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This thesis mainly consists of two parts: (1) comparing statistical modeling 

methods based on the area-based approach (ABA) for predicting forest inventory 

attributes using airborne light detection and ranging (LiDAR) data (Chapter 2), and 

(2) suggesting a new methodology fusing the individual tree detection (ITD) 

approach and the ABA for generating tree-lists using airborne LiDAR data (Chapter 

3). 

Chapter 2 compared selected modeling methods used to predict five forest 

attributes, basal area (BA), stem volume (VOL), Lorey’s height (LOR), quadratic 

mean diameter (QMD), and tree density (DEN), from airborne LiDAR metrics in 

southwestern Oregon, USA. The selected methods included most similar neighbor 

(MSN) imputation, gradient nearest neighbor (GNN) imputation, Random Forest 

(RF) based imputation, BestNN imputation, Ordinary least square (OLS) regression, 

spatial linear model (SLM), and geographically weighted regression (GWR). Several 

performances of each method were assessed by 500 simulations with different 



 

 

numbers of training data. No modeling methods was always superior to the others in 

prediction of the forest attributes. The best method varied according to response 

variable, prediction type, and performance measures, even though there was a leading 

group (SLM, OLS, BestNN, and GWR) that always outperformed the other methods 

in root mean squared prediction error (RMSPE). Model’s performance was quite 

affected when a small number of training data was used in modeling procedure. The 

optimal sizes of training data were 100-150 for point prediction and 200-250 for total 

prediction. SLM showed its applicability to wider conditions in that it produced better 

performance in most cases. RF imputation produced poorer performances than the 

other methods, particularly with lower prediction interval coverage. This might be 

because RF imputation had some bias and smaller prediction standard error; RF’s 

poor performance did not stem from the smaller number of predictor variables. 

In Chapter 3, a new approach, combining ITD and ABA, was proposed to 

generate tree-lists using airborne LiDAR data. ITD based on the Canopy Height 

Model (CHM) was applied for overstory trees, while ABA based on nearest neighbor 

(NN) imputation was applied for understory trees. The approach is intended to 

compensate for the weakness of LiDAR data and ITD in estimating understory trees, 

keeping the strength of ITD in estimating overstory trees in tree-level. We 

investigated the effects of three parameters on the performance of our proposed 

approach: smoothing of CHM, resolution of CHM, and height cutoff (a specific 

height that classifies trees into overstory and understory). There was no single 

combination of those parameters that produced the best performance for estimating 

stems per ha, mean tree height, basal area, diameter distribution and height 



 

 

distribution. The trees in the lowest LiDAR height class yielded the largest relative 

bias and relative root mean squared error. Although ITD and ABA showed limited 

explanatory powers to estimate stems per hectare and basal area, there could be 

improvements from methods such as using LiDAR data with higher density, applying 

better algorithms for ITD and decreasing distortion of the structure of LiDAR data. 

Automating the procedure of finding optimal combinations of those parameters is 

essential to expedite forest management decisions across forest landscapes using 

remote sensing data. 
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Chapter 1: General Introduction 

 

Forestry has been increasingly using remote sensing data for various goals of forest management. 

Among various types of remote sensing data, airborne light detection and ranging (LiDAR), which can 

provide the profiles of forest structure by penetrating forest canopies, has reached operational 

applications in forestry; typical forest inventory, habitat and biodiversity assessment, canopy structure 

and forest fuel estimation (Vauhkonen et al., 2014).  

In scaling forest inventory information from field surveys or remotely sensed data, statistical 

modeling is essential to obtain wall-to-wall information from discretely sampled observations. There 

has been various modeling methods for using either LiDAR or other remotely sensed data: ordinary 

least square (OLS) regression (Gobakken et al. 2012; Strunk et al. 2008), nonlinear least squares 

regression (Packalén et al. 2011), most similar neighbor (MSN) imputation (Kankare et al. 2013; 

Muinonen et al. 2001), gradient nearest neighbor (GNN) imputation (Hudak et al. 2008; Hudak et al. 

2014; Pierce et al. 2009; Temesgen and Ver Hoef 2015), Random-Forest (RF)-based imputation 

(Falkowski et al. 2010; Hudak et al. 2008; Hudak et al. 2012; Temesgen and Ver Hoef 2015), 

geographically weighted regression (GWR) technique (Chen et al. 2011; Gagliasso et al. 2014), 

Artificial Neural Networks (ANN) techniques (Niska et al. 2010), and others.  

Corona et al. (2014) and Junttila et al. (2015) showed that dealing with spatial autocorrelation in 

predicting forest attributes could improve the performance of the prediction. Thus, we might obtain 

more insight to analyzing a model’s performance by considering spatial autocorrelation in modeling 

process. Spatial linear model (SLM) has shown potential as a modeling method for forestry 

applications (Temesgen and Ver Hoef 2015; Ver Hoef and Temesgen 2013). SLM is similar to OLS 

regression in that it assumes a linear model. But in contrast to OLS regression, SLM assumes that its 

model error has spatial dependence that is described by a variance–covariance matrix, which means 

that it can explain spatial autocorrelation in given data. 

Despite the growing research on GWR, GNN, and RF and their wide use for mapping and 

estimating stand density, basal area, and volume per hectare for the Pacific Northwest forests, detailed 

analyses that compare the performance, efficiency, and suitability of GWR, RF, GNN, and SLM for 
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predicting (or mapping) LOR, QMD, DEN, basal area, and volume per hectare, at point and block-

level are lacking. The first part of this thesis compared the performances of the selected modeling 

methods for predicting 5 forest attributes: basal area (BA), stem volume (VOL), Lorey’s height (LOR), 

quadratic mean diameter (QMD), and tree density (DEN) using airborne LiDAR and ground data. The 

selected modeling methods are MSN with k = 1 and 5, RF-based imputation with k = 1 and 5, GNN 

with k = 1 and 5, BestNN—a modified k-NN method by Ver Hoef and Temesgen (2013)—OLS, SLM, 

and GWR. 

A tree-list can provide detailed data such as tree species, diameter at breast height (DBH), tree 

height (HT), basal area (BA) and stem volume required for forest management and planning. As 

applied to typical forest inventories, airborne LiDAR can be applied to generating tree-lists. For tree-

list generation, however, it is necessary to use a different approach from the first part of this thesis. 

There are two major approaches in using airborne LiDAR in forestry – the area-based approach 

(ABA) used in the first part of this thesis, and the individual tree detection (ITD) approach 

(Vauhkonen et al., 2014). ABA assumes that the vertical height distribution of laser point clouds is 

related to variables of interest in an area. A host of summary statistics derived from the point cloud are 

used to predict many forest inventory attributes. In contrast, ITD identifies individual trees and 

provides estimates of forest attributes based on the identified individual trees. A rasterized canopy 

height model (CHM) is commonly used to segment individual trees with horizontal location of treetop 

and height across the CHM area. Therefore, ITD would be more suitable for tree-level inventories like 

tree-lists than ABA. 

However, information on understory vegetation is likely to be missed when applying ITD (Koch 

et al., 2014). Additionally, it is well known that LiDAR has weaknesses for detecting or estimating 

understory vegetation regardless of the approach used because LiDAR data lack information on 

understory vegetation (lower proportion of point clouds in understory) (Takahashi et al., 2006). 

Many approaches have been proposed to overcome the limitations above. Maltamo et al. (2004) 

combined a theoretical probability distribution function with the tree height distribution estimated from 

ITD to detect small and suppressed trees. ITD first estimated the height distribution and the number of 

large trees, and then the Weibull distribution was applied to estimate small trees. Lindberg et al. (2010) 
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proposed a methodology to generate a tree-list combining a CHM-based ITD and ABA estimation. To 

better detect trees that are close to each other or small; 1) the number of trees per segment was 

estimated using a training dataset in which the number of field-measured trees for each tree crown 

segment was known, and 2) a candidate tree-list from the ITD was calibrated using the target 

distributions of HT and DBH estimated by a k-Nearest Neighbor (NN) approach. Other than those, a 3 

D clustering method (Lindberg et al., 2013) and the use of vertical stratification of point cloud and 

LiDAR data with high point cloud density (50 points / m2) (Hamraz et al., 2017) were proposed to 

improve detecting understory trees. 

There are many parameters that affect the performance of ITD. As biological parameters, forest 

structure, stand density, and tree clustering affected more than tree detection techniques (Vauhkonen et 

al., 2012). On the contrary to this, Kaartinen et al. (2012) reported that the methods for ITD were 

found to affect the performance of ITD. 

According to a typical ITD method (Yu et al., 2010), the performance of ITD is affected by the 

smoothing and resolution for CHM, and the algorithm used for tree segmentation. In addition to those 

parameters, Wiggins (2017) reported that excluding trees below a specific height (minimum height 

cutoff) improved ITD’s accuracy for overstory trees. Maltamo et al. (2003) noted that a proper value of 

the truncation parameter of Weibull for DBH distribution, which can be considered the same as a 

height cutoff, should be further studied. 

Other than ITD, detailed information on forest resources, such as a tree-list or stand table, has 

been mainly estimated by diameter distribution modeling or imputation. In diameter distribution 

modeling, parameters of some theoretical distributions are estimated to describe the distribution of tree 

diameters. Imputation methods directly substitute measured values from sample locations (references) 

for locations for which a prediction is desired (targets). Temesgen et al. (2003) used a set of proxy 

variables to represent a tree-list in NN imputations because there is no single variable to represent the 

tree-list. On the other hand, Strunk et al. (2017) used plot identities as a response variable in NN 

imputations in evaluating NN strategies to impute a tree-list. 

In the second part of this thesis, we combined ABA and ITD to estimate tree-list using airborne 

LiDAR data inspired by the ideas from Maltamo et al. (2003), Maltamo et al. (2004) and Wiggins 
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(2017). This was for overcoming the weakness of LiDAR data and the ITD method in identifying 

understory trees, and utilizing the strength of ITD over ABA. ITD with watershed segmentation 

(Vincent and Soille, 1991) was used for estimating overstory trees (trees taller than a height cutoff) and 

ABA by NN (k = 1) imputation was used for estimating understory trees (trees shorter than the height 

cutoff). We examined the effects of the combination of the three parameters, smoothing of CHM, 

resolution of CHM and the height cutoff, as well as LiDAR height classification of field plots on 

estimating tree-lists via ITD. The explanatory power of our approach was also investigated. We 

evaluated the performance of generating tree-lists in terms of BA, mean HT, stems per hectare (SPH), 

and distributions of DBH and HT.  
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Introduction 

Forest inventory is fundamental to forest planning and forest policy, as it provides information 

about the quality and quantity of forest resources. Traditional forest inventory has used field surveys 

for collecting ground data, and has used remotely sensed data mainly for stand delineation and creation 

of strata, however this method is expensive and time-consuming. Recent advances in remote sensing 

technologies such as image spectroscopy, high-resolution satellite imagery, microwave radars, and 

laser scanning allow surveying large areas at reasonable costs (Holopainen and Kalliovirta, 2006; 

McRoberts et al., 2010). Airborne light detection and ranging (LiDAR), as an independent 

measurement source, in particular has demonstrated ability to improve the accuracy of forest inventory 

parameters, such as height and volume estimates. Although wall-to-wall LiDAR information across 

large areas is not currently available due to high costs and data volumes (Wulder et al., 2012), LiDAR 

supported forest inventory is an important and active topic in forest research and other related fields. 

Scaling forest inventory information acquired from field surveys or remotely sensed data requires 

statistical modeling to obtain wall-to-wall information from discretely sampled observations. Various 

methods have been implemented for using either LiDAR or other remote sensed data such as ordinary 

least square (OLS) regression (Gobakken et al., 2012; Strunk et al., 2008), non-linear least squares 

regression (Packalén et al., 2011), most similar neighbor (MSN) imputation (Kankare et al., 2013; 

Muinonen et al., 2001), gradient nearest neighbor (GNN) imputation (Hudak et al., 2008; Hudak et al., 

2014; Pierce et al., 2009; Temesgen and Ver Hoef, 2015), Random Forest (RF) based imputation 

(Falkowski et al., 2010; Hudak et al., 2008; Hudak et al., 2012; Temesgen and Ver Hoef, 2015), 

geographically weighted regression (GWR) technique (Chen et al., 2011; Gagliasso et al., 2014), 

Artificial Neural Networks (ANN) techniques (Niska et al., 2010) etc.  

Among the methods above, arguably MSN and GNN have been widely used in the Pacific 

Northwest while linear regression modeling such as OLS has been used widely with LiDAR data and 

biomass estimation by most remote sensing analysts (Næsset and Gobakken, 2008). For instance, MSN 

methods have been used for tree volume estimation, quadratic mean diameter and stand density 

(LeMay et al., 2008), stand table (Temesgen et al., 2003), forest aboveground biomass and stem 

density (Kankare et al., 2013), and cavity tree abundance (Temesgen et al., 2008). Application 
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examples for GNN are wildland fuel and forest structure attributes such as canopy cover, basal area, 

etc. (Pierce et al., 2009), and tree species composition or forest structure attributes such as total basal 

area, stand density, etc. (Ohmann and Gregory, 2002). Similarly, RF-based imputation methods have 

been used increasingly (Eskelson et al., 2009b; Hudak et al., 2008; Hudak et al., 2014; Latifi and Koch, 

2012; Latifi et al., 2010). One advantage of RF methods is that it does not require a variable selection 

procedure to handle full sets of variables (Latifi et al., 2010; Penner et al., 2013). However, some 

potential issues of RF imputation have been reported. Breidenbach et al. (2010a) described that RF k-

NN consistently produced larger biases than other NN methods. RF imputation with large number of 

predictor variables did not improve the modeling performance compared to RF imputation with small 

number of predictors (Breidenbach et al., 2010a; Vauhkonen et al., 2010). OLS regression is a 

common modeling method and shows competitiveness in estimation of forest biomass and carbon 

stock using LiDAR data compared with other modeling methods such as RF, boosted regression trees, 

support vector regression, etc. (Li et al., 2014). GWR is a spatial predictor that assumes spatial non-

stationarity in the relationship between response and predictor variable (Chen et al., 2011). In 

Gagliasso et al. (2014), the lowest root mean squared error (RMSE) for estimating basal area were 

produced by GWR using ground measurements, LiDAR metrics, satellite image data and climate data 

in eastern Oregon, USA. 

As an alternative to the methods described, spatial linear model (SLM) has emerged and showed 

potential for forestry applications including inventory (Temesgen and Ver Hoef, 2015; Ver Hoef and 

Temesgen, 2013). SLM is similar to OLS regression in that it assumes a linear model. But in contrast 

to OLS regression, SLM assumes that its model error has spatial dependence that is described by a 

variance-covariance matrix. SLM has shown improved results compared to RF imputation and GNN 

(Temesgen and Ver Hoef, 2015), and achieved better performance than OLS regression, NN using 

Mahalanobis distance, MSN, and BestNN (see method section for BestNN) for estimation of potential 

forest productivity and biomass (Ver Hoef and Temesgen, 2013). 

Environmental measurements are often autocorrelated when measurements are taken near in space 

to each other (Hoeting, 2009). Spatial autocorrelation is not, however, typically considered in 

modeling methods such as OLS, nearest neighbor imputation, or ANN for forest attributes (Brosofske 
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et al., 2014). Leveraging the observed spatial correlation can improve the quality of inferences from 

the data (Schabenberger and Gotway, 2004). In Corona et al. (2014), universal kriging and co-kriging 

showed better performance than locally weighted regression and k-nearest neighbor imputation when 

there was strong spatial autocorrelation of forest variables. Junttila et al. (2015) suggested handling 

spatial correlation of model residuals to further improve their Bayesian linear model for estimating 

forest attributes with LiDAR data. Therefore, dealing with spatial autocorrelation in predicting forest 

attributes might give more insight to analyzing model’s performance.  

Temesgen and Ver Hoef (2015) compared the suitability and performance of k-NN, RF, GNN, 

and SLM empirically, and reported that SLM is a better option for point and total prediction of forest 

biomass and potential productivity. Despite the growing research on GWR, GNN and RF and their 

wide use for mapping and estimating stand density, basal area, and volume per hectare for the Pacific 

Northwest forests, detailed analyses that compare the performance, efficiency and suitability of GWR, 

RF, GNN and SLM for predicting (or mapping) LOR, QMD, DEN, basal area and volume per hectare, 

at point and block-level are lacking. The overall goal of this article is to make similar comparisons of 

SLM to GWR, GNN and RF that were missing from Temesgen and Ver Hoef (2015). 

The goal of the study was to compare the performances of the selected modeling methods for 

predicting five forest attributes, basal area (BA), stem volume (VOL), Lorey’s height (LOR), quadratic 

mean diameter (QMD), and tree density (DEN), using Bureau of Land Management LiDAR and 

ground data. The statistical performances of the modeling methods from simulations are assessed. The 

selected modeling methods are MSN with k=1 and 5, RF-based imputation with k=1 and 5, GNN with 

k=1 and 5, BestNN: a modified k-NN method by Ver Hoef and Temesgen (2013), OLS, SLM, and 

GWR. 

 

Methods 

Study Area 

Our study area covers four counties in southwestern Oregon: Coos, Curry, Douglas, and Lane 

counties (Figure 2.1). The extent of the area is 647,951 hectares with an elevation range of 

approximately 20 – 1,000 m above sea level. Douglas-fir (Pseudotsuga menziesii) is the main tree 
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species in the study area. Other important species are western hemlock (Tsuga heterophylla), red alder 

(Alnus rubra), Oregon myrtle (Umbellularia californica), bigleaf maple (Acer macrophyllum), tanoak 

(Lithocarpus), western redcedar (Thuja plicata), and grand fir (Abies grandis).  

 

Airborne LiDAR data collection specifications and processing 

An airborne LiDAR survey was conducted in the study area between April 27th, 2008 and April 

5th, 2009 using Leica ALS50 Phase II instrumentation. The average pulse density (the average number 

of pulses returned from surfaces) was 8.10/m2 for the study area. Further specifications of the LiDAR 

survey are shown in Table 2.1. LiDAR metrics were computed over the entire acquisition area with 

grid cells of 22.86 m by 22.86 m using all returns by FUSION software (McGaughey, 2010). Points 

with elevations above ground level less than 1 m and larger than 91.44 m were excluded from the 

computation. 

 

Field plot sampling 

Field plots for this study were collected by stratifying the study area using LiDAR height metrics 

(Hawbaker et al., 2009). This strategy has been shown to improve the predictive accuracy of resultant 

models by increasing the variability observed in the explanatory variables. 

