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Abstract

We present a catalog of mutation operators for spreadsheets drawn from research
into mutation testing for general purpose programming languages and from spread-
sheet errors that have been reported in literature. These operators are integrated into
a system, called µTest, which allows users to create and maintain spreadsheet test
cases. Three approaches to handling regions within spreadsheets are discussed, and
we present a case study of how our system can be used to carry out mutation test-
ing of spreadsheets. In addition to being useful in mutation testing of spreadsheets,
the operators can be used in evaluation of error-detection tools and also for seeding
spreadsheets with errors for empirical studies.

1 Introduction

Spreadsheets are among the most widely used programming systems [54]. Studies have
shown that there is a high incidence of errors in spreadsheets [20], up to 90% in some cases
[49]. Some of these errors have high impact leading to companies and institutions losing
millions of dollars [55, 56, 28]. In this context, it is quite surprising that the by far most
widely used spreadsheet system, Microsoft Excel, does not have any explicit support for
testing. In particular, Excel spreadsheets do not have any provision by which the user
can create and run a suite of tests. Moreover, Excel lacks any mechanism by which the
user can associate a test suite with a spreadsheet or use more sophisticated techniques like
regression and mutation testing. Therefore, users are forced to carry out ad hoc testing of
their spreadsheets and come away with a very high level of confidence about the correctness
of their spreadsheets [45, 44].

To reduce the incidence of errors in spreadsheets, research into spreadsheets has fo-
cussed on the following areas.

1. Recommendations for better spreadsheet design [50, 60, 33, 47, 49]

2. Auditing spreadsheets to detect and remove errors [43, 53, 36]

3. Automatic consistency checking [24, 7, 10, 14, 16, 1]

4. Error prevention techniques [22, 21]

5. Testing [51, 26, 15]
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Traditional Software Engineering research has made considerable progress in the area
of testing. Part of the EUSES [25] research collaboration’s goal is to bring these benefits
to the realm of spreadsheets. An already exisiting testing framework for spreadsheets
is the WYSIWYT methodology [51] that has been implemented in Forms/3 environment
[13]. The benefits of the WYSIWYT approach (and associated systems) have been demon-
strated empirically [51, 52, 48]. Even so, they are not within the reach of the legions of
spreadsheet users yet since Forms/3 is a research vehicle and not commercially available.
Efforts are underway to integrate the WYSIWYT methodology into Excel, so this situation
might change in the future. Forms/3 also has a system called “Help Me Test” that gen-
erates test cases automatically to help users test their spreadsheets [26]. In WYSIWYT,
users provide input values to the system and then mark the output cells with a X if
the output is correct, or a 7 if the output is incorrect. The system stores the test cases
implicitly and gives the user feedback about the likelihood of faults in cells through cell
shading—cells with higher fault likelihood are shaded darker than those with lower fault
likelihood. WYSIWYT uses du-adequacy (definition-use adequacy) as the criterion for
measuring the level of testedness of the spreadsheet. The testedness is reported to the
user through a progress bar, that ranges from 0% to 100% testedness, and coloring of the
cell border that indicates how many of the du pairs for the formula in the cell have been
tested (ranging from red when none of the du pairs have been tested to blue when all the
du pairs have been tested).

Various comparisons are available to guide the choice of strategies for testing programs
[58]. Two aspects guide the choice of one test adequacy criterion1 over another: effec-
tiveness and cost. Effectiveness of a test adequacy criterion is related to the reliability of
programs that meet the criterion. In other words, a test adequacy criterion is effective if
it stops testing only when few failures remain in the program. The cost of an adequacy
criterion, on the other hand, is related to the difficulty of satisfying the criterion and
the human effort involved. Testing effort is always a tradeoff between the two since an
ineffective criterion is a poor choice no matter how low the cost might be. Similarly, a
very effective criterion is not a practical choice if the costs involved are prohibitive. One
factor cited against using mutation coverage as an adequacy criterion is that mutation
testing is costly. In the absence of automatic test case generation, this problem might be
an even greater cause for concern in the context of end users testing their spreadsheets.
However, empirical studies comparing data-flow and mutation testing have shown that
mutation-adequate tests detect more faults [41]. In the empirical evaluation we carried
out (described in Section 7), we saw some cases of faults that were discovered by a muta-
tion adequate test suite that would not be discovered by a du-adequacy criterion. These
results present a strong case in favor of mutation testing. Moreover, support for generating
test cases automatically [26, 19, 37] would lower the costs involved in mutation testing.

In this paper, we propose a suite of mutation operators for spreadsheets. We describe
an environment for specifying test cases within Microsoft Excel and demonstrate the use
of these operators for mutation testing of spreadsheets. Along the lines of the discussion
in [42], the ideal testing environment would be a system that inspects the spreadsheet
and generates an effective2 set of test cases (inputs and the corresponding outputs) that
can be inspected to find failures. The input–output pairs can be used for debugging the
spreadsheet, either manually or with the help of debugging tools. For example, in earlier

1A test adequacy criterion is basically a set of rules that determine if the testing is complete for a given
program and specification.

2“Effective” from the point of view of some coverage criterion.
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work, we have developed the spreadsheet debugger GoalDebug [2] that allows the user
to mark a cell output as incorrect and then specify the expected value for the cell. The
system uses this information to generate a list of change suggestions. The application of
any one of the suggested changes would result in the expected value being computed in
the marked cell. We believe that the testing and debugging approaches would complement
each other very well since the expected output value from the test case can be used to
generate change suggestions. In the approach described in this paper, the test cases are
explicitly represented within test sheets, and our system (µTest) uses mutation adequacy
as the coverage criterion.

The immediate technical contributions of this paper are threefold:

1. Suite of mutation operators

2. An Excel-based environment for specifying spreadsheet test cases and carrying out
mutation testing

3. Strategies that allow more efficient testing of spreadsheet regions

The suite of mutation operators allows us to evaluate spreadsheet test suites on the basis
of a mutation adequacy criterion. The operators also allow us to assess the effectiveness
of automatic spreadsheet tools.

