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multiplying a matrix times a vector, which normally
requires O(n2) operations. The matrices corresponding to
these transforms can be rearranged to eliminate redundant
computations resulting in O(nlogn) operations.

We investigate algebraic reasons for fast transforms.
Specifically, we notice that these fast transform matrices
correspond to the multiplication tables of particular
rings. We demonstrate sufficient conditions involving the
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subrings. These conditions allow the ring's multiplication
table to be arranged in a form which is tiled with
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transform matrix will preserve the subblock structure. One
sufficient condition, motivated by the Fourier transform,
is that the mapping is a homomorphism. Another sufficient
condition, motivated by the Hadamard transform, is that the
ring has an orthogonal basis. We display other rings
satisfying these conditions or a mixture of these
conditions which produce fast transform matrices.

Our conditions are only sufficient: they give a proper
subset of the transform matrices representable by the
generalized Kronecker product of Fino and Algazi. However,

our conditions can describe all commonly used transforms.
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An Algebrzic View of the Symmetry

of Fast Transforms

Chapter I

Introduction

Fasﬁ multiplication of a discrete transform matrix
times a column vector depends on recognizing and
eliminating redundant computations. Normal multiplication
will require O(nz) multiplications and additions.
However, the well known fast Fourier and fast Hadamard
transforms require only O(nlogn) operations and the fast
Haar transform requires only O(n) operations. These
transform matrices all share the property of being able to
be rearranged by column and row permutations into.
recursive forms with redundant computational blocks. If
we define T(n) as the number of operations needed to
multiply an nxn matrix times a column vector, then these
recursive forms lead to computational cost recurrence
relations T(n) = 2¥T(n/2) + 0(n) =&and T(n) = 2¥T(n/2) +
0(1), giving us the fast O(nlogn) and 0(n) computation
times (see appendix)

For the reader unfamiliar with algebraic terminology
used in this thesis, definitions may be found in the
appendices.

We shall examine the fast Fourier and Hadamard
‘transforms as examples to see what algebraic properties

are related to their fast recursive formulations.



The fast Fourier transform as popularly introduced
with the Cooley-Tukey algorithm lends itself to fast
computation, but perhaps obscure interpretation. Given a
discrete Fourier transform matrix of order n where n is
highly composite, we can compute the transform product in
a sequence of stages, one for each factor. The finite
Fourier matrix has the form

(1 w= I wid ] i,j = 0,..,n-1 where w is a
principal nth root of unity.
Given a vector A, the transformed vector X is given by

(2) X(3) = o wiia(i) 520,1,...,n=1
1

The Cooley-Tukey algorithm identifies and eliminates
redundant computations in stages as follows. For each
factor s of the order n of the matrix, we have a stage of
the algorithm. Since n= r¥*s, for some r, we can interpret
the indices in (2) as

J = j1*r + jO’ jO=O,...,r-1, j1=0,...,s-1

i

i1*s + iO’ i.=0,...,8=-1, i1=0,...,r-1
We can now rewrite (2) as
ji,s Jji
(3) X(3,3p) = 2 o W | %W ORA(ig, 1)
i, 1

0 71
. . . . r¥s n
Since w is an nth root of unity, l1.e. w =w =1, we

can eliminate redundant computations by observing that
jigs Joiqs
W =W

so that the inner sum over i1 no longer depends on j1, but

only on jo and iO' We can now write the inner sum as

. Joigs,
A1(JO’iO) = E%; W *A(11’10)
1 .



W)

and rewrite (3) as

(j,r+j, )1
L _ v 0770, R
X(3q,39) = E; W A, (3grig)
i
0
Vector A1 has n components as jo and iO run through their

ranges, with each component being a sum over 11, for a
total of n*¥r operations. Vector X has again n components
with the sum over iO for each component, so that X
requires n¥s operations to compute. The time required for
a single stage becomes n(r+s) rather than n(r¥s).
Consequently, if n = rk, the time for the algorithm will
become n*(rlogrn).

For our purposes it is more useful to observe the
structure of the recursive formulation of the finite
Fourier matrix. For siﬁplicity assuming n = 2k, label the
column indices of the Fourier matrix of order n with
numbers from 0 to n-1 in a k place binary format with
leading zeroes‘if necessary. Now, reverse each binary
number string representing a column position and permute
the columns to the position determined by the value of the
reversed binary number. This gives us the following
recursive form of the Fourier matrix

— .—-1

Frn/o Dryo Fryo

Frn/z ~Dns2 Fns2

e .

The diagonal matrices Dn/2 have elements wl in the ith row
and column. The matrices Fn/2 are exactly the (correctly

permuted) recursive Fourier matrices of order n/2, since



w2 is an n/2 root of unity and the bit reversal has given

the proper arrangement for the recursive form.

Our guide in observation will be the multiplication
table of the ring Zn corresponding to the row and column
indices of the recursive Fourier matrix, with the product
entries corresponding to the powers of w of the recursive
Fourier matrix. Looking at figure 1, we notice that the
arrangement of the columns of the table can be interpreted
as the successive coset decomposition of a chain of
subrings, Zn:SOD S1:>823 .ﬁ.'D Sk’ (in fact ideals) of Zn'
The row arrangement is determined by a corresponding chain
of annihilator subrings, {0}CiA1CLA2C_...ClAkCLZn, (again
ideals) where all the elements of A, annihilate the
elements of Si‘ Instead of a coset breakdown of the rows,
we choose an 'inverted' ordering building in 'top down'
fashion a listing of the table's row entries by using at
each stage elements of the current annihilator subring
serving in the role of coset leaders. Starting with A1,
spread the elements of A1 evenly down the list, (in this
case, 0 in position 0, and 8 in position 8). Pick from A2
a set of representative coset leaders of A1 factoring A2,
spreading these leaders evenly between the 0 in position O
and the next previously placed element of A1. These same
leaders are then similarly spread after each of the
remaining elements of A1 in the 1list. Repeat this same
process with Aj factoring A, 19 finishing with Ak

J+
factoring the entire ring R. The value at a given row
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for the discrete Fourier transform of order 16.

Multiplication table factorization of ring Z16

2> 14<2>
<4> 2+<8>
<8> 44+<8>
Ly 0 8 412 210 614 1 9 13 311 715
o o0J]o o/lo olo o 0 0[O0 O 0 0 O 0
1 1 /0 8/ 412{210 614|1 9 513 311 715
0 2 {0 0|8 84 41212]|2 21010 6 6 14 14
1 3 |0 8f12 4/ 614 21031115 7 9 1 513
O 4 !0 0O O 0|8 8 & 8|4 4 4 412121212
1 5 |0 8 41210 214 6|5 13 115 11
0 6 |0 O 8 8{1212 4 4|6 614 14 2 10 10
1 7 |0 812 414 610 2|715 311 513 1 9
o 8|0 0 00 O0OOTO0OO|8 &8 8 8 8 8 8 8
1 9 [0 8 412 210 6149 113 11 315 7
0 10 {0 0 8 8 4 4 121210 10 414 6 6
1 11 {0 812 4 614 210011 3 715 1 913 5
0 12 |0 0 O O 8 8 8 812121212 4 4 4 4
1 13 |0 8 41210 214 6[13 5 1 715 11 3
0O 14 |0 0 8 81212 4 4|14 14 6 61010 2 2
1 15 |0 812 4 14 610 215 711 313 5 9 1

where the column subring factorization chain

where L

216 >4
- 2> = {0.2,4,6,8,10,12, 14}

4> = {0,4,8,12}

3

S

A

S 82
1

82 =

83 =

1

S

3

is defined by

<8> = {098}
where the row annihilator subring factorization chain

{O}:AO A A2

A

3

A, = <8

1

{o

is defined by
,8}

A, = <4> = {0,4,8,12}

2
3

= <> = {0,2,4,6,8,10,12, 14}

is a set of coset leaders of A3 in Z16
L. = {0,1}

3



position is the sum of the elements which designate that
position. For example, from figure 1, element 11 is the
sum of 8 from Ay, 0 from Az, 2 from A3, and coset leader 1

of A, in Zn' Suprisingly, this ordering process for the

3
rows of the ring's table can result in thé rows being
ordered in the normal counting order of Zn' In the
factorization of Zn’ each of the Si subrings is a
principal ideal, in fact the ideal generated by 2i. The
corresponding Ai is also a principal ideal generated by
the smallest element of Zn which annihilates the generator
of S;, in this case 2"=1  Thus each A; is the largest
subring which will annihilate Si. This is consistent with
our desire to produce a 'fast' matrix as each annihilator
element corresponds to an additional strip across the
matrix of the basic subblock generated by the product of
the subset of representative coset leaders of Ai times the
column factoring subring Si’ thereby reducing tﬁe size of
the subproblems without increasing the number of
subproblems.

