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The traditional assumption that in repeated regression experi-

ments with observations Y t tt= X' P tE t = 1, 2, T, the

parameter vector Pt is constant is replaced by the assumption that

t' t = 1, , T is a sequence from a vector-valued wide-sense

stationary stochastic process with covariance function r(s). The

existence of this structure interrelating the several experiments ad-

mits the existence of information relevant to the value of Pt in ob-

servations Y
t- 1 ' ' 1' and makes improvement over the usual

Least Squares estimator possible.

An estimator is derived which utilizes information from pre-

vious time points based on the following definition: A Best Linear

(BL) estimator of Pt is the linear combination

Bt t

i=1

H. Y.1-1



which minimizes Ell B t -Pt 2- It is shown that the BL estimator

can be written as

where

t
tK 13t

i=1

13 = X Yl+t t t
is the unique Least Squares estimator of 13 t' with Xt+ the

Moore-Penrose generalized inverse of Xt.

The covariance matrix of the BL estimator is found and for the

case where X' is of full rank, i = 1, t, the BL estimator is

compared with the usual Least Squares estimator and with the Bayes

estimator with normal prior.

A consistent estimator of the covariance function r(s) is ob-

tained when 13., i = 1, t is either known or is estimated by p-1
where X! is of full rank. Also given is an estimator of the pro_

cess mean 13 .
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ESTIMATION OF STOCHASTICALLY VARYING
REGRESSION PARAMETERS

I. INTRODUCTION

Statisticians have for many years concerned themselves with

estimation of parameters in models constructed to represent struc-

ture of observed data. Traditionally, regression models have as-

sumed that the parameters are temporally constant and that "obser-

vation error" is the source of variation in the observation.

However, when concerned with systems in the rapidly evolving

economic and social structure of today's world it would seem unreal-

istic to assume that such parameters are unchanging with time.

Similarly, in the physical domain, physical laws often dictate that

macro-scale systems are statistically in a steady state, but this does

not preclude the existence of variations in both the macro-and micro-

scale. Indeed, it is through the observation and study of these varia-

tions that our knowledge of the physical laws are increased. It is

therefore natural to examine models which admit stochastic variations

among the parameters.

Once one accepts that the parameters associated with the sys-

tem being studied cannot be assumed constant, he must make assump-

tions about the nature of their behavior. Clearly, a wide range of

possibilities is present. The aim of this paper is not to investigate
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all possibilities, but only one specific behavioral pattern; that the

parameters vary according to the probability law of a multi-

dimensional stationary stochastic process. Whether such a model

may profitably be used to represent an actual system under study de-

pends naturally on the system, and one must justify any chosen model

through his collective objective and subjective knowledge of the problem.

However, it would seem an unlikely situation that temporal parameter

variation has a random character; but conversely that there exists a

non-zero serial correlation among the parameter values at different

time s.

The additional assumption of stationarity of parameter varia-

tion, while not applying to all situations, would be reasonable in many

cases if one was careful in specification of the time domain within

which to investigate the system.

This paper is concerned with the estimation of the present value

of a vector of such parameters as they vary in time (or space) or with

the prediction of the value of these parameters at some time (or

place) in the future. It will be assumed that at each point t in time

a regression structure exists in which the present value of the param-

eters plays the role of unknown constants called regression param-

eters.

To permit the application of conventional Least Squares (LS)

regression analysis to the estimation of these parameters it is
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necessary that a full rank experiment is performed either instantan-

eously or during a period of time throughout which the regression

parameters may be considered fixed.

In the following, however, it will be assumed in general that

this condition is not met. In this light two problems are considered:

the estimation and prediction of the value of the vector of regression

parameters when in general sufficient experimentation may not be

possible by utilizing the covariance structure of the stochastic pro-

cesses; and the estimation of the mean and covariance function of the

process when it is unknown.

It should be made clear that while we are concerned with the

mathematical description of a system and primarily with the param-

eters associated with this description, the parameters are actually

assumed to be random variables, We, however, shall refer to them

as parameters as this is their primary role.

Such a dual role by the parameters is similar to the situation

encountered in Bayesian estimation where the parameters to be esti-

mated are assigned an ;.priori distribution and thus in a sense are as-

sumed to be random variables. To carry the similarity a step fur-

ther, we might think of estimation under the present assumption as a

Bayesian procedure with the prior given in the form of a stochastic

process. However, as no distributional form is associated with the

stochastic process, the formal application of the Bayesian procedure
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cannot be performed. Nevertheless, in the following, it will be shown

under special circumstances the Bayes estimator and the estimator

derived in this paper are identical.

Throughout this paper we will consider the estimation of param-

eters in a linear regression function. By this we mean that the ex-

pected value of the observed dependent variable, the regressand is

a linear combination of the observed values of the independent vari-

ables, the regressors,thus

where

sors.

Y = X
1

p
1

+ X2p2 + + X PP + E

Y is the regressand and X1, X2, ..., X
P

are the regres-

In keeping with this terminology p
1,

p
2, ...

noted regression parameters.

pP will be de-

The question which obviously arises is how do we estimate the

unknown p x 1 vector of regression parameters R (Pt
1

Pt
2

Pt
p

)'

at time t. Using matrix notation we know from the classical theory

of LS that if the rank of the p x nt matrix X t is p (denoted

where Xt is a matrix whose nt columns are the vec-p (Xt) = p)

tors of regressors associated with nt independent and identically

distributed observations taken at time t, then the best (minimum

variance), linear, unbiased estimator (BLUE) of (3 t is

P = (x xi) 1
X Yt t tt
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where Y t is the vector of observations (Scheff, 1959). A restric-

tion on the above is that the vector 13 t must remain constant over

the period of time the nt observations are taken. This obviously

would be the case if the observations were taken simultaneously.

However, if the following not too unlikely conditions exist BLUE esti-

mates cannot be obtained.

Suppose that the regression parameters are neither constant

with time nor are sufficient observations obtained to yield a matrix

Xt of rank p over the period of time when pt may be consid-

ered constant, and hence that the assumptions underlying the opti-

mality of LeastSquares estimation are no longer valid. It will be

shown in the following that an estimator with certain optimal proper-

ties can be obtained by assuming that the vector 1t behaves as a

stationary stochastic process with known mean and covariance struc-

ture.

Before proceeding further, let us consider this problem his-

torically. Kalman (1960) employed the Markovian model

t = T (t, t- 1 )(3 +t_ t

by which the value of the parameter vector at time t is a linear

function of the value at time t- 1 plus a random error. The esti-

mate of pt is then a weighted average of the predicted value of pt

based on the Markovian model and of the information obtained at time
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t through a regression structure where the parameters to be esti-

mated are the unknown parameters of this structure. Kalman as-

sumed the transition matrix T(t, t-1) was known but later others

have extended this approach by estimating this matrix.

Jones (1966) simplified Kalman's model by letting the transition

matrix be the identity matrix and by assuming the process is observed

directly with error. This model leads to exponential smoothing with

decreasing weight being given to observations further in the past.

Both of the approaches, because of their Markovian nature, do

not allow for stochastic dependencies of lag greater than one if they

exist. Thus, information through such dependencies is not utilized.

It is with this possibility in mind, that we investigate the esti-
oomation of Pt under the assumption that IPt}t...1 is a stationary

stochastic process. The existence of a non-zero covariance structure

r(s ), s = 0, 1, , k between
12t

and p t- s dictates by its very

nature that there is information in all of the observations Yt- s'
s = 0, 1, k relevant to the value of Pt. On this basis an esti-

mator of p t is then formulated as that linear function of the last

k+1 observation such that the expected Euclidian distance between

the estimate and the true value of 13 t is minimized.

