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ABSTRACT

A parallel algorithm is described for variational assimilation of observations into oceanic and atmospheric
models. The algorithm may be coded first for execution on a serial computer and then trivially modified for
execution on a parallel computer such as the Intel iPSC/860. The speedup factor for parallel execution is roughly
P(2M + 3)(2M + 3P)™", where Pis the number of processors and A/ is the number of observations (M > P).
The speedup factor approaches P from below as M/P — co.

The algorithm has been applied in serial form to ocean tides (Bennett and McIntosh 1982; McIntosh and
Bennett 1984; Bennett 1985) and oceanic equatorial interannual variability (Bennett 1990). It has been applied
in parallel form to oceanic synoptic-scale circulation (Bennett and Thorburn 1992); a parallel application to
operational forecasting of tropical cyclones is in progress (Bennett et al. 1992).

For the sake of simplicity, the parallel algorithm is described here for 2 model consisting of a linear, first-
ordér wave equation with initial and boundary conditions plus a dataset consisting of observations at isolated
points in space and time. However, measurements of paralle! performance are given for a nonlinear quasigeo-
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strophic model.

1. Introduction

Numerical models of oceanic and atmospheric cir-
culation are now highly realistically detailed. Moreover,
the forcing fields, initial fields, and boundary fields in
the model are reasonably realistic estimates derived
from significant quantities of data. Therefore, it is rea-
sonable to compare the model solutions with data.
However, the level of disagreement usually exceeds
prior estimates of the level of measurement error. It
would have to be concluded that either these prior es-
timates are wrong, or else the prior estimates of the
forcing, of the initial values, or of the boundary values
are wrong. The model dynamics could also be wrong,
but in this formulation there is no distinction between
dynamical error and forcing error.

Pseudorandom perturbations consistent with prior
estimates of error statistics could be added to the var-
ious model inputs until an acceptable level of agree-
ment with observations is reached. There are several
possibilities: either no such perturbation exists, or at
least one exists but none is found after a few trials, or
else many are found. In each case the rational proce-
dure would be to find the best fit to the model dynam-
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ics, the initial values, the boundary values, and the
observations. The method of weighted least squares is
the simplest fitting criterion. This strategy appears to
have been discussed first by Sasaki (1955, 1970). If
the observations were collected before the initial instant
of the model, then the objective is one of initialization,
that is, preparing the best estimate of initial values for
the model consistent with the model dynamics and the
previous observations. If the observations were col-
lected after the model’s initial instant, then the objective
is hindcasting, that is, smoothing the observations in
a manner consistent with the model dynamics. In either
situation, it may be appropriate to require that the
model dynamics (which include the prior forcing es-
timate) be satisfied exactly or only approximately; in
the language of Sasaki, the model dynamics are to be
imposed as either strong or weak constraints. A strong
constraint may be achieved by assigning the model re-
sidual (see section 3) an arbitrarily large weight in the
cost or penalty functional that defines the fitting cri-
terion. Such a procedure is equivalent to appending
the model dynamics to the rest of the functional using
Lagrange multipliers.

There are several ways of finding the best fit, which
is defined to be the minimum of the penalty functional.
An elegant implementation of the method of gradient
descent (Talagrand and Courtier 1987) is attracting
considerable attention. However, it has not been ap-
plied to time-dependent, weak-constraint assimilation
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problems, owing to poor conditioning of the descent
algorithm when gradient vectors of very large dimen-
sion are involved. Preconditioning techniques exist but
have yet to be successfully applied to such large prob-
lems. Calculating the error statistics for the best fit,
that is, determining the posterior error covartances, has
proven to be an impractical task using descent methods
when the dimension of the gradient vector is very large.
It should be possible to accelerate descent methods us-
ing parallel computers, but this does not appear to have
been attempted yet.