Notice that all the elements of the additive group of
Zn have a unique representation in terms of the element 1,
i.e. k¥1. The map k*1 i-> wk gives us a natural
homomorphism from the additive group of Zn to the
multiplicative group generated by the principal nth root
of unity. Thus our factorization in the ring Zn is
guaranteed to give us a recursive formulation (possibly

the usual one) of the actual Fourier matrix. It is



evident from figure 1, that without the mapping being a

homomorphism the factorization in the field would not be

possible owing to cancellation of multiples of n when

computing entries in the ring's multiplication table.
The fast Hadamard transform has a recursive

definition c¢f

n/e

p - —

For Hn’ where n = 2k, consider the ring 8k22 where
addition and multiplication are the componentwise
operations of 22. As before with the fast Fourier
transform ring table, we can factor the columns of this
ring's table (see figure 2) with a chain of subrings
(again ideals), and factor the rows with the corresponding
chain of annihilator subrings (ideals). Unlike the fast
Fourier transform's Zn’ which can be generated by a single
element, szz has k independent generators. Picking the k
elements which each have a different single nonzero
component, not only do we obtain a 'basis' for unique
representation of elements in 8k22, but the basis elements
are orthogonal under multiplication, i.e. pairs of
distinct basis elements produce zero when multiplied. For
a given Si’ the corresponding Ai'is the ideal generated by
the cne's complement of the componentwise bit pattern of
the generator of the Si ideal. This again gives the

largest possible Ai for a given Si'



Figure 2. Multiplication table factorization of ring @uz2

for the discrete Hadamard transform of order 16.

<7> 8+<7>
<3> 4+<3>
<1> 2+<1>
A1 A2 A3 L3 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15
0 0 0 O 0 o o{0 0|0 O O O;0 O 0O O O O O O
1 1 o 1/0 1/0 1 0 i{0 1 0 1 O 1 0O 1
2 0 2{0 0j2 2|0 0 2 2;{0 0 2 2 0 0 2 2
i 310 1j2 30 1 2 3]0 1 2 3 0 1 2 3
4 0 O 4 0O 0 O Of{4 4 4 4,0 0O O O 4 4 4 4
1 510 1 0 1|4 5 4 5,0 1 0 1 4 5 4 5
2 0 6|0 0 2 2|4 4 6 6/{0 0 2 2 4 4 6 6
1 710 1 2 3|45 6 7{0 1 2 3 4 5 06 7
8§ 0 0 O 8 0O 0O OO OO O 0|8 8 8 8 & 8 8 &
1 9|0 1 0 10 1 0 18 9 8 9 8 9 89
2 0 10{0 0 2 2 0 0 2 2|8 81010 & 81010
1T N 0 1 2 3 0 1 2 3|8 91011 8 91011
4y 0 0 12 |0 0O O O 4 4 4 4/ 8 8 8 81212 12 12
1 1310 1 0 1 4 5 4 518 9 8 912131213
2 0 14 {0 0 2 2 4 4 6 6|8 8 10 10 12 12 14 14
1 150 1 2 4 5 6 T7{8 910 11 12 13 14 15
where the column subring factorization chain
0,2, S; S, S5 is defined by '
5, = <1> = {0,1,2,3,4,5,6,71
52 = <3> = {0,1,2,3}
S3 = <1> = {0,1}
where the row annihilator subring factorization chain
{0}=A0 A1 A2 A3 | is defined by
A1 = <8> = {0,8}
A2 = <12> = {0,4,8,12}
A3 = <14> = {0,2,4,6,8,10,12,14}
where L3 is a set of coset leaders of A3 in 0422

L3 = {0,1}



Consider the map f: szz i=> field, defined by
(a1b1+...+akbk) goes to 0181*...*ckak, where c. are
arbitrary elements of the field. Since the coset leader
of Si consists of a basis element not occurring in Si’ and
the annihilator elements do not share basis elements with
their row factoring subsets, we observe from the
orthogonality of the basis elements that the map does not

have to be a homomorphism to give us a 'fast' factorable

recursive matrix in the field.
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Chapter 1II
Factorization of Finite Rings

Mapping to Fast Transform Matrices

We have seen examples of the factorization of the row
and column entries of the multiplication tables of finite
rings which were associated with the well known fast
Fourier transform and fast Hadamara transforms. We would
like to examine sufficient conditions involving the ring's
factorization and an 'exponential' map to a field which
will guarantee factorization and fast multiplication of
the field matrix times a column vector. As motivated by
the previous examples, a more general form of a ring's
factorization for a single stage is depicted in figure 3.

Representation and the Exponential Map

First we should consider the mechanism for
translating the factored ring table into a matrix of
elements of the field. This depends on an 'exponential'
map from the ring to the field. 1In order to represent
elements of the ring we pick a minimal additive generating
Set of elements of the ring, {b1,...,bk}. We ﬁse this set
as a 'basis' for the ring so as to establish a unique
representation of each element in the ring, i.e.

r = n1b1+...+nkbk where the n, are integers.

The 'exponential' map is a mapping f:R->F, which
takes each basis element bi of the ring to an element Wi
of the field, i.e. b, i=> W., SO that a linear combination

1

of the basis elements is carried to a product of powers of
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Figure 3. One stage of the factorization of a ring's
multiplication table. The set Si={Sj} is the column factoring

subring. The gj are representative coset leaders of Si factoring

Si-1' The aj's belong to Ai, the row factoring annihilator ring.
Li={1j} is a representative set of coset leaders of Ai factoring
A, ..

i+1

g, *+ Si gé»+ S, ces g. + S,

* *
a, + . (a1+Li) (g1+Si) a1g2+Lig2+LiSi+a1Si . (a1gj+Li) (gj+Si)

k
11 a2g2+11g2+11si+a25i
12 32g2+12g2+128i+a28i
* *
a, + . (a2+Li) (g1+Si) . . (a2gj+Li) (gj+si)
lk a2g2+1kg2+lksi+a2si
1

#* *
a + . (am+Li) (g3+si) amg2+Lig2+LiSi+amSi v (amgj+Li) (gj+si)
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the W i.e. (n1b1+...+nkbk) R w1n1*...*wknk. Given a

factorization of the row and column entries of the ring's
multiplication table, entries within the table will be
derived from the product of the factored row and column

; o ) ¥ - *
elements of the table, i.e. (ai+lk) (gj+sm) = a ¥*g, +

J

1 ¥g. + a.¥%s_  + 1 *sm, (see figure 3) where a; is an

k =] i "m k
annihilator element, lk is an element of the row
'representative leaders' factor set, gj is a column
decomposition coset leader, and Sm is an element of the
column factoring subring. Note that if the map f 1is a
homomorphism then we are guaranteed that the sum of the
four addends in the ring will map over to the field as
though the map was being applied to each addend
independently, i.e. f(a+b+c+d) = f(a)¥f(b)*f(c)¥f(d),
producing a product of four factors in the field, thus
allowing the successful factorization of subblocks of a
stage into four matrix products as depicted in figure 4,
If f is a homomorphism, then since R is a finite ring all

the basis elements bi have finite order implying that the

i . .
w- are roots of unity, i.e. n *bi = 0:for some ny, SO

i
that f(n ¥b,) = £(0) = w."i = 1. If f is not a
homomorphism, then we face possible cancellation of sums
of basis elements in the expressions producing entries in
the ring's multiplication table, which will then possibly
produce missing factors in the field matrix produced by

the mapping f.

