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tions involved in the problem formulation is used. A detailed filter
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recursive formula (filter) for calculating the optimal mean-square
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An application of the derived filter to an optimal stochastic

control problem is presented. The class of systems under con-

sideration includes linear, partially observable control systems

with quadratic criteria, that have random coefficients which are
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solutions to the corresponding stochastic differential equations.
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ditions for an optimal control to exist are expressed through the

existence of a solution to a certain Cauchy problem of the para-

bolic type partial differential equation. The existence and unique-

ness of a solution to the above mentioned partial differential

equation is studied. The references to the results used in the

text are given. A simple simulation example, which gives an
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CONDITIONALLY GAUSSIAN PROCESSES IN
STOCHASTIC CONTROL THEORY

1. INTRODUCTION

Systems arising in applications are often modelled by dif-

ferential equations:

dx(t) f (t, x(t)),
dt

where the vector function x(t) describes the system state at time t.

However, many systems are subject to imperfectly known distur-

bances, which may be taken as random. A stochastic model is

now appropriate in which the system states evolve according to

some vector-valued stochastic process xt. Such a stochastic

process may be interpreted as a It solution,' to a system of ordinary

differential equations containing a term g(t, xt)vt representing the

effect of disturbances

dxt
= f(t, xt) + g (t, xt) vt,

dt

vt is very often meant to be a stationary Gaussian process with a

spectral density that is flat over a very wide range of frequencies.

If vt has well-behaved sample functions, there is no difficulty in

interpreting (1. 1) as an ordinary differential equation for each



2

sample function. However, if vt is taken to be a process with

well-behaved sample functions some of the simple statistical

properties of xt, the primary one being the Markov property,

are lost.

In practice the following interpretation of (1. 1) can be given.

Take a sequence of Gaussian processes (vtn) which liconvergesii

in some suitable sense to a white Gaussian noise, yet for each

n, vtn has well-behaved sample functions. Now for each n the

equation

dxtn

dt
f(t, xtn) + g(t, xtn) vtn, t E [0, T]

can be solved. Thus a sequence of processes (xtn), tE[O,T], is

obtained. Suppose now that as n --.co, (vtn) converges in a suitable

sense to white noise, and the sequence (xtn), tE[O,T], converges,

say in quadratic mean, to a process xt, t e[0, T] . Then xt is said

to be a solution to (1. 1), where vt is a Gaussian white noise.

In order to make precise the notion of vtn converging to

white noise define

t
n n= f vswt ds

0

Since Gaussian white noise is the formal derivative of Brownian

motion, the convergence of vtn to Gaussian white noise will be
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understood as convergence of wtn to the Wiener process wt. wt

was suggested by Wiener as a mathematical model for the motion
dwt

of particles suspended in a fluid. The nonexistence of dt implies,

in Wiener's model of physical Brownian motion, that particles do

not have well defined velocities. This corresponds roughly to

physical observation. In engineering literature, the formal time

derivative of Brownian motion is called white noise. Proceeding
dwt

in a purely formal way vt = dt t E [0, T ] , can be regarded as a

stationary process in which the random variables vt are independent

for different time instants t, with E(vt) = 0. The covariance function

E (vt vs) turns out to be Dirac's delta function and its Fourier

transform, the spectral density, is constant. Thus the average

power with which various frequencies appear in the spectral reso-

lution is constant (compare with the spectrum of a nwhite II light).

Now (1. 1) can be rewritten as follows:

where

t t
xt = x 0+i f(s,x s)ds + f g(s, xs)dws' t e[0,1] ,

0

x
0

is an initial condition for xt.

(1.2)

The last integral in (1.2) is interpreted as a stochastic integral

and needs to be defined. Since wt has realizations of unbounded

variation, the stochastic integral cannot be defined in the usual

Lebesgue-Stieltjes sense. The one generally accepted definition is
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due to Ito and is often referred to as the Ito integral. It turns out

that a calculus based on Ito's definition is not compatible with

results of ordinary differential calculus. Other definitions for

stochastic integrals have been proposed (Fisk, 1963; Stratonovich,

1966), for which rules of ordinary calculus apply. However, this

approach has the disadvantage that conditions which guarantee the

convergence of Fisk- Stratonovich's integral are less natural and

more difficult to verify than those of the stochastic Ito integral.

But first of all the martingale property (see Def. A3) of Ito's

integral could be lost. As the most important results in this text

are based on this property-, it plays a crucial role. From now on

Ito's definition of the stochastic integral will be used.

Very often (1.2) is written in a symbolic, 'differential;',

form
dxt = f(t, xt) dt + g(t, xt) dwt, (1.3)

and is called a stochastic differential equation.

A process xt, tE [0, , is said to satisfy (1. 3) with initial

condition x0 if

t
i. for each tE[O,T], f g(s, xs) dws can be interpreted

0

as the stochastic integral,

ii. for each tE[O,T], xt is almost surely equal to

x0 f f(s, xs) ds +f g(s, xs) dws .

0 0
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For a more formal definition of a solution to a stochastic

differential equation see Def. Al. The character of this text as

well as the limitation of space, makes it very difficult to give even

a flavor of the subject of stochastic differential equations. [W4]

may serve as an excellent introduction to this topic, while [G1]

presents a rather formal and advanced approach.

Most of the results in stochastic control and filtering theory

were obtained with the assumption that the processes under con-

sideration satisfy linear stochastic differential equations. With

certain assumptions about initial conditions and the structure of

the linear stochastic equation the resulting process is Gaussian.

This is crucial for the property of finite-dimensionality of filter

equations.

Motivated by application, nonlinear stochastic differential

equations play a very important role. This is seen particularly

in control problems, where even a linear system becomes very

often nonlinear after the feedback regulator is applied.

Conditionally Gaussian processes defined below, and satisfy-

ing equations of the type (1.4) seem to be natural generalizations

of linear stochastic systems. They offer considerably more

flexibility in control applications than linear models and yet enjoy

the property of a finite dimensional filter (see discussion below).
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This dissertation presents an application of the theory of

conditionally Gaussian random processes to filtering and stochastic

control problems. The original study of this subject is due to

Liptser and Shiryayev [L1, L2, L3, L4].

To summarize their result consider a partially observable

random process (xt, yt), t > 0, with only the second component

yt, t > 0, being observed. At any time t it is required to estimate

xt based on (y
s

0 < s < t).

It is a well known fact that if E(xt
2)

< co, t > 0, then the

problem of finding the optimal mean square estimate mt of xt

from (y 0 < s < t) is reduced to finding the conditional expecta-
s

tion mt = E(xt y t), where Y t is the cr - algebra generated by the

observations (y
s
: 0 < s < t).

Assume that (xt, yt), t > 0, have an Ito differential:

dxt = (a(t, y)xt + b(t, y)) dt + g
1
(t, y)dwt1

+ g
2

(t, y)dw tz,

(1. 4)
1dyt = (c(t, y)xt + d(t, y))d.t + r

1
(t, y)dwt + r2(t, y)dwt

2,

where each of the functionals a(t, y), , r
2
(t, y) is y t measurable

at any t > 0. The Wiener processes wt
1 and wt

2, and the random

variables (x0, y0) which are an initial condition for (1. 4) are

assumed to be independent. It should be noticed that the unobservable

process xt enters into (1. 4) in a linear way. It can be proved under



certain assumptions that if the conditional distribution (P(x0 < a I y0),

a ER, is Gaussian then the process (xt, yt), t > 0, satisfying (1. 4)

is conditionally Gaussian in the sense that for any t > 0 the con-

ditional distributions

P(xt 0<.a . . . , k<ak lyt), 0 < t0 < tl < . . . < tk < t ,

are Gaussian [1,2] .

This result allows a closed system of equations for mt =

E (xt V t) and rt = E ((xt -mt )2 I yt) which completely characterize

the distribution P(xt < al yt), t > 0. These equations are a

recursive formula (filter) for updating the estimator mt every

time a new observation is made. The result of [L2] can be con-

sidered as a generalization of Kalman-Bucy filtering theory for

Gaussian stochastic processes satisfying linear stochastic equations.

As the modelling of engineering systems very often involves

vectorial processes, Chapter 2 of this thesis presents a detailed

derivation of an optimal filter for the multidimensional case of

(1. 4). Assumptions made here are somewhat less restrictive than

those of [L2]. For example, conditions I a(t, ) 1 < const < co,

I c(t, ) 1< const < co for all which are continuous functions on [0, T]

are replaced by the conditions

T T

Ia
2 (t, g )dt < const< co , and f c

4(t, )dt < co .

0
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The concept of a weak solution to (1. 4) (see Def. Al and A2)

is used leaving open the question of a physical interpretation of

(1. 4). However, if necessary, with additional assumption about

the structure of (1. 4) (for example Lipschitz conditions in

satisfied by a(t, , r2(t, )) a solution to (1. 4) is a strong one

and all results obtained here hold. Chapter 3 presents an applica-

tion of the above filtering result to an optimal stochastic control

problem. The class of systems under consideration includes linear,

partially observable control systems with quadratic criteria,

having random coefficients which are certain functionals of a

Wiener process.

The class of linear stochastic systems with random co-

efficients has attracted the attention of several authors [Al, B3,

B4]. One of the most formal approaches to the stochastic control

of such systems was presented by Bismut [B2] . The linear

stochastic differential equation considered here is

dxt = (Axt + But + D)dt + (Hxt + Gut + F)dwt ,

where wt is a Brownian motion and all the random coefficients are

supposed to be observable by the controller ut. These random

coefficients are certain bounded random variables adapted to the

same a- - algebra as wt, t E [0, '1] .
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For such completely observable systems a problem of

minimizing the criteria

I(u) = (J Mt xt 1
zdt

+ f < Nt ut' ut > dt + I Mt xt 12)

0 0

where N. tE[0, T], is a family of self-adjoint positive operators

and where again all the coefficients are observable by the con-

troler, is discussed. Functional analysis techniques were used to

prove that I(u) is differentiable. The necessary condition for ut

to be optimal was expressed through dual variables. The optimal

control was found in a random feedback form linear in xt. The

formal Riccati equation determining the gain coefficient for the

optimal regulator was not proved to have a solution in a general

case and only special cases, which cover the results presented in

[W2] are given here.

Methods used in Chapter 3 are of the dynamic stochastic

programming type. All stochastic processes involved in the

problem formulation are assumed to be the strong solutions to the

corresponding stochastic differential equations. The main theorem

shows a separation of the filtering and control problem as the

optimal regulator is a (linear) function of the estimate of the

unobservable part of the process and a (nonlinear) function of the

observable part. This result can be compared with results

presented in [W3, D3, D4]. Sufficient conditions for an optimal
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control are expressed through the existence of a bounded solution

to a certain Cauchy problem for parabolic type of partial differen-

tial equations.

In Chapter 4 the existence and uniqueness of a solution to

the above mentioned partial differential equation is studied.

Certain similarities between this equation and the Riccati

equation resulting from a solution to the stochastic linear-quadratic

control problem [Wl] are used in the proof construction. Results

developed for linear and semi-linear partial differential equations,

[L5] , are used here.

As an interesting by-product [Lemma 4. 3] , positive definite-

ness of a solution to a certain Cauchy problem for linear partial

differential equations is proved.

Appendix A is thought to be an easy reference to the main

results used in this text.

Chapter 5 presents a simple digital simulation of an optimal

stochastic control system, for which the regulator was obtained by

using the result of Chapters 3 and 4. Concluding remarks point out

still open questions and possible research directions for applications

of the obtained results.



Notation

The following notation will be used throughout:

Rn

m
CT

tr

11

denotes Euclidean n-dimensional space;

denotes the space of all continuous m-dimensional functions

on [0, T] ;

denotes transposition of a vector or a matrix;

denotes trace of a matrix;

the Euclidean norm is defined for A being a vector or a

matrix as follows

11A112 = tr(A A );

R > Q says that R-Q is a positive definite matrix, assuming

that R, Q are square, symmetric matrices; similarly

>; for a square, symmetric matrix A the following

notation is used

A2 = AA, A-2 = (A
-1)(A-1),

A-1 = (A-1/ 2)(A-1 /2)
,

where in the second and the third of the above equalities

A1 is assumed to exist;

At denotes the pseudoinverse of a matrix A;

[A] denotes i, j th element of a matrix A;

[a]i denotes ith element of a vector a;



a> b

12

for a, b ER n is understood to hold for the corresponding

components of a and b;

c, c. stand for positive constants;

t1 t2 denotes min (t1, t2) ;

a denotes the gradient vector;

a denotes the Jacobian matrix;

Random variables or stochastic processes are tacitly referred to

an underlying probability space (s.2, F , P) and the generic argument

CD E S2 will not be written;

E( ) stands for the expectation;

E( 1 ) stands for the conditional expectation;

cr alg (ys: 0<s<t) denotes the cr - algebra generated by the process

y up to time t;

112
denotes the equivalence of the (probability) measures ill

and 112;

<<ii
2

denotes the absolute continuity of the measure µl with

respect to the measure i12;

denotes, for µl << 1.12, the Radon-Nikodym derivative

[W4] of µl with respect to 42;
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2. FILTERING FOR MULTIDIMENSIONAL
CONDITIONALLY GAUSSIAN PROCESSES

In this chapter the derivation of the optimal, in the mean-

square sense, filter for multidimensional conditionally-Gaussian

processes is presented. The filtering equations are obtained under

somewhat less-constraining assumptions than those used in [L2] .

A detailed proof shows the places in which successive assumptions

are used. This gives an opportunity for the study of further relaxa-

tion of the assumptions, made.

Let (xt, yt), t e[O, T] , be a continuous (P-a. s. ) stochastic

process of the following differential representation,

dxt=A(t, y)xtdt + B(t, y)dt + G
1
(t, y)dwt

1
+ G

2
(t, y)dwt

2,
(2. 1)

dyt=C(t, y)xtdt + D(t, y)dt + R1(t, y)dw t
1 + R2(t, y)dwtZ (2. 2)

Consider as given some complete probability space (0, F , P)

with a nondecreasing, right-continuous family of sub-o- - algebras

Ft < F , te [0,T]. Let (wti, Ft), i = 1, 2, be mutually independent

Wiener processes of the dimensions , i = 1, 2 respectively. The

stochastic process xt, t E [0, , of the dimension n is the unobservable

component of (xt, yt), while yt, tE [0, T] is the m-dimensional sto-

chastic process that is observed. The random variables x0 and y0
0

which form the initial conditions for (2. 1) and (2.2) are assumed to
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be independent of the Wiener processes wti, i = 1, 2. The

matrices A(t,), B(t, G1(t, G2(t, D(t, R1(t,

R2(t, 0 are of the dimensions n x n, n x 1, n x 21, n x £2, m x n,

m x 1, m x 21, m x 22 respectively and their elements are

assumed to be measurable nonanticipative functionals on

[0,T] x CTm.

