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Why are the fast Fourier transform and the fast

Hadamard transform fast? A transform can be computed by

multiplying a matrix times a vector, which normally

requires 0(n
2

) operations. The matrices corresponding to

these transforms can be rearranged to eliminate redundant

computations resulting in 0(nlogn) operations.

We investigate algebraic reasons for fast transforms.

Specifically, we notice that these fast transform matrices

correspond to the multiplication tables of particular

rings. We demonstrate sufficient conditions involving the

decomposition of a ring into a descending chain of subrings

and a corresponding ascending chain of annihilator

subrings. These conditions allow the ring's multiplication

table to be arranged in a form which is tiled with

variations of a single subblock. We need conditions to

insure that the mapping from the ring table to the

transform matrix will preserve the subblock structure. One

sufficient condition, motivated by the Fourier transform,

is that the mapping is a homomorphism. Another sufficient

condition, motivated by the Hadamard transform, is that the

ring has an orthogonal basis. We display other rings

satisfying these conditions or a mixture of these

conditions which produce fast transform matrices.

Our conditions are only sufficient: they give a proper

subset of the transform matrices representable by the

generalized Kronecker product of Fino and Algazi. However,

our conditions can describe all commonly used transforms.
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An Algebraic View of the Symmetry

of Fast Transforms

Chapter I

Introduction

Fast multiplication of a discrete transform matrix

times a column vector depends on recognizing and

eliminating redundant computations. Normal multiplication

will require 0(n
2 ) multiplications and additions.

However, the well known fast Fourier and fast Hadamard

transforms require only 0(nlogn) operations and the fast

Haar transform requires only 0(n) operations. These

transform matrices all share the property of being able to

be rearranged by column and row permutations into

recursive forms with redundant computational blocks. If

we define T(n) as the number of operations needed to

multiply an nxn matrix times a column vector, then these

recursive forms lead to computational cost recurrence

relations T(n) = 2*T(n/2) + 0(n) and T(n) = 2*T(n/2) +

C(1), giving us the-fast 0(nlogn) and 0(n) computation

times (see appendix) .

For the reader unfamiliar with algebraic terminology

used in this thesis, definitions may be found in the

appendices.

We shall examine the fast Fourier and Hadamard

transforms as examples to see what algebraic properties

are related to their fast recursive formulations.
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The fast Fourier transform as popularly introduced

with the Cooley-Tukey algorithm lends itself to fast

computation, but perhaps obscure interpretation. Given a

discrete Fourier transform matrix of order n where n is

highly composite, we can compute the transform product in

a sequence of stages, one for each factor. The finite

Fourier matrix has the form

(1) W = [ w'3 ] i,j = 0,..,n-1 where w is a

principal nth root of unity.

Given a vector A, the transformed vector X is given by

(2) X(j) = wij*A(i) j=0,1,...,n-1

The Cooley-Tukey algorithm identifies and eliminates

redundant computations in stages as follows. For each

factor s of the order n of the matrix, we have a stage of

the algorithm. Since n= r*s, for some r, we can interpret

the indices in (2) as

j = j1 *r j0,
j0=0,...,r-1, j1=0,...,s-1

i = i
1
*s + i

0'
i0=0,...,s-1, i

1
=0,...,r-1

can now rewrite (2) as

(3) X(j1,j0) = L w
jils

*w
jio

*A(i
1'

i
0

)

i0
1

Since w is an nth root of unity, i.e. w
r*s

= w
n

= 1, we

can eliminate redundant computations by observing that

ills
j0i1s

w w

so that the inner sum over i1 no longer depends on j1, but

only on jo and We We can now write the inner sum as
joils

Al(j0,i0) = *A(i
1'

i
0

)



and rewrite (3) as

X(j1,j0)
i0

(j1r+j0)i0*A
1 0' 0

3

Vector Al has n components as jo and i0 run through their

ranges, with each component being a sum over i1, for a

total of n*r operations. Vector X has again n components

with the sum over i
0

for each component, so that X

requires n*s operations to compute. The time required for

a single stage becomes n(r+s) rather than n(r*s).

Consequently, if n = rk, the time for the algorithm will

become n*(rlogrn).

For our purposes it is more useful to observe the

structure of the recursive formulation of the finite

Fourier matrix. For simplicity assuming n = 2k, label the

column indices of the Fourier matrix of order n with

numbers from 0 to n-1 in a k place binary format with

leading zeroes if necessary. Now, reverse each binary

number string representing a column position and permute

the columns to the position determined by the value of the

reversed binary number. This gives us the following

recursive form of the Fourier matrix :

F
r.

F
n/2

D
n/2

F
n/2

F
n/2

-D
n/2

F
n/2

The diagonal matrices Dn/2 have elements w
i in the ith row

and column. The matrices Fn/2
are exactly the (correctly

permuted) recursive Fourier matrices of order n/2, since
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2 .

w is an n/2 root of unity and the bit reversal has given

the proper arrangement for the recursive form.

Our guide in observation will be the multiplication

table of the ring Zn corresponding to the row and column

indices of the recursive Fourier matrix, with the product

entries corresponding to the powers of w of the recursive

Fourier matrix. Looking at figure 1, we notice that the

arrangement of the columns of the table can be interpreted

as the successive coset decomposition of a chain of

subrings, Zn :--SOD S1DS2D... D Sk, (in fact ideals) of Zn.

The row arrangement is determined by a corresponding chain

of annihilator subrings, {0}C A/C A2C...(lAkCIZn, (again

ideals) where all the elements of Ai annihilate the

elementsofS..Instead of a coset breakdown of the rows,

we choose an 'inverted' ordering building in 'top down'

fashion a listing of the table's row entries by using at

each stage elements of the current annihilator subring

serving in the role of coset leaders. Starting with Al,

spread the elements of Al evenly down the list, (in this

case, 0 in position 0, and 8 in position 8). Pick from A2

a set of representative coset leaders of Al factoring A2,

spreading these leaders evenly between the 0 in position 0

and the next previously placed element of A1. These same

leaders are then similarly spread after each of the

remaining elements of Al in the list. Repeat this same

process with Aj factoring Aj+1, finishing with Ak

factoring the entire ring R. The value at a given row
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Figure 1. Multiplication table factorization of ring
Z16

for the discrete Fourier transform of order 16.

<2>

<4>

<8> 4+<8>

2+<4>

1+<2>

Al A2 A3 L3 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 8 14 12 2 10 6 14 1 9 5 13 3 11 7 15

2 0 2 0 0 8 8 4 4 12 12 2 2 10 10 6 6 14 14

1 3 0 8 12 6 14 2 10 3 11 15 7 9 1 5 13

4 0 0 4 0 0 0 0 8 8 8 8 4 4 4 4 12 12 12 12

1 5 0 8 4 12 10 2 14 6 5 13 9 1 15 7 3 11

2 0 6 0 0 8 8 12 12 4 4 6 6 14 14 2 2 10 10

1 7 0 8 12 4 14 6 10 2 7. 15 3 11 5 13 1 9

8 0 0 0 8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8

1 9 0 8 4 12 2 10 6 14 9 1 13 5 11 3 15 7

2 0 10 0 0 8 8 4 4 12 12 10 10 2 2 14 14 6 6

1 11 0 8 12 4 6 14 2 10 11 3 7 15 1 9 13 5

4 0 0 12 0 0 0 0 8 8 8 8 12 12 12 12 4 4 4 4

1 13 0 8 4 12 10 2 14 6 13 5 1 9 7 15 11 3

2 0 14 0 0 8 8 12 12 4 4 14 14 6 6 10 10 2 2

1 15 0 8 12 4 14 6 10 2 15 7 11 3 13 5 9 1

where the column subring factorization chain

Z
16

S
1

S
2

S
3

is defined by

S
1

= <2> = {0,2,4,6,8,10,12,14}

S2 = <4> = {0,4,8,12}

S
3

= <8> = {0,8}

where the row annihilator subring factorization chain

{0}=A
0

Al A
2

A3A_ is defined by

Al = <8> = {0,8}

A
2
= <4> = {0,4,8,12}

A
3

= <2> = {0,2,4,6,8,10,12,14}

whereL3isasetofcosetleadersofk_in Z
16

L3 = 10,1}
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position is the sum of the elements which designate that

position. For example, from figure 1, element 11 is the

sum of 8 from A
l'

