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The torsion test was evaluated as a method for determining the shear

strength of full-size structural lumber. The evaluation involved an experimental

length study, an experimental depth study, and a finite element study.

The length study consisted of fifty nominal 2x4 specimens, ten specimens

for each length, and ten American Society for Testing and Materials (ASTM)

shear blocks. One 14 foot long board yielded one specimen for each length: (a)

21.0", (b) 28.5", (c) 32.0", (d) 35.5", (e) 39.0", and (f) an ASTM D143-94 shear

block. The statistical analysis revealed no evidence that the length affected the

shear strength.

The depth study consisted of fifty specimens, ten specimens for each

depth: (a) 2x4, (b) 2x6, (c) 2x8, (d) 2x10, and (e) 2x12. In addition, fifty ASTM

shear blocks, one block for each specimen, were tested. The statistical study
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did not reveal convincing evidence of a depth effect on shear strength, even

after accounting for specific gravity and shear span as covariates.

Failure modes for the torsion samples involved a longitudinal shear crack

at the mid-point of the longest side, which propagated toward the ends of the

specimen and through the cross section perpendicular to the growth rings.

The finite element model revealed that uniform shear stress occurs within

the shear span, which begins and ends a distance of approximately two times

the depth plus the grip distance away from each end of the member. In addition,

torsion theory verified that the experimental shear failure plane that occurs

within the shear span is parallel to the grain and the shear slippage is also

parallel to the grain, similar to the known shear failure in specimens subjected to

bending loads.

Based on the results of this study, the torsion test is the best practical

method to determine the pure shear strength of full-size structural lumber,

because the test yields 100% shear failures and the specimen is in a state of

pure shear stress.
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Evaluation of the Torsion Test for Determining the
Shear Strength of Structural Lumber

1. Introduction

As with other materials used in design, the structural properties of wood

must be known in order to design wood structures or structural components.

The properties of wood must be determined with an understanding of the

material's mechanics which include stiffnesses and strengths in bending,

compression parallel and perpendicular to grain, tension, and shear. Historically

these properties have been determined using small clear blocks of wood with

straight grain and free from defects. The current National Design Specification

for Wood Construction (AFPA, 1991) provides design values for strengths in

bending, compression parallel to the grain, and tension parallel to the grain

based on testing large scale specimens of structural sizes. Although

compression perpendicular to the grain and shear strengths remain based on

small blocks, shear strength testing of full-size structural lumber is gaining more

attention. For shear strength testing of structural sizes, shear failures can be

achieved using short and deep beams under bending loads or using any size

beam under torsion loads. Structural lumber specimens provide additional

insights to effects on mechanical properties due to grain slope and defects that

small clear blocks may not provide.
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Although other mechanical failures, such as bending failures or

compression parallel to the grain failures, are more common than shear failures,

shear failures do occur in service and must be accounted for in design. Shear

failure occurs when the material is unable to continue resisting internal slipping

of parallel planes relative to one another and a split occurs between these

planes (Wood Handbook, 1987).

Shear strength of wood has been examined by several researchers

(Riyanto and Gupta, 1997; Rammer et al., 1996; Riyanto, 1996; Asselin et al.,

1995; Longworth, 1977), and the studies imply that (1) the shear strength

obtained from small blocks of wood without defects is not representative of the

shear strength of structural lumber with defects, (2) the shear strength is

dependent upon the method of testing, and (3) the shear strength is affected by

the size of the specimen. The current standard used to determine the allowable

shear strength of structural lumber is based on a small block with straight grain

and without defects (ASTM, 1996a). Other testing methods have been used to

determine the shear strength of structural lumber to compare to the shear

strength of the small block.

For bending specimens, the shear stress is uniform across the width (fore

example 1.5 inches for a nominal 2x4 beam), but as the specimen is failing in

shear there are interactions of compressive stress parallel to the grain,

compressive stress perpendicular to the grain, and tensile stress. However, for

a specimen subjected to torsion, the specimen experiences pure shear, but the

stress is not uniform across the width or the depth of the specimen. This
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research examines the shear strength of structural lumber specimens subjected

to torsion. The specific objectives for this study are the following:

Evaluate the torsion test as a method to determine shear strength of

structural lumber with experimental studies examining

length effects on shear strength,

depth effects on shear strength, and

differences between the ASTM (1996a) clear block shear strength and

the torsion test shear strength.

Develop a finite element model to represent a 2x4 and 2x12 wood beam

experiencing torsion that will

enhance the understanding of torsion theory applied to these beams,

determine shear stress distribution for torsion specimens and compare

it with the known shear stress distribution of bending specimens, and

determine the distance from the beam ends where the shear stress

distribution becomes uniform.
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2. Literature Review

Historically, mechanical properties for wood were determined using small

clear wood specimens. Recently, bending strength, compression strength

parallel to the grain, and tensile strength parallel to the grain have been

determined using full size structural lumber specimens (Green, 1989). Shear

strength, however, is still based on a small clear block.

There are two types of specimens that could be used to determine

mechanical properties of wood materials: (1) small, clear specimens without

defects and (2) large specimens with defects, similar in size and shape used in

design as structural components. When using small, clear specimens, the

material mechanical property determined reflects ideal material conditions

specifically homogeneity. However, when testing a larger specimen of structural

component size, the mechanical properties determined more accurately reflect

material with all the natural characteristics and design conditions.

Diverse methods for various materials have been employed to determine

the shear strength of the material. Examining some of these methods will

provide insights to a reliable method to determine the shear strength of wood.
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2.1 Steel

Several methods have been used to determine the shear strength of

steel. Some of these methods include experimental testing or theoretical

analysis or a combination of both.

A common way to determine shear strength for steel is the theoretical

analysis using strength failure theories. The strength failure theories are used to

determine allowable stresses for complicated stress conditions for practical

design by predicting failures under combined stresses using simple tension or

compression test results obtained from the material under investigation

(Timoshenko, 1956).

Four strength theories are used to evaluate strength properties for design

in many materials, (1) maximum normal stress theory, (2) maximum strain theory,

(3) maximum shear stress theory, and (4) maximum distortion energy theory

(Timoshenko, 1956). The latter two theories are the most common strength

theories applied to designs using steel. The maximum shear stress theory,

which agrees better with experimental results for ductile materials, determines

failure by assuming that yielding occurs when the maximum shear stress equals

half the tension yield stress (Timoshenko, 1956). Maximum distortion energy

theory assumes that yielding will occur when the distortion energy reaches a

critical value (Timoshenko, 1956).

When considering steel, with a Poisson's ratio of 0.3, subjected to pure

shear, the maximum shear theory and the maximum distortion energy theory
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yield Equation 2.1, where typ= shear stress at the yield point and cryp= normal

stress at the yield point (Timoshenko, 1956).

Maximum shear theory
ryp = 0.56yp (2.1a)

Maximum distortion energy theory
r = 0 62o-

YP YP
(2.1b)

The maximum distortion energy theory has been recommended, and is

currently used, when designing with steel; therefore the shear yield stress for

steel is 0.6cryi, (Gaylord et al., 1992; McGuire, 1968; AISC, 1994). As a result,

for common A-36 steel, the allowable shear strength is 21.6 ksi.

Often, steel is used to fabricate various shapes to use as components in a

structure, for example, I-beams, T-beams, channel sections, and angles; each

component type may react differently under shear failures. When designing with

steel, the maximum shear value, 0.66yp, is used. However, laboratory testing of

full-size steel members is often performed to understand how the member reacts

under a given loading condition. To test the shear strength of large specimens,

the three point and four point flexure methods are often used (Elgaaly et al.,

1996; Roberts et al., 1995; AISI, 1969). In addition, the torsion test has been

used to determine the shear stress distribution in a full-size member (Lyse and

Johnston, 1936).

Elgaaly et al. (1996) researched the shear strength of steel beams with

corrugated websa method of reinforcement by shaping the steel web into
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parallel grooves and ridges for out-of-plane stiffness and buckling strength

without the use of vertical stiffeners. The three point flexure method was used to

test the corrugated webs for shear strength. Five different shear ratios were

examined (half the shear span divided by the depth of the specimen, 1:1, 1.5:1,

2:1, 1:1.5, 1:2). Through this study, the effects of corrugated webs, which are

not considered in the theories discussed previously, the shear strength of the

member could be determined (Elgaaly, et. al., 1996). The results indicated that

the buckling stress formulas for flat isotropic or orthotropic plates adequately

predicted the shear strength observed of the experimental study.

The three point flexure method was also used for the shear strength

testing of plate girders with longitudinal stiffeners (AISI, 1969). In this case, the

shear ratio was 3.0, and the shear strength was found to increase as a result of

the stiffeners from 6% to 38% compared to theoretical strengths of similar non-

stiffened girders (AISI, 1969). The theoretical strengths determined for the non-

stiffened girders is not related to the strength theories discussed previously.

This research also determined that neither buckling theory nor beam theory can

be used to predict the shear strength of longitudinally stiffened plate girders

(AISI, 1969). The torsion test has been used to test standard steel H-sections

and I-sections to furnish a reliable basis for the design of structural members

subjected to torsion loads (Lyse and Johnston, 1936). Although the main

objective of this research was to determine the torsional rigidity of the member,

small specimens were used to determine the tensile strength and the shear

strength of the material by standard tensile tests, round bar torsion tests, and
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slotted plate shear tests. In addition, with the torsional rigidity constant

developed through the experimental studies in conjunction with the shear stress

equations developed through theoretical analysis, the shear stress in the flanges

and the in the web could be calculated (Lyse and Johnston, 1936).

2.2 Concrete

Several types of methods have been used in the shear testing of concrete

materials. Some experiments required small size specimens while other

methods required full-size beams.

In one research study three different shear tests for concrete were

performed: (1) the indirect shear test, (2) the direct double surface shear test,

and the losipescu shear test (Horiguchi, et. al., 1988). The samples used were

small in size with the largest dimension of 400 millimeters. The shear values

appeared to vary using each of these test methods. On average, the direct

double surface shear test values, 1565 psi (coefficient of variation of 32.2%),

were 83% higher than those from the indirect method, 895 psi (coefficient of

variation of 35.5%) , and the losipescu shear test, 1880 psi (coefficient of

variation of 32.9%), values were 123% higher than those from the indirect

method. This research implies that shear strength may be affected by the

testing method.
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In some cases reinforcing materials, such as steel fibers, can be

incorporated into the concrete mixture and then be examined for their effect on

shear strength using small specimens. However, small specimens are often too

small to accommodate reinforcing bars; in this case, the concrete is tested as a

large specimen. In other cases, unique shapes, such as deep beams or corbels,

are tested as full-size specimens. Small specimens cannot be used alone to

predict shear capacities for unique shapes used in design, but rather these small

specimens focus on the shear strength independent of specimen size. When

testing large specimens the interactions of the concrete and reinforcing must be

observed and quantified when the member fails in shear.

In one study (Rebeiz et al., 1995), a resin binder made of plastic waste

was used in the concrete mixture rather than the normal water and cement

binder. In addition, steel reinforcement was used in the specimens. Using a

shear ratio, in this study the shear ratio was defined as the shear span divided

by depth, range from 1 to 3.6, concrete beams were tested using the four point

flexure test. Several modes of failure occurred, but none of the modes exhibited

a pure shear failure. The most common of the failures was a shear-tension

failure where the initial failure was shear and the final catastrophic failure was

the splitting of the concrete along the reinforcing steel near the support (Rebeiz,

et al., 1995). Shear-compression, diagonal tension, crushing of the concrete

with shear cracks, and flexure summarize the remaining failure modes. Small
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specimens using the concrete mixture with the plastic resin material with or

without steel reinforcement were not tested.

Other factors can affect the shear strength of concrete. The three point

flexure method was used to test the shear capacity of steel-reinforced deep

concrete beams near 1 to 1.5 shear ratio (Zielinski et al., 1995). Most failure

modes showed an initial flexural crack between the supports and an inclined

crack following the initial crack. This inclined crack then propagated toward the

shear interface. By testing the large beams, the effects of the steel

reinforcement and geometry of the beam can be observed for various concrete

beam shapes often used in design.

Additional studies have used the four point flexure test method to

determine the shear capacity of concrete (Rebeiz et al., 1995; Siao, 1995;

Sharma, 1986; Rajagopalan and Ferguson, 1968; Salandra et al., 1989;

Elzanaty et al., 1986). Although not as common as the four point flexure test,

other studies have used the three point flexure test method to determine the

shear capacity of concrete (Yuliang et al., 1994; MacLeod and Houmsi, 1994).

Yuliang et. al. (1994) noticed that the mode of failure and the shear strength

were influenced by the shear span to depth ratio.

Bending tests are often used to determine the shear capacity of a

concrete specimen (Rebeiz et al., 1995; Siao, 1995; Sharma, 1986; Rajagopalan

and Ferguson, 1968; Salandra et al., 1989; Elzanaty et al., 1986), and torsion

tests are often used to determine the torsional behavior of concrete beams

(Bakhsh et al., 1990). Bakhsh et al. (1990) tested high strength concrete
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rectangular beams in torsion to study the torsional behavior of the beam and

correlate the torsional strength to the modulus of rupture and the spitting tensile

strength. The relationships observed compared well with other research results

discussed in the study (Bakhsh et al., 1990) suggesting the torsion test is an

excellent method to use to investigate the torsional strength. However, no

suggestion indicated that the torsion test would be effective to determine the

shear strength of concrete beams.

2.3 Plastics and composites

Most of the literature indicated that plastics and composites were tested

for shear strength using small specimens. No information was found which

reported the use of large size structural component testing for plastics or

composite materials.

To determine the shear strength of plastics, ASTM has approved a

standard using a punch tool (ASTM, 1996d; ASTM, 1958). This method uses a

small specimen with thickness no greater than one half of an inch. The force

measured to punch out a circular section in the middle of the specimen is used

to calculate the shear strength of the specimen.

Although Goldenberg et al. (1959) studied shear strength of plastics, they

outlined four general requirements, independent of the tested material, for a

shear strength test method: (1) deformations should result from pure shear

stress, (2) load application should yield pure shear, (3) shear stress distribution
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should be uniform to decrease the influence of stress concentration points, and

(4) specimen shape should yield results equal to all other practical cases in

which the material is subjected to shear stress. After experimental research with

various specimen shapes, an arrow shape, which provides double shearing, was

proposed as an improved method over the ASTM (1958) standard. Goldenberg

et al. (1959) found that at the failure cross section, the stress was nearly

uniformly distributed pure shear, the specimen did not require a special testing

apparatus, and the specimen could be quickly clamped and tested. These

findings were positive advantages over the 1958 ASTM (1958) specifications.

Goldenberg's comparison of shear strength values from his shape and the

ASTM (1958) shape indicated a 20% higher shear strength for his shape. Since

the current ASTM (1996d) specification requires the same shear tool, the same

specimen dimensions, and the same shear calculations as the previous

standard, Goldenberg's results apply to today's standard as well. Thus,

Goldenberg's comparison study implied that the shear strength of plastic is

dependent on the method of testing.

Another ASTM (1996i) specification provided guidelines for obtaining

horizontal shear strength of pultruded reinforced plastic rods using the short

beam method. For this test, a small, plastic specimen with reinforcement was

subjected to a three point load to test for shear strength. The diameter

depended upon the span length provided by the loading apparatus. ASTM D

4475-85 (1996i) recommended that the shear ratio (shear span to diameter)
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range from three to six. The standard also indicated that research showed that

shear strength was a function of support span to specimen diameter ratio for

most materials; therefore, the shear strength obtained was the "apparent

horizontal shear strength" since it is not based on a state of pure shear stress

(ASTM, 1996i).

Composites relate more closely to wood than some other materials

mentioned previously in that composites are often anisotropic or orthotropic;

similarly, wood is orthotropic. As a result, shear tests used for composites may

be applicable for wood shear testing, but the only literature available used small

composite specimens rather than large specimens.

Several methods to determine the shear strength of anisotropic and

orthotropic composite materials, for example boron/aluminum and

graphite/epoxy have been researched (Gipple and Hoyns, 1994; Odom et. al.,

1994; Morton et. al., 1992; Pindera et al., 1990; Pindera, 1989; Yen et al., 1988;

Lee and Munro, 1986; Arcan, 1984; Walrath and Adams, 1983; Novak, 1969).

The various methods include, the losipescu method, the Arcan method, the three

and four point bending methods, and the torsion method. The losipescu uses a

small beam about 2 inches long and 0.1 inch thick with two 90° notches, one on

the top of the beam and one on the bottom of the beam. The Arcan method uses

a butterfly shaped specimen with a height of 3.5 inches and a thickness near 1

inch. Small size beams, of approximate dimensions 0.1 inch thick and 0.25 inch

wide, are used for the short beam three- and four- point bending tests. All of the
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specimens used in these methods were small specimens and determined the in-

plane shear strength and/or the shear modulus of the material. Each of these

methods have advantages and disadvantages when determining shear strength.

A cost effective method to test for shear strength, and the method most

accepted is the losipescu shear test because of the pure shear state of stress

and fabrication ease (Gipple and Hoyns, 1994; Odom et. al., 1994; Morton et.

al., 1992; Pindera et al., 1990; Pindera, 1989; Arcan, 1984; Walrath and Adams,

1983). Although the specimen is subjected to pure shear at the line of failure,

the losipescu test has disadvantages. Morton et al. (1992) identified that the

shear stress was not uniform in the specimen. They showed that the fixture set

up and orthotropic material influenced the shear strain measurements while the

main objective of Odem et al. (1994) was to identify how the fixture interacted

with the shear specimen. Two main disadvantages of the fixture were the lack of

asymmetric loading caused by unequal compliance between the two halves of

the fixture and possible fixture misalignment which could cause substantial

effects in the modulus measurements.

The Arcan method allows for uniform pure shear stress to occur at a

section of the test specimen. However, instability, grip failure, adhesive, and

specimen thickness requirement problems may provide inaccurate results (Yen

et. al., 1988).
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Not only have the three and four point flexure test methods been used for

obtaining the shear strength of wood, but these flexure tests have also been

used to obtain the shear strengths of composites using small specimens (Adams

and Lewis, 1995; Whitney and Browning, 1985). The flexure methods showed

that the shear strength was "strongly influenced" by the support span to

specimen thickness ratio and the specimen thickness (Adams and Lewis, 1995).

To a "lesser extent" the specimen width to thickness ratio and diameter of the

loading cylinder influenced the shear strength (Adams and Lewis, 1995). The

trend showed a decrease in shear strength as the support span to specimen

thickness ratio increased (Adams and Lewis, 1995). Although shear failures

were observed in most specimens, the transverse compressive stresses, caused

by the support and load cylinders, could have suppressed the shear failures as

the distance between the load points and the support points decreased (Adams

and Lewis, 1995).

Due to specialized fabrication techniques that increased the specimen

fabrication costs, torsion specimens were not often used to determine the shear

strength of anisotropic or orthotropic composites (Pindera, 1989; Walrath and

Adams, 1983). Although specimens were difficult and expensive to fabricate, the

in-plane and out-of-plane shear moduli were determined for two composite

materials, graphite/epoxy and silicon carbide/glass ceramic (Tsai and Daniel,

1990) using solid circular specimens in torsion. Previous research had opted for

circular tube specimens (Lee and Munro, 1986). Using a circular tube, rather

than a solid cylinder, allowed the wall of the tube to be thin enough, when
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compared to the radius, so that the shear stress was assumed uniform (Lee and

Munro, 1986). In other research, Novak (1969) tested solid circular rods (1/4

inch in diameter and 4.5 inches long) in torsion to determine the shear strength

of graphite reinforced epoxy composites. Novak (1969) also investigated the

filament-epoxy bond response to a shear failure.

2.4 Wood

The shear strength design values found in the National Design

Specification (AFPA, 1991) are based on small, clear block specimens tested

according to ASTM (1996a) standards. Several researchers have shown that

this ASTM block yields different shear strength values than other methods

(Rammer et al., 1996; Riyanto, 1996; Longworth, 1977; Ylinen, 1963).

The shear strength value obtained from the ASTM test is multiplied by

various factors to determine allowable shear strength: (1) duration of load (2)

checks and (3) factor of safety, which includes but is not limited to ring angle,

seasoning, and fabrication errors (Ethington et al., 1979). The resulting factor of

4.1 (Ethington et al., 1979) is applied to the shear stress determined by the

ASTM (1996a) standard, the final shear stress is known as the allowable shear

strength. After obtaining the allowable shear strength, which is the shear

strength divided by the 4.1 factor, a strength ratio based on ASTM D245-93
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(1996c) is also applied to the allowable shear strength to account for strength

reductions due to knots, slope of grain, end splits, and checks.

Other methods to determine the shear strength of wood have been

examined, such as Arcan ( Liu, 1984; Liu and Floeter, 1984), notched beam,

(Hilbrand, 1964; Ylinen, 1963; Radcliffe and Suddarth, 1955), modified block

shear specimen (Ylinen , 1963; Radcliffe and Suddarth, 1955), double shear

specimen (Ylinen, 1963), shear specimen with oblique grain (Ylinen, 1963),

panel shear specimen (Norris, 1957), and torsion (Ylinen, 1963). In general, the

shear strength appeared to be dependent upon the method of testing (Liu,

1984).

Ylinen (1963) performed a comparison of his torsion test to the British

standard cube test and the ASTM block shear test; he observed that "wood

possesses a substantially higher shearing strength" when his torsion test is

followed. His data of Finnish pine (Pinus silvestris) (Ylinen, 1963) indicated that

the torsion test using a solid circular specimen yielded a 32% and 27% higher

shear strength than the ASTM (1996a) shear block and the British cube

respectively. However, Noris (1957) performed a study using a panel of wood

which yielded shear strength values similar to the ASTM (1996a) shear block

test. Hilbrand's study (1964) involved testing equipment that used roller bases

and non-roller bases; the roller test arrangements included the notch beam test

and the non-roller test arrangements included the ASTM (1996a) shear block

test. The results of the study implied that testing equipment may also affect the
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shear strength values: the non-roller test showed a higher shear strength value

when compared to the roller equipped apparatus. For example, Hilbrand's

(1964) study of southern yellow pine showed a 27% higher the tangential shear

strength for a non-roller test set up using the ASTM (1996a) shear block

compared to a roller test set up using the ASTM(1996a) shear block; the same

comparison of shear tests was made using overcup oak and the tangential shear

strength was only 17% higher for the respective tests. Although Ylinen (1963)

and Hibrand (1964) observed different shear strength results by employing

different shear strength test equipment Noris (1957) observed a percentage as

low as 5% to as high as 25% difference between the Douglas-fir shear strength

obtained by his panel test and the standard ASTM (1996a) shear block test

suggesting that the panel test may report shear strength values comparable with

the ASTM (1996a) shear strength test.

