debonded from the 

frame during the dynamic advance of the notch. Such behavior is not desired since an 

attached frame can serve to arrest the notch growth. Loss of such a fail-safe feature 

suggests that fasteners are needed to join the skin laminate to frame members. 

Simulation, of panel failure, incorporated both tension and flexural damage 

characteristics as developed in Section 6. Two sets of damage parameters were 

exercised as listed in Table 7.1. As described in Section 6.2.3, one set (case 1) was 

selected to best correlate with the two smaller and cheaper tension fracture tests; the 

other set (case 2) employed results of all three tension fracture tests. Both selections 

included a bias toward correlation with the larger notch size. Case-2 was expected to 

better simulate fuselage damage tolerance because it had the benefit of the largest, 12 

inch notch, fracture test. Case-1, however, reflected a limited test data-base that is more 

typical of what could be afforded by a product development program. It is also indicated 

in Table 7.1 that the dependence of mid-plane damage upon curvature was not simulated. 

Rather, the curvature induced damage gradient was incorporated in both simulation cases 

using the limit control scheme described at the end of Section 6.3.3. This segregation of 

curvature induced damage effects followed the approach described in Section 6 and 

further discussion is reserved for the end of this section. 

Simulation employed the nonlinear finite element method described in Section 5. 

The model, shown in Figure 7.2, defines only one-quarter of the panel by taking 

advantage of two axis of deformation symmetry. The complete upper half of the 

fuselage circumference was included in the analysis so at to minimize artificial edge 

effects upon simulated internal load distribution, deformation and damage growth. The 
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panel test was also designed to minimize edge effects but physical limitations were 
imposed by cost driven size considerations. The model does not attempt to represent the 

test hardware directly; but rather, it represents the actual fuselage which the test 

hardware attempts to mimic. Large deflection analysis capability was applied to the 
fuselage as suggested by Riks et al. (1989). As with the previous fracture tests, viscous-

damping dynamic analysis enabled stable solution convergence. Simulation was 
controlled by a constant rate of increase in pressure load. Failure was assumed to occur 

at a pressure load corresponding to a sudden acceleration in radial deformation. This 

acceleration was experienced across the full length of the test model to varying degrees. 

Such an acceleration refers to a transition from static to dynamic crack growth. It was 

assumed that the onset of dynamic crack growth could be equated with panel failure. 

This assumption would not be valid if damage growth were arrested at its nearest 

circumferential frame member. However, such damage arrest was not identified in the 

test probably because the frame debonded from the skin (no fasteners were employed). 

Tension Curvature Curvature 
Non local Damage Mid-plane Damage 

Characteristi Rate Damage Gradient Failure 
c Length Parameter Parameter Parameter Pressure 

(in.) a d v (psi) 

Simulation Case 1 .300 600 Not modelled -100 8.34 

Simulation Case 2 .285 150 Not modelled -100 8.5 

Test Results NA NA NA NA 9.29 

NA = Not Applicable 

Table 7.1 Simulation Case Parameters and Predicted versus 
Experimental Failure Pressure. 
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Figure 7.2 Finite Element Model Fuselage Crown Panel. 

Case-2 simulation resulted in radial acceleration at a pressure of 8.50 psi as 

shown in Figure 7.3. Case-1 registered failure at 8.34 psi in a similar manner. These 

results were 8.5 and 10.2 percent conservative respectively. The size of the damage zone 

at failure were 0.60 and 0.45 inches respectively. These sizes are relatively small in 

comparison to the 1.5 inch size reported by post-test examination and in comparison to 

the 2 inch size realized in simulation of the 12 inch fracture tests. 

Strain was monitored during the test at several locations ahead of the crack tip. 

A comparison of measured strain on the outer surface of the panel and that of the case-2 

simulation is available in Figure 7.4 for two locations (x) ahead of the notch-tip. 

Excellent agreement is evident between simulation and test prior to development of 

damage. This implies that the large deformation geometric nonlinearity was successfully 

modelled. Test damage may have begun at 5 psi for notch tip-A but tip-B waited until 

8.2 psi. Simulation registered the initiation of damage at 8.3 psi, followed shortly 

thereafter by dynamic crack growth. Test failure was registered at 9.29 psi. The 
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developed theory does not pretend to model dynamic crack growth; instead, it signals the 

transition from static to dynamic behavior which is assumed to represent panel failure. 
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Figure 7.3 Pressure vs. Velocity Curve for Point on the Crack Surface. 
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Figure 7.4 Pressure vs. Strain ahead of Notch-tip, Strain Gage Data versus Simulation. 
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As mentioned above, only one aspect of curvature induced damage was modeled, 

the damage gradient. It was characterized using the parameter v22 = -100 along with the 

limit-control scheme which was adopted from the results of the S6 laminate study of 

Section 6.3.3. The dependence of mid-plane damage upon curvature was not simulated. 

Results of Section 6 indicated that the modelling of damage gradient growth has 

negligible effect upon predicted fracture strength and therefore the predicted failure 

pressures were probably insensitive to the induced curvature. The tension plus flexure 

fracture testing of the S6 laminate showed curvature to reduce the tensile component of 

fracture strength by about 4%. The comparison of simulated nonlocal strains within the 

damage zone of the S6 laminate T+FF test with that of the Crown-3 panel pressure box 

test, shown in Figure 7.5, indicates that the panel realized about 2/3 the curvature of the 

T+FF test. It could thus be expected that the panel would realize a curvature induced 

fracture strength reduction of less than 4%. Section 6 indicated that the modelling of 

curvature induced mid-plane damage could account for such a strength reduction. 

Unfortunately, due to a lack of test support and time, the fuselage panel was not analyzed 

for curvature effect upon mid-plane damage growth. 

