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The role of coastal boundaries and bottom features in the

ocean response to fluctuating winds is investigated with a simple

model of a channel with depth variation along its length. The

response is composed of linearized, barotropic topographic Rossby

waves.

Normal modes, which are expected to dominate the observed re-

sponse, are calculated for the case of exponential depth separating

two regions of uniform depth. If the ratio of the width of the

sloping region to the channel width, d/L 1, the modes resemble

those found in a closed rectangular basin with sloping bottom.

As d/L decreases, this resemblance ceases and currents extend far

beyond the sloping region. In the limit of a step discontinuity,

the eigenfrequencies for those modes with a single maximum ±n

stream function amplitude across the slope, approach a single

value ( h0 - h1 ) / ( h0 + h1 ) where h0 and h1 are depths on

either side of the step. The eigenfrequencies approach zero for

Redacted for privacy



those modes with a higher number of maxima in stream function

amplitude across the slope.

For sufficiently low frequency, wave energy generated over

a topographic feature, may radiate by Rossby waves. The asympto-

tic limit of topographic scale exceeding channel width is studied.

Waves which are generated through a local resonance, radiate energy

to the west if the atmospheric disturbance is eastward moving.

An initial value problem for the perturbation by a bottom

feature to a two-layer flow on a beta plane is discussed. The

development in space and in time of the linearized baroclinically

unstable disturbance is investigated. When the conditions for

temporal instability are met, the transient grows in amplitude as

it propagates. With layer depths taken to be equal, the tran-

sient behavior is governed by two parameters, *L2/U and a ratio

of cross-stream wave scale to LD, where * is the beta parameter,

LD is the internal radius of deformation and U is a characteristic

velocity.

If the currents in the two layers are in the same direction

and sufficiently strong, the growing part of the disturbance is

advected completely downstream. A steady solution is established

in the region between the bottom feature and the tail of the tran-

sient. This solution may be a stationary wave if both currents

are eastward. In other cases it is a net deflection of stream-

lines across the topography.
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SOME EFFECTS OF TOPOGRAPHY AND VERTICAL SHEAR
ON LOW-FREQUENCY OCEAN FLUCTUATIONS

1. Introduction

1.1 The barotropic model

A possible source for eddy motion in the open ocean is

forcing by fluctuating winds. We explore this possibility by

investigating the response to atmospheric forcing of a homo-

genous ocean with an idealized coastline and bottom configuration.

We consider a zonaJ. channel on a beta plane with bottom topo-

graphy varying in the along-channel direction. It is an attempt

to represent some of the topographic features of the Drake

Passage region, where an extensive set of experiments is presently

being conducted.

Figure 1 shows the bathymetry of Drake Passage. It is

assumed that the continental boundaries and the prominent North

and South Scotia Arc systems are necessary components of the

model since the dominant atmospheric scales are comparable with

or exceed the Passage width. The bottom topography is rugged and

complex. We shall confine ourselves to topography with scale

comparable to the Passage width. In particular, there is a de-

crease in depth from the Pacific basin into Drake Passage.

Neglect of smaller scale topography may be a serious omission,

since topography at the internal radius of deformation may force

baroclinic wave motions (see Rhines, 1977).



Figure 1. Bathymetry of the Drake Passage region (after Heezen, Tharp and Bentley, 1972).
Depth contours of 2000 and 4000 m are drawn. Hatched areas indicate depths
exceeding 4000 in.
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Rhines (1969), Buchwald and Adams (1968) and Longuet-Higgins

(1968a,b) have shown that an escarpment may guide wave energy. We

anticipate that for an escarpment across a channel, reflections

could result in a modal structure at certain frequencies. We shall

calculate eigenfrequencies and the corresponding spatial structures.

Waves trapped by topography have been found previously by Platzman

(1975) in a numerical study of planetary-gravity normal modes

of the Atlantic and Indian Oceans.

The problem is formulated in Section 2. Variable depth

appears in variable coefficients in an elliptic equation which,

in general, is not separable in the horizontal space coordinates.

In Section 3 we choose a particular depth profile in which two

uniform depth regions are joined by a region in which the depth

varies exponentially. Formal series solutions can be written for

each region and the solution is fully determined by matching at

the boundaries between the regions. We examine the limit in which

the width of the sloping region is decreased and a step discontinui-

ty is approached.

Variable depth supports waves at higher frequency than exist

in the surrounding uniform depth region thus resulting in trapped

modes. At low enough frequency, however, wave energy which is

generated over topography may radiate in the form of Rossby waves.

We investigate this process under the approximation that the

variable depth region merges slowly (topographic scale greatly exceed-

ing wave scale) and smoothly into the uniform depth regions. Free
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waves, described in Section 4, of a given frequency undergo a

change in wave number as they propagate over the slowly varying

topography. If, at some point, the local wavenumber of a free

wave coincides with the wavenuinber of the atmospheric forcing

there is a form of resonant excitation. This is described in

Section 5. The results are summarized in Section 6.

1.2 The instability problem

The remaining sections deal with a separate but related prob-

lein. Stratification and a mean current sheared in the vertical

are added but the possibility of topographic oscillations is

excluded.

Recent studies of the slow (small Rossby number) steady flow

of a rotating stratified fluid on a beta plane have demonstrated

how slight bottom topography may generate features such as eddies

and meandering wakes (McCartney (1975, 1976) for example). These

studies are of considerable interest in the interpretation of

ocean circulation in the vicinity of seamounts and ridges. The

steady solutions are not unique unless it is specified that no

stationary wave is found in an "upstream" direction which is de-

termined by group velocity (Lighthill, 1967). It has been recog-

nized that the incoming flow in such models may be baroclinically

unstable. If this is the case, random disturbances may grow in

amplitude, but the steady solution is still of importance since

it is forced by flow over topography. For a free wave in an



unstable system, the derivative of frequency by wavenumber may

be complex and cannot be interpreted as a group velocity. Thus,

the problem of determining the physically relevant steady solu-

tion is revived. Our purpose here is to show how this problem

is resolved with an initial value approach.

Hogg (1976) has found that for a baroclinic flow in which

the vertical shear varies continuously with depth, there are

steady solutions with complex wavenumber. Hogg suggested these

may represent stationary waves with growth downstream of topogra-

phic features. This remains a suggestion since details of the

generation mechanism were not given. We shall discuss a simpler

system than the one considered by Hogg (1976), that of a two-

layer flow, with no horizontal shear, confined to a zonal channel

on a beta plane.

We impose a north-south step at an initial instant and study

the linearized disturbance. In the cases we consider, the flow

is unstable in the temporal sense, and the transient contains

growing waves. The growing wave packet may propagate upstream

(the flow in upper and lower layers is taken to be in the same

direction) in which case a steady state is not reached. If the

upper and lower layer flow are sufficiently strong, the transient

is advected completely downstream allowing a steady state to be

established in the region between the step and the tail of the

transient. We describe in detail the conditions which govern

the behavior of the transient.



The initial value problem for a baroclinically unstable flow

has been considered by Pedlosky (1976), Gadgil (1976) and Thacker

(1976). Pedlosky (1976) was concerned primarily with finite

amplitude effects but included a linearized initial value problem.

With oscillatory forcing, at the frequency of a marginally un-

stable wave, a steady-state disturbance with spatial growth was

generated. The system considered by Gadgii. (1976) contained

continuous stratification with density fluctuations caused by

horizontal advection rather than by vertical velocity fluctuations.

The instability in this system is at high wavenumber. The results

of the present study are in agreement with the general features of

Gadgil (1976). The problem and the techniques we employ are up to

a point, equivalent to those of Thacker1 (1976). We use a

different asymptotic approximation (suggested but not carried out

by Thacker) which has allowed us to extend his results somewhat.

Furthermore, motivated by Hogg's (1976) work we discuss the steady

solution which Thacker (1976) did not consider. It should be

noted that when Thacker (1976) refers to a wave with spatial growth

he is referring to an unstable transient which propagates away

1 became aware of Thacker (1976) only after the present study
was essentially completed and a draft of the work was written.
The earlier stages of this work are therefore redundant but are
retained for continuity. It is of interest to compare the
different fields in which spatial instability has been studied.
Thacker ('976) cites work from plasma physics whereas Hogg (1976)
cites work from homogeneous shear flow.
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from the source region so that after a long enough time, the

transient in the vicinity of the source is decaying. Our use of

the term spatial growth is in reference to a steady wave (or per-

haps one with purely oscillatory time dependence if there is an

oscillating source) which amplifies away from the region of the

source.