We present related work in the next section. In Section 3 we describe some background
on mutation testing. We present the set of mutation operators we have developed for
spreadsheets in Section 4. In Section 5 we discuss how µTest can be used to maintain
spreadsheet test cases. In Section 6 we describe three strategies for testing cp-similar
regions within spreadsheets. We describe two scenarios in which the mutation operators
would be useful—in the evaluation of test suites (in Section 7), and in the automatic
evaluation of tools (in Section 8). We present conclusions and discuss directions of future
work in Section 9.

2 Related Work

Over the years, research into mutation testing has led to the development of mutation
operators for several general-purpose programming languages, for example, Mothra (for
FORTRAN programs) [18], Proteum (for C programs) [17], and µJava (for Java programs)
[34].

As pointed out in [42], one of the main reasons why mutation testing has not been more
widely adopted by industry is the overhead involved in mutation analysis and testing. The
computational expense involved in generating and running the many mutant programs
against the test cases is very high. Another problem with this approach is the potentially
huge manual effort involved in detecting equivalent mutants and in developing test cases
to meet the mutation adequacy criteria. Many researchers have focussed their effort on
developing approaches for lowering the computational cost of mutation testing [59]. We
briefly describe some approaches in the following.

• In general-purpose programming languages, mutant programs have to be compiled
(or interpreted) prior to running the tests cases. Schema-based mutation was pro-
posed to lower this cost by using a metamutant (a single program that, in effect,
incorporates all the mutants) [57]. Since there is no explicit compilation step in the
case of spreadsheets, this cost is not much of a cause for concern.
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• In general, during mutation testing, mutant programs are run to completion, and
their output is compared with the output of the original program. Weak mutation
is an approximation technique in which the internal states of the mutant and the
original program are compared immediately after execution of the mutated portion of
the program [32]. This approach reduces the execution time during mutation testing
in general-purpose programming languages. However, in the absence of recursion or
iteration, the execution time is not so much of a cause for concern in spreadsheets.

• Based on the original proposal in [35], studies were carried out using Mothra that
showed that of the 22 operators, 5 turn out to be “key” operators. That is, using
the 5 key operators achieves testing that is almost as rigorous as that achieved while
using the entire set of 22 operators [39]. This observation led the authors to propose
the selective mutation approach in which only those mutants that are truly distinct
from the other mutants are used in mutation testing to make the approach more
economical.

• Techniques have been proposed that use a sampling of the set of non-equivalent
mutants. These techniques have been shown to be only marginally less effective at
fault detection when compared to the complete set of mutants [6, 11]. On the other
hand, using the sampling techniques reduces the effort involved in mutation testing.

• To minimize the effort involved in developing new test cases, researchers have also
focussed on algorithms for automatic test generation that would result in test suites
that are close to being mutation adequate [19, 37].

• Some of the generated mutants might be equivalent to the original program, that is,
they produce the same outputs for the same set of inputs. Equivalent mutants do
not contribute to the generation of test cases and require a lot of time and effort from
the tester since earlier approaches required the tester to go through and remove them
by hand. No automated system would be able to detect all the equivalent mutants
since the problem is in general undecidable. However, there has been some work
that allows the detection of up to 50% of equivalent mutants in general-purpose
programming languages [40, 29].

The applicability of mutation to the evaluation of testing has been explored in [9], and the
authors have shown that generated mutants mirror real faults. However, mutants might
be different from hand-seeded faults, which in turn seem to be harder to detect than real
faults.

The widespread occurrence of errors in spreadsheets has motivated researchers to look
into the various aspects of spreadsheet development. Some researchers have focussed their
efforts on guidelines for designing better spreadsheets so errors can be avoided to some
degree [50, 60, 33, 47, 49]. Such techniques are difficult to enforce and involve costs of
training the user. While this might be feasible within companies, it is not feasible in the
context of end users working in isolation.

We have looked at ways to prevent errors in spreadsheets by automatically enforcing
specifications. This approach, implemented in the Gencel system [22, 23], captures a
spreadsheet and all its possible evolutions in a template developed in the Visual Template
Specification Language (ViTSL) [5]. Any spreadsheet generated using Gencel is guaranteed
to be free from reference, range, and type errors. The user does not ever have to edit the
spreadsheet formulas since they are automatically generated by the system based on the
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template. In the context of companies or other large organizations, the templates can
be created by some domain expert (for example, the chief accountant of a company) and
passed on to the other users (for example, junior clerks).

Most of the research that has been done in the area of spreadsheets has been targeted
at removing errors from spreadsheets once they have been created. Following traditional
Software Engineering approaches, some researchers have recommended code inspection for
detection and removal of errors from spreadsheets [43, 53, 36]. However, such approaches
cannot give any guarantees about the correctness of the spreadsheet once the inspection
has been carried out, and empirical studies have shown that individual code inspection
only catches 63% of the errors whereas group code inspection catches 83% of the errors [43].
Code inspection of larger spreadsheets might prove tedious, error prone, and prohibitively
expensive in terms of the effort required.

Automatic consistency-checking approaches have also been explored to detect errors in
spreadsheets. Most of the systems require the user to annotate the spreadsheet cells with
extra information [7, 10, 14, 16, 24]. We have developed a system, called UCheck, that
automatically infers the labels within the spreadsheet and uses this information to carry
out consistency checking [1], thereby requiring minimal effort from the user.

3 Mutation Testing

Mutation analysis, strictly speaking, is a way to measure the quality of test suites. The
actual testing of the software is a side effect that results from new test cases being designed
to kill more and more mutants. In practical terms however, the software is well tested by
the test suite, or the test cases in the suite do not kill mutants [42].

In mutation testing, faults are inserted into the program that is being tested. Each
seeded fault generates a new program, a mutant3, that is slightly different from the original.
The idea behind mutation testing is that the test suite is adequate if it detects all the
mutants. The fault seeding is done by means of mutation operators. Ideally, the mutation
operators would be adequate in the sense that they would be able to show how effective
the test suite is, and efficient in terms of testing time.

Let P be a program that has the input domain D and codomain D′. Running P on an
input x ∈ D is written as P (x). We also use P (x) to refer to the result of the program run,
that is, P (x) ∈ D′. A test case is a pair (x, y) ∈ D×D′. A program passes a test t = (x, y)
if P (x) = y, otherwise P fails the test t. A test set is a set of tests T = {t1, . . . , tn}. A
program passes a test set T if P passes every t ∈ T , otherwise P fails the test set T .