Alternatively, the best fit may be found by solving
the Euler-Lagrange (EL) equations that govern ex-
trema of the penalty functional. The system of EL
equations, initial conditions, and boundary conditions
form a two-point boundary value problem in the time
interval of interest. If the model is linear, then the as-
sociated EL problem is also linear. The solution of a
linear EL problem can be expressed as a linear com-
bination of the prior estimate of the solution (the re-
sponse of the model to the prior estimates of its inputs)
and the so-called representer functions associated with
the assimilation problem. One representer function
exists for each observation; the representers may be
calculated without reference to each other, and these
are the tasks that may be shared by multiple processors.
The code modifications necessary for this sharing are
so trivial that the efficiency of the parallel algorithm
should be compared with serial implementations of
alternatives: for example, single-processor codes for
gradient descent. The representer functions also yield
explicit expressions for the reductions in all of the error
covariances as a consequence of data assimilation; that
is, they yield the “‘explained™ error covariances.

If the model is nonlinear, then so is the associated
EL problem. Iterative methods may be used to reduce
the nonlinear EL problem to a sequence of linear EL
problems, each of which may be solved using linear
combinations of corresponding prior solution estimates
and representers. Much simpler iterative schemes may
be devised, but they do not converge.

Descending the gradient and solving the EL equa-
tions are both variational methods for finding extrema
of penalty functionals. Neither may be used if the
model or observing system involves nonsmooth pro-
cesses, such as discontinuous convective adjustment,
vanishing layer thickness, or event recording.

The parallel algorithm has been applied iteratively
to a nonlinear, reduced-gravity quasigeostrophic model
in a doubly periodic domain, plus M pointwise obser-
vations of the streamfunction. The algorithm was coded
in Fortran 77 and tested on a single-processor work-
station. The addition of four nonstandard subroutine
calls enabled the code, after recompilation, to execute
on the Intel iPSC/860 computer at the Numerical
Aerodynamic Simulation Facility (NAS), National
Aeronautics and Space Administration (NASA ) Ames
Research Center. The computer has multiple-instruc-
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tion multiple-data (MIMD) architecture, but was used
in this application as though it were a single-instruction
multiple-data (SIMD) machine. Additional tests were
made on Intel iPSC/860 computers at the headquarters
of Intel Corporation in Beaverton, Oregon, and at the
California Institute of Technology in Pasadena, Cali-
fornia. It will appear that the presentation concentrates
almost entirely on the mathematics of the assimilation
scheme, with only a brief description of the seemingly
trivial parallel algorithm. However, it is the mathe-
matical decomposition of the assimilation scheme into
a number of logically identical tasks that is the key to
the parallelization scheme.

The following description of the algorithm is based
on a trivial model and observing system. Certain
mathematical details, including the equations for the
representers, are in the Appendix. Parallel performance
figures are given for the nonlinear quasigeostrophic
model.

2. The model and the observations

The model consists of the linear, first-order wave
equation in one space dimension:

w+u=F+f (2.1)

where the “flow” u = u(x, t) is the prototype state
variable for oceanic or atmospheric circulation, F
= F(x, t)is a prior estimate of the model forcing, and
f = f(x, t) is the unknown error in that estimate.
Subscripts denote partial derivatives with respect to
time ¢ and position x. A suitable initial condition at
time ¢t = 0is

u(x, 0) = I(x) + i(x), (2.2)

where I and i are prior initial estimate and error, re-
spectively. The model domain is the interval 0 < x
< L; a suitable boundary condition at x = 0 is

u(0, ¢) = B(t) + b(1), (2.3)

where B and b are the prior boundary estimate and
error, respectively. No boundary condition is needed
at x = L. Observations are of the form
dp = U + €, (2.4)
where u,, = u(x,,, t,,) is a perfect measurement of the
“true” flow at (X, ¢,), € IS a measurement error, and
d,, is a datum or recorded value. For definiteness, as-
sume 0 < x,, < L, and 0 < ¢,, < 7. That is, consider
a hindcasting or smoothing problem. See Fig. 1 for a
sketch of the domain and the data sites.
The prior estimate or first guess of the flow is ug
= up(x, t), satisfying