0 from A2, 2 from A3, and coset leader 1

of A
3
in Z. Suprisingly, this ordering process for the

rows of the ring's table can result in the rows being

ordered in the normal counting order of Zn. In the

factorization of Zn, each of the Si subrings is a

principal ideal, in fact the ideal generated by 21. The

corresponding Ai is also a principal ideal generated by

the smallest element of Z
n
which annihilates the generator

of the largest

subring which will annihilate Si. This is consistent with

our desire to produce a 'fast' matrix as each annihilator

element corresponds to an additional strip across the

matrix of the basic subblock generated by the product of

the subset of representative coset leaders of Ai times the

column factoring subring Si, thereby reducing the size of

the subproblems without increasing the number of

subproblems.

Notice that all the elements of the additive group of

Z
n
have a unique representation in terms of the element 1,

i.e. k *1. The map k*1 1-> wk gives us a natural

homomorphism from the additive group of Zn to the

multiplicative group generated by the principal nth root

of unity. Thus our factorization in the ring Zn is

guaranteed to give us a recursive formulation (possibly

the usual one) of the actual Fourier matrix. It is



evident from figure 1, that without the mapping being a

homomorphism the factorization in the field would not be

possible owing to cancellation of multiples of n when

computing entries in the ring's multiplication table.

The fast Hadamard transform has a recursive

definition of

H
n

1/n

H
n/2

H
n/2

H
n/2

-H
n/2

= 1

7

For Hn, where n = 2
k

, consider the ring ekZ2 where

addition and multiplication are the componentwise

operations of Z2. As before with the fast Fourier

transform ring table, we can factor the columns of this

ring's table (see figure 2) with a chain of subrings

(again ideals), and factor the rows with the corresponding

chain of annihilator subrings (ideals). Unlike the fast

Fourier transform's Z
n'

which can be generated by a single

element, OkZ2 has k independent generators. Picking the k

elements which each have a different single nonzero

component, not only do we obtain a 'basis' for unique

representation of elements in OkZ2, but the basis elements

are orthogonal under multiplication, i.e. pairs of

distinct basis elements produce zero when multiplied. For

a given Si, the corresponding Ai is the ideal generated by

the one's complement of the componentwise bit pattern of

the generator of the Si ideal. This again gives the

largest possible A
i

for a given S
i

.
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Figure 2. Multiplication table factorization of ring 69422

for the discrete Hadamard transform of order 16.

1 1

2 0 2

1 3

4 0 0 4

1 5

2 0 6

1 7

0 0 0 8

1 9

2 0 10

1 11

4 0 '0 12

1 13

2 0 14

1 15

<7>

<3>

<1> 2+<1>

0 1 2 3 4

8+<7>

4+<3>

5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4

0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5

0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 8 8 8 8 6 8 8 6

0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9

0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10

0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11

0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12

0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13

0 0 2 2 4 4 6 61 8 8 10 10 12 12 14 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

where the column subring factorization chain

04Z2 S
1

S2 S3 is defined by

S
1
= <7> = {0,1,2,3,4,5,6,7}

S
2
= <3> = {0,1,2,3}

S3 - <1> = {0,1}

where the row annihilator subring factorization chain

{0}=A
0

Al A2 A3 is defined by

Al = <8> = {0,8}

A2 = <12> = {0,4,8,12}

A
3

<14> = {0,2,4,6,8,10,12,14}

where L3 is a set of coset leaders of A3 in 04Z2

L
3

= (0,1)
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Consider the map f: OkZ2 1-> field, defined by

(aibi+...+akbk) goes to c.al*...*ckak, where ci are

arbitrary elements of the field. Since the coset leader

of Si consists of a basis element not occurring in Si, and

the annihilator elements do not share basis elements with

their row factoring subsets, we observe from the

orthogonality of the basis elements that the map does not

have to be a homomorphism to. give us a 'fast' factorable

recursive matrix in the field.
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Chapter II

Factorization of Finite Rings

Mapping to Fast Transform Matrices

We have seen examples of the factorization of the row

and column entries of the multiplication tables of finite

rings which were associated with the well known fast

Fourier transform and fast Hadamard transforms. We would

like to examine sufficient conditions involving the ring's

factorization and an 'exponential' map to a field which

will guarantee factorization and fast multiplication of

the field matrix times a column vector. As motivated by

the previous examples, a more general form of a ring's

factorization for a single stage is depicted in figure 3.

Representation and the Exponential Map

First we should consider the mechanism for

translating the factored ring table into a matrix of

elements of the field. This depends on an 'exponential'

map from the ring to the field. In order to represent

elements of the ring we pick a minimal additive generating

set of elements of the ring, ibl,...,bk). We use this set

as a 'basis' for the ring so as to establish a unique

representation of each element in the ring, i.e.

r = nibi+...+nkbk where the ni are integers.

The 'exponential' map is a mapping f:R->F, which

takes each basis element bi of the ring to an element wi

ofthefield,i.e.b.:->w.,so that a linear combination

of the basis elements is carried to a product of powers of
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Figure 3. One stage of the factorization of a ring's

multiplication table. The set S.1 ={S.} is the column factoring

subring.Thevarerepresentativecosetleadersofs.factoring

Si_1.Thea.'sbelongtoA.1 ,the row factoring annihilator ring.

}isarepresentativesetorcosetleadersofik.1 factoring

A.
1+1

g1 + S.
1 1

a
1

+ . a +L )*(g +S.) a g +L.g +L.S.+a Si ... (a g.+L.)*(g.+S.)
i 1 1 1 2 1 2 1 1 1 1 1 j 1 j 1

11

1
2

a2
(a

2
+L

i
)*(g

1 I
+S.)

5g +1 g +1 S +a S
2 2 1 2 1 i 2 i

a
2
g
2
+1

2
g
2
+1

2
S
i
+a

2
S
i

a g +1 g +1 S.+a S.
2 2 k 2 k 1 2 1

1101.

... (a2j1 jig.+L.)*(g.+S)

a
m

+ . (a +L.)*(g +S.) a g +L.g +L.S.+a S. ... (a g.+L.)*(g.+S.)
m 1 3 1 m 2 12 11 mi m j 1 j 1
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the w
i'

i.e. (n
1
b

1
+...+n

k
b
k

) 1-> w
1

n
1*. .*w

k

n
k. Given a

factorization of the row and column entries of the ring's

multiplication table, entries within the table will be

derived from the product of the factored row and column

elements of the table, i.e. (ai+lk)*(gj+sm) = ai*gj +

1
k j

+ a
i m

+ 1
k
*s

m'
(see figure 3) where a

i
is an

annihilator element, lk is an element of the row

'representative leaders' factor set, gj is a column

decomposition coset leader, and sm is an element of the

column factoring subring. Note that if the map f is a

homomorphism then we are guaranteed that the sum of the

four addends in the ring will map over to the field as

though the map was being applied to each addend

independently, i.e. f(a+b+c+d) = f(a) *f(b) *f(c) *f(d),

producing a product of four factors in the field, thus

allowing the successful factorization of subblocks of a

stage into four matrix products as depicted in figure 4.