Assume we make n copies of P and introduce a single mutation in each one to get the
mutated versions P1 through Pn. Let T ⊂ D×D′ be a passing test set, that is, P passes or
satisfies every test in T . To test the mutation adequacy of the test set T , we run it against
each of the mutants. We say a mutant is killed when it fails T , whereas mutants that pass
T are said to be alive. The basic assumption is that if T kills a mutant, then it will detect
real unknown faults as well. Extending the idea, if T kills all the non-equivalent mutants,
it would be capable of detecting a wide variety of unknown faults as well. A mutant Pi is
said to be equivalent to P if ∀x ∈ D,P (x) = Pi(x), and this equivalence is expressed as
Pi ≡ P . Obviously, an equivalent mutant cannot be killed by testing. Mutation adequacy

3First-order mutants are created by inserting one fault into the program. Higher-order mutants can be
created by inserting more than one fault into the program.
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or mutation score is computed as

number of killed mutants
total number of non-equivalent mutants

× 100%

In choosing the mutation operators, we make the same assumptions laid out in [12] that
are briefly described below.

1. The competent programmer hypothesis: Given a functional specification f , the pro-
grammer is competent enough to produce a program P that is within the immediate
“neighborhood” of the program P ∗ that satisfies f . Any program that is far removed
from the neighborhood of P ∗ is called pathological. The hypothesis allows us to limit
the programs we need to consider by excluding the pathological ones.

2. The coupling effect : Complex faults within a program are linked to simple faults in
such a way that a test suite that detects all simple faults within a program will also
detect most complex faults.

It has been shown that if the program is not too large, only a very small proportion of
higher-order mutants survives a test set that kills all the first-order mutants [38, 30, 31].
This result is helpful for cases in which multiple faults lead to a single point of failure—if
we have tests that detect the isolated faults, we would be able to detect the compound
fault with a high level of probability even when they are not isolated.

All these notions pertaining to programs in general-purpose programming languages
have to be slightly adjusted for spreadsheets. For the purpose of this paper, a spreadsheet
program can be considered as given by a set of formulas that are indexed by cell locations
taken from the set A = IN× IN. A set of addresses s ⊆ A is called a shape. Shapes can be
derived from references of a formula or from the domain of a group of cells and provide
structural information that can be exploited in different ways.

The structure of formulas is not essential, except for the fact that formulas may contain
references to other cells. Therefore, we assume a set F that contains all possible formulas.
F includes the set of values V , that is V ⊆ F . We further assume a function σ : F → 2A

that computes for a formula the addresses of the cells it references. We call σ(f) the shape
of f .

A spreadsheet is given by a partial function S : A → F mapping cell addresses to
formulas (and values). The function σ can be naturally extended to work on cells and cell
addresses by σ(a, f) = σ(f) and σ(a) = σ(S(a)), that is, for a given spreadsheet S, σ(a)
gives the shape of the formula stored in cell a. The cells addressed by σ(c) are also called
c’s input cells.

To apply the view of programs and their inputs to spreadsheets, we can observe that
each spreadsheet contains a program together with the corresponding input. More pre-
cisely, the program part of a spreadsheet S is given by all of its cells that contain (non-
trivial) formulas, that is, PS = {(a, f) ∈ S | σ(f) 6= ∅}. This definition ignores formulas
like 2 + 3 and does not regard them as part of the spreadsheet program, because they
always evaluate to the same result and can be effectively replaced by a constant. Corre-
spondingly, the input of a spreadsheet S is given by all of its cells containing values (and
locally evaluable formulas), that is, DS = {(a, f) ∈ S | σ(f) = ∅}. Note that with these
two definitions we have S = PS ∪DS and PS ∩DS = ∅.

Based on these definitions we can now say more precisely what test cases are in the
context of spreadsheets. A test case for a cell (a, f) is a pair (I, v) consisting of values for
all the cells referenced by f , given by I, and the expected output for f , given by v ∈ V .
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Since the input values are tied to addresses, the input part of a test case is itself essentially
a spreadsheet, that is I : A → V . However, not any I will do; we require that the domain
of I matches f ’s shape, that is, dom(I) = σ(f). In other words, the input values are given
by cells whose addresses are exactly the ones referenced by f . Running a formula f on a
test case means to evaluate f in the context of I. The evaluation of a formula f in the
context of a spreadsheet (that is, cell definitions) S is denoted by: [[f ]]S .

Now we can define that a formula f passes a test t = (I, v) if [[f ]]I = v. Otherwise, f
fails the test t. Likewise, we say that a cell (a, f) passes (fails) t if f passes (fails) t. Since
we distinguish between testing individual formulas/cells and spreadsheets, we need two
different notions of a test set. First, a test set for a cell c is a set of tests T = {t1, . . . , tn}
such that each ti is a test case for c. Second, a test suite for a spreadsheet S is a collection
of test sets TS = {(a, Ta) | a ∈ dom(PS)} such that Ta is a test set for the cell with address
a. A test suite TS in which each test set Ta contains just a single test (that is, |Ta| = 1) is
also called a test sheet for S. Running a formula f on a test set T means to run f on every
t ∈ T . Running a spreadsheet S on a test suite TS means to run for every (a, f) ∈ PS , the
formula f on the test set TS(a).

A formula f (or cell c) passes a test set T if f (or c) passes every test ti ∈ T . Likewise,
a spreadsheet S passes a test suite TS if for every (a, f) ∈ PS , f passes TS(a). Otherwise,
S fails the test suite TS .

Finally, the concepts related to mutants can be transferred directly to formulas and
spreadsheets. The notion of killing mutants by test sets has to be distinguished again for
formulas/cells and spreadsheets, that is, a formula mutant fi is killed by a test set T if fi

fails T . Likewise, a spreadsheet mutant Si is killed by a test suite TS if Si fails TS .

4 Mutation Operators for Spreadsheets

Mutation operators are typically chosen to satisfy one or both of the following criteria (or
goals).

1. They should introduce syntactical changes that replicate errors typically made by
programmers.

2. They should force the tester to develop test suites that achieve standard testing goals
such as statement coverage or branch coverage.