The approach presented here follows closely along lines

developed by Gaster (1965, 1968) who studied instability in homo-

geneous shear flow. Caster (1965) considered spatially growing

waves excited by oscillatory forcing in an attempt to improve

agreement between theory and laboratory experiments. Aspects of

the unstable transient were discussed by Gaster (1968).
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2. Formulation for barotropic model

Consider an infinite channel of width L, aligned in the zonal

direction. Choose a coordinate system with the x axis eastward,

the y axis poleward and the channel walls at y 0, L. Assume

the depth, h, varies only along the channel, i.e., h = h(x) and

that dh/dx + 0 as lxi + . Forcing is by a surface wind stress,

r(t), which for simplicity is chosen to be zonal, uniform in space

and oscillatory in time. It is indicated in Section 5 how the

addition of a travelling disturbance with non-zero curl would modi-

fy the result. The linearized, inviscid vertically integrated

shallow water wave equations are

Ut - fv = -g + i/ph (2.1)

Vt + fu = -gn (2.2)

+ (hu) + (hv) = 0 (2.3)

Here u and v are depth averaged velocity components in the x and

y directions, n the elevation of the free surface above the equi-

librium level, p the water density, g the acceleration of gravity

and f the Coriolis parameter. Boundary conditions at the channel

walls are that there be no normal flow. If f2L2(gh)1 << 1 then

fluctuations of the free surface, in (2.3) may be neglected.

Although this condition is not well satisfied for L = 600 km

which is about the width of the deep part of Drake Passage, free



surface divergence is neglected. The effect of making this

approximation is not completely clear and Longuet-Higgins (1968a)

has found a case in which the inclusion of free surface divergence

introduces a qualitative difference. A stream function, (x,y,t),

can be defined as

hu-\b hv=p (2.4)
y x

A potential vorticity equation is formed from (2.1) and (2.2) and

the substitution of (2.4). With time dependence e0t, where

f0 is a mean value of the Coriolis parameter, this equation is

ldh i dh
= 0 (2.5)

The beta plane approximation has been made so that where f appears

in (2.5) as a factor it is replaced by the constant f0 and the y

derivative of f is replaced by the constant f0.

The wind stress does not appear explicitly in (2.5) since it

was chosen to be uniform in space. In order to see how the wave

motion is forced we rewrite the x-momentum balance (2.1) as

dh
+ (2.6)hu - hfv = _g(hn) + g ii

The term g(dh/dx)n represents a topographic stress resulting

from correlations between slope and bottom pressure. We integrate

(2.6) from x -yL to yL
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dh
f C hu - )dx = f (hfv + ga n)dx - ghn (2.7)

-yL -yL -yL

and take the limit as y -' . For an isolated topographic feature

the integrated topographic stress is finite. With free surface

divergence neglected the zonally integrated meridional transport

across a line of latitude is bounded. The zonal pressure differ-

ence is also bounded. The two terms on the left of (2.7) both +

as y + and must balance. This balance is represented in a

-wf0t
stream function, '(y)e for the zonally averaged zonal flow

diwf0 - = - (2.8)
dy

p

- i wf 0t
where t t0e . The total stream function is written as

p(x, y, t) = [
(y) + c(x, y) ] et0t (2.9)

where x, y) is the perturbation caused by topography. Since the

zonal transport is independent of x (with free surface divergence

neglected) the transport is contained entirely in y) and

appropriate boundary conditions for at the channel walls are

= 0 at y = 0, L. The foregoing steps are self-consistent but

admittedly unrealistic. The basic question of how transport

through Drake Passage is expected to vary with fluctuating wind

is not resolved.

We substitute (2.9) in (2.5) to obtain

i dh t dh+1 +
h dx x w x y

(2.10)
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Boundary conditions as lx! are that remain bounded or if

the solution is wavelike, that group velocity be outgoing. The

second term in (2.10) is relatively unimportant and its neglect

is equivalent to assuming quasi-geostrophy.
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3. Trapped modes, exponential depth

In this section a numerical method is used to study the

character of trapped wave solutions. The topography consists of

two regions of uniform depth separated by a sloping region in

which the depth is exponential;

1h0 x < 0

-bx
h(x) = h0 a 0 < x < d (3.1)

h1 x > d

-bd
where h1 = h0e . The usefulness of the exponential depth

dependence is that the coefficients in (2.10) are constant.

In the uniform depth regions (2.10) becomes

+ = 0
w

(3.2)

Solutions satisfying the boundary conditions can be written as

series in the cross-channel eigenfunctions

-x/2w + K X
A e ii sin (nny/L) x < 0

In
q(x,y) = (3.3)

De' - Kx
sin (nny/L) x > d

n

where K = (n2,r2/L2 82/4W2)½
n

These correspond to propagating Rossby waves if 82/42 > n27r2/L2.

The highest frequency for which a Rossby wave exists is w = L/2r

which is the n = 1 cross-channel eigenfunction. This is equiva-
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lent to a period of about 2 months for L = 600 km. In this

section only frequencies greater than this cutoff are discussed,

so that waves are trapped.

Over the sloping region (2.10) is

V2+ (b+i) .b .b
= (3.4)

U) X W wy

We again expand in series in the cross-channel eigenfunctions

4(x,y) = (x) sin (niry/L)
n (3.5)

(y) = sin (n7ry/L)WY nn

and obtain

d2 (b + ii-) L.
b2 n2it2

U) dx ii (2- L2
(3.6)n n

This has a particular solution

=

b2 n21r2
2 L2

and free solution

where

(3.7)

(x) = B en1X + C eln2C (3.8)n U n

k2 1J= +
1k

+ [

¼(b + . 2 b2 fl27r21½

2ü 2 i;.) + L2
(3.9)



Across x = 0 and x = d, and must be continuous.

Observe that (3.5) may be rewritten as

where

(x,y) = a (x) sin (miry/L)

ifi
(3.10)

(y) = a sin (mry/L)
mn

2
L

by/2w
ama = f a sin (niry/L) sin (miry/L) dy

0

14

The Fourier coefficients in (3.10) and (3.3) are equated in the

matching conditions resulting in four systems of equations for

the coefficients A , B , C and D . The series are truncated to
n a n a

give a matrix eigenvalue problem although frequency does not

appear in the matrix in the same form as in conventional problems.

Eigenfrequencies are found by setting 0, varying w and loca-

ting the zeros of the determinant. The lowest modes are well

approximated by a relatively small truncation point (eight

Fourier terms were used). This procedure of a series expansion

and matching along boundaries has been used in a number of wave

problems with simple geometry and more details may be found in

Webb (1976), Mooers (1976), Mofjeld and Rattray (1971) and Taylor

(1922).

The gravest modes (those with largest spatial scale and

highest frequency) for zero beta, d = L and h1 = 0.6 h0 are

shown in Figure 2. The amplitude and phase of the complex stream
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Figure 2a. Amplitude (top) and phase (bottom) of stream function
for normal mode w 0.0652 with d/L = 1, = 0 and h1/h0=0.6.
Amplitude is to within an arbitrary constant and is maximum
at centre. Phase is to within an arbitrary constant and
direction is for Northern Hemisphere.
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0 0

0 d

Figure 2b. Amplitude (top) and phase (bottom) of stream function
for normal mode with w 0.0433. The two amplitude maxima
are out of phase. Other parameters are as in Figure 2a.
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t,I
/

cIff=iI

Figure 2c. Amplitude (top) and phase (bottom) of stream function
for normal mode with w = 0.0372. The points marked are
amphidromic points. Other parameters are as in Figure 2a.
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function are drawn. They are characterized by integral numbers

of amplitude maxima in the x and y directions. There is a phase

propagation along depth contours to the left (right) in the Nor-

thern (Southern) Hemisphere when facing shallow water.

For beta non-zero it is found that complex eigenfrequencies

result. Complex frequencies in this problem do not have physical

relevance. If, however, the second term in (2.10) is neglected,

it is found that real elgenfrequencies result. This term was

neglected and in Figure 3 the phase for the gravest mode with weak

beta, /b = 0.2 is drawn. The amplitude is indistinguishable from

the lowest mode with zero beta. There is a westward component to

the phase propagation. One might compare Figures 2 and 3 with the

48.8 h mode calculated by Platzman (1975) (his Figure 3) which

appears to be trapped by the South Scotia Ridge.

The channel model in this study has similarities to a sloping

step in an infinite ocean and to a closed rectangular basii. with

sloping bottom (Veronis, 1966). It would be helpful to draw com-

parisons. Provided that d/L 1, the modes calculated here resemble

the modes which would exist if walls were placed at x = 0, d in the

sense that there is a one to one correspondence between modes with

similar structure. The variation of eigenfrequencies with d/L as

h1/h0 is kept constant is also similar. This is shown in Figure 4

for the lowest few modes. The dashed lines on the right are the

basin eigenfrequencies.



0 d

Figure 3. Phase of stream function of lowest mode, w = 0.0666 with /b 0.2,

d/L = 1 and hi/ho 0.6.
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0.3

0.03

,1)N N

Ci 0.3 LO

d/L

Figure 4. Frequencies of lowest normal modes as functions of d/L
with ,3 = 0 and hi/h0 = 0.6. Dashed lines at right are
elgenfrequencies if walls are placed at x 0, d. Dashed line
at left is limiting frequency for a step discontinuity. The

notation (1,2) corresponds to a single amplitude maximum in
the x direction, and two amplitude maxima in the y direction.
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The resemblance begins to fail as d becomes smaller than L.