Ylinen (1963) observed a difference between the shear strength from the

ASTM standard method when compared to other methods. One method

examined in the comparison was the torsion test. In his torsion test specimens,

the longitudinal shear followed a plane of weakness and shear failure occurred

in the light spring wood tissue tangential to the growth rings. This type of failure

confirmed that shearing strength determined by a Ylinen's (1963) torsion test

was not identical with the shear strength parallel to the grain in a tangential

plane, as determined by other tests such as the British standard cube test

(Ylinen, 1963). As will be discussed in Chapter 6, Analytical Results and
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Discussion, the failures observed in the current study occurred along a plane of

weakness with shear strength parallel to grain in a transverse plane, and the

failures are identical to the shear failures seen in bending specimens.

The contradiction between Ylinen's (1963) torsion specimen failures and

the current study's torsion specimen failures may be due to the geometry of the

specimen used for both tests and, as a result, the distribution of shear stress.

For Ylinen's (1963) circular specimen, the shear stress is maximum along the

outer edge of the circle for every radii in the cross section of the circle, as

discussed in Chapter 3, Torsion Theory. Ylinen's (1963) cylindrical specimen

experiences identical shear stress along the tangential-longitudinal (TL) plane

and along the radial longitudinal (RL) plane. As a result of equal stresses along

two different planes, failure should occur in the weakest plane. In the case of

Ylinen's (1963) specimens, failure occurred along the TL plane: tangent to the

growth rings along the longitudinal axis.

The current study's specimen, a rectangular specimen, experiences a

maximum shear stress at the middle point of the rectangle's long side along the

longitudinal axis and a smaller shear stress at the middle point of the rectangle's

short side. If the beam is quarter sawn or flat sawn similar to the typical beam

shown in Figure 3.2, then the maximum shear stress will cause a failure in the

RL plane: perpendicular to the growth rings along the longitudinal axis. If the

wood was weak enough to fail along the TL plane due to the smaller shear
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stress, failure would then occur along the middle point of the short side and

would be similar to Ylinen's observations with his specimens.

Because the small specimens used in the testing methods mentioned

previously did not contain natural characteristics, the shear strength values may

not be representative of wood materials used in design.

Riyanto (1996) used four test methods in addition to the small clear block

ASTM (1996a) method; they included the three point, four point, and five point

flexure tests, and the torsion test. Based on results from this study, the shear

strength was dependent upon the method of testing since each method reported

different shear values for the same type of wood (Riyanto, 1997). If structural

lumber should be tested under loading conditions most similar to real-life flexural

applications, Riyanto (1996) recommended that the three point flexure test be

used to obtain the shear strength of wood since the three point flexure method

resulted in more shear failures than did the four or five point flexure methods.

However, if structural lumber should be tested under pure shear stress

conditions, then the torsion test should be used since 100% of the failures were

shear parallel to grain (Riyanto, 1996).

Until Riyanto's (1996) research and this current study, previous research

examined the shear strength of wood using structural lumber specimens

subjected to bending, such as in the three point, four point, and five point flexure

tests. Although Riyanto (1996) did not test for a size effect on shear strength,

prior research indicated that wood shear strength may be affected by the shear



21

area or possibly by the shear volume (Rammer et al., 1996; Asselin et. al., 1995;

Rammer and Soltis, 1994; Foschi and Barrett, 1975; Keenan, 1974; Keenan and

Selby, 1973). In general, the studies reported a convincing size effect on shear

strength: an increase in beam size correlated to a decrease in shear strength.

None of the studies indicated that the interaction between bending stress,

compressive stress, and tensile stress, which occurs in the bending specimens,

has any effect on this reported size effect on shear strength in research by

Rammer et al.(1996), Asselin et al. (1995), Rammer and Soltis (1994), Foschi

and Barret (1975), Keenan (1974), and Keenan and Selby (1973).

In a finite element study of the three- and five- point bending test method

(Cofer et al., 1997), the size effect apparent in the experimental studies

(Rammer et al., 1996; Asselin et. al., 1995; Rammer and Soltis, 1994; Foschi

and Barrett, 1975; Keenan, 1974; Keenan and Selby, 1973), was not

reproduced. Since the finite element model did not contain any natural wood

characteristics and did not show a size effect on shear strength, Cofer et al.,

(1997) suggested that the reason for the decrease in shear strength due to an

increase in size is mainly because a larger beam has a higher likelihood of

structural flaws, which are also referred to as natural characteristics of wood.

Since the ASTM (1996a) shear block tests are not able to account for

differences in lumber size or natural wood defects, the clear block may not yield

shear strength values representative of structural lumber (Longworth, 1977).

Longworth verified, using a four point bending test method, that different
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specimen widths suggested different shear stress-shear area relationships. He

also noticed that the beam shear strength was lower than the shear strength

from the ASTM (1996a) block. Riyanto (1996) showed this same trend in his

study of the four point bending test, but the shear strength for the five point

bending test for 2x4 beams indicated a 40% higher shear strength value than

that from the ASTM (1996a) shear blocks. In another study, Rammer et al.

(1996) tested 2x4 beams, and larger, with the five point bending test. The

results of this study indicated that the shear strength from the 2x4 beams was

11% higher than the shear strength from the ASTM (1996a) method, but the

shear strengths for the 2x10, 4x8, 4x12, and 4x14 beams were 30% to 50%

lower than those from the ASTM (1996a) method. The difference between the

small 2x4 beams and the larger beams was that the five point bending test

suggested a shear strength decrease based on an increased beam size

(Rammer et al., 1996). Equation 2.2 was proposed by Rammer et al. (1996) to

convert the ASTM (1996a) small clear block shear strength to bending shear

strength using t=shear strength as determined from bending tests, Cf=stress

concentration factor at the re-entrant corner of the ASTM (1996a) specimen,

tASTM =shear strength as determined from the ASTM (1996a) standard, and A=the

shear area, which is the product of the shear span and the width of the beam.

However, this equation may yield misrepresented results because the possible

stress interactions associated with bending tests, in addition to wood natural

characteristic effects, have not been quantified.
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(2.2)

This size effect found in shear strength is similar to the reported size

effect on bending strength (Bohannan, 1966). Currently, the National Design

Specification (AFPA, 1991) requires a strength modification factor for beam size

applied not only to bending, but also to tensile strength perpendicular to grain,

and compressive strength parallel to grain design values. Similar to the shear

strength-beam size relationship identified in recent studies, a decrease in beam

size results in an increase in bending and tensile strengths (AFPA, 1991).

Although Rammer et al., (1996a) did not look at stress interactions

between bending, tensile, compressive, and shear stresses, the interaction may

be important, as well as the frequency and type of natural characteristics of

wood. Because bending and tensile stress may be interacting with the shear

stress, the related size effect found for shear strength may be a result of the size

effect based on the bending and tensile properties as opposed to only the shear

property. In addition, as suggested by Cofer et al. (1997) the beam size effect

on shear strength may be related to the frequency and the size of the natural

characteristics of wood.
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2.5 Recommendations for an ideal shear strength test method

After Ylinen (1963) examined various shear strength testing methods, he

recommended the following characteristics for an ideal shear test method:

Distribution of shearing stress in the shearing plane must be

Exactly determinable,

Uniformly distributed, and

Independent of the wood elastic constants.

Normal stresses must not appear in the shearing plane.

If other stresses occur in the shearing plane, then their effect must be

determined.

Plastic deformations must not appear in the specimen at loading sites.

Specimen must be small.

In later research, Keenan (1974) and Keenan & Selby (1973)

recommended that allowing a specimen to seek a plane of weakness may

provide a better indication of shear strength for the specimen. Due to

application of loads and the configuration of the specimens the ASTM (1996a)

shear block test forces the shear failure along a particular plane in the cube

specimen, but the torsion test may allow the shear failure to occur along a plane

of weakness in the specimen easier than the bending test.
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2.6 Evaluation of other shear test methods for wood

Some of the shear test methods previously described can be used for a

variety of materials; for example, the losipescu shear test can be used to

determine the shear strengths for concrete, composites, and wood. However, for

wood, some of these methods may not yield representative shear strength

values because the specimens are small. As a result, they do not account for

any size effect on shear strength or natural wood characteristic effects on shear

strength.

The methods to determine shear strength of a material, as described

previously, include theoretical analysis, three-, four-, and five- point flexure,

torsion, losipescu, direct double surface, indirect, punching, "Arrow" double

shear shape, Arcan, and ASTM (1996a) wood block methods. The latter six

methods require small size specimens for testing. Using these tests for wood

would neglect possible effects from natural characteristic or size effects on the

shear strength of the wood. As for applying theoretical analysis in a manner

similar to that used for steel, this method would not account for size or natural

defects in the wood specimen such as knots, checks, and ring angle and

additional shear strength reduction factors would be necessary to account for

the natural characteristics. The remaining methods, flexure and torsion testing,

are possible options for determining the shear strength of full-size lumber.

Unfortunately, flexure test methods do not result in one hundred percent shear

failures due to interactions from other stresses in the beam and possible
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apparatus effects. While torsion specimens provide a pure shear stress, non-

uniform shear stress across the width and depth of a rectangular specimen, and

availability of a torsion machine may hinder shear strength research using the

torsion test.

2.7 Torsion test as a shear test method

The torsion test has been considered by some researchers to be "the

most appropriate method for determining the shear stress-shear strain

relationship because a pure shear stress can be applied to the material"

(Yoshihara and Ohta, 1997, 1996, 1995a, 1995b, 1993). Because tensile and

compressive stresses are not induced on the specimen, a more accurate value

of the shear strength can be determined (Hancox, 1972).

As will be shown in Chapter 3, Torsion Theory, flexure test methods and

the torsion test allow the shear failure to seek a plane of weakness in the

specimen, unlike the current ASTM (1996a) standard. However, the distribution

of the shear stresses in the shear plane differs between the flexure, the torsion,

and the ASTM (1996a) shear block method. The stress concentration at the re-

entrant corner of the ASTM (1996a) shear block does not allow for a uniform

stress distribution or an exactly determinable shear stress distribution. The

shear stresses determined with the torsion test are theoretically based and may

require knowledge of the elastic constants to account for the orthotropic nature

of wood, if the assumption of isotropic behavior of wood does not determine the
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shear strength correctly (Lekhnitskii, 1981). However, for the current study

using Douglas-fir (Pseudotsuga menziesii), using the ASTM (1996b) standard

torsion formulas which relates applied torque to the shear stress, the elastic

constants are not necessary to determine the shear strength of wood (Trayer

and March, 1929). These torsion formulas from the ASTM (1996b) standard are

based on the isotropic assumption of wood, but the difference in shear strength

results using the orthotropic nature of wood (Lekhnitskii, 1981) is negligible

(0.9%) for the Douglas-fir specimens tested in this study.

A rectangular torsion specimen only has uniform shear stress distribution

along the length but does not have a uniform shear stress distribution across the

width or the depth. Although the torsion tests has not been recognized as a

possible shear strength test based on this non-uniform stress distribution

(Youngquist and Kuenzi, 1961), the torsion specimen is subjected to pure shear

stresses that are determinable. On the contrary, the rectangular bending

specimen also have determinable shear stresses which are uniform across the

width, but bending specimens experience compressive and tensile stresses as

well as shear stresses. The effect of these additional stresses have been

studied briefly through finite element modeling (Cofer et al., 1997), and have

implied that the stress interaction may not be causing the apparent size effect on

shear strength observed in other studies (Rammer et al., 1996; Asselin et. al.,

1995; Rammer and Soltis, 1994; Foschi and Barrett, 1975; Keenan, 1974;

Keenan and Selby, 1973).
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Since the shear span, which is used indirectly to determine shear

strength, is the middle portion of the specimen and does not consider the ends

where the torque is applied, plastic deformation due to the necessary

compression of the wood at the grips should not affect the shear strength.

In most studies using the torsion test to determine the shear strength of a

material, small specimens were used. Although Ylinen (1963) did not elaborate

on why a small specimen should be used, small specimens provide more clear

wood material to determine the wood strength without the natural characteristics.

Specific equipment was required when testing small specimens in torsion and

the specimens varied in shape (Pindera, 1989; Walrath and Adams, 1983). For

example, torsion specimens may be solid cylinders, circular tubes, or solid

cylinders with square ends (Pindera, 1989; Walrath and Adams, 1983; Novak,

1969). The expense for testing increases dramatically when the specimen must

be specially fabricated, for example, into circular tubes or solid cylinders with

square ends. If these shapes are to be used in testing, significant costs are

associated with special torsion testing equipment and special fabrication of the

torsion shapes. As a result, the torsion test is not always a practical method of

testing (Pindera, 1989; Walrath and Adams, 1983). However, for the torsion

test used in the current study, larger specimens are used to test the effects of

natural characteristics on wood shear strength. Also, since the full-size

rectangular piece of lumber is tested in torsion, no extra fabrication costs are
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associated with this torsion test since the available torsion machine

accommodates rectangular torsion specimens.

After examining other test methods frequently used to determine the

shear strength used for other materials as well as wood, the torsion test was

recognized as a test with the most potential to yield representative shear

strength values for full-size lumber.
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3. Torsion Theory

Torsion is the twisting of a member of any cross sectional shape when it

is loaded by force couples; these couples produce rotation about the member's

longitudinal axis (Gere and Timoshenko, 1984). During rotation, if one end is

fixed and the other end of the member is allowed to rotate, the longitudinal sides

of the member do not change in length (Gere and Timoshenko, 1984). However,

the straight longitudinal axis of the member will deform into a helical curve

(Boresi et al., 1993). The member, regardless of its material symmetry, is in a

state of pure shear stress--a stress that acts parallel to the surface of the

material (Gere and Timoshenko, 1984). In a state of pure shear, the member

sees only shear stresses--as opposed to the interaction of compressive, tensile,

and shear stresses in the case of bending specimen.

Due to the geometry of circular prismatic bars, the torsion theory is less

complex than for rectangular prismatic bars. Although, structural lumber is

manufactured in rectangular shapes, torsion theory for circular prismatic bars will

be explored first, followed by the torsion theory for rectangular prismatic bars.

3.1 Circular prismatic bars

Circular bars have a geometric advantage over rectangular bars: due to

the radial symmetry of the circular cross section and because cross sections

rotate about the longitudinal axis as rigid bodies, plane cross sections of the
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torsion member normal to the longitudinal axis remain plane after deformation

and all radii remain straight (Boresi et al., 1993).

The main assumptions for circular rods necessary for the development of

useful relationships between the torque and shear stress values include (Boresi

et al., 1993):

Straight torsion member with constant cross section

Small displacements

Plane sections remain plane after torsion loading is applied

Rotation varies linearly along the longitudinal axis

Homogeneous material

Obeys Hooke's law

Isotropic materials

With these assumptions, Equation 3.1 was developed using equations of

equilibrium (Gere and Timoshenko, 1984). Equation 3.1 yields the transverse

shear stress for a circular cross section where tnmdrnurnthe maximum shear

stress, T=applied torque, r=radius of the circular cross section, J=polar moment

of inertia.

Tr
Ma =x:mum j

r4
Where J = Ir



To maintain equilibrium, equal shear

stresses always occur on mutually

perpendicular planes, and as a result, the

transverse shear stress is identical in value to

the longitudinal shear stress (Gere and

Timoshenko, 1984). This concept can be

illustrated with a solid wood cylinder: since

wood is generally weaker in shear along the

longitudinal plane, the first cracks

due to shear failure will occur along

the longitudinal plane as opposed to

along the transverse plane (Gere

and Timoshenko, 1984). Figure 3.1

shows the point of maximum shear

stress and the stress distribution for

a circular member.

3.2 Rectangular prismatic bars
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Figure 3.1: Shear stress
distribution for a solid
circular cross section (Gere
and Timoshenko, 1984).

Figure 3.2 Rectangular wood beam

For rectangular prismatic bars, such as the bar shown in Figure 3.2 where

L= longitudional direction, T=transverse direction, and R=radial direction for a

wood specimen, the assumption that plane sections remain plane is not valid.

Warping does occur after applying a torque. Thus, the theory needs to account
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for warping; in other words, various points in the cross section displace

differently in the longitudinal axis. In addition, experimental evidence showed

that warping of each cross section is identical (Boresi et al., 1993). Other

assumptions are necessary for the torsion analysis of rectangular members

(Boresi et al., 1993).

Straight torsion member with constant cross section

Each cross section rotates approximately as a rigid body

Rotation of each cross section varies linearly along the longitudinal axis

Small displacements

Warping of each cross section is identical

Homogeneous material

Obeys Hooke's law

Isotropic materials

Because plane sections do not remain plane during torsion loading of a

rectangular bar, the theory increases in complexity from the theory for a circular

bar. To account for warping, the resulting geometric compatibility condition,

Equation 3.2, to be satisfied for the torsion problem considers distortion of each

section from its plane, and the displacements in the plane of the cross section

caused by the rotation (Boresi et al., 1993). In Equation 3.2, 0, the rotation of

the torsion member, is related to the partial derivatives with respect to y and x of

7,,, engineering shear strain between the two line elements initially parallel to the

xz axis, and yyz, engineering shear strain between the two line elements initially



parallel to the yz axis, respectively. Engineering shear strains are twice the

shear strain.
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(3.2)

Applying Hooke's law, the torsion compatibility equation becomes

Equation 3.3 (Boresi et al, 1993). This equation relates the product of the shear

modulus, G, and the rotation of the specimen, 0, to the second derivatives with

respect to x and y for the Prandtl stress function, 4). The Prandtl stress function

is related to the geometry of the member under torsion and the manner in which

the cross section warps (Boresi et al, 1993). This stress function has three

requirements it must satisfy in order to provide a torsion solution (Boresi et al,

1993).

° +82° -2G0eix 2
(3.3)

The first requirement is based on the stress condition that all normal

stresses and one shear stress equal zero for torsion members composed of

isotropic materials, Equation 3.4. where ch, ay, and a, equal the normal stresses

in the x, y, and z direction and t equals the shear stress in the xy direction

(Boresi et al, 1993).

ax = ay =6Z = =0 (3.4)
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The stress function must also satisfy torsion equilibrium equations,

Equation 3.5, which was developed from the stress condition in Equation 3.4 and

equilibrium equations from statics (Boresi et al, 1993). Differentiating the shear

stress in the xz direction, t),, with respect to z and differentiating the shear stress

in the yz direction, tyz , with respect to z both equal zero. This indicates that the

shear stresses are independent of z, the longitudinal axis (Boresi et al., 1993).

The summation of the differential of in with respect to y and t, with respect to x

equal zero.

45Tri
=0

ST"
o

ST,
+
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(3.5a)

(3.5b)

(3.5c)

The summation equation, Equation 3.5c, is a required condition for the

existence of a stress function, 4), where txz is given as the differential of the

stress function with respect to y and tyz is given as the negative differential of the

stress function with respect to x, Equation 3.6 (Boresi et al, 1993).

Ty:ti

(3.6a)

(3.6b)
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The final requirement is the boundary condition: the lateral surface of a

torsion member is free from applied stress (Boresi et al, 1993). Therefore, as

shown through statics, the resultant shear stress, in the cross section at the

boundary, must be directed tangent to the boundary. Statics proves then that

the stress function along the boundary is a constant (Boresi et al, 1993). Theory

has arbitrarily established this constant as zero, resulting in Equation 3.7, the

stress function is zero along the boundary of the cross section of the shape

subjected to torsion (Boresi et al, 1993). Applying this boundary condition to the

stress function, the shear stress relationship to the applied torque and the angle

of rotation relationship to the applied torque can be determined.

= 0 (3.7)

For a rectangular beam, the stress function is shown as Equation 3.8

(Boresi and Chong, 1987)

(_11(n-1)/2 ni nny
cos cosh
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)
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2b

2b

(3.8)

Using this stress function, the torque-shear stress and the torque-rotation

relationships can be solved as Equation 3.9 (Trayer and March, 1929). The

maximum shear stress at the middle point of the long side, z,, is a function of the

applied torque, T; beam depth, 2h; beam width, 2b; and geometric factors, IA and

y, as numerically defined in Table 4.3 (Trayer and March, 1929) of Chapter 4,
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Materials and Methods. The maximum shear stress at the middle point of the

short side, is, is a function of the applied torque, T; beam width, 2b; and

geometric factors, IA and yi, as numerically defined in Table 4.3 (Trayer and

March, 1929) of Chapter 4, Materials and Methods. The applied torque, T, is

related to beam depth, 2h; beam width, 2b; shear modulus of the material tested,

G; shear span length, L; specimen rotation angle, A; and geometric factor, X,

(Trayer and March, 1929). The geometric constants, y, it, yi, X, are determined

by the ratio of the rectangle's depth to width; these factors are required in order

to solve Equation 3.9. Equation 3.9a was used in this study to determine the

maximum shear stress in the lumber specimens using the recorded dimensions

and torque at failure.

yT
T

' phb2
(3.9a)

y, T
vs (3.9b)

hb3(16

3 h L
b)G 0

(3.9c)

3.3 Prandtl's membrane analogy

Due to the complexity of the theoretical derivation of the shear stress

relationships, the stress distribution is often difficult to visualize. To illustrate the
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stress distribution of any cross section under torsion loads, Prandtl's soap film

membrane analogy is used.

An analogy was developed by Prandtl in 1903 (Boresi et al., 1993) which

states that the equilibrium equation for a homogeneous membrane subjected to

a pressure is equivalent to the compatibility equation for a torsion member

(Boresi et al., 1993).

Consider a rigid edge supporting a homogeneous membrane stretched

across a hole in the shape of a thin rectangular cross section (Figure 3.3a).

The size of the hole does not affect the results of the theory (Ugural et al.,

1995). The homogeneous material, such as a soap film, is stretched over the

hole (Figure 3.3b). The base provides edge support for the soap film, which will

be subjected to a uniform pressure on one side of the film (Ugural et al., 1995).

The uniform pressure causes the film/membrane, to deflect outward and

away from the base/edge support. The deflected membrane is a curved surface,

and Figure 3.3b shows the deflected film in the plane perpendicular to the x-axis

(Figure 3.3bi) and in the plane perpendicular to the y-axis (Figure 3.3bii), after

the pressure has been applied. The equilibrium equation of the lateral

displacement in the z direction for the defected membrane, Equation 3.10 is

equivalent to the compatibility equation for a torsion member, Equation 3.3, but

is repeated here as Equation 3.11 for convenience.

Equilibrium Equation

52z 82z P
ox2 + 8y2 s (3.10)
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Figure 3.3: Prandtl's membrane analogy (a) member subjected to torque,
T, (b) soap film deflection, (c) soap film contour lines (Boresi et al., 1993;
McGuire, 1968; Timoshenko, 1956)



Torsion Compatibility Equation
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(3.11)

Comparing Equation 3.10 to Equation 3.11 yields that the membrane

displacement, z, is proportional to the Prandtl stress function, (Boresi et al.,

1993). Substituting Equation 3.6 into Equation 3.11 yields Equation 3.12.