The homomorphism requirement becomes unnecessary if
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1) the 'basis' elements of the ring are orthogonal under
multiplication, i.e. the multiplication of any two
distinct basis elements produces zero.

2) the column coset leaders do not share any basis
elements with the elements of the column factoring
subset,

3) the annihilator elements share no basis elements with
the subset of representative leaders which factor the
rows, and

4) the annihilating element; a; in fact do take all the
elements Sh of the column factoring subring to zero
under multiplication.

This way the three remaining possibly nonzero elements of

the ring entry sum have no basis elements in common. Thus

when mapped to the field F by an eprnential map, the
three remaining addends make an independent contribution
to the product without the necessity of a homomorphism to
cope with possible cancellation in the ring when sums of
the 'basis' elements are taken. This allows the wi's to
be arbitrary, even 0. These four‘requirements are met by

the & Z

klo example ring given for the Hadamard transform.

Row and Column Factoring with its
Implication for Complexity

In our previous examples, the colﬁmn entries of the
multiplication table were factored by an ideal. The
columns could be factored just as well by a subring
considering the factorization as that of an additive

group. It is even possible that the columns could be
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additively factored by a mere subset. In our previous
examples the rows were factored in an 'inverted' coset
fashion, with the actual annihilator ideal (only
necessarilly a subring) elements acting as 'leaders', and
a set of the representative coset leaders of the
annihilator subring factorization acting as the factoring
subset. Let us consider whether it is necessary for the
'annihilator' elements to take all the elements of the
column factoring subset to zero. Observe in figure 4 the
translation of one subblock of the ring's table into its
corresponding matrix product’representation in the fiela
produced by the given exponential map. Observe in figure
5a that the product of these four matrices will multiply
subvector Vj of the coluﬁn vector V. Submatrix X is the
basic computational unit common to all the subblocks. If
matrix Tk is not a scalar matrix (constant times the
identity matrix), but rather a diagonal matrix as written
in figure 4, this forces the product of X times a vector
to be done in all j¥j possible cases assuming both the
rows and columns factof into j pieces, (unequal splits are
mentioned in later sections on Nonsingularity; Speedup,
and the corresponding recurrence relation is developed and
solved in the Appendix), resulting in a needlessly
complicated recursive O(n2) multiplication algorithm.
Observe figure 5a to see the necessity of all these
products as although the Tk are the same across each row

of subblocks, the Tk are different for different rows,



Figure 4.

(a +Li)*(g

e 3

f(a2g3

f(a2g

——

3)*f(lkg

f(a283)

f(a28

e3

Subblock

+S.)
i

)*f(11g3)*f(1151)*f(a251)
f(a2g3)*f(12g3

3
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2,3 of stage i of the ring factorization

‘ a253+11g3+11si+a2$i

+1_S.+a,S

a,85+1o85+155, 43,5,

= (a2*33)+(Li*g )+(Li*Si)+(a2*Si)

3

a2g3+1kg3+lksi+a2$i

—— ed

Maps to the field as:

. f(a2g3)*f(l1g3)*f(11sp)*f(a25p)
)*f(1251)*f(a251) .o f(a2g3)*f(lzg3)*f(lzsp)*f(azsp)

%*
f(a2g3)*f(lkg3)*f(1ksp) f(azsp)

%* %*
) f(lks1) f(a251) .o
Factors in the field as:

f(11g3) f(11s1) . f(11sm)

*

3"
-

f(lkg

3)

f(lks1

—

. f(lksm)

-—




Figure 5a.

C11D1XT1

C21D1XT2

C31D1XT3
C 1D1XT

y 4

C .D.XT
mi 1 m

—

1

Figure 5b.

11D1X

21°1
c3qD%

cu1D1X

cm1D1X

Lemme

Figure 5c.
€11

€21

031

Cy1

ml
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General form of field matrix resulting from the mapping
of one stage of a ring's multiplication table (with
notation as in text) shown multiplying a column vector.

C12D2XT1

C22D2XT2

C3oPXTy

CyoPXTy

Cm2D2XTm

C13D3XT1

C23P3XT;

C33P3XT3

Cy3P 3Ty,

Cm3D3XTm

C1nDnXT1

7

3

D XT
nn

C, DXT
nn

2

3

CunDnXTu

C_ D XT
mn n

m

—

-

Assuming the Tj are scalar matrices, they commute

with DiX and can be combined with the Cij scalar

matrices to form the following matrix where c, . is

a scalar constant.

c12D2X

022D2X

c32D2X

042D2X

cm2D2X

c13D3X
023D3X
c33D3X
cu3D§X

cm3D3X

1nDn
2n n
‘3n n

4n"n

mn n

1J

L]

The matrix product in 5b can be rewritten as

¢12

€22

032

Cyo

me

013

023

c

33

043

m3

—_
c
in

c2n

c

3n

cun

mn
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meaning that for all subblocks X will be multiplying
possibly distinct vectors. However if the matrix Tk is
scalar, then Tk will commute with matrix X so that the

four matrix product becomes C__D.T . X. If all the T

rel 3Tk are

k
scalar, then the product of X times the Vj need only occur
once for each of the j subvectors Vj' To finish the
product evaluation for each subblock it is only necessary
to multiply the appropriate X*Vj by the diagonal matrix
product CrcDka which requires n/j multiplications, where
n is the number of columns in this stage. Since there are
j¥(j-1) subblocks requiring multiplication by the CrcDka
diagonal matrices (all but the first column of subblocks),
we have j¥(j-1)¥n/j = (j-1)%¥n additional multiplications
to perform after the.computation of the J distinct X*Vj
matrix time; vector subproblems, in order to complete the
computation for one stage. For counting the number of
additions, recursively we have j size n/j subproblems,
which when coﬁbined to produce an answer require j
summations (one for each of the j row splits) of j vectors
(one for each of the j column splits) of length n/j
costing j*¥((j=-1)¥n/j) = (j-1)¥n additions. Thus the same
number of additions are required as multiplications.
Recursively applying this process to X and its descendents
leads us to the following recurrence relation for the
count of multiplications or additions (assuming for

simplicity each stage splits rows and columns into j

pieces) : T(n) = j*¥T(n/j) + (j-1)*n, which has an O(nlogn)
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solution.

The matrix Tk in the four matrix field product of
figure 4 is derived from the product of an 'annihilator'
element times the elements of the column factoring subset.
Since the product ai*sm, 'annihilator' element a; times
the elements Sm of the column factoring subring (or
subset), is the same for each column of the subblock we
deduce that the matrix Tk postmultiplies basic subblock
matrix X in this produét. If aj is a genuine annihilator
of all the elements of Si’ then the map to the field will
result in the Tk matrix being the identity matrix. For Tk
to be a scalar matrix, all that is necessary is that each
'annihilator' element 'levels' the e}ements of Si’ i.e.
takes all the elements of Si to the same constant,
possibly a different constant for each annihilator element
of Ai' If Si is a subring or else a subset containing the
element zero, then necessarily the constant will be zero
and the 'annihilator' elements will be true annihilators.
The set of elements {gi} taking Si to some constant,
possibly a different constant for each element ajs does
form a subring since it is closed under addition and
multiplication and contains the element zero. We shall
see that we want to use the whole annihilator subring for
factoring, rather than a subset, to maxiﬁize speedup and
also to prevent singularity of the fesulting field matrix.