(ur) + (up)x = F,
up(x, 0) = I(x),

(2.5)
(2.6)
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FiG. 1. Domain for the simple wave equation (2.1): 0 < x< L,
0 < ¢ < T. Data are available at M = 4 points in the figure; in the
actual computations M is as large as 128. The initial condition (2.2)
holds at ¢ = 0; the boundary condition (2.3) holds at x = 0.

and
ur(0, t) = B(1). (2.7)
The prior estimate of the data misfit is
hm = dm - uF(xms tm)‘ (28)

3. The penalty functional and the representer
expansion

A simple penalty functional is provided by

' T pL
J(u) = Wff f (u, + ue — F)*dxdt
. 0 0
L T
+-W,-f (u—I?dx + W,,f (u — B)?dt
(1] 0

M
+w 3 (dn—un)?, (3.1)
m=1

where, for example, (u, + u, — F) is the prior dynamical

error or residual, while Wy, W;, W, and w are positive

weights. The rational choices for these weights are in-

verses of variances of the prior errors f, i, b, and €,
respectively.

The calculus of variations (Courant and Hilbert

1953) shows that J(u) is least for u = #i(x, t), satisfying

4, + = F+ W5\, (3.2)
subject to the initial condition
d(x,0) = I(x) + Wi'\(x,0) (3.3)
and to the left-hand boundary condition
(0, 1) = B(t) + W'\, 1), (3.4)
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where the so-called adjoint variable \ satisfies the ad-
joint or Euler-Lagrange equation

M
_At - )\x =w z 5()(' - xm)a(t - zm)(dm - ﬁm)a

m=1

(3.5)
subject to the final condition
AMx,T)=0 (3.6)
and to the right-hand boundary condition
AL, 1) =0. (3.7)

In (3.5), i, = 6i(Xm, t,). It may be seen that the
optimal estimates of the prior errors are

Ax,6)= W7N(x, 1), i(x)=W;i'\x,0),
b(t) = W5\, t). (3.8)

In particular, it should be noted that the adjoint variable
A is not a Lagrange multiplier here; rather, it is by def-
inition the weighted model residual: see (3.2). As a
consequence of the presence of the term i, on the
right-hand side of (3.5), the system (3.3)-(3.7) is a
coupled two-point boundary value problem in the in-
terval 0 <t < T, and cannot be solved by a backward
integration of (3.5)-(3.7) followed by a forward in-
tegration of (3.2)-(3.4). However, the following strat-
egy does solve (3.2)-(3.7) with a finite number of
backward and forward integrations. It may be shown
that # can be expressed as

M
ﬁ(x, t) = uF(-x’ t) + z 3mrm(x’ t)

m=1

(3.9)

In (3.9), ur is the prior flow estimate, while the M
functions r,, are the representer functions for (3.2)-
(3.7) (see the Appendix). Substitution of (3.9) into
(3.2)-(3.7), followed by a comparison with (A.1)-
(A.6) for the representers and their adjoints, shows
immediately that the M coefficients §,, satisfy the finite-
dimensional linear system

M .
2 (Rum + W-lanm)gm = h,, (3.10)

m=1

where the A, are, again, the prior data misfits, while w
is the data weight and R,,, is the nth measurement of
the mth representer:

m<M. (3.11)

It may also be shown that R,,, = R,,, and, provided
(Xn, tn) # (Xm, tm) for any n # m (that is, no repeated
observations ), the matrix R is positive definite.

The mth representer r,, is calculated in two stages
(see Appendix). The first is the integration of an in-
homogeneous wave equation backward in time to ¢
= ( from a homogeneous “final condition™ at ¢ = 7,
subject to a homogeneous boundary condition at x = L

Rum = rp(Xn, ta), 1<n,
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[see (A.4)-(A.6)]. The backward wave problem is
forced by an impulse at (x,,, ¢,,). The second step is
the integration of an inhomogeneous wave equation
forward in time from an inhomogeneous initial con-
dition at time ¢ = 0, subject to an inhomogeneous
boundary condition at x = 0 [see (A.1)-(A.4)]. The
inhomogeneities in the second integration are all values
of the solution of the backward or “adjoint™ problem,
divided by the corresponding weights.