Listed below are sufficient conditions for the derivation of a

recursive formula (filter) for an optimal, in the mean-square sense,

estimator of xt giveni (y
s

0 < s < t).

For all E C,rm

T

I112 dt < c < a) , and
0

(2. 3)
T

I (it B(t,)114 + I! C(t, ) II

4
+ II D(t, 112 + II G1(t, )

4
) 11 + II G2(t, ) II

4)at< ..
0

For all E C Tm , t E [0, T] define

then

R2 (t, = (t, + R2(t,) R2 (t,

II R
-2 (t, < c < co ,

IIR(t,)-R(t,1)112c(i 4(s)-1-1(s)11
2 dK(s) + II -.(t)--11(t) II

2
), and

0

II R(t,)112 c (1(1 + 11(s)11
2 )dK(s) + 1 +

II (t) II

2),

0

(2. 4)

(2. 5)
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where 0 < K(s) < 1 is a right-continuous, nondecreasing function

on [0, T] , and c is a positive constant.

The condition (2. 3) is somewhat relaxed when compared to

the conditions given in [12] , where it was assumed that

11A(t, )11< c < co, 11C )11< c < co, for all tE [0, T] , EC Tm

The condition (2. 3) also implies that

T

1 1 B(t, 114 dt < co .

0

For a stochastic control problem based on the equation (2. 1) the

above will restrict the additive controls to the class which satisfies

E( r II ut 114 dt) < co . (see Chapter 3).
0

This is a stronger condition that of the square integrability, which

is generally assumed in control theory.

Condition (2. 4) is made, roughly speaking, to avoid degenerated

stochastic measures associated with y. One may think here about

the situation where some of the equations of (2. 2) do not have the

noise terms. In [D3] an approximation of a degenerate system of

stochastic equations is discussed. This approximation satisfies

condition (2. 4). It is worth noticing that one of the most important

results, Thm A3 and Thm A4, used to prove that xt is conditionally
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Gaussian, do not require (2.4) to hold.

Condition (2. 5) restricts the noise coefficients R1, R
2

in

(2. 2) to the class of It smoothli functionals of Also the rate of

growth of these coefficients is limited to, at most, linear growth

in Any relaxation of the condition (2. 5) will lead to the problem

of finding another sufficient condition, under which equation (2. 16)

has a strong solution. This is necessary to show an equivalence

of certain probability measures and to give a well defined Bayes

formula (see (2. 38)).

Now the following theorem can be stated

Theorem 2.1

Let (2. 1) and (2.2) have a weak solution (xt, yt), t E [0, T] ,

with the initial conditions (x
0

, y0) which satisfy

E (II xo 114) < P(11 yo < co) 1,

where EC ) denotes the expectation operator.

Also let x0, y
0

be independent of we i = 1, 2 and let the conditional

distribution P (x0 < a
0

I y0) be P-a. s. Gaussian with the para-

meters mo = E(x0 I y0), 1'0 = Euxo-moxo-rno)*Iyo) and

tr (1-0)< co P-a. s. In the above the inequality x0 < ao, ao E R
n is

understood to hold for the corresponding components of x
0

and a0.
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If the conditions (2. 3), (2. 4) and (2. 5) are satisfied then the

processes (xi, yt), tE [0, T] are conditionally Gaussian, i.e., for

any te[O,T] and any finite partition t., j = 0, 1, k, of [0, T]

such that 0 < to< t1 < tk the conditional distribution

R
n is(x < ,...,x <a! Vi), a. s P-a. s. Gaussian.t 0 tk k t

y t [0, T] denotes the cr - algebra generated by (y s 0 < s < t).

Further m ' tr , which denote conditional mean and covariancet
*

respectively, i. e. , mt = E (xt I t) and r t= E ((xt-mt)(xt-mt) I y t),

are unique, continuous solutions with initial condition m , I' to
0 0

dmt = (A mt + B) dt + Kdvt ,

K = (G1R1 + G2R2 + F tC*) R
-1

,

dvt = R 1 (dyt - (Cmt + D) dt) ,

ar t = (A rt + rt A* + G
1
G

1*
+ G

2
G

2
- KK*) dt ,

where arguments (t, y) are omitted for brevity.

Proof of Thm 2.1

(2.6)

(2.7)

The above filtering result was proved in [L2] under somewhat

more restrictive conditions than (2. 3), (2.4) and (2.5). The scalar

case was discussed and only a few steps of the proof for the multi-

dimensional case were given. That xt given V t is conditionally
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Gaussian can be shown to hold with less restrictive conditions than

those of Thm. 2.1. However, as the filter itself is the main result

of this chapter the whole proof uses the same assumptions. The

proof follows the main steps of the scalar case proof in [L2] and

appropriate references to pages in [L1] and [L2] are provided.

Also all results which are used here in the form of theorems and

lemmas are given in the Appendix A together with detailed

references to the original sources.

The outline of the proof is as follows:

Step 1. It is shown, Lemma 2. la, that (2. 1), (2.2) can be

written in the equivalent form (2. 8), (2. 9).

Step 2. A generalized Bayes formula is used to show that

the conditional characteristic function of xt, given V e is a

characteristic function of a Gaussian process. To this end Theorems

A3, A4, and Lemma A3 are used. To show that all assumptions

necessary for the application of these results are satisfied, an

auxiliary result, Lemma 2. lb, is proved. After rather cumber-

some notational changes, Lemma A7 is used to obtain the desired

result.

Step 3. In order to apply the results of nonlinear filtering

theory, a certain representation (see (2. 45)) of the equation (2. 9)

is proved to hold. This is made by using Thm A5.
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Next Lemmas 2.1c and 2. ld allow for a certain representa-

tions of E(xt ( Yt) and E (xtxt* yt) (see (2.60) and (2.61)).

Step 4. The property that xt is conditionally Gaussian is

used to derive the final form of the filter equations (2. 6) and (2. 7).

Step 5. The uniqueness of a continuous solution to (2. 6) and

(2.7) is proved, as well as the property that if r > 0, P-a. s. ,

then rt is, P-a. s. , uniformly positive definite on [0, T] .

As the first step the equations (2. 1) and (2.2) are trans-

formed to the form

1
dxt =A(t, y)xtdt +B(t, y)dt +H

1
(t, y)dwt +H

2
(t, y)dwt2 ,

dyt=C(t, y)xtdt + D(t, y)dt + R(t,y)dwt
2

,

where H2 = (G1 R1* + G2 R2*) R-1

and

H1 = (G1 + G2 G2* - H2 H2*)1/2,

(wt Ft), i = 1,2, are mutually independent Wiener

(2. 8)

(2. 9)

processes of the dimensionality n and m respectively.

Lemma 2. la

The equations (2. 8) and (2. 9) are an equivalent form of the

equations (2.1) and (2.2).
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and
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It is enough to show that P-a. s. for all tE[0, T]

t t t t
2f

G ( s , y)dw
s

+ j
r

G z(s, y)dw sz =f H
1
(s, y)dws +j H (s, y)d;

s
,

0 1 0 0 0 2

t t t
f , 2f R

1 s
1(s, y)dw +i R

2 s
(s, y)dw 2 =f R(s, y)dws .

0 0 0

The notation used here is as follows (arguments are omitted for

brevity)

P

G1 G2

R1 R2
S

H1

0

(2.10)

(2. 11)

Matrices P and S are of the dimension (n + m) x(21 + 22) and

(n + m) x (n + m) respectively. 0 denotes an m x n matrix of zero

elements. By definition of R, H1, H2, P and S satisfy

Denote Wt =

PP* = SS*. (2.12)

1wt

w
2

t

and wt =

tilwt

2
wt

Now the equations (2. 10) and (2. 11) can be rewritten in the more

compact form



f Pdws = .

0 0

21

(2.13)

As the properties of the pseudoinverse St of the matrix S will be

used it is recalled that by definition St satisfies

SSt S = 5,

and St = US* = S*V for some matrices U and V.

St always exists and is unique [L2, p. 51]. If the inverse

S-1 of S exists then S -1
= S'

+
.

Let (vt, Ft) be an n + m dimensional Wiener process indepen-

dent of wt l, i = 1, 2. Then define

t t
wt = f St P dwt +1 (I - St S) dvs ,

0 0

(2. 14)

where I is an (n + m) x (n + m) unit matrix. Using Levyfs theorem

(Theorem Al) it will be shown that (2. 14) defines an n + m dimen-

sional Wiener process with independent components. By (2.14),

(2. 3) and (2. 4) Wt is a square integrable martingale with continuous

trajectories and

P (w
0

= 0) = 1 .

It remains to show that for t > s P-a. s.

E ((wt - ws)(wt - ws)*I Fs) = (t - s) I (2.15)
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The left hand side of (2.15) is equal to

t t
E(fst P1)*(St )*d T I Fs) +E(f (I - St S) (I - St S)* di I Fs).

From (2. 12) and the properties of St it follows that

St pp* (St )* = St SS*(St ).* = St S (St S)* = (St S)2 = St S

and

(I - StS) (I - St S)* = I - St S (StS)* + St S (St5)* =

I - StS - St S + St S = I - StS .

The above equalities prove (2. 15).

To show that (2.13) holds note that

s
=f SSt P dw - St S) dvs =Sdw

0 0 0

where

f551- P dws = f P dws + X t ,

0 0

t
X t =f (SS t - I) P dws .

0

But E(X. tX. t*) = E (f (SS t - I) PP* (SS t - I)* ds) =
0

E( f (SST -I)SS*(5St -I)*ds) = E (f (SSt S-S)(SStS -S)*ds)=0.
0 0



23

This ends the proof of Lemma 2. la.

In the sequel the Wiener processes in (2.8) and (2.9) will be

written without tildes.

Next it will be shown that the process yt' t E [0, T] , defined

by (2. 16) below, generates the measure µti which is equivalent to

the measure p. generated by yt, tE[0, T] . Moreover the measures

1.. and p. generated respectively by (x0, wl, y) and (x0, w1
, y) are

also shown to be equivalent. To this end Thm A2 is used to show

that the assumption (2.5) and the condition P ( II Yo II < c°) = 1 give a

unique continuous solution to

dyt = R(t, y) dwt2 , y
0

= y
0

(2. 16)

Let zt, t [0, T] , denote any of the processes yt or yt. Then

equation (2. 8), with y replaced by z can be rewritten in the

following form:

xt = x0 +f (A(s, z)xs + B(s,z))ds +f z)dw
s

1 +i H2(s,z)R-1(s, z)dz ,

0 0 0

(2.17)

where A = A - H2 R-1 C, and

B = B - H2 R -1 C.



Also note that

ti t
xt = t (z)(x 0+f

-1 (z)B(s, z)ds+f
s

(z)H
1
(s, z)dws +

0 0

s 1(z)H2(s, z)R -1 (s, z)dzs),
0

where
t

= exp (1 Al'.(s,z)ds) .

0
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(2.18)

All the integrals in (2.17) and (2. 18) are well defined as a conse-

quence of (2. 3) and (2. 4). Using the Ito formula, it is easy to check
tithat xt given by (2. 18) satisfies (2. 17).

To show the uniqueness of a solution to (2. 17), Lemma Al

will be applied. Denote by et the difference between two continuous

solutions to (2.17). From (2. 17) it follows that

t
et = f z) es ds, t[0, T] .

0

To prove uniqueness, it is enough to show that

P (sup II etlI> 0) = 0
0< t< T

The equation for et results in the following inequality:

fn f ILA(s,z)11 Iles lids, te [0, T]

0

(2.19)
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To apply Lemma Al it must be shown that P-a. s.

A. II dt < co
0

The above results from the following inequalities and the conditions

(2.3) and (2.4):

friocit<fliAlicit-FiliR-111 01211 dcpcit<
0 0 0

f[IA dt + 0.5 11 R-111 1- 211 2 + 112 ,

0 0

II H2 II 2=tr((G
1
R1 +G

2
R2

*
)R

-2
(R

1
G

1
+R 2G2 )) < G

1
II

2+11G2112

Now application of Lemma Al results in

P (11 et 11 > 0) = 0, t E [0, T],

which together with continuity of et gives (2.19).

By Lemma A2 there exists a representation of a solution xt to

(2.17) with zt = yt, such that for almost all t e [0, T]

xt = ft (x0, wl, y),

where ft denotes a measurable functional on [ 0, T] x R x C xTn

To show that p. is equivalent to p. (p. ), Theorems A3, A4 and

Lemma A3 will be used.



To check that all the assumptions of the theorems A3 and A4

are satisfied the following Lemma will be proved.

Lemma 2.1. b. Under the assumptions of Theorem 2.1.

E (sup II xt 114) < co

0< t< T

Proof of Lemma 2.1. b:

26

(2.20)

Let Tp = inf (t : sup II xs 114 > p), taking T = T if sup 11xt114<P.
0<s <t 0 <t<T

From (2. 1) it follows that

t T t T t, T

Ilxt T 114= 011x +I (Axs
+ B)ds + f Gldwls+ f G2dw2s II 4

<
A

0 0 0

t, T t

53( II x0114 + f Ax II
4

+ II f Bds II 4
+ II f G

1
dw

Is
II

4
+

0 0 0

t ,T

II f G2dw2 II

4)

0

where t,..r = minimum (t, T ) and arguments (t, y) are omitted.

Denote
t T

g
Jk jk

= f [G.] [I:1w s k] i = 1, 2,

0

where [Gi] ([dwis] k)
is j, k-th, (k-th) element of G. (dwi )

s

(2. 21)



By Lemma A4, applied with a = 2, it follows that
T

E ((gi jk)
4

)< 62T f EK jkG.] )4) ds .

0

The inequality
t AT

II f
n

Gdwi 114<ni
3

i s j=lk=1
0

(gijk )4

and the inequality (2. 22) now can be combined to give

n
P ,

E ( f Oldw
i 4

36 n f E (( [Ciiik)
4

)ds
j=1 k=1

0 0

T
3 II 114

63 ETn .e. f ( II Gi II )ds = c.1 ,

0
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(2. 22)

i = 1, 2. (2.23)

The upper boundary of the second and the third term in (2. 21)

are given by

t "T t,.T T t A T

II if Axsds114 11 f Bds II
4 < n

2
(( A ds) xs112 2 ( f II2ds)2 +

0 0 0 0
(2.24)t

P r
B Ilds)

4
) < n

2
((.1

2
ds) T f IlxsII4ds + (f B ds)4)

0 0 0 0

T

Denote c3 = 125(E(1 Ix0 II
4

)+n
2

E(f II Bs Ilds)4+c1 +c2)

0
T

c4 = 125 n2 T(f ilA112ds)2 .

0



By (2. 3) and the assumption about x0, both c3 and c4 are finite.