Comparing Equation 3.12 with the membrane equilibrium equation, Equation

3.10, the slope of the membrane at any point in the cross section is proportional

to the stress components at these same points (Boresi et al., 1993).

or (5r.z
+ - -2G9

eec (Sy
(3.12)

By examining the deflected membranes at the centerlines of the cross

section in Figure 3.3b (line I-I for Figure 3.3bi and line for Figure 3.3bii), the

shear stress component distributions can be identified. Figure 3.3bi shows the

deflected soap film along line, as if viewing the rigid plate in the yz plane

along the long side of the rectangular hole. In this direction, the stress

distribution for the shear in the xz direction, txz can be visualized (Figure 3.3bi).

The large slope at point A of the deflected membrane at either end of he

rectangle indicates that the t), is large at A. Comparing point A to point B, the

slope at point B is smaller than at point A; therefore t, is also smaller at point B.

Also point C on the membrane shows a zero slope, which indicates a zero shear
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stress value in the middle of the cross section along line I-I. The same analogy

can be used to determine the stress distribution for the shear in the yz direction,

tyz, by viewing the flat plate in the xz plane along the short side of the rectangle,

Figure 3.3i, which shows the deflected membrane along line II-II. The slope at

point D is large than the slope at point E, indicating that to at D is lager than at

E. The shear stress to is zero at the exact center of the cross section, point F,

where the membrane shows a zero slope. The largest T,,, from Figure 3.3bi,

occurs at point A, and the largest tyz, from Figure 3.3bii occurs at point D.

Comparing the slopes at these two points, A and D, Figure 3.3b shows that point

D has a larger slope. Consequently, the largest shear stress is tyz, and occurs

at the middle point of the long side, point D in Figure 3.3b.

The analogy can also be useful when considering the contour lines of the

deflected membrane. If the contour lines in Figure 3.3c represent the deflected

membrane, then the shear stress magnitude is inversely proportional to the

spacing between the contour lines (Timoshenko, 1956). This is illustrated by the

points along the line D-D with narrow spacing of the contour lines. In addition, at

the corners of the rectangle , the spacing is large and the contour lines coincide

with the surface of the membrane. In this case the slope of the surface of the

membrane is zero, indicating that the shear stress is zero at the corners.

(Timoshenko, 1956).
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3.4 Boundary condition effects

3.4.1 Torsion machine grips--warping considerations

The torsion machine available for testing in this project was originally

designed to accommodate circular members. Modifications were necessary to

enable testing of rectangular members in torsion. Grip suggestions provided by

ASTM (1996b) state that the grips to hold the rectangular member be a vise-like

mechanism, and vise-like grips were used. Appendix A discusses details

regarding these modifications.

Janowiak and Pellerin (1992) tested wood in torsion using small size

specimens, 3/4 inch to 5/8 inch boards measuring 3.5 inches by 12 inches.

Although these specimens were mainly tested for shear moduli values rather

than shear strength values, the machine set up was similar to the machine set

up used in the current study. Janowiak used vise grips to hold the specimen, but

the setup appears to show that bolts connected the specimen to the grips. In

this case, the grips restrained warping. Unrestrained warping affects the

relationships between the applied torque and the shear modulus. Janowiak and

Pellerin (1992) provide several references and discuss the method used to

account for the grip end effects. However, for the current study wrapping was

unrestrained because space was provided between the ends of the boards and

the grips; in addition, the specimens were not bolted to the grips.
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3.4.2 Torque loading conditionsSaint Venant principle

The torsion theory satisfies compatibility and equilibrium conditions.

However, when applying torsion loads to a member the member ends show a

complex stress distribution. The stress equation, Equation 3.6, represents the

stress distribution a certain distance away from the ends of the member

subjected to torsion loads (Boresi et al., 1993). This redistribution of stress from

the end to a certain distance away from the end is referred to as Saint Venant's

principle (Boresi and Chong, 1987). "Two statically equivalent force systems

that act over a given small portion S on the surface of a body produce

approximately the same stress and displacement at a point in the body

sufficiently far removed from the region S over which the force systems act."

In other words, the torque applied to the ends of a member causes a

nonuniform stress distribution along the length of the beam near the ends for a

specific length distance from each end. This uniform stress, with respect to the

length, becomes uniform after a particular distance away from the ends where

the loads are applied. Therefore, for the torsion specimen the shear span is

defined as the total specimen length minus the distance from each end.

Although the equations used to calculate shear stress based on applied torque,

Equation 3.9, are independent of the specimen length, the equations assume the

shear stress is uniform along the length of the specimen. As a result, when

testing specimens in torsion to determine the shear strength, the test specimens

must have an adequate length distance to enable the shear stress to reach
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uniformity along the length so that Equation 3.9 can be used to calculate shear

strength.

At the start of this research, the distance from each end of non-uniform

shear stress was unknown. A finite element model was used to investigate the

distance where the shear stress becomes uniform along the length of the

specimen for rectangular sections subjected to torsion. Chapter 5 discusses the

results of the finite element modeling.

3.5 Shear strength failure modes

There are six possible modes of failure in shear for wood, shown in Figure

3.4. These six modes of failure can be arranged in to three categories: (1)

shear parallel to the grain, (2) shear perpendicular to grain, and (3) rolling shear

(Wangaard, 1981). Each mode has a given failure plane and a given sliding

direction. The failure plane refers to the plane in which the shear failure occurs

and is a result of the sliding direction. The sliding direction refers to the

direction which the stress moves the wood fibers parallel or perpendicular to

each other.

Failure modes la and lb, Figure 3.4a, are shear failures parallel to the

grain with sliding directions also parallel to the grain; this failure mode is known

as shear parallel to grain. The failure plane differs between mode 1a, which fails

in the radial-longitudinal plane (RL), and mode 1 b, which fails in the tangential-
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Figure 3.4: Shear failure modes (a) shear parallel to the grain, (b) shear
perpendicular to the grain, (c) rolling shear (Wangaard, 1981)
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longitudinal plane (TL). A wood specimen which fails according to this mode,

should have a shear strength value near 1,450 psi (Wangaard, 1981).

For shear perpendicular to grain, failure modes Ila and Ilb, Figure 3.4b,

both have failure planes perpendicular to the grain and sliding directions

perpendicular to the grain. The failure plane for both modes is the tangential-

radial plane (TR). The difference between these two modes is the direction of

the applied force. For mode Ila the force is perpendicular to the radial plane,

and for mode Ilb the force is perpendicular to the tangential plane. This shear

strength, near 4,300 psi, is significantly stronger than the other two failures

modes (Wangaard, 1981). This failure seldom occurs because the wood usually

fails due to other stresses, particularly compression of the fibers, before it fails in

shear perpendicular to grain (Wangaard, 1981).

The rolling shear failure modes II la and 111b, Figure 3.4c, show a failure

plane parallel to grain but a sliding direction perpendicular to grain. The rolling

shear action is caused by the wood fibers rolling across one another; this occurs

because the wood fibers are at right angles to the direction of the shear stress

(Breyer, 1993; Silvester, 1967). Mode II la fails along the radial longitudinal

plane (RL) and mode II lb fails along the tangential-longitudinal plane (TL).

When this failure occurs, it yields the smallest shear value of the three failure;

the shear value for rolling shear is on the order of 500 to 700 psi (Wangaard,

1981). Although mode I and mode III involve the same failure planes, the low

shear values for mode III are due to large distortions of cell cross sections since
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the shearing action actually causes the cells to roll across each other (Tsumois,

1991). This type of shear failure is associated with deep, narrow, and solid

timber beams and plywood and does not occur often (Silvester, 1967). One

reason could be that for deep and narrow beams a given load yields a higher

shear force to be distributed across a smaller shear area than a wider beam.

Previous research (Keenen et al., 1973) suggested that when determining

shear strength values the test method should allow the shear failure plane to

occur on the weakest plane for the specimen. A comparison of the failure

modes for an ASTM shear block specimen, a bending specimen, and a torsion

specimen demonstrate which failure mode is associated with each specimen

type and if the failure mode is allowed to occur along the weakest plane.

3.5.1 ASTM D 143-94

When testing a small clear block according the current ASTM (1996a)

standard, Figure 3.5a, the shear failure plane is forced in a particular direction.

In the ASTM (1996a) case, the sliding direction is parallel to the grain, as well as

the failure plane. The failure plane occurs in the RL direction for a grain angle

of 0°, Figure 3.5a, or in the TL direction for a grain angle of 90°, Figure 3.5a.

Therefore, this test corresponds to failure modes la and lb of Figure 3.4. This

test specimen was used in a recent study (Riyanto and Gupta, 1996) to

determine the grain angle effect on shear strength; the results indicated that the

ring angle does not affect the shear strength.



48

L

T Grain Angle=00 R Grain Angle=90°

ASTM Shear Block
(a)

Grain Angle=0°

T

Grain Angle=900

Bending Specimen
(b)

Grain Angle=0°

Torsion Specimen
(c)

Grain Angle=90°

Figure 3.5: Comparison of common shear specimens (a) ASTM (1996)
shear block, (b) bending specimen, and (c) torsion specimen
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3.5.2 Structural size bending specimen

For a bending specimen, Figure 3.5b, the failure pane is not forced but

occurs along the weakest plane, either RL, TL, or TR. Shear failure along the

TR plane is approximately three to four times higher than RL and TL shear

strengths. Consequently, if the beam is allowed to fail along the weakest plane,

the specimen will fail either along the RL or TL planes. Thus, in bending, shear

failure along the TR plane does not occur. This reasoning eliminates failure

mode II, Figure 3.4. The loading setup does not allow for shear slipping as seen

in failure mode Ill, Figure 3.4. Therefore, this test corresponds to failure mode

la, Figure 3.4, for a grain angle of 90° and lb, Figure 3.4, for a grain angle of 0°.

3.5.3 Structural size torsion specimen

The failure plane for a torsion specimen, Figure 3.5c, is not forced but

occurs along the weakest plane, either RL, TL, or TR. Shear failure along the

TR plane is approximately three to four times higher than RL and TL shear

strength. As with the bending specimen, if the beam is allowed to fail along the

weakest plane, the specimen will fail either along the RL or TL planes. Thus, in

torsion, as well as in bending, shear along the TR plane does not occur. This

reasoning eliminates failure mode II, Figure 3.4. The shear stress distribution,

discussed in section 3.6.3, proves that torsion does not allow for rolling shear as

shown in failure mode Ill. Therefore, this test corresponds to failure mode la,
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Figure 3.4, for a grain angle of 90° and mode lb, Figure 3.4, for a grain angle of

0°. The shear failure plane is parallel to the grain and the sliding direction is

parallel to the grain; this is identical to the bending case described in section

3.5.2.

3.6 Comparison of stresses

As discussed previously, torsion loading theoretically induces pure shear

stresses on a specimen subjected to torsion. Applying a torsion test to

determine the pure shear strength for wood is reasonable since no other

stresses interact with the shear stress that may alter the shear strength value.

However, there is another concern that the shear stresses are different for an

ASTM (1996a) block, a bending specimen, and a torsion specimen.

3.6.1 ASTM (1996a) shear block stress distribution

A primary concern with the ASTM (1996a) shear block is the stress

concentration at the re-entrant corner of the specimen (Ylinen, 1963). This

stress concentration is not representative of design conditions and adds to the

uncertainty in the shear strength value obtained through this test. Because the

ASTM block produces a significant stress concentration and does not allow for

shear failure to occur along the weakest plane, the stress distribution will not be

discussed further.
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3.6.2 Bending specimen stress distribution

The shear failure mode can be explained by considering shear stresses in

all directions in the bending specimen and analyzing various small elements

within the beam. Figure 3.6 identifies small elements at various points in a

simple beam subjected to downward loading, as in the case of the three-, four-,

and five-point flexure tests studied to determine shear strength (Riyanto, 1996).

Vectors shown indicate the direction and type of stress applied to the particular

element.

Figure 3.6a shows shear stresses in the yz plane,tyz, the xz plane tn, and

the xy plane, txy. However, static analysis of a bending specimen indicates that

the loading conditions cause a shear stress only in the yz plane, tyz. As for the

shear stress vectors shown on the rectangular schematic, to and in, are equal to

zero. As a result, and txy do not affect the sliding direction or the failure plane

of the shear failure. The remaining shear stress caused by the applied bending

load is tyz, which shears the specimen along the z-axis and acts parallel to the

wood fibers. In addition, t results in a failure plane along the z-axis, parallel to

the wood fibers. Therefore, this shear stress, '4,, causes a shear failure plane

parallel to grain with a shearing direction parallel to grain also. This shear

failure is identical to mode I, Figure 3.4.

Illustrated in Figure 3.6b is the shear stress distribution over the cross

section of the beam, the xy plane. Along the x-axis, the shear stress is
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distributed uniformly. This diagram shows that parabolic shear stress

distribution occurs over the cross section with respect to the yz plane.

Viewing Figure 3.6a from the side in the yz plane, results in Figure 3.6c.

The side view also shows that the shear stress is parabolic along the vertical, y,

axis. This parabolic shear stress distribution has a maximum shear stress, tyz, at

the neutral axis of the beam. For the structural lumber specimens tested, the

material can be assumed to be symmetric about the center axis of the beam

resulting in the neutral axis falling along the centerline of the beam. If an

element above the neutral axis or below the neutral axis is analyzed the shear

stress is not a maximum, and as a result there is an additional normal stress

applied to the element. This normal stress is tensile for elements near the

bottom of a bending specimen, and compressive for elements near the top of a

bending specimen. The bottom element is viewed in the xz plane in Figure 3.6d;

the shear stress is zero with a maximum tensile stress. In Figure 3.6e, the top

element is shown; the shear stress is zero with a maximum compressive stress.

3.6.3 Torsion specimen stress distribution

The shear failure mode can be explained by considering shear stresses in

all directions in the torsion specimen and analyzing various small elements

within the beam. Figure 3.7 identifies small elements at various points in the

beam subjected to a torque; vectors are shown which indicate the direction and

type of stress applied to the particular element.
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Figure 3.7: Torsion specimen stress distribution (a) three dimensional
view, (b) cross sectional view, (c) side view, (d) bottom view, (e) top view
(McGuire, 1968)
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Figure 3.7a shows shear stresses in the yz plane,tyz, the xz plane tx,, and

the xy plane, t)(,. However, normal stresses are equal to zero and shear stress

in the xy plane, txy, equals zero (Boresi et al., 1993). As a result -En, does not

affect the sliding direction or the failure plane of the shear failure. The

remaining shear stresses caused by the applied torque are tin and tn. Either tyz

and t could be the maximum shear stress experienced in the beam for

orthotropic materials (Lekhnitskii, 1981). However, the torsion shear stress

relationship recommended for use by the ASTM (1996b) standard was

developed based on theory for isotropic materials. As a result, the maximum

shear stress induced in the beam occurs at the middle point on the long side of

the rectangle. This result has been confirmed (Lekhnitskii, 1981) for the species

used in this study, Douglas-fir, using the orthotropic properties listed in Table 5.2

of Chapter 5, Finite Element Modeling. By analyzing a rectangular,

homogeneous, orthotropic bar under torsion, the highest shear stress occurs at

the middle point on the long side (Lekhnitskii, 1981).

Shown in Figure 3.7b is the shear stress distribution over the cross

section of the beam, the xy plane. Along the x-axis, the shear stress is

distributed linearly. As an element moves along the x-axis, t begins at a

maximum positive value at one side of the x-axis, decreases to zero at the

centerline, and continues to decrease to a maximum negative value on the

opposite side of the x-axis. The shear stress values are symmetrical about the

centerline; therefore, the maximum positive value is equal to the absolute value



56

of the maximum negative value. As an element moves along the y-axis, at point

A tyz. begins at zero at one end of the y-axis, increases to a maximum shear

value at the centerline at point B, and decreases to zero at the other end of the

y-axis at point C. The shear stress values are symmetrical about the centerline.

In the case of the shear stress T,,, the relationships are similar. Moving

along the x-axis, tx, begins at zero at one side of the x-axis at point D, increases

to a maximum shear value at the centerline at point E, and decreases to zero at

the opposite side of the x-axis at point F. The shear stress values are

symmetrical about the centerline. Over the cross section along the y-axis the

shear stress is distributed linearly. Moving along the y-axis, Tx, begins at a

maximum positive value at one end of the y-axis, decreases to zero at the

centerline, and continues to decrease to a maximum negative value at the other

end of the y-axis. The shear stress values are symmetrical about the centerline;

therefore, the maximum positive value is equal to the absolute value of the

maximum negative value.

In Figure 3.7b, the maximum shear stress, tyz, in a rectangular Douglas-fir

beam, occurs at the center point on the long side of the rectangle, the y-axis.

The maximum tn value occurs at the center point on the short side of the

rectangle, but this shear stress is smaller than tn. The distributions indicate that

the shear stresses, regardless of direction, are zero at the corners as suggested

by the soap film analogy explained in section 3.3. The shear stress distribution

is uniform along the length, the z-axis, except near the ends where the load is
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applied (Saint Venant's principle discussed in section 3.4.2). This aspect is

explored more closely in Chapter 5, Finite Element Modeling.

Viewing Figure 3.7a from the side in the yz plane results in Figure 3.7c.

The side view shows that there is shear stress of some value at every point in

the yz plane, and the shear stress distribution of the cross section is shown in

Figure 3.7b. The shear stress values decrease as the small element moves

away from the neutral axis of the beam toward the top or the bottom of the beam.

For the structural lumber specimens, tested the material can be assumed to be

symmetric about the center axis of the beam resulting in the neutral axis falling

along the centerline of the beam. If an element above the neutral axis or below

the neutral axis is analyzed the shear stress, tri, is not a maximum, but no

additional stress is applied to the element (McGuire, 1968). Both the bottom

elements, Figure 3.7d, and the top element , Figure 3.7e, view the beam in the

xz plane; the shear stress in this plane T,,, is at a maximum.

Assuming that all the shear stresses contribute to the failure of the

specimen, the sliding direction and the failure plane are discussed by comparing

the rectangular specimen with the typical grain pattern tested in this study,

Figure 3.8a, to the failure modes shown previously in Figure 3.4.

Figure 3.8b shows ti,, as this shear stress causes the wood specimen to

slide perpendicular to the wood fibers; however, the failure plane, RL, is parallel

to the wood fibers. Therefore, the shear in the xy direction, T,,, causes mode

Illa, rolling shear from Figure 3.4.
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The shear stress, T,,. is shown in Figure 3.8c as this shear stress causes

the wood specimen to slide parallel to the wood fibers, and the failure plane, TL,

is also parallel to the wood fibers. Therefore, the shear in the xz direction, -cx,,

causes mode lb, shear parallel to the grain, from Figure 3.4.

The maximum shear stress, tin, is shown in Figure 3.8d as this shear

stress causes the wood specimen to slide parallel to the wood fibers, and the

failure plane, RL, is also parallel to the wood fibers. The shear in the yz

direction causes mode la, shear parallel to the grain, from Figure 3.4. The

location where t is a maximum t, is zero; therefore a direct interaction of both

shear stresses does not occur at the point of theoretical failure in the specimen.

This theoretical point of failure occurs at the point of maximum shear stress, tyz,

which is along the middle point of the long side of the rectangle. Other

interactions between these two shear stresses, t and T,,, are not known at this

time. Additional research is necessary to determine if stress interaction from the

shear stress t>2 interferes with the shear failure due to tyz; however, theoretically,

the shear stresses do not interact with each other, as shown in Figure 3.7.

Realistically, at the time of failure all three of these stresses do not occur

simultaneously. This shear stress, txy, equals zero, and as a result this shear

stress is not present in torsion specimens (Boresi et al., 1993). Therefore,

rolling shear cannot occur. Consequently shear failure either occurs along the

centerline of the short side where T,, is a maximum, point E in Figure 3.7b, or

shear failure occurs along the centerline of the long side where TyZ, is a
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Figure 3.8: Comparison of failure modes to a torsion specimen (a)
typical beam, (b) ty, mode II la, (c) mode lb, (d) tyz, mode la
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maximum, point B in Figure 3.7b. The wood tested in this study initially failed at

the middle point on the long side rather than the middle point of the short side,

thus the wood possesses high enough shear strength to overcome the smaller

shear stress, ty,. The highest shear stress, tyz, induced in the wood beam

causes the shear failure. This stress is identical to the shear stress which

occurs in beams subjected to bending loads.

The maximum shear stress at the middle of the long side is tyz. This

maximum stress, tyz, is not at right angles to the wood fibers as in the case of the

shear stress txy, shown in Figure 3.8b. This maximum shear stress, tyz, is the

same shear stress as produced in a bending specimen. However, instead of the

shear stresses remaining uniform over the cross section with respect to the x-

axis in Figure 3.6b for the bending case, the in shear stress of a torsion

specimen, varies linearly such that at the center of the cross section the stress is

zero. This maximum stress causes the same longitudinal shear failure in torsion

specimens as in bending specimens. Although tyz, is the same in bending as it

is in torsion, the distribution of t is different in bending compared to torsion,

and torsion tests offer a state of pure shear and bending tests have compression

perpendicular and parallel to the grain, tensile, and shear stresses.
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4. Materials and Methods

Two studies were performed (1) the length effect study which varied the

length of the torsion specimen and (2) the depth effect study which varied the

depth of the torsion specimen. In addition, for each study small clear block

specimens were tested according to ASTM (1996a) standards for comparison

purposes.

4.1 Materials

4.1.1 Length Study

The ASTM (1996b) standard requires that the total length of the specimen

should be at least eight times the larger cross sectional dimension. At the time

of this writing, research supporting this length value has not been identified.

Therefore, the purpose of this initial study was to validate the ASTM (1996b)

recommendation that the total length of the specimen should be at least eight

times the larger cross sectional dimension.

Fifty pieces of nominal 2x4 inch, 14 feet long, Douglas-fir (Pseudotsuga

menziesh), MSR graded (1800E-1.6E) structural lumber were obtained from

Frank Lumber Company, Mill City, Oregon. This lumber possessed typical

natural characteristics for the grade of lumber chosen, such as knots and checks

but no wane or splits.
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After conditioning the specimens to 12% moisture content by placing the

specimens in the standard conditioning room with 68% relative humidity and

73°F, ten of the 50 pieces with modulus of elasticity values close together were

randomly sawn into the following smaller lengths for testing: a) 21.0" b) 28.5" c)

32.0" d) 35.5" e) 39.0" and f) ASTM (1996a) block. An example of a sawing

pattern is illustrated in Figure 4.1. The length value included three parameters

as shown in Figure 4.2, a shear span in the middle of the beam, a distance of

two times the depth on both sides of the shear span to account for end effects on

the shear stress distribution, and a distance of two inches at each end to

account for the actual gripping distance necessary to securely hold the

specimen in the torsion machine.