It would appear from (3.9) that the evaluation of
the posterior estimate 1 requires the storage of the A/
representers as €ach is calculated, and then forms the
sum as shown. However, both these steps may be
avoided by using the result

em = dy— = w6, (3.12)
where §,, is the mth representer coefficient. Substituting
(3.12) into the adjoint equation (3.5) decouples that
equation from the forward problem (3.2)-(3.4), so
(3.5)-(3.7) may be integrated backward in time yield-
ing A(x, t). A subsequent integration of (3.2)-(3.4)
forward in time yields #(x, ¢) for all x and ¢. Thus, the
total number of model integrations is 27 + 3: 1 for
the prior estimate ur [see (2.5)-(2.7)], 2 for each of
M representers, 1 for A, and 1 for 4.

4. The posterior error covariances

Assuming that the prior errors f, b, i, and ¢, are
random, have vanishing means, are uncorrelated, and
have autocovariances that are the inverses (see the Ap-
pendix ) of the respective weights in the quadratic pen-
alty function (3.1), it may be shown that the error
covariance for the posterior flow estimate is

Caa(x, t,x’,t’)
= [u(x, £) — 4(x, ] [u(x",t") — d4(x’, )]

M
= uu(x; t,x’,t’)— 2 rn(xa Z)Knmrm(-xl’t,)s

nm=1
(4.1)
where C,, is the error covariance for the prior flow
estimate:
Cuu(’x9 t’ xl! t’)
= [u(x, 1) — up(x, O][u(x’, 1) — up(x’,1')] (4.2)

and K is the inverse of the matrix (R + w™!1). Similarly,
the error covariance for the posterior boundary esti-
mate is

Ci(t, ') = [b(1) — b(O)I(B() — b(¢)]

M
= Cp(1, ') = 2 1a(0, )Kumr (0, £'),  (4.3)

nm=1
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where Cy;, the error covariance of the prior boundary
estimate is given here by

Cu(t, t)=b()b(t) = Wi's(t —t'). (4.4)

Analogous formulas hold for the errors covariances for
the posterior initial estimate, the posterior forcing es-
timate, and the posterior data misfits. With the excep-
tion of C,, in (4.1), every term in these formulas is
either a specified prior parameter such as W ;! or else
is a combination of representers.

The missing covariance C,,, is most easily calculated
by statistical simulation, that is, by solving (2.1)-(2.3)
repeatedly, with independent pseudorandom samples
for the errors f, i, and b.

It is necessary to store the representers if the posterior
covariances are required. An exception is the posterior
measurement error covariance, which depends only on
wand K. However, the effort in calculating and storing
the representers is rewarded with explicit formulas for
the posterior error covariances. However, even the re-
presenters need not be stored if the linear algebra is
exploited to the full. Diagonalizing the matrix R and
projecting the representer coefficients 8 onto the ei-
genvectors of R (that is, defining new measurements
as linear combinations of the original measurements)
yields new representers for which the quadratic forms
in (4.1) and (4.2) are diagonal. Then the sums in (4.1)
and (4.2) can be calculated without having to store all
the representers simultaneously. The price is that the
new representers have to be computed by integrating
analogs of (A.1)-(A.6), with linear combinations of
impulses replacing the individual impulses on the right-
hand side of (A.4). It is usually the case that a majority
of the eigenvalues of R are smaller than w™' [see
(3.10)], so in practice most of the new representers
need not be computed. In summary, the representers
need never be stored. All of the old representers must
be computed; a minority of the new representers must
also be computed if posterior error covariances are re-
quired.

5. The paraliel algorithm

Determining the optimal flow estimate ¢ has been
reduced to integrating a finite number of initial-value
problems. In practice, a numerical integration tech-
nique is used, such as a finite-difference method based
on a space-time grid.

The calculation could be accelerated using a parallel
computer by decomposing the spatial domain into
subdomains, each of which is allocated to a single pro-
cessor. Integration would require sharing updated flow
values at internal or subdomain boundaries. The
“message passing” that results in the data sharing would
lead to a great expansion of the code, with special cases
for external or domain boundaries.