Taking expectation of the both sides of (2.21) the following

inequality is obtained
t

E(lIxt,
114

T )15_ c3 c4f
p

0

By Lemma Al it follows from (2.25) that

E 11xt,,T 114
) < c

3
exp (c

4
T)p

and by the Fatou Lemma (Lemma A5)

14) ds .

E (IIxt II 4) < lim inf E (II xt T 114) < c3 exp (c4T) .
Pp

From the above

sup E( II x II
4)

< ao

0< t< T
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(2.25)

(2. 26)

To prove (2.20), inequality (2. 21) is used again with t T replaced by

t or by T.

T t
, 11 1

sup 11x <125(11x II

4
+n2(111t 11

4
0

B lids)
4

+sup 1(1G 114 +
1
dw

1

s

0< t< T 0 0<t<T 0

t

sup 11 f GzdwZ 114

0<t<T 0

T

c4111xs114ds)
0

(2. 27)
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Lemma A6 applied with a = 4 and (2. 23) give

t T

E (sup II fGidwis I (3)4 36* T* n 2.3 f E( 11 Gi 114) ds.

0<t<T 0

Hence from (2. 26), (2. 27) and the above it follows that

E (suP 11xt114)< 125 ( E(11 xo 11 4)+n2 E(f 11 B ilds)4 +

0< t< T

T T

(3)4 36Tn( 3 f E ( 11G
4)ds+ (II +c Ts up E( 11xt

4
)<co.

3 r
11 GE 1

4
)) )

1
0 o< t< T

The above inequality ends proof of Lemma 2. 1. b.

The conditions to be checked before Theorems A3 and A4 can

be used are

-at= 1, 1(t, y)(C(t, y)xt+D(t, y)) 11 < co, P-a. s. , for almost allt ED, T] ,

and
P(f R - 1(t, y)(C(t, y)xt + D(t, y)) 11

2dt < co ) = 1.

0

From (2.28)

, ,

at < nR-1(t, y)11 (0. 5(11x02+11C(t, y)112)+11D(t, y)11)

By (2. 4), R -1(t, y) is P-a. s. uniformly bounded which implies

(2.28)

(2. 29)



E (ad< c( E + O. 5E( lixt 112) + O. 5E(I1 C(t, Y)I12)).
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(2. 30)

By (2.3) II D(t4) and )112 are bounded for almost all t E [0, '1]

and all E CT . Now from (2. 20) and (2. 30) condition (2. 28) follows.

Similarly as the above steps show that (2.29) also holds. From
ti

Theorem A4, it follows now that 1.1.<< II. According to Lemma A2

there exists a measurable functional ?t(a,-r), defined on [0, T] x

Rnx CT m
x CT

such that P-a. s.

xt = t (x0, w1
, y), for almost all t e[0, T] ,

where xt results from (2.18) with zt = yt, tE [0, T] .

In the identical way to that in Lemma 2.1.b, it can be shown

that E (sup II x
0 < t <

(2. 4) give

T

II

4
) < This inequality and the conditions (2. 3) and

II -1 1 ,-, 2
P(f !IR (t, y)((C(t,''..y)?

,

t(xo, w , y)+D(t, y)) dt < co

0
ti

Now, Theorem A3 can be used to show that µ II and

) = 1.

t t

t(x
0

, wl ' Y)==exp(fQ(s, })R -1(s, Y)fy -0.5fQ(s, y)Q*(s, y)ds), (2. 31)
s 0

dIri:

w , Q(s, y)R (s, y)dys+0.5f Q(s, y)Q*(s, y)ds), (2.32)
CY'

0 0
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where Q(t, 0=(C(t, ,)ft(a,r1,0+D(t, ))*R 1(t,

(t, E[0, T] x Rnx C,rn x C Tm .

Denote by mt(y) a measurable functional (see Lemma A2) such

that for almost all t e [0, T]

Define

nit(Y) E (xt IV t) P-a' S.

t t

wt =f R -1 (s, y)dys - f R
-1 (s, y)(C(s, y)ms(y) + D(s, y))ds.

0 0

It can be shown (L2, Lemma 11.3, p. 6) that (wt, Yt), t E[0,

is a Wiener process, and further (L2, Lemma 11. 4, p. 7) that

' µti with the following densities
Y Y

t t

(2. 33)

X (y)= ---=exp (fV(s, y)R-1(s, y)dys -O. 5 f V(s, y)V*(s, y)ds), (2. 34)

0 0

t t

t
(y)=X = exp (fV(s, y)R -1(s, y)dy

s
-O. 5f V( s, y)V*(s, y)ds), (2. 35)

0 0

where V(t, )=(C(t, g)m.t(g)+D(t, 0)*R-1(t, ),(t, ) [0, T] x C Tm

Now let (yt,Ft) be a random process with the differential

dyt = R(t, y)dw yt 0 0
= y
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By (2. 5) the above equation has a unique strong solution. Hence (see

(2.16)) the measures µY and }I.,- coincide.

Write (2. 9) in the equivalent form

Now define

dyt = (C(t, y)mt(y) + D(t, y))dt + R(t, y)d7vt . (2. 36)

1
(x0, w

1,
y)

P ',y)t 0 x t (7)

From (2. 31), (2. 33) and (2. 34), it follows that

where

1 1

Pt(xo' w y) = Pt(xo' w y) Y = Y
(2.37)

exp(fP
s

(x0" y)dw
s
-O. 5f p

s
(x

0
w

1" y)Ps (x0" y)ds

0 0

)=(C(t, )-mt()))*R. 1(t,

(t, E [0, T]xRn x C Tn x CTm .

Now using Bayes Formula (L1, Theorem 7.23, p. 289) the

following representation of a conditional expectation can be derived.

Let Ft(a,ri, g) denote a measurable functional on [0,1]xR nx
C
T

n
xC Tm

such that E(IlFt(xo, w1, y) ) < co , for all t 10, . Then



E (Ft(x0, y) t)=f Ft(a,ri, y) y)diiwl(ri)dP (a),
YO

n n
R C

33

(2. 38)

where 11
w

1( ) is a Wiener measure on and P (a)=P(x
0

< al y
0

).
0

Let 0 < to < <tk < t < T be some decomposition of the

interval [0, T] . Then for z. E Rn, i=0, 1, , k, denote Z=(z , z )0' k

and

k

Ft (x0, w1, y, Z) = exp (j Z (z )*f (x0, w
1

y))
2=0 t 0

where j is the imaginary unit.

By (2. 38) and the above

(0t(Z, y) = E (Ft I Vt) = f At(a, y, Z)dP (a),
YO

where
R n

t(a, y, Z) = f y, Z) y)dp.w1(1)

(2. 39)

It will be shown that t (a, y, Z) has the following form

21t(a, y, Z) = exp (Qt (a, y, Z))

where Qt is quadratic in the variables a, Z, and is nonnegative definite

in Z. Then, because P (a) is Gaussian and (ot(Z, y) is the conditional
YO

characteristic function of xt given V equation (2. 39) shows xt is
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conditionally Gaussian.

To this end Lemma A7 will be used. To show that At(a, y, Z)

has the form which allows for the application of the mentioned Lemma,

a number of notational changes will be made. All of them involve

simple algebraic equations and the equations (2. 8), (2. 9), (2. 18),

(2. 33), (2. 37) and (2. 39).

Denote (arguments (t, y) on the right hand sides are omitted)
t t

h
1
(t, y) = (C(t(f -lBsds

0 0

h
2

(t, y) = 1- h
3

(t, y) =
-1

H1

t t

q
1
(t y) = f dvs v - 0.5 f hih

1
*ds ,

0 0

t t

q2(t, y) =f h2dws - f h
2

h
1
*ds

0 0

t

q
3

(t, y) = f h
2
h

2
*ds

0

t s

q
4

(t, wi, y) = ( f h 3dwiT )*h2dws - f *(I h
3
dwT ) ds ,

0 0 0 0



q 5(t, w
1, y) = - f h2h2*

( h3 dw
1

T
)ds

0 0

The last two equalities can be rewritten as

q
4

(t, w1, y)=f(h
4
(t, y)-h5(t, y) -h4(s, y)+h5(s, y))h3(s, y)dwl s,

where

and as

0
t

*h
4

(t, y) = h2dws)
0

t
h

5
(t' y) =f h

1
h

2
ds

0

t
q5(t, w1

, y) = - f (q3(t, y)-q3(s, y))h3(s, y)dw1

0
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(2. 40)

(2. 41)

Now from (2. 37), (2.18) and the above equations note that

lnp(xo, w1, y)=qi(t, y) + xo (q2(t, y) + q5(t, w1, y)) + q4(t, w1, y) -
t s

0. 5 x0 q
3

(t, y)x
0

- 0. 51 (1 h
3

dw1
)

h h
2

(fh
3
dwl

T
)d s (2. 42)

0 0 0

ti

Equivalence of the measures p. and p., Lemma A3 and (2.42) give

lnpt(xo, w1
, y)=qi(t, y)+xo (q2(t, y)+q5(t, w1 , y

%,))+q4(t, w1 y) -

t s

O. 5 x0
*

.51"* Lz.q
3

(t, y)xo - O. 5f ( f h,dw ) hnh., (f h
3dw

1

T )ds (2. 43)

0 0 0



36

tiwhere in h2, h
3 °arauments (t, y) are omitted.

Using the fact that the processes w1 and y are independent

(see (2. 16)) it is seen from (2. 40) and (2. 41) that the conditional
tidistribution of q

4
and q

5
given y is Gaussian. By the equivalence of

timeasures p. and µti it is enough to show that Q t(a, y, Z) has the

desired quadratic form. But equations (2. 39) and (2.43), together

with the discussion above allow for the application of Lemma A7

from which it is concluded that

k k k

t ( Z , y)= exp (j E ( z ) m
1
(t, y) - 0.5 E (z

e
) r

1
(t, y)(z.)) ,

i =02=0 2 =0 1=0

where r (t, y) are some special nonnegative definite symmetric,

n x n, matrices and m(t, y) are some special n dimensional vectors.

It will be shown in the sequel that they are a solution to the certain

stochastic differential equations (filter).

Because of the arbitrariness of z., i = 0, 1, , k this ends
1

the proof that the conditional distribution of xt , , xt , given V
0

is P-a. s. Gaussian. This result, together with some results from

the nonlinear filtering theory will be now used to derive the filter

equation (2.6) and (2.7).

Let (zt, yt), t E [0, T] , be a partially observable

random process with only the second component (yt, Ft) being observed.

The stochastic differential representation of the a posteriori. mean



37

E ( zt I Yt) is to be found. Assume that zt has the following represen-

tation

where

such that

t

zt 0 s=z +f Ads t , te[O,T)
0

F t) is a martingale and (At, Ft) is a random process

III At dt < 00 P-a. s.
0

It will be shown that yt given by (2. 9) can be represented as

an Ito process

where

t t

yt = y0 +f
-C-s

ds + rR
s

dw
s

,j
0 0

(wt, Ft) is a Wiener process, and the processes (Cr, Ft) and

(Rt, Ft) are assumed to be nonanticipative and such that

P( f dt < 00 ) = I , P( f IfRtll2dt <co ) = 1

0 0

(2. 44)

(2.45)

To prove that yt permits the representation (2. 45) Theorem

A5 is used. To satisfy its assumptions it must be shown that

fE( II C(t, y)xt + D(t, y) I I )dt < 00

0
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But the above is the straightforward consequence of the

assumption (2. 3) and Lemma 2. lb.

Then the condition that R 2 (t, y) > 0 follows directly from (2. 4).

From (2.5) and the fact that yt satisfies (2. 9), it follows that

fI R(t, y) dt < co p-a. s.

0

Summarizing, conditions (2. 3), (2. 4), (2.5) and Lemma 2. lb

allow for an application of Theorem A5 and the following result is

obtained:

For yt' t G[0, '1] , satisfying (2. 9) there exists a Wiener process

(wt, F t), t E [0, T] , such that yt has the representation

yt=y0 +1(C(s, y)ms+D(s, y))ds+f R(s, y)d7vs ,

0 0

where mt = E(xt I Vt) .

(2. 46)

Now represent z t
1 = xt and zt2 = xtxt in the form given by (2. 44).

From (2. 8), it follows that

xt = x0 +f (Axs + B) ds + X t
1

, (2.47)

0

and

t

XtXt =X0X0 (x
s
(Ax

s
+B) + (Ax

s
+B)x

s
+ H1 H1 +H2H2 )ds + X t

2,
(2. 48)

0
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where
x t

1 * 1 * 2
= f (1-111-11 dws + H2H2 dws )

0

t

X
2

= f (x (dl. 1)*
+ dX. )t s s s s

0

and the arguments (t, y) are omitted for brevity.

It will be shown now that X t
i

, i = 1, 2, are square integrable

martingales. This is the first step towards application of Theorem

A6.

The martingale properties follow straightforward from the

above equations which define X ti, i = 1, 2. To show square integra-

bility of X t
l proceed as follows. From (2. 47)

IIX t1112= II xt x -f (Ax +B)ds 112 < 3(11x 112
0 s +11 xt 0 II

2 , 2+11f (Ax +B)dsil )<

0 0

T t T

< 3(11x t 112+11 x011
2 +2n(( f 11A112ds)(f 11 x s112ds)+(f 11B ds)2)

.

0 0 0

Hence sup E (11X +1112) < c1 + c supE (11 xt112) < co (2. 49)
0< t< T` 0< t< T

where cl 30(11x0112) + 2n ( 111B Ilds)2) ,

0

c
2

= 6n T f 11A11
2
ds + 3

0

and the last inequality results from (2. 3)and (2. 20).
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Similarly, using (2. 48) it can be shown that

T t T

11X t2112 < 4(11xt114+11 x0114+8(f I {A II 2ds+4T)f1Ix 114ds+4( f 11B I12ds)2 +

0 0 0

T T

2n
2( f II G

1
G1

*
1 1 ds)

2
+ 2n

2(
1 11G2G2

e-

lids)
2

)

0 0

From the above, (2. 3) and (2. 20) it follows that

sup E ( x
2

112) < co

0< t< T

(2. 50)

Now take the conditional expectation E( IV t) of the both sides of

(2. 47) and (2. 48), and apply Fubini's theorem to obtain

and

where

Tri(t, t)= 1(0, t)+I(Airi(s, t)+B)ds+ (X tl1V t) ,

0

t

It
2

(t, t)= (0, t)+f(Ir
1
(s, t)B +B rr

1
(s, (s, t)A +

0

(2.51)

Alr2(s, t) + + H2F12 )ds +
21

Sit) , (2. 52)

Iri(s,t) = E (z si 1 Vt), i = 1, 2, s, t [0, T] .