We have seen that possibly the column factoring

subrings Si could be subsets and the row 'annihilator'
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elements need only 'level' or take the elements in Si to a
. % _
constant, i.e. {ai Si} z {ci}.
Suppose we are given a chain of subsets which factor

R, R:SOZ>S1:>S D...28 where each Si+1 is a maximal

2 k’
factoring subset of Si, (maximal factoring subset means

that no set S properly containing Si is a factoring

+1
subset of Si). Correspondingly, we -will require a chain
of distinet subrings {O}C1A1C.A2CQ... CAk, which are
maximal and 'level' their corresponding Si's. We would
like to show that given the above conditions, without loss
of generality we may as well consider the Si's to be
subrings and hence the Ai's true annihilator subrings.
Pick an arbitrary element sj from Sk‘ Form the chain
R=So={5}D 5,-{s,1> S,-{s;}D> ... 2S5, ~{s5}. The element
zero is a member of every subset‘of the chain. Notice
that the chain of 'leveller' subrings are true annihilator
subrings for the new chain of column factoring subsets,
i.e. a*(s-sj):c-c:o for aEiAi, SES,. Now, take the
additive and multiplicative closure of each of the new
subsets so as to obtain the chain R=502>§1:>§2:1;..:>§k of
subrings. Notice the chain of {O}C.A1CLA2C:...<:Ak still
annihilate the corresponding §i. Since we have assumed

that Si+ factoring Si was maximal, starting with i=0,

1

increment i comparing the ratio of :Si/si+1: with
:Si/si+1: until either i reaches k-1 or until the ratios

are different, i.e. :Ei/g.

1+1§ is smaller. If i reaches

k-1, then the chain R:>S1-{sj}3 ...:>Sk-{sj} is a maximal
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chain of subrings factoring the columns, since SiC §i and

{Si? z §Si}. If a different ratic is reached before i
reaches k-1, then create the chain R:SoD §1+{sj}D cesD
§k+{sj}. This chain is identical with the original chain
. . . < | '
through position i. We have Si+1C'Si+1+{sj} and 'Si+1' <
'S,

+{sj}}, since S, was assumed a maximal factoring

+1
subset of Si’ we have arrived at a contradiction. So
there must not have been an i which gave us different
ratios, implying the chain of maximal subsets was at worst
a chain of cosets of a chain of subrings, easily
translatable to a chain of subrings. Notice also that if
two Sm-{sj} and Sh'{sj} for m<n generate the same subring
we could not have had Am and An maximal and distinct for
levelling Sm and Sn since both Am and An annihilate this
same subring.

Therefore, without loss of generality we might as
well consider the chain R:SOD 51:>SZD ...:>Sk to be a
chain of maximal subrings, and the chain {O}:AOC.A1C.A2C
..._C.Ak to be a chain of maximal true annihilator subrings
of £he corresponding Si's. From later observations on
speédup and orthogonality of the field matrix, we prefer
or need the maximality of both chains.

Noﬁsingularity of the Field Matrix

Given the factorization of the ring's multiplication

table, we want to know under what conditions the resultant

matrix in the field will be nonsingular. Recursively, if

we consider the matrix product of the entire block of one
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stage of the factorization times its portion of the column

vector (see figure 5b), we observe that

1)

3)

4)

5)

if the basic subblock X is singular, then so is the
whole block and the whole matrix,

if any of the diagonal matrices D1,D2,... are
singular then it is possible to pick a nonzero column
vector which is taken to zero, so that again the
matrix is singular.

if the matrix of the field elements corresponding to
the product of the row annihilator and column coset
leader for each subblock (see figure 5c¢) 1is
nonsingular and the diagonal Dj's and the basic
subblock X are nonsingular, then the whole block is
nonsingular. This follows since figure 5b is
equivalent to figure 5c where (DJ.X)*Vj are
effectively arbitrary vectors because of the
nonsingularity of (DjX).

If at any stage of the factorization the rows split
into more subblocks than the columns, then we can
create a zero row as a linear combination of the rows
corresponding to the same row factoring subset
element. See figure 6 for an example. Thus if we
desire a nonsingular field matrix then we must have
the ratio of :Ai+1/AiI <= {Si/Si+1{.

If an annihilator element exists for an Si’ but is

not contained in Ai, then for that stage there will

exist a linear combination of the rows associated



Figure 6. Singularity of the field matrix will result if the
ring factors into more row sets than column sets
for any stage.

ﬂ;; c12D2X c13D3;- "~V1——
X 022D2X 023D3X v
X egDX ey DX 2
X 042D2X CM3D4X V3
e J— L—

Since the above matrix product is equivalent to

1 012 013 D1XV1
1 c c
22 23
1 c c D2XV2
32 33
1 042 043 D3XV3

This matrix is clearly singular, i.e. a zero row can be
produced by simple row elimination.

22
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with this element in the row factor sets which will

sum to zero, hence causing singularity. This follows

easily from having one more row available than the

number of scalar multiples of identical subsegments

contained in the rows, with a zero row being produced

in a similar fashion as the elimination in figure 6.

Speedup

Since more row factors than column factors in the
ring factorization leads to singularity in the field's
matrix, we are left with either an equal number of row and
column factors or else more column facﬁors than row
factors as possibilities. Equal numbers of row and column
factors leads to the recurrence relation T(n) = j¥*T(n/j) +
(j=1)¥n for the number of operations, which has an
O(nlogn) solution. Having more column factors than row
factors leads to a two variable recurrence relation for
the operation count, T(n,m) = j*¥T(n/k,m/j) + k*m*(j-1)/]
where n is the number of rows, n the number of coluﬁns, k
the number of row splits, and j the number of column
splits, whiéh still haé an O(nlogn) solution (developed
and solved in the appendix). Even if at each stage we
have a different ratio of column factors to row factors,
we can bound the operation count by the largest ratio to
find that the operation count for the ring factorization
approach is bounded by O(nlogn).

Summary

Given a matrix M of elements from a field F, there
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exists a 'fast' multiplication of M times a column vector

V if there exists a finite ring R satisfying the following

requirements:

1)

2)

3)

the elements of R can be uniquely represented in
terms of a minimal additive generating set

{b ..,b } which acts like a basis, i.e. for every r

17°
in R there exists a unique linear combination of the
bi such that r = n1b1+...+nkbk.

there exists a chain of distinct subrings R:SO:>S1:3
...:>Sk where Si+1 is maximal factoring Si’ i.e. no
larger S:)Si+1 factors Si' Note: the weaker
assumption that the Si are just subsets leads to the
conclusion that the Si are either subrings or cosets
of subrings. Correspondingly there 1s a chain of
distinct maximal annihilator subrings {O}CIA1C;A2C

...CA for which the product Ai*Si={O} and the

K’
product Aj*Si={O} for j>i.
R and F are related by an exponential map f:R-DF,
such that the range of f is the set {elements of M},
defined on the generators of R by f(n*bi)=win. |
a) if f is a homomorphism then we have

f(n ¥b,+...+n ¥b ) = UL I

which guarantees proper factorization in the field

matrix. Notice the w's have to be roots of unity.
b) if 1) the 'basis' elements are multiplicatively

orthogonal, 2) if the basis elements used to

_represent the column coset leaders for each stage
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do not occur in any of the elements of their
respective column factoring ringé, and 3) the same
holds for the annihilator elements and their
corresponding factoring leader subsets, then we
also are guaranteed factorization in the matrix M
without requiring a homomorphism. This eliminates
the need for the w's to be roots of unity.
Possibilities other than strictly a) or b) exist to
guarantee the proper factorization of the field
matrix M. Take the direct product of a ring which is
factorable from being orthogonal and another which
has a homomorphism, giving us a ring (with operations
defined in componentwise fashion) which satisfies
neither of the two mentionéd sufficient conditions,
but which maps to a factorable matrix in the field.
This map is defined in componentwise fashion using
the appropriate maps for each constituent ring.

4) one necessary requifement for nonsingularity is that
the number of row splits not exceed the number of
column Splits for any stage.

The decomposition of one stage of the factorization occurs
as in figure 1 for the ring and figure 5 for the matrix

produced by the mapping to the field.
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Chapter III
Examples of Factorable Finite Rings

Producing Factorable Field Matrices

Fast Fourier transform matrices of composite order
and the Kronecker products (see appendix) of the matrices
of Fourier transforms of various orders can easily be
described by ring factorizations. Consider the Fourier
transform of composite order twelve associated with the
ring 212. According to our requirement of picking &
maximal column factor group at each stage we can arrive at
the factorization in figure 7a. This factorization
produces a field matrix which when multiplied times a
column vector requires 60 multiplications. If instead we
factor the ring as in figure 7b with a different maximal
chain, again Qe find that 60 multiplications are required.
Let us consider a similar but larger example, again
counting the number of operations for different but
maximal factorizations.