A completely different approach is taken here. In
essence, each processor is used to calculate one repre-
senter in its entirety without domain decomposition.
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Therefore, it is necessary that each processor have suf-
ficient speed and local memory to facilitate such a cal-
culation. The parallel algorithm has several versions;
the easiest version to code, if somewhat redundant, is
as follows.

Step 1. Each processor performs one forward inte-
gration for the prior estimate uz(x, t), keeping all the
M prior data misfits 4, = d,,, — ur(Xpm, tm), | < m
< M, in each local memory.

Step 2. Each processor calculates one representer.
That is, the mth processor calculates r,,(x, t), requiring
one backward and one forward integration. The M
measurements 7,,(x,, 1,), I < n < M, are kept in the

* mth local memory. These measurements compose the
 mth column of the representer matrix.

Step 3. Each processor sends its column to the other
M — | processors.

Step 4. Each processor receives the other M — 1
columns.

Step 5. Each processor assembles the full representer

~matrix R.

Step 6. Each processor determines the representer
coefficients 3, - - -, B, and hence the posterior data
misits &, = dp — iy = W ' B, L S M < M.

Step 7. Each processor makes a backward integra-
tion to find the adjoint variable A\, and then a forward

. integration for the posterior flow estimate .

A number of remarks can be made about this al-
gorithm.

Point 1. Each processor executes logically identical
code; thus, the algorithm is ideal for a SIMD computer.
The most widely available such computer is the Con-
nection Machine (Hillis 1985), but the current model

* (the CM-2) uses relatively slow processors (<0.1

Mflops) with limited local memory (<1 128 kbyte).
Moreover, it uses a proprietary version of Fortran 90
(Metcalf and Reid 1990) that is better suited to domain

" decomposition than to the aforementioned task de-

composition. However, the parallel algorithm is easily

- implemented on current MIMD computers such as

the Intel iPSC/860. These systems have up to 128 rel-
atively fast processors. Each has a peak performance

. of 80 Mflops (single precision ) and 60 Mflops (double

precision); each can have up to 64 Mbytes of local
memory. The algorithm may be coded in serial form
in standard Fortran 77, and then converted to parallel
form by the addition of four proprietary Fortran sub-
routine calls,

(i) The first call identifies the processor number in

| step 2, in the range 0-127.

(ii) The second sends one column to all other pro-

. cessors (step 3).

(iii) The third receives all other columns (step 4).
(iv) The fourth identifies the received columns
(step 5).

If the number M of observations exceeds the number
P of processors, then each processor must calculate at
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least M/ P representers. This requires some additional
“bookkeeping,” which may be written in standard
Fortran 77. The number P of available processors may
either be read from a file or else determined by a pro-
prietary Fortran call.

Point 2. If M < P, then the number of sequential
integrations in the parallel algorithm is 5, consisting of
1 for ug, 2 for the representers #,,, 1 < m < M, and 2
for 7. Hence, the speedup factor is (2M + 3)/5, as-
suming that each integration takes equal time. Allow-
ances will be made for time differences in the discussion
of the results in section 6. If M/ P is an integer greater
than unity, then the sequential integration count is
(2M/ P) + 3, for a speedup factor of P(2M + 3)(2M
+ 3P)~', The factor approaches P from below as
M/P—> .

Point 3. The adjoint variable for the mth representer
vanishes identically for t,, < ¢t < T. Hence, the back-
ward integration may be started at ¢ = ¢,, (see Appen-
dix). This is an important saving in the serial algorithm,
but saves no time in the parallel algorithm. The assem-
bly of the representer matrix cannot be completed until
all the representers have been calculated. The longest
such calculation will, of course, be that corresponding
to the largest value of #,,. On the other hand, staggering
the completion of the representer calculations may al-
leviate bottlenecks if the representers are to be stored
off-line for the subsequent calculation of posterior error
covariances.

Point 4. The adjoint variables computed by back-
ward integration may be overwritten by the respective
“forward” variables r,, and # during forward integra-
tion.