The resulting estimator, called the Best Linear (BL) estimator,

can also be shown to be a linear function of the LS estimators of the

parameter vectors at the times of the last k+1 observations. In
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the case when the LS estimator is not unique at some or all of these

times a particular LS estimator is chosen, one which has certain

optimal properties. Through representation of the BL estimator in

terms of the LS estimators, comparisons are made between its co-

variance matrix and that of the LS and Bayes estimators. A BL pre-

dictor is formulated in a similar manner.

Frequently the covariance structure may be unknown. We

therefore present a method of constructing consistent estimates of

the correlation function r(s) when p (Xt) = p, p < nt. However no

method of estimating the covariance function has been found when

p (Xt) < p. No study was made of the distribution of the estimator of

r(s). Both these problems seem to be suitable areas for further

work, however, both appear to be quite difficult.

For the case when the process Pt has an unknown mean

we derive a method of estimating p.

An Example

Let us consider the problem of studying the spatial and temporal

variation of a field variable p such as the concentration of ozone in

the atmosphere at 40 KM above sea level. If one is to use quantita-

tive numerical techniques in such a study this is facilitated by the

knowledge of the value of the field variable at orderly arranged loca-

tions throughout the field at successive points in time. However,
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direct observations of the field variable at these orderly arranged

locations may be difficult or impossible to obtain.

If direct observations of the field at any given time are well

spaced throughout the field and plentiful the grid field (the value of

the field at the orderly spaced locations) may be estimated using

ordinary smoothing and contouring techniques. Usually however,

such quantities of observation are not available at any given time and

other estimation techniques are necessary.

The BL estimation procedure which is developed in the follow-

ing chapters may be used as such a technique if the field variable has

certain well behaved properties. That is, if the field variable at any

two positions in the field obeys the probability law of a bivariate sta-

tionary stochastic process. Thus associated with the grid field there

is a non-zero spatial and temporal covariance structure which in ef-

fect says that there is information relevant to the present value of the

grid field in observations taken in the past.

The BL estimator utilizes this covariance structure to optimal-

ly combine the information from past observations with the informa-

tion in present observations to estimate the present value of the grid

field.

To proceed mathematically let us consider a sub-grid of 16

points and a field with known mean. As we may always subtract the

mean field from our observations we may without loss of generality
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assume the field has zero mean.

Labeling the sub-grid points p o let Pt bep1. 2' ' 1316'

the value of the field variable at grid point pi at time t. Let

C(s, p., p.) be the time-space covariance function of lag s between
1 3

the values of the field at grid points pi and p.. Thus the vector
PJ

Ilt (Pt, 1Pt, 2. Pt, 16)I of grid point field values obeys the probabil-

ity law of a 16-dimensional stationary stochastic process with mean

vector 0 and autocovariance function r (s ) = IC (s, pi, pi )},....

i, j = 1, 2, ... , 16, s = 0, 1, 2, ..., t-1.

We need now only to establish a relationship at time t be-

t . witht,3 1t,3

the corresponding variables at the sub-grid points. Suppose, for ex-

ample, that

16

Y .= W p
+t, 3 t, 1, 3 t, 1 t, 3

i=1

where the weights W . . are inversely proportioned to the dis-t, 1,3

tance 111 . .112 andt, 3 P1

16

W . . = 1.
t, 1, 3

i=1

The above example possesses the necessary elements for the

employment of the BL estimator to estimate the field variable vector
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13, from data observed not only at time t but utilizing data from

prior times. The advantage of such a procedure is apparent when one

realizes that depending on the method of observation, the number of

observation stations within range of the sub-grid may change with

time and as such the amount of information about available at

time t may be minimal or non-existent.

Exactly how prior data can be utilized will be given in the fol-

lowing chapters.



II. THE MATHEMATICAL MODEL

The Model

Consider, at time T = t, the regression structure

(2. 1) Y = p + et tt t

where Y t is a nt x 1 vector of independent and identically dis-

tributed observations,

Rt

11

X' a nt x p matrix of known coefficients,

a vector of unknown regression parameters and a nt x 1

vector of normally distributed random errors with E(e t ) = 0 and

E(E tot) = cr
2
In where cr2 may be known or unknown. It is also

assumed that p and e
s

are uncorrelated for all s and t.

Instead of the usual assumption in linear regression of the vec-

tor of regression parameters being fixed during the period of obser-

vation, assume that 13 t is characterized in the following manner.

Let { CBM} be a real-valued, p-dimensional stationary stochastic

process. Then the sequence 113t}t71, where E is the value of

68(T) at T = t, is a p-dimensional discrete stationary stochastic

process. For convenience, let us also assume that the mean of the

process ia ; and the covariance function

r (s)=E(13cF))) (13 t+s-Tht, s = o, *1, ±2,
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of the discrete process are known reserving the problem of their es-

timation until later. We may then choose p = 0 without loss of

generality and hence we find

r(s) = E(Pt P4s).

Let us consider now the problem of estimating Pt'
process at time t.

Least Square Estimation

the value of the

The assumption concerning the stochastic behavior of the

{a1_3(T)} process, however, does not negate the appropriateness of

applying conventional LS regression analysis to obtain an estimate of

p t as long as we restrict ourselves in considering the regression

structure (2.1) to a single point in time. This follows from the obser-

vation that the vector of regression parameters to be estimated is

only required to be constant over the period of observation and the

realized value of the random variable 2(7) satisfies this at any

given point in time.

Ignoring for the moment the stochastic character of p t' if

we consider observations at time t only, it is well known that in the

case of p(Xp = p, the LS estimator

Pt = (XtXt ' ) 1X Ytt
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is unique and minimum variance among linear unbiased estimates.

However, when p(Xt) < p, neither an unbiased nor unique LS

estimator of 13 exists. In fact, an infinite number of LS estimatorst
exist, none of which are unbiased. This naturally leads to further in-

vestigations of the estimation of (3t when p(X0 < p.

Chipman (1964) considers the approach of specifying a comple-

mentary set of linear restrictions XI = Y such that the aug-
L.

mented design matrix

X'

X't

is of full rank. Estimators obtained in this manner are conditionally

unbiased, conditioned on the complementary restrictions. Chipman

shows that there is a specific set of complementary restrictions which

result in a procedure called "minimum bias estimation" which selects

from the class of minimum bias estimators the one that has minimum

variance. Furthermore, Chipman points out that "minimum bias es-

timation" is equivalent to an estimation procedure proposed by Pen-

rose (1956). Before discussing Penrose's method it will be useful to

discuss one of its principle ingredients, the generalized inverse; we

shall restrict our interest to a particular generalized inverse defined

by Moore (1935) and Penrose (1955) and discussed extensively by

Greville (1959, 1960), Ben-Israel and Charles (1963) and Price (1964)
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among others. We shall designate the Moore-Penrose (M -P) inverse

of a matrix U by U+ and define it to be the unique matrix that

satisfies the following relationships:

(2. 2) a) UU+U = U

b) U+UU+ = U+

c) (U+U)l = (U+U)

d) (UU+)' = (UU+).

From these four defining properties additional features of the M-P

inverse are obtained. Those which are of use in the following sec-

tions are given below:

(2.3) a) (U+)+ = U

b) U' + = U+'

c) if U is square and nonsingular U+ = U1

d) (UfU)+ = U+U+'

e) (U U) is hermitian idempotent
p x q

f) UU+ = I if U is of rank p.