Table 4.1 shows the lengths tested for the length study and the sample

size for each length. According to the ASTM (1996g) 02915-94 standard a

sample size of 52 was calculated. This sample size assumed a coefficient of

variation of 18% for shear strength as determined in a previous torsion study on

Douglas-fir (Pseudotsuga menziesii) (Riyanto, 1996). This is the sample size

sufficient for estimating the mean shear strength for Douglas-fir. Since this

research objective was to determine a relationship between shear strength and

size for Douglas-fir rather than determining the mean shear strength of Douglas-

fir, ten pieces for each length size previously mentioned were tested. This

provided a total of 50 data points to be used to determine if there was a

correlation between specimen length and shear strength.
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ASTM shear block
and waste

1d 2d 3d

14'

4d 5d

Figure 4.1: Typical sawing pattern for length study specimens

-.0 2' grip 2' grip o-

2c1 2o1

Shear span

Figure 4.2: Length parameters for a torsion specimen

Table 4.1: Length study specimen length specifications

Nominal'
Width x Depth

(inches)

Sample size Shear Span
(Inches)

Total Length
(inches)

2x4 10 3.5 21.0
2x4 10 7.0 28.5
2x4 10 10.5 32.0
2x4 10 14.0 35.5
2x4 10 17.5 39.0

Actual width x depth dimensions were 1.5" x 3.5".
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4.1.2 Depth Study

Similar to the length study, the depth was used to evaluate the torsion test

as a method to determine shear strength. For the depth study, the objective was

to determine if a relationship between the beam size and the shear strength

existed. The following nominal beam sizes tested were 2x4, 2x6, 2x8, 2x10, and

2x12, based on the common sizes used in wood structures (AFPA, 1991).

Approximately ten boards, ten feet long, for each depth size of Douglas-fir

visually graded, structural select #2 or better lumber were obtained from the

Philomath Forest Products Lumber Company, Philomath, Oregon. To decrease

variability in the results, boards were selected based on modulus of elasticity

values close to each other; each board's modulus of elasticity was determined

via the E-computer Metriguard 340. The lumber had typical defects for the

grade of lumber chosen, such as knots and checks, but wane and splits were

avoided as much as possible. At the time of selection, the lumber was not kiln

dried and had an average moisture content of 30%. Each ten foot piece was

sawn into two five foot specimens and placed in the kiln to dry according to

Table 4.2.

Table 4.2: Kiln schedule for lumber used in depth study

Stage Hours
(approximate Days)

Dry Bulb (°F) Wet Bulb (°F)

1 49 hrs (2 Days) 142 130
2 23 hrs (1 Day) 152 137
3 64 hrs (2.67 Days) 138 131
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Stages 1 and 2, in Table 4.2, reduced the initial average moisture content

of 30% to approximately 15%. These moisture contents were determined on

various specimens at the end of stage 2 with a resistance moisture content

meter (Delmhorst Instrument Co., model J-3, serial number 10266) and

confirmed with a capacitance moisture content meter (Wagner Electronics

Products, model L601-3). The final stage, in Table 4.2, allowed the wood to

come to equilibrium at 15% in the kiln before removing the wood to place it in the

standard conditioning room at 73°F and 68% relative humidity. At the end of

stage 3, the wood was placed in the standard conditioning room to allow the

moisture content to equilibrate to 12%.

After conditioning, the five foot long specimens were cut into the

appropriate lengths as determined through the length effect study. The results

for the length study are given in Chapter 6, Experimental Results, Analysis, and

Discussion. For 2x4 specimens, one to two samples were cut from each five foot

piece; whereas for the 2x6 through 2x12 specimens, one sample was cut from

each five foot piece. Therefore, since the boards were initially ten feet long,

three to four 2x4 specimens were sawn from one ten foot long board and one to

two 2x6 through 2x12 specimens were sawn from one ten foot long board. The

lengths for each specimen varied according to the results gained from the length

study, as shown in Table 4.3. The total length was based on the eight times the

depth recommendation from ASTM (1996b). Due to machine limitations the

lengths for specimen sizes 2x8 and larger were limited to 55 inches. The
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sample size for each depth was ten for the same reason as stated in the length

study section 4.1.1.

Table 4.3: Depth study specimen length specifications

Nominal
Width x Depth

(inches)

Actual
Width x Depth

(inches)

Sample
size

8 times
depth

(inches)

Actual Length
(inches)

2x4 1.5x3.5 10 28 28
2x6 1.5x5.5 10 44 44
2x8 1.5x7.25 10 58 55
2x10 1.5x9.25 10 74 55
2x12 1.5x11.25 10 90 55

4.1.3 ASTM shear block

The ASTM (1996a) shear block

test standard was followed for ASTM

specimens tested in the length study and

the depth study. The ASTM specimens

were used to compare the ASTM shear

block-based strength with the torsion-

based shear strength from the length

study and the depth study.

This standard (ASTM, 1996a) was

followed using the block dimensions

shown in Figure 4.3 to determine the

Figure 4.3: ASTM shear block
dimensions used for the length
and the depth study
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shear strength value from the small clear blocks. The overall dimensions

differed from the standard because the beams tested were actually 1.5 inches

wide and sawing the specimens to allow shear strength along the longitudinal

plane fixed either the width dimension in the radial direction or the width

dimension in the tangential direction to equal 1.5 inches. Although one

dimension differed from the standard, the shear area along the length, either in

the radial-longitudinal direction or the transverse-longitudinal direction remained

nominally two inches by two inches, as required by the standard (ASTM, 1996a).

For the length study, there were ten long boards resulting in ten small

clear shear blocks. For the depth study, there were 50 long boards resulting in

50 small clear blocks. For the ASTM specimens from the depth study, one

specimen was disqualified because it did not fail along the shear plane, and two

other specimens were disqualified because clear wood was not available to

allow for a shear block test. Consequently, only 47 ASTM (1996a) shear blocks

were tested.

4.2 Methods

4.2.1 Testing Machines

4.2.1.1 Torsion Machine

Each torsion specimen was tested similarly to determine the maximum

torque at failure using a Tinus Olsen Torsion machine (Figure 4.4), SN 2800
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with a balance arm beam that displays the applied torque; this arm beam was

patented in 1891. A schematic diagram of the machine is shown in Figure 4.5.

Appendix A details the machine alterations necessary to computerize the

recording mechanism.

The vise-like grips, as suggested by ASTM (1996b), were designed to

securely clench a rectangular specimen into the machine. These grips allow the

specimen to rotate about its longitudinal axis while subjected to the torsion load.

The setup did not allow for longitudinal movement of either grips during twisting.

Allowing longitudinal movement of grips was suggested by Hancox (1972) to

avoid tensile stress build up in the specimen as it is twisting. As compensation,

a gap of nearly 1/8 inch between the grip end and the specimen end was

provided for unrestrained warping to occur. In a different study (Janowiak, and

Pellerin, 1992), which used torsion equipment similar to the equipment used for

the current study, longitudinal movement was not allowed, but an experimental

correction procedure based on theoretical concepts as developed by Nederveen

and Tilstra (1971) to account for restrained warping was used. Because wood is

much stronger in shear parallel to the grain than in tension, observed failures in

the specimen would have been tensile failures if the tensile force was significant.

All observed specimen failures were shear and did not indicate tensile stresses.

The torque was applied to the specimen by a motor that was attached to

the rotating head. The head on the opposite end of the specimen remained

fixed and transferred the torque to the load cell. The computer then recorded
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Figure 4.4: Torsion machine with secured specimen used in testing the
shear strength of structural lumber

Counter
weight

Arm beam

Balance
weight

Grip

Tension rod
with load cell

Load)

Ft.jiCrUfl-i
Points

Rectangular
wood specimen

-7

Figure 4.5: Schematic of the torsion machine used in testing the shear
strength of structural lumber



70

the voltages read by the load cell. Appendix A explains the operation of the

torsion machine. In order for the electronic apparatus to provide useful torque

and rotation values, calibrations were necessary, and appendix B describes the

calibration procedures and results.

The torque was applied to the specimen at the lowest speed capable by

the motor; however, due to the variability of wood, the actual torque speed

application varied among specimens. The 2x4 specimens averaged 0.24

degrees per inch per minute and this value decreased to an average of 0.12

degrees per inch per minute for the 2x8 and larger specimens. As suggested by

ASTM (1996b), for the determination of torque-twist data for a torsion specimen,

the speed of testing should be 0.223 degrees per inch per minute, or in the

range of 0.115 degrees per inch per minute to 0.344 degrees per inch per

minute. The speeds for the specimens in the depth study met the criteria

suggested by the ASTM (1996b) standard. However, for the length study, the

speed of testing was affected by the length of the specimen (2-sided p-value

=0.000), the shortest length, 21.5 inches, was the only specimen group out of

the length study and the depth study combined which the average speed did not

meet the ASTM (1996b) suggestion; the speed for this group was higher than

the suggested ASTM (1996b) standard by approximately 10%. Although the

applied speed rate is affected by the specimen length, the speed is not affected

by the specimen depth (2-sided p-value = 0.681; considering 2x8, 2x10, and

2x12 specimens in the linear regression). The motor was able to move at a
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slower speed due to the load applied on the machine from the longer specimens

compared to the shorter specimens. As for the determination of shear strength

the torque should be applied at a constant rate of twist to cause failures in 10

minutes or in the range of 5 to 20 minutes. Although the average of the 2x4

specimens failed in 4.4 minutes, the larger specimens failed between 6 and 9

minutes. Because most of the specimens' loading rates and failure times were

within the ASTM accepted range, modification of the motor to produced longer

failure times to failure was not economically and practically justified.

4.2.1.2 ASTM Shear Tool

The current

standard is detailed in

ASTM D 143-94 (ASTM,

1996a) and a photograph

of the shear tool used is

shown in Figure 4.6.

4.2.2 Measurements

Figure 4.6: Shear tool used to perform ASTM D
143 shear test on the small clear shear blocks

Measurements recorded for each specimen in the length study and the

depth study included modulus of elasticity (± 0.01 x106psi), length (± 1/16 inch),

width (± 0.001 inch), depth (± 0.001 inch), weight (± 0.001 Ibs), moisture content
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(± 0.1%), specific gravity (± 0.01), maximum torque (± 1 lb-in), rotation angle (±

1.0 degree), time to failure (± .1 minute), rate of loading (± .1 lb-in/sec), and

number of growth rings per inch (± 0.5 ring).

For the beams, the specific gravity can vary significantly along the length

of the beam (Panshin and de Zeeuw, 1980). Consequently, for the length study

and depth study torsion beams, the specific gravity samples were taken as close

to the shear failure as possible. The same samples used for the specific gravity

test were used for the moisture content prior to the specific gravity test.

For the ASTM shear block, measurements included, length (± 0.0001

inch) and width (± 0.0001 inch) of the shear plane, moisture content (± 0.1%),

specific gravity (± 0.01), and maximum load at failure (± 10 lbs).

Two properties were determined for each 14 foot long board used for the

length study, (1) the modulus of elasticity and (2) the initial moisture content.

The modulus of elasticity was determined using the E-computer (model 340

manufactured by Metriguard) before the lumber was sawn into the test size

specimens. Also, before the lumber was sawn, a capacitance moisture meter

(Wagner Electronic Products, model L601-3) was used to determine the initial

moisture content of the long board. At the time of selection, the lumber had an

average moisture content of 10%-15%. These pieces were placed in a standard

conditioning room at 73°F and 68% relative humidity to bring the specimens to

an equilibrium moisture content of 12%.
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The depth study specimens were tested nondestructively to determine the

modulus of elasticity. Two different methods were used to determine the

modulus of elasticity. The first method was applied to the 2x8, 2x10, and 2x12

specimens; this method is known as the mechanical method. The 2x4 and 2x6

specimens were not long enough to fit into the apparatus used for the

mechanical method; therefore a second method was applied to these

specimens, the manual method. The mechanical method used a static bending

proof tester model 440 manufactured by Metriguard. The specimen was set on

two roller supports and the midspan deflection was read after a load was applied

at the midspan of the beam. The manual method is similar to the mechanical

method in that the midspan deflection was read after a load was applied at the

midspan. However, in the manual case, the load was applied manually using

calibrated weights rather than by a calibrated machine. Using the deflection and

corresponding load values, the modulus of elasticity was determined based on

the usual strengths of materials equation for bending deflection of a simple span.

Additional properties were determined for all torsion specimens in the

length and depth study, after the longer boards were sawn into the test sizes

specified previously. Before the torsion testing, the length, width, depth, weight,

and the number of rings per inch were recorded for each test piece. The width

and the depth were each measured in three places, and the average values for

both properties were reported. During testing, physical properties were recorded

on a specimen sketch, which included knots, piths, checks, splits (if any), growth
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ring orientation, and failure cracks. After these specimens were tested in the

torsion machine, additional properties were determined from each test piece.

These properties included moisture content and specific gravity. The moisture

content was determined in accordance with the ASTM D4442-92, method A

(ASTM, 1996h). The same specimen used for the moisture content calculation

was then used for the specific gravity determination in accordance with the

ASTM D2395-93, method B (ASTM, 1996f). In addition to documenting the

failure crack and physical properties, the depth specimens were photographed

after testing.

4.2.3 Calculations

The torque values recorded from the torsion machine at failure and the

recorded cross sectional dimensions are the main parameters used to calculate

the maximum shear stress for the specimen. Additional torsion factors, based on

the depth to width ratio of the cross section, are also necessary in the shear

stress equations.

The shear stress equations, Equation 4.1 and Equation 4.2, were detailed

in Chapter three, Torsion Theory (Trayer and March, 1929). The maximum

shear stress at the middle point of the long side, T,, is a function of the applied

torque, T; beam depth, 2h; beam width, 2b; and geometric factors, and y, as

defined in Table 4.4 (Trayer and March, 1929). The maximum shear stress at

the middle point of the short side, Ts, is a function of the applied torque, T; beam



width, 2b; and geometric factors, p, and y,, as defined in Table 4.3 (Trayer and

March, 1929).

yT
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71T
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3

Table 4.4: Factors for calculating shear stress of rectangular beams'
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(4.1)

(4.2)

Specimen
Size

Ratio of Sides
11 Y Yi

2x4 2.26 3.8893 1.9153 0.6431
2x6 3.59 4.397 1.9882 0.4155
2x8 4.8 4.6661 1.9973 0.3118

2x10 6.09 4.7803 1.9998 0.2485
2x12 7.43 4.879 2.0000 0.2015

Trayer and March, 1929

For the ASTM (1996a) shear blocks the ASTM (1996a) standard was

followed, and the shear stress was calculated using the required load at failure

and the cross sectional area of the shearing plane as given by Equation 4.3

(ASTM, 1996h) where T=shear stress, P=the load applied to the specimen at
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failure, and A=the product of the width and height of the shear plane, shown in

Figure 4.3.

P
r = -A (4.3)
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5. Finite Element Modeling

The finite element model provided an improved understanding for a

torsion specimen regarding (1) the stress distribution, (2) the shear span and (3)

the failure mode, defined in Figure 3.4.

5.1 Geometric development of finite element model

The finite element model was developed using the educational version of

a commercially available finite element modeling program, ANSYS® (Swanson,

1992). Using the SOLID45 element (3-D, 8 nodes), the rectangular beam was

modeled with the coordinate definition as

shown in Figure 5.1. Each node had six

degrees of freedom, allowing translations y,

and rotations in the x, y, and z directions.

Two rectangular beams were
Dean

analyzed, a 2x4 (1.5 inches by 3.5 inches)

and a 2x12 (1.5 inches by 11.25 inches).

Due to the limitation, of 16,000 nodes for the z, L

educational version of ANSYS® available for

x, R Length

Figure 5.1: Typical beam
this study, the 2x4 mesh differed slightly from modeled and tested

the 2x12 mesh. For both meshes, the
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applied load and the constrained node patterns were similar. Since length was

thought to be a factor affecting shear strength, two lengths for each depth were

analyzed: 28 inches and 43 inches for the 2x4 beam and 55 inches and 90

inches for the 2x12 beam.

5.1.1 Mesh size

A convergence study, detailed in section 5.2.1, was performed to

determine the optimum geometric design of the finite element model for the 2x4

and the 2x12 beam. Meshes resulting from this convergence study are

summarized in Table 5.1 for the purpose of discussing the geometric

development of the finite element model.

Table 5.1: Mesh specifications

Mesh
Property

Beam Size

2x4 2x4 2x12 2x12
Dimensions 1.5"x3.5"x28" 1.5"x3.5"x43" 1.5"x11.25"x55" 1.5"x11.25"x90"

Element
length'

1.00" 1.00" 1.00" 1.00"

Ratio2 1/4 1/4 1/4 1/4
Divisions
for x-axis

16 16 12 12

Divisions
for y-axis

20 20 12 12

Nodes 10,353 15,708 9,464 15,379
Along length of beam, z axis in Figure 5.1.

2
Ratio of outside element depth to middle element depth and ratio of outside element width to middle

element width, where outside element is any element bordering the outside surface of the beam.
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Table 5.1 outlines the final mesh specifications and Figure 5.2 and Figure

5.3 show the final cross sectional mesh used for a 2x12 and a 2x4, respectively.

Both the 28 inch long 2x4 and the 43 inch long 2x4 had a mesh ratio of outside

edge element to middle inside element of 1/4 with 16

elements along the x-axis and 20 elements along the

y-axis. For the 55 inch 2x12 the mesh ratio was the

same as for the 2x4, 1/4, but with only 12 elements in

the x direction and 12 elements in the y direction. Due

to the length increase from the 43 inch 2x4 to the 55

inch 2x12, the number of elements in the x direction

was modified from 16 elements and the y direction

was modified from 20 elements, as used for the 2x4, to

12 elements in the x and y

directions for the 2x12 model

to avoid exceeding the node

limit. :::::=2::::;;;
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Figure 5.3: Cross
sectional mesh
for 2x4

Figure 5.2: Cross
sectional mesh for
2x1 2



5.1.2 Boundary conditions

On the opposite end of

the beam from the applied load,

the nodes are constrained for a

distance of two inches along the

length, in the z direction, and

over the entire depth, in the y

direction, on each side of the

beam. Figure 5.4 shows the

location of the constrained

nodes and the location of the

applied pressure.

The finite element model
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1/2 Depth

Width

Constrained Nodes

2 inches

A , applied

pressure

MA V

Depth

\2(inches

Length

best represented the laboratory Figure 5.4: Applied pressure,
representing the applied torque, and

torsion specimen by leaving the constrained nodes

nodes on the beam face end, the

top, and the bottom unrestrained. Since warping was unrestrained in the

laboratory experiments, as discussed in chapter 4, Materials and Methods, the

model must also reflect unrestrained conditions. In addition, the nodes were

constrained in all directions to provide model stability.
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5.1.3 Applied loads

Since a torque could not be directly applied to the end of the beam, the

method used to simulate torque in ANSYS® (Swanson, 1992) was to apply loads

to one end of the rectangular beam as a force couple. Figure 5.4 illustrates the

loading applied to the rectangular beam. In the laboratory, the load consistently

impacted the corners on the opposite sides of the cross section of the rectangle

more than the center of the cross section of the rectangle. To account for more

bearing on the corners compared to the center, a triangular load distribution was

used rather than a uniform load distribution. One half of the couple was

distributed over the lower half depth, and the other half was distributed over the

upper half depth on the opposite side of the beam. The applied pressure values

were based on experimental results; the torque applied to the model was within

the linear region of the load-time plot observed in the laboratory for a typical

beam. For the 2x4 beams the torque was 2,000 inch-pounds, and for the 2x12

beams the torque was 6,000 inch-pounds. These torque values for the 2x4 and

2x12 beams translated into equivalent pressures of 490 pounds per square inch

and 27.1 pounds per square inch, respectively, for the maximum triangular

pressure, P, shown in Figure 5.4. Equation 5.1 was used to convert the torque

into a triangular force couple, based on statics, where P= maximum pressure,



T= applied torque, d=depth of rectangular beam, and z= distance along z-axis

over which the triangular load is distributed.

T
P = 6dz
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(5.1)

Although the torque was an applied couple rather than an applied

rotation, the loaded end of the model represents the experimental set up more

closely than the constrained end of the model because the constrained end of

the model was restrained in the z direction, where the laboratory specimens

were allowed to move along the z direction. As a result, the constrained end of

the finite element model may affect the shear stress distribution for longer

distances toward the center point of the modeled beam.

5.1.4 Properties

During the initial finite element analysis, isotropic properties were used to

represent the wood material. An isotropic material assumption eliminated any

influences orthotropic properties may have had on the development of the

model. Once the finite element model yielded results that compared favorably to

theoretical calculations using an isotropic material assumption, orthotropic

properties were introduced into the model. Table 5.2 and Table 5.3 list the

isotropic properties and the orthotropic properties, respectively, used in the

model.
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Table 5.2: Isotropic properties representing wood material

Modulus of
Elasticity

(Psi)

Shear Modulus
(psi)

Poisson's
Ratio

E=1 .6X1 06 G=1 .0X1 05 PR=0.4

Table 5.3: Orthotropic properties representing wood material

Modulus of
Elasticity

(Psi)

Shear Modulus
(psi)

Poisson's Ratio

Ex=0.1424X1 06 Gyz=0. 1 077X1 06 P Ryz=0.01 69632
Ey=0.0912X1 06 Gxy=0.01234X1 06 PRxy=0.432041 6
Ez=2. 1 41 X106 Gxz=0.1 1 60X1 06 PRxz=0.0216448

1
Orthotropic properties of wood were taken from Bodig and Jayne, 1982

5.2 Results

5.2.1 Convergence study for the mesh study

A convergence study was performed to optimize the mesh size. Various

analyses were performed and the results were compared with theoretical

calculations. Results compared with theory included the maximum shear stress

value, the location of the maximum shear stress in the cross section, and the

shear stress at the corners of the cross section. The convergence study was

performed using isotropic wood properties for a 28 inch long, 2x4 beam so that

comparisons could be made between the finite element model and theory. The
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model geometry that compared favorably with theory was used as the model

geometry with orthotropic properties.

Figure 5.5 shows the plot of four different mesh sizes, listed in Table 5.4,

used in the convergence study. The difference between mesh a and mesh b is

the length of the element. Figure 5.5 shows that these two meshes are similar in

their accuracy of the shear stress, tyz . Also, mesh c and d differ only in the

length of the element, plotting these mesh results on Figure 5.5 indicate that the

two meshes are similar in their accuracy of the shear stress, -cr. Therefore

decreasing the length of each element along the z axis did not alterjhe :location

of the maximum shear stress and showed a negligible increase in the maximum

shear stress value.

Table 5.4: Meshes examined for the convergence study.