Point 5. The messages passed between the processors
are all vectors of length M (4 M bytes, in single preci-
sion). Since each processor sends a message to every
other, there are in principle M (M — 1) messages, in-
cluding copies, or 4 M?(M — 1) bytes (M < P). The
message volume is 4 MP(P — 1) bytes at any one time,
if M > P.

Point 6. While each processor must compute or read
the prior estimates F, I, B,and d,,, ] < m < M, only
one processor need compute and write the posterior
estimates i, F+ f,I+i{, B+ b,and d,,, |l <m< M.

Point 7. No parallel algorithm is offered here for the
evaluation of the posterior error covariances. However,
the statistical estimation of the prior error covariance
C.., for the flow may be accelerated in the obvious way:
each processor computes an independent sample of u.
The speedup factor is naturally P.

Point 8. The speedup factor for calculating # is less
than P, regardless of the value of M. Denoting the
factor by S, one has S ~ 2M/5 when | K M < P, for
example. This can be substantial; S ~ 50 when M
= 128. However, if there are N assimilations to be per-
formed, say, in an experiment with an archive of N
datasets, and S < N, then it is more efficient to have
each processor execute the entire serial algorithm (that
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is, each processor calculates every representer). This
simple approach is available, whatever variational as-
similation scheme is in use. For example, a large num-
ber of applications of a serial-coded descent algorithm
could also, of course, be accelerated by using many
processors. The corresponding speedup factor is the
lesser of N and P, regardless of assimilation scheme.

Point 9. The parallel algorithm used here was chosen
mainly for ease of comprehension and ease of imple-
mentation. It is not, however, the most efficient way
to use a MIMD machine. For small P, a scheduling
strategy would give better performance for a modest
perturbation to the existing code.

The strategy addresses the inefficiency discussed in
point 3, namely, that the larger the value of the mea-
surement time ¢,,, the longer it takes to calculate the
representer r,,. This leads to some processors being
idle while others complete their tasks. Thus, the optimal
strategy would be to schedule the representer calcula-
tions so that each processor calculates a mix of repre-
senters. The mixes would, of course, be chosen so that
the total time taken is the same for each processor. In
situations where the execution times for the distributed
tasks cannot be reliably anticipated, a ‘“manager—
worker” strategy may be effective. One processor is
reserved as a manager: it does no work. The other pro-
cessors report to the manager for further work after
completing an assigned task.

6. Results

The algorithm illustrated in the preceding sections
has been applied iteratively to a nonlinear, reduced-
gravity quasigeostrophic model in a doubly periodic,
square region ( Bennett and Thorburn 1992). The data
consisted of streamfunction measurements at M points
isolated in space and time, with M < 128. Iteration on
the nonlinear Euler-Lagrange equations yielded a se-
quence of linear Euler-Lagrange equations. The de-
pendent variables at the nth level of iteration were ad-
vected by the (» — 1)th velocity estimate; a quadratic
term arising from functional variation of the advecting
velocity was evaluated entirely in terms of (n — 1)th
estimates. See Bennett and Thorburn (1992) for details
and further discussion of the representer method.

Some timing results are shown in Fig. 2, the number
of measurements being M = 64 and the number of
processors P lying in the range 1 < P < 64. The ex-
pected execution time per iteration using P processors
is

Tp=F+ (M/P)R + E, (6.1)

where F is the time to calculate the prior estimate (5
in the prototype problem considered here), R is the
time to calculate a representer (7,, here), and E is the
time to calculate the posterior estimate (# here). Again,
this last task involves integrating the original Euler-
Lagrange equations [(3.2)~(3.7) here] after explicitly
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FiG. 2. Log-~log plot of Tp — (F + E) versus P, where P is the
number of processors (1 < P < 64), (F + E) is the time to execute
the serial parts of the code, and T} is the total execution time. The
difference is the parallel execution time; it is expected to be inversely
proportional to P. The slope of the straight line is —1.