Derivations are contained in Penrose (1955).

Return now to the estimation of Pt under the regression struc-

ture (2. 1) where p < p, the estimator suggested by Penrose

which corresponds to Chipman's "minimum bias estimator" is



(2. 4)

15

= X Yt t t
is unique since X' + is unique and it can be shown that

Lemma 1. p is a least square estimator of p t.

Proof. Following the notation of Scheffe (1959) a LS estimate

of p t tis defined as any value of b , where bt is linear in the

observations Y t' which minimized the function

where II "sil

vy_t, bt) = IIYt XtbtII2

denotes the length of the vector V. Let M(Xp be

a linear manifold spanned by t t ' t the columns of-t t 2' , p'

X'. Then

Z = ' bt Xt t
=b +b + + bt, 1 t, 1 t, 2t , 2 t, pt, p

is an element of M(X1t). With Zt E M (N) and letting bt = DtY

2for some Dt we see geometrically that L(Ytt bt) = II Yt Zt II

attains a minimum when and only when Z t = )(It D Y is a projectiontt
of Irt onto M(X1t). That is when Xt1Dt is a projection operator

onto M(Xp. From (2. 2c), (2. 3e) and (2.4) we see that Xpt = XItX"t+

is hermition idempotent and thus a projection operator onto M(Xp.



Thus pt is a LS estimate of 13t- It should also be noted from

(2. 2), when p (XI) = p

Xi+ = tXI) 1 Xt .t

Thus ki = (3 . We then may in general definet

13 = Xi+ Yt t t
as the LS estimator of In In the following all references to a LS

estimator of pt refer to this estimator.

In the foregoing we consider the estimation of 13 t

16

under con-

ditions equivalent to the assumption r(s) = 0, s # 0. If this is not

the case but r(s) 0 for I s I less than some fixed number k,

it seems apparent that there is information about Pt in the obser-

This will be investigated in the fol-vations Y Y Yt' --1' ' tk+1.
lowing sections.
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III. A BEST LINEAR ESTIMATOR OF p

In this chapter we explore the "improvement" of the LS estimate

of Pt utilizing the covariance structure of the {Z(T)} process.

When p (Xt) = p this "improvement" takes the form of a reduction

in the sum of the diagonal elements of the covariance matrix of the

estimator of pt at the expense of the property of (conditional) un-

biasedness. When P (Xd < p, the "improvement" takes the same

form as above but since the original LS estimator was itself biased,

the property of bias is changed only quantitatively not qualitatively.

Justification for the expectation that the LS estimator can be

improved upon under the present model is embodied in the following

notions. The existence of a non-zero covariance structure, by its

very nature, dictates the presence in the observations

Yt'Yt-l''1(1 of information related to the value of p t . It

thus seems clear that any estimator which does not use all this infor-

mation is less than optimum. Conversely, an optimum weighting of

the observations Y t' Y -1' .
'

Y
1,

which will be seen to be an

optimum weighting of LS estimates
P t' Pt_1' PI would give

zero weight to all but Pt if the LS estimate were indeed optimum.

This we will find is not the case.

Before defining what shall be called a Best Linear estimator of

P t let us consider the joint distribution of the observations
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It' -Y-1.

Joint Distribution of the Observations

Under the following three previously mentioned assumptions:

i) p-variate normal with mean 0 and covariance matrix

r (0),

ii) E nt-variate normal with mean 0 and covariance matrix
2

a- In ,

t
iii) E(13t E = 0,

we see that

Lemma 1. Yt is distributed nt-variate normal with mean

0 and covariance matrix [X tt r (0)X t+ '3-21nt
.

Under the additional assumptions:

iv) {ON} is a p-variate stationary gaussian process with mean

0 and covariance structure

v) E(Rt_E
)

0,

vi) E(± t Et+s'

s 0

s 0

E(-11t-ft+s)

we see that,

Lemma 2. The vector of observations

(3. 1) Y(t) = (YtYLi. )'

r(s),
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is distributed N(t)-variate normal with mean 0 and covariance ma-__

trix

(3. 2)
2

1(t) = (Aqt)R(t)A(t)-1-0- Imo)

where

(3. 3)

o t_1At(t) =
0

o o xi

r(0) r(1) r(t-1)

r'(1) r(0) r(t-2)
R(t) =

r'(t-1) r'(t-2) r(0)

and

Proof. We can write

where

(3. 4)

N(t) = ns.

s=1

Y(t) = Ar(t) 13 (t) + E (t)

P" (Ptt P't..]:



and

(3. 5)

Then we have

and

E (t) = (Elt Et- 1...E'1)1)1 .

E(Y(t)) = E(Alt)13(t)+E(t)) = 0

E(Y(t)Yr(t)) = E((A'(t) pm+ E (t))(At(t) (3(t)+ E(t))1)

= Aqt)E(13(t)120(t))A(t)+ E(E(t)E1(t))

= A'(t)R(t)A(t) + o-

20

Let us now make the following notational conventions. A matrix C (t),

whose dimensions and/or properties may be a function of time will be

denoted as the matrix C when no confusion will arise in doing so.

In addition matrix dimensions will be omitted when their value is ob-

vious,

The Best Linear Estimator

Restriction of our investigation to estimates in the class of es-

timates linear in the observations we shall make the following

Definition 3. 1. A Best Linear estimator of 13 t is the value of

the linear combination

(3. 6)

t -1

Bt = H .Yt- t- .

i=0



which minimizes the loss function

(3. 7)
,,2L = Ell B - 13

1 t t

21

Knowing the joint distribution of the observations reduces the problem

of estimation to choosing Ht,
1

Ht to minimize (3. 7).

The correct choice is given by

Theorem 3. 1. The matrices Ht" H
1

which minimize (3.7)

when Bt is given by (3. 6) satisfy the matrix equation

[HtHtt-l 1
Ht

1
(t) = V(t)A(t)

where

V(t) = [r(0)r(1)... r(t-1)].

Proof. We may express the loss function as

(3. 8)
2

L1 = E II B - p II

1 -t -t
= E(Bt- Pt)1(Bt- Pt)

= Trace E(B f3t)(Bt-

= Trace E

t-1

i=0

H Y p )Ht t_i -t
t-1

i=0

H Y p =t_it_i t



= Trace [-IHt Hi]
1

r (0) kii(t)A(t)

A1(t)Lli(t) 1(t)

= Trace (r(0)- [ Ht... H
t ]Aqt)ki(t)-1J'(t)A(t)
1

+ [Ht ..H (t)e

Ht

H1
1

from (3. 2) and the relation

E(RtY'(t))=E(13t(11.1(t) r3(t)+ E (Mt)

= [r(0)r(1)... r(t-1)]A(t).

We also find that

t-1

(3. 9) L1 = Trace r(0) - 2 trace Ht e1 t-i t-i
i=0

t-1 t-1

+ trace Ht-i .(t)Ht't-j
i=0 j=0

-I

Ht

Ht'
1

Ht

H1
1

22



where

and

where

= X' r"(i)
'

i = 0, , t-1t-i t-i

2
.ij = X r (i- j )Xt- + 5(i- j )cr In

1 : i = j
= 0. ii j

Letting C. denote the I -th column and C.
1, 1, It

matrix C, (3. 9) becomes

(3. 10) L1 = trace r(0) -

t -1 t-1

t-1 p
t

Ht -i, t-i,
i=0 1=1

+ Ht H .
tt

-i, /1 ij
i=0 j=0 1=1

23

the 1-th row of a

tDifferentiating (3. 10) with respect to each row Ht-i, and setting

the derivatives to zero, we obtain tp "normal" equations

t-1

j=0

-20t-i,
I

+ 2 H = 0, j = 0, , t-1; = 1, , p,ij t-j,

which can be written as a single matrix equation

(3. 11) [Ht... Hi = 4)1(t)A(t).
1
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and the theorem is proved.