The comparison of nonlocal curvatures shown in Figure 7.5 suggest that the 

T+FF test is suitable for fuselage design development since it can more than match the 

curvature realized within the panel's damage zone. The large nonlocal mid-plane strains, 

shown in Figure 7.5 for the Crown-3 panel, are associated with behavior of the fracture 

process zone for large notch sizes. Therefor, the large mid-plane strains of the 22 inch 

fuselage panel test can not be compared to the results of the 0.875 inch notched coupon 

test. 

It should be noted that the proposed theory predicted that the panel would have 

failed prior to attainment of the 8.85 psi damage tolerance requirement. Had curvature 

effects upon mid-plane damage been modelled, even less pressure load capability would 

likely have been predicted. In reality, however, the panel was successful in supporting 

this requirement and more. Application of this theory would therefore have imposed a 
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conservative weight penalty upon the fuselage. Finally, the inability of the frame to 

arrest crack growth raises questions regarding the fail-safe capability of such a design. 
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Figure 7.5 Damage Zone Non local Strain Histories from Simulation of Crown 
Panel Failure and the S6 Laminate T+FF Test Failure 
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8. Discussion  

The developed nonlocal damage theory sought to model the macroscopic stiffness 

degradation caused by an assortment of matrix cracking, fiber breakage, fiber pull-out, 

matrix-fiber splitting, small-scale delamination, etc.. In doing so it was expected that 

failure could be predicted for large complex structure made of laminated plate composites 

in which damage manifests itself as strain softening behavior. It has been demonstrated 

that such structure can indeed be successfully analyzed using moderate computational 

resources. Its inaccuracy in predicting large notch fracture was demonstrated to be as 

much as 11.1 percent conservative. Such inaccuracy could be considered acceptable; and 

steps can be suggested to improve upon this performance. However, other fracture 

theories are available which should be considered relative to the performance and 

computational expense of the proposed damage theory. 

Several closed-form analytical fracture criteria were introduced in the literature 

review of Section 2. Being closed-form, they are computationally free for simple 

geometries. Three of these methods have been applied to the prediction of the Crown-3 

laminate fracture strength as shown in Figure 8.1. All three methods were parametrically 

fitted to the results of the 0.875 inch notch fracture test. Results of the damage theory and 

experimental tests are also included. The damage theory performed consistently well in 

predicting failure with a maximum error of 11.1 percent conservative for the 12 inch 

notch test result. The Mar-Lin criterion also performed well except it predicts an infinite 

no-notch strength. Its prediction was 6.1 percent non-conservative for the 12 inch notch. 

The Linear Elastic Fracture Mechanics (LEFM) model performed poorly. The Point 

Stress criterion prediction was 25 percent conservative for the 12 inch notch fracture 

condition. Of these four predictive methods, the damage theory result is the most 

desirable in that is was the most accurate of the conservative predictions. 

An economic study was not performed to ascertain the worth of the damage 

theory. If concern was limited to fracture of simple, flat, tension-loaded structure, the 
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Mar-Lin theory seems accurate and very affordable. For application to large complex 

structure, however, a finite element model is likely required irregardless of which fracture 

theory is employed. Furthermore, due to the common significance of geometrical 

nonlinear larger deformation behavior, incremental FEA is often required irregardless of 

the fracture theory. Therefore, closed-form solution methods loose much of their 

economy in application to analysis of complex structure. Also, flexure is common at the 

notch-tip which is not addressed by the closed-form methods. A method for extending 

the Mar-Lin criterion to general conditions of complex structural failure, such as that of 

the Crown panel test, has not been identified although Ranniger, et. al., (1995) presented 

a closed-form analytical method for standard shell geometries based upon the work of 

Folias (1965a & b). The Point Stress criterion could be applied to such structure; 

however, review of the stresses generated ahead of the fuselage panel notch indicate that 

the Point Stress criterion would predict failure at about half that actually attained in test. 

Therefore, for general complex structural failure, the closed-form criteria are not very 

attractive and can impose significant weight and material cost penalties upon a design. 

120 -
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Figure 8.1 Fracture Strength Predictions of Closed-form Criteria versus Damage Theory. 
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Another analysis alternative would be to apply anisotropic plasticity theory to 

model the strain softening. This method has already been demonstrated (Dopker et al., 

1994) with considerable success. From a computational perspective, the plasticity and 

damage theory methods are similar. Both require nonlocal treatment (or accept a fixed 

damage zone element size), incremental solution for treatment of both geometric and 

material nonlinearity, and an advanced solution path finding method such as the viscous 

relaxation technique employed herein. However, curvature induced effects would require 

a layered analysis for the plasticity solution method and the assumption of material 

homogeneity through the plate thickness. Layered analysis would impose additional 

computational costs over that of the damage theory analysis. Finally, plastic strain 

softening does not allow for reduction in stiffness. If the material actually exhibits 

reduced stiffness rather than permanent strain, then strictly speaking, the plastic solution 

method would be limited to conditions of monotonic loading. 

The developed nonlocal damage theory represents an advancement in the 

modelling of curvature induced progressive damage effects. The theory is comprised of 

several parts, each of which can effect the accuracy, generality and efficiency of 

application. Section 3 detailed the development of the damage effective laminated plate 

stiffness matrix. In application of the resultant stiffness relation, no problems have been 

identified and it is offered with confidence as a valuable tool. 

Section 4 detailed the kinetics of damage evolution due to growth in nonlocal 

strain. This area of damage theory has been recognized as being highly discretionary and 

open to creativity. The proposed damage kinetics was created in the image of the simple 

maximum strain strength criteria for composites and was thus presumed to represent a 

simple and physically intuitive basis for damage growth. Like the maximum strain 

strength criterion, however, the proposed damage kinetics is expected to show some 

inaccuracy in cases with biaxial load conditions. Additionally, damage growth was 

assumed to vary in an exponential manner with respect to nonlocal strain. Other 

researchers have used piece-wise linear functions with good success. Choice of a 
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functional family is very important for accurate characterization of a laminate, but such a 
choice is up to the discretion of the user and not an intrinsic element of the proposed 

damage theory. 