evaluating the misfits [(d,, — #,,) in (3.5) here] using
the representer coefficients (3,, here). Note that E in-
cludes the negligible time to solve for the representer
coefficients [see (3.10) here]. The values for F and E
were 39 and 46-49 s, respectively. Fig. 2 shows that
Tr — (F + E) is indeed inversely proportional to P.
The average value of R is about 28 s. The execution
times per iteration are also listed in Table 1. Note that
although only (F + E)/ T, =~ 4% of the original code
remains in serial form, the speedup factor for P = 64
i8S = T/ Tes =~ 15. Amdahl’s law prevails: if half the
code can be run at infinite speed, then the whole code
runs twice as fast (see, for example, Levesque and Wil-
liamson 1989). Recall, however, that S — P as
M/P — . As Table 1 shows, the speedup factor S'is
close to 4 when P = 4 (and M/P = 16).

7. Summary

We have described a parallel algorithm for varia-
tional assimilation of observations into oceanic and
atmospheric circulation models. The parallel form of
the algorithm is very easily developed from the serial
form; only four nonstandard Fortran statements are
needed once the serial form has been coded in standard
Fortran 77. The algorithm may be applied directly to
linear models and may be applied iteratively to non-
linear models. Explicit formulas are available for the
posterior error covariances. The theoretical speedup
factor for a single assimilation is S = P(2M + 3)(2M
+ 3P)"!, when there are M observations and P pro-
cessors (M = P). Execution times for a quasigeo-
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TABLE 1. Execution times (s) for the entire code (7p), and for
the parallel part of the code (T — F — E) versus the number of pro-
cessors P.

P Ty T, — (F + E)
1 1896 1811
2 989 904
4 536 451
8 314 229
16 204 119
32 150 65
64 125 37

. strophic model indicate smaller speedup factors, owing
to the fact that the representer integrations take less
' time than the other integrations. The parallel algorithm
is most efficient (S =~ P) when M/ P is large. This will
be the case of greatest practical interest for existing
large atmospheric datasets and as real-time remote
sensing of ocean circulation from satellites becomes
more important. The serial form of the algorithm, run-
" ning independently on each processor of a parallel
~ computer, may be more the efficient if the number of
assimilations exceeds S.

We have emphasized the simplicity and convenience
- of being able to develop the algorithm in serial form,
~ using conventional computing hardware and software,
' prior to an easy port to parallel computers of MIMD
- design. However, the algorithm may also be accelerated
by the use of SIMD computers. The simplest approach
would be to calculate each representer in turn. Speed
' would be gained by exploiting the array-processing ca-
- pabilities of SIMD machines, provided the model
' physics and the numerical methods lend themselves to
" expression in terms of simple array operations. Qua-
sigeostrophic models, balance equation models, and
primitive equation models subject to the rigid-lid ap-
| proximation all require the solution of elliptic problems
! in order to find the streamfunction. Solving these
problems reduces, in practice, to inverting large ma-
trices. Implicit integration schemes, for efficient inte-
gration of the external gravity mode in free-surface
models, also require the inversion of large matrices.
While matrix inversion can be reduced to simple array
operations, it is not an ideal task for a SIMD machine.
Moreover, these machines cannot be programmed in
Fortran 77, and so workstation codes cannot be ported.
Nevertheless, there is at least one ocean circulation
model that is ideally suited to a SIMD machine. The
model, owing to Bleck and Smith (1990), is of prim-
itive equation type and has a free surface. Moreover,
both the internal and external modes are advanced us-
ing explicit time stepping. Interprocessor communi-
cation is restricted to nearest neighbors only, and so
efficient code is readily developed in Fortran 90. To
summarize, certain ocean models and numerical
methods are well suited to SIMD machines, so varia-
tional assimilation into these models using representer
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methods could be accelerated simply by recoding the
serial algorithm in Fortran 90. In comparison, the ap-
proach that we have described renders both the choice
of model physics and the choice of numerical method
independent of the computer architecture. The ap-
proach also obviates the need for programming lan-
guages with array-processing capabilities.