If f is a homomorphism, then since R is a finite ring all

thebasiselementsb.have finite order implying that the

w are roots of unity, i.e. n.*b. = 0.for some n., so

that f(n.*b.) = f(0) = w.ni = 1. If f is not a

homomorphism, then we face possible cancellation of sums

of basis elements in the expressions producing entries in

the ring's multiplication table, which will then possibly

produce missing factors in the field matrix produced by

the mapping f.

The homomorphism requirement becomes unnecessary if
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1) the 'basis' elements of the ring are orthogonal under

multiplication, i.e. the multiplication of any two

distinct basis elements produces zero.

2) the column coset leaders do not share any basis

elements with the elements of the column factoring

subset,

3) the annihilator elements share no basis elements with

the subset of representative leaders which factor the

rows, and

4) the annihilating elements ai in fact do take all the

elements s
m

of the column factoring subring to zero

under multiplication.

This way the three remaining possibly nonzero elements of

the ring entry sum have no basis elements in common. Thus

when mapped to the field F by an exponential map, the

three remaining addends make an independent contribution

to the product without the necessity of a homomorphism to

cope with possible cancellation in the ring when sums of

the 'basis' elements are taken. This allows the wi's to

be arbitrary, even 0. These four requirements are met by

the @
k
Z
2
example ring given for the Hadamard transform.

Row and Column Factoring with its
Implication for Complexity

In our previous examples, the column entries of the

multiplication table were factored by an ideal. The

columns could be factored just as well by a subring

considering the factorization as that of an additive

group. It is even possible that the columns could be
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additively factored by a mere subset. In our previous

examples the rows were factored in an 'inverted' coset

fashion, with the actual annihilator ideal (only

necessarilly a subring) elements acting as 'leaders', and

a set of the representative coset leaders of the

annihilator subring factorization acting as the factoring

subset. Let us consider whether it is necessary for the

'annihilator' elements to take all the elements of the

column factoring subset to zero. Observe in figure 4 the

translation of one subblock of the ring's table into its

corresponding matrix product representation in the field

produced by the given exponential map. Observe in figure

5a that the product of these four matrices will multiply

subvectorli.of the column vector V. Submatrix X is the

basic computational unit common to all the subblocks. If

matrix T
k

is not a scalar matrix (constant times the

identity matrix), but rather a diagonal matrix as written

in figure 4, this forces the product of X times a vector

to be done in all j*j possible cases assuming both the

rows and columns factor into j pieces, (unequal splits are

mentioned in later sections on Nonsingularity, Speedup,

and the corresponding recurrence relation is developed and

solved in the Appendix), resulting in a needlessly

complicated recursive 0(n
2
) multiplication algorithm.

Observe figure 5a to see the necessity of all these

products as although the Tk are the same across each row

of subblocks, the T
k

are different for different rows,
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Figure 4. Subblock2,3 of stage i of the ring factorization

1 g +1 g +1 S.+a S---
2 3 1 3112 i
a2g3+12g3+12Si+a2Si

(a
2 1
+L.)*(g

3 1
+S.) = (a

2
*g

3 1
)+(L.*g

3 1 1
)+(L.*S.)+(a

2 1
*S.) =

a g +1 g +1 S+a S
2 3 k3 ki 2 i

Maps to the field as:

f(a
2
g
3
)*f(1

1
g
3
)*f(1

1
s

1
)*Na

2
s

1
) ... f(a

2
g
3
)*f(1

1
g
3
)*f(1

1
s
p
)*f(a

2
s
p

)

c(a
2
g
3
)*f(1

2
g
3
)*f(1

2
5

1
)*f(a

2
s

1
) ... f(a

2
g
3
)*f(1

2
g
3
) *f(1

2
s
p
)*f(a

2
s
p

)

f(a
2
g
3
)*f(1

k
g
3
)*f(1

k
s

1
)*f(a

2
s

1
) ... f(a

2
g
3
)*f(1

k
g
3
)*f(1

k
s
p
)*f(a

2
s
p

)

f(a
2
g
3

)

. 0

0 .

f(a
2
g
3

*

Factors in the field as:

f(1
1

g
3

)

0

0

f(1
k
g
3

)

f(1
1

s
1

) . f(1
1

s
m

)

f(1
ks 1

. f(lksm)

*

f(a
2
s

1
)

0 .

C
23

D
3

X T
2

0

f(a2sk)



Figure 5a. General form of field matrix resulting from the mapping
of one stage of a ring's multiplication table (with
notation as in text) shown multiplying a column vector.
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D
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XT
1
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D
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XT

1

C
13

D
3
XT
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1n
D
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XT

1

C
21

D
1
XT

2
C
22

D
2
XT

2
C
23

D
3
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2
C
2n

D
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XT
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31

D
1
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32

D
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3
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33

D
3
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... C

3n
D
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XT

3

C
41

D
1
XT
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42

D
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4
C
43
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4
C
4n

D
n
XT

4

C
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D
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XT
m

C
m2

D
2
XT
m

C
m3

D
3
XT

m
C D XT
mn n m

V1

V
2

V
3

V
4

V
n

Figure 5b. Assuming the T. are scalar matrices, they commute

withD.XandcanbecombinedwiththeC..scalar13

matrices to form the following matrix where cif. . is

a scalar constant.

c
11

D
1

X
c12D2X c131)3X

c
1n
D
n
X

c21D1X c
22

D
2
X c c

2n
D
n
X23D3X

c31D1X c32D2X c33D3X c
3n

D
n
X

c
41

D
1
X c

42
D
2
X c c

4n
D
n
X43D3X

.

c
m1

D
1

X c
m2

D
2
X c

m3
D
3
X 00. c

mn
D
n
X

V

V

V
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meaning that for all subblocks X will be multiplying

possibly distinct vectors. However if the matrix Tk is

scalar, then Tk will commute with matrix X so that the

four matrix product becomes C
rc

DjTk X. If all the T
k

are

scalar,thentheproductofXtimestheV.need only occur

onceforeachofthejsubvectorsVTo finish the

product evaluation for each subblock it is only necessary

to multiply the appropriate X*Vj by the diagonal matrix

product C
rc

DjTk which requires n/j multiplications, where

n is the number of columns in this stage. Since there are

j*(j-1) subblocks requiring multiplication by the Creyk

diagonal matrices (all but the first column of subblocks),

we have j*(j-1)*n/j = (j-1)*n additional multiplications

to perform after the computation of the j distinct X*Vj

matrix times vector subproblems, in order to complete the

computation for one stage. For counting the number of

additions, recursively we have j size n/j subproblems,

which when combined to produce an answer require j

summations (one for each of the j row splits) of j vectors

(one for each of the j column splits) of length n/j

costing j*((j-1)*n/j) = (j-1)*n additions. Thus the same

number of additions are required as multiplications.

Recursively applying this process to X and its descendents

leads us to the following recurrence relation for the

count of multiplications or additions (assuming for

simplicity each stage splits rows and columns into j

pieces) : T(n) = j*T(n/j) + (j-1)*n, which has an 0(nlogn)
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solution.

The matrix T
k

in the four matrix field product of

figure 4 is derived from the product of an 'annihilator'

element times the elements of the column factoring subset.

Since the product a
i
*sm" annihilator' element a

i
times

the elements sm
of the column factoring subring (or

subset), is the same for each column of the subblock we

deduce that the matrix Tk postmultiplies basic subblock

matrix X in this product. If ai is a genuine annihilator

of alltheelementsofS.,then the map to the field will

result in the T
k
matrix being the identity matrix. For T

k

to be a scalar matrix, all that is necessary is that each

'annihilator' element 'levels' the elements of Si,

takesalltheelementsofS.to the same constant,

possibly a different constant for each annihilator element

of A. If Si is a subring or else a subset containing the

element zero, then necessarily the constant will be zero

and the 'annihilator' elements will be true annihilators.