Mesh
a b c d

Width, x 0.5 0.5 0.25 0.25
Depth, y 0.5 0.5 0.25 0.25
Length, z 1.0 0.5 0.5 0.25

However, meshes a and b differ from meshes c and d in width and depth

dimensions. By increasing the cross sectional dimensions of the element,

Figure 5.5 shows an improvement in the accuracy of the maximum shear stress



900

ki 500
a)

300

Mesh Size Effect on Shear Strength
Isotropic Material

100 It 111+1 f

0
Constraint End

5 10 15 20
Length of Specimen (inches)

Mesh a Mesh b Mesh c Mesh d

25 30

Load End

Figure 5.5: Mesh size effect on shear strength for a 2x4 finite element model with 2,000 in-lb torque
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value. Both a and b meshes are 3.2% lower than the theoretical calculated tin of

1000 psi, based on equation 3.9 (Trayer and March, 1929), but mesh c and d

are only 1.5% lower than theoretical calculated tin of 1000 psi, based on

equation 3.9 (Trayer and March, 1929).

Figure 5.6 shows the effect of length on the shear stress, tin by comparing

a 28 inch long 2x4 beam to a 55 inch long 2x4 beam. Although the magnitude

and the location of the maximum shear stress did not change when the overall

length of the specimen was altered, the specimen length increase allows a

longer shear span to establish a uniform shear stress, which will be detailed in

section 5.2.3.

The mesh ratio, which varied the element size by using smaller elements

along the edges and larger elements in the middle of the cross section, allowed

for more elements to define the cross section, and as a result improved the

accuracy of the corner shear stress value. Although changing the mesh ratio

caused a negligible effect on the maximum shear stress value, the mesh ratio

had a substantial effect on the shear stress at the corners. The corner shear

stress, which should theoretically be equal to zero, decreased by 116% from 302

psi for the model with a constant element size to 140 psi for the model with a

variable element size.



87

5.2.2 Stress distribution

Observing the stress distribution assisted in determining the shear span,

the sliding direction, and the failure direction for a torsion specimen. Figure 5.7

and Figure 5.8 present the distribution of the shear stress which initiates failure,

tin. Viewing the top of the beam in Figure 5.7, tin is in the color range of 114.2

psi to -114.2 pounds per square inch. However, on the side of the beam in

Figure 5.8, tyz varies in color and thus varies in shear stress values. On the side

of the beam, the shear stress reaches a large value near the center of the long

side and near the center of the beam length corresponding to the color range of

799.5 to 1028 pounds per square inch.

Outside of the shear span, which will be determined in section 5.2.3, the

stress distribution is not predicted by theory. This occurs near the constrained

end and near the loaded end where the color varies significantly. Especially at

the loaded end of the beam, there is compression perpendicular to the grain of

the wood due to the grips that are required to hold the specimen in the machine

and apply the torque to the beam. As a result, normal stresses in several

directions as well as shear stresses in several directions occur at the ends of the

beam.
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Figure 5.9 and Table 5.5 together identify stresses and values obtained

from the finite element model for particular points in a 2x4 beam. The

identification code used for the points of interest are abbreviations that represent

the loaded end (LE), loaded grip section (LG), middle section (M), constrained

end (CE), constrained grip section (CG), middle point of short side (S), middle

point of long side (L), and center point of cross section (C). The finite element

results, as displayed in Table 5.5, indicate that within the shear span, from the

loaded grip section to the constrained grip section, only one shear stress occurs

in the beam and normal stresses do not occur.

The model presents a case which is substantially different from theory.

This occurs at the point along the center of the cross section at the loaded end,

LEC, for txy. Theoretically all tn, values should be zero, at LEC point txy equals

282 psi. The loading conditions, a triangular distributed load at this end, may be

causing an initially large "Cxy value. Moving along the length of the beam, .c),

decreases dramatically such that within the shear span tn, is zero or within 10%

of zero; this compares favorably with theory. Since theory only applies within

the shear span, where all stresses should be uniform, the large in, values

outside the shear span are of little concern.

Theoretically t equals zero everywhere on a rectangular beam subject to

torsion. Although the model shows a value for .6 =-2 psi at the center point of

the cross section for the loaded grip end (LGC) and t =-9 psi at the center point

of the cross section at the constrained grip end (CGC), these values are
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Figure 5.9: Schematic of 2x4 with points of interest for the finite element
results presented in Table 5.5

Table 5.5: Finite element results', from 2x4 with a 2,000 in-lb. applied
torque

Point on
Figure 5.9

tyz
(psi)

txz

(psi)
txy

(psi)
ax

(psi)
Cry

(psi)
az

(psi)
Short side:

CES 0 -49 2 0 0 0
CGS 0 780 0 0 0 0
MS 0 781 0 0 0 0

LGS 0 780 0 0 0 0
LES 0 133 20 -260 0 14

Long side:
CEL -7 0 -13 0 0 0
CGL 955 0 0 0 0 0
ML 989 0 0 0 0 0

LGL 1002 0 0 0 0 0
LEL 437 2 -25 0 -25 1

Center:
CEC 0 0 -11 0 0 0
CGC 0 0 -9 0 0 0
MC 0 0 0 0 0 0
LGC 0 0 -2 0 0 0
LEC 0 0 282 19 -9 3

For practical purposes when comparing the shear stresses, any stress that was less than 1.0 psi was
considered negligible and reported as zero.
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negligible compared to the other shear stresses observed, t =1002 psi, 989

psi, and 955 psi; and tn=780 psi, 781 psi, and 780 psi. Within the shear span,

the finite element model results predicted theoretical results reasonable well: (1)

all shear stresses are nearly zero at the cross sectional center line along the z

axis of the rectangular specimen, (2) one shear stress occurs at the point of

failure, tyz=987 psi (average of 26 points within the shear span and coefficient of

variation of 0.96%), at the middle point of the long side, (3) the shear stress t is

zero for all practical purposes (and can be considered negligible) throughout the

shear span. Therefore, the stress at the middle point of the long side, tyz, is

taken as the shear strength of Douglas fir lumber which is always higher than the

stress at the middle point of the short side, .c), (Lekhnitskii, 1981)

Stress distribution plots for in are illustrated in Figure 5.10. The graph

presented in each figure shows the t plot along the length of the beam for the

point on the middle of the long side for a 2x4 beam 43 inches long with a 2,000

inch-pound applied torque. Viewing the cross section of the beam from the

loaded end for the 43 inch beam, Figure 5.10a shows that the shear stress is

small in the center and at the corners. Although near the middle of the long

sides the shear stress is a small value, it is increasing. The stress tin continues

to increase along the length of the beam, as shown in Figure 5.10b, the cross

section at the end of the grips for the 43 inch beam, 41 inches from the

constrained end. In this figure, the stress distribution shows small values at the

corners and in the center and increasing values from the cross section center to

the middle point of the long side. The region of large shear stress at the middle
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section of the long side increases in size as one moves along the beam, from

Figure 5.10b, 41 inches from the constrained end, to Figure 5.10c, 34 inches

from the constrained end. At the beginning of the shear span, Figure 5.10c,

shows a cross section nearly identical to Figure 5.10b, but the region of large

shear stress has increased in size.

At the beginning of the shear span, in Figure 5.10c, the shear stress has

almost reached uniformity within the cross section and nearly matches the

theoretical stress of 1,000 psi for a rectangular specimen under torsion, based

on equation 3.9 (Trayer and March, 1929). Figure 5.10d illustrates a cross

section at the middle of the beam where length equals 21.5 inches. Again this

section, which is in the middle of the shear span, is almost identical to the

section shown at the beginning of the shear span, Figure 5.10c.

Due to the method of applying the torsion loads on the finite element

model, the stresses on cross sections at the loaded end may differ slightly from

those for the cross sections at the constrained end. Figure 5.10e displays the

location 9 inches from the constrained end where the stresses do not appear to

have changed from those at the cross section at the middle of the shear span.

However, 2 inches from the constrained end in Figure 5.10f, the shear stress at

the middle point of the long side decreases dramatically and the stress

approaches zero. Finally, the shear stress reaches zero in the cross section at

the constrained end, Figure 5.10g.
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This stress distribution, shown throughout the cross sections in Figure

5.10, is re-emphasized in the finite element values listed in Table 5.4. The

shear stress, tyz, starts small, 439 psi, at the loaded end, increases along the

length, within the shear span, to larger values, 1002 psi, 989 psi, and 955 psi,

and decreases to a value near zero, -7 psi, at the constrained end.

Based on theory, equation 3.9, for a rectangular 2x4 beam subjected to

the a torque of 2,000 inch-pounds, the shear stress, tin, is 1,000 psi. The finite

element model predicted the shear stress to be 987 psi (average of 26 data

points along the shear span, with a coefficient of variation of 0.96%); resulting in

an error of only 1.3%.

In addition, these sequential illustrations of stress plots reveal that within

the shear span of 9 inches, which is two times the depth plus the grip distance,

the variation in the primary shear stress, in, that causes failure is small and is

approaching uniformity.

5.2.3 Shear span

The method of applying torque alters the distribution of shear stresses

near the ends of the beam. The details of Saint Venant's Principle were

presented in chapter three, Torsion Theory; however a summary of the principle

is repeated here for convenience (Boresi & Chong, 1987); "Two statically

equivalent force systems that act over a given small portion S on the surface of a

body produce approximately the same stress and displacement at a point in the
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body sufficiently far removed from the region S over which the force systems

act."

According to Saint Venant's principle, theory should represent the shear

stress distribution of a laboratory specimen at a distance "sufficiently far

removed" from the loaded end. Also, at this distance, the laboratory specimen

and finite element model will achieve relatively uniform shear stress along the

shear span. Adequate shear span lengths allow for the development of uniform

shear stress over the portion of the beam length. Sufficient shear span lengths

are important because the theory, used to develop the torque-shear stress

relationships assumes a uniform shear stress over the length of the beam.

As mentioned in chapter three, Torsion Theory, literature was not

identified to support the ASTM (1996b) recommendation of the total length of a

torsion specimen to be at least eight times the depth of the specimen.

Therefore, in addition to the length study, the finite element model was used to

investigate the minimum length of a torsion specimen.

Theory showed that the maximum shear stress experienced in an

isotropic, rectangular beam occurs at the middle point of the long side (Boresi et

al., 1993), point A on Figure 5.11 and Figure 5.12. This has also been shown to

be true for Douglas-fir rectangular lumber via orthotropic calculations

(Lekhnitskii, 1981) and finite element modeling stress plots, Figure 5.10.

The shear span length is determined using the shear stress t since this

stress causes the failure of the wood. Shear stress, tz, values were recorded at



the middle point of the long side of the cross section for

every inch along the beam length, Figure 5.13. The

shear stress plots, tyz, visually appeared to be uniform at

the center of the beam, as seen in Figure 5.13 for a 43

inch long 2x4. In addition, Saint Venant's principle, as

explained in Chapter 3, Torsion

Theory, indicates that uniform

shear stress occurs a particular

distance away from each end

(Boresi and Chong, 1987) implying

that the uniform shear stress should

occur near the center of the beam.
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Therefore, the shear stress, tyz, Figure 5.12: Figure 5.11:
Maximum shear Maximum shear

value at the center of the beam was stress location stress location
for 2x4Cross for 2x12--Cross

used to compare to the other shear sectional view sectional view

stress, tyz, values along the length.

Shear stress, tyz, values were considered to be uniform along the length

extending toward the loaded end side until reaching a shear stress value greater

than 1% of the center shear stress value.

Due to the asymmetry of the in distribution within the beam recognized

near the ends caused by the method of applying the torque, the method of

applying the constraints, and the orthotropic properties (Figure 5.13), one end of
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the beam was chosen to determine the excess distance to subtract from each

side to yield the shear span in the center of the beam. For the laboratory

specimen, it had identical grips on both ends of the specimen. Thus, the shear

stress distribution along the length of the laboratory specimen would be

expected to be symmetrical, unlike the finite element model (Figure 5.13). In

addition, the constrained end of the finite element model was restrained in the z

direction, whereas the laboratory specimen was allowed to move along the z

direction. As a result, the constrained end of the model may be causing the low

shear stress values for a longer distances along the length toward the center

point of the modeled beam (Figure 5.13). Therefore, the loaded end of the

model was recognized as the end which represents the laboratory specimen

more closely and was used to determine the excess distance.

The asymmetrical nature of the finite element model is clear through the

shear stress, tyz, distribution in Figure 5.13. Near the constraint end an abrupt

change in shear stress with respect to length is apparent as a small "kink" in the

distribution plot. This change occurs after the nodes are released from

horizontal, vertical, and longitudinal restraint and is attributed to the model

design of the constrained nodes. These shear stress distributions may confirm

Saint Venant's principal that as long as the beam length allows for a shear span

long enough to reach a uniform shear stress, the end constraints and loading

conditions do not affect the shear stress value within the shear span where the

stress is uniform. The large increase near the loaded end and the abrupt
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change in shear stress at the constrained end are results of the effect of

orthotropic properties and the application of the constraints and loads on the

model of the torsion specimen and are not affected by refining the mesh.

As observed in the laboratory, the initial shear failure did not have a

preference of initiating near either the loaded end or the fixed end of the torsion

machine; this also implies that the shear stress distribution, for either ty, or 'cm is

symmetrical with respect to the length of a torsion specimen in the laboratory.

This shear span criteria indicated that a distance subtracted from each

side of the beam of twice the depth of the specimen plus the grip distance

provides a uniform shear span.

To understand the effect of the grips on the shear span, a finite element

model was analyzed that had 5 inch grips on each end. The plot of tyz for this

model is shown as Figure 5.14. Using the shear span criteria explained

previously, uniform shear stress, in is reached at two times the depth plus five

inches from each end. This confirms that the total grip distance must be

subtracted from each end in addition to twice the depth to obtain the shear span.

Figure 5.14 not only identifies the location of uniform shear stress, but also

shows a more symmetrical shear stress distribution when comparing the

constrained ends with the loaded ends of Figure 5.13 and Figure 5.14.

Based on the shear stress plots for the 2x4 and the 2x12 specimens, the

shear span of a torsion specimen tested for shear strength is summarized in
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equation 5.2, where S= shear span, L= total length of the specimen, d= depth of

specimen, and g= distance compressed by the grips.

S = L- 2(2d +g) (5.2)

5.2.4 Sliding direction and failure plane

As described in chapter three, Torsion Theory, there are six types of

shear failures, shown in Figure 3.4. To show that the finite element model

provides additional support to the theoretical calculations, numerical values of

the three shear stress components that occur in torsion specimens were

examined via the finite element model. This supported the theoretical results

that the shear failure mode for a rectangular wood specimen slides parallel to

the grain and fails parallel to the grain,.

The sliding direction and failure
xz

plane are discussed using the rectangle

specimen with the typical grain pattern

tested in this study, as shown in Figure

5.15. As described in section 3.6.3, the
xy

y, T

shear stress, 'En, causes rolling shear

(Figure 3.4), and t is theoretically always

zero for torsion specimens. Table 5.5

confirms that txy is almost zero, and for Figure 5.15: Typical
rectangular specimen tested

for this studypractical purposes txy may be considered in laboratory
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negligible. The shear stress, -c, causes shear parallel to the grain for a grain

angle of 0°(Figure 3.4), as discussed in section 3.6.3. The shear stress, tyz, also

causes shear parallel to the grain (Figure 3.4), but with a grain angle of 90°,

details are presented in section 3.6.3.

Therefore, there are two shear stresses which act parallel to the grain and

cause failures parallel to the grain, tin and Tx,. Torsion theory shows that for an

orthotropic rectangular torsion specimen, either t or T,, could be the largest

shear stress. The stress tyz, which occurs at the middle point on the long side of

the rectangle, is the largest shear stress as confirmed using orthotropic

properties for Douglas-fir and isotropic properties for isotropic materials (Boresi

et al., 1993; Lekhnitskii, 1981). As a result, the failure occurs along the middle

line of the long side as shown as point A in Figure 5.11 and Figure 5.12. Table

5.5 confirms that tyz is larger than t for the orthotropic Douglas-fir lumber beam

examined using the finite element model. In addition, the failure observed in the

experimental studies occurred along the middle line of the long side of the

rectangular specimen.
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6. Experimental Results, Analysis, and Discussion

The experimental data obtained from the length effect on shear strength

and the depth effect on shear strength are presented, analyzed, and discussed

with the primary objective to evaluate the potential use of the torsion test as a

method to determine the shear strength of full-size structural lumber. As part of

the primary goal, secondary objectives are discussed (1) length effects on shear

strength, (2) depth effects on shear strength, (3) differences between the ASTM

(1996a) clear block shear strength and the torsion test shear strength, and (4)

experimental differences between the bending tests and the torsion test.

6.1 Selection of Materials

The boards obtained from the lumber mills were selected to reduce the

modulus of elasticity variability and to avoid split boards. Even though research

has shown that shear strength is not related to the modulus of elasticity

(Riyanto, 1996; Riyanto and Gupta, 1996), an attempt was made to reduce the

variability of the modulus of elasticity. In addition, split beams were avoided to

eliminate any potential effects on shear strength; additional research is

necessary to assess the effect splits have on shear strength using the torsion

test method.

As indicated in chapter 4, Materials and Methods, sample sizes for each

beam length for the length study and each beam depth for the depth study were
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smaller than recommended by ASTM (1996g) to yield an accurate mean shear

strength for the particular beam size. However, observations of the relationships

between the length and shear strength and between the depth and shear

strength were the focus of this study. Therefore, the objective of this study is to

evaluate the potential use of the torsion test as a method to determine the shear

strength of full-size structural lumber rather than determining the mean shear

strength value of full-size structural lumber.

Because the selection of boards was not random due to the avoidance of

a large modulus of elasticity variability and split beams, this research is an

observational study, as opposed to a randomized study. Consequently, the

inferences and conclusions from this study will only be applicable to this study's

sample. However, the recommendations from this research will help in deciding

whether or not to pursue the torsion test using a much larger set of random

samples to determine an actual mean value for shear strength of structural

lumber via the torsion test which could be used in designs.

6.2 Length study

The length effect study on the shear strength was performed to (1)

determine if length affects shear strength and (2) confirm the ASTM (1996b)

recommendation for the minimum total length of eight times the depth for a

torsion specimen or establish and support a new recommendation for the

minimum total length requirement.
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6.2.1 Statistical analysis

The statistical summary for each length parameter tested, Table 6.1,

shows the sample sizes, means, and coefficients of variation for the moisture

content, specific gravity, and shear strength. The data collected for the

evaluation of the length effect on shear strength, for the 2x4 beams tested, is

presented in Appendix D.

Table 6.1: Summary statistics for the length study'

Shear
Span2
(d=3.5
inches)

Total
Beam

Length
(inches)

Sample
Size

Moisture
Content

(%)

Specific
Gravity

Shear
Strength3

(psi)

Mean COV
(%)

Mean COV
(%)

Mean COV
(%)

1d 21.0 10 12.4 7.8 0.49 7.1 1484 19.0
2d 28.5 10 12.5 8.1 0.49 5.0 1534 13.5
3d 32.0 10 12.3 8.1 0.49 5.9 1519 12.5
4d 35.5 10 12.3 8.9 0.49 6.7 1511 17.4
5d 39.0 10 12.5 7.2 0.52 6.9 1581 17.9

ASTM4 - 10 12.3 8.4 0.48 6.3 1202 10.9
Appendix D contains complete length study data.

2
All specimens were nominally 2x4 beams.

3
Individual shear strength values adjusted to 12% moisture content, (ASTM, 1996h) then averaged.

4
One board yielded one ASTM block and one specimen for each length parameter.

To determine if there were differences in mean shear strength values

among the different lengths tested in the length study, an analysis of variance

(ANOVA) was performed. Since the F-test does not indicate which lengths differ

in the mean shear strength values, a regression analysis was performed If the
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linear regression proved to be significant, the relationship between beam length

and shear strength would indicate a minimum length requirement for torsion

specimens.

Several factors present during the development of the ANOVA and

multiple regression models related to the specimens or the testing method: rings

per inch, specific gravity, time to failure, strain rate, modulus of elasticity, and

rotation. These scatter plots helped identify if certain factors were related to one

another by visual identification, but a linear regressions were not performed.

Possible related factors include:

Specific gravity vs. rings per inch (Figure 6.1)

Specific gravity vs. failure time (Figure 6.2)

Specific gravity vs. applied strain rate (Figure 6.3)

Applied strain rate vs. failure time (Figure 6.4)

Applied strain rate vs. rotation (Figure 6.5)

Modulus of elasticity vs. failure time (Figure 6.6)

Modulus of elasticity vs. rotation (Figure 6.7)

Rotation vs. failure time (Figure 6.8)

Some of these scatter plots were expected to show a relationship and

other scatter plots were not expected to show a relationship. Strain rate, a

measure of degrees per inch of specimen per time, versus failure time; strain

rate versus rotation; and rotation versus failure time are all measurements of the
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motor used to apply the torque. As a result, these relationships were expected

but may or may not be directly related to wood properties. The relationships,

specific gravity versus failure time, specific gravity versus strain rate, modulus of

elasticity versus failure time, and modulus of elasticity versus rotation were

plotted to clarify if the failure time and applied torque rate were functions of the

wood. Initially, these four relationships were not expected but did show a

possible effect due to the wood properties. The primary relationship expected

from the scatter plots is the effect from the number of rings per inch on specific

gravity. Specific gravity has been shown to increase due to an increase in

latewood (Panshin and de Zeeuw, 1980); therefore, as the number of rings per

inch increase the amount of latewood may also increase, causing an increase in

specific gravity. This was observed, to a small degree, in the scatter plot, Figure

6.1. The variability observed in these scatter plots and other plots throughout

the experimental studies were expected due to the variability observed in wood

(Tsoumis, 1991).

Because the scatter plots of specific gravity showed relationships with

rings per inch (Figure 6.1), failure time (Figure 6.2), and applied torque rate

(Figure 6.3), specific gravity was selected as a covariate in the multiple

regression model. The modulus of elasticity was also incorporated into the

multiple regression model since it showed a possible effect on rotation.

Summarized in Table 6.2 is the relationships considered for the length

study, their corresponding R2 value, their 2-sided p-value, and brief comments



124

regarding the significance of the relationship. A detailed explanation of each

relationship follows in Table 6.2.

Table 6.2: Observed relationships in the length study

Relationship Observed' R2 2-sided
p-value

r = 3680(SG) 298

Strong evidence that specific gravity affects shear
strength

0.26 0.0002 (SG)

r = 2.47(SPAN) + 3790(SG) 327

Strong evidence that specific gravity affects shear
strength; but no evidence that shear span affects
shear strength

0.26 0.6972 (SPAN)
0.0003 (SG)

r = 547(M0E)-2.76(SPAN)+ 3680(SG) -1500

No evidence that MOE affects shear strength

0.26 0.5270 (MOE)

t=shear strength (psi), SG=specific gravity, MOE=modulus of elasticity x10 psi) SPAN=shear span
(inches) as defined in section 5.2.3.

The specific gravity versus shear strength scatter plot, Figure 6.9,

indicated that shear strength is dependent upon specific gravity. In recent

studies (Asselin et al., 1996; Rammer et al., 1996), shear strength was adjusted

for specific gravity. The adjustments made in these studies are not recognized

in ASTM standards; consequently direct specific gravity adjustments were not

made to the shear strength values obtained for this current study. However, due

to the strong effect on shear strength from specific gravity (2 sided p-

value=0.0002), Figure 6.9, specific gravity must be accounted for, in some

manner, when analyzing effects on shear strength. The linear relationship,
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Equation 6.1, which accounts for 26% of the variability (R2=0.26), indicates that

as the specific gravity increases, the shear strength also increases, where

r =shear strength (psi) and SG= specific gravity.