By Theorem A6 together with (2.3) t), i = 1, 2, are

square integrable martingales with the representation

where

and

where

t

Tr (0, t) = (0, 0) + F dw
1 1 s

1

s
0

T

fE ( 11 Fs
1112

)ds <
0

T

rr
2(0,

t) =
2

(0, 0) + f E Fs2k [dws] ,

0
k=1

T m
Iz E( II Fs2k

II

2
)ds < co .

k=1
0

The purpose of the following Lemma 2. lc is to show that

41

(2. 53)

(2. 54)

E IY ) = 1, 2, admit similar representations as the one givent t

above.

Lemma 2.1c

The processes E(Xti I Yt), i = 1,

martingales with the representation

E (X.
1

1 Y t)

and

t

0

2, are the square integrable

Al dws (2. 55)



t m
E (X t2 I Yt) = f Z As

2k
[dws] ,

0
k=1

where T

JE (11A sl 112) ds < co ,

0

and T

I E (11A
2k

II

2 )ds < m .

0
k=1

Proof of Lemma 2. lc

42

(2.56)

First it is shown that E(X. t
11

y t) is a square integrable process

supE( II EN t
11

t )11

2)
< supE t1 11

2
I t) =

0< t< T 0< t< T

sup E(11X +1112) < co

0< t< T

The inequality above results from (2. 49).

that

To check a martingale property of E(Xt1 sit) it must be shown

E(E(x y )=E(x lv , t> s
t t s s t

Notice that by definition y C which allows to rewrite the

left hand side of (2. 57) as follows

, 1

= E(E0,t
1,

Fs)isis) = E(k I sis) .

(2.57)



The above equality which proves (2.57) follows from the fact that

V
s

F and that (X t
1

' tF ) is a martingale (see (2.47)).
s

Apply now Theorem A6, which together with the obvious

equality E(X 011 Y0) = 0 gives (2.55). Proof of (2.56) is identical.

This ends the proof of Lemma 2.1c

Lemma 2. ld below gives the desired representation of the

second terms in (2.51) and (2.52).

Lemma 2.1d

Let A si = Tri(s, t) - Tri(s, s) , i = 1, 2

and
t

it1= fA As 1 ds

0

1 * 1 * 2
= ( As B + B(A s

) + AszA* + AA
s

) ds

0

Then t
1,

n t
2 are the square-integrable martingales

having the representation

and

tl
T

fM 1 dw
0

s s

T
2

m 2k
= Z M [dws] ,

0
k=1

43

t),

(2.58)

(2.59)
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where

and

T

fE (11Ms1112)ds < co

0

T m
fE E(11 Ms

2k
112) ds < co .

0
k=1

Proof of Lemma 2. ld

Similarly, as in the proof of Lemma 2.1c, it is shown that

t
i are square integrable processes and further that they possess

the martingale property. The square integrability of t
1 is proved to

hold as follows

where

Hence

t T t

II.nt
1 2

II
= II I Azs'ase < n f 11A11 2ds f 11P

s
1112 ds <

0 0 0

t

ci 1(11 Vi(S, t) I12 +II Tr
i

ii i

2
)ds(s, s) ,

1

0

c
1

= Zn f 11A112 ds .
0

sup E (11rit
1

112) < 2 T c supE (11 xt112) < co

T 0<t< T

Proving the above inequality (2. 3) and (2.26) are used. To show



45

martingale property of ri t
1 note that

t t

E{it
11,

Vs) = E(fAiri(T, t) dT I s) - E (f Airi(T ,T ) dT IV s)

0 0

E( f A x,rd'r I s) - f E(ATri(r,T) I Vs)dT =E ( f AxTdT I vs) +
0 0 0

E(f A xTdT I ys) fE (A Tri(T,T)d-r I Vs )dT -1E(A. ,Ti(r,T)! ys)d-r =

0 0

fA Tri(T, s)dT +fE(AxT I Vs )C1T - A Tri(T,T)dT - fE(AxT Iy )CIT

0 s 0

= f A( TYTP s) 7r1(T,T))dT = Osl

0

Similar calculations apply to t where the following inequality

is used
T t T t

,, ,, 4
lint 2

112 < 8n2( Jr 11A. I I
2

dsf 1 1 As 2
II

2
ds + 0. 5((f 1 1 B I I

2 ds)2 +T liPs 1

II
ds))

0 0 0 0

Application of Theorem A6 to both Titi
, i = 1, 2, results in (2. 58)

and (2. 59).

This ends the proof of Lemma 2.1d

From (2. 53), (2. 54), (2. 55), (2. 56), (2. 58), and (2. 59)

equations (2. 47) and (2. 48), take the following representation



where

and

where

t t
mt = mo +1 (A ms + B) ds +f Vs 1 dws ,

0 0

.mt = Tr
1
(t,t) (see (2. 33) and (2.47)) ,

1 1 Al 1Vs =F
s

+
s

+ M ,
s

t

Tr
2

(t, WI( 2(0,0)+f(msB +Bms +Tr
2(s, s)A +Altz(s, s) +

0

t

46

(2.60)

m
H

1
H1 + H

2
H2 ) ds +i E V 2k [dws]

k (2.61)
k=1

0

V2k = F2k + A2k + M
2k

s s s s

By Lemma 2. lc and Lemma 2. Id

T T m
fEolv 'eds < co , and f E( IIV

2k
II

2)ds
< co .

0 0
k=1 s

To derive the filter equations from (2.60) and (2. 61) the following

notation will be used. For t [0, '1] ,

t t

f
2k

,

m
[d;at1

= V 1k
s

dw
s k=1

0 0

and
*1 1 2 2k

(3 t =1 Ys [dws kt =f(dws) Ys l,
0 0

=1
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where (
1

'
Yt) is some bounded, m x n dimensional, process such

that Ily t
111< c < co P-a. s. almost everywhere on [0, T] , and

(y t
2k, yt), k = 1, , m are some bounded random, n x n dimen-

m
,,sional processes such that Z iry

2k
11< c < co P-a. s. almost every-

k=1
where on [0, T].

By the properties of the stochastic integrals it follows that

Note that

1 1
V at Pt )

t

=E (IV
s

1
y s

1ds) .
0

(2. 62)

E (m013t1) =E(m0E (Pt
1

I Y 0)) = 0 . (2.63)

The above is implied by the fact that p t
1 is a martingale and p O1 =0

P-a. s.

Further

E (f (Am
s

+ B)ds(3t1) =f wArns B)E(13t
1

I Ys))ds =

0 0

=fE ((Ams + B) (3 sl)ds .

0

(2. 64)

In (2. 64) again the .martingale property of (3t
1 were used. From

(2.60) it follows that
t

at
1 = mt m0 -f (Am s

+ B)ds .

0



The above, together with (2. 63) and (2.64) give

E (at Pt ) = E(mtPt )
r

E((Arns + B)psi)ds =

0

t

E ( E(xtpt
1

I Yt)) E(E((Axs + B) psllYs))ds =

0

t

E xt
1

-f (Axs + B) 13 s1 ds) .
0

From (2. 46) it follows that
t

-
= f R 1(dys - (Cm

s
+ D) ds) ,t

0

and next from (2. 9)

t

wt = wt2 +
f R -1 C(xs - ms) ds .
0

Using (2. 67) expression for pt1 can be written as follows

where

t
1 1 -1 * 1

dspt = pt + (R C(x -m ))
s s s

0

t1 2 * 1
13t = (dw

s
)

Ys
.

0

Now (2.65) takes the form

t

E (at
1
Pt].) = E(xt

1
- f (A xs + B) psi ds) +

0

48

(2.65)

(2.66)

(2.67)

(2.68)
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t s (2.69)

E(f xt(R-1C(xs -ms Il s))* lds)-E(ff (Axs+B)(1C1C(x -m ))*YldTds)
T T T

0 00

-
(pt , Ft) is by definition and by (2.68) a square integrable

martingale and similarly to (2.63).

1

E(x opt
1
) = E (x

0 tE((3
1

F0) = E(x0 01) = 0 P-a. s.

Analogously to (2.64) the following equalities hold

E (Axs+B)(3s1 ds) = E(f (Axs + B)E ((Ttl I Fs) ds) =

0 0

t

E(f (A xs + B) ds (3) .
0

Hence the first term of the right hand side of (2.69) can be written

as
t t

E(xtpt
1 -f (Axs + B)Ps ds) = E((xt- x

0
-1(A xs + B) ds) Pt1

=

t
0 0

t t

fE(f (H
1
dws

1
+ H dws2) (dw

s
2) y

s
1) = E H2 yslds)

0 0 0

The second term of (2. 69) takes the form

(2. 70)



xt (R
-1C( x

s
-m s

*

s)) y ds) =

t

50

*
E x s(R

-1C(xs-ms))*
ys

lds)
+ E (f (x.t- xs)(R 1C( x

s
-m s

)) y ds) =

0 0

t
E(f rsC*

R
-1y 1ds) + et' ,

0

where

and

r t = ff2(t't) mtmt

t

1
et = E(E (f (xt xs) (R -1C(x

s
-m

s
)) yslds I Fs))

0

From (2. 47) it follows by the martingale property of X t
1 that

Hence

t

xt x s) I Fs) = E(f (A xT + B) dT Fs) +E tlA sl) s) =

t

E (f (A xT B) dt I Fs)

0

t t
1 *

s
1

et = E(f f (A xT B) (R 1C(x
s
-m

s
)) y dTds) =

0 s

t s

E (f f (Axs + B) (R-1C(xT -mT))*y T1 dads) .

0 0

(2.71)

(2.72)

(2.73)
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Now from (2. 62), (2.69), (2.70) and (2.73) the following equations

can be obtained:

t

E ( f (V
s

1 - H2 - rsc*R -1)y slds) = 0 .

0

Since y
s

1 was arbitrary it is concluded that

r tC *R- 1+H2 =Vtl P-a. s. for almost all t c[0, T].

Now as the value of the integral

t

r 1 dw
J s s
0

(2.74)

does not change with the change of V
s

1 on the set of Lebesgue measure

zero, then for each t e [0, '1] , (2. 60) takes the following form

t t

mt = m0 +f (Am
s

+ B)ds +f (H2+ r sC
*

R
-1)dws .

0 0

(2.75)

To derive a similar equation for r (see (2. 72)) calculations of the type

(2. 62) to (2.75) are repeated for atz and Anologously to (2. 62),

tin
E (at2pt2) =E( E s

21 y2k ds) .

k=1

As in (2.63), it is shown that

E ( 2(0, 0)(3 t
2)

= E(Ir 2
(0, 0)E (13 t

21
)10)) = 0.

(2. 76)

(2.77)
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To simplify rather complicated equations, the following notation is

introduced:

J.
.:c

Ks=xs B
s

+Bxs +xs x
s

A +Axs x
s

H1H1 +H
2
H2*, (2.78)

and

Ls = (Ks' V) = msB + Bms + Trz(s, s) A +A If 2(S, S) +H1H1 +H21-12* .

Now similarly to (2. 64)

E(iLsdspt2)
= E(f Ls(3s

2ds)

0 0

and further from (2. 61), (2.77) and the above
t

E (at
2

pt
2

) = E(7. (t,t) (3t
2) E(f Lsps ds) =

0

t

E (xtxt `(3t2 -1 Kspszds).

0

(2.79)

(2. 80)

Let rsk denotes the k-th element of the m x 1 vector R -1C(xs
-m

s
).

Define p t as follows
t

I3-t2

2k
f y [dws2] k

k=1
0

Now pt 2 can be decomposed into two parts

2 2
Pt Pt

t m+flys2k
rsk ds.

0
k=1
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The above follows fromthe definition of f3 t and (2.67). Now (2.80)

can be rewritten as follows:
t t

E (oet2pt2)
= E (xx*-- r

-J 2ds)
r

Y

2k rkds -
Pt %Ps E (xtxt s

k=1
0 0

t s

E (( K s E
Y T

2k r
k dT ds) .

k0 0 =1

Using the equalities

and

* 2 2
E (xoxo ) = E (xoxo E (Pt ( F 0)) = E(x0x0 (302) = 0 ,

t t t

E(IKs(is2) =E(fK s
E(13 t2 j Fs)ds) = EciK s

ds(t2)
'

0 0 0

(2.81)

the first term of the right hand side of (2. 81) can be written in the

following form

t 2 2 -2
E((xtxt xoxo -1 K sds) pt ) = E t Pt

o

t t m 2k,
E (f (x s (H

1
dws

1+1-3 dws
2

+(1-1
1
dws

1+H2dw
s

2
)x

s
*

) y
s

Lclw s k)
k=1

0 0

tm
E (1E (xs(h2k)*+h2 kx s

*)
s
2k

where

0
k=1

h 2k denotes the k-th column of H2.

(2. 82)



where

The second term of the right hand side of (2. 81) is equal to
t m

E (i x x m y 2k r k ds) + et2,
" k=1 s s

0

e
2

= E (I (xtxt - x
s
x

s
)zy

S

2k rsk ds) .
0

k=1

From (2.48) and (2.78) it follows that
t

E((xtxt - xs xs
)1 Fs) = E(f KT dT1 Fs) + EE((). t2 -X s

2
)1 Fs)

Hence

0

t
E(f KrdT IF s).
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(2.83)

t t t sm m
et2

=E (I fK
T

Z y
S

2k r
S

kdTds)
=F (f f Ks Z y

T

2krTkdTds)
.

0 s
k=1 0 0 k=1

(2. 84)

(2. 82) has the following equivalent form

t m
E( f (ms(hak)* + h2kms*) ys2k ds) ,

0
k=1

and the first term in (2.83) is equal to

t

E( f E (xsXs* rsk IV s) y s2k ds) .

0
k=1

(2.85)

(2.86)



Finally (2.76), (2.81), (2.83), (2. 84), (2.85) and (2. 86) give

t t

E( E f V 2k 2k
ds) =E ( Z ( s(mh k

) +h2kms )1s ) +2k
k=1

s y s
0

k=10

m t
E( f E (xsxs rsk

I Y s)y 52kds) .

k=1
0

55

(2.87)

By reasoning similar to that used for derivation of (2.74), it

can be shown that

V t2k = mt (h 2k)
* + h

2
kmt*

+ E (xtxt rt
k

t '
IV ) k = 1, m,

P-a. s. for almost all t E[0, T]. This implies

m k * *Z V t [dws] k = ms(dw s) H2 + H2dws ms +
k=1

* -1 ,

E(xsx
s

(x
s

-ms ) C R dwl
s

Ys ).

From (2.75), using Ito's formula, it follows that

where

(2.88)

t
4. .4.,

mtmt =m0 m
0

* +f(msB +Bms
*

+ms m
s

A
-

+Ams m
s

*
)ds+

0

t t

+fA A ds + f (ms(dw)
* A + A dw m*s s s s

0 0

* -1
=1-1 -Fr C R

s s

(2. 89)

Subtracting (2.89) from (2.61) and using (2.72), (2.88) equation for

rt is obtained
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rt ro +I ( rA +A +H
1
H1 +H

2112
-As

As )ds +insds, (2. 90)
0

s s 0

_1
where = E(x x (x - rns) C R dw y -

s s s s s

* -1 * -1
m ( d w ) R c r - r C R dwm .

s s s s

Now the property that xt is conditionally Gaussian will be used.