The set of elements {a1} taking Si to some constant,

possibly a different constant for each element a i' does

form a subring since it is closed under addition and

multiplication and contains the element zero. We shall

see that we want to use the whole annihilator subring for

factoring, rather than a subset, to maximize speedup and

also to prevent singularity of the resulting field matrix.

We have seen that possibly the column factoring

subrings Si could be subsets and the row 'annihilator'
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elements need only 'level' or take the elements in Si to a

constant, i.e. {a
i
*S } = {c }.

Suppose we are given a chain of subsets which factor

R, R=S0 D S1D S2D Sk, where each Si+1 is a maximal

factoring subset of Si, (maximal factoring subset means

that no set S properly containing Si+1 is a factoring

subset of Si) . Correspondingly, we will require a chain

of distinct subrings {0) C Al C A2 C CAk, which are

maximal and 'level' their corresponding Si 's. We would

like to show that given the above conditions, without loss

of generality we may as well consider the Si ' s to be

subrings and hence the Ai' s true annihilator subrings.

Pick an arbitrary element sj from Sk. Form the chain

R=S
0
-{s .} S

1
-{s j}D S

2
-{sj}D S

k
-{s

j
. The element

zero is a member of every subset of the chain. Notice

that the chain of 'leveller' subrings are true annihilator

subrings for the new chain of column factoring subsets,

i.e. =.a*(s-s .) c-c=0 for a E Ai, s E Si. Now, take the

additive and multiplicative closure of each of the new

subsets so as to obtain the chain R=.SOD S
1.D

S2D.... D Sk of

subrings. Notice the chain of {0}C. A/C A2C CAk still

annihilate the corresponding Si. Since we have assumed

that Si+./ factoring Si was maximal, starting with i=0,

increment i comparing the ratio of :Si/Si+1 1 with

Si/Si+11
until either i reaches k-1 or until the ratios

are different, i.e. 1 is smaller. If i reaches

k-1, then the chain R Si-{sj}D D Sk-{Si} is a maximal



20

chain of subrings factoring the columns, since SiC Si and

Si; = ;Si;. If a different ratio is reached before i

reaches k-1, then create the chain R=S0D Ei+{sj}D ...D

Sk + {sj }. This chain is identical with the original chain

through position i. We have Si+1CISi+1+{sj} and :Si4.1: <

1i.I.14-{sj};, since Si+1 was assumed a maximal factoring

subsetofSi,we have arrived at a contradiction. So

there must not have been an i which gave us different

ratios, implying the chain of maximal subsets was at worst

a chain of cosets of a chain of subrings, easily

translatable to a chain of subrings. Notice also that if

two Sm-{sj} and Sn-{sj} for m<n generate the same subring

we could not have had Am and A
n
maximal and distinct for

levelling Sm and Sn since both Am and An annihilate this

same subring.

Therefore, without loss of generality we might as

well consider the chain R=S
0
DS

1

7 S
2
D

k
to be a

chain of maximal subrings, and the chain {0}=A0CA1C:A2c

...c A
k

to be a chain of maximal true annihilator subrings

of the corresponding Si's. From later observations on

speedup and orthogonality of the field matrix, we prefer

or need the maximality of both chains.

Nonsingularity of the Field Matrix

Given the factorization of the ring's multiplication

table, we want to know under what conditions the resultant

matrix in the field will be nonsingular. Recursively, if

we consider the matrix product of the entire block of one
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stage of the factorization times its portion of the column

vector (see figure 5b), we observe that

1) if the basic subblock X is singular, then so is the

whole block and the whole matrix,

2) if any of the diagonal matrices D1,D2,... are

singular then it is possible to pick a nonzero column

vector which is taken to zero, so that again the

matrix is singular.

3) if the matrix of the field elements corresponding to

the product of the row annihilator and column coset

leader for each subblock (see figure 5c) is

nonsingularandthediagonalD.'s and the basic

subblock X are nonsingular, then the whole block is

nonsingular. This follows since figure 5b is

equivalent to figure 5c where (DiX)*Vj are

effectively arbitrary vectors because of the

rionsingularityofa)0.

4) If at any stage of the factorization the rows split

into more subblocks than the columns, then we can

create a zero row as a linear combination of the rows

corresponding to the same row factoring subset

element. See figure 6 for an example. Thus if we

desire a nonsingular field matrix then we must have

the ratio of lAi+1/Ail Isi/si+11.

5)IfanannihilatorelementexistsforanS.1, but is

notcontainedinA.,then for that stage there will

exist a linear combination of the rows associated
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Figure 6. Singularity of the field matrix will result if the
ring factors into more row sets than column sets
for any stage.

X c
12
D
2
X c13D3X

X c
22

D
2
X c23D3X

X c
32

D
2
X c33D3X

X c
42
D
2
X c43D4X

r-v

v
2

V
3

Since the above matrix product is equivalent to

1 c
12 c13

1 c
22 c23

1 c32
c33

1 0
42 c43

D
1

XV
1

D
2
XV

2

D3XV3

This matrix is clearly singular, i.e. a zero row can be
produced by simple row elimination.
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with this element in the row factor sets which will

sum to zero, hence causing singularity. This follows

easily from having one more row available than the

number of scalar multiples of identical subsegments

contained in the rows, with a zero row being produced

in a similar fashion as the elimination in figure 6.

Speedup

Since more row factors than column factors in the

ring factorization leads to singularity in the field's

matrix, we are left with either an equal number of row and

column factors or else more column factors than row

factors as possibilities. Equal numbers of row and column

factors leads to the recurrence relation T(n) = j*T(n/j) +

(j-1)*n for the number of operations, which has an

0(nlogn) solution. Having more column factors than row

factors leads to a two variable recurrence relation for

the operation count, T(n,m) = j*T(n/k,m/j) + k*m*(j-1)/j

where n is the number of rows, n the number of columns, k

the number of row splits, and j the number of column

splits, which still has an 0(nlogn) solution (developed

and solved in the appendix). Even if at each stage we

have a different ratio of column factors to row factors,

we can bound the operation count by the largest ratio to

find that the operation count for the ring factorization

approach is bounded by 0(nlogn).

Summary

Given a matrix M of elements from a field F, there
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exists a 'fast' multiplication of M times a column vector

V if there exists a finite ring R satisfying the following

requirements:

1) the elements of R can be uniquely represented in

terms of a minimal additive generating set

{bi,...,bk} which acts like a basis, i.e. for every r

in R there exists a unique linear combination of the

bi such that r = nibi+...+nkbk.

2) there exists a chain of distinct subrings R=SoDS.ID

...DS where S.
1+1

ismaximalfactoringS.,i.e. no

larger SDSi+.1 factors Si. Note: the weaker

assumption that the Si are just subsets leads to the

conclusion that the Si are either subrings or cosets

of subrings. Correspondingly there is a chain of

distinct maximal annihilator subrings {0}CA., CA2C

C Ak, for which the product Ai*Si={0} and the

product Aj *S.={0} for j>i.

3) R and F are related by an exponential map f:R->F,

such that the range of f is the set {elements of M},

defined on the generators of R by f(n*bi)=win.

a) if f is a homomorphism then we have

f(n1 *b1+...+nk*bk) = win1*...*wkn1

which guarantees proper factorization in the field

matrix. Notice the w's have to be roots of unity.

b) if 1) the 'basis' elements are multiplicatively

orthogonal, 2) if the basis elements used to

represent the column coset leaders for each stage
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do not occur in any of the elements of their

respective column factoring rings, and 3) the same

holds for the annihilator elements and their

corresponding factoring leader subsets, then we

also are guaranteed factorization in the matrix M

without requiring a homomorphism. This eliminates

the need for the w's to be roots of unity.

Possibilities other than strictly a) or b) exist to

guarantee the proper factorization of the field

matrix M. Take the direct product of a ring which is

factorable from being orthogonal and another which

has a homomorphism, giving us a ring (with operations

defined in componentwise fashion) which satisfies

neither of the two mentioned sufficient conditions,

but which maps to a factorable matrix in the field.