To meet the first goal, we have chosen mutation operators that reflect errors reported
in the spreadsheet literature [8, 44]. To ensure that the operators meet the second goal,
we have included operators that have been developed for general-purpose programming
languages. Moreover, we have carried out the evaluation studies reported in Section 7,
which show that mutation adequacy is a strong criterion for the level of testedness of the
spreadsheet.

A “standard” set of 22 mutation operators for FORTRAN have been proposed in [39].
A subset of these that are applicable to spreadsheets are shown in Table 1. As mentioned
in Section 2, it has been shown empirically in [39] that test suites killing mutants generated
by the 5 operators ABS, AOR, LCR, ROR, and UOI are almost 100 % mutation adequate
compared to the full set of 22 operators.

In adapting mutation operators for general-purpose languages to the spreadsheet do-
main, we draw the parallels shown in Table 2. The mutation operators we propose for
spreadsheets are shown in Table 3. A few of them have been directly taken from the
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Operator Description
ABS ABSolute value insertion
AOR Arithmetic Operator Replacement
CRP Constants ReP lacement
CSR Constants for Scalar variable Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
SCR Scalar for Constant Replacement
SDL S tatement DeLetion
SRC SouRce Constant replacement
SVR Scalar V ariable Replacement
UOI Unary Operator Insertion

Table 1: Subset of mutation operators for FORTRAN

General-purpose language Spreadsheets
Input data Data cells
Constants Data cells
Variables Cell references
Statement Cell formula
Output data Output of formula cells

Table 2: Correspondence of constructs in general-purpose programming languages and in
spreadsheets

operators shown in Table 1. In some cases, we had to adapt the operators to match the
constructs in spreadsheets. (The original operators are mentioned in parenthesis.)

In the current version of the system, we do not have a mechanism that would allow
us to distinguish between the data cells that are equivalent to input data from the data
cells that are equivalent to constants within a program written in a general-purpose pro-
gramming language. We therefore treat all data cells within the spreadsheet as inputs to
the spreadsheet program, which essentially is the collection of cells that have formulas or
references to other cells. In the description of the operators, the use of “constant” (in the
operators CRP, CRR, and RCR) refers to constants within formulas.

We consider references in spreadsheets equivalent to scalar variables in general-purpose
programming languages. Therefore the equivalent of a scalar variable replacement in a
general-purpose programming language would be a change in reference in spreadsheets.
Mutation operators for references should ensure that they do not introduce cyclic references
in spreadsheets since these are reported by spreadsheet systems like Excel. In the following
we discuss three approaches to refine mutations of references.

1. It might be reasonable to only change a reference to another one that references a
cell of the same type.4 For example, a reference to a cell that has a numerical value
should only be changed to a reference to a cell with a numerical value. On the other
hand, it might make sense in some cases to remove this restriction on types since

4A type checker would be able to enforce this property at compile time in a general-purpose programming
language.
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Operator Description
ABS ABSolute value insertion
AOR Arithmetic Operator Replacement
CRP Constants ReP lacement
CRR Constants for Reference Replacement (adapted from CSR)
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RCR Reference for Constant Replacement (adapted from SCR)
FDL Formula DeLetion (adapted from SDL)
FRC Formula Replacement with Constant
RFR ReFerence Replacement (adapted from SVR)
UOI Unary Operator Insertion
CRS Contiguous Range Shrinking
NRS N on-contiguous Range Shrinking
CRE Contiguous Range Expansion
NRE N on-contiguous Range Expansion
RRR Range Reference Replacement
FFR Formula Function Replacement

Table 3: Mutation operators for spreadsheets

spreadsheet systems like Excel do not perform any systematic type checking, and
spreadsheet programmers might actually have such errors in their spreadsheets.

2. In case of formulas that operate over cells within the same row (or column), it
might be reasonable to change references only to other cells within the same row
(or column) to reflect the user’s lack of understanding of the specification. This
refinement could be too restrictive if we are trying to model mechanical errors in
which the user accidentally clicks a cell in the immediate neighborhood of the cell
they meant to include in the formula.

3. While mimicking mechanical errors, it would be reasonable to change a reference to a
cell to other cells in the immediate spatial neighborhood of the original reference. The
“distance” between the original cell and the new cell could be considered a measure
of the reference mutation, and could be tuned depending on the application.

In the current implementation of µTest, we impose the third constraint (and drop the
second) discussed above since we are modeling mechanical errors in automatic evaluation
of spreadsheet tools (see Section 8.1). Since Excel does not carry out type checking of
formulas, we do not enforce the first constraint during mutation.

We discuss below the mutation operators we have included that are unique to the
domain of spreadsheets.

Range mutation: Aggregation formulas in spreadsheets typically operate over a
range of references. Ranges might be contiguous or non-contiguous. For example, the
formula SUM(A2:A10) aggregates over the contiguous range from A2 through A10, whereas
the formula SUM(A2,A5,A8,A11) aggregates over the non-contiguous range that includes the
references A2, A5, A8, and A11. We propose the following operators that mutate ranges.

1. Contiguous Range Shrinking (CRS): This operator shrinks a contiguous range by
altering the reference at its beginning or end.
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2. Non-contiguous Range Shrinking (NRS): This operator removes any reference from
a non-contiguous range.

3. Contiguous Range Expansion (CRE): This operator expands a contiguous range by
altering the reference at its beginning or end.

4. Non-contiguous Range Expansion (NRE): This operator introduces an extra refer-
ence into a non-contiguous range.

5. Range Reference Replace (RRR): This operator replaces a reference in a non-contiguous
range with another reference not in the range.

We treat contiguous and non-contiguous ranges differently because of the competent pro-
grammer hypothesis—we only consider mutations to contiguous ranges that affect the first
or last reference whereas mutations to non-contiguous ranges can happen to any reference
in the range.

Formula Replacement: In addition to the reference and range operators, the FRC
(Formula Replacement with Constant) operator is unique to spreadsheets. It overwrites the
formula in a cell with the computed output value from the formula. It has been observed in
empirical studies that when the spreadsheet specifications are not well understood, users
sometime overwrite formula cells with constant values as a “quick fix” to get the output
they expect. The FRC operator has been included in the suite of mutation operators to
model this kind of error.