The lowest x-modes (those with a single amplitude maximum in the

x direction) have greatest eigenfrequencies for dIL small;

higher x-modes have eigenfrequencies tending to zero. The currents

for the lowest x-modes are no longer confined to the sloping

region. This is evident in Figure 5 for the lowest normal mode

with d/L = 0.1. Rhines (1969) and Buchwald and Adams (1968) have

shown that the lowest mode trapped wave over a sloping step in an

unbounded ocean has group velocity along the step but as the

wavenumber component in the direction along the step is varied,

the direction of group velocity does not reverse, (Longuet-

Higgins (1968a) showed this was not true if free surface diver-

gence is included). Waves with this property cannot form a normal

mode. Thus the channel walls not only quantize the wavenumber

but alter the behavior qualitatively.

A step discontinuity in an unbounded ocean with constant

Conchs parameter supports trapped waves decaying away from the

step at the single frequency ü = (h0 - h1)/(h0 + h1) independent

of wavenumber component along the step (Rhines, 1969). This

frequency is indicated as the dashed line at the left of Figure 4.

The limit of a step discontinuity is a degenerate one in the

sense that all modes with a single amplitude maximum in the x-

direction approach a single eigenfrequency.

If the forcing terms are non-zero the amplitude of the

response would be unbounded at the eigenfrequencies. The depth



0 d

Jr

-- TE/2

0 d

Figure 5. Amplitude (left) and phase (right) of stream function for lowest normal mode

with d/L 0.1, = 0, h1/h0 = 0.6.

t')
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profile in this section was not used to study the response with

< L/2rr for which Rossby waves may radiate energy. One reason

is that the particular solution (3.7) becomes singular at the

frequency at which a wave over the slope is resonant with the wind,

both having zero x-wavenumber. A depth profile with discontin-

ulties in slope is valid for long waves insensitive to details

of the profile. In Drake Passage wave scales are restricted and

may be less than significant topographic scales. A continuously

varying slope is desirable and this is employed in the next two

sections with short waves. The real justification for the short

wave limit is that the resonant forcing mechanism is clarified.
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4. Short wavelength limit, free waves

If the topography is considered to be smoothly varying and

the wave scale is much smaller than both the topographic scale

and the planetary scale, certain instructive analytical results

may be obtained. This short wavelength, long period limit was

described by Smith (1971). Let the depth vary on a long scale X

defined X = cx where c << 1, i.e. h = h(X). Define as = Ic

where = 0 (1). Finally rescale frequency by defining w/c.

Equation (2.10) becomes

+ p - + + = - (4.1)
xx yy h x w x hy uhy

where primes denote differentiation with respect to X. Hence-

forth we shall omit the tildes.

We expand

h' yr
x,y) = e 2wh

1.
(x) sin (niry/L)

y
- = e 2uh n (X) sin (nrry/L) (4.2)

wh y

and substitute in (4.1) to obtain

d2 .8d h'2
[ 2 n + n + ( 4w2h2

22)
n

d
+ c P(X,y) + cQ(X,y)

]
sin (rnry/L)

= (X) sin (nlTyfL) (4.3)
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i hi hi
where P(X,y) = - (. ) y -

h ,,_ ]. ,

and Q(X,y) = 2 (') y + '
2u 2() 2Y2

i hi h'
+ yJ.

With the further expansions

P(X,y) sin (miry/L) =

Q(X,y) sin (mirylL) =

n1
P (X) sin (nrry/L)

n1
Q (X) sin (niry/L)

the Fourier coefficients in (4.3) may be equated giving

d2 . d h'2

m 1

(4.4)

nm x '
+ = (X) n = 1,2, . . . (4.5)

Observe that the partial differential equation (4.1) has been

reduced to a system of ordinary differential equations. They are

coupled at 0(c) and the coefficients in the equations are slowly

varying. Asymptotic expansions to systems of equations such as

(4.5) are described by Feshchenko, Shkil' and Nikolenko (1967,

Chapter 6).

In this section we examine solutions to the homogeneous part

of (4.5). The procedure we shall follow is to expand n(x) in a

power series in c. The 0(1) balance of terms in (4.5) determines a



wavenumber which varies with the slowly varying topography.

The O() balance of terms in (4.5) determines first how the

amplitude of a wave varies along the channel and secondly the

nature of the coupling.

Assume a solution of the form

4(x) = A(X)e'0 n= 1,2, . . . (4.6)

where
= k(X)

Let the amplitude An(X) have an expansion

A(X) = A (x) n = 1,2, . . . (4.7)

1=0
in

Suppose that only a single term n = in the Fourier series is

non-zero at 0(1)

A (X) = A (X) n = 1,2, . . . (4.8)na

(5 is the Kronecker delta). The general solution is then a

superposition.

With (4.6) substituted in (4.5) the result is

[ k2 - k +
h'2

) ] A + [ i(2k + ) At4(2h2 L2 n

+ tCk?nmAm +QnmAj +
m1 m1 m=1

(4.9)

The series (4.7) is substituted in (4.9) and the 0(1) balance of
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terms gives

h'2
[-k2 - k + (

fl22)
] A = 0. (4.10)

U
4w2h2 L2

From (4.8), A 0 thus the wavenuinber k(X), must satisfy

k2+.k h'2 a2ir2
) = 0 (4.11)

with roots k arid k given by
a1

k =-- +q (X)½
a1 2w a

(X? (4.12)k =---q
a2

2 h'2 a2i2
where q(X) = + 4wZhZ L2

In this section we consider only the case w < 8L/2a so that

q(X) is positive everywhere, k(X) and k(X) are real and

the solution is everywhere wavelike. The v

k (x) with X is sketched in Figure 6. The
a2

which it is possible that q(X) is positive

topographic slope and negative elsewhere is

ariat ion of k (X) and
a1

case w> L/2a,T for

over the maximum

discussed in the

next section on the forced response. With w < LI2air, away

from the topographic feature h') 0 and (4.12) is simply a

dispersion relation for Rossby waves in a channel. The x component

of wavenumber k corresponds to the Rossby wave with longer

wavelength and westward group velocity. The second root, k

corresponds to the Rossby wave with eastward group velocity.



Figure 6. Variation of k1(X)
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x
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The 0(c) balance of terms in (4.9) is

ka 42h2
n2ir2

L2
lAin + i(2ka +

+ 1kAn + kPnaAoa + QnaAoa = 0 (4.13)

The term in brackets vanishes for n =c& which gives an equation for

Aoa (X)

or

j ( 2kc + ) A + ( + + Q ) A0 0 (4.14)

X

Aoa CX) = exp
ik + ikP1 +

dX ] (4.15)

+ /)

For n , the term in brackets in (4.13) is non-zero allowing

the 0(c) corrections to be evaluated. We find

tkaPn +
A1(X) -

h'2 fl21T2k+c-
L2

)

AOcA) y+.io)

The higher order coefficients may be determined recursively in

this manner.

Thus we have obtained a solution for a single non-zero term

from the Fourier series (4.2) at 0(1). From (4.16), at higher

order there are non-zero coefficients for n ct. These terms vanish

as ht(X) + 0 from (4.16) and (4.4). Furthermore from (4.6) and

(4.7) the solution at all orders is described by a single x com-

ponent of wavenumber, either k1(X) or ka2(X). This means that
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an incident wave changes its form over the topographic feature

but passes over it without a reflected wave and without energy

scattered and radiated by waves of different wavenumber.



31

5. Short wavelength limit, forced waves

The inhoinogeneous problem (4.5) is now examined. Only the

leading order asymptotic approximation has been evaluated.

Consider the n = term from the Fourier series in (4.5) with

neglect of 0(c) terms

d2 + + r (X) = X) (5.1)

where
h'2 22

r (X) 42h2 L2
and 9a(X) = 2 + r (X)

4w

The response depends on the forcing frequency. Suppose that the

maximum bottom slope exceeds the beta effect, (h'/h)max >

Four frequency ranges can be distinguished by the zeros or absence

of zeros in r(X) and q(X). They are defined in Table 1. We

shall discuss the different cases in order of decreasing frequency.

For sufficiently high frequency, ra(X) is negative everywhere

(frequency ranges I and II) and an approximate solution to (5.1) is

(X) = (X) / r(X) (5.2)

This is a response on the slowly varying topographic scale.

It is sketched in Figure 7 for h(X) = h0 exp (- (1 + X2)2 ).

The flow is nearly zonal. Vortex stretching over topography is

balanced by an oscillating horizontal shear.
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Table 1. Frequency ranges for different types of response.

I q(X) < 0 everywhere

ra CX) < 0 everywhere

II q(X) > 0 over

topography

III q(X) > 0 over

topography

r(X) > 0 over

topography

IV q(X) > 0 everywhere



-2

Figure 7. Nonresonant response, frequency range II. Real (solid line) and imaginary
(dashed line) part of 4a(x) scaled by t0L/pf0ui2 . Parameters are w 0.119,

0.5, c 0.1, a = 1 and h(X) h0exp ( -(1 + X2Y' ).
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5.1 Trapped waves

The response (5.2) breaks down for frequency ranges III

and IV for which r(X) crosses zero at several points. We let

.

(x) = 4 (x) ew X

then (5.1) becomes

d2- -

dx2
+ q (X) e 2w (X)

which can be written

-

dX2 cz
+ 2 q(X)

ci.