This map is defined in componentwise fashion using

the appropriate maps for each constituent ring.

4) one necessary requirement for nonsingularity is that

the number of row splits not exceed the number of

column splits for any stage.

The decomposition of one stage of the factorization occurs

as in figure 1 for the ring and figure 5 for the matrix

produced by the mapping to the field.
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Chapter III

Examples of Factorable Finite Rings

Producing Factorable Field Matrices

Fast Fourier transform matrices of composite order

and the Kronecker products (see appendix) of the matrices

of Fourier transforms of various orders can easily be

described by ring factorizations. Consider the Fourier

transform of composite order twelve associated with the

ring Z12. According to our requirement of picking a

maximal column factor group at each stage we can arrive at

the factorization in figure 7a. This factorization

produces a field matrix which when multiplied times a

column vector requires 60 multiplications. If instead we

factor the ring as in figure 7b with a different maximal

chain, again we find that 60 multiplications are required.

Let us consider a similar but larger example, again

counting the number of operations for different but

maximal factorizations.

Consider the Fourier transform of order 24, with

column factorization chain Z 24
D <2>D <4>D <8> with

annihilator chain JO) C <12>C <6>C <3>. We compute the

number of operations from the recurrence T(n)=j*T(n/j) +

(j-1)*n, where the number of row and column splits happens

to be the same, i.e. equals j, for a particular stage.

T(3) = 9
T(6) = 2*T(3) + 6 = 18 + 6 = 24
T(12) = 2*T(6) + 12 = 48 + 12 = 60
T(24) = 2*T(12) + 24 = 120 + 24 = 144



Figure 7a. Factorization of Z12 with

column factorization Z
12

<3> <6>

annihilator factorization {0} <4> <2>
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Figure 7b. Factorization of Z12 with

column chain Z
12
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annihilator chain {0} <6> <3>
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If we factor the ring with a different maximal chain as

Z
24

7 <3>D <6>p <12> with annihilator chain {0}C:<8>C<4>C

<2>, then we get the following operation count.

T(2) =
T(4) = 2*T(2) + 4 = 12
T(8) = 2*T(4) + 8 = 32
T(24) = 3*T(8) + 2*24 = 96 + 48 = 144

The number of multiplications (and additions) is the same

in both factorizations, so that at least in these two

cases maximal factorizations lead to equally fast

computations.

The ring Zn 0 Zm can correspond to the Kronecker

product of the Fourier matrices Fn and Fm. See figure 8

for factorizations of Z
3

6 Z
4

leading to both F
3

8 F
4

and

F4 0 F
3.

In general, we can form 8
j
Z
k

which can be
i

mapped to a sequence of j Kronecker products of the

submatrices F
k

in any order. Note that the Kronecker

product of a string of Fourier matrices Fk is not

commutative, whereas the ring 0.Z
k

can be interpreted as
.

1

the Kronecker product of the matrices Fk in any order.

This indicates a structural variety of matrices which can

be produced from this ring, although the structures have

the same flavor.

Finite polynomial rings are an easy source of

examples, in fact the Zn Fourier rings are trivially Zn[x]

mod x. A less trivial example is Z2[x] mod x +1. One

factorization for this ring is shown in figure 9. The

column factorization can be done with a chain of ideals RD

<x+1>D <(x+1 )2> <(x+1 )3> with the corresponding
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Figure 8. Factorization of Z
3
6 Z

4
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4
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4
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4
+20

00 02 01 03 10 12 11 13 20 22 21 23
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Notational example: z
3
0+02 = <0,0>+<0,2>, 41,0>+<0,2>,

<2,0>+<0,2>

= <0,2>, <1,2>, <2,2>
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annihilator chain {0}C <(x+1) 3 >C<(x+1) 2 >C<(x+1)>. We

have numerous alternatives for a basis set, for example

{1,x,x2,x3} or possibly i(x+1)3,(x+1)2,(x+1),11. If the

exponential map carries the basis elements into the second

roots of unity, 1 and -1, then the exponential map will be

a homomorphism thus guaranteeing factorization of the

field transform matrix. Hadamard matrix, e.g. map the

basis elements (x+1)
2

, (x+1), and 1 of the ring to the

element 1 of the field, and map (x+1)3 to the element -1

of the field.

Another example of a polynomial ring is Z[x] mod

x
2
+1. In this case (figure 10), the column subring

factorization can be done with R <x+1 >D <2>D <2x+2>. The

annihilator factorization is again a chain of ideals {0 }C

<2x+2>C <2> C<x+1>. A minimal additive generating set is

11,x+11. Although there are only two basis elements, we

could choose to represent the set of elements generated by

a single basis element in a 'radix' notation, using a

multiple of a basis element as a place holder. We could

choose to represent elements of this ring uniquely in

terms of {1,2,x +1,2x +2 }. This would require relations on

the elements of the field F such that

w
1
*w

1

=f(1)*f(1)=f(2)=w
2

and

w3*w3=f(x+1)*f(x+1)=f(2x+2)=144, with w2*w2=1, wil*w4=1.

This would suffice to give us a homomorphism providing

factorization, as no orthogonal basis with four elements

is available here. This ring will not map into a Hadamard
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Figure 11. Field matrix resulting from Zp] mod x2+1

map 1 1-> -1, x+1 1-> i

with the
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0 2 x+1 x+3 1 3 x+2

2x+2 2x 3x+3 3x+1 2x+3 2x+1 3x 3x+2

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 -1 i i -1 1 -1 1 i i

x+1 1 1 -1 -1 -1 -1 1 1 -i -i i i i i

x+2 -1 -1 1 -i -i i i i -1 1 1 -1

2 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

3 1 -1 1 -1 i -1 1 -1 1 i i

x+3 1 1 -1 -1 1 1 -1 -1 -i -i i i i i

x 1 -1 -1 1 i i i i 1 -1 -1 1

2x+2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

2x+3 1 -1 1 -1 -i i i 1 -1 1 -1 i i

3x+3 1 1 -1 -1 -1 -1 1 1 i i i i

3x 1 -1 -1 1 i -i -i i i i 1 -1 1

2x 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

2x+1 1 -1 1 -1 i i 1 -1 1 -1 i i

3x+1 1 1 -1 -1 1 1 -1 -1 i i i i

3x+2 1 -1 -1 1 -i i i i i -1 1 1 -1
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matrix, although the assignments (see figure 11) 1 1->

-1, x+1 1-> i allow the field matrix to factor into a

nonsingular 16x16 matrix using all the fourth roots of

unity.

Another example comes from the ring of 2x2 matrices

over Z
2'

(see figure 12). This noncommutative ring can

have its columns factored by the chain R f

00
'

,

'001000 '0100 '1100J'

00 0 10 10
with the annihilator chain 10

100'010'00'10' 1
. This

splits the matrix into sixteen 4x4 subblocks which

unfortunately cannot be factored further by a column

subring which can be annihilated. However, the

assignments 00
01

'1000 00
1-> -1,- and

10
'01
00

1-> 1 produce a 16x16

Hadamard matrix.

Finally, we give an example using the orthogonality

of the basis for @
k
Z
2

to get a resulting field matrix with

entries not being roots of unity. Observe figure 2 for

the ring gkZ2, previously associated with the Hadamard

transform. If we map all the basis elements {1,2,4,8} to

zero, then we will produce a recursive matrix in the field

P
n+1

P P
n

P
n

Pn 0

P1 1

with zero (not a root of unity) occurring in the matrix.