It must be emphasized that if domain decomposition
is to be avoided entirely, then the approach described
here requires each processor in a MIMD computer to
have sufficient local memory for a single, scalar space—
time field, such as u(x, 1), A(x, t), or r,,(x, t), and be
fast enough to compute the field in a convenient
amount of time. Of course, in a more sophisticated
model it may be necessary to store a single vector field.
As already mentioned, the processors in the Intel iPSC/
860 can have up to 64 Mbytes of local memory and
have a peak speed of 80 Mflops (single precision).
These specifications are inadequate for long-term in-
tegration of time-dependent, eddy-resolving, basin-
scale, or global primitive equation models. However,
this is not a real problem at present, and is unlikely to
be so for some time, owing to the lack of observations
of sufficient density and coverage. While satellite al-
timeters may shortly provide adequate surveys of sea
level elevation, comparable subsurface data are not an-
ticipated in the near future. Hence, a data-assimilating
simulation of the actual global ocean eddy field, as dis-
tinct from a simulation of a statistically similar field,
is not yet feasible. Thus, on one hand, data-assimilating
simulations of the actual ocean eddy field are perforce
limited to regions and times of availability of eddy-
resolving subsurface data, while on the other hand data
assimilation can at present only influence the larger-
scale fields in basin-scale or global models. In this latter
context, it is essential to note that the representers are
covariances: here they are the covariances of the flows
u(x, t) driven by random forcing fields f( x, t), random
initial values i(x), and random boundary values b(f),
all having first and second moments as specified in the
Appendix - [see (A.7)-(A.12)]. That is, r,(x, ?)
= {u(x, t) — up(x, O Uxm, tm) — Ur(Xm, tm)]; see
Bennett (1990) for a proof and further discussion. In
general, the representers will be much smoother than
are individual realizations of the flow. Therefore, it is
not necessary to calculate the representers with the
same resolution in space and time as used for the first
guess up(x, t) or posterior estimate #(x, t). Owing to
efficient communications between computers, it is now
feasible to calculate uyand # on a large-memory, high-
performance serial processor or on a massively parallel
SIMD processor by domain decomposition, and to
calculate the representers on individual processors of
a MIMD machine with relatively small amounts of
local memory. The compromise is in fact minimal, if
steps 6 and 7 of the algorithm (see section 5) are fol-
lowed. That is, the representers are used only to cal-
culate the posterior data misfit d,, — #,, appearing in
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the adjoint equation (3.5). Subsequent backward in-
tegration of (3.5)-(3.7) for A, and forward integration
of (3.2)-(3.4) for 4, has the effect of integrating the
representers in (3.9) at high resolution; the only com-
promise is in the calculation of the representer coeffi-
cients §,,.

We conclude by remarking that the widespread
adoption of variational assimilation schemes, especially
in the operational context, will depend upon the de-
velopment of algorithms that exploit sophisticated
computer architectures. The parallel algorithm de-
scribed here is offered as a promising example.
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APPENDIX
Representers and Prior Covariances

a. Representers

The mth representer 7, = r,,(x, t) satisfies

(o) + (Fo)x = Witay, (A1)
subject to the initial condition

X, 0) = Wila,(x,0) (A2)
and to the left-hand boundary condition

Fl0, 1) = Wita, (0, 1). (A.3)

The adjoint representer variable «,, = a,,(x, t) satisfies

—(m) — (An)x = 8(X — X,)0(t — 1), (A.4)
subject to the final condition
an(x, T)=0 (A.5)
and to the right-hand boundary condition
an(L,t)=0. (A.6)
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b. Prior covariances

It is assumed that the prior errors f, b, i, and ¢,, in
the forcing, the boundary values, the initial values, and
the data, respectively, have vanishing means:

f=b=i=%¢,=0, 1<sm<M, (A7)
the prior errors are mutually uncorrelated:

Tb=fi=fem=bi=bepn=Tem=0;, (AB8)
and have the following autocovariances:

T 07 (X710 = Wils(x —x)e(t— 1),  (A9)
b(n)b(1"y = W't — 1), (A.10)
i(x)i(x") = Wil(x —x’), (A.11)

and

€mtn = W"G,,,m. (A.12)

More general forms for the covariances would require
a more general form for the penalty functional (3.1).
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