. x
2 e'iw c (X) (5.3)

In frequency range III, over the maximum bottom slope, q(X) is

positive and free solutions are wavelike. Away from the topogra-

phic feature, q(X) is negative and solutions are decaying. The

points at which q(X) are zero are known as turning points. Let

us consider the typical case of two turning points, and P2

with p < P2 so that q(X) is of the form

q(X) = CX ui) (P2 - X) f(X) (5.4)

where f(X) > 0 everywhere.

We shall find solutions valid about each turning point then

match them in the region of coimion validity which is u1 < X < 2

Considering first the turning point we transform (5.3) into an
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equation for which the solutions are known. This is the Langer

transformation (Langer, 1949) which is outlined in Nayfeh (1973,

Chapter 7). Let (X) be defined by

= q(X)½
(55)

or x______________________
*i32 = I " )( - )f() d 1i < X <

Ui 1

2 3/2 Ui

(-ci) )(U2 -)f() d X <

(5.6)

Note that the term under the radical in the first integral of

(5.6) becomes negative and hence the definition becomes invalid

for X > 12 We now define a new dependent variable Z1(1) as

'½Z1(1) = i c&

The transformed (5.4) is

where

(5.7)

d2 + 2 11 = c2 g(c1) (5.8)

.8 X
(X)e

g(1) =

3/2

(5.9)

We recognize the homogeneous part of (5.8) as the Airy equation.



36

The complementary solution which vanishes as X + - is

Z1 = a A (_c2'3 C1 )

where a is a constant. A particular solution can be construc-

ted if we write

g(1) = g(0) + [ g(C1) - g(0) ]

A solution satisfying (g (Ci) - g(0) ) on the right of (5.8)

and which is uniformly valid about X = is

g1) - g(0)
zi =

C1

The solution which satisfies g(0) on the right side of (5.8) and

which is bounded as X + -

_2/3 -2/3
= -c ,rg(0) Gi (-c C1)

(See Abramowitz and Stegun (1965), Section 10.4 for an outline of

the properties of G).

The complete solution is then

-2 / 3
Z1 = a A (-c C1)

C
1

-2/3 _2/3
- £ ir g(0) Gi (-c C )

1

Making use of (5.9) and (5.5) we find that is given by



.8 X
a= - A ( _2/3 1(X)) + [ ew (X)

q

.8 iii .8 jj_
e12W (i) i312

I

2I3ew C

(2 -M1)½ f(p1)½ (2 - i1)½f(ij1)½ ½

(5.10)

The asymptotic behavior of (5.10) is

.8 X
- e2w C (X)

as X + -

q(X)

and

ach/6
in c1 C i312 + ./4)- S

iT½q¼

L.!½ et2 C (u) 2 C13/2 + ir/4) as Xcos (-i- c

- .i1)½f(i1)½q ¼
(5.11)

In a similar fashion we can construct a solution valid about

the turning point 2 by defining

112
3/2

= f ( i)(z )f() d < X <
X

X____________________
(2)3/2 = I /( Mi)( - 2)f() d X> 2

(5.12)



The complementary solution is

= Ai (._c2/3 2)
2

where b is a constant. The particular solution is

- 2/3 ,ret2O
'2) Gi _2/3

2)
= -

(U - u)½ f(.2)½ ½

. x
. i2

+
Tx) [ (X)

e1 () 3/2
]

(2 -

(5.13)

The asymptotic behavior of (5.13) is

. x
- e2W E (X)

as
q(X)

and

c1/6b
. 2

ii q¼ sin (- e 3/2 + ir/4)

½
1.i2

- 7T e2' C ta (112)

- 1)½f(2)½q¼

cos (- 1
3/2 + ii/4) as X + -

(5. 14)
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The solutions (5.10) and (5.13) are both valid in < X <

The asymptotic forms (5.11) and (5.14) are set equal giving

.2a sin( + ir/4) - b sin 4 c + ir/4)

.8 1.11

7ret2W C
cz (ni)

( - 1)½f(1)½
cog

(-

c1 3/2 + 7r/4)

.8 i.2

1Tet2 C (112) 2cos (- c1c3/2 + ir/4) (5.15)
- u1)½f(u2)½

We write

= .a. i 3/2 + 3/2) + 1T/2

=
ui) (112 - )f() d + /2

so that

2
C 3/2 + ir/4 = 4 C1 3/2 + ir/4)

From (5.15) we may evaluate a and b as

7re2u)a + b cos -
C (112) sin

111)½f (112)1
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. iL1

,re2W C
(ui)bsin = -

1)½f(1)½

.E..1
+

,ret2W c
(p2)

(5.16)

The coefficient b from (5.16) becomes unbounded when sin (t.) = 0

or

f i)( -) f() d = C(m - ½)7r (5.17)
111

where m is an integer. This is the condition for free waves

to be trapped by topography. From the behavior of Ai we see that

m in (5.17) is the number of amplitude maxima in the x direction

for the stream function. Trapped free waves over slowly varying

topography have been described previously by Longuet- Higgins

(1968a) and by Rhines and Bretherton (1973). The innovation here

is that an expression for the forced response away from resonance

has been obtained.

5.2 Propagating waves

The leading order asymptotic approximation for frequency

range IV is now described. In this frequency range there are no

turning points and q(X) is positive everywhere. Free waves at

these frequencies were discussed in Section 4. We write a solu-
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tion to (5.1) of the form

(x) = A (x)etel + B (x)e°2 (5.18)

where

e. = k . (X) = 1, 2
dx i

and where k. are defined in (4.12). Note that (5.18) differs

from (4.6) in that the amplitude in the latter expression is a

slowly varying function, whereas A(x) and B(x) in (5.18) vary

on the x scale. We substitute (5.16) in (5.1) and neglect O()

terms with the result

_ (ce) e_1( d(x) = e j

x
i(k2(c)-kci(c) )

+ e82
.1

a (cc) -O2()
d

(5.19)
e

There are two constants of integration in (5.19). Recall that

1 away from the topographic feature corresponds to the Rossby

wave with westward group velocity. Thus the integral multiplying

is chosen to vanish as x . Similarly the integral

multiplying e2 is chosen to vanish as x -

In both integrals in (5.19)
,
k and k2 are slowly
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varying functions. The dominant contributions to the integrals

arise from points of stationary phase, X0, defined by

d
= k1(x0) = 0

which are the zeros of k. From (4.12) and Figure 6 it can be seen

that k2(X) corresponding to the Rossby wave with eastward group

velocity does not have zeros. The first term in

(5.19) was claimed by Nayfeh (1973) to be the dominant term in an

asymptotic approximation to the solution of a second order

inhomogeneous differential equation with no turning points.

At the points of stationary phase the x component of wave-

number of the free waves coincides with the x wavenumber of the

forcing which is uniform. Thus we have a form of resonant excita-

tion. Energy is then radiated by a Rossby wave to the west. We

have considered up to this point the special case of uniform wind

forcing. A traveling disturbance of wind stress curl with

oscillations on the x scale characterized by the slowly varying

wavenumber X(X) could be represented by replacing (X) in (5.1)

by (X)e where d e = x(x)
dx

Points of stationary phase in (5.19) would be defined by

= 0

or

k1(X0) = X(X0)

Thus the region of forcing is about points where the x wavenumber
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of a free wave coincides with X(X). An eastward traveling dis-

turbance has positive A(X). Since from Figure 6 only k1(X)

assumes positive values, an eastward moving disturbance forces a

response in which energy is radiated by a Rossby wave to the west

of the bottom feature.

To illustrate the response in frequency range IV (5.19) has

been integrated numerically for h(X) = h0 exp (-(1 + X2)1 )

and uniform wind and is drawn in Figure 8. Only the first term

in (5.19) is included. The features of Figure 8 are decay to the

east of the bottom feature, a complicated eddy structure over it

and a Rossby wave to the west. The calculation was repeated over

a range of frequencies and the amplitude of the stream function

of the Rossby wave, well to the west of the topographic feature,

is plotted against forcing frequency in Figure 9. In this model

the rate of energy propagation by the Rossby wave is balanced by

the topographic stress acting with the zonal flow. The frequency

dependence in Figure 9 reflects the varying phase relations of

(5.19) over topography.
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Figure 8. Resonant response, frequency range IV. (a) Variation of waveriumber, ki(X).
(b) Real (solid line) and Imaginary (dashed line) part of (x) scaled by T0L/pf0ti2.

(c) Sketch of bottom profile. w = 0.0696, other parameters as In FIgure 7.
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Figure 9. Stream function amplititude of Rossby wave (far to
west of bottom feature) scaled by toLIpfow2 as a function
of w in frequency range IV. Parameters as in Figure 7.
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6. Summary of barotropic model

If the Drake Passage region has normal modes in the frequency

range of maximum atmospheric forcing then this study should be

relevant despite neglect of stratification, mean flow and non-

linearity. The channel walls in the model play an important part

in wave trapping by limiting the scale of motion. Actually there

is communication between Drake Passage and the large Pacific basin,

however the fastest waves in the basin have scale exceeding the

Passage width. This mismatch of scales could reduce the efficiency

for wave energy to escape.