This transform was used by Cull in calculating statistics

of neural nets.
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Figure 12. Factorization

S

of the ring

10
00

of 2x2 matrices

01

+ S 00

over

+ S

22

11

00 + S

00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

A L 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

00
00

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 U1 11

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 U0 00

00 10 00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

00 00 , 00 00 00 00 00 00 00 00 00 00 U0 00 00 00 00 00

01 11 00 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

00
10

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

00 10 00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

01 11 00 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

00 10 00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

00 00 00 00 00 00 00 00 00 OC 00 00 00 00 00 00 00 00

00 10 00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

01 01 00 10 01 11 00 10 01 11 00 10 01 11 00 10 01 11

10
00

01 11 00 10 01 11 10 00 11 01 01 01 00 10 11 01 10 00

00 00 00 00 00 00 OC 00 00 00 00 00 00 00 00 00 00 00

01 11 00 10 01 11 10 00 10 01 01 11 00 10 11 01 10 UU

01 01 00 10 01 11 00 10 11 11 00 10 01 11 00 10 01 11

00 10 00 00 00 OC 10 10 10 1C 01 01 01 01 11 11 11 11

00 10 00 CC 00 00 10 10 10 10 01 01 01 01 11 11 11 11

00 10 00 00 00 00 10 10 10 IC 01 01 01 01 11 11 11 11

01 11 00 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

10
10

Cl 11 OC 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

00 10 00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 11

01 11 00 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

01 11 '
00 10 01 11 10 00 11 01 01 11 00 10 11 01 10 00

where the columns are factored by the'subring

00 00 00 001
fi 00'10'01'11'

where the rows are factorea by the annihilator subring

.30 00 1C
= 30,10'00'10'
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Chapter IV

The Use of Infinite Rings to Produce

Finite Factorable Field Matrices

If we limit ourselves to the factorization of finite

rings, is there a direct correspondence of rings with

matrices factored in the form of figure 5b? Suppose we

pick for a field matrix the upper left quadrant of the

matrix shown in figure 13b, which is produced from the

ring multiplication table for Z9 (shown in figure 13a)

mapped by the natural homomorphism from Z9 to the powers

of the principal ninth root of unity. Unfortunately, this

matrix has all the distinct ninth roots of unity occurring

as entries, which is too many for a six element ring's

table to produce. This suggests allowing the deletion of

some of the rows and columns of the ring's multiplication

table, before mapping the table into a field matrix.

As previously stated, a factorable field matrix can

be obtained from a factorable finite ring's multiplication

table if the exponential mapping is a homomorphism, or if

four conditions including orthogonality of the basis

elements are met. Homomorphism implies mapping the ring

basis elements to roots of unity, whereas the

orthogonality conditions allow the ring basis elements to

be mapped to arbitrary elements of the field. Selective

deletion of elements and groups of elements from the row

and column entries of the table not only will allow ring

factorization of matrices of the sort of figure 13b, but



Figure 13a. Factorization of Z9 with column factoring subring

and annihilator subring

S = A = <3> = {0,3,6}

A L <3> 14.<3>

0 3 6 1 4 7

0 0

0 1 1

2 2

0 3

3 1 4

2 5

0 6

6 1 7

2 8

24-<3>

2 5

0 0 0

8

0 0 0 0 0 0

o 3 6 1 14 7

0 6 3 2 8 5

o 0 0 3 3 3

0 3 6 24 7 8

0 6 3 5 2 8

0 0 0 6 6 6

o 3 6 7 1 14

0 6 3 8 5 2 7 4 1

2 5 8

24 1 7

6. 6 6

8 2 5

1 3 1

3 3 3

5 8 2

Figure 13b. Natural map of Z
9

factorization to the ninth

roots of unity

1 1 1 1 1 1

1 w3
w6

w ww
3

ww
6

1

w6
w3 w

2 w2w6 w2w3

1 1 1 w3 w3 w3

1 w3
w6 4 w4w3 w4w6

1 w
6 w3

w
5 w5w6 w5w3

1 1 1 w
6

1 w3
w6

w7

1 w6 w3 w
8

1 1 1

w2 w2 w w
2 2 2 6

W4 www
4 4 6 4

w6 w6
w
6

w8 w8w3 w8w6

w ww6 ww_
6 3

w3 w3

w5w3 w5w6

w7w6 w7w3

w6 w6 w3
w7w3 w7w6 w5

w8w6 w8w3 w7
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also will allow the use of characteristic zero rings which

make no special requirement on the exponential map or

basis of the ring in order to guarantee the factorization

of the field matrix, since there is no cancellation

problem under addition in the ring.

With a characteristic,zero ring we are immediately

struck by the problem of an infinite number of elements

factoring into possibly an infinite number of infinite

size cosets. For the basic column factoring set we use a

carefully selected finite subset of a parent factoring

subring. In addition, we only use a selected finite

number of the possible shrunken cosets of the

factorization.

Are there infinite rings from which we can construct

a factorable finite table? Consider the ring of nxn

matrices over the integers. The chain of parent subrings

which factor the 'columns' of the table will be nilpotent

matrices of the following form, R'"SOD SID S2D

where S
i

is upper triangular with nonzero entries

occurring only in columns two through n-i. The Si are

subrings since they are closed under addition and

multiplication, and contain the element zero. Note that

S
1

leaves the last column as zeroes, a convenience for

annihilation. The annihilator chain {O}C A1 C. A2 C . . . C

An_2,havetheA.being lower triangular nilpotent

matrices with nonzero entries occurring only in columns

i+1 through n-1. Observe that Ai does not annihilate S,
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for i>j, which is what we want if the annihilator rings

are to be maximal and distinct.

Is it possible to select a portion of the above rings

infinite factored table to arrive at a finite table

translating to a useful field matrix? For our parent

column factoring subrings we select R withS2, with the

elements b=c=g=1.

0 b c 0 Ob00
Si = 00g0

0 0 0 0
S
2

= 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0

For the parent annihilator subrings select {O} C Al C_A2,

with the elements j=n=x=1.

0 0 0 0 0 0 0 0
Al 0 0 0 0

0 0 0 0
A
2

= 0 0 0 0
0j00

00x0 Onx0
If we represent 4x4 matrices which have a value 1 in a

particular entry by a string of characters representing

the sixteen positions as:

b c d 0 0 1

e f g h ick = 0 0 0 0
ijkl 1 0 1 0

mnxp 0 0 0 0

Using this notation we can depict a selected finite field

table for this parent ring structure as in figure 14.

This factorization gives to a Hadamard matrix with the

mapping x 1-> 1, j,p 1-> -1. The mapping x 1-> 1,

j,p 1-> 0, gives the example zero/one matrix.
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Figure 14. Multiplication table of finite selection of

characteristic zero ring.

S
2

S1

g+S
2

1 +S1

A
1

A
2

L 0 b g gb 1 lb lg lgb

0 0 0 0 0 0 0 0 o 0 0 0

i i 0 j 0 j 0 j 0 j

n 0 n 0 0 x x 0 0 x x

i xi 0 j x xj 0 j x xj

x 0 0 x 00000 p p p

i xi 0i0iPPiP Pi

n 0 xn 0 0 x x p p px px

i xni 0 j x xj p pj px pxj

This factorization gives a Hadamard matrix with mapping

x 1-> 1, j,p 1-> -1.

The mapping x 1-> 0, j,p 1-> 0, gives the example zero/one

matrix.
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Chapter V

Comparison of Matrices Producable from

the Factorization of Rings and from

a Generalized Kronecker Product Technique

The factorization of a ring's multiplication table

gives an algebraic view of symmetry giving fast matrix

multiplication. There exist generative techniques which

build matrices directly from submatrices of the field

which cannot be produced by a mapping from a ring's

multiplication table.