A stratified sampling procedure was implemented as follows. First, a large random sample was 

taken of the grid cells in the study area described in the section 2.2 to obtain an idea of the range of the 

two chosen LiDAR metrics, 80th height percentile (P80) and standard deviation of LiDAR heights 

(SDH). Based on the sample cells, the P80 was subdivided into 10 classes of 6.10 m each.  The 

maximum height of the 10th P80 class bin was increased up to 83.52 m to cover the values of the gird 

cells in the full dataset. And SDH within each P80 class was subdivided into three equal width classes. 

The minimum value of all the lowest SDH classes was set to zero, and the maximum value of all of the 

highest SDH classes was set to the highest SDH value in the full dataset, 35.36 m. Bins are larger than 

or equal to minimum values, and are less than maximum values. Consequently, thirty bins (10 x 3) 

were developed. 



10 
  

 

Fifty potential plot locations were randomly sampled from each of the 30 bins shown in Figure 

2.2. Field crews obtained 30 plots in each bin (Figure 2.2). Eight plots were found to have no live trees, 

and another one in bin number 12 was missed; these nine plots were removed, leaving a total of 891 

plots.  

 

Ground measurement 

A field survey was implemented between May 25th, 2010 and May 10th, 2011. Nested plots with 

two plot sizes were used to measure trees at each plot center. For the plot size of 12.65 m radius (505.9 

m2), all live trees with a DBH of 14.0 cm and larger were measured. Five attributes were calculated for 

each plot and used as response variables for the statistical models described below: BA (m2/ha), VOL 

(m3/ha), LOR (m), QMD (cm), and DEN (trees/ha). Tree-level volume was predicted using the USDA 

Forest Service National Volume Estimator Library Excel Volume Functions from: 

http://www.fs.fed.us/fmsc/measure/volume/nvel/index.php. LOR was computed as basal area weighted 

mean height (Husch et al., 2002). A summary of plot-level forest attributes is provided in Table 2.2. 

The plot center locations were measured using GPS receiver and recorded in UTM 10 NAD83 

CONUS meters. 

 

Modeling methods 

The modeling methods used in this study fall into two categories. 

o Non-parametric methods: do not depend on theoretical probability distribution, and are 

implicit (can predict only values that are within range of training data). e.g. k-nearest 

neighbor (NN) imputation methods such as MSN (k=1, 5), RF (k=1, 5), GNN (k=1, 5), 

BestNN. 

o Parametric methods: depend on theoretical probability distribution, and are explicit (can 

predict values that are outside of range of training data). e.g. linear modeling methods 

such as OLS, SLM, and GWR. 

k-NN methods work by direct substitution (imputation) of measured values from sample locations 

(references) for locations for which we desire a prediction (targets). In this strategy, key considerations 
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include the distance metric that we use to identify suitable references, and the number of references (k) 

that are used in a single imputation (prediction) (Eskelson et al., 2009a). We examined both k=1 and 

k=5 neighbors for each of the following distance metrics that we used. The first distance, canonical 

correlation, was termed – MSN when proposed by Moeur and Stage (1995). Ohmann and Gregory 

(2002) suggested the GNN method using distance based on canonical correspondence analysis (CCA). 

CCA is considered to work well in identifying relationships which occur along a gradient. BestNN, a 

modified k-NN by Ver Hoef and Temesgen (2013), adopts Mahalanobis distance and MSN procedure 

as distance metrics, and tries k = 1, 2, ..., 30. Then the distance metric and k with the smallest root 

mean squared prediction error (RMSPE) were selected using a cross-validation approach based on the 

observed data. The final k-NN method, Random Forest (Breiman, 2001) based NN, measures the 

distances between observations by RF algorithm. RF constructs multiple classification (or regression) 

trees with bootstrap samples of training data, while selecting predictors randomly to find the best split 

at each node in the trees. In RF based NN, the distance is computed as one minus the proportion of 

classification trees where a target observation is in the same terminal node as a reference observation 

(Hudak et al., 2008). 

A key assumption under which OLS is a best linear unbiased estimator is that the residuals are 

independent. A more efficient estimator is feasible when this assumption is violated by estimating 

values in the variance-covariance matrix using restricted maximum likelihood and a fixed model for 

spatial dependence (Ver Hoef and Temesgen, 2013). The last linear modeling method used in this 

study, GWR was originally proposed by Brunsdon et al. (1998). GWR allows model coefficients to 

vary across geographical space, whereas OLS regression assumes that the coefficients are constant 

across the space. This means that GWR considers spatial non-stationarity in the relationship between 

response variable and predictor variables (Chen et al., 2011). And advantages and disadvantages of the 

selected modeling methods are given in Table 2.3. Modeling strategies were implemented in R (R Core 

Team, 2013). The k-NN imputation methods were implemented by the ‘yaImpute’ package (Crookston 

and Finley, 2008) in combination with the ‘randomForest’ package (Liaw and Wiener, 2002). We also 

used the ‘stats’ package (R Core Team, 2013) and the ‘spgwr’ package (Bivand et al., 2013) for OLS 

and GWR, respectively. The ‘bbslm’ package (Ver Hoef 2012; not published yet) was used for SLM. 
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LiDAR metrics and variable selection 

We used FUSION (McGaughey, 2010) to generate the candidate LiDAR metrics in Table 2.4. We 

removed lower percentile height (less than 50th) because they are not representative for the upper-story 

vegetation. Other metrics that are hard to biologically interpret were also excluded from consideration.  

‘Best subset’ variable selection procedure was implemented with the candidate LiDAR metrics of 

full dataset to obtain a final set of predictor variables for every modeling method. Because there is no 

variable selection technique that can be applied commonly to all the selected methods, the ‘best subset’ 

procedure based on OLS regression was used. The ‘best subset’ procedure was implemented by the 

function ‘regsubsets’ in R package ‘leaps’ (Lumley, 2009). For model’s parsimony, the maximum 

number of predictor variables in a model was set as three through the ‘best subset’ variable selection 

procedure. The best 15 selections of predictor variables were produced for each of models with one, 

two, and three predictor variables, respectively. The preferred models were selected based on Bayesian 

information criteria (BIC). Then, we selected a model in which each predictor variable has high 

significance considering interaction terms, and multi-collinearity by variance inflation factor by the 

function ‘vif’ in R package ‘faraway’ (Faraway, 2011). The final set of predictor variables obtained 

through the variable selection is given in Table 2.5.  

Even though there is no common variable selection techniques for every modeling method in this 

study, one might wonder if the ‘best subset’ based on linear modeling method favors linear models 

over imputation methods. To investigate this issue, another variable selection procedure by the 

functions ‘varSelection’ and ‘bestVars’ in R package ‘yaImpute’ (Crookston and Finley, 2008) was 

also implemented as an imputation variable selection technique. The final set of predictor variables via 

the imputation-based variable selection is in Table 2.6.  

 

Prediction types 

We assume that the sampled ground data is the population of the response variable, and the 

population consists of two parts that are at the ith and the jth locations, respectively (i ≠j). One is the 
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observed set (denoted as O) at the ith location with n elements, and the other is unobserved set (denoted 

as U) at the jth location with m elements. In the observed set, all response and predictor variables are 

observed. In the unobserved set, predictor variables are observed, but response variable is not. 

There are two types of prediction for response variable in this study. The first is point prediction 

at the jth location in the unobserved set. The second is total prediction, which is the sum of true values 

of the response variable at the ith location in the observed set and the predicted values of the response 

variable at the jth location in the unobserved set. That is, the total prediction is for the whole population 

set. The total prediction, 𝑇𝑇� , can be mathematically expressed as, 

𝑇𝑇� = �𝑦𝑦𝑖𝑖
𝑖𝑖∈𝑶𝑶

+ �𝑦𝑦�𝑗𝑗
𝑗𝑗∈𝑼𝑼

 (2.1) 

where 𝑦𝑦𝑖𝑖 is true value of the response variable, and 𝑦𝑦�𝑖𝑖is the predicted value (using one of the modeling 

methods that were described earlier) of the response variable. 

 

Performance Measure (PM) 

Simulation by cross-validations with some different numbers of training data (n) was used to 

assess the performance of the prediction methods for the two prediction types and the effect of n using 

the predictor variables via ‘best subset’ variable selection. The whole dataset (N=891) was randomly 

split into two groups 500 times for each number of training data. One group was the observed set 

(n=30, 50, 100, 150, 200, 250, 300, 350, 400, 446, 500) of plot observations as the training (reference) 

data. The other group was the unobserved set (m=861, 841, 791, 741, 691, 641, 591, 541, 491, 445, 

397) of plot observations as the validation (target) data. Simulation by 2-fold cross-validation (m=446 

and n=445) using the predictor variables via imputation variable selection was also implemented to 

examine if ‘best subset’ variable selection favors the linear modeling methods.  

For each simulation run, we computed several performance measures of the prediction methods 

by response variables and the two prediction types based on Ver Hoef and Temesgen (2013). The 

performance measures are: 

o Percentage bias for point prediction is calculated by 
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%𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃(%) =
� 1
𝑚𝑚𝑚𝑚∑ ∑ �𝑦𝑦�𝑗𝑗,𝑟𝑟 − 𝑦𝑦𝑗𝑗,𝑟𝑟�𝑚𝑚

𝑗𝑗=1
𝑅𝑅
𝑟𝑟=1 �

𝑦𝑦�
× 100 (2.2) 

for point prediction, where R is the number of simulations, m is the number of point predictions for the 

rth simulation, 𝑦𝑦�𝑗𝑗,𝑟𝑟 is the prediction at the jth location for the rth simulation, 𝑦𝑦𝑗𝑗,𝑟𝑟 is the true value at the 

jth location for the rth simulation, and 𝑦𝑦� is the true average value of a particular response variable. And 

percentage bias of total prediction is 

%𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇(%) =
�1𝑅𝑅 ∑ �𝑇𝑇�𝑟𝑟 − 𝑇𝑇�𝑅𝑅

𝑟𝑟=1 �
𝑇𝑇

× 100 (2.3) 

where 𝑇𝑇�𝑟𝑟 is the predicted total value for the rth simulation, and T is the true total value. We performed a 

two-sided t-test to examine if the estimated bias of the modeling methods was significantly different 

from zero reporting the p-values. 

o RMSPE measures the difference between true values and predicted values. For point 

prediction, the RMSPE is 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 =
1
𝑅𝑅
���

1
𝑚𝑚
��𝑦𝑦�𝑗𝑗,𝑟𝑟 − 𝑦𝑦𝑗𝑗,𝑟𝑟�

2
𝑚𝑚

𝑗𝑗=1

�
𝑅𝑅

𝑟𝑟=1

 (2.4) 

RMSPE for total prediction is calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 = �
1
𝑅𝑅
��𝑇𝑇�𝑟𝑟 − 𝑇𝑇�2
𝑅𝑅

𝑗𝑗=1

 (2.5) 

o 90% Prediction Interval Coverage (PIC90) measures how frequently a prediction interval with 

a 0.9 probability contains a true value. PIC90 for point prediction is as 

𝑃𝑃𝑃𝑃𝑃𝑃90𝑃𝑃(%) =
1
𝑚𝑚𝑚𝑚

��𝐼𝐼 ��𝑦𝑦�𝑗𝑗,𝑟𝑟 − 1.645𝑠𝑠𝑠𝑠��𝑦𝑦�𝑗𝑗,𝑟𝑟�� < 𝑦𝑦𝑗𝑗,𝑟𝑟 & 𝑦𝑦𝑗𝑗,𝑟𝑟

𝑚𝑚

𝑗𝑗=1

𝑅𝑅

𝑟𝑟=1

< �𝑦𝑦�𝑗𝑗,𝑟𝑟 + 1.645𝑠𝑠𝑠𝑠��𝑦𝑦�𝑗𝑗,𝑟𝑟��� × 100 

(2.6) 
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where 𝐼𝐼(𝑥𝑥) = �1, if x is true
0, otherwise, and 𝑠𝑠𝑠𝑠��𝑦𝑦�𝑗𝑗,𝑟𝑟� is the estimated standard error of the predicted value. For 

total prediction, 

𝑃𝑃𝑃𝑃𝑃𝑃90𝑇𝑇(%) =
1
𝑅𝑅
�𝐼𝐼 ��𝑇𝑇�𝑟𝑟 − 1.645𝑠𝑠𝑠𝑠��𝑇𝑇�𝑟𝑟�� < 𝑇𝑇 & 𝑇𝑇 < �𝑇𝑇�𝑟𝑟 + 1.645𝑠𝑠𝑠𝑠��𝑇𝑇�𝑟𝑟���
𝑅𝑅

𝑟𝑟=1

× 100 (2.7) 

where 𝑠𝑠𝑠𝑠��𝑇𝑇�𝑟𝑟� is the estimated standard error of the total prediction. If these prediction intervals are 

correctly estimated, then PIC90 should be close to 0.90. Note that we follow Ver Hoef and Temesgen 

(2013) to estimate standard errors of k-NN methods for both point and total prediction. 

Variance explained measures such as R2 is commonly used to evaluate model performance but 

they are not chosen in this study. Because the error components of NN method of imputation are 

different from the ones from regression (Stage and Crookston, 2007), it might not be an appropriate 

way to compare the selected modeling methods using variance explained measures. 

We also performed simulation 500 times again with 2-fold cross validation (in the case of n= 446 

and m=445) using all the pre-selected metrics (totaling 15 metrics) listed in Table 2.4, using only the 

RF k-NN methods to see whether the poor performance comes from the small number of predictor 

variables. 

 

Measures of spatial autocorrelation 

Moran’s I is one of the common indices for quantifying spatial autocorrelation. This study 

adopted the generalized one with modified weights suggested by Cliff and Ord (1981). The generalized 

Moran’s I is 

𝐼𝐼 =
𝑛𝑛∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)�𝑥𝑥𝑗𝑗 − 𝑥̅𝑥�𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑖𝑖

 (2.8) 

where 𝑥𝑥𝑖𝑖and 𝑥𝑥𝑗𝑗 are the values of a response variable on locations i and j, respectively, 𝑥̅𝑥 is its mean, 

and 𝑤𝑤𝑖𝑖𝑖𝑖  is the inverse Euclidean distance weight between locations i and j. The function ‘Moran.I’ in R 

package ‘ape’ (Paradis et al., 2004) was used to compute Moran’s I. 
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An alternative measure for spatial autocorrelation is a semivariogram. A semivariogram is defined 

as an half of the variance of the difference between observations from two locations, which is 

expressed as 

γ(𝐡𝐡) =
1
2

 𝑉𝑉𝑉𝑉𝑉𝑉[𝑍𝑍(𝐬𝐬 + 𝐡𝐡) − 𝑍𝑍(𝐬𝐬)] (2.9) 

where 𝛾𝛾(𝐡𝐡) is the semivariance, h is a separation distance, 𝑍𝑍(𝐬𝐬 + 𝐡𝐡)and 𝑍𝑍(𝐬𝐬) are the observed values 

at locations 𝐬𝐬 + 𝐡𝐡 and 𝐬𝐬, respectively. The theoretical semivariogam is estimated by empirical 

semivariogram using sampled data: 

𝛾𝛾�(𝐡𝐡) =
1

2|𝑁𝑁(𝐡𝐡)| �
[𝑍𝑍(𝐬𝐬 + 𝐡𝐡) − 𝑍𝑍(𝐬𝐬)]2

𝑁𝑁(𝐡𝐡)

 
(2.10) 

where 𝛾𝛾�(𝐡𝐡) is the estimated semivariance, 𝑁𝑁(𝐡𝐡) is the set of the distinct sample pairs lagged by 𝐡𝐡, and 

|𝑁𝑁(𝐡𝐡)| is the number of elements in 𝑁𝑁(𝐡𝐡). While Moran’s I shows the presence of spatial 

autocorrelation in data, a semivariogram characterizes the structure of spatial autocorrelation through 

three parameters, nugget, sill and range. Nugget effect occurs if there are micro-scale variabilities in 

data that cannot be captured due to large minimum sampling interval or measurement errors. Sill 

represents the semivariance value that semivariogram reaches at the range. Range indicates the 

distance at which data are no longer autocorrelated (Cressie, 1993). Semivariogram analysis was done 

by the function ‘variogram’ and ‘fit.variogram’ in R package ‘gstat’ (Pebesma, 2004). 

 

Results 

Relationships Between Responses and Predictors 

891 plots were measured by filed crews and airborne LiDAR. Plots’ LOR for those plots ranged 

from 6.71m to 76.05 m, and plots’ BA varied between 0.3 m2/ha and 214.4 m2/ha. Generally, every 

response variable except DEN had at least one predictor variable with high correlation coefficient to 

the corresponding response. Table 2.7 shows the correlation coefficients between each response and 

corresponding selected predictor variables. The higher correlation coefficient between response and 

predictor variables, the better prediction performance. The height mean showed high correlation 
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coefficients 0.787, 0.843 and 0.857 with BA, VOL, and LOR, respectively. The height 75th percentile 

had a correlation coefficient of 0.803 with QMD. The highest coefficient between the selected 

predictor variables and DEN, 0.343, came from the percentage of all returns above height of 2 m. In 

addition to correlation, the scatter plots between responses and the corresponding predictors are in 

Figure 2.3. All the response variables except DEN show the relationships close to linearity with ‘height 

mean’ or ‘height 75th percentile. 

 

Performance Measures 

Table 2.8 shows the performance measures in 2-fold cross-validation with the predictor variables 

via ‘best subset’ variable selection. There are 10 cases that come from the combination of 5 response 

variables (BA, VOL, LOR, QMD, and DEN) and 2 prediction types (point and total). In most cases, 

BestNN, OLS, SLM, and GWR showed better performances than the other model types in terms of 

RMSPE and bias, and were comparable among each other. For k-NN methods, k=5 neighbors had 

better performance than with k=1 based on RMSPE. 

For BA, BestNN showed the best RMSPE in both point and total prediction. BestNN reduced 

point RMSPE by 28.2% over MSN1 and GNN1 respectively. The amount of decrease in total RMSPE 

by BestNN was 26.5% over MSN1 (GNN1). For VOL, SLM and GWR were the best in point RMSPE. 