Consider the Fourier transform of order 24, with
columﬁ factorization chain 2243 <2>D <4>D B> with
annihilator chain {0}C <12>C<K6>C<3>. We compute the
number of operations from the recurrence T(n)=j*T(n/j) +
(j-1)%n, where the number of row and column splits happens

to be the same, i.e. equals j, for a particular stage.

T(3) = 9

T(6) = 2%T(3) + 6 = 18 + 6 = 24

T(12) = 2%*T(6) + 12 = 48 + 12 = 60
T(24) = 2%T(12) + 24 = 120 + 24 = 144
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Factorization of Z12 with

Figure 7a.
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If we factor the ring with a different maximal chain as

2o, D<3>D<6>D<12> with annihilator chain {0} C<8>C <4>C

24
<2>, then we get the following operation count.

T(2) = 4
T(4) = 2¥T(2) + 4 = 12
T(8) = 2%T(4) + 8 = 32

T(24) = 3*¥T(8) + 2%24 = 96 + 48 = 144
The number of multiplications (and additions) is the same
in both factorizations, so that at least in these two
cases maximal factorizations lead to equally fast
computations.

The ring Zn 8 Z_ can correspond to the Kronecker

m

product of the Fourier matrices Fn and Fm. See figure 8
for factorizations of Z3 8 Zu leading to both F3 & FN and

F, 8 F,. 1In general, we can form szk which can be

y ° 3 -
_ i
mapped to a sequence of j Kronecker products of the

submatrices Fk in any order. Note that the Kronecker
i
product of a string of Fourier matrices Fk is not

commutative, whereas the ring ®jzki can belinterpreted as
the Kronecker product of the matrices Fki in any order.

This indicates a structural variety of matrices which can
be produced from this ring, although the structures have

the same flavor.

Finite polynomial rings are an easy source of
examples, in fact the Zn Fourier rings are trivially Zn[x]
mod x. A less trivial example is Zz[x] qu xu+1. One
factorization for this ring is shown in figure 9. The
column factorization can be done with a chain of ideals RD>

3

<x+1>D <(x+1)2>2><(x+1) > with the corresponding
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Figure 9. Factorization of ZZ[XJ mod x4+1

Cxeld 1 xeld
Wxe1)?> (xe1) + <xe1)?>
cxend 21y + <txen)3>
A A2 A3 L 0 23axZanet o x3a3 el 3an? Zex e 1 FER 2 e x erZan LR I~
0 0 ) ) o 0 0 0 0 0 o o o 0 0 0 0 o u u u
! 1 ; 0 x3exZexat x2e L el R ex e 1 Sexex ¥ PR x Sexlan Zexsel ]
(xe1) ) xel ; 9 0 exZerer x3exfexan R x2e1 xex xex xe1 xet 3l 3a? x2ex 1éex W e
1 x | 5} x3exlenet x3ex N xex e ax? x+1 x x3exlel X3 Zexel 2 wdexe exfex 1
(xe1)? o 0 21 ; 0 0 0 0 x3exlexet Wexlexet FENCIN K3exfexer 21 21 20 2 Sex 3ex xSex xlex
1 $¢ . 5 FERC 2 x3ex x3ex? 1el 231 xex 2 ez ' 2exlex 3 xaxel e x
(xets 0 e ; > o Salerer Bafaa wdex dex e et FL L Ba G 3a? 23ex? e et
1 xZexet ; 3 dexZexar ex 2t R x2ax et xexf xexel 3 x3exlet x x3exfen 1 X xSexet
(a1 0 ¢ o PRI 5 o 0 0 o u M " erZeret wdexferet Bexfexet x3erferet Bl Bafae afaer Pafan
1 FERR i z dexexer FE PENS X+ exé x€ex xted exex 1 xexet 2 xexlal x 3 xexet
(xe1, 0 x3ex? 5 3 Bexlex® xexlexet X et xSex xdex P x3ex? xel xel X3t PR xex x€ax
1 FERC ; 3 xexexet ex xEal xZex x3e1 x2ex? xel x3exlin x xZexel X3 xexet .2 1 x3exex
(xe133 ¢ o . ; G c o Fexleret  Bafara Fafue Pefen Sax Sax $ex 3ax 221 2 x2et x4
1 Kaxel ; 0 W3exlexet e Sex e xe ! X2 xCex o x x3exlex 1 P 2 x x3exet
(xe1) o w3 ; ° 0 Sexlerer el FEN ex 2 e 3 3 s . et xel axé Sex?

1 X3 ; ) exexal ex “a N xex xel xaxf 3 axet . x3ex2at 1 FERFLR et ¢



annihilator chain {0}C <(x+1)3>C1<(x+1)2>C.<(x+1)>. We
have numerous alternatives for a basis set, for example
{1,x,x2,x3} or possibly {(x+1)3,(x+1)2,(x+1),1}. If the
exponential map carries the basis elements into the second
roots of unity, 1 and -1, then the exponential map will be
a homomorphism thus guaranteeing factorization of the
field transform matrix. Hadamard matrix, e.g. map the
bésis elements (x+1)2, (x+1), and 1 of the ring to the
element 1 of the field, and map (x+1)3 to the element -1
of the field.

Another example of a polynomial ring'is Zu[x] mod
x2+1. In this case (figure 10), the column subring
factorization can be done with RDO<x+1>2 <2>D <2x+2>. The
annihilator factorization is again a chain of ideals {0}C
2x+2>C 2> C<x+1>. A minimal additive generating set is
{1,x+1}. Although there are only two basis elements, we
could choose to represent the set of elements generated by
a single basis element in a 'radix' notation, using a
multiple of a basis element as a place holder. We could
choose to represent elemehts of this ring uniquely in
terms of {1,2,x+1,2x+2}. This would require relations on
the elements of the field F such that

w1*w1=f(1)*f(1)=f(2)=w2 and
w3*w3=f(x+1)*f(x+1)=f(2x+2):wu, with wz*w2:1, wu*wu=1.
This would suffice to give us a homomorphism providing

factorization, as no orthogonal basis with four elements

is available here. This ring will not map into a Hadamard
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Figure 11. Field matrix resulting from ZMEXJ mod x2+1 with the
map 1=> =1, x+1 |=>1
0 2 x+1 X+3 1 3 X+2 X
2X+2 2x 3x+3 3x+1 2x+3 2x+1 3x 3x+2

0 |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1T =1 -1 i -i i |-1 1 -1 1 i -1 1 ~i
x+1 1 1=-1 =1 =1 -1 1 1 ]-i -1 i i i i -1 -i
x+2 |1 =1 ]-1 1 i =i =i 1i}{4i -1 -i 1 -1 1 1 -1
2 |1 1 1 1 -1 =1 =1 -1 1 1 1 L B I B
301 -1 1 -1 i =i i -i |- 1 -1 1 -1 i1 -1 i
X+3 1 L I 1 1 =1 =1 (=1 =i i i -i -i 1 i
X 1T -1 - 1 i-1 1 1 -iji -i -i i L I 1
2x+2 | 1 1 1 1 1 1 1 1 {=1 =1 =1 =1 =1 =1 =1 -1
2x+3 1 -1 1 -1 -1 i -1 i 1 -1 1 -1 -1 i -1 i
3x+3 1 1 =1 =1 =1 -1 1 1 i i =i -i -1 -i 1 1
3x 1 =1 -1 1 i =i -i i4j-1 i 1 -i 1 -1 - 1
2% 1 1 1 1 =1 =1 =1 =1 (=1 =1 =1 - 1 1 1 1
2x+1 1 -1 1T -1 i -1 i -1 1 -1 1 -1 i -1 i -i
3x+1 1 1 =1 -1 1 1= -1 i i -i -i i i -1 -i
3x+2 11 =1 =1 1 =i i1 i -i |-i 1 i =i -1 1 1 -1
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matrix, although the assignments (see figure 11) 1 {=>
-1, x+1 {=> i allow the field matrix to factor into a
nonsingular 16x16 matrix using &all the fourth roots of
unity.