From the relation "If A = B + C, B is positive definite, and

C is skew symmetric, then IAI > I B I " (Rao, 1965a) we see that

.flt)I > 0 and thus
11(0

exists. Therefore

(3. 12)

and

(3. 13)

[Ht. . . Ht = 4J1(t)A(t).,1 1(t)
1

= qi1(t)A(t).T. 1(t)Y(t)- t

is that value of B t such that

E II II

2 = Min E Bt _ P t II

2

Bt
This result can be seen to be an extension of the following result ob-

tained by Rao (1965b). Rao considered the following problem which,

in the notion of the present paper, assumes Y is a vector random

variable with the structure

Y = X13 + E

where p and E are unobservable random variables and X' is a

matrix of rank p. Further Rao assumes

E((3) = 0, E(E) = 0,

E( 13- 13)( (3- 1)1 = r(0),
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E (E Et = 0- I,

E( El) = 0.

Under these assumptions Rao found the linear estimator of (3 for

which E II - (3 II 2 is a minimum is

= r (0 )X(X 'r (0)X + cr2IN)- 1 Y

which can be seen to be identical to the present estimator.

t = t(t)A(t)1.--
1

(t)Y(t)

if only data taken at time t is considered.

From (3. 8) Lmin obtained under (3. 13) is

-Lmin = trace [r(0)-V(t)A(tR 1

1
(t)A1(t)4,(t)]

and the covariance matrix of fit is

E(Rt- Pt)(lit- pt), [r(0)-Lpt(t)A(t)(111(t)Mt)4(t)]

The form of the BL estimator of Pt as a linear combination

of the observation does not lend itself readily to the investigation of

the property of conditional unbiasedness nor to the evaluation of the

covariance matrix of this estimator or comparison with the covari-

ance matrix of Pt. Consequently an alternative expression for the
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BL estimator will be given in the following

Theorem 3. 2. Let (3t, , 13
1

be LS estimators of 1t, , 131

as defined Dy (2. 4). There exists Kt, , Ki, where Kt is

p x p, such that

and

t -1

i=0

Eult- pt)( t- P E( t- P t)0 t- Rt)'

Proof. Let

(3. 14)

Then

[Kt
1

.. Kt ] = t. . . HtlAqt) .
1

t = [Htt . . . H1 ]A' (t) 3 (t)

= o-21N)-1A1A+Y

where p (t) is analogus to (3. 4). But

A (A'RA+ cr 1N )- 1
ILIA

+1

= A (A'RA+ cr2 IN) 1 A'A+'(A'RA+
62 IN )(A'RA+ cr

2
IN)

-1

= A (A'RA+ cr
2IN)-1 (A'RA+ o-

2
IN )A'A (ArRA+ 0-

2IN)-1

= AA'A+, (A'RA+ o-
2
IN)

-1

= A(ATRA+ cr2IN)
-1

.



Thus

Also

(3. 15)

where

13 t = LIJ'A(ATRA+ cr
2
IN)

t-1
t

E(k- Pt)(Pt- Pt)' = E K pKt t_i
i=0

= [-IKtt. . Kt ]
1

A-1
Y = 13 t .

t-1
t

_ 13 ) Kt_i
i=0

+r (0) 4'AA

AA+ip 1.2

p t_i p

-I

Kt

t'
K1
_ -

t

(t) = A(t )A
+

(t)(R(t)+ o-
2 (ANA' (t ))+ )A(t)A(t)+.

This follows from the relation

E [3 t t(t) = E ( (3 (A+Y(t))9

= E( (A+T(A+p(t)+ E (t)) )' )t

= E(13t 13'(t)AA+)

= [r (0)r (1). . . r (t- 1 )]AA+

and

E ( (3 (t )(3 ' (t )) = E ( (A
+ '

(A
+13

(t)+ E ) ) ) (A+ (A+ p(t)+E(t)))9

= (A+110E(p(t) pt(t))A,A+) + (A+tE(E (t) E (t))A+ )

= A+TA'R (t)AA+ + o-
2
A

+'
A+

= AA.
+

(R (t )+ 6
2

(AA )+ )AA+ .

27



Using the identity

AIAA+(R+Crz(AA1)+)AA +A = (AIRA+o- IN)A+A

it follows from (3. 12), (3. 14) and (3. 15) that

(3. 16)

E(r,t_ P )( t-Pdi= r(0) - [Ktt...KtilAA+Lp- 4,1AA+

+ [Kt... K1 N.2
2

tr
Kt

K11

ty
Kt

t'
K1_

= r (0) - 'A (A1RA+ o-2IN)-1A'AA+4,

- VAA+ A (A'RA+ lA rip

+ LIJIA(ATRA+ cr
2I

N
)-

1 A'AA+
(R+ o-

2
(AA' )

+)

X AA+A(A'RA+o-2IN)-1 AN,

= r(0) iptA(A1RA+cr2IN) - 1A'4,

= E0t- PdOt-

This completes the proof of Theorem 2.

Corollary 3.1. is a BL estimator of 13

28



As

Proof.

t = 1st

Ot-f3t112 = Tr E(Ot-PtOt- (V)

= Tr E(03t-Pd(fit- Pt)')

=E0t-PtI12-

we shall dispense with the duplicate notation and let

29

denote the BL estimator whether it is a linear combination of the

LS estimators or of the original observations.

It will be useful later to note that

(3. 17)

This follows by writing

and noting that

AI1 1 A' =
2

.

= AA+ (R+ o-2 (AA' )+ )AA+ = (A+
I
(ATRA+ o-2 IN )A+ ) .

-
.A.,1

1

1 A' = A(A'RA+ o- 2I
N

)
-1A'

= (A+T(A'RA+ o-
2I )A+)+

That the latter is true follows from the definition of the M-P inverse.

The Best Linear Predictor

Consider the parallel problem to estimation, that of prediction,

under the present model. A non-zero covariance function r(s)
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again dictates the existence of information relevant to the expected

value of p in observations Yt, , yi for tl > t. The ques-

tion then arises, how can this information be used to predict o
ti

or

a linear function of p

Analogous to the BL estimator, the BL predictor is given by

the following

Definition 3. 2. The Best Linear (BL) predictor 13t, of 13t'
is that value of

(3. 18)

t- 1
t

Bt' = P Yt-it-i
i=0

which minimizes the loss function

L
2

= E II B
'

- 13 tt II

2.

Analogous to (3. 8) we may write

where

tL2 = trace [ -IPtt . .1° ]
1

r(0) Otiltv (t)A(t)

(t)Lkt
(t )

Ni (t) = [r(V-t)r(tt-t+1)...r(t1-1)].

-I

t'Pt

P t'
1



31

Consequently we find

Theorem 3. 3. The values of the matrices Pt, ,
1

... Pt whicht

minimize L2 where B t takes the form of (3. 18) satisfy the ma-

trix equation

t t pti

Proof. The proof follows directly from Theorem 1.