SLM and GWR decreased RMSPE by 27.7% over MSN1 (GNN1), respectively. OLS provided the 

lowest RMSPE in total prediction for VOL. The amount was 22.8% that OLS decreased over MSN1 

(GNN1) in total RMSPE for VOL. For LOR, SLM provided the lowest RMSPE in point prediction. It 

reduced RMSPE by 28.7% over MSN1 (GNN1). In total RMSPE for LOR, OLS was the best method 

with the lowest RMSPE decreasing 23.5% of total RMSPE over MSN1 (GNN1). GWR, the best one in 

QMD point RMSPE, decreased RMPSE by 27.8% over MSN1 (GNN1). And SLM produced the best 

RMSPE in QMD total RMPSE, which was improved by 27.3% over RF1. For DEN, SLM showed the 

best RMPSE in both point and total prediction. The amounts of reduced RMSPE by SLM were 29.1% 

over MSN1 (GNN1) and 20.2% over RF1 for point and total prediction, respectively. Of the non-

leading group, MSN1, RF1, and GNN1 showed poorer performances with larger RMPSEs for both 
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point and total prediction. The remaining methods of this group, MSN5, RF5, and GNN5, performed 

better than k-NN methods with k=1, but not as good as the leading group for most cases. 

Underestimation was found in most cases giving negative bias. RF5, SLM, and OLS always 

underestimated the forest attributes of interest. RF1, GWR, and BestNN had only one overestimation 

for VOL, QMD, and LOR, respectively. In contrast, MSN1 and GNN1 showed overestimation for BA, 

VOL, and DEN. The p-values of the two sided t-test for testing the unbiasedness of the biases are 

under the bias values in the parentheses in Table 2.8. Several cases had p-values less than 0.05, which 

means that they are statistically different from zero. For example, RF5 and BestNN were biased for 

every case. And RF1 and GWR showed many biased cases. Note that BestNN and GWR showed 

larger biases in the most cases even though they are in the leading group. OLS appeared biased only in 

DEN total prediction. However, the magnitudes of the biases were small compared to the mean (or 

total) of response variables. The percentages of biases to the mean (or total) of response variables were 

at most 1.2% in modulus.  

Most methods showed valid PIC90 that are close to the nominal level 0.9. However, RF1 and RF5 

had lower PIC90s for both point and total predictions; those PIC90 were generally around or less than 

0.85. The PIC90s of MSN1 and GNN1 showed values of more than 0.93 for LOR, QMD, and DEN 

total prediction. Note that RF5 showed the smallest prediction standard errors for every response 

variable from the 500 simulations (Figure 2.4). The prediction standard errors of RF1 were less than 

MSN1 and GNN1. RF5 had comparable RMSPE to MSN5 and GNN5, but relatively more biased than 

other methods in point and total prediction. The larger bias and smaller prediction standard error might 

lead to the poor PIC90 performance for RF5. But RF1’s poor PIC90 cannot be explained by the larger 

bias and smaller prediction standard error for every case. For example, BestNN showed PIC90s close 

to 0.9 for VOL and LOR with larger bias than RF1 and comparable prediction standard error. 

No single modeling technique worked best for all the cases by forest attributes of interest, 

prediction type, and performance measures. Though there was a leading group with better 

performances than others, no one in the group is always the best for each case. Nevertheless, it is 

worthwhile to report that SLM and OLS produced the best result in RMSPE in both point and total 

prediction. 
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Influence of Variable Selection Technique on Model Performance 

The performance measures of imputation methods with the predictor variables via imputation 

variable selection is shown in Table 2.9. Compared with the results in Table 2.8, imputation variable 

selection did not improve the performance measures of imputation methods in terms of RMSPE and 

bias for many cases. Some remarkable changes were 1) improvement in bias of BestNN except for 

DEN, 2) improvement in RMSPE of every imputation method for VOL prediction (only even for 

BestNN in VOL point prediction), and 3) decline in PIC90 of RF imputation methods (only except for 

DEN point prediction). But none of the improvements in terms of RMSPE and bias gave imputation 

methods superiority to the linear modeling methods. 

 

Influence of Number of Training Data on Model Performance 

Figure 2.5 shows RMSPE in point and total prediction by response variables and modeling 

methods with different numbers of training data. Note that BestNN did not produce predictions with 30 

training data, and GWR also did not produce predictions with n = 30 and 50 for every response and n = 

100 for QMD. For point prediction, BestNN, SLM, OLS and GWR consisted of a leading group with 

most numbers of training data. For total prediction, SLM and OLS were also in the leading group in 

RMSPE while BestNN and GWR sometimes were replaced by MSN5, GNN5 or RF5. Generally, 

RMSPE in point prediction got stabilized with 100 - 150 training data. In contrast, RMSPE in total 

prediction consistently decreased as n increased. However, rate of the decrease for RMSPE in total 

prediction also slowed down, and it might be considered as approximately stabilized when n is 

between 200 and 250. 

Percentage bias with different n is given in Figure 2.6. Increasing n in point prediction does not 

necessarily accompany advancement of bias while increasing n in total prediction generally brought 

improvement of bias. Influence of n on PIC90 is shown in Figure 2.7. For point prediction, PIC90 for 

every modeling method appeared to be stabilized with more than 100 or 150 training data. Regardless 

of the number of training data, RF imputation methods consistently had lower PIC90 than the nominal 

level 90%. The trend of PIC90 in total prediction looked more variable than in point prediction. As 
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with the case in point prediction, RF imputation methods showed generally lower PIC90 in total 

prediction than 90% or other methods’ PIC90 in total prediction. 

 

Range of Prediction 

Boxplots of prediction values from 500 simulations and observations as reference are shown in 

Figure 2.8. The two horizontal dotted lines in Figure 2.8 represent the first and third quartiles of 

observations of response variables. While the linear modeling methods such as SLM, OLS, and GWR 

mostly outperformed the other methods except BestNN in global performance measures, the linear 

modeling methods produced some negative predictions at the locations with smaller observation 

values, which do not make sense for forest inventory attributes. Those negative predictions were found 

in BA, VOL, QMD (only in GWR), and DEN. 

 

The Low PIC90 of Random Forest Based Imputation 

A prediction interval consists of a point estimate (prediction value) and a margin of error (critical 

value × prediction standard error). The closer to the true value the prediction value gets, the more 

likely the prediction interval covers the true value. And the wider prediction interval width we have, 

the more likely the prediction interval covers true value. So if we have smaller biases in modulus and 

larger prediction standard errors, we would have higher prediction interval coverage. However, as 

mentioned earlier in the section 4.2, the bias and prediction standard error were not enough to explain 

such lower PIC90s of RFs for every case.  

 

Influence of Number of Predictors in Random Forest Based Imputation 

RF-imputation has been reported to handle a large number of predictor variables that are highly 

correlated each other.  Table 2.10 presents the results of the re-simulation. We found that using all the 

metrics does not guarantee improvement of performance measures. Particularly, PIC90 in every case 

greatly decreased with the correlated metrics. Even though there were some improvements in 

performance, RF k-NN methods with all of the metrics was not ranked best in any performance 
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measures. From our re-simulation, it does not seem that the poor performances of RF imputation come 

from the number of predictor variables in our study. 

 

Autocorrelation in Response Variables 

The semivariograms for each response variable are given in Figure 2.9. From the four fitted 

models on the semivariograms, the five response variables have more than 80% relative nugget effects 

(nugget effect / sill). The relative nugget effects for each response variable were as follows: BA 

(89.1%), VOL (93.6%), LOR (82.6%), QMD (87.2%), DEN (89.4%). These high relative nugget 

effects indicate high individual variation (not related to spatial dependence) in the response variables, 

or there is a large minimum sampling interval that cannot capture enough spatial dependence. 

Table 2.11 includes statistics for Moran correlation coefficient (Moran’s I) for each response 

variable and each selected predictor variable from all data. According to the Moran’s I, all the response 

and predictor variables displayed significant spatial clustering. The Moran’s I of response variables in 

training data and validation data from the 500 simulations is shown in Table 2.12. The training and 

validation data also show spatial autocorrelation for most of the simulations.   

Figure 2.10 shows the distributions of Z-scores of Moran’s I from prediction errors by modeling 

methods. The horizontal lines are on the values of 1.96 and -1.96, respectively. If a Z-score is outside 

of the interval between -1.96 and 1.96, then it is considered as a case of autocorrelation. The 

autocorrelation in prediction errors was observed in a small number of cases for most modeling 

methods except for BA and DEN. In general, k-NN methods with k=1 had smaller number of 

autocorrelation cases than the other methods. Only for DEN, SLM generated fairly less cases of 

autocorrelation. 

 

Discussion 

Performance Measures 

Several previous studies asserted that one modeling method showed superior performance for all 

the cases they investigated. SLM was always the best method in RMSPE for both artificial data and 

real forest data in Ver Hoef and Temesgen (2013). Temesgen and Ver Hoef (2015) found that SLM 
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produced the smallest RMSPE for artificial and forestry dataset except lognormal dataset. RF 

imputation was the best for basal area and tree density estimation in root mean square distance 

(RMSD) in Hudak et al. (2008), and was the best for nine forest attributes in RMSD in Hudak et al. 

(2014). Eskelson et al. (2009b) indicated that RF imputation showed the best results in terms of RMSE 

for both mean annual change in basal area, stems per ha, volume, and biomass and those current forest 

attributes using climate, topography and satellite data. In our study, however, no single method was 

found to be superior. This result matches up with the findings from Brosofske et al. (2014) that each 

modeling method has its own strengths and weaknesses, and there is no best one for all cases. The best 

modeling method varied by response variable, performance measure and prediction type. Pierce et al. 

(2009) indicated that the best modeling method among GNN, OLS, kriging, and universal kriging 

(mathematically the same as SLM) for vegetation and fuel variables varied by response variables and 

regions where the models were applied. Corona et al. (2014) concluded that spatial autocorrelation in 

response variables and correlation between response variables and auxiliary variables affects the 

performance of a modeling method. 

We found that BestNN and RF5 consistently showed biasedness, and RF1 and GWR had many 

biased cases as well. Ver Hoef and Temesgen (2013) claimed that, in the resampling of real forest data, 

there appeared to be some bias for total prediction by k-NN methods with Mahalanobis distance (k=1 

or k=5) and BestNN, except with spatially balanced sampling. BestNN also appeared biased in total 

prediction for artificially generated Poisson and lognormal data as well as forest productivity and 

biomass data (Temesgen and Ver Hoef, 2015). In Eskelson et al. (2009b), RF imputation was biased 

for prediction of mean annual change in basal area, volume and biomass using climate, topography and 

satellite data. Bias was also found from RF imputation for current basal area, volume and biomass 

estimation with the same dataset (Gagliasso et al., 2014). As stated earlier, RF imputation consistently 

produced larger biases than other k-NN methods (Breidenbach et al., 2010a).  

From our study, k-NN methods with k=5 had lower RMSPE than k-NN methods with k=1. Similar 

results have been reported by several other studies. Muinonen et al. (2001) reported that MSN had 

lower RMSE% while k increased up to 5 for plot-level tree volume estimation. In Ver Hoef and 

Temesgen (2013), MSN5 always had lower RMSPE than MSN1 for forest data, and for artificial data 
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except for count data in total prediction. In Temesgen and Ver Hoef (2015), GNN5 had smaller 

RMSPE than GNN1 for artificial and forest dataset. MSN with k=5 had the smallest RMSE for 

biomass and basal area estimation followed by MSN with k=3 and MSN in Gagliasso et al. (2014). In 

terms of bias, however, k-NN methods with larger k does not always provide less bias than k-NN 

methods with smaller k. As with our study, Temesgen and Ver Hoef (2015) and Ver Hoef and 

Temesgen (2013) reported that the effect of k to bias of k-NN varied by response variable or dataset 

used. MSN with k=3 showed the lowest bias for biomass and basal area estimation compared to MSN 

with k=5 and MSN (Gagliasso et al., 2014). 

k-NN methods provided predictions within the biologically reasonable bounds, not giving 

negative values of forest attributes examined while the linear modeling methods such as SLM, OLS, 

and GWR had some negative predictions. This is one of the advantages of k-NN methods (Eskelson et 

al., 2009a). And k-NN methods, particularly with k=1, had higher upper ranges of predictions than 

SLM and OLS except for LOR as shown in Figure 2.9. This indicated that linear methods smoothed 

the highest predictions. Due to this smoothing, the predictions for the extreme high values by the linear 

models were not able to be very accurate. On the other hand, GWR, one of the linear modeling 

methods, had higher upper ranges of predictions for BA, VOL and DEN, and also had smaller lower 

ranges of predictions for BA, VOL, QMD and DEN. Cho et al. (2009) reported that GWR tends to 

produce extreme local regression coefficients with small number of training data. These extremes 

regression coefficients might cause the large prediction ranges of GWR. 

Contrary to some previous studies indicating advantages or superiority of RF imputation for 

estimating forest attributes (Hudak et al., 2008; Hudak et al., 2014; Latifi et al., 2010), RF imputation 

had consistently lower PIC90s than the nominal level 0.9 in our study. Temesgen and Ver Hoef (2015) 

also reported poor prediction interval coverage of RF imputation, and asserted that RF’s high bias is 

one of the reasons for the poor performance. As we saw, RF showed biasedness in our study as well. 

But it is not enough to explain RF’s poor PIC90 with only bias because the modeling methods with 

larger bias such as BestNN or GWR in VOL and LOR prediction had PIC90s close to the nominal 

level. The lowest prediction standard error of RF5, representing narrower width of a prediction 
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interval, could be one of the reasons for the poor PIC90 performance. However, it is not enough to 

explain RF1’s poor PIC90 with bias and prediction standard error.  

The linear modeling methods generally showed superiority though they had the deficiency of 

producing negative predictions unrealistic for forest attributes. But the relatively poor performance of 

k-NN methods might be partially from the 2-fold cross-validation used in our simulation. In order to 

improve accuracy of imputation, firstly, predictor variables in the randomly sampled training data in a 

simulation should cover the entire joint ranges of predictor variables, and secondly, response variable 

in the training data in a simulation should represent all values of the response variable (Eskelson et al., 

2009a). However, randomly splitting the dataset into two sets for every simulation run would not 

always guarantee the condition mentioned above for every simulation run. The performance of GWR 

might be influenced as well due to our simulation approach. If the random sample does not represent 

spatial nonstationarity, then GWR would not show its advantage. Temesgen and Ver Hoef (2015) 

concluded that a sample’s representativeness and the closeness between training and validation 

datasets affect the accuracy of modeling methods they examined.  

Transformations of independent variables by square, cube, square root, or exponent could 

improve performance of the OLS method though the transformations were not applied to our analysis. 

RMSE of OLSs from the 15th simulated training and validation dataset for BA, VOL and DEN were 

improved by from 0.45% to 1.52%. These transformation might offer some r improvement for some of 

the other modeling methods. 

 

Influence of Variable Selection Technique on Model Performance 

Other than the imputation variable selection method proposed by Crookston and Finley (2008) 

used in this study, there are several approaches to select predictor variables for NN imputation method. 

An algorithm to minimize relative root mean square error for NN imputation using transformation and 

stepwise optimization was proposed by Maltamo et al. (2006). Hudak et al. (2008) repeated RF to 

discard the least important predictor variable, which is similar to backward stepwise variable selection 

in multiple regression model. Latifi et al. (2010) claimed that the prediction performance depended on 

the combinations of NN imputation methods and variable selection procedure. With NN imputation 
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using Euclidean and Mahalanobis distance metrics, genetic-algorithm based variable selection 

produced better prediction performance. By contrast, full dataset, i.e. without variable selection, 

outperformed genetic-algorithm based variable selection when using MSN and RF imputation. The 

backwards stepwise variable selection gave the least performance compared to genetic-algorithm based 

variable selection and full dataset. Garcia-Gutierrez et al. (2014) compared three variable selection 

techniques (stepwise, best subset and genetic-algorithm selections) for estimating some forest stand 

variables using LiDAR. Genetic-algorithm was reported to perform better than other techniques based 

on BIC of three regression models. Packalén et al. (2012) concluded that variable selection is an 

essential part of NN imputation. An algorithm using optimization to minimize relative RMSE was the 

best variable selection strategy compared with full dataset, another using canonical correlation analysis 

and the other using RF importance. But the full dataset surpassed the algorithm with canonical 

correlation analysis and the one using RF importance.  

The results comparing the two variable selection techniques in present study showed that ‘best 

subset’ variable selection generally gave better performance than the imputation variable selection 

proposed by Crookston and Finley (2008). However, our results cannot be generalized compared with 

the previous researches because the combination of modeling methods and variable selection 

techniques in our study were different from others’ one. It would be more meaningful and practical to 

determine which combination of variable selection technique, and size of n provides the best 

performance for NN imputation, because identifying the effective sample size of filed plots is an 

important issue in LiDAR-based forest inventory. In the point of this view, our comparison is not 

enough to determine the optimal combination because the comparison was implemented only using 

two variable selection techniques and one training data size of 446. This should be further studied in 

the future. 

 

Influence of Number of Training Data on Model Performance 

Junttila et al. (2015) proposed an alternative model to overcome overfitting and multicollinearity 

when using small number of filed sample plots for LiDAR-based forest inventory. To that end, the 

effects of number of predictor variables and number of training data were investigated along with 
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different field plot sampling designs. Junttila et al. (2015) reported that 50 field sample plots yielded 

only 5-15% larger relative error than several hundred field sample plots with their proposed model. 

Maltamo et al. (2011) examined several plot selection strategies for field training data in LiDAR-

assisted forest inventory with different field training data sizes. More than 150 training field plots gave 

similar prediction accuracy regardless of plot selection methods. Maltamo et al. (2011) concluded that 

the number of field training plots can be less than 100 plots if those training plots capture the 

population’s variation.  

RMSPEs for every modeling method from smaller n had slightly higher values than the ones from 

lager n in our study. This trend was clearer in total prediction than in point prediction. The minimum n 

with relatively good accuracy in terms of RMSPE might be around 100-150 for point prediction, and 

might be around 200-250 for total prediction based on our results. Thus, to determine the effective n in 

terms of RMSPE, it would be necessary to consider point prediction and total prediction separately. 

Because the field plots were sampled by LiDAR-assisted stratified random sampling proposed by 

Hawbaker et al. (2009), training data of relatively smaller n from most of simulation runs might keep 

the variability of population of interest. That might be why those smaller n, larger than about 100 in 

point prediction and lager than about 200 in total prediction, gave fairly good RMSPE compared to 

RMSPE with more than 400 training data. Though percentage biases varied along the numbers of 

training data, their absolute values for every modeling method were less than 1.5 % except with the 

smaller n = 30 or 50. In terms of n, bias in modeling forest inventory using LiDAR data might be 

avoided if one use n ≥ 100. The effect of n to PIC90 was less than the one to other performance 

measures. With only the smallest n = 30, PIC90 for most modeling methods had lower PIC90s than the 

ones at lager n. The factor that mainly affected PIC90 was modeling method. Regardless of n, PIC90 

of RF imputation methods showed lower PIC90 in most prediction cases. Although PIC90 in total 

prediction looked more variable, most modeling methods were close to the nominal level 90%. 