Function Mutation: Due to lack of programming expertise, users might use the
incorrect function in their spreadsheet formulas. For example, the user might use SUM

(and forget to divide by COUNT of the cells) instead of AVERAGE. We include the Formula
Function Replacement (FFR) operator to simulate this effect. As in the case of mutation of
cell references, we use a distance measure for the FFR operator. For example, replacement
of SUM with AVERAGE (or vice versa) seems more likely than replacing SUM (or AVERAGE)
with an IF-statement.

5 Maintaining Spreadsheet Test Cases in Excel

Consider the second row of the spreadsheet shown in Figure 1. Cells A2, B2, C2, D2, and
E2 are all data cells. F2 contains the formula IF(B2<C2,C2,B2). The input values in the
cells B2 and C2 together with the expected output value for F2 constitute a test case for
F2. The row can be used to specify test cases for the formulas in F2, G2, H2, I2, and J2.

We have defined a test sheet in Section 3 formally as a test suite for a spreadsheet that
contains one test case for each formula in the spreadsheet. A test sheet can be immediately
obtained from a spreadsheet from the values (the values in the data cells and the computed
output values in the formula cells) in the spreadsheet. To create a new test sheet in µTest,
the user can enter input values in the spreadsheet and click the button labeled “NewTest”.
This action causes the system to copy the entire spreadsheet area and paste only the values
into a new worksheet. The new worksheet is assigned a name starting with “Test”. A test
sheet created from the spreadsheet in Figure 1 is shown in Figure 2.

In addition to creating spreadsheet test cases in the form of test sheets, the user
can interact with µTest using the buttons on the mutation testing menu bar: “Regions”,
“Mutate”, and “Clear”. The implementation architecture is the same one we have adopted
in our other spreadsheet tools [22, 1, 2, 4]. We use the Excel spreadsheet as the frontend
for capturing user inputs and have an inference engine, implemented in Haskell [46], as the
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Figure 1: Grade sheet.

Figure 2: First test sheet.

backend. The spreadsheet uses VBA modules to communicate with the backend inference
engine.

Clicking on the button labeled “Regions” allows the users to specify cp-simlar regions
(vertically or horizontally repeating blocks of cells) within their spreadsheets. (Regions,
and their impact on testing, are discussed in the next section.) In the current version of
the system, the user has to click this button and explicitly enable use of regions by speci-
fying cp-similar blocks. Recently, we have developed a system that allows the automatic
detection of regions within spreadsheets [4]. Integrating µTest with this system would
facilitate the automatic inference of regions within the spreadsheet and thereby further
lower the amount of user interaction required to run the mutation tests. This integration
is planned for a future version of µTest.

The user can click the button labeled “Mutate” to initiate mutation testing. Once the
testing is complete, the system reports statistics on the test run that includes the following
information:

1. number of mutants generated,

2. number of mutants killed,

3. number of mutants that survived the tests,

4. mutation coverage percentage, and

5. time taken.
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The system also marks the formula cells with the mutants that have survived in those
cells (see Figure 5). The user can inspect the marked cells to come up with more test
cases targeted at the mutants that are alive. Clicking the “Clear” button erases all the
mutation-testing feedback from the spreadsheet.

6 Testing Regions Within Spreadsheets

Consider the test case for the cell F2 that contains the formula IF(B2<C2,C2,B2). We have
the values 67 (from B2) and 77 (from C2) as inputs and the expected output is 77. F3

contains the formula IF(B3<C3,C3,B3), and its test case in the test sheet has the values
85 (in cell B3) and 67 (in cell C3) as input and the expected output value 85. Since the
formulas in F2 and F3 are similar, we can use the test case for F2 to test F3 and vice versa.
Two cells are similar if their formulas could have resulted from a copy/paste action from
one of the cells to the other. This requirement is the cp-similarity criterion described
in [36, 15]. Extending this idea to rows, we see that from a spreadsheet program point
of view, the rows 2, 3, and 4 are cp-similar since their formulas are cp-similar. In other
words, we can consider the rows 2, 3, and 4 to be part of one cp-similar region.

Given a set of cp-similar formulas, we can identify any one of them as the region-
representative formula and run test cases on it. Under this approach, regions of cells with
formulas that are the result of copy-paste actions can be tested by testing a representative
formula cell with the associated data cells. For example, we can pick the formula in F2 as
the region-representative formula for F2, F3, and F4.5 We can now run the test cases for
F2, F3, and F4 on the formula in cell F2 and consider all three formulas equally well tested.
This is the approach adopted in WYSIWYT for testing cp-similar regions [15]. The region
information allows the system to come up with the two additional derived test cases (the
test cases for F3 and F4) for the formula in F2.

For a more general example of cp-similar regions consider Figure 3. We define a block
as a group of cells. Two blocks have been marked in the figure—the cells in the first block
have been labeled b1 and the cells in the second block have been labeled b2. The two blocks
can be considered cp-similar if one can be created by a simple copy-paste action from the
other, in which case, we say the two blocks belong to the same cp-similar region. Within a
cp-similar region, blocks can repeat vertically (as shown in Figure 3) and/or horizontally.

A B C D E

1 b1

2 b1 b1 b1 b1 b1

3 b1 b1 b1

4 b2

5 b2 b2 b2 b2 b2

6 b2 b2 b2

Figure 3: Regions within spreadsheets

The shape of formulas and cells has been formalized in Section 3. The shape (σ) of
a block has two components, the core shape and the shadow. We define the core shape
(σc) of a block as the spatial arrangement of the cells within it, that is σc(b) = ddom(b)e,
where dbe moves the block b to the upper left corner. Formally, this means to adjust each

5We could have as well picked the formula in F3 or F4 as the region-representative formula.
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cell index (c, r) in b to (c− cx +1, r− ry +1) where cx and ry are the smallest column and
row index, respectively, occurring in b. For example, for the blocks in Figure 3, we have
σc(b1) = σc(b2) = {B1, A2, B2, C2, D2, E2, A3, C3, D3}. The shadow (σs) of a block b is the
list of cells referenced by formulas within the block b, that is, σs(b) =

⋃
(a,f)∈b σ(f). The

shape of the block b is therefore given by the pair σ(b) = (σc(b), σs(b)).
A mutation operation m, applied to a formula f , is said to be shape preserving if

σ(m(f)) = σ(f). The core shape of a block remains unchanged under application of
mutation operators since all the mutation operators presented in this paper act only on
formulas. Some mutation operations are not shape preserving since they might mutate
references within formulas, thereby modifying a block’s shadow.