In particular it means that

Eaxs}i{xs}jaxs}i [ms]i Y t) = [rns] i [ rs] ji+ [ms]i [I's]

where [()]. denotes the i-th component of a vector ( ). Hence for

any (n x 1) dimensional process gt, which is Yt measurable, t E[0, T],

the above implies

.*

E(x x
s

*
(x

s
- ms) g

s
IYs) =m

s s
(r g

s s
) +r g m

s s s

Let gs = C R dws . Then IIs
= 0 P-a. s.

Now from (2. 90) and the definitions of 111, Hz it follows that (2.75)

and (2.90) are identical with the equations (2. 6) and (2. 7).

It will be shown now that (2. 6) and (Z. 7) have a unique, con-

tinuous, yt measurable solution for any t E [0, T] . Y t measurability

of mt and r follows immediately from the structure of respective

1
equations. Assume now that r and rt2, t c[0, T] , are two nonnegative



definite, continuous solutions to (2.7). Then if A = _t r t
1 r t

2

A = A - H2R-1C, *= C R -2 C it follows that

t

6,t=f(A il s
+As A _ r

s
II ps

s
+ rt

s
r 1)ds.

0

From (2. 91) the following inequality results

II At rs II As II ds

where

57

(2. 91)

(2. 92)

0

rs = n(2 VA + II r s2 11 II + Iln r :II)

In order to apply Lerru-na Al to (2. 92) it must be shown that P-a. s.

T

rs ds < co

0

(2.93)

As the first step in this direction it will be shown that for any solution

r to (2.7)P-a.s.

Hr tH < C < co , t E [o, .

From (2.7) it follows that

tr(r t) < tr( 1'0) + 2f tr( rsA)ds +f( II G111 2+11G2 II 2)ds <

0 0

+ 2 tr( rsA) ds ,
0

(2.94)
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, 2
c

1
= tr ( r 0) + ( 11G 111 +

2
G211 )ds < .

0

Next, using symmetricity and nonnegative definiteness of r t

the following inequalities are obtained:

II
rt 112 <(tr(rt ))

2 < 2c
1

+ 4 (111 rs All ds)
2

<

0

T t

2c1
2

+ 4 f 11A11
2
ds Jr r 11 gds

By Lemma Al

where

0 0

11 r 112 < 2c12 exp (c2T) ,

c2 = 4 f 11A112ds .

0

By (2. 3) c2 < 00 which implies (2. 94)

Now note that

T T T T

fr(s)ds = n(2 1 1 1 .A . 1 1 d s + ill r s2 I./lids + i 11 Tr rsl !Ids) <

0 0 0 0

T T T
- 4(

211( f HAilds+ f 11H2R 1C 1 1 ds + c i II C R
-.1

C [Ids) <

0 0 0

T T T

n(2 f 11A11ds + f (11G1112 + 11G2112)ds + (c + 4c3) f II c eds) < co

0 0 0

The above inequalities, which give (2. 93), follow from (2. 94), (2. 3),

(2. 4) and the inequality
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* -2
11H2

112 = tr((G
1
R

1
+ G

2
R2 )R (R1G1 +R2G2 ))< tr(G1G1 +G2G2 ).

Now Lemma Al can be applied to (2. 92) resulting in

P (11&tli
2 = 0) = 1, t[0, T] .

Because of the continuity of r t
1 r the above impliest

2

P ( sup 11 At 112 = 0) = 1.
0<t< T

The above proves the uniqueness of a continuous solution to (2.7).

Assume now that mt 1 and mt 2 are continuous solutions to (2. 6).

Then t
1 2 rml -m2=_ mt = j (A. r ) (ms 1 - m

s
2) ds.

0

Using the results obtained above and Lemma Al the following is

obtained:

P (sup 11 mt 1 - mt 211
= 0) = 1,

0< t< T

which proves the uniqueness of a continuous solution to (2. 6).

As the final step it will be shown that if r
0

> 0 P-a. s. then

r t E [0, T] is uniformly positive definite. r 1 exists for sufficiently

small t due to the nonsingularity of the matrix I' 0
and the continuity,

P-a. s. , of the matrix! in te [0, T] .

Let t = inf (0 < t < T det r = 0), with = T if inf (detr t ) > 0.
o< t< T
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Then for t < r t -1 exists and is nonnegative definite. To show
-that all the elements of r 1 are bounded note that for t < t,. T

0=
dt

I = dtd (r t rt
-1)= r tr t

-1 +rtr t
-1

Hence
p -1 -1 f,-

t

at tr t
-1

and from (2.7)

-1 * 1-= -rt
-1 ( FA + A rt +G

1
G1 + G2G2 - At At )r -t

`'* 1 ,, -1 -1 -
-A rt - - rt -1Ar r + C 2C.t 11 t

From (2. 95) it follows that

)5... -2 tr t

or after integration

tr( rt-1) < tr( r0-1) + f II R-lc- II2ds -2ftr(A rs-1)ds

Nonnegative definiteness of r -1 gives

t

II r t
-1112 < (tr( rt

-1
))

2 < 2 c
1

2
+ 4 c2f II r -1

112ds,

0

where

c
1

= tr( r0 -1)
+ !IR

-1
C II

2
cods < ,

(2. 95)

(2. 96)

T T
0

and
c2

= f II A' 2ds < 2 I A Zds + f R-111 2(119. II 4+ Il G2 II 4+ J CII4)ds < c°.

0 0 0
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Both of the above inequalities are implied by (2. 3) and (2. 4). Using

Lemma Al the following boundary for II r t
-1

II can be derived from

(2. 96):

11rt
4 2 2< 2 c

1
exp (4 c 2T) < co .

Boundedness of II rt
-111 for t< t AT contradicts definition of t unless

= T. Therefore P (t < T) = 0 and

II rt-111 <_ c < t E [0, T].

This ends the proof of Theorem 2.1.

(2. 97)
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3. AN OPTIMAL CONTROL PROBLEM
USING INCOMPLETE DATA

An application of the filtering results derived in Chapter 2

to the stochastic control of a certain class of systems is discussed

here. The separation of estimation and control for linear, partially

observable systems and quadratic criteria, both having random

coefficients is shown to hold. The existence of an optimal control

is shown to depend on the existence of a solution to a certain

ITRiccati-like" partial differential equation.

A control problem is stated as follows. Let the state of some

controlled system be described by the stochastic processes

xt, yt,zt,t e [0,1] , of the dimensions n, m and k respectively,

where only yt and zt are being observed. It is assumed that

xt, yt, zt, t [0, T] admit the following differential representation

(3.dxt = (A(t, zt) xt + B(t, zt)ut) dt + G(t, zt) dwt
1

'

dyt = (C(t, zt) xt + D(t, zt)) dt + R(t, zt) dwt2 (3.

dzt = F(t, zt) dt + H(t, zt ) dwt
3

, (3.

1)

2)

3)

where wti
'

i = 1, 2, 3, are independent Wiener processes of dimen-

sions Li respectively. The matrices A, B, G, C, D, R, F, H have

the dimensions n x n, n x p, nxi., mxn, mxl, mx P k x 1, k x2' 3



63

respectively. If e denotes an element of any of these matrices

then e(t,) as a function of (t,) E [Op Ti x R k, is assumed to be

Borel measurable.

Let denotes the a- - algebra generated by (ys, zs: 0 < s < t).

The controls ut of the dimension p, are assumed to be Y measurable

for every t c[0, T] . It is desired to minimize the criterion

T

I(u) = E ( f xt 9(t, zt)xt + ut P(t, zt)ut)dt + xt S(zt)xt), (3. 4)

0

where the symmetric matrices Q, P, S of the dimensions n x n,

p x p, n x n, have again Borel measurable elements and minimiza-

tion is performed over certain class U of admissible controls. The

control u E U is called optimal if

I(u) = inf I(u) .

u 1.1

One of the interpretations of the above control problem is that

included are linear, partially-observable control systems with

quadratic criteria which have random coefficients being certain

functionals of the Wiener process wt
3. The controller is getting

information about realizations of yt and zt. The optimal control in a

random feedback form is to be derived.

In order to apply Theorem 2.1 and to obtain the optimal
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regulator the following assumptions are made.

Fort E [0, Ti E R
k

11A(t, )11 + 11B(t, )11 + .11C(t, )11 + 11G(t, )11 < c < , (3. 5)

here and below c < co denotes a positive constant,

11D(t, 011Zdt < co (3.6)

0

11(R(t, )R' (t, ))111 + 11(1-1(t, )H* (t, ))111 <c < co (3.7)

11R(t, - )112 + H(t,11)112<c III -11 112, (3.8)

)112 + c (1 + 11012) (3.9)

F and z
0

are such that a unique, strong solution
T

zt , tE [0,T] to (3) exists and P (f 11 z t li

1 2 dt<oo) = 1,

0

(3.10)

E( II II 4) < co P (II yo ll < co) = 1, x0, yo, zo are

independent of we', i = 1, 2, 3, and P (xo < alyo, z0) (3.11)

is P-a. s. Gaussian,

Q(t, S(0 are non-negative definite matrices, and

P(t, 0 is uniformly positive definite, i.e., elements

of its inverse are uniformly bounded,

(3.12)



the controls UE U satisfy

T

E(Ilut114)dt < co

0

and are such that (3.1) has a unique, strong solution.

Comments:

65

(3.13)

Conditions (3.5) to (3.13) are chosen to compromise between

generality of the class of systems given by (3.1) to (3. 4 ) and

simplicity of the proof of the main theorem. They can be somewhat

relaxed with complication of proof. For example, condition

II G(t,t ) 11 < c < co , for (t, t) e [0, T] x R k can be replaced by

IG(t, 4 dt <

0

R
k

Sufficient conditions for (3. 10) may take the following form: for

t E [0, T ], G Rk

11F(t, ) - F(t,1 )112 < c II - ii II 2 ,

)11 2 < c(1 + II 112) ,

E(11z0112) <c°
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For u e U the following notation is used

mt = E (xt
u,

Y t) ,

rt = E ((xtu - mtu) (xtti - mt11) I V)

where xtu, ytu are corresponding to u solution to (3.1) and (3. 2),

and r t will be shown to not depend on u.

Theorem 3.1

Let (3.5) to (3.13) be satisfied. If there exists a uniformly

bounded solution V(t, (t,) c [0, T] x Rk, to the Cauchy problem

where

L(V) + A V + VA + Q - VBP-1 B* V = 0 , (3.14)

2
L( ) = a ( ) + (F* a) ( ) + 0.5 tr (1-TH * a

( ) ,
tt

(the arguments (t, are omitted for brevity), and

V(T,) = S() ,

then the optimal control exists and is given by

ut = -P -1 (t, zt)B (t, zt)V(t, t 40, T] .

Here tht = mt and

(3.15)



dm tu = (Am tu + But)dt + A dv t '

d rt = (A ft+ rt A + GG - AA') dt,

* -1/2A= r tC (RR )

dvt = (RR ) -1/2 (dyt - (Cmt + D)dt) .

In the above equations arguments (t, zt) were omitted.

Proof of Theorem 3.1

Under assumptions made equations (3. 16) and (3.17) result

straight-forward from the filter equations of the Theorem 2.1.

Equation (3. 17) does not depend on the choice of u hence r u

for all u E U . This proof involves the following steps:

Step 1: The ,tcandidaten Zit for an optimal control is found

using the dynamic stochastic programming approach

(see (3.21)).

Step 2:
ti

It is checked that ut given by (3. 21) satisfies con-

dition. (3.13).

Step 3: It is shown that (3. 1) has a unique strong solution for
ti
ut defined by (3.21).

The optimality of a given by (3.15) will be proved by stochastic

dynamic programming methods. Introduce the value function
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3 (t, a, on [0,T] x Rn x Rk by the following definition

J.
3(t, a , = aV(t,) a + v(t,

where V(t,) is a solution to (3.14) and v(t,) satisfies the Cauchy

equation:

J.

L(v) + tr(GG V) = 0 , (3.18)

v (T,) = 0 .

Both, the above equation and (3.14) have the same differential

operator L . It is assumed tacitly at this point that G(t, )G (t,

possesses the same regularity property as Q(t,) so the

existence of a solution to (3.14) implies the existence of v.

Using Ito's formula it follows that

J(T,xTu,'zT) -J(0,x0,z0)=
T

us*aV u avttx x +t t t 3 t
0

2(Axtu + But)*Vxtu + tr(GG V) +

* u uF ( ((x ) Vxt + v) I ) +
a t zt

* * u ,0.5 tr(HH ( a ((xtu) Vxt + v) = z))) dt +t
(3.19)

T

f (2(x tu) c'VG dwt
1 + (a ((xt

u
)
* V xtu + v) I )

*
d.Hwt

3
.
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Arguments (t, zt) in (3.19) are omitted. Taking the expectation

of the both sides of (3.19) and noticing that the expectation of the

second integral in (3. 19) is equal zero the following equation is

obtained.

T

EM T, xtu, zT)- J (0, xo, zo))- E(f (tr((L(V) I
=z

+A*V+VA)xtu(xt
u

) )

0
t

(L(v) I + tr(GG
*V) + 2ut B V xtu) dt.

t

Now as V and v satisfy (3. 14) and (3.18), and the relation

(3.20)

v C y for t > s is satisfied equation (3.20) takes the following forms t

where

E(J(T,xTu'z T
- J(0,x0,z0))=

T

-E ( f (tr((Q-VBP - 1B V)(rnt
u

(m.t
u

) +r t))+2ut*B*V.mtu)dt =

0

I1(u) +I2 ,

T

I1(u) = E(f Urntu)*(VBP-1B*V-Q)+2u:BV)m.tudt)

0

12 = E(f tr((VBP - 1B *V-Q)
r t)dt)

0

Note that 12 does not depend on u.



For all acRn and 1 E RP the following inequality holds

a*VBP-1B*Va +2i BV > - 1*P1

with equality iff

Hence for

1 = -P-1 B* V a .

-1
11°''t -P (t' zt)

Bye

(t, zt) V (t, zt) mt

ti ti
where mt mt

it follows that
T
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(3.21)

* ,r
E (J Cr, xT, z,r -J (0 ,x0, zo)) = -E(f(mt Qm.t + ut Put)dt)+Iz, (3. 22)

0

ti
ti

where again xt =
uxt

For any u c U
T

E ( J(T, zTuzT )- J(0, xo, zo)L> -E (I((rntu)*Qmtu+ut*Put)dt)+I 2. (3.23)

T

Let 13 = E ( tr(VBP-1B*V rt)dt). Notice that 13 does not depend on

u, and that 0

0

E( J(T , x Tu, zT) = E ((x Tu)* S(zT)xTu) .