According to Chen et al. (2011), GWR tended to give poorer performance in lower field data 

sampling density than in larger field data sampling density for estimating forest canopy height. But in 

our study, that trend in GWR’s performance was not able to be checked because GWR did not provide 

predictions with n = 30 and 50 for every response and n = 100 for QMD. Instead of mentioning 



27 
  

 

GWR’s performance, we could say about the sensitivity of GWR itself to a small number of training 

data. This might be related to sparse training data in a regression point to fit a local model, but the 

exact reason for the GWR’s sensitivity was not considered here. 

According to Junttila et al. (2015), the number of predictor variables affected a model’s 

performance depending on both how much variability of response variable is captured by predictor 

variables and how much overfitting arises in a model by predictor variables. Relative RMSPE 

increased with either a small number of predictors or a too large number of predictors, especially in a 

small number of training data. However, because we limited the maximum number of predictors in a 

model as three, our study might lack evaluations at least for the models with larger number of predictor 

variables.  

 

Autocorrelation in response variables 

Although SLM was a member of the leading group with good performance measures, it was not 

best predictive method. The ranges of the variograms in Figure 2.9 are too short compared to the size 

of study area, except for LOR. This is a potential weakness of SLM, as studies use much fewer than 

891 field observation plots. As seen in Table 2.11, all the response and predictor variables had spatial 

autocorrelations of similar magnitudes. This also might decrease the benefit from using spatial 

predictor such as SLM handling autocorrelation. 

Figure 2.10 shows that autocorrelations were well captured by most modeling methods for VOL, 

LOR and QMD. Interestingly, k-NN with k=1 generally showed better property on autocorrelation in 

prediction errors than the other modeling methods even though it does not consider spatial structure of 

given data. From this result, we would not say that the better performances of SLM for BA, VOL, 

LOR and QMD come from dealing with autocorrelation. Under strong correlation between response 

and predictors such as those responses, the merit of handling autocorrelation might diminish. Only for 

DEN, SLM was much less autocorrelation in prediction errors than other methods. In DEN prediction, 

the correlations between response and predictor variables were lower than other response variables. 

The situation where correlations between response and predictors are weak might give a merit to 

handling spatial autocorrelation. Although the performance of the imputation methods might be 
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decreased due to the simulation approach that we adopted, SLM might have applicability to wider 

conditions in that it did provide better performance for most cases in present study. 

 

Influence of number of predictors in Random Forest based imputation 

In the research of Latifi and Koch (2012), RF imputation was more accurate with the full dataset 

than the selected dataset by the genetic algorithm. Penner et al. (2013) claimed that the RF k-NN 

method takes full advantage of the dataset, which means that RF k-NN methods can include highly 

correlated predictor variables. But Hastie et al. (2009) pointed out that if the number of predictors is 

large and the fraction of important variables small, then Random Forest might perform poorly with 

small number of predictors for splitting a node. In Vauhkonen et al. (2010), it was reported that 

including more predictor variables did not improve model’s performance. RF k-NN methods with 1846 

predictor variables produced more relative bias than RF with 130 and 24 predictors. Breidenbach et al. 

(2010a) asserted that RF k-NN methods with the most important variables were slightly better than the 

models with all predictor variables. Murphy et al. (2010) also found that using metrics correlated one 

another in RF regression decreased explanatory power. Our result partially supports the latter as shown 

in the result section. Generally, the improvements were not sizable, and the decreases in PIC90 were 

substantial. 

 

Conclusion 

From our study, no modeling technique was always superior to the others for prediction of 

selected forest attributes. This result agrees with Brosofske et al. (2014). Even though there was a 

leading group (BestNN, SLM, OLS, and GWR) that always outperformed the other methods in 

RMSPE for both point and total prediction, the best method varied according to response variables, 

prediction types, and performance measures. The effective size of training data depended on the 

prediction type. About 100-150 training data showed comparable performance in point prediction, 

whereas about 200-250 training data showed comparable performance in total prediction. Therefore, 

selecting a modeling technique for forest attributes should be carefully determined based on the 

objectives, conditions and scales at which that researchers or forest managers face. 
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OLS appeared to have very good performances. BestNN produced comparable performances to 

the linear models. Despite of its biasedness, as a member of k-NN techniques, BestNN has the 

advantage that its prediction values are within the biologically reasonable bounds compared to the 

linear models. SLM showed its potential to estimate forest attributes for broader conditions in our 

study. As a more generalized approach than OLS, it could have good performance in various situations 

in terms of diverse combinations of relationships between responses and predictors. GWR also 

produced better performance but showed sensitivity with a small number of training data. 

RF imputation did not perform well, particularly in PIC90, compared to other methods. From the 

previous studies, bias has been reported as one of the reasons for the poor performance of RF 

imputation technique. In addition to bias, we observed that smaller prediction standard error also could 

impact PIC90. And the smaller number of predictor variables was not the reason for the RF’s poor 

PIC90. 
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Table 2.1: LiDAR survey specifications 
Attribute Description 
Sensor Leica ALS50 Phase II 
Survey altitude 900 m (flown at 900 meters above ground level) 
Pulse rate > 105 kHz (> 105,000 laser pulse per second) 
Pulse mode Single 
Mirror scan rate 52.5 Hz 
Field of view 28° (±14° from nadir*) 
Roll compensated Up to 20° 
Overlap 100 % (50 % side-lap) 

* Point on the ground vertically beneath the laser sensor on the aircraft. 

 

Table 2.2: Summary statistics of forest attributes from ground measurement as response variables 
Response Total* Minimum Maximum Median Mean SD† 

BA (m2/ha) 48,853 0.3 214.4 45.9 54.8 41.3 
VOL (m3/ha) 712,045 1.2 3,899.9 599.2 799.2 707.5 

LOR (m) 32,549 6.7 76.0 36.0 36.5 16.0 
QMD (cm) 43,162 14.0 177.2 42.8 48.4 23.8 

DEN (trees/ha) 292,157 19.8 1,324.5 276.8 327.9 207.1 
*Combined values for all the ground plots. 

†Standard deviation. 
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Table 2.3: Advantage and disadvantage of the selected modeling methods 
Method Advantage Disadvantage 
NN Easy to implement and intuitive to 

understand 
Fewer assumptions required 
Do not rely on any probability distribution 
Predictions are always within the 
biologically reasonable bounds 

Need to determine the optimal number of 
reference observations (k) and the type of 
distance metric that are used in a single 
imputation 
Accuracy could be affected if reference 
dataset do not well cover the distributions 
of predictor variables 
Neither extrapolate values out of the 
ranges of reference dataset nor interpolate 
when k=1 

SLM Robust to misspecification of covariance 
model 
Estimate a spatial covariance matrix 
automatically in very general conditions 
Robust to non-normal data 
Can extrapolate 

Data are used twice for covariance 
parameters and best linear unbiased 
prediction 
Might produce nonsense prediction 

OLS Most familiar method 
Strong theoretical background 
Can extrapolate 

Many assumptions required 
Need to check interaction between 
predictor variables 
Might produce nonsense prediction 

GWR Explore spatial variations in relationships 
between response variable and predictor 
variables 
Consider spatial structure of data 
Can extrapolate 
 
 

Multi-collinearity among predictor 
variables in each local regression model 
(Wheeler and Tiefelsdorf, 2005) 
Tend to produce extreme coefficients 
using less dense training data (Cho et al., 
2009) 
Need to determine the optimal kernel 
bandwidth in each local regression model 
Might produce nonsense prediction 
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Table 2.4: Fifteen LiDAR metrics as candidate predictor variables 
LiDAR metrics Min* Max† Mean SD‡ Description 

elev_max (m) 6.3 92.6 52.0 19.7 Height maximum 

elev_mean (m) 2.4 59.0 25.0 12.8 Height mean 

elev_std (m) 1.0 26.3 11.7 5.9 Height standard deviation 

elev_cv 0.2 1.7 0.5 0.3 Height coefficient of variation 

elev_iq (m) 0.8 55.6 16.1 11.3 Height interquartile range 

elev_p50 (m) 1.5 66.4 25.1 14.7 Height 50th percentile 

elev_p60 (m) 1.7 70.4 28.1 15.9 Height 60th percentile 

elev_p75 (m) 2.0 76.6 32.9 17.3 Height 75th percentile 

elev_p80 (m) 2.3 78.0 34.8 17.8 Height 80th percentile 

elev_p90 (m) 3.7 82.3 39.9 18.7 Height 90th percentile 

elev_p95 (m) 4.2 85.3 43.6 19.0 Height 95th percentile 

CRR 0.1 0.8 0.5 0.2 Canopy relief ratio =
height mean− height minimum

height maximum − height minimum
 

p_1th_retn_6.56 (%) 8.3 100.0 90.4 15.6 Percentage of first returns above height of 2 m 

p_all_retn_6.56 (%) 8.2 99.9 86.4 15.0 Percentage of all returns above height of 2 m 

p_all6.56_all1th (%) 8.4 204.8 126.3 34.1 Number of all returns above height of 2 m
Number of total first returns

× 100 

*Minimum value. 

†Maximum value. 

‡Standard deviation. 

 

Table 2.5: List of LiDAR metrics as predictors for each response variable via ‘best subset’ variable 
selection 

Response Adj. R2 RMSE Predictors 

BA (m2/ha) 0.658 24.1 elev_mean, elev_std, p_all_retn_6.56, elev_mean:p_all_retn_6.56* 

VOL (m3/ha) 0.736 364.6 elev_mean, elev_std, CRR, elev_mean:CRR*, elev_mean:elev_std:CRR* 

LOR (m) 0.810 7.0 elev_mean, elev_std 

QMD (cm) 0.675 13.6 elev_cv, elev_p75 

DEN (trees/ha) 0.394 160.8 elev_p75, CRR, p_all_retn_6.56, CRR:p_all_retn_6.56* 

*A multiplication interaction between the pair of listed variables. 
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Table 2.6: List of LiDAR metrics as predictors for each response variable via imputation variable 
selection 

Response Predictors 
BA (m2/ha) elev_mean, elev_max, elev_p90, p_1th_retn_6.56, p_all_retn_6.56 

VOL (m3/ha) elev_mean, elev_p60, p_all_retn_6.56 
LOR (m) elev_p90, elev_cv, elev_p80, p_1th_retn_6.56 

QMD (cm) elev_p80, elev_p95, elev_p90 
DEN (trees/ha) elev_p90, elev_p75, elev_cv, elev_mean, elev_p80 

 

 

Table 2.7: Correlation coefficients between each response variable and corresponding selected 
predictor variables 

BA    
 BA elev_mean elev_std 
elev_mean 0.787   
elev_std 0.485 0.682  
p_all_retn_6.56 0.471 0.518 0.288 
    
VOL    
 VOL elev_mean CRR 
elev_mean 0.843   
CRR 0.558 0.696  
elev_std 0.549 0.682 0.082 
    
LOR    
 LOR elev_mean  
elev_mean 0.857   
elev_std 0.785 0.682  
    
QMD    
 QMD elev_p75  
elev_p75 0.803   
elev_cv -0.114 -0.349  
    
DEN    
 DEN p_all_retn_6.56 CRR 
p_all_retn_6.56 0.343   
CRR 0.260 0.503  
elev_p75 -0.186 0.481 0.609 
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Table 2.8: Performance measures (PM) by response variable and prediction type (PT) via ‘best subset’ variable selection 
Response PT PM MSN1 MSN5 RF1 RF5 GNN1 GNN5 BestNN SLM OLS GWR 

BA 
(m2/ha) 

Point 
%Bias 0.082 

(0.5263) 
0.062 

(0.5367) 
-0.897 

(<0.0001) 
-0.483 

(<0.0001) 
0.082 

(0.5263) 
0.062 

(0.5340) 
-0.583 

(<0.0001) 
-0.085 

(0.3592) 
-0.087 

(0.3558) 
-0.778 

(<0.0001) 
RMSPE 33.44 25.79 31.84 26.25 33.44 25.79 24.02 24.04 24.24 24.08 
PIC90 89.6 89.7 82.6 83.5 89.6 89.7 89.4 89.6 89.8 89.9 

Total 
%Bias 0.041 

(0.6438) 
0.031 

(0.6529) 
-0.448 

(<0.0001) 
-0.241 

(0.0005) 
0.041 

(0.6438) 
0.031 

(0.6508) 
-0.291 

(<0.0001) 
-0.043 

(0.5207) 
-0.043 

(0.5173) 
-0.388 

(<0.0001) 
RMSPE 965.7 746.8 853.0 761.8 965.7 746.8 709.3 723.7 729.0 750.9 
PIC90 90.6 90.8 82.6 80.8 90.6 91.0 87.6 89.0 89.0 86.8 

VOL 
(m3/ha) 

Point 
%Bias 0.085 

(0.5296) 
-0.123 

(0.2411) 
0.190 

(0.1517) 
-0.365 

(0.0006) 
0.085 

(0.5296) 
-0.127 

(0.2235) 
-1.069 

(<0.0001) 
-0.082 

(0.3994) 
-0.102 

(0.2968) 
-0.692 

(<0.0001) 
RMSPE 508.4 394.3 499.1 400.2 508.4 394.3 371.2 367.8 368.1 367.8 
PIC90 89.4 89.4 83.7 84.3 89.4 89.4 88.8 89.3 89.3 89.2 

Total 
%Bias 0.042 

(0.6313) 
-0.061 

(0.3832) 
0.095 

(0.2547) 
-0.182 

(0.0107) 
0.042 

(0.6313) 
-0.064 

(0.3649) 
-0.534 

(<0.0001) 
-0.041 

(0.5496) 
-0.051 

(0.4551) 
-0.346 

(<0.0001) 
RMSPE 14,046 11,179 13,250 11,379 14,046 11,170 11,249 10,920 10,837 11,260 
PIC90 91.6 91.4 85.0 83.6 91.6 91.4 88.2 88.2 88.6 88.0 

LOR 
(m) 

Point 
%Bias -0.045 

(0.4286) 
-0.122 

(0.0059) 
-0.068 

(0.2137) 
-0.225 

(<0.0001) 
-0.045 

(0.4286) 
-0.124 

(0.0051) 
-0.334 

(<0.0001) 
-0.047 

(0.2492) 
-0.046 

(0.2538) 
0.017 

(0.6742) 
RMSPE 9.81 7.63 9.42 7.65 9.81 7.63 7.18 6.99 7.00 7.02 
PIC90 89.7 90.6 86.5 87.3 89.7 90.6 90.4 90.5 90.6 90.6 

Total 
%Bias -0.023 

(0.5455) 
-0.061 

(0.0428) 
-0.034 

(0.3164) 
-0.112 

(0.0002) 
-0.023 

(0.5455) 
-0.062 

(0.0392) 
-0.167 

(<0.0001) 
-0.023 

(0.4157) 
-0.023 

(0.4166) 
0.009 

(0.7657) 
RMSPE 271.0 218.8 246.9 221.0 271.0 218.8 218.5 208.8 207.3 208.8 
PIC90 93.0 91.4 87.0 83.2 93.0 91.4 88.6 90.8 91.2 91.4 

QMD 
(cm) 

Point 
%Bias -0.227 

(0.0058) 
0.015 

(0.8118) 
-1.080 

(<0.0001) 
-0.648 

(<0.0001) 
-0.227 

(0.0058) 
0.017 

(0.7893) 
-0.174 

(0.0042) 
-0.051 

(0.3897) 
-0.040 

(0.5084) 
-0.215 

(0.0003) 
RMSPE 18.79 14.67 18.47 14.95 18.79 14.67 13.86 13.63 13.64 13.55 
PIC90 89.8 90.5 85.9 86.9 89.8 90.5 90.7 91.0 90.9 91.6 

Total 
%Bias -0.113 

(0.0342) 
0.008 

(0.8616) 
-0.539 

(<0.0001) 
-0.324 

(<0.0001) 
-0.113 

(0.0342) 
0.009 

(0.8448) 
-0.087 

(0.0350) 
-0.026 

(0.5225) 
-0.020 

(0.6253) 
-0.108 

(0.0082) 
RMSPE 518.2 421.6 530.9 431.8 518.2 421.6 398.8 386.1 388.6 393.7 
PIC90 93.2 91.0 84.2 84.8 93.2 91.0 89.6 90.0 90.2 89.2 

N 
(trees/ha) 

Point 
%Bias 0.129 

(0.3695) 
-0.078 

(0.4873) 
-1.064 

(<0.0001) 
-1.200 

(<0.0001) 
0.129 

(0.3695) 
-0.079 

(0.4804) 
0.409 

(0.0001) 
-0.191 

(0.0605) 
-0.244 

(0.0195) 
-0.694 

(<0.0001) 
RMSPE 222.5 173.0 217.8 177.0 222.5 173.0 164.6 157.7 161.6 161.0 
PIC90 89.7 90.5 82.8 83.0 89.7 90.5 90.6 91.4 91.4 91.5 

Total 
%Bias 0.065 

(0.4639) 
-0.039 

(0.5943) 
-0.531 

(<0.0001) 
-0.599 

(<0.0001) 
0.065 

(0.4639) 
-0.039 

(0.5886) 
0.204 

(0.0056) 
-0.096 

(0.1736) 
-0.122 

(0.0907) 
-0.347 

(<0.0001) 
RMSPE 5,748 4,757 5,908 5,209 5,748 4,759 4,831 4,589 4,712 4,744 
PIC90 94.4 92.4 83.4 80.0 94.4 92.2 88.4 90.4 91.2 91.2 
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Table 2.9: Performance measures (PM) for the imputation methods with a subset of predictor variables via imputation variable selection 
Response PT PM MSN1 MSN5 RF1 RF5 GNN1 GNN5 BestNN 

BA 
(m2/ha) 

