Addition/Correction to

Structure of a Sedoheptulose 7-Phosphate Cyclase: ValA from *Streptomyces*

hygroscopicus

Kelsey M. Kean¹, Sara J. Codding¹, Shumpei Asamizu², Taifo Mahmud², and P. Andrew Karplus^{1,*}

¹ Department of Biochemistry & Biophysics, 2011 ALS Building, Oregon State University,

Corvallis, OR 97331-7305, USA

² Department of Pharmaceutical Sciences, 203 Pharmacy Building, Oregon State University,

Corvallis, OR 97331-7305, USA

* Corresponding author: E-mail: <u>karplusp@science.oregonstate.edu;</u>

Contact information for editorial correspondence: P. Andrew Karplus

Tel.: 541-737-3200; Fax: 541-737-0481

Addition/Correction

Shortly after this article describing the crystal structure of ValA from *Streptomyces hygroscopicus* was accepted for publication, we were able to solve the structure of the related enzyme desmethyl-4-deoxygadusol synthase from *Anabaena variabilis* (*Av*DDGS) at a higher (~1.7 Å) resolution (work still in progress). In light of the new structure, we are now able to satisfactorily interpret what we had described as a difficult to fit β -hairpin turn at residues 32 and 33 of ValA which collided with its symmetry mate across the crystallographic 2-fold axis. Now we are able to say that rather than these residues forming a β -hairpin to match the chain topology seen in dehydroquionate synthase structures, a domain swapped arrangement exists in which the residues N-terminal to 33 continue in a linear direction, making an extended β -strand that participates in the core β -sheet in the other subunit of the dimer. We have updated the PDB deposition to reflect this altered topology and provide here an updated version of our original Figure 3 (Revised Figure 3) that provides a corrected overview of the topology of ValA. Further details of this new topology will be reported in a future publication of the *Av*DDGS structure.

Figure Legends

Revised Figure 3. Overall structure and topology of ValA. (A) Ribbon diagrams of the two chains of the ValA dimer are shown in purple and green tones, respectively, with the N-terminal NAD⁺-binding domains in light hues and the C-terminal metal-binding domains in dark hues. The extended β -strands of each subunit involved the domain swapped arrangement are visible in the back of the dimer. Dashed lines indicate internal unmodeled backbone segments. The NAD⁺ and the Zn^{2+} with its coordinating ligands are shown (colored as in Figure 1). Secondary structural elements in each domain of one monomer are labeled. (B) Topology diagram showing α -helices (cylinders), β -stands (arrows), 3_{10} helices (triangular prisms), and π -helices (wider cylinder) with their respective first and last residues given. The minimal length α - and 3₁₀ helices (5 and 3 residues, respectively) are left out of the family secondary structure nomenclature. The domains are colored light and dark purple as indicated, and helices (H) and strands (β) common to the SPCs are named sequentially within each domain. The domain-swapped β -strand containing residues 27-32 from the other subunit of the dimer, but contributing to the purple domain, is light green. The crystallographic two-fold rotation axis (indicated as $\mathbf{0}$) relates this β strand to the residues extending from residue 32 of the purple domain to be part of the β -sheet of the other subunit. We retain the β 1 and β 2 names for the two parts of the long N-teminal β -strand both because they participate in different β -sheets and so as to maintain in this report a consensus secondary structure nomenclature relevant to the sugar phosphate cyclase superfamily. Dashed lines denote unmodeled backbone segments. The three Zn^{2+} binding residues (red asterisks) and the glycine-rich turn and acidic residue (green asterisks) important for NAD⁺-binding are indicated.