It would be of interest to extend the analysis of forced

radiating waves over slowly varying topography to a stratified

fluid. Recent studies in the Pacific Ocean at about 40°N (Bern-

stein and White, 1977, and Roden, 1977) find baroclinic eddies in

the western region, a quiet regime in the east and a rather abrupt

transition. This is suggestive of forcing on a seasonal time

scale and bottom topography playing a role in the spatial inhomo-

geneity. A model treating bottom topography as a small amplitude

perturbation (Rhines, 1970) would result in waves of the scale

of the topography. In the slowly varying model there is a sepa-

ration of scales between the waves and topography by definition,

but it should be realized that waves which have neither the

x-scale of the 'topography nor of the wind may be excited.
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7. Formulation of instability problem

We discuss now the two layer problem atd modify the notation.

We consider two layers of homogeneous, incompressible fluid again

in a zonal channel of width L on a beta plane. With coordinates

x* eastward, y* poleward and z up, the channel walls are located

at y* = 0, L (asterisks denote dimensional variables). At an

initial time, a north-south step is imposed at x* = 0. The initial

depth is H and the step height is h*. For simplicity we choose

the layer depths to be equal, each being H12 when the fluid is at

rest. When the fluid is in motion the interface is displaced an

amount *. The system is sketched in Figure 10.

With the beta plane approximation, f = f0 + *y*. A natural

length scale associated with the stratification is the internal

radius of deformation defined

LD
(gH/2)

. Here g' g << g
fo p2

where g is the acceleration of gravity, Pi and 2 are the densi-

ties (subscript 1 refers to an upper layer quantity, subscript 2

to a lower layer quantity). We scale horizontal length by LD

A characteristic horizontal velocity is the magnitude of the

initial velocity difference between upper and lower layers

U = U1* - U2*
J. We shall refer to this quantity as the

shear. Since we are concerned with cases in which instability



Figure 10. The two-layer model.
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is possible, U is non-zero and the scaling is valid. Vertical

length is scaled by H, vertical velocity by UH/LD and the time

by LD/U. The nondimensional dynamic pressures are written as

P1 { ci
- p1g(H - z*) ] / (P1UfOLD)

and P2 [ P2
- p2g(H/2 - z*) - p1gH/2 ] / (P2UfOLD)

The interface displacement is scaled by UfoL/' . Continuity

of pressure at the interface is expressed by the condition

= P2 P1

Nondimensional equations of momentum and continuity are

R(u + q'7u ) - (1 + Ry)V = -p (7.la)
nt _n n

R(v + qVv ) + (1 + Ry)u = -p (7.lb)
nt .n n

o = p (7.lc)
nz

Vq = 0 n = 1,2 (7.ld)

where q = (u , v , w ). We have assumed hydrostatic balance
-n n n n

and have neglected viscosity. The nondimensional parameters in

(7.1) are a Rossby number, R =Uf0/L and a measure of the relative

importance of beta and shear = *L/U.

Boundary conditions at the rigid top, the interface and the

bottom are

w1 = 0 z = 1 (7.2a)
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= ½R + Un + vn) z = ½ (7.2b)

= ½R hU2h z = 0 (7.2c)

where h is a measure of the step height. At the channel walls,

v = 0 at y = 0, L/LD.

The parameter range we consider is

R << 1, 0(1), h << 1, LDIL 0(1).

We expand in powers of R

=
(0) + Ru (1)

+

The 0(1) balance is

=
(0) + Rv (1)

+

w =
n

Rw
(1)

+

(0)pn= P +Rp (1)+
n n

(0) (0)V
pnx

(7.3a)
n

(0) (0)
u p (7.3b)
n ny

(0)
0 (7.3c)

(0) (0)
u + v = 0 (7.3d)
nx fly

The 0(1) horizontal velocities in each layer are independent of

depth. We form a vorticity equation for each layer, integrate in

the vertical making use of (7.2) and write horizontal velocities and
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interface displacement in terms of pressure to obtain the quasi-

geostrophic potential vorticity equations.

(a/at P1y3/3X + pia/ay)(V2pi + Y + P2 P1) = 0

(7.4a)

(3/3t P2y3/3X + p3/3y)(V2p + 8y P2 + p) = pzhh

(7.4b)

The superscripts denoting pressure as an 0(R°) term have been

dropped in (7.4).

The step is represented as

h(x) = H(x) H(t)

or h (x) = 5(x) H(t)
x

where H(x) and H(t) are Heaviside functions. We suppose that

initially there is a uniform zonal flow, U1 and U2 in each layer.

With the scaling we have chosen, U1 - U2 = ±1.

We decompose pressure into a part representing the zonal

flow and a part representing the small amplitude disturbance

which is a series in the cross-channel eigenfunctions,

(j)
p(x,y,t) = -Uy + (x,t) sin (iTrLy/L) (7.5)

j=1

(j)
Note that

I
= 0(h) << 1. We write h as

h = 1 sin (jrLDy/L)
j odd
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=
(i)

sin (j7rLDy/L) (7.6)

j odd

Substituting (7.5) and (7.6) into (7.4) and neglecting nonlinear

(j)
terms in we obtain for a given cross-channel mode,

(/3t + U13/9x)((32/3x2 - 2)i + 42 $i) + ( ± l)i = 0

(7. 7a)

(/t + U2/3x)((2/x2 - £2)2 42 i) + U 42x

= -U2 hh, (7..7b)

The superscripts identifying the particular cross-channel mode

have been dropped and jIrLD/L has been replaced by 2. . The upper

sign is for positive shear, the lower for negative shear. By

assuming the topographic scale as 0(Rh) topographic waves have

been eliminated. The modification of the stability of the flow

by topography also is neglected.
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8. A criterion for the transformed solution

As we have indicated, the steady form of (7.7) does not

define a unique solution unless boundary conditions at infinity

are prescribed. The solution, in the linearized formulation,

may not even be bounded if instabilities develop. We impose the

step at t 0 and require that prior to t = 0 there be zero dis-

turbance.

The equations for the Laplace transform (x,$) of (x,t)

from (7.7) are

Cs + u13/ax) [(2/x2 - £2)1 + + ( ± 1) = 0

(8. la)

(s + U23/x) [(a2/x2 - L2)2 + ]+ ( ± 1)
2x

U2hS(x)
S

(8.lb)

We employ the delta function formalism here. This is equivalent

to matching solutions across the step at x = 0 so that
n nx

and are continuous. There is a discontinuity in of

-h/s. Solutions to (8.1) are of the form (x,$) = A(s)em

where rn(s) satisfies

[(s + U1m) (m2 - - 1) + ( ± 1)ml [(s + U2m) (m2 - 1)

+ ( 1)m ]- (s + U1m)(s + U2m) = 0 (8.2)

The inverse transform is given by integrals of the form
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1 m(s)x + str f A(s) e ds (8.3)

where the contour is taken to the right of all singularities.

The solution must formally vanish for t < 0. With t negative,

the contour is closed by a large semi-circle in the positive

real s half-plane. By Jordan's lemma and Cauchy's theorem it

can be seen that if Re(rn(s)) is negative on the semi-circle,

the integral (3.3) vanishes only if the root in(s) applies to the

region x > 0. If Re(m(s)) is positive on the semi-circle, then

rn(s) applies to the region x < 0 only. The criterion we use for

determining in which region a root rn(s) applies is identical to

that used by Thacker (1976).

McIntyre (1968) considered the initial value problem for a

single layer flow over a step on a beta plane. Our criterion

is also identical to that of McIntyre. In fact, our problem is

simply a generalization of the single layer flow to two layers.

McIntyre demonstrated that the single layer contains no insta-

bilities. There are instabilities for two layers and we discuss

them in the next section.
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9. Transient solution on f plane

We examine first the transient behavior on the f plane by

setting = 0 in (8.2)

[(s + U1rn) (s + U2m) (tn2 - - 2) - m2] (m2 z2) = 0

(9.1)

Without loss of generality, we have taken shear positive.

Equation (9.1) may be used to express s as a function of m

S -U2m - ±
(-m2 + - 2)½ (9.2)

(-in2 + + 2)½

U1 has been replaced by U2 + 1 in (9.2). Normal modes for tem-

poral instability are of the form e
+ St

with m purely imaginary

and s complex with positive real part. Unstable modes have low

wavenuniber Im(m)2 + Z2< 2 with maximum growth at Im(rn)2 = 2(Z2+2)½

- (2.2+2) (see Pedlosky (1964b) for further details).

There are six roots rn(s) to (9.1) given by in = ±2. and m.(s),

j = 1 to 4. Contours of the real and imaginary parts of m. (s)

on the complex s plane have been calculated from (9.2) and are

drawn in Figure 11 for U2 = 0.3 and 2.2 = 0.25. The temporally

unstable waves are those along the Re(m1) = 0 contour in the

positive real s half-plane. It can be seen that in1, in2, in3

and -2. have negative real part on a large semi-circle in the posi-

tive real s half-plane and thus by the criterion established in

the previous section describe the solution in x > 0. The roots
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(.) are branch points of the full solution, open circles (a) are branch points for a root

mj(s).
The dotted lines are loci of saddle points.
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and describe the solution in x < 0. The solution to (8.1)

' m1x
(s + Ulmi) h e

1(x,$)
sU1(m1 m2)(in1 - m3)(m1 - m)(m12 - Z2)

m2x
(s + u1m2) h e+

U( - m1)(m2 - m3)(m2 - m)(m2Z Z)

1fl3X+ (s+U1m3)he
s131(m3 - m1)(m3 m2)(m3 - ni4)(m32 -)

' x
(s - IJ1Z) h e

> o
2sLU1(m1 + £)(m2 + 9)(m3 + L)(m + Z)

(s + Uinu+) h em
1(x,$)

sU1(tn1 - m1)(m m2)(mL - m3)(m i2)

+ (s+Ui2,)he x<0
2s2.U1(m1 + £)(m2 + 2)(m3 + L)(m + 9.)