Point 
%Bias -0.164 

(0.2109) 
-0.136 

(0.1856) 
-1.827 

(<0.0001) 
-1.120 

(<0.0001) 
-0.164 

(0.2109) 
-0.133 

(0.1941) 
-0.281 

(0.0034) 
RMSPE 33.79 26.46 32.05 26.06 33.79 26.46 24.73 
PIC90 89.3 89.4 82.1 82.4 89.3 89.4 89.2 

Total 
%Bias -0.082 

(0.3441) 
-0.068 

(0.3415) 
-0.912 

(<0.0001) 
-0.559 

(<0.0001) 
-0.082 

(0.3441) 
-0.066 

(0.3508) 
-0.140 

(0.0441) 
RMSPE 942.4 776.4 956.6 809.7 942.4 776.6 760.9 
PIC90 90.8 90.8 77.0 75.8 90.8 90.8 87.6 

VOL 
(m3/ha) 

Point 
%Bias -0.066 

(0.6119) 
-0.143 

(0.1636) 
0.101 

(0.4208) 
-0.273 

(0.0076) 
-0.066 

(0.6119) 
-0.144 

(0.1606) 
-0.343 

(0.0005) 
RMSPE 493.6 386.4 473.1 385.1 493.6 386.5 371.2 
PIC90 89.7 89.5 83.4 84.7 89.7 89.5 89.0 

Total 
%Bias -0.033 

(0.7015) 
-0.071 

(0.3069) 
0.051 

(0.5306) 
-0.136 

(0.0472) 
-0.033 

(0.7015) 
-0.072 

(0.3035) 
-0.171 

(0.0150) 
RMSPE 13,775 11,112 12,808 10,946 13,775 11,116 11,217 
PIC90 91.8 91.2 82.8 82.4 91.8 91.2 88.6 

LOR 
(m) 

Point 
%Bias -0.084 

(0.1586) 
-0.190 

(<0.0001) 
-0.153 

(0.0068) 
-0.096 

(0.0354) 
-0.084 

(0.1586) 
-0.193 

(<0.0001) 
-0.297 

(<0.0001) 
RMSPE 10.25 7.99 9.75 7.86 10.25 7.99 7.47 
PIC90 89.5 90.7 85.5 85.9 89.5 90.7 90.8 

Total 
%Bias -0.042 

(0.2864) 
-0.095 

(0.0031) 
-0.077 

(0.0357) 
-0.048 

(0.1201) 
-0.042 

(0.2864) 
-0.096 

(0.0027) 
-0.148 

(<0.0001) 
RMSPE 285.9 234.4 265.5 224.6 285.9 234.7 226.8 
PIC90 92.0 91.2 82.0 82.2 92.0 91.0 88.6 

QMD 
(cm) 

Point 
%Bias 0.018 

(0.8340) 
-0.101 

(0.1266) 
-0.159 

(0.0544) 
-0.627 

(<0.0001) 
0.018 

(0.8340) 
-0.103 

(0.1186) 
0.133 

(0.0332) 
RMSPE 19.24 15.13 18.89 15.23 19.24 15.13 14.21 
PIC90 89.7 90.4 83.7 85.3 89.7 90.4 90.6 

Total 
%Bias 0.009 

(0.8733) 
-0.051 

(0.2671) 
-0.080 

(0.1469) 
-0.313 

(<0.0001) 
0.009 

(0.8733) 
-0.052 

(0.2569) 
0.066 

(0.1197) 
RMSPE 533.4 439.4 528.3 447.0 533.4 439.4 411.5 
PIC90 93.2 89.4 82.2 82.6 93.2 89.4 91.2 

DEN 
(trees/ha) 

Point 
%Bias 0.068 

(0.6716) 
-0.120 

(0.3335) 
-2.369 

(<0.0001) 
-1.964 

(<0.0001) 
0.068 

(0.6716) 
-0.117 

(0.3467) 
1.875 

(<0.0001) 
RMSPE 246.8 191.5 217.6 180.3 246.8 191.5 174.2 
PIC90 90.0 90.3 81.6 84.0 90.0 90.3 91.1 

Total 
%Bias 0.340 

(0.7485) 
-0.060 

(0.4862) 
-1.183 

(<0.0001) 
-0.981 

(<0.0001) 
0.034 

(0.7485) 
-0.058 

(0.4980) 
0.936 

(<0.0001) 
RMSPE 6,881.9 5,604.3 6,869.5 6,002.2 6,881.9 5,604.3 5,836.6 
PIC90 91.8 90.4 75.0 76.6 91.8 90.4 84.6 
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Table 2.10: Comparison of RF's performance measures (PM) between using the selected variables and 
using all the reviewed variables 

Response Prediction PM 
RF1 RF5 

Selected All Status Selected All Status 

BA 

Point 
%Bias -0.897 

(<0.0001) 
-1.024 

(<0.0001) D -0.483 
(<0.0001) 

-0.625 
(<0.0001) D 

RMSPE 31.84 32.40 D 26.25 26.47 D 
PIC90 82.6 80.7 D 83.5 80.1 D 

Total 
%Bias -0.448 

(<0.0001) 
-0.511 

(<0.0001) D -0.241 
(0.0005) 

-0.312 
(<0.0001) D 

RMSPE 853.0 902.0 D 761.8 777.0 D 
PIC90 82.6 76.4 D 80.8 75.6 D 

VOL 

Point 
%Bias 0.190 

(0.1517) 
-0.961 

(<0.0001) D -0.365 
(0.0006) 

-0.352 
(0.0005) I 

RMSPE 499.1 469.3 I 400.2 382.0 I 
PIC90 83.7 80.5 D 84.3 81.3 D 

Total 
%Bias 0.095 

(0.2547) 
-0.480 

(<0.0001) D -0.182 
(0.0107) 

-0.176 
(0.0117) I 

RMSPE 13,250 13,142 I 11,379 11,125 I 
PIC90 85.0 76.4 D 83.6 75.4 D 

LOR 

Point 
%Bias -0.068 

(0.2137) 
-0.424 

(<0.0001) D -0.225 
(<0.0001) 

-0.164 
(0.0003) I 

RMSPE 9.42 9.62 D 7.65 7.78 D 
PIC90 86.5 83.6 D 87.3 83.5 D 

Total 
%Bias -0.034 

(0.3164) 
-0.212 

(<0.0001) D -0.112 
(0.0002) 

-0.082 
(0.0063) I 

RMSPE 246.9 273.0 D 221.0 219.0 I 
PIC90 87.0 75.0 D 83.2 77.2 D 

QMD 

Point 
%Bias -1.080 

(<0.0001) 
-0.716 

(<0.0001) I -0.648 
(<0.0001) 

-0.677 
(<0.0001) D 

RMSPE 18.47 17.90 I 14.95 14.40 I 
PIC90 85.9 81.2 D 86.9 81.9 D 

Total 
%Bias -0.539 

(<0.0001) 
-0.358 

(<0.0001) I -0.324 
(<0.0001) 

-0.338 
(<0.0001) D 

RMSPE 530.9 500.0 I 431.8 428.0 I 
PIC90 84.2 77.6 D 84.8 77.2 D 

DEN 

Point 
%Bias -1.064 

(<0.0001) 
-1.983 

(<0.0001) D -1.200 
(<0.0001) 

-0.745 
(<0.0001) I 

RMSPE 217.8 205.0 I 177.0 168.2 I 
PIC90 82.8 78.1 D 83.0 79.5 D 

Total 
%Bias -0.531 

(<0.0001) 
-0.991 

(<0.0001) D -0.599 
(<0.0001) 

-0.372 
(<0.0001) I 

RMSPE 5,908 6,192 D 5,209 4,937 I 
PIC90 83.4 74.6 D 80.0 76.2 D 

Note: ‘I’ in the column ‘Status’ represents ‘improved performance’ when using all the reviewed 
predictor variables gave better performance than using the selected predictor variables, and ‘D’ in the 
column ‘Status’ dose ‘declined performance’ when using all the reviewed predictor variables gave 
worse performance than using the selected predictor variables. 
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Table 2.11: Autocorrelation statistics from whole data 
Response variable 

 BA VOL LOR QMD DEN 
Moran’s I 0.0401 0.0550 0.0790 0.0674 0.0195 

Z score 8.82 12.02 17.14 14.67 4.42 
      

Predictor variable 
 elev_mean elev_std elev_cv elev_p75 CRR p_all_retn_6.56 

Moran’s I 0.0972 0.0782 0.0404 0.0941 0.0493 0.0578 
Z score 21.03 16.96 8.89 20.35 10.79 12.64 

 
 
Table 2.12: Autocorrelation statistics from 500 simulations 
 Training data Validation data 
 Average Minimum Maximum SD* PA† Average Minimum Maximum SD* PA† 
Moran’s 
I 

          

BA 0.0361 0.0007 0.0701 0.0108 - 0.0377 0.0106 0.0711 0.0103 - 
VOL 0.0505 0.0114 0.0866 0.0126 - 0.0526 0.0227 0.0947 0.0122 - 
LOR 0.0744 0.0360 0.1195 0.0140 - 0.0763 0.0390 0.1183 0.0138 - 
QMD 0.0631 0.0297 0.1109 0.0140 - 0.0648 0.0333 0.1166 0.0140 - 
DEN 0.0173 -0.0051 0.0419 0.0084 - 0.0175 -0.0042 0.0504 0.0091 - 
Z score           
BA 4.47 0.33 8.25 1.23 0.986 4.66 1.52 8.58 1.19 0.994 
VOL 6.16 1.55 10.14 1.45 0.998 6.41 2.27 11.33 1.41 1.000 
LOR 8.93 4.50 13.76 1.59 1.000 9.15 4.74 14.05 1.58 1.000 
QMD 7.63 3.78 12.75 1.63 1.000 7.83 4.57 13.54 1.62 1.000 
DEN 2.29 -0.34 5.37 0.99 0.620 2.31 1.20 5.86 1.07 0.622 
*Standard deviation 

†Proportion of having autocorrelation in the dataset from 500 simulations, i.e. proportion of cases 

where Z-score is greater than 1.96. 
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Figure 2.1: Location map of study area and plots 
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Figure 2.2: Plot bins divided by height 80th percentile and height standard deviation (Note that the 
numbers in each box represents the bin numbers.) 
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Figure 2.3: Scatter plots of response variables by predictor variables 
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Figure 2.4: Boxplots of prediction standard error by modeling methods for each response variable 
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Figure 2.5: (a) RMSPE in point and (b) total prediction by response variables and modeling methods 
with different numbers of training data. 
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Figure 2.6: (a) Percentage bias in point and (b) total prediction by response variables and modeling 
methods with different numbers of training data. 
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Figure 2.7: (a) PIC90 in point and (b) total prediction by response variables and modeling methods 
with different numbers of training data. 
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Figure 2.8: Boxplots of observation and prediction value by modeling methods, for each response 
variable. 
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Figure 2.9: Semivariograms for each response variable. 
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Figure 2.10: Z-score of Moran’s I from prediction errors for each response variable by modeling 
methods. 
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Chapter 3: Generating Tree-lists by Fusing Individual Tree 
Detection and Nearest Neighbor Imputation Using Airborne LiDAR 

Data 
 

 

Introduction 

A tree-list provides detailed data foresters often desire for management and planning such as tree 

species, diameter at breast height (DBH), tree height (HT), basal area (BA) and stem volume. Field 

cruising has been commonly used to obtain such data. Field cruising is costly, however, and remote 

sensing data can be used as auxiliary information to improve the accuracy and precision of estimates in 

forest inventory. 

Among various remote sensing techniques, airborne light detection and ranging (LiDAR) has 

been increasingly used in forestry applications during the last decade. LiDAR has performed well in 

estimating forest attributes such as biomass (Næsset and Gobakken, 2008), diameter distribution 

(Gobakken and Næsset, 2004), volume and BA (Lindberg and Hollaus, 2012). Tree-lists have also 

been estimated by LiDAR (Lindberg et al., 2010, 2013) or aerial photographs (Temesgen et al., 2003). 

In general, there are mainly two approaches using LiDAR data in forestry, the area-based 

approach (ABA) and the individual tree detection (ITD) approach (Vauhkonen et al., 2014). ABA 

assumes that the vertical height distribution of laser point clouds is related to variables of interest in an 

area. A host of summary statistics derived from the point cloud are used to predict many forest 

inventory attributes. Information on the LiDAR point cloud is not fully utilized in ABA, i.e., most of 

the studies have focused on vertical height distribution in a sample plot and only a few studies using 

horizontal information obtained from the LiDAR point cloud. Pippuri et al. (2012) found horizontal 

texture metrics from a canopy height model (CHM) could be used to predict the spatial pattern of trees, 

and horizontal landscape metrics from a CHM used to predict the need for first thinning. 

In contrast, ITD identifies individual trees and provides estimates of forest attributes based on the 

identified individual trees. Although many variations exist, ITD commonly uses a rasterized CHM to 

segment individual trees with horizontal location of treetop and height across the CHM area. Thus, 

ITD has apparent advantages over ABA regarding utilization of horizontal information in LiDAR point 
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clouds and can be more suitable for tree-level forest inventories than ABA. However, information on 

understory vegetation is likely to be missed when using ITD (Koch et al., 2014). This is because 

rasterizing LiDAR point clouds into CHM means that there is a rounding effect of summarizing all the 

point clouds within a range of cells into one cell height value mainly focusing on higher point clouds 

making it difficult to detect or estimate understory vegetation. Additionally, it is well known that 

LiDAR has weaknesses for detecting or estimating understory vegetation regardless of the approach 

used because LiDAR data lack information on understory vegetation (lower proportion of point clouds 

in understory) (Takahashi et al., 2006). 

Many approaches have been proposed to overcome the limitations above. Maltamo et al. (2004) 

combined a theoretical probability distribution function with the tree height distribution estimated from 

ITD to detect small and suppressed trees. ITD first estimated the height distribution and the number of 

large trees. For small trees, two approaches have been used including - the complete Weibull 

distribution with the parameter prediction method and the left-truncated Weibull distribution with 

estimation of parameters from the estimated height distribution by ITD. These approaches were tested 

for the estimation of the height distribution and the number of trees. DBHs for large and small trees 

were then predicted using the relationship between DBH and LiDAR metrics. Total timber volume and 

stem density were finally determined by summing the estimates from the two approaches for large and 

small trees. Lindberg et al. (2010) proposed a methodology to generate a tree-list combining a CHM-

based ITD and ABA estimation. To better detect trees that are close to each other or small; 1) the 

number of trees per segment was estimated using a training dataset in which the number of field-

measured trees for each tree crown segment was known, and 2) a candidate tree-list from the ITD was 

calibrated using the target distributions of HT and DBH estimated by a k-Nearest Neighbor (NN) 

approach. The combined approach improved the estimation of distributions for DBH and HT, and 

produced unbiased estimates of forest attributes. In addition to ITD based on CHM, Lindberg et al. 

(2013) utilized a 3D clustering method to model a tree crown using a priori information on the shape 

and proportions of tree crowns. The 3D clustering method identified more trees below the tallest 

canopy layer and with a DBH < 20 cm than ITD based on CHM. Hamraz et al. (2017) proposed the use 

of vertical stratification of point clouds and LiDAR data with high point cloud density (50 points / m2), 
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which would have more information on understory vegetation than the one with low density, to detect 

understory trees. The proposed approach improved detecting understory trees without affecting the 

overall quality of segmentation for overstory trees. 

Many parameters affect the performance of tree segmentation by ITD; these can be classified into 

two parameters, biological and technical. For the biological parameter, Vauhkonen et al. (2012) 

claimed that the performance of ITD methods depends more on forest structure, stand density, and tree 

clustering than on detection techniques. For example, an estimated tree segment by ITD could have no, 

one, or several trees in it (Breidenbach et al., 2010b), and trees in an understory under a dense upper 

canopy are hard to detect with LiDAR (Maltamo et al., 2004). On the other hand, the methods for ITD 

were reported as the primary parameter affecting the performance of ITD by Kaartinen et al. (2012). 

Substantial differences in the percentage of matched and missed trees, and commission error were 

found among the ITD methods. Also, the accuracy of determining tree location, tree height, and crown 

delineation changed according to the ITD methods. In contrast, pulse density showed less impact on 

ITD. 

A typical ITD method consists of the following two steps: 1) generating a rasterized CHM with 

appropriate smoothing and resolution using normalized LiDAR point cloud data, and 2) tree 

segmentation using a segmentation technique on the rasterized CHM (finding local maxima as treetops 

and delineating tree crowns) (Yu et al., 2010). Therefore, the performance of ITD is affected by the 

parameters (smoothing and resolution for CHM, and the algorithm used for tree segmentation). In 

addition to these parameters, Wiggins (2017) reported that excluding trees below a specific height 

(minimum height cutoff) improved ITD’s accuracy for overstory trees. Maltamo et al. (2003) noted 

that a proper value of the truncation parameter of Weibull for DBH distribution, which can be 

considered the same as a height cutoff, should be further studied. According to McGaughey (2016) and 

Wiggins (2017), there might be an optimal parameterization that balances the smoothing of the CHM, 

resolution of the CHM, and the height cutoff to best identify individual trees, although Koch et al. 

(2014) and McGaughey (2016) pointed out that the optimal parameterization can vary over large forest 

areas with diverse and complicated structure. To offset the variation of the optimal parameters, Koch et 
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al. (2006) proposed applying different intensities of smoothing according to HT. This method would 

prevent under- and over-representation of local HT maxima. 

Other than ITD, detailed information on forest resources, such as a tree list or stand table, has 

been estimated by several methods that can be mainly classified into two categories: 1) diameter 

distribution modeling, and 2) imputation. In diameter distribution modeling, parameters of some 

theoretical distributions are estimated to describe the distribution of tree diameters. Three approaches 

that are commonly used are the parameter prediction method, parameter recovery method, and quantile 

prediction method (Temesgen et al., 2003). Imputation methods directly substitute measured values 

from sample locations (references) for locations for which a prediction is desired (targets). The 

distance metric used to identify suitable references and the number of references used in a single 

imputation (k) are the key considerations to classify the imputation methods such as most similar 

neighbor, gradient nearest neighbor, or Random Forest NN (RF NN hereafter) (Eskelson et al., 2009). 

Temesgen et al. (2003) used a set of proxy variables to represent a tree-list in NN imputations because 

there is no single variable to represent the tree-list. On the other hand, Strunk et al. (2017) used plot 

identities as a response variable in NN imputations in evaluating NN strategies to impute a tree-list. 