Section 6 detailed the experimental method of characterizing a particular laminate 

according to the proposed damage theory. It was demonstrated that a desirable direct 

measurement of strain softening is difficult for in-plane load conditions and totally 

undeveloped for flexural conditions. Thus an indirect method using fracture tests was 

developed. For in-plane load conditions, no single set of strain softening parameters 

could be identified to match results of all test conditions. The resultant uncertainty and 

computational costs of the inverse method should be a strong motivation toward 

successful development of a direct method of measuring strain softening in laminated 

composite plate structure. 

A possible limitation, in the demonstrated damage characterization, relates to the 

isotropic definition of the nonlocal treatment. The damage parameter solution curves of 

Figure 6.8 suggest that different characteristic lengths would apply to the hoop and axial 

directions of the fuselage laminate. The physical justification for a long-range nonlocal 

treatment has not been established, rather it is justified in that it rectifies what would be 

physically unreasonable analysis results otherwise. Therefor it could be proposed that an 

orthotropic nonlocal treatment be established without violating the basis of the nonlocal 

treatment. Such a treatment would be consistent with the stiffness and assumed damage 

behavior of a laminated plate and would not entail any further testing for complete 

characterization. 

Section 6 also detailed the experimental characterization of damage growth due to 

a combination of tension and flexure. Curvature was theoretically identified to affect 

both the average level of damage (i.e., mid-plane damage) and its gradient through the 

laminate thickness. Separate functional relations and characteristic parameters were 

proposed for modelling the dependence of these two aspect of damage upon curvature. 

This assumed separation presents problems in experimental determination of their 

influence upon fracture strength since their influences are physically indistinguishable 
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from each other. However, both are related to the damage resistance of the outer layers of 

a laminated plate. Therefor it should be possible for their dependence upon curvature to 

be related by a single parametric characterization. Such a relationship has yet to be 

investigated. Instead, these two aspects of curvature induced damage were simulated 

independently of each other and compared to test results. Results indicate that the 

damage gradient is ineffectual and that the average mid-plane damage effect could 

potentially represent the total curvature induced reduction in fracture strength. Such 

testing required the development of a novel combined tension plus flexure fracture test. 

Further application of the proposed theory is at a juncture in its treatment of 

flexural effects. One approach would assume that the damage gradient is ineffectual in 

general and to drop it from the proposed damage theory. The other approach would seek 

to identify a common parametric relation between the two aspects of curvature induced 

damage. 
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9. Conclusions 

The proposed nonlocal damage theory is conceptually simple. This is partly a 

result of assuming that strain is the force behind damage growth rather than some 

thermodynamically derived entity. It is also a result of proposing damage growth 

kinetics modelled after the simple maximum strain strength criterion. Conceptual clarity 

was also advanced by the assumption that the principal direction of damage is at least 

approximately coincident with that of nonlocal strain. An isotropic definition of damage 

could have been developed and would have further simplified the theory. However, 

damage isotropy was considered too simplistic for characterization of highly directed 

composites. Instead, a second-order orthotropic definition of damage was put forward in 

lieu of the more complex fourth-order definition. Finally, the assumption that damage 

varies linearly through the thickness of a laminated plate enabled the concise definition 

of damage effective laminated plate stiffness per equation (3-17). Engineers experienced 

with composites are very familiar with this form of laminated plate stiffness. Such an 

approach avoids the layered finite element analysis approach which is computationally 

more expensive, complex and arguably over-simplified . 

Incorporation of the proposed damage theory into finite element analysis enabled 

damage tolerance analysis of large complex structure. This conclusion is based upon the 

demonstrated analysis of a damaged fuselage panel as reported upon in Section 7. The 

computer resources necessary for such an analysis were moderate. 

The proposed theory performed well in predicting damage tolerance for a large 

range of damage sizes. Fracture strength was predicted and compared to test results for 

notches ranging from 0 to 22 inches. The maximum error was 11.1 percent conservative. 

As discussed in Section 8 and demonstrated in Figure 8.1, damage theory prediction 

compared favorably with closed-form solutions. These closed-form solution techniques 

are much less suitable for large complex structural analysis. Plasticity analysis of such 

strain softening behavior has been demonstrated to also predict damage tolerance well. 
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However, for materials that actually exhibit stiffness degradation, such an approach can 

be argued to have limited potential. 

It can be concluded that the simulated growth of thru-thickness damage gradient, 

a, has little effect upon fracture strength for the conditions analyzed. It is not clear that 

such a result can be expected in general. It is speculated, for example, that the 

extension-bending coupling influence of the damage gradient would have a greater 

opportunity to influence the outcome strength if a larger active damage zone developed 

prior to failure. The active damage zone of the analyzed S6 laminate was small due to its 

acute strain softening. Less acute strain softening may realize a significant damage 

gradient effect. 

The simulated growth of mid-plane damage, D°, due to the combination of 

extension plus curvature, was not given adequate test support. Nevertheless, it can be 

concluded that this influence of curvature has the potential to fully account for the 

reduction in fracture strength realized under such conditions. Furthermore, the 

developed theory is able to reflect differences in curvature induced damage resistance 

expected from variation of a laminate ply stack sequence. 

The developed tension plus flexure fracture (T+FF) test was affordable, 

performed well and revealed a fracture strength sensitivity to flexure. This test, 

represented in Figure 6.11 and shown photographed in Figure 6.12, is adaptable to a 

wide variety of commercially available test machines. Test induced extension and 

curvature can be varied to represent a wide range of plate load conditions. Simulation of 

the geometric nonlinearity that is inherent in this test was not difficult but did require 

some trial and error to adequately model extensional compliance of the test fixture. 