(9.3)

A similar expression can be obtained for 2 The coefficient of

emjx is that of (9.3) multiplied by [-(rn.2 2 -1)

-m./(s + U1m.)] which is obtained from (8.la)

The roots m. (s) are analytic functions of s except at branch

points. The open circles in Figure 11 are branch points for an

individual root mj(s) but not for 1(x,$) as a whole. For example,
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along the branch cut between s ±3.42 any contour of mi(s) is

continuous with a corresponding contour of m2(s). Thus if a

circuit of 21T is followed about the branch point s = 3.42, one

moves from the Riemann surface of m1(s) onto that of m2(s) and

from the Riemarin surface of in2(s) onto that of m1(s). From

(9.3), however, 1(x,$) does not change its value if m1 and m2

are interchanged. The closed circles in Figure 11 are branch

points of 1(x,$). The foregoing argument concerning which branch

points of mj(s) are also branch points of 1(x,$) is equivalent to

arguments of Thacker (1976). If s is considered a function of

m, at saddle points, ds/dm = 0. These saddle points are the

branch points for m considered a function of s.

The transform 1(x,$) is now inverted resulting in integrals

of the form (8.3). We obtain asymptotic approximations for

q1(x,t), valid for long time. The exponent of (8.3) is written

as m(s)x + st = (tn(s)x/t + s)t. For a given speed x/t, a saddle

point of m(s)x/t + s at s0 is defined by

dni x
Ts. + 1 = 0 (9.4)

As t + the asymptotic approximation to (8.3) is

A(sO)
(2td2m/dszT)½ P [(m(50)X/t + s0)t + i( -

(9.5)

where U is the'angle of the path of steepest descent through s0.



Writing (9.4) as -ds/dm = xlt we see that we may interpret -ds/dm

as a group velocity. (Since we do not explicitly integrate (8.3)

we can regard in as a function of s or s as a function of in from

(9.1), whichever proves more convenient). Note that -ds/dm has

this interpretation only when it is real. It is at this stage

which our solution differs from Thacker (1976). In Thacker's

solution the dominant asymptotic contribution for fixed x and

t arose from branch points of 1(x,$). These branch points

are saddle points of rnx/t + s for the particular value of x/t -' 0.

The saddle point method thus includes Thacker's solution as a

special case.

The behavior of (9.5) is dominated by the real part of the

exponential. The growth rate, defined as Re(nix/t + s) at the

saddle point corresponding to x/t, is a function of x/t. If it

is positive, the wave which propagates at x/t is growing. Since

U1 - U2 = 1, the nonditnensional shear is fixed and the effect of

varying U2 is simply to translate the growth curve without change

of shape. This can be seen by making the transformation

(m) = s + 132m in (9.2). The function (m) is independent of U2

and saddle points of rni/t + can be found for a given ut. The

growth rate, Re(mx/t + - U2m) is unchanged for the transforma-

tion if ut = x/t - U2, a speed relative to the lower layer flow.

The growth rate, aside from the translation, depends only on Z.

The lower layer mean flow, U2, enters into the complete solution



in a non-trivial manner through the coefficients of the exponen-

tials in (9.3).

We can consider m and related by

(-m2 + - 2)½
(m) = -½m±½m (9.6)

(-m2 + Z2 + 2)½

which will permit a classification of the transient behavior

according to the growth rate at xlt - U2 = 0. The growth rate at

x/t - U2 = 0 arises from a saddle point of m()x/t + with

d/dm = 0 and is simply Re() evaluated at the saddle point.

Again, points at which d/dm is zero are equivalently branch points

of m(). We set d/dm equal to zero from (9.6) which leads to

m6 (,2 + 2)m - (Z2 + 2)2m2 + (L2 + 2)(L2 - 2) = 0

(9.7)

This is a cubic equation for the value of m2() at branch points;

the effect of the transformation to has been a reduction in

the order of the equation determining branch points. The roots

of (9.7) can be determined explicitly and their positions on the

plane are qualitatively distinct depending on whether Z2 is

less than, equal to or greater than 11/8. Positions of the

branch points of m() on the plane for the three cases are

sketched in Figure 12. As in the solution (9.3), there are points

which are branch points only of m()(represented in Figure 12 by

open circles) and there are branch points (closed circles) of

the transient solutIon. In the Appendix it is shown that only
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branch points for the transformed stream function give asympto-

tic contributions. For 2 less than 11/8 branch points of the

transient are complex with positive Re(s). For 2.2 greater than

or equal to 11/8 branch points for the transient lie along the

imaginary s axis. Thus, the growth rate is positive for 2.2 less

than 11/8 and is zero, corresponding to algebraic asymptotic

behavior, for 9,2 equal to or greater than 11/8.

The procedure for obtaining the asymptotic solution is first

to plot contours of rn(s) as in Figure 11. (Contours of m()

would give growth rates, but the complete solution is obtained

from (9.3) in which s is used.) From contours of rn(s), the loci

of -ds/drn real, which are saddle points of m(s)x/t + s, can be

observed. These are sketched as dotted lines in Figure ha

(for -ds/dm positive) and in Figure lid (for -ds/dtn negative).

The loci pass through the branch points of 1(x,$) at which

ds/dm = 0. There are additional saddle points, but it is shown

in the Appendix that they do not result in asymptotic contribu-

tions. Once the saddle point is located, the corresponding

values of -ds/dm and growth rate are calculated.

Growth rates for the three cases are drawn in Figure 13a.

The couon feature of the three curves is that there is an inter-

val of x/t - U2 for which the dominant asymptotic contribution

is a growing wave. The wave with maximum growth rate propagates

at x/t - U2 = 0.5, the mean of the upper and lower layer speeds.



Figure 13a. Gowth rates for Z2 0.25 (solid line), 92 = 11/8
(dashed line) and £2 = 1.56 (dotted line) on f plane.



The symmetry about xlt - U2 = 0.5 is an effect of assuming

layer depths equal. The value of in for the fastest growing wave

is purely imaginary and this is the wave maximum temporal growth

rate. This result was shown by Gaster (1968) and Pedlosky (1976).

This means that there is a growing transient excited whenever con-

ditions for temporal instability are met ( in this case, whenever

92 < 2.).

For the case = 0.25 the growth rate is positive for

-0.16 < x/t - U2 < 1.16. For x/t - U2 < 0.16 and x/t - U2 > 1.16

the asymptotic behavior is exponential decay. Thus if U2 < 0.16

a growing wave propagates upstream of the step. The incoming

flow is altered and the instability prevents a steady state from

being reached. If U2 > 0.16 the trailing edge of the growing

wave propagates downstream of the step. In the region between

the tail of the growing transient and the step, the transient de-

cays and we shall see in the next section that the steady state

is established in this region.

In Figure 13b additional features of the asymptotic solution

for £2 = 0.25 are shown. The top curve in Figure 13b is again

the growth rate. Below that is the phase speed relative to U2

which is -Im(s)/Im(ni) - U2. Finally the amplitude and phase of

the ratio of lower to upper layer disturbance stream function,

are shown.

For 11/8 < Z2 < 2 the region of positive growth is confined
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Figure 13b. Growth rate, phase speed relative to U2, amplitude and phase
of 2/1 for 2.2 = 0.25 on f plane.



o < x/t - U2 < 1. U2 is required only to be arbitrarily small

and positive for the growing disturbance to be avected completely

downstream. Note that for the two cases £2 = 11/8 and £2 = 1.56,

preceding and trailing the growing portion of the transient,

there are regions with zero growth rate. These are waves which

arise from the neutral part of the dispersion relation. It is

convenient when discussing neutrally stable waves to let k = Im(m),

= -Im() and examine that part of (9.6) for which m and s are

purely imaginary, This leads to

= ½k ± ½k+_2
(k2 + £2 + 2)½ (9.8)

and d/dk = ½ ± k'+2(t2+2)k2+24
(k2 + £2 + 2)3/2 (k2 + £2 - 2)½

for k2 + £2 > 2.

Observe that is a frequency in a frame of reference moving with

the lower layer speed.

The neutral part of the dispersion relation is sketched in

Figure 14 together with d&i/dk for £2 = 0.25, £2 11/8 and

= 1.56. In each case, at k2 = 2 £2, d/dk is unbounded.

As k , d/dk 1 for the upper branch and d/dk + 0 for the

lower branch. The result of the saddle point method is that there

is a neutral wave contribution to the asymptotic when inflection

points develop in (k). These are zeros of d2/dk2 given by



c4J
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2 k

Figure 14. Plot of (upper figure) and d/dk (lower figure)
versus k for L2 = 0.25 (solid line), ,2 11/8 (dashed
line) and L2 = 1.56 (dotted line). The points P to P14
are inflection points of k).
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k2 = + 2 ± 2{(2 + 2)(2 - 1)} (9.10)

so that they occur for real value of k when £2 > 1.