In our study, we combined ABA and ITD to estimate tree-list using LiDAR data inspired by the 

ideas from Maltamo et al. (2003), Maltamo et al. (2004) and Wiggins (2017). This was for overcoming 

the weakness of LiDAR data and the ITD method in identifying understory trees, and utilizing the 

strength of ITD over ABA. Maltamo et al. (2003) combined pattern recognition of single trees with the 

truncated Weibull distribution to estimate forest characteristics using digital video imagery. Trees were 

grouped into large (DBH > 17cm) and small (DBH ≤ 17cm) trees. The cutoff DBH value (17 cm) was 

the minimum size of trees that could be detected by the pattern recognition method. The value of 17 

cm in DBH was used as a truncation parameter of the left-truncated Weibull. Pattern recognition was 

applied to large trees (DBH > 17cm), and the diameter distribution modeling to small trees (DBH ≤ 

17cm), respectively. This idea was improved upon by Maltamo et al. (2004), who combined ITD based 

on CHM for large trees and diameter distribution modeling for small trees. HT distribution was 

modeled using LiDAR metrics as auxiliary variables. Wiggins (2017) examined the effect of height 
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cutoff on the accuracy of LiDAR data for estimating forest structure of taller trees and found that a 12 

m height cutoff produced better results in estimating forest structure and spatial pattern. 

For ITD, we used watershed segmentation (Vincent and Soille, 1991) for overstory trees (trees 

taller than a height cutoff) and ABA by NN (k = 1) imputation for understory trees (trees shorter than 

the height cutoff). While the performances of diameter distribution modeling depended on the results 

from large tree estimation by the single tree pattern recognition in Maltamo et al. (2003) or the ITD 

based on CHM in Maltamo et al. (2004), in this study, we used ITD and ABA independently. They 

were only linked by a height cutoff when generating a complete tree-list. Whereas Lindberg et al. 

(2010) estimated a tree-list for all trees by an ITD method and calibrated it, our approach separated a 

forest stand into overstory and understory trees, then applied different methods to the overstory and 

understory trees, respectively. We examined the effects of the combination of the three parameters, 

smoothing of CHM, resolution of CHM and the height cutoff, as well as LiDAR height classification 

of field plots on estimating tree-lists via ITD. The explanatory power of our approach was also 

investigated. We evaluated the performance of generating tree-lists in terms of BA, mean HT, stems 

per hectare (SPH), and distributions of DBH and HT. 

 

Methods 

Study Area 

The study area is located in southwestern Oregon with the extent of 647,951 hectares (Figure 3.1). 

The elevation of the area ranges approximately from 20 m to 1,000 m above sea level in elevation. The 

range of slopes in the area is 0° to 89.97°. Douglas-fir (Pseudotsuga menziesii) is the dominant tree 

species in the study area, and other important species are western hemlock (Tsuga heterophylla), red 

alder (Alnus rubra), Oregon myrtle (Umbellularia californica), bigleaf maple (Acer macrophyllum), 

tanoak (Notholithocarpus densiflorus), western redcedar (Thuja plicata), and grand fir (Abies grandis). 

 

Airborne LiDAR 

Airborne LiDAR data were collected between April 27th, 2008 and April 5th, 2009 using Leica 

ALS50 Phase II instrumentation. The average pulse density (the average number of pulses returned 
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from surfaces) was 8.10/m2 for the study area. Table 3.1 shows the specifications for the LiDAR 

survey. Laser points with elevations above ground level lower than 1 m and higher than 91.44 m (300 

feet) were excluded from the computation because they did not likely represent vegetation of interest 

(the maximum tree height measured in the field data was 88.4 m). 

 

Field Data 

Stratified sampling based on the LiDAR metrics (Hawbaker et al., 2009) was used for field data 

collection. Only the lands owned by the BLM or the Coquille Tribe in the study area were considered. 

Then, the non-forested areas were removed. Within this pre-selected area, a set of LiDAR grid metrics 

(22.86 m by 22.86 m) were calculated from the LiDAR point clouds. Using the principal component 

analysis, the 80th percentile and standard deviation of the LiDAR height were selected as describing 

best the variation in forest structure in the pre-selected area. Two thousand cells were randomly 

selected from the cells with the pre-selected area. Based on these random samples, the range of 80th 

percentile heights was subdivided into ten classes with a length of 6.10 m, and the range of standard 

deviations within each height class into three equal-width classes. The maximum height of the 

uppermost 80th percentile class was increased to 83.52 m to cover the values of the grid cells in the full 

dataset. A total of 30 bins (10 × 3) were created. 

Every grid cell in the pre-defined area was assigned to the bins. Then, 30 primary and 20 alternate 

plot locations from each bin were randomly selected from the grid cells. 30 plot locations from each 

bin were measured by field crews from those 50 locations using the primary plot locations unless 

inconsistencies were found between the LiDAR measured structure and the actual state of the forest. 

Such inconsistencies were caused by disturbances, such as timber harvesting, fires, or windthrow that 

occurred after the LiDAR data acquisition. In that case, the next available alternate plot would replace 

the primary plot. Plot locations overlapping roads, and in tall shrub vegetation near the coast were 

discarded. 

Field sampling was conducted between May 25, 2010 and May 10, 2011. Nested plots with two 

plot sizes (12.68 m and 5.09 m) were used to measure large (all live and dead with DBH larger than 14 

cm) and small (only live with heights taller than 1.4 m and DBH less than 14 cm) trees, respectively. 
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Note that only the large tree data were used for this analysis. There was one missing plot, resulting in a 

total of 899 plots. Table 3.2 and Table 3.3 provide a plot-level and tree-level summary of the field 

measurements. The ten 80th percentile classes for the stratification sampling were used as LiDAR 

height classes in the current study (from ‘1’ to ‘10’ as height increases) to investigate the effect of 

LiDAR height classification of field plots on the performance of our proposed approach. 

 

Generating Tree-lists 

The general steps of our approach are shown in Figure 3.2. Trees taller than a specified height (a 

height cutoff) were estimated by ITD using LiDAR data yielding the number and HT of the taller trees. 

DBHs for the taller trees were predicted based on the estimated HT using the relationship between 

DBH and HT from field data. For estimating the trees shorter than the height cutoff, tree-lists for target 

plots were first imputed with the tree-list from reference plots by RF NN imputation using both LiDAR 

and field data. Then, the shorter trees were selected from the imputed tree-lists. A complete tree-list 

can be generated by combining those estimated taller and shorter trees. The variables in the complete 

tree-list were the tree ID, HT, and DBH. 

 

Individual Tree Detection 

ITD was implemented by the function ‘TreeSeg’ in the FUSION software (McGaughey, 2016) 

with the argument ‘ht_threshold’ to estimate the tree-list for large trees. This function applies a 

generalized watershed segmentation algorithm by Vincent and Soille (1991) to a CHM. It should be 

noted that over-segmentation, known as one of the disadvantages of the watershed algorithm, may be 

produced with noisy imagery (Romero-Zaliz and Reinoso-Gordo, 2018). Conceptually, the CHM is 

inverted, so tree crowns appear as basins. Water fills the basins from local height minima in the CHM 

by the algorithm, and the basins fill and join with adjacent basins, then watershed edges are established 

(McGaughey, 2016). This also can be explained at the pixel level on the CHM. In every CHM pixel 

above a height threshold, a path is placed by iteratively moving to the neighboring pixel with the 

largest height value until a local height maximum is reached. A tree crown segment is defined by cells 

that reach the same local height maximum (Lindberg and Holmgren, 2017). The ‘ht_threshold’ sets 
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minimum height (height cutoff) for tree segmentation. Fractions of CHM below this height cutoff were 

excluded in the segmentation process. The other two parameters, the amount of smoothing and the 

resolution of the CHM, were applied in generating the CHM implemented by the function 

‘CanopyModel’ in FUSION. We set levels of those three parameters as follows: 1) 3 levels of 

smoothing of CHM - no smoothing, median filter using a 3 by 3 neighbor window and median filter 

using a 5 by 5 neighbor window, 2) 24 resolutions of CHM - 0.2, 0.3, …, 2.4, and 2.5 m, 3) 9 

percentile height cutoffs on the LiDAR height for each plot - 10th, 20th, …, 90th. Because the range of 

HT is extensive, the LiDAR height percentiles were used as height cutoffs instead of absolute heights 

as in Wiggins (2017). 

After implementing ITD, we obtained a tree-list above a height cutoff including information on 

individual tree count, HT, a location of tree, and a number of CHM cells within a tree crown at a 

combination of smoothing, resolution of CHM, and height cutoff. To predict the DBHs of trees in the 

estimated tree-lists, an RF regression model for DBH was fitted with the HTs from the field data 

(16,200 trees). With this model, the DBHs of trees in the estimated tree-lists were predicted using the 

HTs of those trees. Then, those predicted DBHs were added to the estimated tree-lists. The model was 

fitted in R version 3.3.3 (R Core Team, 2017) using the R package ‘randomForest’ (Liaw and Wiener, 

2002). 

 

Nearest Neighbor Imputation 

To estimate tree-lists for understory trees, we used RF NN imputation instead of diameter 

distribution modeling because there were many sample plots with multimodal or irregular shapes in 

diameter distribution and some plots had a small number of trees. NN imputation directly substitutes 

measured values from references for targets. The type of NN imputation is determined mainly by the 

distance metric and number of neighbors (k) (Eskelson et al., 2009). The distance metric measures the 

similarity between target and reference observations, and the k indicates how many reference 

observations are used in a single imputation (prediction). Four distance metrics, Euclidean, 

Mahalanobis, most similar neighbor and RF (Breiman, 2001), were tested. RF appeared the best for 

BA, SPH and error index (EI; will be defined in the following section), and Euclidean showed the best 



62 
  

 

for HT (this result is not presented in this manuscript). Thus, we selected the RF algorithm as the 

distance metric and chose k = 1. RF builds multiple classification (or regression) trees, called forests, 

with bootstrap samples of training data, while selecting predictors randomly for the best split at each 

node in the trees. Distance in RF NN is computed as one minus the proportion of classification trees 

where a target observation is in the same terminal node as a reference observation (Crookston and 

Finley, 2008). To estimate tree-lists by RF NN imputation, we imputed plot identities as in Strunk et 

al. (2017). 

To fit an NN model, it is necessary to define response and predictor variables. Predictor variables 

were derived from LiDAR point clouds at each filed plot location. It is not clear which a single 

response variable or multiple response variables should be used for estimating tree-lists because many 

attributes can be extracted from a tree-list. For example, Temesgen et al. (2003) used a set of 22 proxy 

variables to represent a tree-list. We considered several forest inventory attributes (basal area, stem 

volume, Lorey’s height, quadratic mean diameter, stems per ha) simultaneously to select appropriate 

predictor variables for estimating tree-lists via RF NN imputation. “Best subsets” was used as a 

variable selection method producing the best three predictors for each forest inventory attribute.  

From the best predictors for each forest inventory attribute, we obtained a total of 11 predictors 

after removing duplicates. The selected predictors are shown in Table 3.4. Like leave-one-out 

validation, the target plot was excluded from training data when modeling. Nine different tree-lists for 

each height cutoff were generated from the estimated tree-lists by subtracting trees above the 

corresponding height cutoff. The variable selection and imputation modeling were implemented in R 

version 3.3.3 (R Core Team, 2017) using R packages ‘yaImpute’ (Crookston and Finley, 2008) and 

‘randomForest’ (Liaw and Wiener, 2002). 

 

Performance Measures 

Bias and root mean squared error (RMSE) for mean HT, BA and SPH were computed as follows: 

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (3.1) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

𝑛𝑛
 (3.2) 

where 𝑦𝑦�𝑖𝑖 is the prediction at the ith plot, 𝑦𝑦𝑖𝑖  is the field-measured value at the jth plot, and n is the 

number of total sample plots. 

Large trees would produce greater uncertainty in estimation than small ones because the larger 

trees have greater values of HT, DBH, etc. To see the effect of several parameters on tree-list 

estimation free from the influence of greater value, relative bias (RBias) and relative RMSE (RRMSE) 

were also calculated for each LiDAR height class by the equations below: 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =

∑ (𝑦𝑦�𝑖𝑖ℎ − 𝑦𝑦𝑖𝑖ℎ)𝑛𝑛
𝑖𝑖=1

𝑛𝑛ℎ
×

100
𝑦𝑦�ℎ

 (3.3) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) = �

∑ (𝑦𝑦�𝑖𝑖ℎ − 𝑦𝑦𝑖𝑖ℎ)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛ℎ
×

100
𝑦𝑦�ℎ

 (3.4) 

where 𝑦𝑦�𝑖𝑖ℎ is the prediction at the ith plot in the hth LiDAR height class, 𝑦𝑦𝑖𝑖ℎ is the field-measured value 

at the ith plot in the hth LiDAR height class, 𝑦𝑦�ℎ is the average of field-measured values at in the hth 

LiDAR height class, h is the number of LiDAR height classes, and 𝑛𝑛ℎ is the number of sample plots in 

the hth LiDAR height class. 

The error index (EI) (Reynolds et al., 1988) was used to evaluate the size distributions of DBH 

and HT, respectively. EI measures the proportions of absolute deviation between the predicted and 

field-measured number of trees to the total number of field-measured trees over the entire distribution. 

EI for a plot was computed as: 

 
𝐸𝐸𝐸𝐸(%) =

∑ �𝑛𝑛𝑝𝑝𝑝𝑝 − 𝑛𝑛𝑜𝑜𝑜𝑜�𝑘𝑘
𝑖𝑖=1

𝑁𝑁
× 100 (5) 

where 𝑛𝑛𝑝𝑝𝑝𝑝 and 𝑛𝑛𝑜𝑜𝑜𝑜 are the predicted and observed numbers of trees, respectively, in DBH or HT class i. 

k is the number of DBH or HT classes. N is the total number of field-measured trees. The bin widths 

for classifying DBH and HT were 10 cm and 5 m, respectively. 

The coefficient of determination measures (R2) the proportion of variance in a response variable 

that is explained by predictor variables. It shows that how well a model’s predictions fit the observed 

values of the response variable, which means the actual explanatory power of the model. The R2 is 

calculated as: 
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𝑅𝑅2 = 1 −

∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 (6) 

where 𝑦𝑦�𝑖𝑖 is the prediction at the ith plot, 𝑦𝑦𝑖𝑖  is the field-measured value at the ith plot, 𝑦𝑦� is the average of 

field-measured values of the total sample plots, and n is the number of total sample plots. 

 

Results 

Effects of Smoothing, Resolution, and Height Cutoff on Tree-list Estimation 

All the resolutions with pixel size less than 1 m produced too large of estimates of SPH and 

yielded unreasonable estimates of other attributes regardless of the amount of smoothing and the height 

cutoff. Hence, resolutions with pixel sizes less than 1 m were dropped from the analysis. The amount 

of smoothing in CHM had a relatively small effect on tree-list estimation compared to the other 

parameters. The smoothing generally decreased the variability of estimation among the resolutions at a 

given height cutoff or the height cutoffs at a given resolution. For this reason, we show the 

performance only from the smoothing of 3 by 3 neighbor window. 

Most cases of the combinations of resolution and height cutoff resulted in the underestimation of 

SPH (Figure 3.3.A). Unbiased SPH estimations were found around 1.1 m to 2.0 m in CHM resolution 

with the various height cutoffs. Generally, a higher cutoff had a smaller absolute bias compared with 

the absolute bias from a lower cutoff. In terms of precision, Figure 3.3.B shows that a higher cutoff had 

a relatively consistent RMSE along with resolutions in CHM, which means that higher cutoffs were 

less affected by resolution for SPH estimation than lower cutoffs as also shown in Figure 3.3.A. The 

combinations of the finer resolutions (1.2 ~ 1.3 m) and the lower height cutoffs (p20 and p30) provided 

the lowest RMSEs. For overstory trees, the patterns of performance measures were similar to the 

patterns from the combined approach, but the best RMSEs were always found at height cutoff p90. For 

understory trees, bias and RMSE increased as height cutoff increased except for the bias at height 

cutoff p90. 

For BA estimation, bias decreased as resolution decreased as shown in Figure 3.4.A. Unbiased 

BA estimation was achieved for the combination of several cutoffs from p10 to p60 and resolutions 

with pixel sizes larger than 1.7 m. RMSE in BA estimation also decreased as resolution decreased 
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(Figure 3.4.B). Lower cutoffs yielded lower RMSE. The lowest RMSEs appeared for resolutions 

around 1.8 ~ 2.0 m. For overstory trees, the differences in RMSE between height cutoffs at a given 

resolution were smaller than the differences for the combined approach except for 1.0 m resolution. 

For understory trees, bias and RMSE increased as height cutoff increased, and all height cutoffs 

overestimated SPH. 

HT estimation had better performance than the other attributes. The pattern for HT estimation was 

different from the other attributes. The best accuracy in HT estimation was found with the cutoff at p50 

or p60 for any resolution. The poorest accuracy in HT estimation appeared only for the cutoff p10, 

which had a worse bias for HT estimation as resolution decreased. HT estimation became unbiased as 

resolution decreased except with cutoffs p10 and p20 (Figure 3.5.A). Height cutoffs showing better 

RMSEs were p50 and p60 with the middle and higher resolutions, and p80 in the lower resolutions at 

any smoothing level. RMSE increased as resolution decreased especially for cutoffs p10, p20, and p30 

(Figure 3.5.B). Bias and RMSE of HT estimation for overstory trees only by ITD increased as the 

resolution decreased. For understory trees, Bias and RMSE for HT estimation also increased as height 

cutoff increased. 

For the lower resolutions, the lower cutoffs showed better DBH distribution estimation than the 

higher cutoffs, while it was the opposite with the higher resolutions (Figure 3.6.A). This pattern was 

also observed in HT distribution estimation. The best DBH distribution was found with cutoffs p30 and 

p40 and lower resolutions while cutoff p90 had the best DBH distribution for the higher resolutions. 

The HT distribution estimation, in most cases, had the better result with the lower cutoffs than the 

higher cutoffs (Figure 3.6.B). The cutoff p50 had the best performance in most cases, except p90 for 1 

and 1.1 m resolutions, and p30 for 1.3 ~ 1.5 m resolutions. The resolutions with medium pixel sizes 

were better for estimating the HT distribution. For overstory trees, EI for DBH decreased as resolution 

decreased, and the lowest height cutoff p10 always yielded the best DBH distribution estimation at 

every resolution. DBH distribution estimation for overstory trees was poorer than for both overstory 

and understory trees. The best height cutoff for HT distribution of overstory trees estimation increased 

as resolution decreased. For understory trees, EIs for DBH and HT were reduced as height cutoff 

increased except for cutoff p80. Contrary to HT estimation for both overstory and understory trees by 
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the combined approach, the best height cutoffs in the estimation of the HT distribution for overstory 

trees by ITD was for higher cutoffs from p60 to p80 except for resolutions higher than 1.4 m. 