Geometric nonlinearity, associated with large deflections, had a significant effect 

upon test results and was accurately simulated. Such modelling was successful in 

simulation of this nonlinear behavior for both the T+FF test and the fuselage crown 

panel pressure test. Initial concern with artificial stiffening associated with higher-

ordered Gaussian integration under flexural condition was found to be unwarranted. 
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10. Recommendations 

The proposed theory, or some derivative, should be incorporated into a non-

layered finite element analysis program to realize its true efficiency. The theory 

application that has been reported upon herein was implemented by modifying a layered 

finite element analysis program. Labor conservation had dictated that this feature be 

maintained without compromising results. Thirteen layers were employed in the model, 

one for each ply. A measure of the relative computational efficiency would be 

interesting. 

The curvature induced growth of mid-plane damage, D°, and damage gradient, a, 
are both related to damage resistance of the outer laminate plies. This commonality 

should enable their growth to be represented by a common material parameter 

incorporated into separate growth functions. Although the damage gradient has been 

shown to exhibit negligible influence upon fracture strength, it is not clear that this is 

generally true. The alternative is to drop the damage gradient form the damage model. 

However, by identifying the common parameter and associated damage growth 

functions, both aspects of curvature induced damage, D° and a, may be modelled 

without ambiguity and without requiring any more testing and simulation than would be 

required if the damage gradient was dropped. 

Testing is needed to determine the shape of the mid-plane damage, D°, threshold 

curve for combined tension plus flexure conditions. Like the elliptical shape assumed in 

the analysis (defined in Section 4.3 and characterized in Section 6.3.3), it is hoped that 

few tests would be required to characterize any laminate according to the identified 

threshold curve. To identify the best curve shape, multiple test trajectories of combined 

tension plus flexure should be performed. Careful consideration should be given the 

interpretation of damage initiation under flexure dominant conditions where failure may 

be gradual. These no-notch tests could be performed using the developed tension plus 

flexure test hardware. 
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Only one trajectory of tension plus flexure was tested for fracture strength. 

Additional testing is recommended to better understand the influence of curvature upon 

fracture strength. Such testing, would use the same hardware and method described in 

Section 6.3.1 but the transverse load actuator should be replaced with one of greater 

stroke length. Such testing would better serve the characterization ofa laminate's rate of 

damage growth due to curvature than did the test trajectory shown in Figure 6.13 and 

shown simulated relative to the assumed damage surface in Figure 6.17. Crack face 

closure and its influence upon fracture strength would eventually have to be considered 

for test trajectories of greater curvature component. 

The proposed damage theory incorporated an isotropic definition for the nonlocal 

treatment of strain. That is, the spacial averaging of local strain to obtain the nonlocal 

strain was equal in all directions. The degree of nonlocal behavior was represented by a 

single material parameter, the characteristic length lch, which characterized the size of the 

circular nonlocal range. Correlation of simulation results to fuselage skin fracture tests, 

in both its hoop and axial directions, indicated that different values of characteristic 

length would control fracture in these directions. This indication is evident in Figure 6.8. 

Therefore it is recommended that an elliptical nonlocal range be employed which is 

defined using two characteristic lengths associated with the two principal laminate 

directions. This definition would be consistent with the orthotropic definition of damage 

and would improve simulation accuracy for general fracture conditions. And besides, it 

would not necessitate any further testing or simulation for characterization of a 

laminate's damage growth. Rather, it would be a simple way to obtain the flexibility 

needed to characterize damage tolerance for directional composites. 
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Appendix A	 Expanded Matrices of Damage Effective Laminated  
Plate Stiffness  

The stress-strain constitutive relation for progressively damaged laminated plate 

was developed in Section 3; producing a constitutive relation of a form identical to that 

developed using Classical Laminated Plate Theory. The new laminated plate stress-strain 

constitutive relation can be expressed as 

Im i'AtN	 O 
(A-1) 

The effective stiffness sub-matrices are fully expanded below. This expansion is limited 

to the special case of a nominally symmetric laminate for which the nominal interaction 

stiffnesses, B1 and E1, are null. The expansion is further limited to balanced laminates 

with respect to the principal laminate coordinate basis. This later condition results in 

nominal in-plane and bending stiffness components, A13 = A23 = C13 = C23, equal to zero. 

Sub-matrices [A], [C], [A] and [C] are symmetric. Accounting for the special laminate 

just described, the relations expressing the effective stiffness sub matrices can be reduced 
from equation (3-18) to 

A = NTD : A : ND + NaT : C : Na	 (A-2a) 

B 2ND : C : Na	 (A-2b) 

= NTD : C : ND + Na : F : Na	 (A-2c) 

A detailed expansion of these sub-matrices follows. 
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[A] = 

[A] = 2* 

A11 (1 -Di°1)2 A1, ( 1 -Di°1)( 1 -D,°2) 