For example, in Figure 14 for 2.2 = 1.56, the four inflection

points from (9.10) are labelled P., j 1 to 4. It is found that

only those waves to the right of P2 and P3 make asymptotic con-

tributions, which propagate at -0.054 < x/t - U2 < 0.064 and

0.94 < x/t - U2 < 1.054. The asymptotic decay at the inflection

points is th/3, and is t at other points from the neutral dis-

persion relation. Note that the two points of zero d/dk corres-

pond to the branch points along the imaginary axis in Figure 12

for t2 > 11/8.

In the case 92 = 11/8 the two values of k at which the lower

branch of d/dk is zero have coalesced into a single value of k.

Only those waves to the right of this k make asymptotic contri-

butions with propagation speed -0.059 < x/t - U2 < 0 and 1.0 <

x/t - U2 < 1.059. For 1 < £2 < 11/8 there are contributions from

the neutral dispersion curve, but growth rates at x/t = 0,1

are positive. For Z2 < 1 no part of the neutral dispersion curve

makes an asymptotic contribution.

We note that when instability is present (2.2 < 2) there are

saddle points of m()x/t + for m and s purely imaginary with

J-ds/dml = Id/dklarbitrarily large. These saddle points do not

contribute to the asymptotic behavior and propagation speeds for

the disturbance are bounded.
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10. The steady state on the f plane

On inversion of (9.3) the transient arises from integration

along the steepest descent contour. The steady solution results

from the pole s = 0. It is found that the steepest descent path

is deformed to the left of s = 0 for x/t - U2 < 0.5. The steady

state is thus established in this region. The residue of (9.3)

from s = 0 is

h= - _____
m3mL2 +

2,x
fl e+

i2(m3 + 2.)(mi + 2,)

m3xhe
- mLf)(m3 - 2)

x> 0

mxhe ne
4)1(X)

mt,.(mz - m3)(mi2- 9/) i2(m3 + £)(m +L)

x< 0

(10. la)

= (131(2,2 + 1) 1) h U1(tn32 2,2 - 1) + 1 m3x
he

U1m3m2 U1m3m142,2

- -Lx
(U1 - 1)he

+
U12ZL(m3 + )(m + 2,)

x> 0

U1(mi42 2,2 - 1) + 1
$2(x)

mz4x

U1m4(mt4- m3)(
he



-
732x

(U1 - 1) he

2U1(m3 - t)(mi - x < 0 (10.lb)

In (10.1) m3 and are evaluated at s = 0. The root m3(0) is

real and negative and m(0) real and positive so that these roots

describe disturbances which decay from the step. They are the

roots of (9.1) with s = 0,

1J1U2(m2 - 2) - 1 = 0 (10.2)

or

in2 = _L. 2 + 2
U1U2

Observe that as U2 0, 1m3(0)! and JmL(0)J + and .(x) 0.

From Figure 11 m1(0) and m2(0) are both zero. There is a net de-

flection of the streamlines. The in 0 disturbance is formally

established for x/t less than U2 + 0.5. The speed x/t = U2 + 0.5

might be interpreted as a signal velocity but note that this value

is within the growing transient. We shall comment further on

signal velocity in the next section.

The flow over the step is sketched in Figure 15, The

deflection of streamlines can be understood by remembering that for

positive shear the basic interface slope is upwards towards the

positive y direction. Vortex columns in the lower layer are dis-

placed in the positive y direction as they are advected over the
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Figure 15. Flow on f plane. Solid lines are
streamlines in upper layer, dashed lines
are streamlines in lower layer for Z << 1

(top) and 9.. 1 (bottom).
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step. Far downstream, where the decaying solutions can be neglec-

ted, the ratio of the lower to upper layer perturbation stream

functions is

'2/4>1
= £2 + U2/Ui (10.3)

This is positive when U1 and U2 are both positive. For £2 << 1

the ratio is the ratio of the initial zonal velocities. The

streamlines in the upper and lower layers are nearly identical.

For £2 >> 1, the interface acts as a rigid surface confining the

disturbance to the lower layer. Recall that £ is a ratio of the

internal radius of deformation to a cross-channel wave scale.

As the wave scale is decreased from a large value to where it is

comparable to the internal radius, the effect of stratification

is to increasingly attenuate the disturbance with height. This

result was demonstrated by Hogg (1973) and McCartney (1975) for

Taylor columns.

deSzoeke (1972) has shown that if the upper and lower layer

flows are in opposite directions, there exists a steady solution

which is wavelike. These are the solutions of (10.2) with m

purely imaginary. Our results show these solutions have validity

only if £2 > 2 and no unstable wave is produced. A growing wave

would alter the incoming flow in at least one of the layers.

The steady solution, for the two layers, in contrast to

Hogg(1976) for continuously varying vertical shear, is bounded
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in space. Let us imagine, for a laboratory flow, a forcing

mechanism initiated at t = 0 and subsequently oscillating at fre-

quency ,

S(x) H(t) cos t.

The term on the right of (8.lb) would be the Laplace transform

S(x)

The steady state solution would be the residue from poles at

s = Observe from Figure ha, that along the imaginary s axis

between branch points at ± .95, Re(m1(s)) is positive. The

steady state in this case would be a wave with frequency and

spatial growth downstream.

We have shown that at those saddle points of mxlt + s which

give an asymptotic contribution for the transient, -ds/dm may be

interpreted as a group velocity. We wish to illustrate with the

case of oscillatory forcing that at s = ± ta, Re(-ds/dm) (ds/dm

is complex in general) cannot be interpreted as a group velocity.

We illustrate this by showing that the sign of Re(-ds/dm) at ± cr

does not give the correct direction for the steady state response.

Suppose that a = 0.5. From Figure ha for the root mu(s), we see

that ds/dm is complex and Re(-ds/dm) is positive at s = ±i 0.5.

However mu(s) represents a decaying response in the region x < 0.
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11. The beta effect

11.1 General considerations

We now discuss the modifications to the previous results

when 8 is non-zero. From (8.2), we may express s as

8m(-m2 + 2,2 + 1)

±
m 1(-m2 + 2) - 4(-m2 + £2)2 + 4821½

(11.1)
2(-m2 + t2)(-m2 + 2.2 + 2)

It may be observed that for temporal instability 8 is required to

be less than 1. The range of wavenumbers for temporally unstable

waves is then

2(1 - (1- 82)½) < m(m)2 2.2)2< 2(1 + (1-

(11.2)

There are six roots m.(s) to (8.2). Branch points f or mi(s)

are found by setting ds/dm = 0 in (11.1) and occur at six values

of m2. We shall not attempt an exhaustive investigation of the

dependence on the parameters 8 and 2., rather, we shall illustrate

several types of behavior.

Growth rates as a function of x/t - U2 for positive shear,

8 = 0.5 and various 2. are plotted in Figure 16. From (11.1) it

can be seen that s for westward shear is related to s for eastward



Figure 16. Growth rates for £2 = 0.25 (solid line), £2 = 1.0 (dashed line) and £2 = 1.69
(dotted line) with = 0.5.

/1 - U2

cx



shear by

and

s(m) = s(m) + m
westward shear eastward shear

ds/dm = ds/dni +
westward shear eastward shear

79

By substituting these relations into the definition of growth

rate, it is seen that growth rates for westward shear can be ob-

tained from Figure 16 by shifting the curves one unit to the left.

For example the growth rate at x/t - U2 = 1 in Figure 16 is the

growth rate for x/t - U2 = U for westward shear. This relation-

ship between growth rate for eastward shear and westward shear

is a simplification of taking equal layer depths.

The three curves of Figure 16 show that the wave with maxi-

mum growth propagates in the direction of the shear, in a ref er-

ence frame moving with U2. Growth rates of the maximum are

smaller than with = 0. A qualitative distinction between the

curves in Figure 16 is the different manner in which neutral waves

contribute. A second distinction is whether there is positive

growth rate at x/t 132 = 0,1.

11.2 Low wavenumber neutral modes

In discussing the differences in the transient growth rates

and in the steady states it is useful to consider the neutral

part of the dispersion relation. We again substitute



= -Im(s + U2m) and k = Im(m) in (11.1) to obtain

k(k2 + + 1)
= ½sgn (U1 -U2)k (+Z3+z2+2)

k[(k2 + - 4(k2 + £2)2 + 482]½

(k2 + .Q2) (k2 + + 2)

(11.3)

for the neutral stability regions (k2 + L2)2 < 2(1 - (1 82)½)

and (k2 + L2)2 > 2(1 + (1 - 82)½). Taking sgn (U1 - U2) = -1,

westward shear, it is found that /k is always negative. The

phase speed is westward relative to the lower layer flow and

stationary waves are not possible when both layer flows are west-

ward. For eastward shear, /k is negative with the negative sign

before the discriminant for 0 < (k2 + 2)2 < 2(1 (1

and with the positive sign for 2 < (k2 + 2.2)2 < 2(1 + (1

Thus for both layer flows eastward, a stationary wave is possible.