For mutation testing, we can either apply the mutation operators to representative
formulas within cp-similar regions or to all the formulas in the entire spreadsheet. While
running the test cases to kill the mutants, we can either run the test cases on the formulas
within region-representative blocks in isolation or we can run test sheets on the entire
spreadsheet. These options give rise to the four strategies shown in Table 4 which are
discussed in detail in the following sections.

Mutation

Test Context
Isolated block Complete spreadsheet

Block BI BC
Spreadsheet SI SC

Table 4: Strategies for testing regions in spreadsheets

6.1 BI & SI Strategies

In the BI strategy, we mutate formulas in a region-representative block and run test cases
on them in isolation from the rest of the spreadsheet, whereas in the SI strategy we run the
mutation operators on all the formulas in the entire spreadsheet and then run test cases
on the mutated formulas in a region representative block in isolation. For example, under
the BI strategy, we could pick F2 as the region representative formula and generate the
mutants by applying the mutation operators to it. We could then run the test cases for F2,
F3, and F4 on the mutants generated from F2 and see how many of the generated mutants
are killed by the test suite. One could also imagine generating mutants for the entire
sheet and then running the test cases for F2, F3, and F4 on the mutants generated from F2

(SI strategy). However, SI is actually wasteful since there is no advantage in running the
mutation operators on the entire sheet when we are only testing the region-representative
block. We have included SI in the discussion only for the sake of completeness. The
calculated mutation adequacy score in both cases can be assumed to be applicable to all
three cells F2, F3, and F4. As far as mutation testing of a region representative block is
concerned, the effect of both BI and SI strategies is identical, and they yield the same
results.

Even though these approaches lower the cost of mutation testing by requiring that only
the region-representative formula be tested in isolation, they have one practical problem
in the context of mutation testing. These approaches assume that the seeded faults in
the cp-similar blocks are independent of one another. The non shape-preserving muta-
tion operators violate this assumption. For example, the mutation operators that modify
references might cause a reference in the region-representative block to point to a cell
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in another one of the cp-similar blocks, thereby altering the block’s shadow. Test cases
aimed at testing the original region-representative block independently from the rest of
the spreadsheet cannot be run to detect the mutants that have a different shape. M1 and
M2 discussed in Section 7.1 are examples of such mutants.

6.2 SC Strategy

In this approach we generate mutants from all the formula cells within the spreadsheet.
We can then run all possible combinations of the test cases that have been specified for
the cp-similar formulas. For example, since the rows 2, 3, and 4 are cp-similar, we can
generate 3! (= 6) test sheets from the single user-defined test sheet shown in Figure 2 by
permuting the rows in the cp-similar region. Following the notion of derived test cases
discussed at the beginning of this section, the test sheets that are generated from the user-
defined test sheet are called derived test sheets. The advantage of this approach is that
at each step of mutation testing, we are running the entire spreadsheet with each of the
derived test sheets while trying to kill the mutants. The downside is that this approach is
computationally more expensive for the following reasons.

Even though the actual number of generated mutants depends on the content within
the cells, it is obvious that their number increases with the number of cells. Therefore,
generating mutants based on every cell of the spreadsheet might result in a very high
number of mutants for large spreadsheets. The time taken to run test suites to kill the
mutants would be proportional to the number of mutants.

Large cp-similar regions would result in many derived sheets. For example, n cp-similar
rows would result in n! test sheets, out of which all but one are derived test sheets. For a
well-designed test sheet, we might not need all n! test cases to kill all the mutants. Since
we generate test sheets at any point during mutation testing “on demand” depending on
whether or not any mutants are still alive, we might not need to generate and run all n!
test sheets in general. However, in the worst case scenario, we need all n! test sheets to
kill the mutants, and generating and running all the test sheets to kill the mutants would
be computationally expensive.

6.3 BC Strategy

In this approach, we apply the mutation operators only to the formulas in the region-
representative block for a cp-similar region. We then run the test sheets, both user specified
and derived, on the full spreadsheet with the mutant versions of the region-representative
block to try and kill the mutants. As with the SC strategy described above, in this
approach, too, we might need to run n! test sheets in the worst case scenario. To assess the
savings in applying mutation operators to only the region-representative blocks, we looked
at the analyses carried out on the EUSES spreadsheet corpus that have been reported
in [27]. The corpus has 4498 spreadsheets collected from various sources. Out of the
1977 spreadsheets in the corpus that have formulas in them, 1797 have cp-similar regions.
Among the sheets that have cp-similar regions, there are on average 5.2 regions per sheet,
with an average of 13.1 regions in spreadsheets that had at least 1 region, a maximum
of 414 regions in a spreadsheet, and 23845 regions in total in all the spreadsheets. No
figures have been reported in [27] on the average size of the cp-similar regions, which are,
by definition, greater than 1 cell in size. The average size of the largest regions in the
spreadsheets has been reported as 63 cells. The size of the largest region is 23104 cells.
Since cp-similar regions occur frequently in real world spreadsheets, using the BC strategy
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could potentially result in considerable time savings during mutation testing, both, because
of the generation of the derived test cases and since the number of mutants generated is
far less than is the case with SC.

As discussed in Section 6.1, the BI and SI strategies are not really conducive for
mutation testing. In the next section we discuss how test cases can be developed using
µTest to achieve higher mutation coverage under the SC and BC strategies. We also
present results obtained from running the two strategies independently.

7 Evaluation of Test Suites through Mutation Testing

As discussed earlier, mutation testing has been traditionally used to evaluate the effective-
ness of test suites. The main idea behind mutation testing is that a test suite that kills
most of the mutants would be very effective at finding real faults as well.

7.1 Mutation Testing Using SC for Regions

Figure 4: Second test sheet.