Another example comes from the ring of 2x2 matrices
over Z,, (see figure 12). This noncommutative ring can

have its columns factored by the chain R {88,?8,8?,??},

. Sy . . 00 00 10 10
with the annihilator chain {0} {00,10,00,10}.

This
splits the matrix into sixteen 4x4 subblocks which
unfortunately cannot be factored further by a column
subring which can be annihilated. However, the
assignments 88,?8 {=> =1, and 88,8? 1=> 1 produce a 16x16
Hadamard matrix.

Finally, we give an example using the orthogonality
of the basis for szz to get a resulting field matrix with
entries not being roots of unity. Observe figure 2 for
the ring szz, previously associated with the Hhadamard

transform. If we map all the basis elements {1,2,4,8} to

zero, then we will produce a recursive matrix in the field

n+1 1

with zero (not a root of unity) occurring in the matrix.
This transform was used by Cull in calculating statistics

of neural nets.
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06 ©0CG 00 00 106 ¢ 16 10 01 01 C1 ©O1 11 11 N

00 10 01 11 00 10 01 11 0G 10 01 11 00 10 01
—

00 00 00 00 OO0 0C 00 00 00 0C 0C 00 00 00 0OC 0C
[ 00 00 00 00 00 00 00 00 OO0 00 00 00 0OG 00 OC 00
i
% 00 00 00 ©00 OO0 00 00 00 00 00 00 00 OO 00 OC 00
j 00 10 01 11t 00 10 01 11 00 10 0% 11 00 10 01 M
‘00 10 01 11 0C 10 01 11 00 10 01 11 00 10 01 11
1 00 00 00 00 00 00 00 00 00 0C 00 00 00 00 00 00
00 10 01 11 00 10 01 11 00 10 O1 11 00 10 01 1
. 0C 10 0O1 11 00 10 O1 11 00 10 O1 11700 10 01 11

0C 00 ©00 00 00 00 00 00 0C 00 00 0C 00 0C LG QU
00 00 00 00 10 10 10 10 01 01 01 01 11 11 11 N
.00 00 00 00 00 00 00 00 00 00 U0 OO U0 0L 0OC 00
00 10 01 11 10 00 11 01 01 11 00 10 11 ©C1 10 00
. 00 10 O1 11 00 10 01 11 00 10 01 11 00 10 O1 11

00 00 06 00 10 10 10 10 ©1 01 01 01 11 11 11 M
i 00 10 01 11 00 10 01 11 ©00 10 01 1% 00 106 01 N
i 00 10 ¢1 11 10 00 11 ©01 01 11 00 10 11 O 10 00

oc 00 00 00 16 10 10 1C 01 Gt 01 01 11 M 1111

0OC 0C 0G O0C 00 00 O0C O0C 00 00 00 00 OO 00 006 00

G0 00 00 00 10 10 10 10 O1 ©1 01 01 11 11 11

00 10 01 11 00 10 01 11 00 10 01 17 00 10 01

0¢ 10 01 11 16 00 11 €1 01 01 00 10 M a1 10 00

00 00 00 ©0GC O0C 00 O0C 00 00 0C 00 0G o0C 00C 00 00

00 10 01 1M 10 00 01 01 11 00 10 11 01 10 00

00 10 O 11 00 10 11 006 10 01 11 0C 10 O1 11

00 0C GC 0C 106 3¢ 10 ¢ 01 01 01 O©1 11 11 i

oG ©C oC OC 1C 10 - 10 10 061 ol 01 01 1 11 11

0C 00 00 00 10 10 1C 16 G1 o1 01 01 1 i1 11 11

00 10 01 11 10 0C 11 01 01 11 00 10 11 O 10 00

oC 10 01 11 10 C0 11 01 01 11 00 10 11 01 Go

00 0C o©0C 00 10 10 1 01 €1 01 01 11 1M 11

06 1 01 11 1C 00 01 01 00 10 11 01 10 00

00 10 01 11 16 - 00 01 01 00 10 1Y 01 10 00

where the columns are factored by the subring
¢ . (00 00 00 00,
BTN 00M107017 v
where the rows are factorec by the annihllator SuUbring
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Chapter IV
The Use of Infinite Rings to Produce

Finite Factorable Field Matrices

If we limit ourselves to the factorization of finite
rings, is there a direct correspondence of rings with
matrices factored in the form of figure 5b? Suppose we
pick for a field matrix the upper left quadrant of the
matrix shown in figure 13b, which is produced from the
ring multiplication table for 29 (shown in figure 13a)
mapped by the natural homomorphism from 29 to the powers
of the principal ninth root of unity. Unfortunately, this
matrix has all the distinct ninth roots of unity occurring
as entries, which is too many for a six element ring's
table to produce. This suggests allowing the deletion of
some of the rows and columns of the ring's multiplication
table, before mapping the table into z field matrix.

As previously stated, a factorable field matrix can
be obtained from a factorable finite ring's multiplication
table if the exponential mapping is a homomorphism, or if
four conditions including orthogonality of the basis
elements are met. Homomorphism implies mapping the ring
basis elements to roots of unity, whereas the
orthogonality conditions allow the ring basis elements to
be mapped to arbitrary elements of the field. Selective
deletion of elements and groups of elements from the row
and column entries of the table not only will allow ring

factorization of matrices of the sort of figure 13b, but



Figure 13a. Factorization of Z_. with column factoring subring

and annihilator subging
S=4A=<3>=1{0,3,6}
A L A <3> 1+<3> 2+<3>
0 3 6 1 4 7 2 5 8
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 3 6 1 4 7 2 5 8
2 2 0 6 3 2 8 5 4 1 7
0 3 0 0 0 3 3 3 6 6 6
35 1 4| 0o 3 6 4 7 8 |8 2 5
2 5 0 6 3 5 2 8 1 3 1
0 6 0 0 0 6 6 6 3 3 3
6 1 7 0 3 6 7 1 4 5 8 2
2 8 0 6 3 8 5 2 7 4 1
Figure 13b. Natural map of Z9 factorization to the ninth
roots of unity
1 1 1 1 1 1 1 1 1
1 W We W WW wwW W, w2w3 W We
1 we w3 W, WoW e w2w3 L WyWe wuw3
1 1 1 w3 w3 W We o Wg We
1 W we Wy wuw3 WyWe w8 w8w3 w8w6
1 we w3 w5 w5w6 w5w3 W wWe ww3
1 1 1 we we we w3 w3 w3
1 W We w7 w7w3 w7w6 W w5w3 w5w6
1 W w3 wg WoWe w8w3 W w7w6 w7w3

-3
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also will allow the use of characteristic zero rings which
make no special requirement on the exponential map or
basis of the ring in order to guarantee the factorization
of the field matrix, since there is no cancellation |
problem under addition in the ring.

With a characteristic zero ring we are immediately
struck by the problem of an infinite number of eléments
factoring into possibly én infinite number of infinite
size cosets. For the basic column factoring set we use a
carefully selected finite subset of a parent factoring
subring. In addition, we only use a selected finite
number of the possible shrunken cosets of the
factorization.

Are there infinite rings from which we can construct
a factorable finite table? Consider the ring of nxn
matrices over the integers. The chain of parent subrings
which factor the 'columns' of the table will be nilpotent
matrices of the following form, R:SOD 813 52) ...i)Sn_Z,
where Si is upper triangular with nonzero entries
occurring only in columns two through n-i. The Si are
subrings since they are closed under addition and
multiplication, and contain the element zero. Note that

S. leaves the last column as zeroes, a convenience for

1
annihilation. The annihilator chain {0} C A1C A2C1...C_

A have the Ai being lower triangular nilpotent

n-2"

matrices with nonzero entries occurring only in columns

i+1 through n-1. Observe that Ai does not annihilate Sj
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for i>j, which is what we want if the annihilator rings
are to be maximal and distinct.

Is it possible to select a portion of the above rings
infinite factored table to arrive at a finite table
translating to a useful field matrix? For our parent
column factoring subrings we select RZ>S12782, with the

elements b=c=g=1.

0beO 0bo0oO
S, = |00¢g0 S,= (0000
0000 0000
0000 0000

For the parent annihilator subrings select {O}CfA1C;A2,

with the elements j=n=x=1.