Now from (3.22) and (3.23) it follows that for all u E U
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E (a, xo, zo)) = 1(u) - 13 < I(u) - 13.

The above results in the following inequality

ti
I(u) < I(u) , u E U . (3.24)

To show that u e U , and hence u = u it is first shown that vt,

which is a Wiener process with respect to (see Theorem 2. 1),

does not depend on u. Let xt0
' yt 0

' m to, v to correspond to ut 0

on [0, T] . Denote by etu = to - mtu and eou = x0 - m0. From

(3. 1) and (3. 16) it follows that

de tu = Aetu dt + Gdw tl -r t A (RR ) -1/2 ((C etu+D)dt
+R dwt

2)
.

Hence etu and et 0
coincide. Write now

dvtu = (RR
*

)
-1/2

((C etu + R dwt3) .

u 0The above imply that vt = vt = vt P-a. s. (the arguments (t, zt)

are omitted).

Let u be any admissible control. By construction of vt the

following holds

y = -alg(y
u,

z :0<s<t) C o- -alg (v v , z :0< s< t) = Fto s s s s t

By (3.21) ut is Ft measurable, and by the above ut is Ytu measurable

for any u E
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tiNext it will be shown that ut satisfies (3.13). First for r t
which is a unique continuous, nonnegative definite, symmetric solution

to (3. 17) (see Theorem 2.1) it follows that

1

\rn tr ( rt) < II r II < tr ( r t), t E [0, Ti .

From (3. 17) and the above write

II rtII < tr( r0) +f(2tr(Ars) +IIG112- IIrsAll2)ds< c (11111 r ds),te[0, T],
0 0

where

0< c = max (tr( r 0); 2IIA ; f II cis) < P-a. s. by (3.5) and (3.11).
0

From Lemma Al and the above

11 r t 11 < c exp (c T) ,

which shows the uniform, P-a. s. , boundedness of r

For ut given by (3.21), (3. 16) takes the following form

dint = (A-BP-1 B*V) mt dt +r tc* (RR*)-1/2dvt, mo = mo

From (3. 5), (3. 7), (3. 12) and (3. 25) it follows that

and

II A-BP -1
B *V II < c

1
< co

* * -1/2
II r t C (RR ) < c <

1

(3. 25)

(3. 26)
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Now by Theorem A6 (3. 26) has a unique, strong solution. To prove

that f E(1112'' 114)dt < 00 , it is enough to show that
0 t

T

fE(li Cr\ 114)dt < co . (see (3.5) and (3.12)) .

0

Write (3. 26) in the following form

drnt = nit dt + d vt

= A-BP-1 B*11" ,

where

_* * -1/2
B r C (RR )

By Itois formula II mt II
4

= II n10114 + 4f 11 ms

2f (11rns112tr(iii *) + tr(ii*ni ti
s s

0

Define

0 t

ms Am
s

ds +

(3. 27)

))ds + 4f Ilnis112rns*fidvs . (3.28)

0

N
= inf (t: suplIm 11> N), assuming T

N
= T if sup II msll< N .

s
0< s< t 0< s< T

With the above definition of TN and the boundedness of A and

the following inequality can be derived after taking the expectation

of the both sides of (3.28)
t AT

114) < E (Ifm0114) + 4 E (ci f N(Ilms114 + 11/n5112)(1s) <
E Ir;tAT

N 0



t

E (11 m0114) + c1
3 T + 8 cl f E(Ilm

s^T II 4)ds
0

Lemma Al applied to the above gives

E (Ilmt 11

4) < ( E(11m0114) + ci 3 T) exp (8 t ) .

N

By Fatou's Lemma

E (11mt11
4) < lim inf 114)< (E(11M0114 c13T)exp(8 cit).

N co

From the above and (3.11) it follows that

E(Ilmtll
4

) (Ellx0114 + ci3 T) exp (8c1 T) < co ,
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(3. 29)

which proves (3.2 7).

As the final step it will be shown that (3.1) has for ''ut a strong

unique solution. To show the uniqueness assume that xt 1 and xt2

are two continuous strong solutions to (3.1) with the same initial

condition x0. It follows that
t

xtl - xt2 = f A(xs1
- xsz) ds, t c[0,T] .

Denote

0

xtP = x (sup(11xs1112+11x
s

2112) < p) ,
0<s<t

where x( ) denotes the characteristic function.



Since xtP = xtP xsP for t >s then

t
p 1 2

=
p ti p 1 2

xt II t t 11 xt 11 xs A(xs -xs )ds11.
0

From the definition of x P it follows that x tPllx 1-xt211 is bounded,
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(3. 30)

and consequently the mathematical expectation of the both sides of

(3. 30) exists. Hence
t

E (xtPllx xt211) < Nrnf E (XsP11A(xsi-xs2)Pds
0

T

4-n c E(X Pdx 1-x 2s S S
)dS, t E [Op Ti

0

The last inequality is implied by (3. 5). Applying Lemma Al to the

above it follows that

Therefore

E (Xtp xt
1

xt
21() = 0, for all t [0,T].II

P(Iixt
1

t
2

x > 0) < P (sup xs1I12+11x s
0< s< T

> p ) .

The last term of the above inequality goes to zero as p goes

to infinity, because of the continuity of the processes xt 1 and xt
2.

Hence for any t E [0, T]

P( xt1- xt2 > 0) 0,
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and therefore for any countable, dense set DC10, T]

P(sup 11xt1-xt 211 > 0) = 0.
t E

Using again the continuity of the processes x t
1 and x t

2 the following

equality

P(suplIxt 1 - xt211 > 0) = P(sup 11 xt1- t2 II > 0) = 0,

0< t< T t ED

proves the uniqueness of a strong, continuous solution to (3. 1).

To show the existence of a solution to (3.1) write (3.1) in

the following equivalent form

dxt = dft + Axt dt

where dft = But dt + Gdwt1
, fo =

x0

First it will be shown that

E (supliftilz ) < co .

0 < t< T

From the definition of ft the following inequalities result

II ce 3(IIf0112

and

t t

+ if f BUs ds II2 +II f G dws 1112)
,

0 0

(3. 31)

(3. 32)



t

E(suplift 112) < 3( E(Ilx 0112 ) + E(supllir rti 2usdsii )

0< t< T 0<t<T

t

E (sup ll f Gdw 1112
0<t<T

0

0
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(3. 33)

To show that the second term of the right hand side of (3. 33)

is finite it is enough to show that
t

E(sup f II ms 112 ds) <
0< t< T 0

co .

From (3.29) it follows that supE(
2

) < co

0< t< T

It will be shown that actually

E(suplIrntd
2
)< co,

0<t<T

From (3.26) write

(3. 34)

(3. 35)

T t
, 2sup m 2

< 3( II rn + c nT ms ds + sup II fBdvs ). (3.36)" 11 112t 0

0< t< T

Denote V tij

and (3. 5)

which implies

t

f [dvs]iij
0

0 0<t<T 0

According to Lemma A4 (a = 2)

E((V t
ij

)4) < 36 T2 c
4
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E ((Vt
i3)2) < 6 T cz .

Using now Lemma A6 (a = 2) and the above the following inequality

is obtained.

and since

E(sup(Vt
ij

)2) < 24T c2 ,

0<t<T

t n m n m
Ilf B dvs11 = E ( E ij

)
2< m E E (V

t

i
)2

0
i=1 j=1 i=1 j=1

then from (3. 34) and (3. 36) it follows that

2)
+ c2T

2n sup E(11m,t
2

it

2
E(suPiirrit11 ) 3( E( moll
0< t< T 0< t< T

+24nm2 Tc2)
< co .

The above proves (3. 35). To show that (3. 32) holds it remains to

prove that the third term of the right hand side of (3. 33) is bounded.

Similarly like in the proof of Theorem 2.1 (see Chapter 2, (2.23)).
t T

E(11f Gdw
s

1114) < 36T n
3

f E(11G114 )ds < 36T 2n
1

3
c
4

,

0 0

and by Lemma A6

t

E(suP II f Gdws1112) 4<2 T c 2
Nrn

10< t< T
0

< co .
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The last inequality which follows from (3. 5) is the last step in

proving that (3. 32) holds.

Consider now the sequence of continuous process xt (i)

i = 0, 1, , t E [0, T] , defined by

(0)xt ft

xt(i) = ft + f A xs(i-1) ds , i = 1, 2, ... (3.37)
0

To show that E xt
(i)

If
2) < c < co , where c depends neither on i nor

on t, write using (3. 32)

t
g(i)(t) = E(11

(i) 2)
2(E(Ilft 112 ) + nc2 f E(II xt(i

-1)112
)ds) .

0

From the above and (3. 32) it follows that

g(i)(t) < +J g(1-1)(s)ds),

0

where

c1 = 2 max (nc2; sup E (liftV)) < c°
0<t<T

By mathematical induction (3. 38) results in

g(i)(t)< c1 exp (c1t) < c1 exp (c1T) .

Consider now the following inequality implied by (3. 37)

(3. 38)

(3. 39)
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t t
( ( i) (i) s)ds.h(i+1)(t) = E(IIxt i+1)-xt 2

) = E ( .A (x -x )ds 11 nc
zr

(s
(i)

s
(i-1) 2

0 0 (3. 40)
T

(Since E ( sup II xt
1) -xt(0) 2)= E(suplliA f

s
ds 112) <

0 <t<T 0 <t <T0

nc 2
E(sup II f

2)
< c2 <

0< t< T
t

it follows from (3. 40) that

Next

c2 (nc2t)i
h(i+1)(t) < 1!

t
( (sup xt 1+1)-xt i)

11

2 < nc2 sup ill x (i)-xs(i-1)112ds

0<t<T 0< t< T
0

T

nc2 f 11 x (1) - x (1-1)112 ds,

0

which together with the inequality (3. 41) give

T 2

E(sup xt(i+1)_xt(i) 2) nc2 yric t)i

II

0

Markov inequality gives

= c2 (nc2T)i
i!

CO

(nc
2T

)i .4(i+1) (i) 1

E P(suPll xt -xt 11-1 2)5- cZ E i! < co .

i=1 T 1=1

(3.41)
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Hence by Borel-Cantelli Lemma the series
co

11x(0)II xt
(1+1)

-xt(i)
i=0

converges P-a. s. uniformly over t e[0, T] . Therefore the sequence

of the random processes (xt(1)), t e [0, T] , i = 0, 1, , converges

p-a. s. uniformly to the continuous process xt giveni by

(o) (i+1) 0.)xt = X + Z (Xt -Xt ), t E [0, T] .

1=0
(3. 42)

From (3. 31) and Fatouls lemma it follows that

E ( xt II 2) < ci exp (ci T) .

To show that xt defined by (3. 42) is the solution to (3. 1) for t E [0, T] ,

i.e. for each t E [0, T] , P-a. s.

define

t

xt - ft - f Axs ds = 0 ,

0

t
(i +1) Xt - Xt(1+1) (1+1) +f A(x

s
(i)-x

s
)ds .

0

(3. 43)

By (3. 37), (3. 43) will be proved if it is shown that et(i) converges in

probability to zero as i goes to infinity. But

t

11 1
A(x

s
(i)-x

s
)ds 112 < nc2T

sup II xt(i)-xtilz and as was shown

0
0< t< T

above
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171- c> 0 P (supllxt(i) -xtll2 > ) 0 as i cc .
0< t< T

Hence Ile t
(i) II converges in probability to zero as i . . This ends

the proof of the existence of a strong solution to (3. 1). This ends
tialso proof that u E U and since (3. 24) holds for arbitrary u E U

it is concluded that ii. = u.

This ends the proof of Theorem 3.1.
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4. ON A RICCATI-LIKE EQUATION OF
STOCHASTIC CONTROL

The sufficient condition for the existence and uniqueness of a

solution to the Cauchy problem stated in Theorem 3.1 (Chapter 3,

(3. 14)) is given. The result presented here is a generalization of

a solution to the Riccati differential equation. To state the main

theorem of this chapter it is necessary to define two Banach spaces

with elements which are matrix functions A(t, (t, e [0, T xR

and B(), e Rk respectively. With the norms defined here these

spaces ,pacesare called Holder spaces and are denoted byfi.r, i = 1, 2,

where r is a certain, positive noninteger number.

Definition 4.1

A matrix function A(t,.;) is said to belong to H
1

r if all elements

of A(t,,;) are continuous on [0, T] x Rk, together with continuity of

all derivatives at ia , 2i + j < r, where a ti denotes the partial

derivative with respect to t of order i, denotes any derivative

with respect to of order j, and A has a finite norm defined as

follows:

[r]
11All = E

q=0 q
1

where
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II A II 0 = max I IA(t,

(t,)E[0,1] xR k

II = z II atlas' Alto .
q (2i+j=q)

In the above, summation is taken over all possible combina-

tions of i and j such that 21 + j = q. [r] denotes the largest integer

value such that [r] < r.

Further 11Alir is defined by

where

II A II, = IIA + IIA II t

IIAII = E pa ia jA (r-[r])
(2i+j=[r] ) t

IIA = z Ha la A IIj (r
2i -j)t t '(0< r-2i-j< 2)

(again summations are taken over all possible combinations of i and

j such that 2i + j = [r] , and 0 < r - 2i - j < 2), and for 0 < a< 1

IIA (a) = JIA(t, )-A(t,1)if
III -1-1 a

(t,),(t,T1)[0,T] x Rk



II A II (a) = sup HA(t,
It-sla

(t, ) E [0,T] xR

Definition 4.2
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A matrix function B() is said to belong to 1-1: if all elements

of B() are continuous functions on Rk together with continuity of all

derivativesa up to order [r] , and B has a finite norm defined

as follows:

where

[r]
111311H = + IBI.

2 j=0 3

1B10 = max 1133()11

ER

Isii = z
I a 3 Blo

(j)

,

a B 1
[r] (r-[r] )

=

and for 0 < a < 1,
1131(a) = IIBM-B(11)11

k
E R

Remark: The last equations of definitions 4.1 and 4.2 may be

given with an additional condition, 4-- 11 < p, where p is a certain
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positive number. However the norms defined on H land H

for different values of p are equivalent and hence their dependence

on p is not indicated.

Now the following result can be stated.

Theorem 4. 1

Let r > 0 be a noninteger number. If A(t, B(t, F(t,

H(t, t), P(t, Q(t, 0 belong to H 1r, Q(t, t) is nonnegative definite

and P(t, ) is uniformly positive definite on [0, T] x Rk, then for

any S() E HZr+Z which is nonnegative definite on Rk the following

Cauchy problem

where

8V + L(V) + A V + VA + Q - VBP -1
B

* V = 0,a t

a 4:

8 a
azL(V) = (F

a
) V + 0.5 tr (HE ) V,

(4. 1)

V = V(t,t), (t, t) E [ O, Ti x Rk and V(T,) =S(0, t ER ,

has a unique solution V(t, 0 which belongs to H1 r+2. Also, this

solution is nonnegative definite and uniformly bounded on [0, T] x R k.