We initiate mutation testing by clicking the menu button labeled “Mutate”. Applied
to the test sheet Test1 shown in Figure 2, the system reports that the test sheet killed
720 out of a total of 982 mutants that were generated (that is, Test1 is 73.34% mutation
adequate).

To guide our efforts in developing additional test cases, we can use any of the standard
coverage criteria like condition coverage, decision coverage, or du-adequacy6. The formula
in I2 is IF(AND(B2<C2,C2<D2,D2<E2,H2<1),G2+10,G2). The test cases in Test1 cause the
if-statement to evaluate to False. In order to satisfy du-adequacy, we need at least one
test case that would cause the if-statement to evaluate to True. The formula in J2 is
IF(I2>89,”A”,IF(I2>79,”B”,IF(I2>69,”C”,IF(I2>59,”D”,”F”)))). For this formula and the cp-
similar ones in J3 and J4, we see that Test1 has test cases that cause the formula to
evaluate to “B”, “C”, and “A”. Again, in order to satisfy du-adequacy, we need test cases
that would cause the formula to evaluate to “D” and “F” as well. That is, we need a test
case in which I2 evaluates to a number greater than or equal to 59 but less than 69, and
another test case in which I2 evaluates to a number less than 59. We are now in a position
to design the new test sheet (Test2) shown in Figure 4 that meets the requirements we
have come up with. In the current version of µTest, the user has to develop test cases

6Du-adequacy is the criterion used by the WYSIWYT testing methodology [51] and involves testing
every definition-use pair in the data flow.
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Tests
1 1 (R) 2 2 (R) 1 & 2 1& 2 (R) 1,2 & 3 (R)

Total mutants 982 982 982 982 982 982 982
Test sheets 1 6 1 6 2 12 18
Mutants killed 720 883 721 895 842 975 979
Mutants alive 262 99 261 87 140 7 3
Coverage 73.34% 89.91% 73.42% 91.14% 85.74% 99.29% 99.69%
Time (sec) 1 4 1 5 2 5 6

Table 5: Summary of mutation test results with SC for regions

manually. To lower the effort involved in mutation testing, we plan to integrate automatic
test case generation into future versions of µTest.

The statistics for the different test sheets are shown in Table 5. In the table, the
column “Test 1 (R)” refers to the case in which test sheet Test1 was run with the regions
enabled. The system generated 6 test sheets from the given single test sheet since it was
specified that rows 2 through 4 are cp-similar. The 6 test sheets together achieved 89.91%
mutation adequacy. The results from using test sheet Test2 with regions enabled have also
been reported (91.14% mutation adequacy). Running test sheets 1 and 2 together resulted
in 842 mutants being killed. Running test sheets Test1 and Test2 together with regions
enabled leads to a total of 12 test sheets. We see that this set of test sheets achieves
99.29% mutation coverage—only 7 out of the original set of 982 mutants survived this test
suite.

Mutants that have not been killed by the test suite are reported to the user by marking
the corresponding cells. The user can then click the cells and see the mutants that have
survived in that cell. Figure 5 shows the 7 mutants that survived the test suite. The
mutated part of the formula is highlighted. We see that the 7 mutants can be grouped
into two classes. We take a closer look at the three mutants in J3 (referring to them as
M1, M2, and M3) to see why they survived the test suite and what the implications are
since the test suite consisting of Test1 and Test2 is du-adequate.

Figure 5: Mutants that have survived tests 1 & 2 with regions enabled.

M1: IF(I3>89,”A”,IF(I3>79,”B”,IF(I2>69,”C”,IF(I3>59,”D”,”F”))))

Here a reference to I3 has been replaced with a reference to I2. In this case, we have
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σ(M1) 6= σ(S(J3)), that is, the mutation is not shape preserving. This mutant reflects
a mechanical error that could have arisen if the user had selected the wrong cell while
constructing the formula. The test case that tests the mutated condition is the one in row
2 of the first test sheet (I2 contains 80.0, see Figure 2), which causes the resulting output
in J3 to be “C”. Even in the test cases that are generated when regions are enabled, when
I3 evaluates to 69.3 (the case for which J3 evaluates to “C”), the possible values for the
original reference I2 are 80.0 (from the test case in row 1) and 90.0 (from the test case
in row 3). Both these test cases result in J3 evaluating to “C” as well since they cause
the condition I2>69 to evaluate to true. Therefore this mutant survives the test suite even
when regions are enabled.

In order to kill the mutant M1, we need a test case with an expected output value of
“C” for J3, and I2 evaluating to a value less than or equal to 69. We could achieve this
under the current scenario if we combined all the tests from Test1 and Test2 and ran all
possible combinations. This approach would not be very efficient since we would have a
total of 6! (= 720) test sheets. Another solution would be to combine the third row from
Test1 with the third and fourth rows from Test2 and create the test sheet Test3 (shown
in Figure 6) based on our observations regarding the surviving mutants. The results from

Figure 6: Third test sheet.

running the test sheets Test1, Test2, and Test3 with regions enabled is also shown in
Table 5. We see that including Test3 resulted in a total of 18 test sheets being run, and
brought the mutation coverage to 99.69%. The three mutants that survive are M3 and
similar mutants in rows 2 and 4.

M2: IF(I3>89,”A”,IF(I3>79,”B”,IF(I4>69,”C”,IF(I3>59,”D”,”F”))))

This mutant is similar to the one discussed above except that the reference to I3 has been
replaced with a reference to I4 in this case. Test3 kills this mutant as well.