[eNeleNe
[eNeoNeoNe
¥ OO0 0O
[eNeoNeoNe
[eNeoleNe
S L. OO
¥ OO0 O
[eNeoNeoNe

If we represent 4x4 matrices which have a value 1 in a
particular entry by a string of characters representing

the sixteen positions sas:

abecd 0010
e fgh ick = 0000
i jkl 1010
mnzix p 00O0O

Using this notation we can depict a selected finite field
table for this parent ring structure as in figure 14.

This factorization gives to a Hadamard matrix with the

mapping x i=> 1, j,p {=> -1. The mapping x i-> 1,

j,p 1=> 0, gives the example zero/one matrix.



Figure 14.

characteristic zero ring.

i i
n 0 n
i xi
X 0 0 X
i xi
n 0 xn
i xni

Multiplication table of finite selection of

l+S1
0 b g gb 1 1b 1lg 1gb
0 0 0 0 0 0 0 0
0 J 0 J 0 J 0 J
0 0 X X 0 0 X X
0 J X xJj 0 J X XJj
0 0 0 0 0 P p
0 J 0 J P pJ pJ
0 0 X X P P pX pXx
0 J X Xj | P PJ pPx  PXJ]

This factorization gives a Hadamard matrix with mapping

X 1=>1, J.p i1=> =1,
The mapping x i{-> 0,

matrix.

j,p I=> 0, gives the example zero/one

40



41

Chapter V
Comparison of Matrices Producable from
the Factorization of Rings and from

a Generalized Kronecker Product Technique

The factorization of a ring's multiplication table
gives an algebraic view of symmetry giving fast matrix
multiplication. There exist generative techniques which
build matrices directly from submatrices of the field
which cannot be produced by a mapping from a ring's
multiplication table.

Fino and Algazi present a technique utilizing a
'generalized' Kronecker product. For a set {Ai}
i=0,1,...,m=1 of m nxn matrices, and a set‘{Bj}
j=0,1,...,n=-1 of n mxm matrices, an mn Xx mn matrix is
produced using the following operations:

1) row and column permutations
2) multiplication of rows or columns by a foot of unity

(or constant)

3) generalized Kronecker product, using sets {Ai} and

{Bj}, define {A} 8 {B} to be the square matrix C of

order mn X mn such that:

w 1
C. .=¢C .= A" *BY"  uhere
i,] um+w,u ' m+w u,u Wy W
i = v¥m + w, u,u' = 0,1, ,n=1
j=u¥m+ w', w,w' = 0,1,...,m=1

These generative rules are applied recursively to build a
fast matrix. See figure 15 for pictorial representation

of the generalized Kronecker product. In the case that



Figure 15. The generallized Kronecker product of two sets
of matrices {A'} and (B} denoted by {4} € {E}

can be represented in block matrix form by:

DOOBO D01B1 DOZBZ e DO,n—1Bn—1
D10B0 D11B1 D12BZ ttt D1,n—1Bn—1
DZOBO D21B1 D22B2 tet D2,n—1Bn—1
DBOBO D31B1 DjZBZ .o D3,n-1Bn—1
Dm-1,OBO Dm—1,1B1 Dm-1,262 tte Dm-1,n--1Bn

where the diagonal matrices Dij have their entries taken

from the A1 matrices as follows:

"
o

D.. .
1] 1]

m=-1
i)
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all the a1 in the set 1A'} are identical, and all the BJ
in the set {Bj} are identical, this definition produces
the normal Kronecker product.

The important differences between the factored field
matrices produced by the generalized Kronecker technique
and the ring table technique are made evident by examining
the comparison in figure 16. The ring technique has a
single subblock X occurring throughout the matrix which is
modified by a fixed diagonal matrix for each column of
subblocks of the factorization premultiplied by a
different scalar element for each subblock of the matrix.
The first column of subblocks can be viewed as having the
identity as the diagonal matrix, premultiplied by the
scalar.vaiue one. The generalized Kronecker product
allows a different basic subblock for each column of
subblocks of 2 given stage, which requires the same number
of subblock matrix multiplications as with the ring's
.field matrix. Also, each subblock of the matrix is
premultiplied by an distinct diagonal matrix. This
factorization gives fast-multiplication with the same
operation count, but with more generality than that of the
ring approach.

When applied to actual example transforms, the set
{BJ} usually consists of a fixed matrix B. This
formulation, by still allowing arbitrary premultiplying
diagonals for subblocks, is still more general than the

ring approach. However, the ring approach still gives a



Figure 16.

The generallized Kronecker product technique of Fino
allows the following recursive form for each stage
of a factorization of a field matrix.

Dq2X5 D,3%3 Din¥n Vi
D22X2 D23X3 oo D2nxn V2
D D oo

32%2 33%3 Dan¥n Vs
Du2x2 Du3x3 Du Xn V)_l
Dm2x2 Dm3xu oo Dmnxn Vn

Recall the general form for a field matrix produced by a
mapping for a ring:

1171

211

c31D1X

c12D2X c13D3X .o c1nan v1
c22D2X c23D3X .o CZnan V2
c32D2X c33D3X c3nan V3
cu2D2X cu3D3X .o °unan vu
cm2D2X cm3D3X .o cmnan Vn

4y
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handle on thé structure of the symmetry of the factored
matrix.

One example transform having a description using the
general Kronecker product is the Haar transform which has
an unfactored form as in figure 17. When rearranged by
row and column permutations (figure 17), notice that other
than 1) the normallizing factors multiplying the rows of
the matrix, and 2) the large portions of the matrix masked
out with zeroes, this matrix has the symmetric form of the
previously discussed Hadamard matrix. In figure 17, the
entries 1,2 and 3 represent the first, second and third
powers of the square root of two, the letter e represents
the number 1. The form can be described by:

H I _*H 1
n n n 0
= . =1
n+1 n 1
* -

In Hn Hn 0

Since the multiplication In*Hn times its portion of

the c¢olumn vector is already computed in both cases
(except for a negation), the cost for the lower left and
upper right subblocks is one multiply and two additions.
Thus the recurrence relation for the cost of the
computation becomes T(n) = 2¥T(n/2) + 0(1), which has an
O(n) solution as previously mentioned in chapter 1 and

solved in the appendix.
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Haar transform matrix of order 16

Figure 17.

Unfactored form of matrix

- =€

-€

0 -2 =2

0

0 -2 =2

0

0 -2 <=2

0

-2

-2

Factored by row and column permutations

-2

-2

2 =2 =2

2

-2

-2

-2

-2

0

0

0

0
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Chapter VI

Conclusion

In this paper we have investigated the relationship

of a ring factorization with the existence of an

associated fast transform matrix.

Given a matrix M of elements from a field F, there

exists a 'fast' multiplication of M times a column vector

V if there exists.a finite ring R satisfying the following

requirements:

1)

2)

3)

the elements of R can be uniquely represented in
terms of a minimal additive generating set
{b1""’bk} which acts like a basis, i.e. for every r
in R there exists a unique linear combination of the
bi such that r = n1b1+...+nkbk.
there exists a chain of distinect subrings R:SOT>S13
e D Sk where Si+1
larger S'_‘>Si+1 factors Si' Note: the weaker

is maximal factoring Si’ i.e. no

assumption that the Si are just subsets leads to the
conclusion that the Si are either subrings or cosets
of subrings.  Correspondingly there is a chain of
distinct maximal annihilator subrings {O}C.A1C.A2C
... CA,, for which the product Ai*Siz{O} and the
product Aj*Si={O} for j>i.