Due to the parallel formulation it can be seen that all results

obtained in the following chapters pertaining to the BL estimator

equally pertain to the BL predictor.
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IV. ESTIMATION UNDER FULL RANK EXPERIMENTS

In this chapter further results are given under the constraint

P = P, i = 1, 2, ..., t. These results take the form of:

i) A computational scheme for obtaining the coefficient ma-

trices Kt... K1 with matrix inversions of order p.

ii) Evaluation of the expression of the covariance matrix of pt.

iii) Comparison of the BL estimator with the LS estimator and

Bayesian estimator with normal prior.

iv) Investigation of bias in connection with the BL estimator.

Before proceeding let the BL estimator be generalized by the

following

Definition 4. 1. An order - BL estimator of 13 is given by

the value of

t
B = K pt, t_i

i=o

which minimizes

(4. 1)

Denoting this estimator by

E 11 B 11

2.t, t

t, we see that p = Pt.-t,t It can be

seen that the results of previous chapters relevant to the estimator

fit apply directly to the order - f BL estimator, Q < t. This
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follows from the observation that the problem of obtaining an order-1

BL estimator is of the same dimension and formulated in the same

manner as that of obtaining the BL estimator pt when t = I.

A generalization of notation is required to deal with the order-i

BL estimator. From Definition 4. 1 we see

Pt,f =

1-1
t, I

H Yt-i t-i
i=0

- 1

= Kt't_i p

i.o

t Ht' ] and [Kt' I Kt'where [Ht' ] are such that (4. 1)t- +1 t t- 1 +1

is minimized. Analogus to (3. 12) and (3. 14) respectively we see that

and

where

[Fitt ' Ht' = LP' (t, f )A (t'

,1
1-

,

-1-

[Kt
t, t... K ] = (Htt, tHt )A.' (t,1 )Kt' P1

kpl(t, I) = [r(0)r(1)... r(1-1)]

and A' (t, I) and
1
(t, I) are the upper left N(t, I) x /p and

/13 x 1p matrices of A' (t) and
1

(t) respectively. It follows

that

[Kt'
2 -I --tt,

-1 +1
= (t, )A (t, )(A' (t,/ )R (t, )A(t,12)+0- IN(ti)) 1A'

(t, f )
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where R (t, I) = R (1).

Let us turn now to the investigation of the order-I BL estimator

under the requirement that p (X!) = p, j = t-I+1, t.

From (2. 3f) and (3. 3)it follows that for p (XI ) = p,

i = t-I+1,...,t

A(t, )A (t, I) = .

It then follows from (3. 17) that

(4. 2) [Kt' I... t- +1 ] = Lpt(t, )(R(t, )+o-2(A(t, )Aqt, )1111

where (R(t, 1)+o-
2 (A(t,1 )At(T, I)) -1) -1 is seen to exist from the dis-

cussion following (3. 11). Under these conditions it appears the inver-

sion of a matrix of order kp is required in order to obtain

It will be seen by the following that this is not the case.

Kt'Calculation of K ' ... Kt'
I2+1

In this section the computational method will be given for calcu-

lating the coefficient matrices Kt,
' t, K

t,
12+1

. This will initially

be done for 1 = t and then adaptations will be made to satisfy the

case, 1 < t. Let

(4. 3) cl)t = (R(t)+o-2(A(t)At(t)) 1)



and let

4)t+1

where

4)11 1t i
4Dt1 (1)t

$11 = (r(0)-1-0-2(xt+1X41)-1)

and

431.t
41.11 = [r(1)... r(t)].

Let us also assume cl
1)t is known. Choosing Aij and

j = 1, 2, so that

A11 Al;
B11 B12

A21 A22

we find that

B21 B22

(4. 5) B11 = (A
11

-A
12

A-1 A
21

)
-1,

22

[I

0

0

I

B' = B = -A-1A (A -A A-1A )
-1,

12 21 22 21 11 12 22 21

B22 + AA (A -A A A )
-1 A A-1

22 22 22 21 11 12 22 21 12 22

From this and (4. 4) it follows that
1 -1 1 1 -1

(ci) 11-4) 1 t(i)t (IDt 1 ) (4)t ci)t1(4)11-(1)1t cl)t cl)t1) )1

tl 411- 4lt t
1

4tl
-1 -1

+
-1

4 (411 4 4 t
14 14

4t
1

35
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is obtainable with matrix inversions of order

find

Kt+1 = 11,(t+1)
t+1

In addition

A-1 1- 1

(1)11-srA lert 't11

P-

1 -1 -1
-At tla 11-A leAt rtl1

From (4. 2) we

1 1 I 1
= r (0 )(d) d) (1)-

16
)

- 1
11- lt' t tl 1-lert srtl 11-1 1 sr 1 ert srtl

-1A,= I - cr2(X
I

t+1
Xt+1)

-1
(srllrltrt `rtli

1-1

Lri.j.t+1

t-I-1
=K

1
&,(t +1)1)it

Since 1

-1 -1 -1
( 4)

1 1
4) 1 t t (1)t1) 41 tcOt

1 A- 1,1, A1 -1 4,- 1
srt 4't 1

(r
1 t (1)let't (1)t1

) 4)1 ert

r(0) (d
1 1 le, t

1

4 t1)
1 1 1

1,6 14,
qb ) 1 4) 4)n.ert l't11r11-41t t tl lt t

-1 1 -1 1= 0-
2

(X X' ) 411- ci) 1 tci)t t 1 ) 4)1 t(i)tt+1 t+1

= (I - K
t+1

)4)
1

t+1 lt t

is obtained from 4:)1 by an inversion of order p

the derivation is complete.

Let us now turn our attention to the coefficient matrices asso-

4)-1 (0-1 beciated with an order - BL estimate. Let (t, ) = t,



known.

(4. 6)

where

and

Then
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By the above scheme,

-1
4t+ 1 , Q +1

do t+1,

4)t+1, Q

ot+1,
f

/+1
can

OTt+1,

eQ,

be determined.

-1 A A
11 12

A21 A22

Let

et+1,
=Er'(/)rt(1-1)...rt(1)]

Of, f = r (0) + cr
2(X

t-12

1X' ) .

i+i

l't+1, 2

t+1,

'0t+1,

0
,Q

111

B21

B12

B22

1and do
' t+1,

and
B11

if only if 4)-1
t+1, I

B
11

and from (4. 5)

-1 -1
4t+1, Q B11 (A11 A1 2A-1A21))22

which is obtained directly from (4. 6). Thus

[Kt+1... t
Kt 1

+2
= 4J(t+1, f )1)t+1,1

Let us now consider the covariance matrix of FromFrom (4. 2)

we see
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E( pt)(f3t_ r(0) - [Ktt...Kti]ct

From the relation

tt
Kt

ti
K1

= r(0) - Iliy(t)4:it1tp(t)

= r(0) - [Ktt...Kti4(t).

t[K... K 1]4t = q' (t)

= ipl(t) + [0-2(XtN)-10... 0] - [cr2(XtXt) -10... o]

it follows that

[Kt... K1] = [Lpt(t)-1-0-2(X X)-1 0... [cr 2(X X1) 1 0... 041t t t t

Thus

[Kt... Kt ] q(t) = [Io...*(t) - [0-2(x t 134141 (t)t

Kt

= r(0) - [cr2(XtX0-10...
0]

t'
K1

= 62(X tX') -1 K'tt
and

(4. 7)

E(1/3t- pt)( "fit- pt), = 0-
2 (XtN) -1 KtV

= 62(XtXt)1-02(Xt t (11 It )t
1

tl )
172 (XtXJ1.
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Comparing this with the covariance matrix of the LS estimator,

E(P t- t)(.11t-P-t)' = 62(XtXt

we see that the former is smaller by a factor of

-1 1 -
a-2(X X') (4) -4) $4) ) 1a-2(X

1
.t 11 ltit tl t tX9-

Thus, the greater the information contained in the past data, as re-

flected by the covariance function r(s), the smaller the value of

Kt and the greater the improvement over the LS estimator.