M3: IF(I3>89,”A”,IF(I3>79,”B”,IF(I3>69,”C”,IF(I3>64,”D”,”F”))))

In this mutant the constant 59 has been replaced with 64. This mutation reflects a scenario
in which the developer of the spreadsheet might have made an error or is not aware of the
specifications. The mutant could not be killed because there is no test case that assigns I3

a value greater than 59 but less than 64. M3 also illustrates how mutation on constants
can give rise to a high number of mutants since the constant 59 can be replaced by any
number greater than 59 but less than 69. Each of these mutants can be killed by a single
test case in which I3 evaluates to a number greater than 59 by a very small fraction.
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Tests
1 1 (R) 2 2 (R) 1 & 2 1 & 2 (R) 1, 2 & 3 (R)

Total mutants 181 181 181 181 181 181 181
Test sheets 1 6 1 6 2 12 18
Mutants killed 99 148 100 151 141 178 180
Mutants alive 82 33 81 30 40 3 1
Coverage 54.7% 81.77% 55.25% 83.43% 77.9% 98.34% 99.45%
Time (sec) 1 1 1 1 1 1 1

Table 6: Summary of mutation test results with BC for regions

7.2 Mutation Testing Using BC for Regions

In this approach, we run the mutation operators on the region-representative block (for
example, row 3) of the spreadsheet shown in Figure 1. The results of mutation tests are
shown in Table 6. Similar to the case when using the SC approach for regions, the only
mutant that survives when we run test sheets Test1, Test2, and Test3 with regions enabled
is M3. The key point to note in this approach is the savings in execution time. With this
approach, each configuration of test sheets takes only about a second to run.

We see from the above discussion that both SC and BC approaches would lead to the
design of the same (or at least similar) test suites. Moreover, both approaches yield similar
mutation adequacy numbers for the different test sheets. The big difference between the
approaches is in the execution time—with regions enabled, SC takes up to 6 times the
time taken by BC for completion of mutation testing. For larger spreadsheets with big
cp-simlar regions, simply the savings in execution time would constrain us to using the
BC strategy.

8 Further Applications of Mutation Operators

In addition to evaluating test suites for spreadsheets, the suite of mutation operators
described in Section 4 can be used for evaluating the effectiveness of error-detection mech-
anisms in spreadsheets. In Section 8.1, we first present two examples of how this can
be done. In Section 8.2, we describe how the mutation operators can be used to design
empirical studies using spreadsheets.

8.1 Evaluating the Accuracy of Spreadsheet Tools

8.1.1 Evaluation of GoalDebug

As described in the introduction, GoalDebug is a debugger for spreadsheets that allows the
user to mark the output from a cell as incorrect and specify the expected output either as
a single value, or more generally, as a constraint [2]. The system then propagates the user-
specified constraint backward and generates change suggestions, any one of which, when
applied, would result in the expected result being computed in the marked cell. In general,
there are many change suggestions possible, but some are more reasonable than others.
For example, changing a reference in a formula to another reference is more reasonable
than replacing the entire formula with the expected output value. To present the user with
only a few, likely suggestions, we have developed several heuristics to rank the generated
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change suggestions. For example, while ranking reference changes, we assume mechanical
error by the user (accidentally selecting an incorrect cell in the immediate neighborhood of
the intended cell) and rank the changes based on the distance from the original reference.
Assume that solving the user-specified constraint generates references E5, G5, and B5 as
possible changes to F5. Then changing a reference to F5 to a reference to E5 or G5 (a
distance of one cell in both cases) would be ranked higher than a change to B5 (distance of
4 cells from F5). Although the heuristics seem to perform quite well in practice, we have
not yet performed a systematic study to demonstrate their effectiveness. This is where
the mutation operators come into play.

To evaluate the effectiveness of our ranking heuristics, we can first use the mutation
operators to generate a set of mutants of a spreadsheet. For each test case that killed
a mutant, we run GoalDebug with the expected output from the cell(s) concerned and
examine the generated suggestions to evaluate how high each correct change suggestion7

would be ranked.

8.1.2 Evaluation of UFix

The UCheck system described in [1] identifies inconsistencies in spreadsheet formulas based
on inferred unit information. Whenever a unit that has been inferred for a spreadsheet
formula cannot be transformed into a normal form, a unit error has been found and
the formula is marked as potentially incorrect. An extension to UCheck currently under
development is the UFix system [3] that examines unit errors and generates suggestions
that would allow the error to be corrected. To evaluate the accuracy of unit checking and
the change suggestions, we can use the suite of mutation operators to generate mutants
of a spreadsheet. We can then run UCheck to see what classes of real-world errors can be
detected through unit checking. We can then run UFix to see if the change suggestions
generated by the system would reverse the mutation.

8.2 Mutation Operators for Seeding Errors

Oftentimes, spreadsheets seeded with errors are used in empirical studies to evaluate the
effectiveness or usability of error-prevention or -detection mechanisms [52, 48]. The seed-
ing of errors is usually done manually on the basis of accepted classifications [8, 44]. The
mutation operators we have developed take the classification schemes into account. There-
fore, an experimenter who wants to seed spreadsheets with errors to carry out a study can
use operators from our suite. Moreover, depending on the goals of the empirical study,
the designer of the experiment could use some operators and not others. This approach
would make the study less biased as opposed to the scenario in which the experimenter
seeds the faults manually.

9 Conclusions and Future Work

In this paper, we have presented a suite of mutation operators for spreadsheets, and a
system that allows users to create test suites for spreadsheets and carry out mutation
testing using their test suites. We have also discussed three strategies that allow us to
exploit knowledge about cp-similar regions within the spreadsheets, both in generating test
sheets and also in minimizing time taken to run mutation tests. In addition to helping

7A correct change suggestion is one that would reverse the mutation being considered.
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with mutation testing of spreadsheets, the mutation operators can be used for evaluating
spreadsheet tools and also for seeding spreadsheets with errors for empirical studies.

The list of spreadsheet mutation operators proposed in this paper is by no means
complete. We suspect the list will evolve as we try to mirror more errors from real-world
spreadsheets. A more complete list of mutation operators would allow a practitioner to
adapt the operators to other application more easily.

After a spreadsheet has undergone changes, some test cases might become out of date
and need to be removed from the test suites, some test cases might need to be refined, and
some new ones might need to be included to test new formulas in the spreadsheet. The
current version of µTest does not have any mechanism to carry out the necessary regression
testing analyses to inform the user of the impact of changes on the level of testedness
of the spreadsheet. Since the WYSIWYT implementation already supports regression
analyses, it would be beneficial to integrate the two approaches once WYSIWYT has been
implemented in Excel.

Since the high cost of testing and debugging could discourage users, support for au-
tomatic test case generation is very important to help end users use this tool. We plan
to explore mutation-based approaches [37] and see how they can be integrated with the
existing “Help Me Test” (HMT) [26] implementation that is part of WYSIWYT.
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