+A66 (D102)2 66 -12)2+A66

+C11 (a11)2 +C 12 all a,,  

+C66 (al-) 2 +C66 (a12)2  

n 0 12 
A22 kl 

+A66 (DI2)2 

+C,2 (a22)2 

+C66 (a12)2 

Symmetric 

(1 -1)1°I)ail -C12(1 -1310 I)a2, 

+ C66 D1°2 al2 C66DZai2 

C12(1 -D20 2)all -C22(1 -D2°2) a'22 
0 

+ C66 D102 a12 + C66 D a12 

+ (C11 ±C12)1312a11/2 + (C12 +C22) D1°2 a22 /2 

o 0 o oC66(2 -Di -D2,) al, /2 C66(2 -Di -D22) aj2 /2 

-(Al +Al2) Di°2 (1 -D1°,) /2 

o 0-A66 (2-D1, -D22o ) Di, /2 

(C1 1 +C12) an a12/2  

-C66 (all + a,2) all /2  

-(Al2 + A) D102 (1 -D,°,) /2 

-A66 (2 -DIo
I 

-D2o2) DI, /2 

-(C12 +C22) a12 a27  

-C66 (a11 a22) a12 /2  

(A11 +2Al2 +A) (D1°2)2 /4 

+A66 (2 -D1°1 -D,°,)2 /4 

+(C11+2C12+C) (a17)2/4 

+C66 (a11 + a,,)2/4 

(C11 +C12)(1 -DI°I)ai2/2 

+ C66Di°2 (an +a27)/2 

(C12 +C22)(1 -D20 2)a12/2 

+ C66 D102 (al 1 +CC22)/2 

(C11 +2C12 ±C22)DI°2 0:12/4  

o C66(2 -Dii -D22)(ai +CC22)/4 
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C11 (1 -1)1°I)2 C12 (1 -D1°1)(1 -D2°) -(C11 +C12) Di°, (1 -D1°1) /2 

+C66 (D12)2 -C66 (2 -Di°1 -D.',3,) DI°, /2+C66 (D1°2)2  

+F11 (a11)2 +F12 an a2, -(F1 +F12) an al, /2  

+F66 (a12)2 +F66 (a12)2 -F66 (all + a 22) a
12 

/2  

C22 (1 -D22)2 -(C12 +C22) Di°2 (1 -D2°,) /2 

+C66 (D1,)2 -C66 (2 -D i°, -D2°,2) D1°2 /2 

+F22 (a22)2 -(F12 +F22) al, a22 /2 

+F66 (a12)2 -F66 (a11 + a22) al, /2 

(C11 +2C12 +C,) (Di°2)2 /4 

Symmetric +C66 (2 -D101 -D202)2 /4 

+(F11 +2F12 +F,) (a1,)2/4 

+F66 (a11 + a)2/4 
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Appendix B: S6 & S7 Laminate Test Results 

(Unnotched Tension, Tension Fracture and T+FF Tests) 
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Summary: Panel S6 Laminate Fracture Test (Tension + Flexure) 
Laminate:	 AS4/938 graphite/epoxy  

Source = failed Boeing fracture panel S6  
Stacking Sequence: 45/-45/90/0/60/-60/90/-60/60/0/90/-45/45  

Tests: Load Axial ... Lock Cross-head Position ... Load Transverse 

Test Conditions: Uniaxial load direction = laminate 90 degree orientation (hoop) 
Cross-head position locked at load of 14 kips followed by transverse loading  
Cross-head rate = .03"/min.  
Sample rate of 12.5/sec.  
Room Temperature  

First Far-field 
Audible Axial Trans. Mid-plane Far-field 

Notch Thickness Damage Failure Failure Failure Failure 
Length Width (in.) Load Load Load Strain Curvature  

Coupon lin.) lin.) left/right (lbs.) (lbs.) (lbs.) (xE-6) (xE-6/in.)  Notes: 
AS4-2 0.862 3.970 .092/.093 11600. 16210. -1480. 5290. 27050. 1, 
AS4-5 0.862 3.970 .093/.093 10300. 16920. -1700. 5390. 27960. 2,3
AS4-6 0.863 3.960 .093/.093 11300. 16950. -1805. 5620. 37350. 2, 

Notes:	 (1) Coupon cut from half of failed 10"x30" Boeing fracture panel S6-2b 
(2) Coupon cut from half of failed 10"x30" Boeing fracture panel S6 -1b 
(3) Initial test run had cross-head position locked at load of 11.18 kips. 

Specimen did not fail before limit of trans. load stroke. 
Trans. load was removed and the axial load dropped to approx. 9 kips. 
Cross-head lock load was reset at 14 kips. 

40000  
Summary - Panel S6 Fracture Tests (Tension Flexure)  

35000 Coupons: AS4/938 #2. #5 & #6 of Boeing panel S6 
Far-field Curvature vs. Mid-plane Strain  

30000  Average Failure Strain .00543 
Average Failure Curvature .03079 tin.  

25000  

20000 

15000 

S 

10000 

-5000 

0 1000 2000 3000 4000 5000 

Mid-plane Strain IxE-61 
6000 
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Summary: Panel S6 Laminate Tension Modulus! Unnotched Failure Tests 

Laminate:	 AS41938 graphite/epoxy 
Source = failed Boeing fracture panel S6 
Stacking Sequence: 45/-45/90/0/60/-60/90/-60/60/0/90/-45/45 

Test Conditions:	 Load direction = laminate 90 degree orientation (hoop) 
Cross-head rate = .03"/min. 
Room Temperature 
Sample rate of 12.5/sec. 

Coupon Thick./Width Mod. (Msi) Failure Load Notes:  
H1 .093"/.919" 8.377 7886 lbs./in. 1,2,3,6  
H3 .092"/.861" 8.762 7559 lbs./in. 1,4,5,6  

Average 8.570 7720 lbs./in.  

Notes: 1- Test per ASTM D 3039  
2- Coupon cut from half of failed 10"x30" Boeing fracture panel S6-2b  
3- Maximum recordable strain reached (.0063) prior to failure  
4- Coupon cut from half of failed 10"x30" Boeing fracture panel S6-1b  
5- Maximum recordable strain reached (.0072) prior to failure  
6- Modulus calculated from 1800 and 5600 micro-strain data samples.  