1- = 3680(SG) 298 (6.1)

The increase in shear strength with an increase in specific gravity was

expected. Specific gravity, a measure of density, measures the amount of wood

material; higher amounts of wood material cause an increase in strength

(Tsoumis, 1991). Other research (Riyanto, 1996; Riyanto and Gupta, 1996) also

showed that the shear strength for the torsion test and the ASTM (1996a) shear

block test both had good relationships with specific gravity (R2=31%, torsion

tests and R2=43%, ASTM (1996a) shear block tests). Rammer et al. (1996) also

showed a strong relationship between the specific gravity and the ASTM (1996a)

shear blocks (R2=0.49). However, for the bending tests, Riyanto (1996)

observed a poor relationship between specific gravity and shear strength

(R2=8%-9%). Because the bending tests show that shear strength is not

affected by the specific gravity, bending tests may yield apparent shear strength

values that are not representative of the material tested.

Since the shear strength values were not directly adjusted for specific

gravity, specific gravity was entered into the multiple regression model in

addition to the beam size parameter. The only size parameter for the regression
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model in the length study was the shear span because the depth and width of

the beam remained constant throughout the study.

The multiple regression model developed included shear strength as the

response variable and the shear span and specific gravity as the explanatory

variables. As indicated through the ANOVA test, there is convincing evidence

that shear strength is associated with either the shear span or the specific

gravity (2-sided p-value=0.0009, extra sum of squares F-test). The multiple

regression analysis revealed that there is strong evidence that specific gravity

effects shear strength even after accounting for the shear span (2 sided p-

value=0.0003, t-test). However, there is no evidence that shear strength is

affected by shear span after accounting for specific gravity (2-sided p-

value=0.6972, t-test), implying that the shear span parameter can be removed

from the linear regression model.

The shear strength did not show a relationship with modulus of elasticity

even after accounting for shear span and specific gravity (2 sided p-

value=0.5270, t-test). Consequently the modulus of elasticity was removed from

the multiple regression model, and the model consisted of shear strength as the

response variable and shear span and specific gravity as the final covariates.

This lack of a significant relationship between modulus of elasticity and shear

strength was also shown previously (Riyanto, 1996).

Due to the absence of a shear strength dependence on the shear span,

all samples were combined to form one group. Table 6.3 presents the summary

statistics for the entire length study sample group. The length study, for 2x4
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beams, showed an average shear strength of 1,526 psi with a coefficient of

variation of 15.7% after adjusting the shear strength values to 12% moisture

content.

Table 6.3: Summary statistics for all length study specimens

Test Sample Moisture Specific Shear
Size Content Gravity Strength2

(%) (psi)
Mean COV Mean COV Mean COV

(%) (%) (%)
Torsion' 50 12.4 7.7 0.49 6.6 1,526 15.7
ASTM 10 12.3 8.4 0.48 6.3 1,202 10.9
All specimens nominally 2x4 beams.

2 Individual shear strength values adjusted to 12% moisture content, then averaged.

6.2.2 ASTM study

As stated previously in chapter 4, Materials and Methods, one board was

sawn into six pieces, five of the pieces corresponded to the lengths tested and

the remaining piece provided an ASTM (1996a) shear block. As a result, ten

ASTM (1996a) shear blocks were tested for a shear strength comparison with

the torsion method. Because the ASTM (1996a) shear block is independent of

the size of the beam from which the block was sawn, all ten specimens could be

combined to form one sample group.
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Table 6.3 lists the summary statistics for the ASTM (1996a) shear blocks

tested. The average shear strength for the ASTM (1996a) shear blocks is 1,202

psi, with a coefficient of variation of 10.9%, after adjusting to 12% moisture

content.

The average torsion-based shear strength from the length study is 35%

higher than the published ASTM (1996a) shear block average shear strength

value of 1,130 psi (coefficient of variation of 14%) for dry coastal Douglas-fir

species (Wood Handbook, 1987), and the torsion-based shear strength is 21%

higher than the corresponding ASTM (1996a) shear blocks. For the ASTM

(1996a) shear blocks, the current study observed a 6.4% higher shear strength

than the published value and a 3.1% lower coefficient of variation than the

published value of 14%. The difference between the published average specific

gravity value of 0.45 and the current study average specific gravity value of 0.48

may be the reason for the differences in the published shear strength values.

6.2.3 Discussion

The large increase in the observed shear strength over the ASTM (1996a)

shear strength, as observed in the current study, has also been seen in previous

torsion tests (Riyanto and Gupta, 1997). Riyanto and Gupta (1997) tested 76

nominal 2x4 Douglas-fir beams which yielded an average shear strength value

of 1,834 psi with a coefficient of variation of 18%, which is 62.3% higher than the

published shear strength value. Although these torsion test results are higher
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(20.2%) than the current study's average shear strength, the previous study did

have a larger sample size (34%) and Riyanto's (1996) shear strength values

were based on a different measuring arrangement detailed below.

Nevertheless, the higher observed shear strengths obtained in the torsion test of

the current research and previous research (Riyanto, 1996), which tested full-

size lumber with natural characteristics, implies that the small clear block

specimen may be underestimating the shear strength of full-size lumber.

The smaller coefficient of variation for the current research (15.7%) may

be explained by the electronic recording system designed for this study, which

was not available to Riyanto (1996). Riyanto (1996) used the manual method

and read the final torque reading at failure from the arm beam of the torsion

machine. The arm beam is connected to a series of lever arms and fulcrum

points which transfers the applied torque from the specimen to the balance

beam. This beam must be continuously and manually balanced as the torque is

applied to the specimen. At the point of specimen failure, the lever arms and

fulcrum points discontinue to transfer torque to the balance beam and the beam

drops. For an isotropic material with little material variability, unlike wood, the

failure point is clear and the beam drops abruptly. However for wood, which has

significant material variability, the failure is less defined and the beam does not

always abruptly drop to indicate the failure. As a result, human error is

introduced into interpreting the point of failure, in addition to balancing the beam.

This human error is reduced with the use of electronic recording mechanism, as
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detailed in Appendix A. The electronic voltage recordings were calibrated to

torque values using an isotropic material to avoid material variability when

balancing the beam. The calibration, as detailed in Appendix B, was performed

before the testing and after the testing was completed; both calibrations showed

similar results. Through the electronic recording system, consistency increased

in interpreting applied torque values and failure points. Although possible

electronic noise may also affect torque recordings, this is negligible compared to

the possible human errors discussed previously.

Small scale torsion specimens with circular cross sections in the shear

span and square cross sections at the gripped ends were tested by Mack in

1940. Among various other species, Mack (1940) tested Douglas-fir

(Pseudotsuga taxifolia synonymous with Pseudotsuga menziesii) of various

diameters sizes, 1/2", 3/4", 1", and 1 1/2". The lengths of these specimens

ranged from two times the diameter to twelve times the diameter. The result,

within the range of sizes tested, indicated that length did not effect the shear

strength (Mack, 1940). Since these specimens did not reveal a length effect, all

specimens were combined into one group with an average shear strength of

1,716 psi and a coefficient of variation of 3.8% (Mack, 1940). Because these

specimens were small torsion samples, the wood did not possess significant

defects. As expected, the small samples tested in torsion possessed higher

shear strength values than the large scale torsion specimens tested in the

current study due to the few natural wood characteristics in the small torsion

specimens. In addition to Mack's (1940) research, the finite element model from
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shear strength, as discussed in section 5.2.1. Based on the length study and

confirmed by previous studies and the finite element model, the length of a

torsion specimen showed no effect on the shear strength for 2x4 specimen

lengths of 21.0 inches, 28.5 inches, 32.0 inches, 35.5 inches, 39.0 inches.

Therefore, the recommended ASTM (1996b) minimum total length of eight times

the depth of the specimen was followed for the specimens tested in the depth

study.

6.3 Depth study

For the specimens tested in the depth study the lengths are presented in

Table 6.4. Due to the length restriction of the torsion machine available for this

study, the longest length possible for a torsion specimen was 55 inches. For the

2x4 through the 2x6 specimens, the total length met the ASTM (1996b)

requirement of eight times the depth. However, for the 2x8, 2x10 and 2x12

specimens, the machine length restriction reduced the length to 55 inches.

Because length was shown not to affect the shear strength of 2x4 beams

through the experiment and the finite element model, the main concern is that

the specimen should have a long enough shear span so that the shear stress

can reach uniformity. The shear span varied from approximately three times the

depth for the 2x4, 2x6, and 2x8, to one and one-half times the depth for the 2x10

and one-half times the depth for the 2x12. In the finite element study, a plot of

shear stress with respect to length of the beam for a 2x12 confirmed that the



133

shear stress with respect to length of the beam for a 2x12 confirmed that the

shear span of one-half times the depth was adequate for allowing uniform shear

stress to develop within the beam.

Table 6.4: Length specifications for depth study

Nominal
Width x
Depth

(inches)

Actual
Width x
Depth

(inches)

ASTM
Requirement

8 times
depth

(inches)

Actual
Length'
(inches)

Shear Span2
(inches)

2x4 1.5x3.5 28 28 2.86d (10 inches)
2x6 1.5x5.5 44 44 3.27d (18 inches)
2x8 1.5x7.25 58 55 3.03d (22 inches)

2x10 1.5x9.25 74 55 1.51d (14 inches)
2x12 1.5x11.25 90 55 0.53d (6 inches)

2x8, 2x10, and 2x12 specimens were restricted to 55 inches long due to machine limitations.
2

Where d is the actual depth of the specimen.

The statistical summary for each depth tested, Table 6.5, shows the

sample sizes, means, and coefficients of variation for the moisture content,

specific gravity, and shear strength. The data collected for the evaluation of the

depth effect on shear strength is presented in Appendix E.
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Nominal
Size

(inches)

Sample
Size

Moisture
Content

( %)

Specific
Gravity

Shear
Strength

(psi)
Mean COV

(%)

Mean COV
(%)

Mean COV
( %)

2x4 10 13.1 7.2 0.50 11.0 1440 9.3
2x6 10 13.5 5.2 0.52 7.6 1528 16.3
2x8 10 13.0 3.1 0.52 6.2 1507 18.0

2x10 10 13.2 1.6 0.55 9.5 1335 10.5
2x12 10 13.0 3.4 0.52 7.0 1346 6.84

ASTMS' 4 47 12.5 3.6 0.51 8.9 1287 12.8
Appendix E contains complete length study data

2
Individual shear strength values adjusted to 12% moisture content (ASTM,

3
One ASTM block was tested for each specimen

4
One ASTM block did not fail along the shear plane and two specimens did

to allow for one ASTM block

6.3.1 Statistical analysis

1996h), then averaged.

not have enough clear wood

To determine if there were differences in shear strengths for the different

depths tested in the depth study, an analysis of variance (ANOVA) test was

performed. The ANOVA F-test revealed Since the F-test from the ANOVA does

not indicate which depths differ from each other with respect to shear strength or

the relationship between depth and shear strength, a multiple linear regression

analysis was also performed to determine the linear relationship between depth

and shear strength. If the linear regression proved to be significant, the

equation would relate the shear strength to the beam depth. Other relationships

which incorporated curvature or logarithmic scales into the analysis were also

considered if various scatter plots identified other possible relationships.
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Several factors present during the development of the ANOVA test and

multiple regression models related to the specimens or the testing method, as

shown in Appendix E: rings per inch, specific gravity, time to failure, torque rate,

modulus of elasticity, and rotation. Scatter plots of these variables helped to

identify if certain factors were related to one another by visual identification, but

a linear regression was not performed. Possible related factors include:

Specific gravity vs. rings per inch (Figure 6.10)

Specific gravity vs. failure time (Figure 6.11)

Specific gravity vs. applied torque rate (Figure 6.12)

Applied torque rate vs. failure time (Figure 6.13)

Applied torque rate vs. rotation (Figure 6.14)

Modulus of elasticity vs. failure time (Figure 6.15)

Modulus of elasticity vs. rotation (Figure 6.16)

Rotation vs. failure time (Figure 6.17)

Some of these relationships were expected while others were not

expected but checked as part of good statistical practice. A brief explanation for

the relationships expected and those not expected was provided in the length

study analysis, section 6.2.1, and also applies for the depth study.

Because the scatter plots of specific gravity showed relationships with

rings per inch (Figure 6.1), failure time (Figure 6.2), and applied torque rate

(Figure 6.3), specific gravity was selected as a covariate in the multiple

regression model. The modulus of elasticity was also incorporated into the

multiple regression model since it showed a possible effect on rotation.
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Occasionally more than one specimen came from the same board.

Statistically, samples of wood from the same board would be expected to yield

similar shear strength values. By including more than one specimen from the

same board, the results could be misleading since the data would indicate that

all specimens are independent from one another. In order to determine if

independence was a problem among specimens from the same board, an

ANOVA was performed twice: (1) excluding specific gravity as a covariate and

(2) including specific gravity as a covariate.

The ANOVA F-test which excluded specific gravity indicated that there

was suggestive but inconclusive evidence that specimens from the same board

yielded more similar shear strength values than the non-related specimens (2

sided p-value=0.0445, extra sum of squares F-test). However, after including

specific gravity into the model, the F-test from the ANOVA indicated that there

was no evidence that specimens from the same board yield more similar shear

strength values than the non-related specimens (2 sided p-value>0.1, extra sum

of squares F-test). In the case with specific gravity as a covariate all specimens

may be considered independent regardless of whether or not they came from the

same board.

Summarized in Table 6.6 are the linear relationships considered, their

corresponding R2 values, 2-sided p-values, and brief comments regarding the

significance of the relationship. Explanations for each relationship follow in

Table 6.6
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Table 6.6: Observed relationships in depth study'

Relationship Observed R2 2-sided
p-value

r = 1380(SG) + 716

Moderate evidence that specific gravity affects shear
strength

0.096 0.0290 (SG)

r = 8.91(SPAN) 12.8(d) -184(M0E) +1580(SG) + 920

No evidence that modulus of elasticity affects shear
strength

0.25 0.4379 (MOE)

r = 0.073(ABeam) +1360(SG) + 716

No evidence that beam area affects shear strength

0.096 0.9104 (ABoarn)

r = 6.77(SPAN) 20.4(d) +1570(SG) + 668

Strong evidence that specific gravity affects shear
strength; suggestive but inconclusive evidence that
depth affects shear strength; and no evidence that
shear span affects shear strength.

0.24 0.0103 (SG)
0.0478 (d)
0.1696 (SPAN)

t=shear strength (psi), SG=specific gravity, MOE=modulus of elasticity (x10 psi SPAN=shear span
(inches) as defined in section 5.2.3, and ABeam=product of the depth and the shear span (inches2).

Although the linear relationship between specific gravity and shear

strength is poor for the depth study data (R2=0.096), there is moderate evidence

that specific gravity affects shear strength as shown in Equation 6.2 and Figure

6.18, where t=shear strength (psi) and SG=specific gravity (2 sided p-

value=0.0290, West). Because of the moderate evidence that indicated an effect

on shear strength by specific gravity, and the evidence from the length study that

indicated that specific gravity strongly affected shear strength, specific gravity

was retained in the ANOVA model. In addition, the effect of specific gravity on
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strength is known to be significant (Tsoumis, 1991), as was discussed previously

in the length study.

r = 1380(SG) + 716 (6.2)

Specific gravity must also be accounted for when analyzing for depth

effects on shear strength. As a result, specific gravity and beam size were

included in the multiple regression model as explanatory variables. Since the

shear span varied among sizes, two beam size parameters were used in the

multiple regression model, shear span and depth. Another factor considered in

a preliminary multiple regression analysis was the modulus of elasticity. The

modulus of elasticity did not show any evidence of an effect on shear strength (2

sided p-value=0.4379, t-test) even after accounting for specific gravity, depth,

and shear span; thus, it was removed from the final multiple regression model.

This confirmed the lack of a linear relationship between the modulus of elasticity

and shear strength found in the length study and previous research (Riyanto,

1996).

The multiple regression model was used again with specific gravity and a

modified size parameter, the product of the shear span and depth to yield the

beam area (note that beam area does not equal the shear area which is the

product of the shear span and the width of the beam). The F-test from the

ANOVA indicated that there was suggestive but inconclusive evidence that

shear strength was related to the beam area or specific gravity (2 sided p-
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value=0.0939, extra sum of squares F-test). From the multiple regression

analysis, there was moderate evidence that specific gravity affected shear

strength after the beam area was taken into account (2 sided p-value=0.0361, t-

test). However, there was no evidence that the beam area was related to shear

strength after considering specific gravity (2 sided p-value=0.9104, t-test). In

addition, the linear relationship obtained with these variables was poor

(R2=0.096).

The final multiple linear regression model developed included shear

strength as the response variable and the shear span, depth, and specific

gravity as the covariate explanatory variables. The ANOVA, using these

covariates, indicated convincing evidence that shear strength is associated with

either shear span, depth, or specific gravity (2 sided p-value=0.0052; extra sum

of squares F-test). To determine how the covariates affect the shear strength, a

multiple regression was performed. The regression analysis yielded strong

evidence that specific gravity affected shear strength after accounting for shear

span and depth (2 sided p-value=0.0103, t-test), similar to the length study.

There was no evidence that shear strength was affected by shear span after

accounting for depth or specific gravity (2-sided p-value=0.1696, t-test). In

addition, there was only suggestive but inconclusive evidence that shear

strength was dependent on depth after accounting for shear span and specific

gravity (2-sided p-value=0.0478, t-test); the multiple regression indicated that

the relationship between shear strength, shear span, depth, and specific gravity
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was weak (R2=0.24) in Equation 6.3, where t=shear strength, 1=shear span,

d=depth, and SG=specific gravity.

r = 668+ 6.77(1) 20.4(d) +1570(SG) (6.3)

After considering the linear effect specific gravity, beam area, depth, and

shear span had on shear strength, additional non-linear relationships, as shown

in Table 6.7, were analyzed. These non-linear relationships were investigated

based on previous research (Rammer et al., 1996) results which tested for shear

strength via the five point bending method. Rammer et al. (1996) observed that

the similar forms of the equations shown in Table 6.7, without the specific gravity

component, demonstrated significant evidence of an effect of size on shear

strength as determined by the bending method. However, for this study of shear

strength using the torsion method, these equations proved to be weak

relationships (with R2 values ranging from 9.6% to 22.3%), but showed moderate

evidence of a depth effect on shear strength--especially after accounting for

specific gravity.
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Table 6.7: Non-linear relationships reflecting the size effect on shear
strength

Relationship' Independent
Variable

R2 2-sided
p-value

r = 618 +32.7(d) 3.92(d)2 +1560(SG) depth2 0.2230 0.6010
T = 683 4.88(A) + 0.265(A)2 +1370(SG) shear area3 0.1770 0.8077

T = 790 2.30(V) + 0.008(V)2 +1490(SG) volume4 0.1173 0.3134

T = 843 148 ln(d) +1670(SG) depth 0.1867 0.0262
r = 412 +1171n(A) +1290(SG) shear area 0.1631 0.0573
r = 736 5.761n(V) +1390(SG) volume 0.0957 0.9140
r = 842e"246"- 0.017(d)) depth 0.2082 0.0171

r =774e("°(SG)+0.004(A)) shear area 0.1559 0.0993
r =825e("5(sG)-4.80xlir--50," volume 0.1056 0.8756

2760
07°4

depth 0.2101 0.0229
r - duos (SG)

T = 1670A"68 (SG)°355 shear area 0.1614 0.1221
2290 volume 0.1207 0.6671

r V 0 oi6 (SG)°.6"

T is the shear strength (psi)
2

Depth, d, is the actual beam depth (inches)
3

Shear area, A, is the product of shear span and actual beam width (inches2)
4

Volume, V, is the product of shear area and the actual beam depth (inches3)

Because the statistical analysis did not yield convincing evidence that the

shear strength was dependent upon the beam size, specifically depth, the data

were combined into one group of 50 specimens; Table 6.8 shows the summary

statistics for all specimens combined into one group.
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Table 6.8: Summary statistics for all depth study specimens

Beam Size Sample
Size

Moisture
Content

Specific
Gravity

Shear Strength2
(psi)

(%)
Mean COV Mean COV Mean COV

(%)
(%) (%)

Torsion 50 13.2 4.6 0.52 8.6 1,431 14.0
ASTMS' 4 47 12.5 3.6 0.51 8.9 1,287 12.8

Total includes all 2x4, 2x6, 2x8, 2x10, and 2x12 specimens in one group
2

Individual shear strength adjusted to 12% moisture content (ASTM, 1996h), then averaged
3

One ASTM block was tested for each specimen
4

One ASTM block did not fail along the shear plane and two specimens did not have enough clear wood
to allow for one ASTM (1996a) shear block

6.3.2 ASTM (1996a) study

One ASTM (1996a) shear block specimen, which was tested according to

the ASTM (1996a) standards, corresponded to each full-size structural lumber

specimen tested in torsion. A comparison between the torsion-based shear

strength and the ASTM-based (1996a) shear strength was made to determine

the relationship between the two methods. All ASTM (1996a) specimens were

combined into one group because a simple linear regression reported

inconclusive evidence that the depth of the specimen affected the ASTM-based

shear strength (2 sided p-value=0.056), and that previous research also did not

indicate a size affect on the ASTM based shear strength of a beam (Rammer et

al., 1996).

Summarized in Table 6.9 are the relationships considered for the ASTM

(1996a) study using the ASTM (1996a) shear block data from the depth study.
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The R2 values, 2-sided p-values, and brief comments regarding the significance

of the relationships are detailed in the table. Explanations for each relationship

follows in Table 6.9

Table 6.9: Observed relationships for ASTM shear blocks from the depth
study

Relationship Observed R2 2-sided p-
value

r = 914+ 0.403(r ASTM)

Moderate evidence that the ASTM-based shear
strength is related to the torsion-based shear
strength

0.104 0.0272 (tAsrm)

52.8r 0.42mA0.0116

Moderate to convincing evidence that ASTM-
based shear strength is related to torsion-based
shear strength

0.193 0.012 (tiASTM)

0.059(A)

.541r,0,,,, 0.241 0.002 (tiASTM)

0.012 (d)r = 38.2 do132

Convincing evidence that ASTM-based shear
strength is related to torsion-based shear
strength; moderate evidence that depth is related
to torsion-based shear strength

Is the torsion-based shear strength (psi), TAs-rm is the ASTM-based (1996a) shear strength (psi), d is the
depth (inches)

A simple linear regression was performed to determine whether the

ASTM-based (1996a) shear strength method was related to the torsion-based

shear strength method tested in this study. This regression model used the

shear strength obtained via the depth study torsion tests as the response
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variable, and the shear strength obtained via the ASTM method as the

explanatory variable. In this case the specific gravity was not incorporated into

the model, because there was no evidence which indicated that the specific

gravity obtained from the torsion specimens differed from the specific gravity

obtained with the ASTM (1996a) specimens (2 sided p-value=0.142, t-test).