It should be noted, however, that this comparison is in a sense

inappropriate as the LS estimator is not dependent upon assumptions

concerning the mean and variance of the parameters while the BL

estimator is. A more relevent comparison can be made between the

BL estimator and a closer relative, the Bayes estimator under a nor-

mal prior with E(13t) = 0, E((3t = r(0).

Here the Bayes estimator is (Raiffa and Schlaifer, 1961)

= r(0)(r(0)+ o- 2(X X') -1
)
-1

(3t t t

and has covariance matrix

EPt-Pt)(Pt-13

=
62 (XtX') -1

-
62

(Xt tXI) -1
(r (0)+o-

2
(X tX')-1)-10-2(X

tX') -1.
t
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A qualitative comparison of these two covariance matrices can be

made using the following

Definition 4. 2. Let A, B be square matrices of the same

order where A > B means A - B is positive definite and A > B

means A - B is non-negative definite.

We now have the following

Lemma 4.1. Let A, B, A-B be positive definite. Then

(A- B) 1 > A-1.

Proof. (A- Br 1 - A-1 = -A-1 (A- 1- B-1 )- 1A- 1.

If one of the following are true all are true.

That the latter is true is found in Rao (1965), thus (A-B)-1
> A-1

but only if B = 0 can the equality hold. Thus (A-B)-1 > A.

Theorem 4.1. E(13t-Pt)(13t-13t)1> E(13t-L3t)(Lit-ilt

Proof. This theorem follows directly from Lemma 4. 1 with



41

A = (r(0)-1-o-
2(X

t T1tT
X9-1) = 011 and B do t

16

Here again the greater the information contained in past data

the greater the improvement of the BL estimator over the Bayes es-

timator.

It should also be noted that since do
11

= (r (0)+ cr 2 (XtXp 1) if

cl)
-10 = 0, that is if r(s) = 0, s > 0, the BL estimator reducesIt t tl

to the Bayes estimator with normal prior with E( (i t) = 0 and

E( pt p = r(0). This is equivalent to saying that the order-1 BL

estimator is the Bayes estimator. From this point of view the mul-

tiple lag BL estimator might be thought of as a Bayesian estimator

with a prior given in the form of a stochastic process.

Bias

Consideration of the property of bias under the assumption that

the mean of the process is zero leads to the observation that all es-

timators linear in the observations are unconditionally unbiased if the

observational errors have expectation zero. However, if one wishes

to calculate estimator bias for the process at time t, the property

which is relevant is that of conditional bias, conditional on time t.

Considering this we find that in general the BL estimator is not con-

ditionally unbiased. This follows from the observation that the order-

1 BL estimator is identical to the conditionally biased Bayes estimator
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with normal prior. In this particular case the amount of bias can be

determined if so desired. Such is not the case if we are considering

BL estimators of order greater than one. This follows from the ob-

servation that such an estimator involves information related to the

parameters p ., i< t, and if 13.
1 1 t

tion exists between past observations and

no simple expectation rela-

.1-3-t*
Thus no meaningful

quantitative evaluation of bias can be made in this case.
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V. ESTIMATION OF r(s) AND 13-

Estimation of r (s)

In this chapter a consistent estimator of the autocovariance

function r(s) for s = 0, ±1, ±2, , ±t-1 is given when either p

or its unbiased LS estimate P
1

is known for i = 1, 2, , t. Ob-

viously, this last condition requires p (X!) = p for i = 1, 2, ... , t.

Also a minimum variance linear unbiased estimator of is given.

In the development of the estimator of r(s) we shall adapt

the method of Lomnicki and Zaremba (1957) dealing with the estima-

tion of autocorrelation in a one-dimensional time series. It will be

shown that the estimator of the autocovariance function in the present

case is mathematically analogous to the estimator given by Lomnicki

and Zaremba in the one-dimensional case. Consequently, their re-

sults may be adapted directly.

Let {i be a p-dimensional discrete stationary stochastic

process with

E(rl t) = 0, E ( 1 1 ) =
2
Ip, E (ri tals) = 0, s r t.

00

Let m13 be absolutely convergent for each i, j (where

s=0

M [m13],
s s

j = 1, 2, ... , p). Then the sequence {Zt} defined by

the moving average
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(5.1)

Co

Z- t = I Ms t-s
s=0

is a stationary stochastic process (Whittle, 1963). Assuming that

this process differs from the stationary process 113t} only by a con-

stant p , the mean value of the {Pt} process, which will be as-

sumed non-zero and unknown, we have

(5. 2) t =R zt

In addition, the following assumptions on the series {1-1 are made:

(5. 3) i) All finite moments of ri exist and are finite where

1

'fit

at

11 12

im
,1 2ii) E in) = E T1 11t

1
t

2
tm t

1
+r t 2+r tm -Fr)

where

ti, t2, , tm, r and 0 < i2, , im < p are integers.

iii) The moments of the process {i t} behave as if they were

independent. Namely;

i
1

X1 i2 X2 i X
i j X

i x

E ((Li ) (at ) . (atm ) ) = Efrit
l

) Eht 2 2
) E(rItn) m

2 1 2



with t
1

tm' il, im as in (ii) and X
1,

..., X m"
any set of non-negative integers.

It follows from (5. 1) that

00

r(Q) = Cov(13 13 ) = Cov(Z Z ) =
2 M M'

s s+1
s=0

where Coy(Pe(3
t-14)

represents the matrix of covariances of the

individual elements

Letting

P t

of the

1

t
2

t

p
t

vectors

Ms =

Pt

1Ms

Mpsj

and 13

, Z t =

t+P

t

ZPt_

and

we see that

(5. 4)

and

(5. 5)

Let us define

r ) = [rii (i j = 1, . . . , p,

00

Zi = M1s t-s
S=0

co

r'3 (Q) = Ms Ms-1-1 .

s=0

45



N-1
ij (I, N) N-1

1 i j
r(5. 6) Zs Zs+1

s=1

and

(5.7)

where

(5. 8)

N) = 1N-1

N-.12

Ps- Xi3js+/- -Ps+f)
s=1

N-1+q
=i 1 i
s+q N-I P

j=l+q

for q = 0,

46

The above assumptions and definitions are analogous to those pre-

sented by Lomnicki and Zaremba with the exception of (5. 4) and (5. 5)

which are expressed in matrix notation as opposed to scaler. How-

ever, by reindexing it can be seen that

(5. 9) Zt =

00

s = 0

Ms t_s =

s = 0 j =1 51=0
s' fit- s'

where the elements of the set {s': 0, 1, 2, ...} correspond one-to-

one to those of the set {(s, j) : (0,1),..., (0,p), (1,1),..., (1,p), (2,1),...

It follows that

00

s 1=0

i j'ms
s 1+pi

Moreover in view of the absolute convergence of



00

ijms , i, j = 1,...,p,
s=0

00

s =0

and consequentlys'

00

rij (.1 ) is

5=-00

47

absolutely convergent. Using the above in addition to the obvious as-

sumptions on the one-dimensional {i st} process as derived from

those on the p-dimensional } process it is seen that the results
s

due to Lomicki and Zaremba can be adapted to the present situation.