8000  

Laminate Tension Modulus/Unnotched Failure Test 
7000	 Coupons: AS4/938 -H1 & -H2 of Boeing panel S6  

Max. load (H1) = 7247 lbs.  
Max. load (H2) = 6508 lbs 6000  

Note: strain data compromized prior to failure 
5000 co 

x  
4000  

Cl) 3000  

2000  

1 000  

0  1000 2000  3000 4000 5000 6000 7000  8000  

Load (lbs.) 
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Summary: Panel S7 Laminate Fracture Test [Tension + Flexure) 

Laminate:	 AS4/938 graphite/epoxy 
Source = failed Boeing fracture panel S7 
Stacking Sequence: 45/-45/90/0/60/-60/90/-60/60/0/90/-45/45 

Test: Load Axial	 ... Lock Cross-head Position ... Load Transverse 

Test Conditions:	 Uniaxial load direction = laminate 90 degree orientation (hoop) 
Cross-head position locked at load of 12.05 kips followed by transverse loading 
Cross-head rate = .03''/min. 
Sample rate of 12.5/sec. 
Room Temperature 

First Far-field 
Audible Axial Trans. Mid-plane Far-field 

Notch Thickness Damage Failure Failure Failure Failure 
Length Width (in.) Load Load Load Strain Curvature 

Coupon (in.) (in.) left/right (lbs.) (lbs.) (lbs.) (xE-6) (xE-6/in.) Notes: 
AS4-1 0.864 3.987 .090/.089 11400. 15414. -1727. 5030. 37244. 1,3 

Notes:	 11) Coupon cut from half of failed 10"x30" Boeing fracture panel S7-lb 
(3) Cross-head lock load of 12.05 kips was 75% if measured tension-only 

fracture strength. 

Test: Axial Load Only (no flexure) 

Test Conditions:	 Uniaxial load direction = laminate 90 degree orientation (hoop) 
Cross-head rate = .03''/min. 
Room Temperature 
Sample rate of 12.5 /sec. 

First	 Far-field 
Audible Axial Trans. Mid-plane Far-field 

Notch Thickness Damage Failure Failure Failure Failure 
Length Width (in.) Load Load Load Strain Curvature 

Coupon (in.) (in.) left/right (lbs.) (lbs.) (lbs.) Ix E-6) IxE-6/in.) Notes: 
AS4-4 0.862 3.956 .088/.088 N/A 16070. N/A N/A N/A 1, 

Notes:	 (1) Coupon cut from half of failed 10"x30" Boeing fracture panel S6-2b 
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Coupon AS4-1 & Gage Layout 

1/8" 
8.0 " 

4.0" See detail 

1- Back Face 
Front Face 

mamilp 
Axial Load 

Trans. Load 

11"----.1-f-D 

0.10" 

NMI 

am ...MNID -
N-B-1 

CNA-B-3 > HD 101 UM, 
Notch 

E--.03"s 
17" < > 

Notch-tip Gage detail 

Gage Specifications 
Gage I.D. Length(in.) G.F. Kt Measure Bridge Network 

S-B-L 0.125 2.08 0.70% B-face strain Half bridge, leg #1, with S-B-R 
S-B-R 

" 
Half bridge, leg #3, with S-B-L 

S-F-L . F-face strain Half bridge, leg #3, with S-F-R 
S-F-R Half bridge, leg #1, with S-F-L 
N-B-1 0.02 1.96 2.20% Surf.-Strain Qtr. bridge, leg #1 
N-B-2 

. N-B -3 " " 
. . 

N-F 0.125 2.115 1.00% " 



40000 

35000 

S0000 

25000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #1 of Boeing panel S7 
Data derived from gages S-B-Avg and S-F-Avg. 

Mid-plane failure strain = .00503 
Failure curvature = .03724 /in. 

20000 

15000 

10000 
Cross-head Locked & T. Load Initiated 

5000 

-5000 

1000 2000 3000 

4k 
4000 5000 6000 

Mid-plane Strain (xE-6) 



16000 

14000 

12000 

10000 

Fracture Test (Tension + Flexure) 
Coupon: AS4/938 #1 of Boeing panel S7 
Axial Failure Load = 15414 lbs. 
Transverse Failure Load = -1727 lbs. Axial Load 

8000 

6000 Cross-head Locked & T. Load Initiated 

4000 

2000 

-2000 Transverse Load 

-4000 

0.00 1.00 2.00 3.00 4.00 

History (min.) 
5.00 6.00 7.00 8.00 



7000 

6000 

5000 

4000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #1 of Boeing panel S7 
Back-to-back strains 

Strain S-B-Avg resultant of half-bridged gages S-B-L & S-B-R 

Strain S-F-Avg resultant of half-bridged gages S-F-L & S-F-R 

Gage S-B-Avg on tension side of flexural loading. S-B-Avg 

cn 
4-, 3000 

2000 S-F-Avg 

1000 Cross-head Locked & T. Load Initiated 

0.00 1.00 2.00 3.00 4.00 

History (min.) 
5.00 6.00 7.00 8.00 



12000 

10000 

8000 --

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #1 of Boeing panel S7 

Back-to-Back Notch-tip Strain 
Gage N-B-2 on tension side of flexural loading 

Both gages .10 inches ahead of notch-tip. 

6000 

4000 

2000 

0 

Cross head Locked & T. Load Initiated 

N-F 

0.00 8.001.00 2.00 3.00 4.00 5.00 6.00 7.00 

History (min.) 