The simple linear regression, Figure 6.19, indicates that there is

convincing to moderate evidence that the ASTM-based (1996a) shear strength is

related to the torsion-based shear strength (2 sided p-value=0.0272), but the

linear relationship, Equation 6.4, is poor and only accounts for 10% of the

variability (R2=0.104). Equation 6.4 relates Ttorsion = shear strength (psi), obtained

via the torsion method to tASTM = shear strength (psi), obtained via the ASTM

(1996a) method.

rTorsion = 914 + 0.403(rAsrm) (6.4)

Riyanto (1996) showed that there was convincing evidence (2 sided p-

value=0.00) that the ASTM-based (1996a) shear strength is linearly related to

the torsion-based shear strength, Equation 6.5 (R2=0.25). However, Riyanto's

(1996) relationship accounts for 15% more data variability than Equation 6.4.

The low percentage of data variability accounted in the current study, Equation

6.4, may be due to the smaller sample size used to develop the equation.

rTorsion = 602+0.719zA (6.5)VM
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Another expression examined through a multiple regression analysis

incorporated the torsion-based, the ASTM-based (1996a) shear strengths as

well as the shear area of the torsion specimen. This power equation, Equation

6.6 (R2=0.193), fits the data better than the linear relationship, provides

moderate to convincing evidence that the shear strength obtained by the ASTM

(1996a) method is related to the shear strength obtained by the torsion method

(2 sided p-value=0.012, t-test), and provides inconclusive evidence that shear

area affects the shear strength (2-sided p-value=0.059). For Equation 6.6, Drorsion

(psi) torsion-based shear strength, A=shear area (inches2) of beam, tASTM, (psi)

ASTM-based shear strength.

1_Tas
52.81_0.42 Ao.o86 (6.6)

Rammer et al. (1996) used shear data from bending tests combined with

shear data from ASTM (1996a) shear block tests that revealed that ASTM

(1996a) shear block values could be adjusted to the shear strength based on

bending tests, tbeding (psi), through Equation 6.7, where TAsTm (psi) is ASTM-

based (1996a) shear strength, A is the shear area (inches2), and Cr is the shear

block stress concentration factor of 2.0. Equation 6.6, is substantially different

from the literature reported power equation, Equation 6.7 (Rammer et al., 1996).

The primary reason these two equations differ may be due to the method of

testing the large scale beams. The torsion method was used for Equation 6.6

and provided different results from the five point bending method that was used
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for Equation 6.7 (Rammer et al., 1996). Because of this difference in shear

strength values obtained by the two testing methods, the difference between the

two relationships is not surprising.

1.3Cf Asni
r .bending A115 (6.7)

A different relationship was considered, Equation 6.8, by replacing the

shear area covariate with depth, d (inches). Equation 6.8 provides convincing

evidence that the ASTM-based shear strength is related to the torsion-based

shear strength (2-sided p-value=0.002, t-test) and moderate to convincing

evidence that the torsion-based shear strength is related to the beam depth (2-

sided p-value=0.012). However, Equation 6.8 only accounts for 24% of the data

variability (R2=0.24). In other words, 76% of the data is not explained by

Equation 6.8, which may result in large prediction errors if Equation 6.8 is used

to predict the torsion-based shear strength based on a given ASTM-based

(1996a) shear strength. In Equation 6.8, TAsTm (psi), is related to the shear

strength obtained by the torsion method, ttorsi (psi), (2 sided p-value=0.30).

0.541
T Anm

torsion = 382 done (6.8)

Figure 6.20 shows the effect of Equation 6.4, Equation 6.6 and Equation

6.8 when used to predict torsion-based shear strengths with ASTM-based

(1996a) shear strengths. Although Equation 6.8 is better than the other two
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equations, none of the equations adequately predict the torsion-based shear

strength using the ASTM-based (1996a) shear strength. Consequently none of

the relationships are recommended for use in modifying ASTM-based (1996a)

shear strengths to torsion-based shear strengths due to the lack of a strong

relationship that represents the data.

6.3.3 Discussion

The average shear strength for the depth study, 1,431 psi, is 27% higher

than the published ASTM shear block average shear strength value, 1,130 psi

(coefficient of variation of 14%) for dry coastal Douglas-fir species (Wood

Handbook, 1987). This large increase in shear strength was not only observed

in the current length study, but also for Riyanto's (1996) torsion study. As

observed by Riyanto and Gupta (1997) 76 nominal 2x4 Douglas-fir beams

yielded an average shear strength value of 1,834 psi with a coefficient of

variation of 18%. Although these torsion test shear strengths are higher (28.2%)

than the current study's average shear strength, the previous study did have a

larger (34%) sample size and Riyanto did not reflect the torsion machine

calibration in the shear strength values. As mentioned in section 6.2.3 and

Appendix A and Appendix B, the differences in shear strength and the smaller

coefficient of variation for the current research may be explained by the

electronic recording system designed for this study.



159

Various equations were examined to determine a relationship between

beam size and shear strength determined by the torsion method, Table 6.7 and

Equation 6.3. Based on the statistical analysis, one equation from Table 6.7,

repeated here as Equation 6.9, accounts for the most data variability

(R2=0.2082) and indicates moderate evidence that the torsion-based shear

strength is dependent upon the depth of the beam (2-sided p-value=0.0171, t-

test). This result contradicts previous research studies that showed a convincing

effect on shear strength due to depth, shear area, and/or shear volume (Asselin

et al., 1996; Rammer et al., 1996; Sanders, 1996; Rammer and Soltis, 1994).

Equation 6.9 represents the effect of depth, d (inches) on the torsion-based

shear strength, i (psi), and specific gravity, SG.

T = 842e(1.24(SG)-0.017(d)) (6.9)

Rammer et al. (1996) indicated that for solid sawn Douglas fir beams, the

shear strength, adjusted for 0.24% moisture content and 0.45 specific gravity,

depended on the size of the beam, Equation 6.10. In Equation 6.10, i is the

shear strength based on the bending test method (psi) and A is the shear area of

the beam (inches2). A similar relationship was observed in glue laminated

beams as well as for solid sawn beams (Rammer and Soltis, 1994). In both

cases, solid sawn lumber and glue laminated beams, the specimens were tested

via the five point bending method. A relationship of the form similar to Equation

6.10 was not observed with the current torsion test study.
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(6.10)

A significant difference between the earlier studies and the current study

is the method of testing for shear strength of the beams. In the bending test,

there occurs additional stresses in the shear span, for example, compression

parallel to the grain, compression perpendicular to the grain, tension parallel to

the grain, and shear parallel to the grain stress. The interaction between these

stresses and shear strength may cause an indirect size effect on the shear

strength of the beams. However, in the torsion test, interactions between other

stresses in the shear span do not occur since the only stress experienced in the

specimen is the shear stress. Because bending strength, compression parallel

to the grain strength and tension parallel to the grain strength are wood material

properties which are affected by the size of the beam (AFPA, 1991), their

corresponding stress may interact with the shear parallel to the grain stress to

show a size dependence on shear strength.

The interactions between the compression parallel to grain, tension

parallel to grain, and shear stress for bending specimens have not been studied

extensively to determine if the size relationship with shear strength is based on

these stress interactions. Compression perpendicular to the grain stress has

been studied, and the observations reveal a linear relationship: as the

compression perpendicular to the grain stress increases, the shear stress also

increases at the failure point in the wood (Mandery, 1969). Riyanto (1996)
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observed that for the five point bending test the highest compression

perpendicular to the grain stress occurs in the same location within the beam as

the high shear stresses, suggesting the five point bending test may not be an

appropriate method to determine the shear strength of wood. The stress

interactions in a three- and five- point bending specimen have been observed

indirectly through a finite element model of these bending specimens developed

by Cofer et al. (1997). The finite element model of a clear beam did not

reproduce convincing evidence that there is a size effect on shear strength,

which may suggest that the increased frequency and increased severity of

natural characteristics in larger beams may influence a size effect on shear

strength (Cofer et al., 1997). Because the torsion test, which eliminates

compressive, tensile, and shear stress interactions, does not show a convincing

size effect on shear strength, stress interactions in bending specimens tested for

shear strength as well as the frequency of the natural characteristics of wood,

should be considered before proposing a size relationship for design.

6.4 Discussion of ASTM, torsion, and bending shear strength tests

Several studies have focused on bending methods to determine the shear

strength of beams (Riyanto, 1996; Sanders, 1996; Rammer et al, 1996; Rammer

and Soltis, 1994). Table 6.10 outlines the number of shear failures per sample

size, the average shear strength, and the coefficient of variation for three point

and the five point bending tests for 2x4 beams and the corresponding ASTM
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(1996a) shear block tests (Riyanto, 1996; Sanders, 1996). For comparison with

previous bending test results, Table 6.11 summarizes the torsion test shear

strength results from the length study, the depth study, and their corresponding

ASTM (1996a) shear block test results.

Table 6.10: Comparison of 2x4 bending tests from previous research' with
ASTM values in parenthesis

Researcher Three point bending test Five point bending test

Sample Average COV Sample Average COV
Size2 Shear (%) Size2 Shear (%)

Strength Strength
(psi) (psi)

Riyanto3 43/76 1315 16 37/76 1608 18
(1151) (15) (1151) (15)

Sanders4 22/60 1216 26 21/60 1582 24
(1011) (12.1) (1306) (12.6)

Shear strength based on dry samples near 12% moisture content
2

Sample size given as the number of shear failures out of the total number of specimens tested
3

Riyanto, 1996
4

Sanders, 1996

Table 6.11: Summary of torsion test shear strength results

Study Sample
Size

Average Shear
Strength'

(psi)

COV
(%)

Length
ASTM

50 1,526 15.7
10 1,202 10.9

Depth
ASTM

50 1,431 14.0
47 1,287 12.8

1
Individual shear strengths adjusted to 12% moisture content (ASTM, 1996h) then averaged
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Lower shear strength values were not only observed for the ASTM blocks

in the length study of the current torsion test, but also in the three- and five-

point bending studies performed previously (Riyanto, 1996; Sanders, 1996).

ASTM-based shear strengths were generally lower than the torsion test ( 27%

for the length study and 12% for the depth study), the three point bending test

(14% for Riyanto in 1996 and 20% for Sanders in 1996), and the five point

bending test (40% for Riyanto in 1996 and 21% for Sanders in 1996). As

previously stated in the length study, this result implies that the ASTM (1996a)

shear block method may be underestimating the shear capacity of full-size

lumber.

The coefficient of variation for shear strength from the five point bending

test is significantly higher than that from the torsion test and slightly higher for

the three point bending test shear strength than for that from the torsion test.

This smaller coefficient of variation for the torsion test shear strength indicates

that the test may provide better consistency than either bending methods. In

addition, torsion tests result in 100% shear failures as opposed to 37% to 57%

for the three point and 35% to 49% for the five point bending test.

Not only do the ASTM-based (1996a) shear strength differ from the full-

size lumber tests, but each of the full-size lumber tests differ from themselves.

When comparing the shear strength results from the testing of full-size beams,

the three point bending method has a lower shear strength value than the

torsion test (16% to 25%) and the five point bending method has a higher shear
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strength value than the torsion test (5% to 4%). Cofer et al. (1997) also found in

the finite element study, the three point bending method consistently reported

lower shear strength values than the five point bending method. He noticed that

Tsai-Hill failure criterion indicated that the three point test is more likely to fail in

tension than in shear. As a result, those specimens which do fail I shear, which

are the only beams used to determine the shear strength, may be reporting the

lower shear strength values for the shear strength distribution corresponding the

wood species tested (Cofer et al., 1997). Consequently, with the three point

test, a representative sample of specimens and their corresponding shear

strength values are not achievable. The torsion test may offer a more

representative sample of specimens and corresponding shear strengths since

100% of the samples fail in shear (Riyanto, 1996). With large variability in shear

strength values between different shear tests, establishing a standard shear test

method for full-size lumber is important.

Although Cofer et al. (1997) indicates that the five point bending method

is more likely to fail in shear, Riyanto (1996) showed that even the five point test

method only allows for 49% of shear failures. Again, since not all samples fail in

shear, the shear strength results may not be a good representation of the shear

strength.

Another disadvantage for the bending tests, which have low percentages

of shear failures, is that an initially randomized sample does not remain random.

The random sample decreases in sample size because the samples considered

in determining the shear strength are those samples which only failed in shear.
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In addition, an initially randomized sample group looses its power of being

randomly selected because the samples used to measure shear strength were

samples based on a selection criteria, in this case the criteria is the shear failure

mode: all samples used to determine the shear strength were required to fail in

shear. Previous research (Riyanto, 1996) and the current research has shown

that the torsion test method offers 100% shear failures. Therefore, a

randomized sample group is not reduced based on a selection criteria.

6.5 Shear failures

The shear failures were as expected for all the tests, the length study, the

depth study, and the ASTM shear block study. The tested shear strength was

the shear strength parallel to the grain, as described in Chapter 3, Torsion

Theory. In general, the shear failures occurred parallel to the grain. However,

the grain angle may not necessarily have been parallel to the longitudinal axis of

the specimen. In rare occasions, the shear failure drifted off the travel path

parallel to the grain angle; in these cases, knots were associated as the point of

path change. Since a natural defect appeared to be the cause of the path

change and the failure still represented a shear failure, the specimens were not

tossed from the sample group.

Figure 6.21 identifies major parts of the torque-time graph and

corresponding photographs of the failed specimen. Figure 6.21a and Figure

6.21b show the torque increasing; for Figure 6.21a, the specimen does not
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appear to show any failure, but for Figure 6.21b the specimen begins to show a

slight crack around the knots. A major shear failure crack is not noticed until

Figure 6.21c where the graph also shows a peak in the applied torque. Points c

and d occur quickly resulting in difficulty in distinguishing the exact failure time.

Figure 6.21c and d also demonstrate that at the point of failure, the shear crack

is not large and still occurs within the elastic region of the load application.

Figure 6.21e through Figure 6.21g illustrate the shear crack expanding as the

torque stabilizes between 6,000 and 7,000 inch-pounds. Complete failure of the

wood specimen is seen in Figure 6.21h and Figure 6.211 as the torque

application is continued. The final stages are Figure 6.21j and Figure 6.21k,

which illustrate the longitudinal and cross sectional shear cracks after the

specimen has been removed from the torsion machine.

Other typical failures are illustrated in Figure 6.22 through Figure 6.26,

which show the torque verses time graph and the corresponding specimen

identifying the failure crack. As observed in the length and depth study, a

longitudinal crack began at the middle point of the long side, near the center of

the span, of the specimen. The crack propagated along the length, toward the

ends of the specimen, and through the cross section perpendicular to the growth

rings, Figure 6.24. In some cases the crack traveled along the growth rings in

portions of the cross, as shown in Figure 6.23. In this case, the failure was

along the earlywood-latewood boundary. As the shear crack approached a knot,

in Figure 6.23, the crack traveled around the knot and often stopped on the other
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side of the knot, indicating that knots may provide some resistance to shear

failures.

An anatomical study of shear failures in wood was not performed as part

of this research, but is recommended in future research of the shear strength of

wood. However, some microscopic characteristics of the shear failure can be

speculated. The observed failures in the cross section, Figure 6.21k, Figure

6.23, Figure 6.24, and Figure 6.25 show the shear failure traveling in the radial

direction. The shear failure parallel to the grain may be causing separation of

wood planes parallel to on another as a result of a discontinuity in the wood

material between the longitudinal tracheids and the ray cells. In addition, the

transverse cells may also provide some resistance to the shear failure since the

transverse cells are located perpendicular to the shear failures.

The chemical components of the cells may also affect the shear strength.

Tension wood, which contains less lignin than normal wood has less shear

strength than normal wood (as summarized in Panshin and de Zeeuw, 1980).

Because the lignin works as a mortar for the cellulose chains, perhaps lignin

provides some resistance to the sliding of wood fibers, as observed in shear

failures. Correlating the amount of lignin to shear strength may provided

insights on the chemistry composition effects on shear strength.
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7. Conclusions and Recommendations

As a result of this study on the shear strength of full-size structural lumber

using the torsion test, the following conclusions have been recorded and the

following recommendations are suggested.

7.1 Conclusions

1. Based on the results of this study, which also verified that the torsion test

yields 100% shear failures and subjects the specimen to a state of pure

shear stress, the torsion test is the best practical method to determine the

pure shear strength of full-size structural lumber.

2. Because the torsion test method directly measures the torsional strength of

wood, this test is an excellent method to determine the torsional strength of

wood.

3. The shear stress that causes shear failures in structural lumber subjected to

torsion is identical to the shear stress that causes shear failures in structural

lumber subjected to bending loads: The shear sliding direction is parallel to

the grain and the shear failure plane is parallel to the grain.
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4. The finite element model revealed that the shear span, which possesses

uniform shear stress, occurs at a distance away from each end of the beam

that is equal to two times the depth plus the grip distance.

5. Both the length study and the depth study indicated a significant linear

relationship between shear strength and specific gravity, but no evidence of a

relationship between shear strength and modulus of elasticity.

6. The length study did not reveal any evidence that the shear span of the

torsion specimen affects the maximum shear strength for 2x4 beams even

after accounting for specific gravity.

7. The ASTM D 198-94 standard recommendation for the minimum total length,

for a torsion test, of at least eight times the depth is a general suggestion

which should provide uniform shear stress within the shear span.

8. There is suggestive but inconclusive evidence that shear strength is linearly

dependent on depth after accounting for shear span and specific gravity.

9. There is moderate evidence that shear strength is non-linearly dependent on

shear area or volume after accounting for specific gravity.
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10. There is no evidence that shear strength is related to depth, volume, or shear

area through power or logarithmic relationships.

11. There is convincing evidence that the shear strength obtained with the

torsion method is linearly related to the shear strength obtained with the

standard ASTM D 143 method even after accounting for specific gravity.

However, the relationship comparing the torsion-based shear strength with

the ASTM-based shear strength accounts for less than 25% of the data

variability.

7.2 Recommendations

1. The torsion test is recommended as the method to determine the torsional

strength of wood for the design of members subject to direct torsion.

2. Additional research should be conducted to determine the effect of

compressive stress perpendicular to the grain, compressive stress parallel to

the grain, tensile stress, and shear stress interactions of specimens

subjected to bending loads.

3. The torsion test method provides the same shear stress failure as observed

in bending specimens and pure shear stress in the torsion specimen. In

addition, the torsion test yields 100% shear failures as initial failures, and this
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test can be used to test full-size lumber specimens, similar to those used in

design, with natural characteristics, unlike the ASTM (1996a) shear block.

Therefore the torsion test method should be considered as a standard to

measure shear strength of structural lumber.

4. Additional testing of 2x4, 2x6, 2x8, 2x10, and 2x12 beams should be

performed to establish a database of samples tested via the torsion method

for shear strength and to determine mean torsional strength values and mean

shear strength values for the wood species tested.

5. As a part of the database testing, strain measurements should be taken for

several torsion specimens to compare experimental strain values with strains

calculated from the finite element model developed in this study. Using the

modulus of elasticity value obtained in the laboratory for the specimens,

strains measurements can be converted to stresses and compared to the

calculated stresses from the finite element model.

6. Anatomical investigations of the failed specimen should be performed to

understand shear failure at a microscopic level.
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Appendix A
Experimental Set Up

A.1 Historical Operation
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The torsion machine used to apply the torque to the specimens was a

Tinius Olsen torsion machine SN 2800 with a balance arm beam, patented in

January 27, 1891 (Figure A-1). This machine was refurbished in 1988 when a

motor was installed. The torque is applied to the rotating head via the motor

which has a speed dial that can be controlled by the operator. The specimen is

secured between the rotating grip and the fixed grip. The fixed grip transfers the

torque, applied by the rotating head, to the fulcrum points on the inside of the

machine. These fulcrum points allow torque transfer from the fixed head to the

tension rod via a series of lever arms and fulcrum points. The tension in the rod

pulls the arm beam out of balance, and as a result the weight on the arm beam

must be moved across the beam until the it balances. At this point, when the

beam is balanced, the torque value read from the arm beam is the amount of

torque applied to the specimen secured in the grips.

A.1.1 Original Procedure for Torque Testing

Originally, the machine was designed for circular cross sections. As the

torque is applied to the specimen, the arm beam should be continuously
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balanced by the operator so that the torque value at failure can be determined

accurately. Failure is defined when the arm beam drops abruptly. The

Figure A.1: Torsion machine used in the shear strength testing of
structural lumber; the fixed grip and the balance arm beam is shown
above

abruptness of the arm beam drop indicates that the specimen is not continuing

to transfer as much torque as it previously had transferred to the tension rod. At

failure, the torque reading is the ultimate torsional strength of the specimen.
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A.2 Modifications

For the purposes of this study, this machine needed to be modified to

allow torsion testing of rectangular wood specimens. The tension rod, the

rotating head, and the grips required modifications. Based on a pilot study, the

variability of the wood posed a

challenge when determining failure.

Abrupt dropping of the arm beam

seldom occurred; for wood the torque

transferred to the tension rod tapered

off more slowly. Upgrading the

machine to electronically record the

response of the specimen in terms of

the torque applied and the rotation

would provide more information. For

example, plots of time versus torque

and plots of torque verses rotation

could be obtained. Torsion failure was

less difficult to establish after examining

these plots.
Figure A.2: Original tension rod
next to the new tension rod with
load cell



A.2.1 Torque Measurement
Modifications

The original solid steel tension rod

was removed and replaced with a new

steel tension rod that has a load cell in

the middle (Figure A-2). This load cell

tension rod performs the same function

as the original tension rod that came with

the Tinius Olsen torsion machine. The

Interface load cell, model SSM-AJ-250,

SN C93961, used has a 250 pound

capacity.

A.2.2 Angular Displacement
Modifications

On the rotating head, a Celesco

string potentiometer model PT101-0010-

111-1110, SN A5601 with sensitivity of

94.38 mvN/in was used to record the

rotation of the specimen. The string
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Figure A.3: String potentiometer
used to record the rotation angle

potentiometer wire was wrapped around
Figure A.4: Grips used with the

the rotating head of the torsion machine torsion machine
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two and a half times. The wire then hung down where it connected to the string

potentiometer (Figure A-3).

A.2.3 Grip Modification

The original grips on the torsion machine allowed for testing of circular

specimens. Figure A.4 illustrates the new grips which accomodated rectangular

specimens; the new grips were placed into the original grips of the torsion

machine. A solid steel circular bar was welded to the center of a 1/4 inch thick

steel plate, and two 5/8 inch thick steel angles were connected to the steel plate

using bolts, as seen in Figure A-4. These angles provided the vise-like grip

necessary to apply torque loading to the rectangular wood specimens while still

allowing for unrestrained torsion in the specimens. These grips meet the ASTM

(1996b) requirements for torsion testing of structural size lumber.