Some results of immediate interest are:

a) rii(f, N) is unbiased for rii(,Q ).

b) rij(:Q, N) is a consistent estimator of r1 (.Q) if

Ms =0, s < 0.

c) N) is an asymptotically unbiased estimator of rii(i)

and the bias is of order N1.

d) cii(.e, N) is a consistent estimator of r ).

All these results then also apply for the matrices

r N) = [ri3(12, N)] and C(12, N) = N)],

i, j = 1, ,13.

Above we have given an estimator of the covariance function when the

value of the process is known at times s = 1, 2, ... , t. However,

let us consider the estimation of r (.Q) when we only have estimates

of (3 s, s = 1, 2, .. . , t. Suppose p(X's) = p, s = 1, 2, , t. Then

13 = (X X1 ) -1X
, the LS estimate of Ps exists. Setting

s s ss
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(5. 10)

we find

(5. 11) t

where

p = p t

(5. 12)

Let us define

(5. 13)

and

(5. 14)

where

(5. 15)

CO

M + As t-s t
s=0

A = (3t t
*

= Ut
-1/2t tcr

* o- 1/2Mt = Ut

E (A tot) = o-
2

Ut, E(AtA ts) = 0, s

from the assumptions of LS regression analysis.

It is assumed that assumptions (5. 3i), (5. 3ii) and (5. 3iii) per-

taining to the In t} process are also valid assumptions on the

{In
t},Tit*

}
process. Also it can be seen that is independent

from all n From (5. 11), (5. 13) and (5. 14) it follows that

Zt =

00

s=0

* *
M + M .s t-s t t

Corresponding to the reindexing of (5. 9)



Zi
t

00

s'=0
s' fit- s'

00

j=1 s'=-p
s' t-st
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i iwhere are understood tomp, ' m1, rit+p' ilt+p' ' rit+i
*il *ip *1 *2

be respectively for fixed t.
mt , mt ' , mt '

It then follows from (5. 10- 5. 15) that

(5. 16) Cov(R pt+i ) = cov(zt,z_t+i)

where

and

00

2
= M + 6 Cr Us' 0+1 t

s '=0

= r ) + S o-
2
Ut'

if f = 0
Sf =

0, if f # 0

Ut = (XtX ' )
-1

Define analogous to (5. 6- 5. 8)

(5. 17) r ij N) - (Z Z -6 o-
2 Uj)

N-1 1 t t

and

t=1

N-1

Cij (1,N) = 1 j 2 ij
(Pt-P t" t-Pdt SNUt

t=1



where

1P=t+s N-R P

j =1 +s

and where

with

S2
N N

(nt-p)

t=1

for S = 0, 1

2 1
(Y X' p NY -X' (3 ).st nt - p t t t t t t

Theorem 5.1.

a) r ij
(1 , N) is unbiased for rij (1) .

b) r ij (1,N) is a consistent estimator of rii(1).

c) C13(1, N) is an asymptotically unbiased estimator of ri3(1)

and the bias is of order N1.

d) E13(1, N) is a consistent estimator of r
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Proof. For 1 0: r ij (1,N) and C
ij (1, N) are exactly anal-

ogous to r13(1, N) and C13(1, N) with Z i replaced by and

the theorem follows from the results of Lomnicki and Zaremba.

For 1 = 0: S2 is an unbiased and consistent estimator of o- 2.

Thus ri3(0,N) has the same asymptotic distribution as



zij
Zit

2 ijr (0, N) = N ZtZt-o- Ut ).

Also it is apparent that

Consider

where

(5. 18)

lim N Cov

t=1

N)) = Var

N

t=1

iZt Ztj )).

Z Z Z Z )
-j 1 -j
t' N s+1 s+12

t=1 s=1

N N
= lim cov(ii2j

t-F t)N t t' i +iNco t=1 t=1

-i-jCoy (ZtZt'Zt-FfZt+t

co ijij
m aimbimcimdiE t- t- t- di )

a'=-oo b' = -oo c' = - co d' = -oo

2- (r1j (0)-F cr Ut
ij )(rij (0)+ o-2Uij )

CO

r=-00

oo

i i im m m
12

E (ri
4

)t-r t-r t+,p-r r

00

i j Jm 21ri 21m mt-r t-r t-Fip-q
r=-co q=_co

r q

51



00 00
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i j i 2 2
mt-rmt-q t+.(p-rmjt+l E(rip-qr )E (rig)

r =_oo q=_oo
r q

00

Tr)
IM M. / E (r1)E(r1)t-r t-q t+ p- q t+ p- r r q

r=_oo q=_oo
r q

(rij (0)+ o-2Uij)(rij(0)+ o-2Ujj ).t+i

Recalling that Ehairibt) = 0 for t+1 < a' < t+p and -co < b' < t

and by adding and subtracting

4 i j i mjm m mt- r t- r p- r t+1 p- r
r=_oo

to the second, third and fourth terms of (5. 18) we see that

Coy (2i )
t t+12

t+p

=
jM M IT1 M E (114 )+ 8 mi mj i mj E (r1

4)i 3

t- r t- r t+i p- r t+/p- r r i t-r t-rmt-r t-r r
r:----00 r=t+1

00

2
+ (rij (0)+o- Utij )(r ij

(0 )+ r
2

Uij
4

t+i
i j i jm m mt-r t-r p- r t-Fi p- r

r=-oo

20)(r1j(/ cr2Utii)-0+ (rij(/ )-1-6/ Cr

oo

m m mt-r t-r rm t+i p- r
r - 00
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00

ij
+ (r )4-$51 cr2Utij )(rli(e )+6 2UtJ i j i j

mt- rmt-rmt+tp- r t+ip- r
r = - 00

- (r1j(0)-1-o-
2
Ut

ij
)(r' (0 )1-0

2
Uij )

oo t+p

= S4 m i mj mi mj
+ 6 mi mj mi mj E(r14)t-r t-r t+Ip-r t+/ p-r I t- r t-r t- r t- r t

r=-oo r=t+1

i
+ (rij(i )+6/ 02 Ut

j
)
2 + (r ij(I

)+6 a-2 Uit 3)(r13(f )+6 cr Uit
j)

where

E(rir4 )= K4 + 4.

Thus from (28) of Lomnicki and Zaremba

lira N Var ( Pi(0, N))

4 ij 2
=

4
[r (0)1 +

00

N t+p

+ urn
t=1 r =t- 1

mi mj mi mj E ij 2
614) + (cr

2 Ut )t- r t- r t-r t- r t

4 ii jj 2 ij ij 2 ii jj 2 jj ii
+ o- Ut Ut + 2o- r (0)Ut + o- r (0)Ut +o r (0)Ut

Since p (X 't) = p, Uii is finite and thus so is ms', - p < s' < -1.

Let Uii and mi
'
< M. Then

s
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K4
4

ii 2[r "(0)] + 2

lim N Var (rii(0, N))

00

(rij(q))2

q=-oo

1
71-

(pm4,1_4,.
u

2_41\42+02 M(ri3(0)+ 2r1j(0)+r3j(0)))v t
t=1

which is finite.

Thus r ij ij(0, N) is consistent which in turn implies r (0, N)

is consistent. Also from (5. 16) and (5. 17) P3(0, N) is unbiased.

In addition a1i(0, N) differs from ijr (0, N) by exactly the same

algebraic amount as C13(0, N) differs from r13(0, N) and thus

ij
C (0, N) is asymptotically unbiased and consistent for r1j(0).

Let us turn now to the estimation of 13

Estimation of p

Previously we have assumed that the mean value of the

stochastic process { (T)} was known and thus without loss of gen-

erality could assume that 12 = 0. However, as this will not always

be the case, let us consider the estimation of 13 .