18000 

16000 

14000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #1 of Boeing panel S7 
Note: all gages on the tension side 

of the flexural loading. 
N-B-1 

Gage Compromised 

12000 

10000 

8000 
Cross-head locked & T. Load Initiated 

6000 
N-B-

4000 

2000 

N-B-3 

0 

0.00 1.00 2.00 3.00 4.00 

History (min.) 
5.00 6.00 

f 

7.00 8.00 
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Coupon AS4-2 & Gage Layout 

1/8" 
8.0 " 

\j, 

.875" 
4.0"  

I  
0.10"  

\V_  411----13-1) 

Back Face4-- t tFront Face IlUda.71.td 

Trans. Load 

See Detail 

/  ,...111  

,..---------, 
CILL-F-1) 

I I i.!-1 -,...______---
> au no m sumilr -N-- F-- -3' ) 

--> <.03"i 
.17" I<, >t ,/ 

Notch-tip Gage Detail 

Gage Specifications 
Gage I.D. Length lin.) G.F. Kt Measure Bridge Network 

S-B-L 0.125 2.08 0.70% 8-face strain Half bridge, leg #1, with S-B-R 
S-B-R Half bridge, leg #3, with S-B-L  
S-F-L " F-face strain Half bridge, leg #3, with S-F-R  
S-F-R Half bridge, leg #1, with S-F-L  
N-F-1 0.02 1.96 2.20% Surf.-Strain Qtr. bridge, leg #1  
N-F-2  

N-F-3 " "  
N-B 0.125 2.115 1.00%  " .. 

http:IlUda.71.td


30000 

25000 

20000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #2 of Boeing panel S6 
Data derived from surface strains S-B-Avg and S-F-Avg. 
Mid-plane Failure strain = .00529 
Failure Curvature = .02705 

15000 

10000 

5000 

Cross-head Locked & T. Load Initiated 

0 

0 1000 00 4000 5000 

i 

6000 

-5000 

Mid-plane Strain (xE-6) 



18000 

16000 

14000 

Fracture Test (Tension + Flexure) 
Coupon: AS4/938 #2 of Boeing Panel S6 
Failure Load = 16210 lbs. 

12000 

10000 

8000 

6000 Cross-head Locked & T. Load Initiated 

4000 

2000 

0 2 3 4 5 

History (min.) 
6 7 8 9 



0 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 

-250 Cross-head locked & T. Load Initiated 

-500 

-750 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #2 of Boeing panel S6 
Transverse Failure Load = -1478 lbs. 

-1000 

-1250 

-1500 

History (min.) 



7000 

6000 

5000 

4000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #2 of Boeing panel S6 
Back-to-back strains 

Strain S-B-Avg resultant of half-bridged gages S-B-L & S-B-R 
Strain S-F-Avg resultant of half-bridged gages S-F-L & S-F-R 
Strain S-B-Avg on tension side of flexural loading. 

S-B-Avg 

S-F-Avg 

3000 

2000 
Cross-head locked & T. Load Initiated 

1000 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 7.00 8.00 9.00 



14000 

12000 

10000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #2 of Boeing panel S6 
Note: all gages on the compression 

side of flexural loading. 

N-F-1 

Gage Compromised 

8000 

6000 

N-F-2 

4000 

2000 

N-F-3 

Cross-head locked & T. Load Initiated 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 7.00 8.00 9.00 



12000 

10000 

8000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #2 of Boeing panel S6 

Back-to-Back Notch-tip Strain 

Gage N-B on tension side of flexural loading 

Both gages .10 inches ahead of notch-tip. 

age Compromised 

N-B 

6000 
N-F-2 

e. 000 
Cross-head locked & T. Load Initiated 

2000 

0 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 7.00 8.00 9.00 
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Coupon AS4-4 & Gage Layout 

1/8" 
8.0 " 

.875"  
.0"  

4-4-B-RD 

< 2.5" 

1- Back Face 
Front Face Axial LItadt 

Trans. Load 

0.10" 
4r.AF-Ft) 

2.5" 

Gage Specifications 
Gage I.D. Length(in.) G.F. Kt Measure Bridge Network 

S-B-L 0.125 2.08 0.70% B-face strain Half bridge, leg #1, with S-B-R 
S-B-R Half bridge, leg #3, with S-B-L 

F-face strain Half bridge, leg #3, with S-F-R 
S-F-R " Half bridge, leg #1, with S-F-L 
C-B 0.25 2.085 0.60% Mid.-Strain Half bridge, leg #3, with C-F 
C-F Half bridge, leg #1, with C-B 
N-B 0.125 2.115 1.00% Surf. Strain Qtr. bridge, leg #1 

..NF 

S-F-L 



18000 

16000 -

14000 -

12000 

10000 

8000 

6000 

4000 -

2000 

0.00 

Fracture Test (Tension only) 

Coupon: AS4/938 #4 of Boeing panel S7 
Failure Load = 16067 lbs. 

1.00	 2.00 3.00 4.00 5.00 6.00 7.00 8.00 

History (min.) 



9000 

8000 

7000 

Fracture Test (Tension only) 

Coupon: AS4/938 #4 of Boeing panel S7 
Back-to-back notch-tip strains. 
Both gages .10" ahead of notch-tip. 

N-B 

6000 

5000 

4000 Gage Compromised 

3000 

2000 

1 000 

0.00 1.00 2.00 3.00 4.00 

History (min.) 
5.00 6.00 7.00 

1 

8.00 
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Coupon AS4-5 & Gage Layout 

118" 

8.0 

.875" 
4.0"  

I  

V 

1 Back Face 

Front Face I Axial LtnirT  
Trans. Load 

0.10" 

Gage Specifications 
Gage 1.D. Length(in.) G.F. Kt Measure Bridge Network  

S-B-L 0.125 2.115 1.00% Surf. Strain Qtr. bridge, leg #1  
S-B-R ":  
S-F-L " " " .  
S-F-R " .." " 

..NB " ,."  
NF " " . " " If 



40000 

35000 

30000 

25000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #5 of Boeing panel S6 
Far-field Curvature vs. Mid-plane Strain 
Data derived from Edge gages S-F-R, S-F-L, S-B-R & S-B-L 
Mid-plane Failure Strain = .00539 
Failure Curvature = .02796 

Limit of Trans. 
Stroke Reached 

20000 

15000 

10000 -- Cross-head Locked 

& T. Load Initiated 

5000 

0 

-5000 

0 1000 2000 3000 

Mid-plane Strain (xE-6) 
4000 5000 6000 



18000 
Fracture Test (Tension + Flexure) 

16000 Coupon: AS4/938 #5 of Boeing panel S6 
Axial Load 

Axial failure laod = 16920 lbs. 
14000 Transverse Failure Load = -1700 lbs 

12000 (Max. transverse load = -1930 lbs.) 