Fino and Algazi present a technique utilizing a

'generalized' Kronecker product. For a set {A1}

i=0,1,...,m-1 of m nxn matrices, and a set {B3}

j=0,1,...,n-1 of n mxm matrices, an mn x mn matrix is

produced using the following operations:

1) row and column permutations

2) multiplication of rows or columns by a root of unity

(or constant)

3) generalized Kronecker product, using sets {Ai} and

{13j}, define {A} {B} to be the square matrix C of

order mn x mn such that:

w
= A

1
*B

u'
C. . C

,3 um+w,u'm+w' u,u' w,w'
where

i = u*m + w, u,u' = 0,1,...,n-1

j = u'Itm + w', w,w' = 0,1,...,m-1

These generative rules are applied recursively to build a

fast matrix. See figure 15 for pictorial representation

of the generalized Kronecker product. In the case that



Figure 15. The generallized Kronecker product of two sets

of matrices {Al} and {B3} denoted by {A} 6 {h}

can be represented in block matrix form by:

D00
B D

01
B

1
D
02 200 0

D
0,n-113n-1

D B D
11
B

1

D
12

B
210 0 D 1,n-1Bn-1

D B D
21
B

1
D
22

B
220 0

... D
2,n-113n-1

D B D
31
B

1
D_
3

B
3

... D..

30 0 2 2 ,n-1
B
n-1

. .

D
m-1,0

B
0

D
m-1,1

B
1

D
m-1,2

B
2 m-1,n-1

B
n

wherethediagonalmatricesD..3.3 have their entries taken

from the Al matrices as follows:

D. .

1 J

0
A..

13

A.
13

A.
3

13

A.
13

Am -1

1313

42
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all the Ai in the set {Ai} are identical, and all the Bj

in the set {B3} are identical, this definition produces

. the normal Kronecker product.

The important differences between the factored field

matrices produced by the generalized Kronecker technique

and the ring table technique are made evident by examining

the comparison in figure 16. The ring technique has a

single subblock X occurring throughout the matrix which is

modified by a fixed diagonal matrix for each column of

subblocks of the factorization premultiplied by a

different scalar element for each subblock of the matrix.

The first column of subblocks can be viewed as having the

identity as the diagonal matrix, premultiplied by the

scalar value one. The generalized Kronecker product

allows a different basic subblock for each column of

subblocks of a given stage, which requires the same number

of subblock matrix multiplications as with the ring's

field matrix. Also, each subblock of the matrix is

premultiplied by an distinct diagonal matrix. This

factorization gives fast multiplication with the same

operation count, but with more generality than that of the

ring approach.

When applied to actual example transforms, the set

{B3.} usually consists of a fixed matrix B. This

formulation, by still allowing arbitrary premultiplying

diagonals for subblocks, is still more general than the

ring approach. However, the ring approach still gives a



Figure 16. The generallized Kronecker product technique of Fino
allows the following recursive form for each stage
of a factorization of a field matrix.

D
11
X

1

D
12
X
2

D
13
X
3

D
1n n

V
1

D
21

X
1

D
22
X
2

D
23

X
3

D
2n

X
n

V
2

D
31

X
1

D
32

X
2

D
33

X
3

004 D
3n

X
n

V3

D
41

X
1

D
42

X
2

D
43

X
3

... D
4n

X
n

.

V
4

D
m1

X
1

D
m2

X
2

D
m3

X
4

000 D
mn

X
n

V
n

Recall the general form for a field matrix produced by a
mapping for a ring:

c
11
D

1

X c
12
D
2
X c

13
D
3
X

c
21

D
1

X c
22

D
2
X c

23
D
3
X

c
31
D

1
X c32D2X c

33
D
3
X

c
41

D
1
X c

42
D
2
X 0

43
D
3
X

c
ml

D
1

X c
m2

D
2
X c

m3
D
3
X

c
1n
D
n
X

c
2n

D
n
X

c3nDnX

c
4n

D
n
X

V

V2

V
3

V
4

c DX V
mn n n
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handle on the structure of the symmetry of the factored

matrix.

One example transform having a description using the

general Kronecker product is the Haar transform which has

an unfactored form as in figure 17. When rearranged by

row and column permutations (figure 17), notice that other

than 1) the normallizing factors multiplying the rows of

the matrix, and 2) the large portions of the matrix masked

out with zeroes, this matrix has the symmetric form of the

previously discussed Hadamard matrix. In figure 17, the

entries 1,2 and 3 represent the first, second and third

powers of the square root of two, the letter e represents

the number 1. The form can be described by:

H n+1-

n
I *H 1

n n
0

I *H -H
n n n

I
n
=

0

H1 =1

Since the multiplication In*Hn times its portion of

the column vector is already computed in both cases

(except for a negation), the cost for the lower left and

upper right subblocks is one multiply and two additions.

Thus the recurrence relation for the cost of the

computation becomes T(n) = 2*T(n/2) + 0(1), which has an

0(n) solution as previously mentioned in chapter 1 and

solved in the appendix.
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Figure 17.

e e e

-e -e -e

Haar transform matrix of order 16

Unfactored form of matrix

e e e e e e e e e

-e -e -e -e -e e e e e

e

e

e

e

e

e

e

e

0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 2 2

0 0 0 0 0 0 0 0 -2 -2 2 2 0 0 0 0

0 0 0 0 -2 -2 2 2 0 0 0 0 0 0 0 0

-2 -2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 3

o o 0 0 0 0 0 0 0 0 0 0 3 3 0 0

0 0 0 0 0 0 0 0 0 0 -3 3 0 0 0 0

0 0 0 0 0 0 0 0 -3 3 0 0 0 0 0 0

o o 0 0 0 0 -3 3 0 0 0 0 0 0 0 0

o o 0 0 -3 3 0 0 0 0 0 0 0 0 0 0

0 o -3 3 0 0 0 0 0 0 0 0 0 0 0 0

-3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Factored by row and column permutations

e e e e e e e e e e e e e e e e

3 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0

o 0 3 -3 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

o 0 .0 0 3 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -2 -2 2 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 -3 0 0 0 0 0 0 0 0

e e e e e e e e -e -e -e -e -e -e -e -e

0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 -3 0 0 0 0

0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 3 -3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 -2 -2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 3
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Chapter VI

Conclusion

In this paper we have investigated the relationship

of a ring factorization with the existence of an

associated fast transform matrix.

Given a matrix N of elements from a field F, there

exists a 'fast' multiplication of N times a column vector

V if there exists.a finite ring R satisfying the following

requirements:

1) the elements of R can be uniquely represented in

terms of a minimal additive generating set

{b1,...,b0 which acts like a basis, i.e. for every r

in R there exists a unique linear combination of the

b.
1

such that r = n
1
b

1

+...+n
k

2) there exists a chain of distinct subrings R=Sop Sip

...)SkwilereSi.oismaxitnalfactoringS.1 ,i.e. no

largerSDSi+.1factorsS.1 .Note: the weaker

assumption that the S
i
are just subsets leads to the

conclusionthattheS.1 are either subrings or cosets

of subrings. Correspondingly there is a chain of

distinct maximal annihilator subrings {0}C Ai CA2C

...(lAk, for which the product Ai*Si:{0} and the

product Aj*Si:{0} for j>i.

3) R and F are related by an exponential map f:R->F,

such that the range of f is the set {elements of N },

defined on the generators of R by f(n*bi)=win.

a) if f is a homomorphism then we have
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r(n *b +. .+n *b
n1*.. nl

-1 1 k ki
)

1 k

which guarantees proper factorization in the field

matrix. Notice the w's have to be roots of unity.

b) if 1) the 'basis' elements are multiplicatively

orthogonal, 2) if the basis elements used to

represent the column coset leaders for each stage

do not occur in any of the elements of their

respective column factoring rings, and 3) the same

holds for the annihilator elements and their

corresponding factoring leader subsets, then we

also are guaranteed factorization in the matrix M

without requiring a homomorphism. This eliminates

the need for the w's to be roots of unity.