At time t the regression model may be written
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Y = Xt 1 p + xqp - + c .t t t t t

Letting f3(t) = ply be a tp x 1 vector and Y(t), A'(t), (3(t)

and E (t) be as previously defined we may write a more general re-

gression model as

(5.19) Y(t) = A1(t)3(t) + A1(0(13(043(t)) +

Let us consider the following theorem:

Theorem 5. . Under model (5. 1) with

(5. 20) E(E (t)) = 0, E (E (t) E 'On = 6-21

(5. 21) E (E (t)(3' (t)) = 0

and

(5. 22) Ea:IN(13(0-13(t)N = 0

the minimum variance linear unbiased estimate of 3 is given by

(x(t)X,(0)-1x(t)y(t)

when X(t) = [Xf Xt-1.***, X 1] is of rank p.

Proof. Let p = CY(t) be a general linear function of Y(t)

where C is a p x N(t) constant matrix. For p to be un-

biased we must have C = (X(t)X'(t)) -1 X(t) + D where

D = [De Dt-1' ,D1] and D. is a p x n. constant matrix and



t

1=1

This follows from

D. X! = 0.
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E(r) = E(CY(t))

E[ ((X(t)X(t))1X(t) + D )(AT (t)13(t) + A' (t)((3(t) - 13(0) + (On

t

X.X!)-1
1 1

i=1

t

1=1

t

i=1

D. X' p1-

We now must find D such that the resu3ting estimator has minimum

variance in that the diagonal elements of EU:1-(3)(R - p )1 are mini-

mized. Using (5. 20-5. 22) and

D.X! = 0

1=1

and letting (X(t)X'(t)) = S we find

(5. 23) E(P P)(P

= E(S-1 X(t)A1(t)13(t)+S 1 X(t)c(t)+D E(t))

X (S - X(t)At(t )13(t)+S - X(t) E(t)+D E(t))' =
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-1= E(S X(t)Aqt)13(t)(3' MANX' (t)S -1
+ S

1 X(t) E (t) E qt)X1(t)S-1

+ DE(t)E'(t)D')

= S
- 1X(t)Aqt)E(13(t)131(t))A(t)V(t)S -1

+ 0-2(S-1+ DD').

As G = DD' is positive semi-definite, its diagonal elements

g.. > 0. Thus the diagonal elements of (5. 23) are individually mini-

mized when D = 0. Thus C = (I:NV(0) -1 X(t) and the theorem

is proved.
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VI. A NUMERICAL EXAMPLE

In order to study the effectiveness of the BL estimation proce-

dure the following example was simulated on the CDC 3300 computer.

A discrete three-dimensional wide-sense stationary stochastic pro-

cess was generated with the following distributional characteristics.

and

E(13t) = 0

E(Pt P4s) = r(s), s = 0,1,...,k-1.

This was accomplished by generating a sequence {e }°° of
ir:

three-dimensional variates with

and

E(ei)= 0

E(e. e! = 8.1.1 1+3 3

00Then (henthe elements of the sequence with = (r(0))1 /2e

have

E(Ai) = 0

and

E( Ai Ai+j) = 6jr(0).

Letting



Pt

with

aiit+i_i=

i=1

k

a. =1
i=1

it follows that the elements of the sequence If It}tc°_, have

E(pt) = 0

k-s
and

(6.1) E(i3-t12:t+s)
i=1

ai ai+s )r (0) = r (s ).

For the purposes of this example the parameters used were

k = 16, a = . 2 5 for i = 1, ..., 16 and

. 010 . 008 .008

r(0) = . 008 . 010 .008

. 008 . 008 . 010

From (6. 1)

r(s) (16--16 s )r(0).
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These values were selected to yield a process {13tr which

was reasonably smooth (see Figures 1-5).
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Using the generated sequence 1(3 t t}oo
1,

for each value t a

nt x 1 vector of observation

was generated where

and

Y = X' (3 Et t t

E(E ) = 0

E(E E = 6s (62I).

The third step in the simulation was to use these data to esti-

mate the unknown parameter vector 13 t utilizing the following es-

timators:

(6. 2) i) Least Squares, nt = 4

ii) Bayes with normal prior, nt = 4

iii) Best Linear estimator

a. order-3, nt = 4

b. order-3, nt = 2

c. order-5, nt = 1.

nt = 4 was chosen as the basic size of the individual experi-

ment to permit the estimation of
P t by LS but yet allow for the

evaluation and comparison of the effectiveness of the BL estimator

when the quantity of data was a minimum. The design matrix X'
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was the same for each experiment so that the quantity E 1113t(est)-Ptil 2

associated with a given estimator was the same at each time point and

thus could be estimated from the corresponding finite sequence of

estimates -13 t (est)}n
. The particular design matrix used was

t=1

chosen so that the absolute value of any element was less than ten and

such that the inner product of its columns were small. This latter

restriction contributes to the decrease of the covariance matrix of

the LS estimator (Rao, 1965a). With regard to the former restric-

tion, it is observed that the covariance matrix of the LS, Bayesian

and BL estimators are a function of the design matrix and cr
2 only

in the form o-
2(X

t tX') -1. Thus it is not the absolute magnitude of

the estimates but their value relative to o-
2. Hence, for a given

covariance structure, r (s ), the comparitive effectiveness of the

various estimators under different ratios of X' and 62 can be

studied by holding X' fixed and varying the value of cr
2.

Three independent sequences were generated as were corres-

ponding sequences of experiments, each with one of the following val-

ues of cr
2:

0. 09, 0. 25, and 0. 64. Label these sequences of experi-

ments respectively A, B and C. The following parameters were esti-

mated: the value of Pt for the first 25 time points in sequences

A, B and C by the estimators indicated in (6. 2i), (6. 2ii) and (6. 2iiia)

and the additional estimators indicated in (6. 2iiib) and (6. 2iiic) for

sequence B only. For each of these cases the quantity



Ave II Pt(est) RtII 2

62

was calculated to compare the effectiveness of

the several estimators under varying conditions. The results are

found in Table 1.

Table 1. Ave II (3 t(est) Et II
2

Sequence Estimators
Best Best Best

Least Linear Linear Linear
Squares Bayes nt = 4 nt = 2 nt = 1

nt = 4 order-3 order-3 order-5nt = 4

A (o-
2

= . 09)

B (0-
2

= . 25 )

C (o-
2 = . 64)

. 0071 . 0070 . 0036

. 0144 . 0076 . 0044 . 0077 . 0091

. 0405 . 0121 . 0059

As seen in Table 1 in all three sequences the BL estimator of

order-3 yields substantial improvement over both the LS and Bayes

estimators based on the same data with the degree of improvement in

the cases given here depending on the value of 62. The fact that

these sequences are independent gives support to the contention that

this improvement is real and not a function of the particular sequence

chosen. It is also seen that the BL estimators with nt = 2 and

nt = 1 are improvements over the LS estimator in sequence B. This

result, while not unexpected, is pleasing as the initial purpose of the

investigation was to derive an estimator of the present value of a

parameter vector varying according to a stationary stochastic
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process when data were minimal. Table 1 indicates the BL estimator

is such an estimator.

To illustrate the comparative accuracy of the various esti-

mators the sequences of estimated parameters are plotted in Figures

1-5 against the true values for the five different estimators given in

(6. 2). Sequence B was used in each case and only the first element

in the parameter vector was considered as it is representative of all

three.
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