The neutral part of the dispersion curve for 0.5,

2.2 = 0.25 is shown in Figure 17. The waves between 0 and P1 con-

tribute to the asymptotic transient for -1.38 < x/t - U2 < -0.08

in Figure 17. U2 must exceed 0.08 for a steady state to be reached.

The six roots in. (s) are sketched in Figure 18 for eastward

shear, U2 = 0.2, = 0.5, and 2.2 = 0.25. The roots m.(s), j=1 to 4

apply to x > 0, roots m5(s) and mG(s) apply to x. < 0. For the

steady solution there is a stationary wave downstream of the step
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Figure 17. Neutral part of dispersion relation, 8 = 0.5, z2 = 0.25.
Points between 0 and P1 contribute to asymptotic transient.
Stationary wave when 1J2 0.2 arises from P2.
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given by m1(0) and m2(0). The wavenuinber, k0, of the stationary

wave is obtained from (11.3) by setting w/k = -U2 and is

where

and

k02+ 2 = ½ (N1 + N2) + ½ [(N1 - N2)2 + 4]½
(11.4)

132
N1 - +

13_i

$ 131
N2 = + U2.

The stationary wave arises from the point P2 on the neutral dis-

persion curve in Figure 17. At P2 d/dk = 1.84. From Figure 16,

x/t - = 1.84 is in the region of exponential decay ahead of

the transient. From the saddle point method the contour is de-

formed across the pole at s = 0 for xlt - U2 < 0.10. Thus, as

found by Gadgil (1976), group velocity of the stationary wave is

not equivalent to the signal velocity for the steady solution.

Note from Figure 16 that x/t 2 = 0.10 is in the region of posi-

tive growth so that similarly to the f plane example, the inter-

pretation of x/t 132 0.10 as a signal velocity is obscured.

Roots m3(0) and m5(0) are zero and represent disturbances

independent of x which have propagated far upstream and downstream.

Decaying solutions are represented by m(0) and m6(0). The steady

solution is



h
c1(x) (k0z + m)k + rn62)

[(k02 - m1m6) cos k0x + k0(m,.4 + rn) sin k0x]

hem
+ 2 + 2 2mkmGko tflJ4 (m + k0 ) Cm4 - in6) x > 0

Ii_____________________
1(x) =

mkm6koZ m6(ni + k02)(m6 - in4)

(11.5)

The ratio of the lower to upper layer stream function amplitudes

for the stationary wave part is

L2 - + (11.6)211wave = k02 +
Ui TI1

Equation (11.6) is identical to an expression derived by McCartney

(1975) for 2/1 far downstream of a bottom feature with non-

linear terms taken into account. When k02 +2 from (11.5) is sub-

stituted in (11.6) it can be shown that P21wave U2/U1 as $ 0

and that for > 0, 421wave exceeds U2/U1 when Uj and U2 are

both positive.

11.3 High wavenumber neutral modes

For the higher cross-channel modes, £ exceeds 2(1 -(12Y)

and the low wavenumber neutral modes disappear. Cross-channel

modal numbers £2 = 1.0 and £2 1.69 are in this range. The growth

curves in Figure 16 for these values of £2 show an asymptotic
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contribution from neutral waves to the east of the growing por-

tion. In Figure 19 d/dk is drawn for 2 1.0 and the neutral

wave portion of the dispersion relation. As in the f plane case,

there are inflection points for the upper branch and neutral waves

are found in the interval 1.08 < x/t - U2 < 1.11. The lower

branch of E(k) contains no inflection points and makes no asymp-

totic contribution. Neutral waves to the west, for L2 1.69

arise from the lower branch of the neutral dispersion curve.

For L2 1.69, the growth rates at x/t - U2 0,1 are zero hence

an arbitrarily small 1J2 advects the growing disturbance downstream.

The steady state in both cases is a displacement of stream lines

downstream of the step.
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Figure 19. d&/dk as a function of k in neutral part of disper-
sion relation 0, L 1. Points on upper curve to right
of minimum contribute to asymptotic transient.
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12. Summary of instability problem

The steady (CT 0) solutions for the two layers are bounded.

The extension of the initial value problem to continuously varying

vertical shear is not a trivial one. Pedlosky (1964a) considered

an initial value problem of the Eady system. The Eady modes are

solutions to the vertical eigenvalue problem but do not form a

complete set. Pedlosky found that the continuous spectrum, solu-

tions with a delta function behavior in the vertical, was needed

to describe the behavior from an initial state although the long

time behavior was dominated by the unstable Eady modes.

The question of whether there is a meaningful signal velo-

city for the establishment of the stationary wave was raised by

Cadgil (1976). In the examples we have examined the stationary

wave is formally established at a speed at which a growing wave is

propagating. The stationary wave, which is bounded is not observed

until the growing part of the transient has passed. Thus it

appears that the trailing edge of the growing transient has more

relevance as a speed for the establishment of the steady solution.
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APPENDIX

The saddle point method for the asymptotic approximation to

the solution is outlin here. We have a SUm of integrals of the

form

2irt f A(s) e
(lnj(s)x/t + s)t

ds

where x/t is given, t + and mj(s) is one of the roots of (8.2).

We show that not all the saddle points, i.e. those points satis-

fying

din x
+ 1 0

give asymptotic contributions.

We illustrate with several examples from the case U2 = 0.3,

0 and t2 - 0.25 for which the four roots inj(S) are drawn in

Figure 11. The contour C, for the inversion of the transformed

solution, can be deformed into C as shown in Figure 20. From
A

contour C, it is observed that branch points for the full solution

(the closed circles in Figure 11) dominate for x fixed and t -*

The growth rate is Re(s) at the branch point, and is negative.

For values of x/t non-zero, It is necessary to examine the

individual roots to evaluate growth rates. From the growth rate

curve in Figure 13a for 8 0, £2 0.25, the asymptotic solution

decays exponentially for x/t - U2 < -0.16. Thus, with U2 - 0.3
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A
CA)

Figure 20. Contour on complex s plane for inversion of Laplace
transform.
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there is a decay for x/t < 0.14. To illustrate how this result

was arrived at, we have drawn integration contours for a typical

value of x/t in the range 0 < x/t < 0.14 in Figure 21. The sign

of Re(1n(s)xIt + s) and branch cuts for mj(s) = 1-3 are indi-

cated. There is symmetry about the Re(s) axis and only the lower

half s plane is drawn. Saddle points occur at P2, P3 and P.

Since the integral along C equals the integral along C (plus

residues of any poles between the two) then contours C2 and C2',

C3 and C3' and C, and Ci,' must cancel one another. Note that C

could have been chosen to pass through P3 without deforming about

the pair of branch points on the real s axis to give the integral

for m1(s). However, if this were done, the integrals from m2(s)

and m3(s) could not be evaluated. This is the reason for the choice

of contours in Figure 22. Saddle points P2, P3 and P are irrele-

vant. Note that at F2, m1(s) and s are purely imaginary, but this

neutral wave gives no asymptotic contribution. The contour C1 is

the path of the steepest descent through P1, giving the asympto-

tic form (9.5). P1 is in a region of negative Re(m1(s)xft + s)

resulting in negative growth rate.

From Figure 13a there is positive growth for -0.16 < x/t

- U2 < 1.16. Integration contours for a typical value of x/t in

0.14 < x/t < 1.46 are drawn in Figure 22. Again the integration

along C2 and C2' cancels. Along C3 and C, the integral is expo-

nentially small. The asymptotic approximation arises from the
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Figure 21. Typical contour for 0 <x/t < 0.14 for the three downstream

roots. Saddle points of mjx/t + S are denoted by . The regions

of positive and negative Re(mjx/t + s) are indicated.



Figure 22. Typical contour for 0.14 < < 1.46.
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saddle point, P1, for which the growth is positive. P2 is a point

of stationary phase for a neutral wave arid gives negligible con-

tribution relative to P1.

Integration contours for a typical value of xlt > 1.46 are

drawn in Figure 23. Contours encircling the branch cut along the

real s axis for m1(s) and m2(s) were shown to result in zero net

contribution. Recalling that m1(s) is continuous with m2(s)

across the branch cut, it can be verified that the contours C2

and C2' in Figure 24 also must cancel. P2 is again the neutral

wave but any contour through P2 must pass through a region in

which Re(m1(s)x/t + s) is positive. Thus the asymptotic form

of the integral is not obtained from P2. The asymptotic approxi-

mation is found from the steepest descent path through P1,

resulting in a negative growth rate. It should be verified in a

particular calculation that the integral along C3, for which

Re(m3(s)x/t + s) is negative but there is no saddle point, is

exponentially small relative to the integral along C1.

For x/t < 0, there is a single root m(s) describing the

solution, and the saddle point method is straightforward. The

steady solution results from the pole s = 0. For x/t > U2 + 0.5,

the steepest descent contours are found to pass to the right of

s 0 and there is no contribution from the pole. For x/t < U2

+ 0.5, the steepest descent paths pass to the left of s = 0 and

the steady state is set up in this region.



- -

I I

Fiura 23. Typical contour for x/t > 1.46.
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