Possibilities other than strictly a) or b) exist to

guarantee the proper factorization of the field

matrix M. Take the direct product of a ring which is

factorable from being orthogonal and another which

has a homomorphism, giving us a ring (with operations

defined in componentwise fashion) which satisfies

neither of the two mentioned sufficient conditions,

but which maps to a factorable matrix in the field.

This map is defined in componentwise fashion using

the appropriate maps for each constituent ring.

4) one necessary requirement for nonsingularity is that

the number of row splits not exceed the number of

column splits for any stage.

This result can be generallized to infinite rings R by
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carefully selecting in bottom up fashion only a finite

number of elements from the ring's factored row and column

entries.

We might hope for an exact one-to-one correspondence

between transform matrices and particular rings, in order

to use rings as a classifying tool for fast transform

matrices. Instead we find a single ring can be

ambiguously interpreted as various distinct matrices (i.e.

Chapter III, Figure 8, page 29), or completely distinct

rings can map to the same transform matrix, (i.e. rings

found in figures 2, 9 and 12 can all map to the Hadamard

transform matrix).

If only a single maximal chain for factorization of

the ring existed, then a single ring could only correspond

to one factorable form of a field matrix. Variability in

ring factorization resides in being able to choose

different maximal chains to factor the ring. A ring which

can be interpreted as being the direct product of several

rings has maximal chains by factoring using any

permutation of the ring components. Thus, in some ense

the ring factorization is commutative, however the

matrices obtained from these different orderings are

structurally distinct.

An alternative method exists for generating transform

matrices from elementary matrices utilizing a generalized

Kronecker product. This method allows the generation of a

more general class of matrices than the ring factorization
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technique, (Chapter V for discussion, Figure 16 for

comparison).

Ring factorization provides a useful tool for viewing

the structure underlying typical fast transform matrices,

but is limited in the allowable structure of the resulting

transform matrix and is veiled in the ambiguity of

multiple maximal chain factorizations of the ring.
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Appendix I

Recurrence Relations

If we examine figure 5b for the general structure of

a field matrix arising from a ring's factored

multiplication table, we can determine the recurrence

relation for the operation count for multiplying a

transform matrix times a column vector. For one stage we

have to multiply the basic subblock X with n different Vj

subvectors, producing n subproblems of size (M/m)x(N/n),

where M is the number of rows and m the number of row

splits, N is the number of columns and n is the number

column splits._ After computing these n subproblems, the

resulting product subvectors XV. need to be multiplied by

the cijDj for i=0,1,...,m-1. Notice that cilDi is the

identity for the first column of subblocks so we have only

(n-1)*m products of a diagonal times a vector to compute.

Each of these products requires N/n multiplications for a

total of (n-1)*m*N/n multiplications. If we assume that

the rows split into m segments and the columns into n

segments at every stage, then we arive at a recurrence

relation for the operation count T(M,N) for the

multiplication of a size MxN matrix multiplying a vector

of length N. The recurrence is T(M,N) = n*T(M/m,N/n) +

N*m*(n-1)/n. Notice that if N=M and m=n, this recurrence

simplifies,to T(N) = n*T(N/n) + N*(n-1) which has been

referred to in the text.

We can solve the two variable recurrence as follows:
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Let M = m3 (be the number of rows), and N = nk (be the

number of columns), then

T(j,k)=n*T(j-1,k-1) +nk-1*(n-1)*m

r.n*[n*T(j-2,k-2) +nk -2*(n-1)*m] +nk-1*(n-1)*m

:n2*T(j-2,k-2) +2nk-1*(n-1)*m

.-mn
2
[n*T(j-3,k -3) +n

k-3
*(n-1)*m] +2n

k-1
*(n-1)*m

=n3T(j-3,k-3) +3nk-1*(n-1)*m

For j <= k this leads to

T(j,k) = nj*T(0,k-j) + j*n
k-1

(n-1)*m
log M

=
m

n *T(0,k-j)
log M

+ j*nk
-1

*(n-1)*m

= n m *T(0,k-j)
log n

+ (n-1)/n*logmM*m*N

= M m *T(0,k-j) +(n-1)/n*m*logmM*N

Assuming M=N to begin with:

we have that since j<=k, then m>=n
log n

so that logmn <= 1 implying M m <= N

T(j,k) = 0(NlogM)

In particular, if M=N and m=n, then
log n

M m = N which implies

T(j,k) = T(j) = 0(NlogN) for an equal row and

column split recursive breakdown.

If j>=k then

T(j,k) = nk*T(j-k,0) + (n-1)/n*j*m*nk

= N*T(j-k,0) + (n-1)/n*m*logmM*N

= 0(NlogM)

Again considering the case where N=M and n=m,

we have an 0(NlogN) solution.

If we have the recurrence relation for the fast Haar
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transform, T(n) = 2*T(n/2) + 0(1), then

T(k) = 2*T(k-1) + c

= 2*[2*T(k-2) + c] + c

: 2 2 *T(k-2) + 2c + c

.7. 2
2 *[2*T(k-3) + c] + 2c + c

: 23*T(k-3) + 22c + 2c + c

= 2
k*T(0) + (2 k-1)c

I.: 0(N)

as previously mentioned.
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Appendix II

Definitions

Annihilator: For a ring, an element annihilates a subring

or subset if when the product of the given element

with any element of the subset or subring produces

the zero element.

Basis: For a vector space, a basis is a set of elements

such that every element of the vector space has a

unique representation as a linear combination of the

basis elements.

Coset: Given a subgroup S of a group G, we can partition G

by taking as the first equivalence class the elements

of S, then for the second the sum of the elements of

S with an element gl not in S, i.e. gl+S, for the

next class the sum of S with an element g2 not in S

or g1 +S, and so on until S is covered. The fact that

S is a subgroup guarantees that the preceding sets

are pairwise disjoint and thus are the equivalence

classes of a partition. The sets gi+S are called

cosets of S. The elements gi are called coset

leaders.

Coset leader: Given a coset gi+S of the group G, the

element gi is called a coset leader and is not

unique. Any element in the coset gi+S when added to

S will give the same set as gi+S, which implies that

there are ;SI possible coset leaders for each coset.

A set of representative coset leaders is a collection
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of elements, one from each distinct coset of S in G.

Direct Product ( S 0 R ): Given two rings S and R, we

produce a new ring using ordered pairs of elements of

S and R where multiplication and addition are the

componentwise operations of S and R, i.e.

(s
1'

r
1
)*(s

2'
r
2

) = (s
1
*s

2'
r

1
*r

2
) This can be

generalized to any number of components, e.g. OkZn.

Group: A set G with a binary operation +:GxG->G such that

1) the operation is associative, 2) an identity

element exists, and 3) inverses exist for all

elements. If the binary operation is commutative,

then the group is called Abelian. If the binary

operation only satisfies associativity, then the

structure is called a semigroup.

Homomorphism: A mapping which relates two algebraic

structures by requiring that the image of the product

of two elements in the first structure is equal to

the product in the second structure of the images of

the two elements in the first structure, i.e.

f(a*
1
b) = f(a)*

2
f(b) where *

1
is the binary operation

of the first structure and *
2

is the binary operation

of the second structure.

Ideal: For a commutative ring R, an ideal I is a subring

of R such that for any r in R, r*I I. A principal

ideal is one which is generated by a single element,

i.e. for some w in I, R*w = I.

Kronecker Product: Given two matrices A and B, the
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Kronecker product A 0 B is the matrix which has each

element
a1

of A replaced by the matrix a
ij

*B.

Ring: A ring is an algebraic stucture with two binary

operations, an addition which forms an Abelian group

and a multiplication which forms a semigroup. Also,

the multiplication distributes over the addition.

Subring: A subset W of a ring R such that W is closed

under addition and multiplication, and contains

additive inverses for all elements.

Subgroup: A subset S of a group G which is closed under

the binary operation and contains inverses for all

the elements of S.