Compared to the combined approach for all trees or the ITD for overstory trees, NN imputation 

produced much lower biases for understory trees’ SPH, BA, and HT (Figures 3.3, 3.4, and 3.5). The 

smallest biases for understory trees for SPH, BA and HT estimation were found at cutoffs p10, p20, 

and p40, respectively. The smallest RMSEs in the three attributes were observed only at cutoff p10. 

 

Effects of Classification of Field Plots by LiDAR Height on Tree-list Estimation 

The absolute and relative performance measures separated by LiDAR height class were calculated 

for each forest attribute estimated. The smallest group, class 1, showed distinct properties in those 

performances. For the absolute measures, such as bias and RMSE, lower LiDAR height classes, 

especially the lowest class, generally yielded comparable or better performances for BA and SPH than 

the higher classes. However, based on the relative measures, the lowest class had much poorer results. 

Similar patterns were found in EIs for DBH and HT as well. The effect of the amount of smoothing in 

CHM by LiDAR height class was relatively small. The performances by height cutoff in a given 

resolution were averaged for this section because it is better to show the general effect of height class 

on tree-list estimation performance. For SPH estimation (Figure 3.7), bias decreased as resolution 

decreased for every height class, but the resolutions showing unbiasedness varied among height 

classes. Lower height classes had larger variability in bias among resolutions than higher height class. 

Height class 1 had much larger RBias at higher resolutions than the other height classes. Larger RMSE 

occurred in height classes 1 through 6, and the largest RMSE was found in height class 3. RRMSE in 

height class 1 was largest at every resolution. Relatively larger RRMSEs at higher resolutions were 

observed in the taller height classes. 

In BA estimation (Figure 3.8), biases in the taller height classes were generally larger than biases 

in the shorter height classes. This pattern was similar for RBias except for height class 1. RBias in 

height class 1 was larger than the other height classes at resolutions less than or equal to 2.3 m. Lower 

height classes generally had smaller RMSE than higher height classes, but height class 1 had a much 

larger RRMSE than the other height classes. Figure 3.9 shows the performance measures for HT 
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estimation by height class. The pattern of HT estimation among height classes was different from the 

pattern of SPH and BA estimation. Height class 1 had comparable or better performance in bias, 

RBias, and RMSE. The primary difference in bias and RBias between class 1 and the other classes was 

that class 1 mainly underestimated HT while the other classes overestimated. RRMSE for HT in height 

class 1 had slightly larger values than RRMSE from other height classes. Estimated distributions of 

DBH and HT for height class 1 were much poorer than the distributions for the other classes. Except 

class 1, lower height classes showed better performance in EIs for both DBH and HT than higher 

height classes. Lower resolution generally had lower EIs (Figure 3.10). 

 

Explanatory Power of Individual Tree Detection for Overstory Trees and Random Forest 
Nearest Neighbor Imputation for Understory Trees 

 
Tables 3.5 through 3.7 show R2s for SPH, BA and HT estimation for trees over a given height 

cutoff (overstory trees) via ITD by resolution of CHM and height cutoff with smoothing using a 3 by 3 

window. For SPH estimation (Table 3.5), the best R2 was found at resolutions between 1.2 m and 1.7 

m for each height cutoff. Height cutoff p90 yielded the largest R2, 0.501, and the best R2 decreased as 

the height cutoff decreased. The lowest height cutoff p10 had negative R2 at all the resolutions. BA 

estimation by ITD showed poor explanatory power for overstory (Table 3.6). Most combinations of 

resolutions and height cutoffs had negative R2s, and the best R2 was 0.338 with the resolution 2.0 m 

and the height cutoff p10. Larger height cutoffs, from p70 to p90 provided negative R2 at every 

resolution. In HT estimation (Table 3.7), the 1.0 m resolution yielded the best R2 at every height cutoff 

except p90. The middle height cutoffs, p50 or p60, had better R2 than the other height cutoffs. Inferior 

explanatory power was found at height cutoffs p10 and p90. The explanatory power for HT estimation 

generally decreased as resolution increased. 

Table 3.8 shows the explanatory power of RF NN imputation for trees under a given height cutoff 

(understory trees). For HT estimation, the R2s were around 0.5. However, the R2s for BA and SPH 

estimation were much poorer than the R2s for HT estimation or even had negative values. For 

understory trees for each forest inventory attribute, the scatter plots of observed vs. predicted via RF 

NN imputation did not show any anomaly. The lower height cutoff we used, the more observations 
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with zero values we had. The prediction results for those observations with zero values were inferior 

for every height cutoff. 

 

Discussion 

No single combination of smoothing, resolution and height cutoff was found to produce the best 

results for all performance measures (Table 3.9). Koch et al. (2014) and McGaughey (2016) also 

reported similar findings. Similarly, ITD’s performance varied depending on the algorithm used to 

delineate trees in the CHM (Kaartinen et al., 2012). Differences in performance between the lowest 

LiDAR height class and the other classes were found based on both absolute and relative performance 

measures. Kaartinen et al. (2012) reported that the HT class did not generally impact the accuracy of 

HT estimation, but greater uncertainty was observed for ITD methods capable of finding small trees. 

According to Hopkinson et al. (2005), vegetation classes with short height, such as low shrub and 

aquatic vegetation, yielded the largest relative errors in canopy height estimation, whereas tall 

vegetation classes showed the largest absolute errors. The low level of penetration of LiDAR returns 

into the sub-canopy surface might be an essential reason for the high relative bias for low shrub and 

aquatic vegetation. For aquatic vegetation, it was also believed that the weak laser backscatter from the 

saturated ground caused the high relative bias. These results were very similar to ours although the 

smallest height class in our research almost exclusively consisted of trees. 

As we reported above, resolutions with pixel sizes less than 1.0 m were dropped in the analysis 

because it yielded unreasonably large SPH estimations. Pouliot et al. (2002) claimed that in high-

resolution imagery, tree detection and crown delineation became more complicated. This is because 

high-resolution imagery can display very detailed objects such as branches causing tree crowns to 

deviate from the conic shape. Thus, more tree crowns could be estimated at higher image resolutions. 

Conversely, in low-resolution imagery, it is more challenging to identify crown boundaries because 

they become less distinct. Another reason for our large SPH estimation might be data pits, which are 

height irregularities in a CHM. The function ‘CanopyModel’ in FUSION used for generating CHMs in 

our study fills pixels without LiDAR point clouds using an eight-way search and a distance-weighted 

average (McGaughey, 2016). However, it might be difficult to avoid irregularities in height on a CHM 
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if laser pulses used for our LiDAR data acquisition penetrated deeply into tree crowns causing large 

height variations within individual tree crowns (Persson et al., 2002). Image smoothing with various 

filters using mean, median, or Gaussian approaches have been applied to reduce data pits (Persson et 

al., 2002; Yu et al., 2011). In our study, the smoothing did not work well at resolutions with pixel sizes 

larger than 1.0 m although the smoothing using a 5 by 5 window showed smaller SPH estimation than 

no smoothing and the smoothing with a 3 by 3 window. A pit-free CHM proposed by Khosravipour et 

al. (2014) was found to improve the accuracy of tree detection based on either high or low-density 

LiDAR data; however, this approach could help solve our large SPH estimation at the finer resolutions. 

The ratio of average crown diameter to image pixel size was proposed as a guide to determine an 

optimal image resolution for tree detection and crown delineation using digital camera imagery 

(Pouliot et al., 2002). With a small crown diameter to pixel size ratio, it is hard to have distinct crown 

boundaries in an image, resulting in under-segmentation. However, a large crown diameter to pixel 

size ratio might cause high variability within a crown in an image resulting in over-segmentation. 

Although our data from field surveys do not have information on crown diameter, there might be 

significant variations in the tree crowns considering the diversity of forest stands in our study area. 

This might be one of the reasons why the high CHM resolutions overestimated SPH in our study. 

Barnes et al. (2017) found that no single CHM resolution produced the best performance of ITD for 

both healthy and diseased larch trees, claiming that not only the tree crown size but also the maximum 

tree height governed an optimal size of CHM resolution. The performance of ITD with high-resolution 

CHMs (0.15 m) was best for plots with low maximum height (< 20 m), and the performance with low-

resolution CHMs (0.5 m) was best for plots with high maximum height (> 30 m). 

LiDAR point cloud density might be related to the optimal CHM resolution as with the tree crown 

diameter. With LiDAR data of high point cloud density, high CHM resolution could yield high within-

crown variations on a CHM. Inversely, with LiDAR data of low point cloud density, low CHM 

resolution could produce less distinct crown boundaries making it difficult to identify tree crowns. The 

high CHM resolutions should have yielded good performance in that the LiDAR data used for this 

study had low point cloud density. However, the high diversity of forest stands in the study area might 

add more within-crown variations. Even though an optimal resolution of CHM was set based on the 
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crown diameter to CHM resolution ratio, it should be noted that the performance of ITD was still 

affected by LiDAR point cloud density for trees with small DBH (< 20cm) as reported in Khosravipour 

et al. (2014). 

The results of large SPH estimation are quite different from previous studies. Stereńczak et al. 

(2008) reported that the 0.25 and 0.5 m resolutions in CHMs were better than the 1.0 m resolution for 

estimating SPH through individual tree delineation based on a similar method to Heurich and 

Weinacker (2004). It was found that the number of detected trees decreased as the resolution of CHM 

decreased (Stereńczak et al., 2008), and this was also observed in our work, excluding height cutoffs 

p10 and p20. Smreček et al. (2018) showed very similar results to ours for SPH estimation based on 

ITD. At the highest resolution (0.5 m), the number of trees identified was hugely overestimated; the 

number of trees identified decreased as the CHM resolution decreased from 0.5 m to 2.0 m, as was the 

case in our study. The optimal resolutions for tree identification were 1.0 and 1.5 m depending on the 

sample plot. Smreček et al. (2018) claimed that this was because the CHM with 0.5 m resolution was 

too detailed. We observed many estimated trees from ITD with extreme small areas compared to their 

estimated heights. Those trees should have been removed from the estimated tree-list using an 

appropriate criterion. With this filtering process, overestimation at high resolutions would be 

decreased. 

Most combinations of parameters resulted in underestimating SPH. According to Lindberg et al. 

(2010), ITD underestimates SPH because ITD often misses trees below dominant trees or recognizes 

trees close to each other as one tree. It was expected that there would be more underestimation as pixel 

size increased. The larger pixel size we have, the more aggregated information we would get, so lower 

resolution also would result in underestimating SPH. For this reason, estimates of BA decreased as 

resolution decreased. The approach of Lindberg et al. (2010) could give an improvement for estimating 

overstory trees for our study. Considering that most of the combinations for overstory trees by ITD 

produced negative biases in SPH estimation in our study (Figure 3.3.A), estimating of the number of 

trees per segment would improve the negative biases in SPH estimation by increasing the number of 

detected trees. 
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Performance measures for HT estimation were better than measures for the other variables tested. 

This might be because LiDAR directly measures heights of target objects, so there is less uncertainty 

in height estimation than other attribute estimation. According to Stereńczak et al. (2008), there was no 

difference between the three resolutions (0.25, 0.5, and 1.0 m) in CHM for HT estimation. For 

understory trees, biases in HT estimation less than 0.15 m in absolute value were produced by RF NN 

at every height cutoff. The higher the height cutoff applied, the larger the RMSE obtained. This is 

attributed to the fact that RF NN will have more and larger trees to estimate with higher height cutoffs. 

While RF NN imputation showed better performance in estimating SPH than the combined 

approach and tree segmentation (Figure 3.3 to Figure 3.6), this does not mean that RF NN imputation 

is better than the combined approach or ITD. It is because the target trees for those two methods are 

different from each other (tall trees above a height cutoff for ITD and short trees below the height 

cutoff for RF NN imputation). Therefore, the values dealt with in RF NN imputation were smaller than 

ITD. Based on relative measures not included on this manuscript, RF NN imputation was generally 

better in RBias, comparable in EIs, and worse in RRMSE. 

The errors for BA and mean HT estimation in taller height classes were larger than in shorter 

height classes contradicting the fact that airborne LiDAR has difficulty in detecting understory 

vegetation. This might be because large trees have larger DBH and HT than small trees. To offset this 

potential issue, relative performance measures such as RBias and RRMSE were calculated. These 

relative measures revealed that the performance of estimation in shorter height classes was poorer than 

for the trees in taller height classes. Stereńczak et al. (2008) found a similar phenomenon for young 

stands. 

There was also no single combination of the three parameters tested for explanatory powers that 

proved best overall. While HT estimation was good, estimation of BA and SPH were poor. Especially, 

BA estimation was very poor. BA estimation for overstory trees via ITD had more uncertainty sources 

than the other attributes, including SPH estimation and subsequent prediction of DBH for each 

detected individual tree (estimated HT used to predict DBH provided additional uncertainty source to 

the DBH prediction). These uncertainty sources might partially explain the poor performance in BA 

estimation. Utilizing the limited information in LiDAR data might affect the poor performance for the 
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explanatory powers. We used CHM-based ITD; this method has limitation summarizing LiDAR point 

clouds within a range of cell into one cell height value regardless of generating a pit-free CHM. 

Instead, 3D ITD methods have been recently studied using information in LiDAR as much as possible 

(Kandare et al., 2016). However, the 3D ITD methods required more complex algorithms to 

implement, and also processing time could be a new parameter to consider (Pirotti et al., 2017). 

It is well known that it is difficult to estimate characteristics of understory vegetation. Eskelson et 

al. (2011) used beta regression to estimate percent shrub cover, and it yielded poor explanatory power. 

Rahman and Gorte (2008) developed a tree filtering technique to separate dominant tree and 

undergrowth vegetation, but it was found difficult to separate undergrowth vegetation very close to a 

tree using the filtering. Liu et al. (2013) suggested a method to extract individual tree crowns from 

airborne LiDAR in residential areas showing promising applications, but also reported that small trees 

were omitted if there were an only small number of points representing them in the dataset. Our results 

for understory trees via RF NN were not good (Table 3.8). To improve NN estimation with LiDAR 

data having low point cloud density, we investigated many LiDAR metrics such as metrics from 

LiDAR point clouds under several height cutoffs as Wing et al. (2012) proposed to estimate understory 

vegetation cover with airborne LiDAR. Some of the metrics from understory point clouds were 

selected for NN imputation (Table 3.4). However, it did not greatly improve the performance of NN 

imputation compared to NN imputation without those metrics (not presented here). This might 

fundamentally be because our LiDAR data lacked information on understory vegetation. 

In NN imputation, one of the critical parameters is the selection of a number of neighbors for 

imputation modeling or distance metrics used to measure the similarity between the reference and 

target plot using auxiliary variables (Eskelson et al., 2009). While their result varied among different 

forest types, Strunk et al. (2017) reported that k = 3 and Mahalanobis distance metric produced better 

performance over other NN strategies in estimating tree-lists. In this study, we only used k = 1 and RF 

as a distance metric in NN modeling. Combination of the two parameters needs to be examined for 

understory vegetation. In addition to these two factors, implementing variable selection procedure for 

NN imputation to each LiDAR height class could have the potential to improve NN modeling 

performance. 
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Compared to the results of HT estimation, results related to DBH estimation such as BA and EI 

for DBH showed poorer performance. It is known that predicting tree-level DBH from height-derived 

metrics has considerable variability (Maltamo and Gobakken, 2014). Kaartinen et al. (2012) reported 

that estimation of DBH based on HT and crown size would have considerable uncertainty because 

allometric equations used for estimating DBH are sensitive to errors in input data such as the size of 

tree crown or HT. Another potential reason is the dead trees in the field data. The Pearson’s correlation 

coefficients between the field-measured HT and DBH for live and dead trees are 0.771 and 0.212, 

respectively. Even though the dead trees account for only 8.8 % of a total number of field-measured 

trees, appropriate handling for dead trees would give opportunities to improve estimating tree-lists. 

The scanning angle is another parameter to consider for LiDAR projects (Gatziolis and Andersen, 

2008). If the scanning angle increases, it facilitates changes in pulse propagation direction and 

increases the distance the pulse moves through the canopy. The change in pulse direction and the 

increased distance are related to LiDAR data artifacts such as returns below the ground. Therefore, 

with a wide scanning angle, LiDAR data might have more data artifacts than with a narrow-angle. 

Additionally, these data artifacts could increase when data acquisition is carried out on a slope, as an 

off-nadir scanning angle increases on the slope (Gatziolis and Andersen, 2008). 

39.4 % of our field plots had slopes more than 30° based on digital terrain models from the study 

site. Khosravipour et al. (2015) showed that normalized LiDAR point clouds could distort tree 

locations detected from CHM and height estimation depending on the steepness of slope and crown 

shape. For the slope of more than 30°, 44.6 % of correctly detected trees with wider and irregular 

crown shapes were affected by the horizontal and vertical displacements. They suggested using a non-

normalized CHM to avoid the adverse effect of the distortion by steep slopes, especially in a 

heterogeneous forest with multiple species. The slope was also found to affect the ABA approach by 

distorting heights of LiDAR point clouds (Hansen et al., 2017). They proposed two methods, 

Procrustean transformation and histogram matching, to counter the distortion of LiDAR point clouds 

on slope terrain for extracting LiDAR metrics. These point cloud distortions by slope terrain could 

worsen our results for both overstory and understory estimations. 
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Another issue is that there was the time lag between LiDAR acquisition and field surveys. This 

might have the potential source of error, particularly for younger fast-growing stands. Also, there were 

seasonal differences in the LiDAR acquisition dates (e.g., April through June in the spring, June 

through August in the summer, and September and October in the fall). According to Gatziolis and 

Andersen (2008), the seasonal differences can induce considerable variability in canopy penetrability 

by LiDAR pulses especially for deciduous forests (e.g., leaf-on and leaf-off conditions) and weather-

related limitations. The variability in canopy penetrability might increase uncertainty in modeling 

forest attributes, and the weather-related limitations could make it difficult to keep the quality of 

LiDAR data consistent over our whole study area. Time windows, part of LiDAR data acquisition 

considerations in Gatziolis and Andersen (2008), should be carefully planned according to project 

objectives. 