10000 

8000 
T. Load Stroke Limit Reached 

6000 

Cross-head Locked & T. Load Initiated
4000 

Cross-head Locked & T. Load Initiated 

2000 

0 

Transverse Load 
-2000 

0.0	 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

History (min.) 



40000 

35000 

30000 

25000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #5 of Boeing panel S6 
Mid-plane failure strain = .00539 
Maximum Curvature = .03810 /in. 
Failure curvature = .02796/in. 

Curvature 

Cross-head Locked & T. Load Initiated 

20000 
Limit of Trans. 
Stroke Reached 

15000 Cross-head Locked & T. Load Initiated 

10000 

5000 Mid-plane Strain 

0 

-5000 

0.0 2.0 4.0 6.0 8.0 

History (min.) 
10.0 12.0 14.0 



8000 

7000 

Cross-head Locked & T. Load Initiated 

N-B Ga e N-F Compromised 

_.. 

6000 

5000 
N-F 

4000 T. Stroke Limit Reached 

3000 

Fracture Test (Tension + Flexure) 

2000 Coupon: AS4/938 #5 of Boeing panel S6 
Back-to-back Notch-tip Strain Histories 

1000 Gage N-B on tension side of flexural loading 
Both gages positioned 0.10" ahead of notch-tip 

0 

0.0 2.0 4.0 6.0 8.0 

History (min.) 

41".-. 
Cross-head Locked & T. Load Initiated 

10.0 12.0 14.0 



7000 

6000 

5000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #5 of Boeing panel S6 
Back-to-back far-field strain 
S-B-Avg is average of gages S-B-L & S-B-R 
S-F-Avg. is average of gages S-F-L & S-F-R 

S-B-Avg. on tension side of flexural loading 

S-B-Avg 

4000 

3000 
S-F-Avg. 

2000 Cross-head Locked & T. Load Initiated 

T. Stroke Limit Reached 

1000 
Cross-head Locked & T. Load Initiated 

0 

0.0 2.0 4.0 6.0 8.0 

History (min.) 
10.0 12.0 14.0 
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Coupon AS4-6 & Gage Layout 

1/8" 
8.0 " 

.875"---,  
.0"  

7.,(C-71)3 

411-B-RD 

1  < 2.5"  

Back Face 
Front Face Axiawmrltsdt t 

Trans. Load 

11111.4----KS-F-LD 

< 2.5" 

Gage Specifications 
Gage I.D. Length(in.) G.F. Kt Measure Bridge Network 

S-B-L 0.125 2.08 0.70% Surf. Strain Qtr. bridge, leg #1. 
S-B-R  

S-F-L " " " " "  
S-F-R "  
C-B 0.25 2.085 0.60%  
CF " " "  



18000 

16000 

14000 

Fracture Test (Tension + Flexure' 

Coupon: AS4/938 #6 of Boeing panel S6 
Axial failure load = 16950 lbs. 
Transverse failure load = -1805 lbs. Axial Load 

12000 

10000 

8000 

6000 
Cross-head Locked & T. Load Initiated 

4000 

2000 

0 

-2000 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 

Transverse Load 

7.00 8.00 9.00 10.00 



40000 

35000 

30000 

Fracture Test (Tension +Flexure) 

Coupon: AS4/938 #6 of Boeing panel S6 
Mid-plane Failure Strain = .00562 
Failure Curvature = .03735 /in. 
Values derived from gages S-F-L, S-F-R, S-B-L & S-B-R 

25000 

20000 

15000 

10000 
Cross-head Locked & T. Load Initiated 

N 

5000 

0 

0 1000 2000 3000 

Mid-plane Strain (xE-6) 
4000 5000 6000 



5000 

4500 

4000 

Fracture Test (Tension + Flexure) 

Coupon: AS4/938 #6 of Boeing panel S6 
Back-to-back gages C-F & C-B 

C-F 

C-8 

3500 

3000 

2500 

2000 

Cross-head Locked & T. Load Initiated 

1500 

1000 

500 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 7.00 8.00 

1 

9.00 10.00 



5000 

4500 

4000 

3500 

Fracture Test (Tension +Flexure) 

Coupon: AS4/938 #6 of Boeing panel S6 
Both gages on compression side of flexural loading 
Note: Parallel tracking of right & left gage strains 

suggests good test allignment. 

S-F-L 

S-F-R 

3000 

2500 

2000 
Cross-head Locked & T. Load Initiated 

1500 

1000 

500 

0 

0.00 1.00 2.00 3.00 4.00 5.00 

History (min.) 
6.00 

4 

7.00 8.00 9.00 10.00 



8000 

Fracture Test (Tension +Flexure) 

7000	 Coupon: AS4/938 #6 of Boeing panel S6 
Far-field back-to-back strain histories 
S-B-Avg is average of gages S-B-L & S-B-R

6000 
S-F-Avg is average of gages S-F-L & S-F-R 

5000 

4000 

3000 

2000 

1000 

S-B-Avg 

S-F-Avg 

Cross-head Locke & T. Load Initiated 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

History (min.) 



8000 

7000 

sboo 

Fracture Test (Tension +Flexure) 

Coupon: AS4/938 #6 of Boeing panel S6 
Both gages on tension side of flexural loading 

Note: Parallel tracking of right & left gage strains 
suggests good test allignment. 

5000 

4000 
S-B-L 

3000 

2000 
S-B-R Cross-head Locked & T. Load Initiated 

1000 

0 

0.00 

I--
1.00 

I 

2.00 

I 

3.00 

I 

4.00 

I 

5.00 

History (min.) 
6.00 7.00 8.00 9.00 

i 

10.00 