R and F are related by an exponential map f:R->F,
such that the range of f is the set {elements of M},
defined on the generators of R by f(n*bi)=win.

a) if £ is a homomorphism then we have
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n

) = W, 1%, %y T

1 k k
which guarantees proper factorization in the field

f(n1*b +...+nk*b
matrix. Notice the w's have to be roots of unity.
b) if 1) the 'basis' elements are multiplicatively
orthogonal, 2) if the basis elements used to
represent the column coset leaders for each stage
do not occur in any of the elements of their
respective column:factoring rings, and 3) the same
holds for the annihilator elements and their
corresponding factoring leader subsets, then we
also arg'guaranteed factorization in the matrix M
without requiring a homomorphism. This eliminates
the need for the w's to be roots of unity.
Possibilities other than strictly a) or b) exist to
guarantee the proper factorization of the field
matrix M. Take the direct product of a ring which is
factorable from being orthogonal and another which
has a homomorphism, giving us a ring (with operations
defined in componentwise fashion) which satisfies
neither of the two mentioned sufficient conditions,
but which maps to a factorable matrix in the field.
This map is defined in componentwise fashion using
the appropriate maps for each constituent ring.
4) one necessary requirement for nonsingularity is that
the number of row splits not exceed the number of
column splits for any stage.

This result can be generallized to infinite rings R by
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carefully selecting in bottom up fashion only a finite
number of elements from the ring's factored row and column
entries.

We might hope for an exact one-to-one correspondence
between transform matrices and particular rings, in order
to use rings as a classifying tool for fast transform
matrices. Instead we find a single ring can be
ambiguouSly interpreted as various distinct matrices (i.e.
Chapter III, Figure 8, page 29), or completely distinct
rings can map to the same transform matrix, (i.e. rings
found in figures 2, 9 and 12 can all map to the Hadamard
transform matrix).

If only a single maximal chain for factorization Qf
the ring existed, then a single ring could only correspond
to one factorable form of a field matrix. Variability in
ring factorization resides in being able to choose
different maximal chains to factor the ring. A ring which
can be interpreted as being the direct product of several
rings has maximal chains by factoring using any
permutation of the ring components. Thus, in some Sense
the ring factorization is commutative, however the
matrices obtained from these different orderings are
structurally distinct.

An alternative method exists for generating transform
matrices from elementary matrices utilizing a generalized
Kronecker product. This method allows the generation of a

more general class of matrices than the ring factorization
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technique, (Chapter V for discussion, Figure 16 for
comparison).

Ring factorization provides a useful tool for viewing
the structure underlying typical fast transform matrices,
but is limited in the allowable structure of the resulting
transform matrix and is veiled in the ambiguity of

multiple maximal chain factorizations of the ring.
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Appendix I
Recurrence Kelations
If we examine figure 5b for the geheral structure of

a field matrix arising from a ring's factored
multiplication table, we can determine the recurrence
relation for the operation count for multiplying a
transform matrix times a column vector. For one stage we
t-have to multiply the basic subblock X with n different Vj
subvectors, producing n subproblems of size (M/m)x(N/n),
where M is the number of rows and m the number of row
Eplits, N is the number of columns and n is the number
column splits.. After computing these n subproblems, the
resulting product subvectors XVj need to be multiplied by
the ciij for i=0,1,...,m=-1. Notice that ci1D1 is the
identity for the first column of subblocks so we have only
(n-1)*m products of a diagonal times a vector to compute.
Each of these products requires N/n multiplications for a
total of (n-1)*m*N/n multiplications. If we assume that
the rows split into m segments and the columns into n
segments at every stage, then we arive at a recurrence
relation for the operation count T(M,N) for the
multiplication of a size MxN matrix multiplying a vector
of length N. The recurrence is T(M,N) = n*T(M/m,N/n) +
N*¥m¥(n-1)/n. Notice that if N=M and m=n, this recurrence
simplifies . to T(N) = n*¥T(N/n) + N¥(n-1) which has been
referred to in the text.

We can solve the two variable recurrence as follows:



k

Let M = mJ (be the number of rows), and N = n~ (be the

number of columns), then

k-1

T(j,k)=n¥*T(j-1,k=1) +n" ¥*(n-1)*m

=n*[n¥*T(j-2,k-2) +nk-2*(n-1)*m] +nk-l*(n-1)*m
1% (pa1)¥

n2#T(j-2,k-2) s2nk-1¥(n-1)*D

_.2 » . k-3* % k=14

=n"[n*T(j-3,k=-3) +n (n=1)%¥m] +2n (n=1)#*¥m

=n3T(5-3,k-3) +3nK"T#(n-1)*n

For j <= k this leads to

nI*T(0,k-3) + j*nk'1(n-1)*m
log M

n " *¥T(0,k-j) + j*nk-1
log M

n m ¥T(0,k=-3) + (n-1)/n*logmM*m*N
log n

M m *T(0,k=3) +(n—1)/n*m*logmM*N

T(j,k)

¥(n-1)%m

Assuming M=N to begin with:
we have that since j<=k, then m>=n
logmn
so that logmn <= 1 implying M <= N
T(j,k) = O(NlogM)
In particular, if M=N and m=n, then
logmn
M = N which implies
T(j,k) = T(j) = O(NlogN) for an equal row and
column split recursive breakdown,

If j>=k then

nk*T(j-k,O) + (n-1)/n*j*m*nk

T(j,k)

N*T(j-k,0) + (n-1)/n*m*logmM*N

O(NlogM)
Again considering the case where N=zM and n=m,

we have an O(NlogN) solution.

If we have the recurrence relation for the fast Haar



transform, T(n) = 2¥T(n/2) + 0(1), then

T (k)

2%¥T(k-1) + ¢

= 2%¥[2*T(k-2) + c] + ¢

= 22*T(k-2) + 2c + C

= 22*[2*T(k-3) + c] + 2c + ¢

23*T(k-3) + 220 + 2¢c + ¢

2Ker(0) + (2K-1)e

= O(N)

as previously mentioned.

54
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Appendix II
Definitions

Annihilator: For a ring, an element annihilates a subring
or subset if when the product of the given element
with any element of the subset or subring produces
the zero element.

Basis: For a vector space, a basis is a set of elements
such that evéry element of the vector space has a
unique representation as a linear combination of the
basis elements.

Coset: Given a subgroup S of a group G, we can partition G
by taking as the first equivalence class the elements
of S, then for the second the sum of the elements of
S with an element g4 not in S, i.e. g1+S, for the
next class the sum of S with an element s not in S
or g1+S, and so on until S is covered. The fact that
S is a subgroup guarantees that the preceding sets
are pairwise disjoint and thus are the equivalence
classes of a partition. The sets gi+S are called
cosets of S. The elements g; are called cosét
leaders.

Coset leader: Given a coset gi+S of the group G, the
element g3 is called a coset leader and is not
unique. Any element in the coset gi+S when added to
S will give the same set as gi+S, which implies that
there are S| possible coset leaders for each coset.

A set of representative coset leaders is a collection
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of elements, one from each distinct coset of S in G.

Direcp Product ( S 0O R ): Given two rings S and R, we
produce a new ring using ordered pairs of elements of
S and R where multiplication and addition are the
componentwise operations of S and R, i.e.
(s1,r1)*(52,r2) = (s1*sz,r1*r2). This can be
generalized to any number of components, e.g. Oan.

Group: A set G with a binary operation +:GxG->G such that
1) the operation is associative, 2) an identity
element exists, and 3) inverses exist for all
elements. If the binary operation is commutative,
then the group is called Abelian. If the binary
operation only satisfies associativity, then the
structure is called a semigroup.

Homomorphism: A mapping which relates two algebraic
structures by requiring that the image of the product
of two elemepts in the first structure is equal to
the product in the second structure of the images of
the two elements in the first structure, 1i.e.
f(a*1b) = f(a)*zf(b) where *, is the binary operétion
of the first structure and *2 is the binary operation
of the second structure.

Ideal: For a commutative ring R, an ideal I is a subring
of R such that for any r in R, r*¥I I. A principal
ideal is one which is generated by a single element,
i.e. for some w in I, R¥w = I.

Kronecker Product: Given two matrices A and B, the
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Kronecker product A 8 B is the matrix which has each
element aij of A replaced by the matrix aij*B.

Ring: A ring is an algebraic stucture with two binary
operations, an addition which forms an Abelian group
and a multiplication which forms a semigroup. Also,
the multiplication distributes over the addition.

Subring: A subset W of a ring K such that W is closed
under addition and multiplication, ana contains
additive inverses for all elements.

Subgroup: A subset S of a group G which is closed under

the binary operation and contains inverses for all

the elements of S.