 

Conclusion 

We proposed an approach to combine ITD and ABA to generate a tree-list using airborne LiDAR 

data and field measured data. The approach aimed to compensate for the disadvantage of LiDAR data 

and ITD in estimating understory trees, and to keep the strength of ITD in estimating overstory trees in 

tree-level. The selected parameters, smoothing, resolution and height cutoff, were examined to 

determine how they affected the performance of the proposed approach. There was no single 

combination of the three parameters that provides the best estimation results for all the forest attributes 

in this study. For each attribute, the best results depended on different combinations of those 

parameters. This is concurrent with what Koch et al. (2014) and McGaughey (2016) reported. It would 

be practical and useful to determine how to automatically find the optimal combinations of those 

parameters across the forest landscape using remote sensing data. In addition to the three parameters 

tested in the present study, the automation for the optimal combinations would require considering 

additional parameters such as forest types, tree species, tree-size parameters (tree crown width or 

maximum tree height) and topography. 

There are several topics for further study to improve the combined approach. A denser point cloud 

data would have more information on both overstory and understory vegetation in a forest, thus could 
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increase the combined approach’s performance. The algorithm used to generate a CHM and to 

delineate trees on the CHM is another critical parameter in ITD. Comparison of different algorithms 

for processing the CHM is an active area of research. Estimating the number of trees per crown 

segment would help obtain unbiased SPH estimation. A point cloud based ITD method could lead to 

improvement by utilizing more information in LiDAR data. A minimum crown area by ITD should be 

examined so that tiny crown would not degrade the quality of the predicted tree-lists. The effect of 

slope on CHM generation and LiDAR metrics extraction need to be considered for better estimation. 

Fusing ITD and ABA to predict overstory and understory vegetation shown in this research indicates 

that forest analysts can benefit from the predictive abilities of the imputation approach and the quality 

information provided by LiDAR. In that, the approach presented herein can be sufficient for strategic 

inventory purposes. 
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Table 3.1: LiDAR survey specifications 
Attribute Description 
Sensor Leica ALS50 Phase II 

Survey altitude 900 m (flown at 900 meters above ground level) 
Pulse rate > 105 kHz (> 105,000 laser pulse per second) 

Pulse mode Single 
Mirror scan rate 52.5 Hz 

Field of view 28° (±14° from nadir*) 
Roll compensated Up to 20° 

Overlap 100 % (50 % side-lap) 
* Point on the ground vertically beneath the laser sensor on the aircraft. 

 

Table 3.2: Plot-level summary statistics of attributes from the field measurements 
Attribute Minimum Maximum Median Mean SD* 

BA (m2/ha) 0.0 236.5 50.3 61.9 45.9 
HT (m) 0.0 63.3 23.4 24.6 10.1 

SPH (stems/ha) 0.0 1,462.9 316.3 354.1 222.1 
*Standard deviation. 

 

Table 3.3: Tree-level summary statistics from the field measurements 
Attribute Minimum Maximum Median Mean SD* 

DBH (cm) 14.0 266.2 26.9 37.4 28.7 

HT (m) 0.3 88.4 19.51 23.5 14.2 
*Standard deviation. 
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Table 3.4: Selected predictor variables for RF NN imputation 

Metrics Min Max Mean SD Description 

sqrt_mean (m) 2.4 63.1 27.7 13.5 LiDAR height quadratic mean 

CHM_SD (m) 1.1 30.1 10.2 6.2 Height standard deviation of rasterized CHM 

Vol_3D (m3) 768.9 30,258.3 12,461.5 6,645.6 Volume of the region between rasterized CHM and ground 

AShape.4 (m3) 792.7 20,231.1 8,627.4 3,938.8 3D alpha shape with alpha value of 4 

mode_30th (m) 1.0 53.7 12.8 11.9 LiDAR height mode from the point clouds less than LiDAR height 30th percentile 

SD_30th (m) 0.1 17.6 4.9 3.7 LiDAR height standard deviation from the point clouds less than LiDAR height 30th percentile 

sqrt_10 (m) 1.8 8.8 5.6 1.2 LiDAR height quadratic mean from the point clouds under 10 m 

p.a.2 (%) 8.4 204.8 125.6 34.9 Percentage of first returns above height of 2 m 

p.u.5 (%) 0.0 98.6 15.5 20.5 Percentage of first returns under height of 5 m 

p.a.15 (%) 0.0 99.6 64.0 32.7 Number of total first returns above 15 m
Number of total first returns above 2 m

× 100 

p.a.10th (%) 12.0 100.0 86.0 16.2 Number of total first returns above LiDAR height 10th percentile
Number of total first returns above 2m

× 100 
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Table 3.5: Explanatory power (R2) of SPH via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor window 
Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 -0.100 -0.020 -0.009 -0.039 -0.104 -0.199 -0.267 -0.343 -0.418 -0.514 -0.566 -0.644 -0.710 -0.779 -0.832 -0.904 

p20 -0.115 0.048 0.106 0.107 0.069 -0.008 -0.059 -0.124 -0.192 -0.280 -0.326 -0.399 -0.458 -0.523 -0.574 -0.641 

p30 -0.134 0.084 0.170 0.196 0.180 0.122 0.086 0.029 -0.027 -0.110 -0.147 -0.216 -0.267 -0.332 -0380 -0.439 

p40 -0.139 0.106 0.215 0.262 0.262 0.223 0.196 0.156 0.104 0.033 0.000 -0.062 -0.103 -0.167 -0.210 -0.261 

p50 -0.144 0.124 0.253 0.311 0.319 0.297 0.285 0.252 0.207 0.142 0.113 0.054 0.018 -0.044 -0.081 -0.129 

p60 -0.131 0.138 0.274 0.347 0.364 0.356 0.357 0.333 0.296 0.234 0.211 0.158 0.127 0.066 0.039 -0.011 

p70 -0.057 0.198 0.321 0.386 0.409 0.403 0.418 0.400 0.369 0.319 0.301 0.252 0.227 0.171 0.148 0.101 

p80 0.048 0.264 0.371 0.421 0.452 0.448 0.464 0.460 0.434 0.396 0.390 0.345 0.325 0.276 0.255 0.217 

p90 0.236 0.376 0.431 0.464 0.497 0.480 0.500 0.501 0.483 0.454 0.455 0.423 0.417 0.372 0.353 0.330 
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Table 3.6: Explanatory power (R2) of BA via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor window 

Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 -2.421 -1.008 -0.443 -0.197 0.033 0.178 0.240 0.283 0.326 0.284 0.338 0.294 0.289 0.322 0.271 0.280 

p20 -2.947 -1.320 -0.665 -0.378 -0.102 0.078 0.168 0.220 0.279 0.242 0.314 0.270 0.273 0.318 0.263 0.286 

p30 -3.593 -1.717 -0.972 -0.628 -0.300 -0.065 0.049 0.118 0.197 0.166 0.265 0.217 0.232 0.287 0.229 0.266 

p40 -4.306 -2.159 -1.303 -0.904 -0.516 -0.219 -0.088 0.011 0.106 0.084 0.203 0.161 0.182 0.256 0.197 0.253 

p50 -5.072 -2.663 -1.706 -1.244 -0.794 -0.432 -0.273 -0.141 -0.035 -0.052 0.095 0.055 0.089 0.181 0.132 0.202 

p60 -6.058 -3.323 -2.242 -1.740 -1.201 -0.752 -0.561 -0.387 -0.253 -0.257 -0.068 -0.108 -0.051 0.060 0.011 0.098 

p70 -6.510 -3.724 -2.598 -2.104 -1.525 -1.037 -0.832 -0.616 -0.488 -0.488 -0.254 -0.295 -0.233 -0.118 -0.133 -0.040 

p80 -7.105 -4.372 -3.169 -2.752 -2.116 -1.574 -1.377 -1.092 -0.990 -0.928 -0.641 -0.707 -0.615 -0.479 -0.501 -0.354 

p90 -6.662 -4.746 -3.638 -3.239 -2.737 -2.125 -2.020 -1.748 -1.648 -1.613 -1.263 -1.386 -1.245 -1.045 -1.084 -0.872 
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Table 3.7: Explanatory power (R2) of HT via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor window 
Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 0.073 0.022 -0.052 -0.156 -0.223 -0.298 -0.347 -0.427 -0.504 -0.621 -0.639 -0.733 -0.794 -0.844 -0.952 -1.040 

p20 0.514 0.481 0.447 0.385 0.364 0.300 0.283 0.231 0.192 0.113 0.110 0.054 0.013 -0.014 -0.070 -0.131 

p30 0.700 0.681 0.661 0.629 0.619 0.578 0.567 0.536 0.523 0.469 0.463 0.434 0.407 0.389 0.349 0.307 

p40 0.784 0.770 0.760 0.738 0.736 0.718 0.709 0.695 0.685 0.650 0.639 0.625 0.620 0.597 0.569 0.554 

p50 0.804 0.797 0.788 0.772 0.771 0.762 0.751 0.744 0.733 0.710 0.708 0.694 0.686 0.676 0.655 0.652 

p60 0.775 0.768 0.756 0.748 0.751 0.745 0.738 0.728 0.723 0.713 0.702 0.699 0.687 0.691 0.667 0.671 

p70 0.676 0.673 0.670 0.659 0.663 0.658 0.652 0.641 0.637 0.628 0.621 0.611 0.608 0.613 0.592 0.598 

p80 0.453 0.450 0.432 0.424 0.414 0.419 0.411 0.405 0.393 0.392 0.387 0.382 0.383 0.379 0.367 0.357 

p90 0.028 0.033 0.010 0.014 -0.001 -0.001 -0.008 -0.015 -0.001 -0.021 -0.017 -0.003 -0.039 -0.006 -0.038 -0.024 
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Table 3.8: Performance measures of RF NN imputation by inventory attributes for trees shorter than given height cutoffs 
Height 
cutoff SDSPH* BiasSPH RMSESPH R2SPH SDBA* BiasBA RMSEBA R2BA SDHT* BiasHT RMSEHT R2HT 

p10 89.20 0.73 87.99 0.03 9.13 -0.25 10.56 -0.34 6.09 -0.15 4.15 0.54 

p20 115.32 1.72 110.63 0.08 11.35 0.08 13.26 -0.37 7.46 -0.05 4.88 0.57 

p30 133.73 5.01 129.52 0.06 13.77 0.38 15.41 -0.25 8.11 0.10 5.69 0.51 

p40 146.14 6.07 145.21 0.01 15.95 0.51 17.79 -0.25 8.58 0.04 6.12 0.49 

p50 156.35 7.83 158.25 -0.03 18.42 1.00 20.59 -0.25 8.89 0.05 6.23 0.51 

p60 166.25 8.42 168.72 -0.03 22.11 1.22 24.12 -0.19 9.05 -0.10 6.32 0.51 

p70 177.05 9.04 179.29 -0.03 25.18 1.41 26.86 -0.14 9.20 0.08 6.40 0.52 

p80 187.56 10.80 193.97 -0.07 29.47 2.16 29.78 -0.02 9.24 0.05 6.84 0.45 

p90 197.84 8.78 204.64 -0.07 35.78 2.20 34.17 0.09 9.55 0.08 7.27 0.42 

* Standard deviation of field-measured inventory attribute under given height cutoffs 
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Table 3.9: Best performance for each assessment by estimation method 

Method Target BiasSPH RMSESPH BiasBA RMSEBA BiasHT RMSEHT EIDBH EIHT 

Combined All 0.3079 212.2541 0.0233 35.0225 1.0967 8.4800 91.0333 91.2693 

  3/2.1/p90* No/1.3/p30 5/2.0/p30 3/2.0/p10 No/2.3/p50 No/2.0/p50 No/2.3/p40 No/1.9/p50 

ITD Overstory 0.5497 89.4945 0.0189 29.7892 1.7553 7.7367 96.6311 83.4631 

  5/1.2/p50* 3/1.7/p90 No/1.8/p20 No/2.4/p60 No/1.0/p60 No/1.0/p40 No/2.3/p10 No/1.9/p70 

NN Understory 0.7256 87.9857 0.0829 10.5628 0.0420 4.1457 98.2339 101.8002 

  p10† p10 p20 p10 p40 p10 p90 p90 

NN All -0.3958 217.6176 0.1438 36.2711 -0.4132 8.3843 91.6049 96.4568 

* The first argument indicates the amount of smoothing, the second resolution in CHM, and the third percentile height cutoff for the combined method. 

† This represents percentile height cutoff. 
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Figure 3.1. Map of study area and plots 
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Figure 3.2. Flowchart of the approach   
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Figure 3.3. (A) Bias and (B) RMSE in SPH estimation: the left graph is for overstory and understory 
trees via the combined approach by resolution of CHM and height cutoff; the middle graph is for 
overstory trees via ITD by amount of smoothing, resolution of CHM and height cutoff; and the right 
graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indicates unbiased 
estimates).  



92 
  

 

 
Figure 3.4. (A) Bias and (B) RMSE in BA estimation: the left graph is for overstory and understory 
trees via the combined approach by resolution of CHM and height cutoff; the middle graph is for 
overstory trees via ITD by amount of smoothing, resolution of CHM and height cutoff; and the right 
graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indicates unbiased 
estimates).  
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Figure 3.5. (A) Bias and (B) RMSE in HT estimation: the left graph is for overstory and understory 
trees via the combined approach by resolution of CHM and height cutoff; the middle graph is for 
overstory trees via ITD by amount of smoothing, resolution of CHM and height cutoff; and the right 
graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indicates unbiased 
estimates).  
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Figure 3.6. (A) EI for DBH and (B) EI for HT: the left graph is for overstory and understory trees via 
the combined approach by resolution of CHM and height cutoff; the middle graph is for overstory trees 
via ITD by amount of smoothing, resolution of CHM and height cutoff; and the right graph is for 
understory trees via RF NN by height cutoff. 
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Figure 3.7. Bias, RBias, RMSE, and RRMSE for SPH estimation via the combined approach by LiDAR height class and resolution of CHM: the values of each 
performance by height cutoff in a given resolution are averaged.  
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Figure 3.8. Bias, RBias, RMSE, and RRMSE for BA estimation via the combined approach by LiDAR height class and resolution of CHM: the values of each 
performance by height cutoff in a given resolution are averaged.  
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Figure 3.9. Bias, RBias, RMSE, and RRMSE for HT estimation via the combined approach by LiDAR height class and resolution of CHM: the values of each 
performance by height cutoff in a given resolution are averaged.  
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Figure 3.10. EIs for DBH and HT estimation via the combined approach by LiDAR height class and resolution of CHM: the values of each performance by 
height cutoff in a given resolution are averaged.
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Chapter 4: General Conclusion 
 

This study consists of two parts: (1) comparing statistical modeling methods for 

predicting forest inventory attributes using LiDAR data, and (2) generating tree-lists by 

fusing ITD with CHM and crown segmentation and ABA with NN imputation using LiDAR 

data. From the first part, no modeling technique was found to be the best for every case. The 

best method varied according to response variables, prediction type, and performance 

measures. The effective size of training data depended on the prediction type. About 100-150 

training data showed comparable performance in point prediction, whereas about 200-250 

training data showed comparable performance in total prediction. Thus, it should be carefully 

determined to select a modeling technique  

Within the leading group of the modeling methods (BestNN, SLM, OLS, and GWR), 

each method had its own properties. OLS generally appeared to have very good performance. 

BestNN yielded comparable performances to the linear models. It was found that there was 

biasedness in BestNN prediction, but the prediction values of BestNN were within the 

observed biological bounds. SLM showed its potential to robustly estimate forest attributes. 

As a more generalized model than OLS regression, it could have good performance in various 

conditions in terms of diverse combinations of relationships between responses and 

predictors. GWR produced better performance but GWR’s performance was sensitive to a 

small number of training data in estimating forest attributes. 

RF imputation had poor performance, particularly in PIC90. It was previously reported 

that bias is one of the reasons for the poor performance of RF imputation. In our study, we 

observed that smaller prediction standard error also could impact PIC90. And increasing the 

number of predictor variables did not guarantee improvement in RF’s PIC90. 

In the second part of our study, we proposed an approach to combine ITD and ABA to 

generate a tree-list using airborne LiDAR and field measured data. The approach aimed to 
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compensate for the disadvantage of LiDAR data and ITD in estimating understory trees, and 

to keep the strength of ITD in estimating overstory trees in tree-level. Smoothing, resolution 

and height cutoff were investigated to observe how they affected the performance of the 

proposed approach. No single combination of the three parameters was found to produce the 

best estimation results for every forest attribute. The best result for each attribute varied 

according to different combinations of the parameters. It would be operational and useful to 

determine how to automatically find the optimal combinations of those parameters across the 

forest landscape. Additional parameters such as forest types, tree species, tree-size parameters 

(tree crown width or maximum tree height) and topography should be considered to 

automatically determine the optimal combinations. 

There are several topics for further study to improve the combined approach. The 

performance of the combined approach could be improved by using a denser point cloud data. 

There is an active area of research in comparing of different algorithms for processing a 

CHM. Estimating the number of trees per delineated crown segment would help provide 

unbiased SPH estimation. A point cloud based ITD utilizing more information in LiDAR data 

could lead to improvement. There were unreasonably tiny crowns that degraded the quality of 

the predicted tree-lists. Setting a minimum crown area according to the corresponding height 

could be an option for our approach’s improvement. The effect of slope on both CHM 

generation and LiDAR metrics extraction needs to be considered for better estimation. Fusing 

ITD and ABA to predict overstory and understory vegetation shown in this research indicates 

that forest analysts can benefit from the predictive abilities of the imputation approach and 

the quality information provided by LiDAR. In that, the approach presented herein can be 

sufficient for strategic inventory purposes. 
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Appendix: Acronyms 

ABA: Area-based approach 

ANN: Artificial neural networks 

BA: Basal area 

BIC: Bayesian information criteria 

BestNN: a modified k-NN 

CHM: Canopy height model 

DBH: Diameter at breast height 

DEN: tree density 

EI: Error index 

GNN: Gradient nearest neighbor 

GWR: Geographically weighted regression 

HT: Tree height 

ITD: Individual tree detection 

LiDAR: light detection and ranging 

LOR: Lorey’s height 

MSN: Most similar neighbor 

NN: Nearest neighbor 

OLS: Ordinary least square 

P80: 80th height percentile 

PIC90: 90 % prediction interval coverage 

PM: Performance measure 

PT: Prediction type 

QMD: Quadratic mean diameter 

R2: Coefficient of determination 

RBias: Relative bias 

RF: Random forest 

RMSE: Root mean squared errors 
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RMSPE: Root mean squared prediction error 

RRMSE: Relative root mean squared error 

SDH: Standard deviation of LiDAR heights 

SLM: Spatial linear model 

SPH: Stems per hectare 

VOL: Stem volume 

 

 