Proof of Theorem 4.1

By the transformation s = T-t, (4.1) becomes the classical
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Cauchy problem with the initial, instead of the terminal, condition

S()

8 V
as = L(V) + A V + VA + Q - VBP-1 B* V, (4.2)

VI s=0 = S

All the matrix functions in the above have the arguments of the form

(s, ) E [0, x R k .

where

Write (4.2 ) in the more convenient form:
0
V = L(V) + N(V, K) , (4. 3)

3V
V= = , K = P -1

B
*

V,a s

N(V,K) = (A-BK) V + V(A-BK) + K PK + Q .

tiFurther, for any matrix iZ of the same dimension as K, it follows

that

(A -BK) V + V(A-BK) + K PK =

(A -BK) V + V(A-BK) + K * PK - (K-K) *P (K-K), (4. 4)

which implies
ti

N(V,K) < N(V,K) ,

with equality only if X = K.

Define now the following sequence of matrices (V
i), i = 1, 2, ... ,

1where V is a solution to the Cauchy problem



01
:=)V = L(V1) + A V1 + V1A +

V11
s= 0

= S ( )

and for i = 2, 3, ... , V1 is a solution to

V1 = L(V1) + N(Vi, K1),

V I s=0 S(" K1 = P-1B*V1-1.
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(4.5)

Now the following results will be used:

Lemma 4.1

[Kl, p. 189] Let (V1), i = 1, 2, ..., be a sequence of n x n

symmetric matrices such that

1 2V > V > ..., and V1> V , i = 1, 2, ...,

cc, cofor some matrix V. Then V = lira V exists and V > V.

Lemma 4.2 [L3, Theorem 10.2, p. 617]

Let the assumptions of Theorem 4.1 hold and Let A e H
1

then the Cauchy problem (4.5) has for i = 2, 3, ... , a unique

solution in the class of matrix functions from H
1

r+2, and this solution

is subject to the inequality
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II V1 11 H r+2 < c (II (Ki-l)*PKi-l+Q II r +1IS r +2) $
1 "1 2

with the constant c< co not depending on Ki, P, Q and S.

Notice that for i = 1, K 0=0 can be taken and the result of Lemma 4.2

holds giving V1

1

r+2
e H and the inequality

I1V1 H r +2 < c (II QIIH r S IIH r+2 ) = c1 < c°
1 1 2

2 *Now K =P-1BV1 belongs to 1r, which by Lemma 4.2 implies

that V2 belongs to H
1

r+2. Continuing this procedure for i = 2, 3, ...
it follows that Vi e H

1

r+2.

Next the following result is proven to hold.

Lemma 4.3

Suppose that the Cauchy problem

w° = L(W) + ;01.4 + + ,

where Q = a*> 0 and W(0, = S() = S*() > 0,

(4.6)

r+2has a solution W(t, (t, [0, T lx R k, such that W E H
1

for

some noninteger number r>0. Then W(t, ) > 0 on [0, TI x



Proof of Lemma 4.3

The following auxiliary result will be used.

iX = 1, ..., n, denote the real eigenvalues of a

symmetric matrix W, ordered as follows X < X < < X

It will be shown that if for some a E R

then

a* W a = X
1

II a II ,

* 1 * ti
a A W a= X.

1
a A a ,

tifor any n x n matrix A.
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(4.7)

(4. 8)

It is seen that for any real, symmetric matrix W there exists
-1a nonsingular matrix U with the property U = U , and such that

W = UWU is a diagonal matrix with the real eigenvalues of W on

the diagonal (see [C1, p. 412] ). Consequently, (4.7) may be rewritten

a U UWU Ua = WTI = Z X 2
= E l,

i=i i=i

where

TI=Ua E Rn, and the last equality follows from (4. 7) and

*
II

2
= U U a = 114 2

(4.9)

From (4. 9) it follows that if X
i 1

> X for some i = 2, , n, then

1. a- 0 for j = n. This gives of the form
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J.

=
17

°, I. 0),

X = x = = x
1 2 1-1

Rewrite (4. 8) in the equivalent form

a AW a = a U UAU UWU Ua = UAU Wri =

i-1 i-1 i-1 i-1
X [UAU* qp] 1 = X

1
[UAU

*

q
=q p qP11q=1 p=1 q q=1 p=1

X111 UAU = X
1
a Aa.

The last equality proves that (4.7) implies (4.8).

Now let We(0,) = S() + for some e> 0. It is obvious

that if a solution to (4.6) exists with the initial condition S(), then

there also exists a solution WE with the above initial condition for

any e > 0.

Because of the continuity of WE (t, ), there existsl> 0 such

that

= sup (t W(s, > 0, (s, OE [0, x R k). (4.10)

t [0, T]

Denote by g(t, a) = a*W E(t, )a. g(t, a) is a continuous function on

[0,1] x RkxR n, and has continuous first order t-derivatives and
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second order a -derivatives. g(t, a) is nonnegative on [0,1] xR

x R n, and for some (t, a) is equal to zero by (4. 10). Hence
A A A

(t, a ) is a minimum point of gin the domain [t] x Rkx [a] . It

implies that

and

A A

a g(t, , a) A = 0,
=i

2 ^ ^
a g(t, A > 0

a " '

It will be shown that

2- a A A

tr(H(t,)H (t,) ) g(t,,a)f_i > 0 .

k

(4.11)

(4. 12)

(4.13)

By a linear transformation ri = U where U-1 = U , and UHI-1 U =H,

where H is a diagonal matrix with the real, positive eigenvalues

i = 1, k, of HH*, on the diagonal (see [C1] ), Rk is trans-

formed onto (U is nonsingular) Rk. Now the left hand side of

(4.13) can be rewritten as follows:

a a A

tr((H
*

a
) *

(H
*

a )) g(t, ) 1

* * )g , Uri ,a ) I -tr((H U ) ria 1-11-

2* a g (t, UTI y a), )tr(UHH
a ri arl 11=11

(4. 14)
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Obviously (t,ri , a) is a minimum point of g(t, Uri, a) in [t] xR k x [a ]
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which implies that

z^a 0, un , a ,

A > o,

and from (4. 14) it follows that

2 2A a
tr(H 277 I X. gz I A > 0,

an an' (r1=r1)i=i a -n 1-1

which prove s (4.13).

Now g(t, , a) = a W (t, )a = 0 = Alllall2

where A denotes the smallest eigenvalue of the nonnegative definite

matrix W E (t,
A A

According to (4.7) and (4.8) the above gives

1 A A A A A A
a (A (t,) W(t, ) + W (t, (t, O)a = 0 . (4.15)

From (4.6), (4. 11), (4.13) and (4.15) it follows that

o A
g (t, , a) > 0 .

The above contradicts definition of t unless t = T. Finally, letting

E go to zero

ends the proof of Lemma 4.3.



Using the result of Lemma 4.3, it will be shown that

Denote

Vi > Vi+1, for i = 1, 2, 3, ...

M = V - Vi+1 i i+1

From (4. 5) the following equation is obtained.

+1
= L(Mi+1) + N(Vi, Ki) - N(Vi+1, Ki+1).

Then from (4. 4) it follows that

and
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(4. 16)

o i+i i+1 i +1 i +1
M = L(M ) + (A-BKi +M BKi)+ (K1+1-Ki)*P(Ki+l-Ki),

i+1
M (0,) = 0 .

From Lemma 4.3 it follows that Mi+1> 0 proving (4.16). Now by

Lemma 4.1 V(t, = lira Vi(t, 0 exists and since Vi > 0 for

i = 1, 2, 3, ... (see 4.5) and apply Lemma 4.3) it follows that

\r(t, ) > 0, (t, E [Op T] x R k .

Further for i = 1, 2, 3, ... the nonnegative definiteness of
i

iV implies

1117111 < tr(Vi) < tr(V1) < Nrn \rn1



which by (4. 5) gives

I K i II < c < co .

Let .1. (t, ;s,ri) be the fundamental solution to

0
W = L(W) .

Then the following equation can be written

Vi (t, = f flt, ;0 , TOS fi-Ocin +

Rk
t

ff ;s,,n)N(Vi(s,r1),Ki(s,r)))dsdri .

0 R

Notice that by Lemma 4.2 if. el-1
1

r+2
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. Applying the dominated con-

vergence theorem to the above integral it is concluded that it holds

with V i, Ki replaced by V and K respectively where K = .
K1 =P

*=P B V.

r+2This shows that V is a solution to (4.1) and that V effl

To show the uniqueness of a continuous solution to (4. 1), is

equivalent to proving that if V1 and V2 are two such solutions then

M = V1-V2 = 0 on [0, x
Rk

According to (4. 3) and (4.4), M satisfies the following

equation
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M= L(M) + N (V1, K1) - N(V 2,
K2) =

L(M) + (A-BK1)*M + M(A-BK1) + (K1 -K2)*P(K1
-K2),

M(0,) = 0, E R

From Lemma 4.3 it follows that M > 0 on [0, T] x R k. Denote by

M = -M = V2 - V1 and using again (4. 3) and (4. 4) write

o_
M = L(M ) + (A-BK2) M +M (A-BK2)+(K 2-K1

)
*P(K2-K1),- -

M (0,) = 0, c Rk .

From the above and Lemma 4. 3 it follows that M > 0 on [0, x R
k.

Taking into account symmetry of V1 and V2 this results in M = 0

on [0, '1] x R k proving the desired uniqueness of a solution to (4.1).

This ends the proof of Theorem 4.1.
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5. CONCLUDING REMARKS

To illustrate the result of Theorem 3.1, digital simulation

of a simple continuous stochastic control system is presented. An

implementation of a continuous stochastic integral on a computer

creates some difficulties. A ""convergences' criteria of a series of

pseudo-random variables to a stochastic process is an example of

such a difficulty. Also the generation of a large population of

itindependentn samples from ""random, number generators suffers

from pseudo-randomness and cross-correlation effects. This incon-

sistency of a discrete representation of a continuous stochastic

process should be kept in mind while interpreting the results obtained

in the example below.

Example

Consider the following stochastic differential equation:

dxt = a(wt)xt dt + ut dt, x0 = const, (5. 1)

where wt' t E [0, 1], is a Wiener process, and

a() = a
0

+ a
1

arctg , E R.

The controller ut uses the information about realizations of wt' and

is of a form of a nonanticipative, measurable functional on the space
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of all continuous functions on [0, 1]. It is desired to find a control

ut that minimizes the criteria
1

Q = E( f (xt
2

+ ut
2) dt)

0

(5.2)

Equation (5. 1) can be rewritten in the form below which corresponds

to the notation used in Theorem 3.1.

dxt = a(zt) xt dt + ut dt, x0 = const,

dzt = dwt' z
0

= 0 .

According to the results obtained in Chapter 3, stochastic

control problem (5. 1), (5.2) has solution of the form

where

= - v(t, wt) m t ,

dmt = (a(wt)-V(t, wt))mtdt, m = x0,

and V(t,), R satisfies

2
ata V +0.5 5 --z-8

a
V + 2a() V + 1 - V 2 = 0,a t

V(1, = 0

(5. 3)

(5.4)

The partial differential equation (5. 4) has, according to

Theorem 4.1, a bounded, unique solution. The above equation was

solved numerically using an algorithm presented in [S1]. Discretization
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step in the t-variable pt = 0.001 and in the ,- variable p = 0.1.

These values were chosen as the ones for which changes in solution

became relatively insensitive with respect to finer discretization.

Generation of a Wiener process wt involved 1,000 pseudo-random

Gaussian Naussianvariables, v. (0, 1). Standard procedure from the

IMSL library called GGNML was used. Increments of wt were

approximated by the formula dw. Nrp v . Performance Q ofipt t

the regulator (5. 3) was compared to the performance a of a itclassicalll

linear-quadratic stochastic regulator obtained for (5. 1) with a(wt)

replaced by E(a(wt)). The Table 5.1 below contains results of 5

simulation runs for different values of a
0

and al. The initial con-

dition was x
0

= 1 for all runs.

Table 5.1. Comparison of optimal and suboptimal regulators.

Run # 1 2 3 4 5

a
0

-1.25 1.25 1.25 6.25 3.75

al -3. 3. 1. 5. 1.5

Q 0.205 5.26 2.77 15.2 8.62

'6' 0.210 6.43 2.80 97.7 10.7

As was expected for the cases of It strong! disturbances and

unstable systems, the performance Q of the controller (5. 3) is

superior over the performance a- resulting from the classic regulator
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(see runs number 2, 4, 5). The figures 1, 2, and 3 show the sample

paths of wt, ut and xt respectively (run number 5). The enlarged

part of a pseudo-Wiener process sample path on Figure 1 shows

its highly irregular nature, as would be expected from the properties

of a Ittrulyu random Wiener process. The figures 2 and 3 show that

the ncriticalit time for the control system is t -.4, when the optimal

control path intersects the suboptimal one and converges rapidly

to zero. Beginning from this point the trajectory of the suboptimally

controlled system diverges towards the larger values, as compared

to the value of initial condition.

A natural direction for future research is the simulation of

examples more complex than those presented here. When done

properly, this may not only illustrate the results of this dissertation,

but modify them towards applications with implementation on small

computers and minicomputers.

The class of systems given by equations (2. 1) and (2.2) in

Chapter 2 includes the following stochastic control systems

dxt = (A(t, y, u)xt + B(t, y, u))dt + G
1
(t, y, u)dwt

1 + G
2

(t, y, u)dwt
2,

(5. 5)

dyt = (C(t, y, u)xt + D(t, y, u))dt + R
1
(t, y, u)dwt

1
+ R

2
(t, y, u)dwt

2
,

where the state (xt, yt), t E [0, Ti , is divided into the unobservable
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part xt of the dimension n and the observable part yt of the dimen-

sion m. wt1

'
i = 1, 2, are mutually independent Wiener processes

on a certain probability space (0, F , P). The p-dimensional control

vector ut is assumed to have yt measurable components for all

tE [0, T] , where Yt denotes the o- - algebra generated by (y
s
:0< s< t).

Denote by C Z,m the space of m dimensional continuous functions on

[0,T]. Let the components of a p-dimensional vector h(t,) be

measurable, nonanticipative functionals on [0, T] x C T,m. Then

if g(t, h(t, denotes any of the elements of A, B, G1, G2, C, D,

R1, R2, it is assumed that g( ) is a measurable, nonanticipative

functional on [0, T] x C m
T

The stochastic differential equations (5. 5) describe control

systems which are linear in the unobservable part of the state

variables and nonlinear, in a very general, functional manner in

the observable part of the state and control variables.

It is interesting to interpret a special form of (5.5) as a linear-

in-state control system with unknown parameters which are to be

estimated from the observations (ys: 0 < s < t), t c [0,T].

As (5.5) has well defined filter equation (see Theorem 2. 1),

the transformation of a partially observable control problem into a

completely observable one becomes possible. To justify this state-

ment it is shown that the control criteria of the form



T

I(u) = E( f Q(t, y, xt, ut)dt + S(T, y, xT)) ,

0

where Q and S are integrable, nonanticipative functionals, and

xt' yt satisfy (5. 5), can be written in the equivalent form

T

I(u) = Q(t, y, rn r t, ut)dt + y, rnT, r T))
0
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(5.6)

(5.7)

In the above, mt, rt are solutions to the filter equations of the type

given by Theorem 2.1. The functionals Q, S in (5.7) can be

obtained from Q and S in (5.6) by using the fact that xt, given

(y : 0 < s < t) is conditionally Gaussian. Consequentlys

Q'(t, y, mt, r eut) = f Q(t, y, a, ut)f(mt, rt, a) d a,
Rn

y, mT, rT) = f S(T, y, a)f(mT,r a) d a ,
Rn

where f(mt, r a), a E R n, t E [0, T] , is the probability density

function of the Gaussian n-dimensional random variable with mean

mt and covariance r ThisThis transformation resulted in Chapter 3

in the extension of the separation principle and the synthesis of the

optimal regulator. The above transformation might provide the first

step towards finding the existence criteria for control problem of

the form (5. 5), (5.6) [R1, Dl, D2, Fl, F2, D5] .
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One area of particularly significant applications of Theorem 1

includes a class of coupled bilinear stochastic systems which

appear in such diverse areas as biology, socioeconomics, chemistry

and physics [M1]. As an example of such an application consider

the following bilinear stochastic system:

dxt = a(t) xt dt + g(t) xt dwt1
,

(5. 8)

dyt = c(t) xt dt + dwt 2
,

where wt i = 1, 2, t E [0, T] , are mutually independent Wiener

processes. It is a simple exercise to show that the estimation of

xt from (y
s

0 < s < t) involves infinite dimensional filter equations.

Consider now the following approximation of (xt, yt)

dxt = a(t) xt dt + g(t) mt(y) dwt1
,

dyt = c(t) xt dt + dwt
2

'

(5. 9)

where mt(y) is the mean-square optimal estimate of xt giveni

(y : 0 < s < t). From (5. 9) and Theorem 2.1 the filter equations for
s

(5.9) result

dmt = a(t)mt dt + c(t) r dvt ,

dvt = dyt - c(t) mt dt,

dr t = (2a(t) rt + g2(t) m2
t - c2(t) r t

2) dt.
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The above may serve as an approximation to the original filter

equations. As the results of Theorem 2.1 have a solid mathematical

base an approximation like the one above involves less heuristical

arguments than, for example, arbitrary truncation in the number

of filter equations.

Bilinear systems are a natural generalization of linear

systems, and similarly, conditionally Gaussian processes, which

satisfy equations of the type given by (5.5) seem to be a natural

generalization of Gaussian processes satisfying linear stochastic

equations.
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APPENDIX A

Selected Results from Stochastic Processes Theory

Theorem Al (Levy) (L1, Thrn. 4.1 on p. 82, G1 p. 73)

Define a Wiener process as follows

Let (S2,F , P) be a probability space and (Ft), t E [0, T] be a

nondecreasing family of sub- cr -algebras of F. The random process

(wt, Fe), t E [0, T], is called a Wiener process if

(1) the trajectories wt, t E [0, T] are continuous (P-a. s. ) on

[0, T] ,

(2) wt, t E [0, T] is a square integrable martingale with

w0 = 0, P-a.s. and

E ( (wt - ws ) (wt - ws) ) = (t-s) I, t > s.

Any Wiener process (wt, Ft), t c [0, T] is a Brownian motion process.

0

Theorem A2 (L1, Thm 4.6 p. 128, vector case p. 137)

Let the nonanticipative functionals A(t, B(t, t [0, T],

CT m, satisfy the Lipschitz condition for E C

IIA(t, )-A(t II2 + B(t, )-B (t, ) < (A. 1)
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c( f 4(s)-ri(s)112dK(s) + HO) - -9(t)112), and

0

t
11A(t, )112 + II B(t,

)112< c(f II 2 )dK(s) + (1 + Ute)),
0

(A. 2)

where c < co is a constant, K(s) is a nondecreasing right continuous

function 0 < K(s) < 1. Let x
0

be a random variable such that

P( II xo II < c°)= 1. Then:

(1) the equation

dxt = A(t, x) dt + B(t, x) dwt ,

has a unique, strong solution xt,t e [0, T] , with the initial condition

x0;

(2) if E( lixo ea) < co, a > 1, then there exists a constant ca

such that

)
2a.

(1 E (II x01/2a))
ecat

0

Lemma Al (Gronwallts inequality, see also Ll, Lemma 4.13 p. 130)

Let co, cl, be a nonnegative constants, u(t) be a nonnegative

bounded function, and v(t) be a nonnegative integrable function on

[0, T] such that
t

u(t) < c0 + cl f v(s) u(s) ds .

0



Then t

u(t) <co exp (cif v(s) ds) .
0
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Lemma A2 (Yershov, M. P. "On representations of Ito processes".

Teoria Verojatn. i Primenen, XVII, 1 (1972), 167-172)

(see also Ll, Lemma 4. 9 p. 114).

Let yt, t e [0, T] be a continuous random process defined on

the complete probability space (0, F , P). Next let the measurable

process zt, t e [0, T] be adapted to the family of the a- - algebras yt

generated by (ys: 0 < s < t). Then there exists a measurable
rn

functional ft M defined on [0, T] x CT such that p. x P ((t,03):

zt(u) )0 ft(y(a) ))) = 0, where ti is the Lebesque measure on [0, T] and

x P is the direct product of the measures and P.

Theorem A3 (L1, Thm 7.19 p. 277, multidimensional formulation p.

279).

Let yt and yt, t E [0, T], be two processes of the diffusion

type with

dyt = C(t, y)dt + R(t, y) dwt, (A. 3)

'1. '1, 1..
dyt = C(t, y)dt + R(t, y)dwt Yo = Yo (A. 4)

Let the following assumptions be satisfied. The nonananticipative

functionals R and C satisfy (A. 1), (A. 2) (see Thm A2), providing



the existence and uniqueness of a strong solution to (A. 4);

for any t e [0, T] the equation

R(t, y)gt = C(t, y) - a(t, y)

has with respect to gt(P-a. s.) a bounded solution;

T

P( f (C
*

(RR ) C + C(RR ) C)dt < co ) = 1, (A. 7)

0

the above is assumed to hold for both (t, y) and (t, Y); denotes the
dp.,, dp.

pseudo-inverse. Then p.-, r, 1.1. and the densities --I-- are
Y Y

----
dp. ' dv,

Y

given by the formulas analogous to (2. 34) and (2. 35) of Chapter 2,

and formula (A. 8) Thm A4.
O

Theorem A4 (LI, Thm 7.20 p. 278, multidimensional formulation

p. 279).

Let the assumptions of Theorem A3 be fulfilled with the

exception that (A. 7) holds only for (t, y). Then p. < < µy and the

density ft('''y) = is given byti

t t
'N * ^\J

ft (y)=exp(f (C -C ) (RR ) dys -0.5f (C-C) (RR ) (C -a)ds ),

0 0

ti
where the arguments (s, y) are omitted for brevity.

(A.8)
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Lemma A3 (L1, Lemma 4.10 p. 116)

Let yt, yt, t E [0, T] be two processes of a differential

representation (A. 3), (A.4). Let G(y), G(y), F(y), F(y) be well

defined functionals given by the following formulas

T T

G(y) = f g(t, y)dt , a(Y) = f g(t, y)dt ,

0 0

T T

F(y) = f f(t, y)dyt , = f f(t, Y)frt
0 0

mwhere g(t,), E C are nonanticipative functionals.

If the measureµ is absolutely continuous with respect to the

measure (p. << p.^-), then G(y) = a(y), F(y) = 12(y) P-a.s. If
Y Y

< < µy , then G(y) = G(y), F(y) = F(y) P-a. s.

Lemma A 4 (L1, Lemma 4.12, p. 125)

Let wt, t E [0, T] , be a Wiener process and let gt be a

nonanticipative function with

T

fE(g2
a)

dt < co , a > 1 .

0

Then t t

E((f g
s
dw

s
)2a) < (a(2a-1)) ata-1f

E(g s2a )ds .

0 0
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Lemma AS (Fatouls Lemma)

If the sequence of P-a. s. positive random variables Zn ,

n = 1, 2, 3, ... , i is such that Z
n < Z , where Z is an integrable

random variable, then

E(lim inf (Zn))< lim inf ( E(Zn)) .
n co n-- co

0

Lemma A6 (L1, continuous analog of Theorem 3.2 (3.8) p. 58)

If (z F t ), t E [0, , is a nonnegative submartingale with

E (zt
a)

< co , for some a, 1 < a < co, then

E((sup
)a

0< t< T

Lemma A7 (L2, Lemma 11.6 p. 12, see also Li, Thm 721 p. 280).

Consider a random vector x = (x1, , xn) and an n-dimensional

Wiener process we t E [0, T] , with independent components and

suppose that the system (x, wt) is Gaussian. Let r = (r1, rn)

be a row vector and h
3

and h
2
h

2
be (m x m) matrices and

tr (f (h3h3 + hzhz ) dt) < co .
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Then T t

E(exp(rx - (f h3dws) h2h2
* (( h3dws)dt)) =

0 0 0

T

exp(rE(x) + 0.5 r Pr + 0.5 tr ( f h3h3 S dt)),
0

where P is a nonnegative definite matrix.

Theorem. A5 (L1, Thm 7.17, p. 270)

Let (yt, F t), t e [0, T] , be an Ito process given by
t t

yt = yo +f Cs ds +f Rs dws
0 0

Let (ve F t), t e [0, T] , be some Wiener process independent of a

Wiener process (wt, Ft) and the processes (Ct,F t), (Rt,

the following condition be satisfied

f E( Ct II )dt < co

0

Then there will be:

F

- the measurable functionals C and R satisfying p -a. s.,

t E [0, the equalities

Ct E (ct l y t), Rt = (RtR:)112

Let



where
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yt = o -alg (y
S
: 0 < s < t);

- a Wiener process (wt, Y t), t e [0, T] , y t = (vs, y :
s s

0 < s < t), such that the process y permits the representation

yt = y0 +.1. Ts(y)ds +IT (17,7 .Rs
s

If, in addition RtRt > 0, P-a. s. , for almost all t c [0, T] , then the

Wiener process wt is adapted to yt, t E [0, T] .

Theorem A6 (L1, Thm 5.18 p. 197)

D

Let (yt, Ft), t E [0, T] , be a process of the diffusion type with

the differential

dyt = Ct(y) dt + Rt(y) dwt ,

where Ct( Rt(), c
T

, are nonanticipative functionals.

Assume that Rt() satisfies (A. 1), (A. 2) and that for almost all

t E [0, T] , RtRt be uniformly positive definite. Suppose that

P( f II Ct(y)112 dt < co) = 1

0

Then any martingale (gt, yt) has a continuous modification with

the representation
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t

't =g
0

f
s

dw
s

,

0

with S, adapted process suchsuch that

P (f Ilfs112 ds < co ) = 1.

0

If (gt, yt), t E [0, T], is a square integrable martingale then also

fE ( fs HZ) ds < co .

0

Definition Al [L1]

The P-a. s. continuous random process xt, t E [0, "r] , is a

strong solution of the stochastic differential equation

dxt = A(t, x) dt + B(t, x) dwt , (A. 9)

where A(t, x), B(t, x) are measurable, nonanticipative functionals,

(we' Ft), t E [0, T ] , is a Wiener process on a given probability space

(c2, F , P), and (Ft), t E [0, T] , is a nondecreasing family of the

sub- cr-algebras of F , with F0- measurable initial condition x0
=

P-a. s., if for each t E [0, T] , the random variables xt are F t-

measurable,
T

P(r IIA(t, x) Il dt < co) = 1,

0

(A.10)



P( f II B(t, x) II 2dt < 00 ) = 1,

0

and with probability 1, for each t E [0, T]
t t

Xt = TI +f A(s, x)ds +f B(s, x)dws

0 0

Definition A2 [L1]
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(A. 11)

(A. 12)

The stochastic differential equation (A. 9) has a weak solution,

with the initial condition -n of the prescribed distribution function

F(a), if there are: a probability space (0, F, P), a nondecreasing

family of the sub- a--algebras ( Ft), t e [0, T] , a continuous random

process (xt, Ft), and a Wiener process (wt, Ft) such that (A. 10),

(A. 11), (A. 12) are satisfied and P(x0 < a) = F(a).

Remark

The principal difference between the concepts of a strong and

weak solutions is that if one speaks about the solution in a strong

sense, then it is implied that there have been prescribed some

probability space (0, F,P), the family ( Ft), t E [0, T] , of the sub-

cr-algebras, and the Wiener process (we Ft). When one speaks about

the weak solution of (A. 9) with the prescribed nonanticipative functionals

A(t, ), B(t, ), then it is assumed that we may construct a proba-

bility space (0,F , P), a family (Fe), t e [0, T] , of the sub- cr-algebras,
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a process (xt, F t), and a Wiener process (wt, Ft) for which (A. 12)

is satisfied P-a. s. The weak solution is, actually, an aggregate

of the system (0,F , Ft, P, wt, xt), where for brevity the process

xt t e [0, T] is called a weak solution.

The question of using or not using a concept of weak solutions

in stochastic control and filtering problems is almost exclusively

the question of a system modelling approach. While a strong

solution deals with a ilaivenn Wiener process as a model of wide-

spectrum random noise, a weak solution says only that there exists

a Wiener process which can be used as such a model. If the

physical nature of the problem implies construction of an underlying

probability space (for example it specifies the basic space as a set

of possible outcomes of a random experiment and gives a family

of finite distributions which define a probability measure), then a

weak solution approach may not be appropriate. On the other hand,

a Wiener process is nothing other than an abstract model of some

random phenomena. From this point of view, equation (A. 9), which

for a weak solution case takes the following form:

dxt = A(t, x) dt + B(t, x) d (a Wiener process)t ,

seems to satisfy modelling purposes quite well. It should be noticed

at this point that the concept of a weak solution was used in stochastic

control theory by Benes, Davis, Varaiya [B1, D1, D2, D3, D4, D5],
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and others, (see references in [Fl] and [L1] ).

Definition A3 [L1, W4, Gl, N1]

The random process (xi, F t), t c [0, T] , is called a martingale

(with respect to the family (F t), tE [0, , of cr-algebras) if

E( II xt < t [0, T] , and

E (xt I Fs) = xs P-a. s. t > s .