A.3 Data Acquisition System

Figure A-5 illustrates the

interaction between the new tension rod,

the string potentiometer, the vise grips,

the transducer, and the computer.

Figure A-6 represents a schematic of the

data acquisition system. The string

potentiometer and the load cell were

connected into a Statham Universal

Transducer Readout model SC1001.

The transducer sends the voltage signals

to the data acquisition card in the 286

computer where the voltages are

recorded. The data acquisition software

was Labtech Notebook Version 5.1.3, SN

16433.
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Figure A.5: Interaction of new tension
rod, string potentiometer, transducer,
and computer

Labtech Notebook
Software
Data Aquisitio
Card 286 Personal

Computer

1

Signal Conditioning Load Cell
Unit

String
Potentiometer

CP

Power

Figure A.6: Schematic of data acquisition system
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A.3.1 Data Acquisition Procedure

1. Torque is applied to the specimen by turning the motor on.

2. Angular displacement is read by the rotating head which pulls the wire from

the string potentiometer around the rotating head causing a signal to pass

through the transducer and a voltage to be recorded via the computer

software.

3. Specimen transfers this torque to the fixed head which causes the load cell,

due to the increase in tension in the tension rod, to send a signal to the

transducer and a voltage to be recorded via the computer software.

Appendix B describes the calibration procedures and results necessary to

provide useful torque and rotation values from the electronic equipment.
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Appendix B
Equipment Calibration

B.1 Equipment Calibration

In order for the electronic apparatus to provide useful torque and rotation

values, calibrations were necessary. The load cell voltage was calibrated to the

torsion machine torque readings and the string potentiometer voltage was

calibrated to the torsion machine rotational readings. The torsion machine itself

was calibrated after all modifications, the grip modification, the tension rod

modification, and the rotation angle measurement modification, were complete.

B.1.1 Load Cell

Since the torsion machine was specifically designed for circular sections,

a solid steel bar was used to calibrate the load cell to the torque readings on the

balance beam of the machine. This steel bar was secured in the grips (Figure B-

1). Since the motor was off, no torque was applied to the steel rod, and the arm

beam was balanced at zero torque. The load cell voltages were read from a

voltmeter. First, a voltage was recorded at zero torque. Next, the motor was

allowed to run for approximately 10 seconds and then turned off. At this point,

the voltage value was read from the voltmeter, and the arm beam was balanced.

After balancing the arm beam, the torque value was read from the torsion
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machine. This procedure was repeated numerous times. As a result of the

repeated readings, a linear relationship between load cell voltages and torque

values was established.

Figure B.1: Load cell calibration with isotropic steel bar secured in
torsion machine grips

A relationship was determined before and after the depth study as well as

before and after the length study. The calibration equations remained strongly

linear, as shown in Figure B.2; however the slope value used in the data

reduction varied slightly. For the length effect on torsion study the slope

relationship between the torque readings and the load cell voltage was 2480 in-

lbs/V. The calibration of the load cell for the depth study showed identical
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results. The intercept, based on a zero torque reading at the known zero

voltage reading for that particular specimen of the linear calibration equation,

was calculated for each specimen

B.1.2 String Potentiometer

The voltages read from the string potentiometer via the transducer must

be calibrated by correlating the voltage readings from the potentiometer to the

rotation readings from the torsion machine.

The string potentiometer was calibrated without connection to the torsion

machine. The wire was pulled out of the string potentiometer a known distance,

using a ruler, and the voltage was recorded from the voltmeter. This procedure

was repeated several times to determine a linear relationship between the wire

displacement from the string potentiometer and the corresponding voltage.

This relationship of inches of displacement versus voltage was then

converted to degrees of rotation versus voltage. The conversion was based on

the 3.5 inch radius of the circular torsion head to which the string potentiometer

wire was connected. The slope of the plot of degrees versus voltage used in

this study was 69.3 degreesN. The intercept of this calibration equation was

calculated for each specimen. The intercept was based on the condition that at

zero torque there is zero degrees of rotation. A known zero voltage reading was

recorded for each specimen.
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8.1.3 Torsion Machine

A recent calibration date for the Tinius Olsen machine was not available.

Based on conversations with Oregon State University professors, the latest

calibration for this machine is believed to be the machine's manufacture date.

The machine was purchased in 1911 by the Oregon Agricultural College, which

has evolved in to the current Oregon State University. In a personal

communication with Fred Beam with Cal-Cert Calibration company, he indicated

that the Tinius Olsen machine is most likely as accurate as the day it was

manufactured. Due to the exorbitant cost of calibrating and certifying the

machine, another method using lead weights and a lever arm was employed.

Since the calibration was not performed with certified weights, this calibration

result cannot be certified. However, this procedure is suitable to check the

accuracy of the machine, which was necessary especially due to the electronic

modifications.

The calibration procedure was performed with the original rod in place

and again with the load cell rod in place. Since the load cell rod was used for

this research, the following discussion presents the calibration results of the

Tinius Olsen machine with the load cell rod as the tension rod.

Figure B-3 is a schematic of the calibration set up using the load cell

tension rod rather than the original tension rod in the Tinius Olsen torsion

machine, and Figure B-4 is a photograph of the torsion machine calibration. The

calibration rod, of circular cross section, is placed into the torsion machine grips.
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Figure B.3: Schematic of calibration set up of the torsion machine

Figure B.4: Calibration set up for torsion machine
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The rod remains in the x-z plane during the calibration; in other words the rod

does not deflect along the y-axis. To avoid a moment about the x-axis, the

calibration weight is applied along the z-axis at a distance of zero and along the

x-axis at a lever arm distance, L. The origin of the axes is chosen such that it

corresponds to the fulcrum points inside the torsion machine. The fulcrum points

at the origin are the main mechanisms which transfer the torque to the tension

rod as a tension force. As described in Appendix A, the torque transfer occurs

from the fixed head to the tension rod via a series of lever arms and fulcrum

points. The moment applied to the machine via the calibration weights (W) is

referred to as the applied torque, Tapp lied; this torque value is determined by

Equation B.1, obtained from statics where L is the lever arm distance as shown

in Figure B.3 and W is the applied weight. This applied torque value should

match with the torque value read from the arm beam of the machine. Several

applied torque values were calculated and recorded with the corresponding

torque reading values read from the arm beam of the machine. If the torsion

machine is calibrated correctly, the applied torque values should fall on the

same line as the torque reading values.

Tapphed = L(W) (B.1)

Figure B.5 displays the relationship between the applied weight, the

applied torque, and the torque reading. The torque reading values are

approximately 7% higher than the applied torque.
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This calibration procedure was performed initially on September 12, 1996

prior to the depth study, and again on December 20, 1996 after the length study.

The September calibration results were very similar to the December calibration

results. Therefore, the following formula, Equation B.2, should be used to

translate the torque values read from the machine (Lachine) to the actual torque

values applied to the specimen, Tactual. It is imperative that this calibration rod be

level since a deflection along the y-axis would change the lever arm used in

Equation B.1. A level rod allows for the determination of the lever arm with less

error than for a deflected rod.

7'adu, = T.,,(0.929) (B.2)
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Appendix C
Data Reduction

C.1 Testing Procedure
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Using the software, Labtech Notebook version 5.1.3, serial number

16422, with the ADAC data acquisition card, the voltage readings from the load

cell and the string pot were recorded by the computer. The following outline

presents the procedure used to collect the torque, rotation, and time data

necessary for this research.

Testing Procedure

1. Zero balance beam of torsion machine by moving the counter weight, shown

in Figure B.3. Make sure that the balance beam moves freely if touched, but

if balanced the beam returns to the balanced position easily.

2. Recall data acquisition setup file: ZEROSPEC

3. The setup file, ZEROSPEC, will record data for 3 minutes at 5 hertz. This is

the zero reading for the specimen. This data will determine the zero voltage

from the load cell used for zero torque and the zero voltage from the string

pot used for zero rotation. The data is saved as the file zs@_&.prni .

4. Choose specimen to test.

1 In the file name: CO = date (mmdd), & = number (this allows only ten specimens to be tested per day
without overwriting the previously saved files #0-9). File name change must be made if more than ten
specimens are to be tested in one day.
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5. Recall data acquisition setup file: SPECIMEN

6. Place specimen in grips and tighten. Be sure to allow for unrestrained

warping; thus do not over tighten the grips.

7. Begin collecting data with the computer before turning on the motor.

8. After a minute, turn on the motor and collect data for 14 additional minutes at

2 hertz. For this research, the motor should be set at the lowest speed to

ensure that the specimen failure time will be between five and twenty

minutes. The data will be saved as SIZE©_&.prn.1 Do not attempt to

balance the arm balance while administering the test.

9. Stop collecting data.

10. Reverse the motor to return the grips back to the initial position.

11. Remove the specimen.

12. Repeat steps 1-11 for the next 9 specimens. Note: Step 1 may not need to

be repeated. If the balance beam freely floats to the balanced position then

do not change the position of the counter weight from its initial position

established in Step 1.

1 In the file name: SIZE=the appropriate size value the operator must type in the file name in the file line
of Labtech command windows (2x4, 2x6, 2x8, 2x10, or 2x12), (fp = date (mmdd), & = number (this
allows only ten specimens to be tested per day without overwriting the previously saved files #0-9). File
name change must be made if more than ten specimens are to be tested in one day.
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C.2 Data Reduction

After collecting the necessary data using the procedure outlined above,

the data must be reduced to convert the voltage data collected to the

corresponding torque and rotation values. The calibration results are used to

reduce the collected voltage data. The following is the procedure used to

reduce the data for this research.

Data Reduction

1. Average the zero torque voltages from the setup file ZEROSPEC. This

average value is the voltage which will correspond to zero torque on the

specimen.

2. Use the average zero voltage from step 1 to determine the y-intercept of the

load cell calibration equation obtained from Appendix B, Calibration. The

slope of this equation never changes but the y-intercept changes as the zero

voltage for torque changes with each specimen.

3. Convert "torque" voltages to actual torque values with the load cell

calibration equation.

4. Repeat steps 1 and 2 using the string pot calibration equation obtained from

Appendix B, Calibration.

5. Convert "rotation" voltages to actual degrees of rotation with the string pot

calibration equation obtained from Appendix B, Calibration.

6. Record the maximum positive torque value.
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7. The time difference from zero torque to the maximum positive torque value

indicates the time to failure. Use the zero torque value obtained after turning

on the motor.

8. The rotation rate can also be determined during the time to failure span,

assuming the rate is linear the rate equals the change in degrees divided by

the change in time.

Typical plots after data reduction, for the Douglas-fir specimens tested in

this study, are shown in Figure C.1, for a torque-time relationship, and Figure

C.2, for a torque-rotation relationship.
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Appendix D
Length Study Data

D.1 Identification code for the length study data

MOE= the modulus of elasticity.

Ratio= the ratio of beam depth to width. This ratio is used to determine the

geometric factors in the Torsion equations, Equation 3.9.

MC= the moisture content of the specimen at testing.

SG= the specific gravity of the specimen.

Calibrated Max Torque= the applied torque as calibrated according to

Appendix B.

Rotation angle= the amount of rotation of the specimen.

Time to failure= length of time until initial shear failure occurred.

Rate= the applied strain rate to the specimen.

Gamma= y, a geometric factor used in the torsion equations, Equation 3.9.

Mu=p., a geometric factor used in the torsion equations, Equation 3.9.

SS or Shear stress= the shear stress as calculated using the calculated

maximum torque and Equation 3.9.

Adjusted SS for 12%= the shear stress adjusted to the standard moisture

content of 12% according to ASTM D 1990-95 (ASTM 1996e).

Gamma 1= yi, a geometric factor used in the torsion equations, Equation 3.9.
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Length Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen SizeNVeight

Width Depth Weight MC SG Max Torque

Torsion

Calibrated Torque

Results
Rotation Angle Time to failure Rate

(X 10^6 psi) Qn

irliO
in - -- (degrees) (deg/in/min)

25 ld 1.92 21.5 1

i
3(.S 0 119 rb1._ 0.45

3n32 2(in1-11))92

19
Snin.?

.43
13 1d 1.97 21.5 1.498 3.491 2.046 13.0 0.46 2707 2514 24 2.8 0.43
5 1d 1.92 21.5 1.500 3.496 2.232 12.8 0.50 3457 3211 20 3.0 0.33
42 1d 1.91 21.5 1.500 3.506 1.922 11.7 0.45 2659 2470 17 2.4 0.34
7 1 d 1.94 21.5 1.503 3.505 2.088 11.7 0.48 3331 3094 17 2.3 0.36
26 1 d 1.89 21.5 1.504 3.500 2.390 11.6 0.54 4429 4114 19 2.5 0.36
29 1 d 1.88 21.5 1.501 3.499 2.342 13.1 0.54 2807 2607 16 2.2 0.33
17 1 d 1.98 21.5 1.495 3.488 2.102 13.7 0.50 3677 3415 34 4.3 0.37
47 1d 1.91 21.5 1.488 3.478 2.000 13.8 0.46 3023 2808 23 2.9 0.4
28 1d 1.87 21.5 1.497 3.500 2.216 12.0 0.50 3207 2979 15 1.9 0.38

1.92
1.88

1.50 3.50 2.13 12.44 0.49 3166.70
0.39 0.26 7.57 7.76 7.10 18.94

2940.38 20.40 2.6 0.37
18.94 27.36 26.3 9.96

Specimen

No.

Rings per

Inch

Shear

Gamma
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Mu

(Middle Point

SS

of Long Side)

Adjusted SS for 12%SS for 12% Gamma 1Gamma 1

Shear Stress-SS--
MuMu

(Middle Point
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of Short Side)

Adjusted SS for 12%Adjusted SS for 12%

IgsSS 1M
iSS (Psi)

25 ld25 1 d 4.54.5 1.91531.9153 3.88933.8893 107 0.6431 3.8893
it,P,711)

2 830
13 1d 7 1.9153 3.8893 12E6 1285 0.6431 3.8893 990 1006
5 1d 7 1.9153 3.8893 1608 1628 0.6431 3.8893 1259 1274
42 ld 4 1.9153 3.8893 1234 1228 0.6431 3.8893 968 964
7 ld 10 1.9153 3.8893 1541 1533 0.6431 3.8893 1207 1201

26 1d 6 1.9153 3.8893 2047 2037 0.6431 3.8893 1600 1591

29 1 d 7 1.9153 3.8893 1303 1324 0.6431 3.8893 1020 1036
17 1 d 6.5 1.9153 3.8893 1727 1770 0.6431 3.8893 1363 1387
47 1 d 6 1.9153 3.8893 1437 1476 0.6431 3.8893 1128 1159
28 1 d 9 1.9153 3.8893 1496 1496 0.6431 3.8893 1174 1174

6.70
27.07 18.97 19.04 18.93 19.00
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No. MOE Length
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Torsion

Calibrated Torque
Results

Rotation Angle Time to failure Rate
X 10'6 in in in lbs % -- in-I in -lb d reel min d n/min

. . . ""7 . . .
r . e.

29 2d 1.88 25.0 1.487 3.489 2.686 13.2 0.52 3155 2930 23 2.9 0.29
7 2d 1.94 25.0 1.502 3.505 2.356 11.7 0.46 2880 2675 17 2.1 0.29
25 2d 1.92 25.0 1.503 3.511 2.392 11.1 0.47 2539 2358 19 2.3 0.29
17 2d 1.98 25.0 1.494 3.485 2.530 13.6 0.50 3200 2972 32 4.8 0.23
13 2d 1.97 25.0 1.493 3.488 2.522 13.2 0.49 3427 3183 25 3.8 0.24
28 2d 1.87 25.0 1.498 3.506 2.510 11.9 0.49 2981 2769 17 2.6 0.24
47 2d 1.91 25.0 1.492 3.499 2.438 13.9 0.49 3914 3635 42 6.0 0.25
42 2d 1.91 25.0 1.499 3.506 2.214 11.5 0.44 3456 3210 27 3.8 0.25
26 2d 1.89 25.0 1.502 3.505 2.544 11.9 0.49 3459 3213 30 4.2 0.25

1.92 1.50 3.50 2.48 12.53 0.49 3247.20 3016.08
1.88 0.37 0.38 5.39 8.09 5.00 11.83 11.83

26.30 3.6 0.26
29.83 33.3 9.11

Specimen

No.

Rings per

Inch

Shear

Gamma

Stress--SS-

Mu
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SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress-SS--
Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

1r24
(psi)

5 2d 7.5 1.9153 3.8893
.rt4

0.6431 3.8893 1281 1305
29 2d 5 1.9153 3.8893 1497 1524 0.6431 38893 1180 1201
7 2d 8 1.9153 3.8893 1332 1326 0.6431 3.8893 1044 1039

25 2d 4.5 1.9153 3.8893 1171 1155 0.6431 3.8893 918 906
17 2d 6 1.9153 3.8893 1505 1541 0.6431 3.8893 1178 1207
13 2d 6.5 1.9153 3.8893 1614 1643 0.6431 3.8893 1266 1289
28 2d 9 1.9153 3.8893 1387 1386 0.6431 3.8893 1090 1089
47 2d 6.5 1.9153 3.8893 1854 1909 0.6431 3.8893 1447 1490
42 2d 4 1.9153 3.8893 1006 1594 0.6431 3.8893 1262 1252
26 2d 6 1.9153 3.8893 1000

.............,_
1597 0.6431 3.8893 1253 1251

24.87 12.44 13.48 12.34 13.38
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No. MOE Length

Specimen Size/Weight

Width Depth Weight MC SG Max Torque

Torsion

Calibrated Torque

Results

Rotation Angle Time to failure Rate
(X 10^6 i) (in (in) Qbsi r/o) - in-lb

(derees)
21
21

25
27
34
21

28
31

20

(min)

4.3
3.2
3.0
3.4
3.6
4.5
2.8
3.7
4.0
2.5

ideg/irdmin)
0.27
0.22
0.23
0.23
0.23
0.23
0.24
0.24
0.25
0.25

17
26
28
13
7
47
42
29
5
25

3d
3d
3d
3d
3d
3d
3d
3d
3d
3d

1.

1.89
1.87
1.97
1.94
1.91

1.91
1.88
1.92
1.92

1
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5

1. 48
1.501
1.501
1.502
1.506
1.484
1.496
1.494
1.500
1.504

3. 45
3.504
3.503
3.495
3.515
3.472
3.507
3.491
3.504
3.509

2.
2.810
2.814
2.570
2.758
2.632
2.576
2.988
2.930
2.720

1 S.5

11.6
11.5
12.5
11.3
14.1
11.9
13.0
12.1
11.1

0.50
0.49
0.50
0.46
0.47
0.49
0.45
0.55
0.51
0.46

0
3657
3161
2991
3199
3429
2791
3210
3798
2639

3397
2936
2778
2971
3185
2592
2962
3528
2451

1.92 1.50 3.50 2.76 12.27 0.49 3243.30
1.88 0.41 0.35 5.14 8.10 5.91 11.52

3012.46
11.52

26.20
20.89

3.5 0.24
18.3 6.06

Specimen

No.

Rings per

Inch

Shear

Gamma

Stress - -SS-

Mu

(Middle Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear St

Mu

ess--SS-- (Middle Point

SS

of Short Side)

Adjusted SS for 12%

?6s6ii17 3d 6.5 1.9153 3.8893 'CI 0.6431 3.8893 1(3011301
1

1331
26 3d 6.5 1.9153 3.8893 1695 1685 0.6431 3.8893 1329 1321
28 3d 7 1.9153 3.8893 1464 1455 0.6431 3.8893 1150 1142
13 3d 7 1.9153 3.8893 1389 1400 0.6431 3.8893 1085 1094
7 3d 11 1.9153 3.8893 1471 1456 0.6431 3.8893 1153 1142
47 3d 6 1.9153 3.8893 1641 1694 0.6431 3.8893 1289 1331
42 3d 4 1.9153 3.8893 1301 1299 0.6431 3.8893 1024 1022
29 3d 4.5 1.9153 3.8893 1508 1531 0.6431 3.8893 1183 1201
5 3d 6 1.9153 3.8893 1763 1765 0.6431 3.8893 1384 1385
25 3d 5 1.9153 3.8893 1217 1201 0.6431 3.8893 953 941

30.39 11.81 12.47 11.82 12.48



Avg:
COV (%):

Avg:
COV (%):

Length Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen SizeNVeight

Width Depth Weight MC SG
I
Max Torque

Torsion

Calibrated Torque

Results

Rotation Angle Time to failure Rate

(X 10^6 i) (in (in cy.,) (in-lb) in-lb (de&ees) (mm) (degiin/min))

29 4d 1.

3A
1. 3. 3. 7t

r
1- .2 0.52 3151

3
5.22

5 4d 1.92 32.0 1.496 3.489 3.344 12.9 0.51 3737 3471 33 3.9 0.24
25 4d 1.92 32.0 1.499 3.504 3.030 10.9 0.46 2412 2240 27 3.2 0.24
7 4d 1.94 32.0 1.498 3.502 3.044 11.6 0.47 2781 2583 26 3.0 0.25

47 4d 1.91 32.0 1.492 3.464 3.064 13.7 0.50 3780 3511 44 4.9 0.26
42 4d 1.91 32.0 1.494 3.501 2.730 11.2 0.43 3431 3187 31 3.5 0.25
28 4d 1.87 32.0 1.494 3.501 3.246 11.5 0.50 2630 2443 27 3.0 0.26
17 4d 1.98 32.0 1.489 3.481 3.170 13.5 0.49 3088 2868 33 3.5 0.27
26 4d 1.89 32.0 1.496 3.499 3.528 11.6 0.55 4020 3734 29 3.1 0.27
13 4d 1.97 32.0 1.489 3.474 3.238 13.4 1 0.51 2891 2685 26 2.7 0.28

1.92
1.88

1.49 3.49 3.18 12.35 0.49 3192.10
0.29 0.39 7.05 8.78 6.73 16.78

2964.90
16.78

30.10
18.89

3.4 0.25
17.9 6.99

Specimen

No.

Rings per

Inch

Shear

Gamma

Stress--SS-

Mu

(Middle Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress--SS--

Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

}I:9!
si ( psi) (Psi)

29 4d 5 1.9153 3.8893 2 0.6431 3.8893 117 9 1201
5 4d 8 1.9153 3.8893 1752 1775 0.6431 3.8893 1372 1390
25 4d 4 1.9153 3.8893 1121 1103 0.6431 3.8893 880 866
7 4d 7 1.9153 3.8893 1295 1286 0.6431 3.8893 1016 1039
47 4d 7 1.9153 3.8893 1794 1841 0.6431 3.8893 1399 1436
42 4d 4 1.9153 3.8893 1607 1588 0.6431 3.8893 1265 1249
28 4d 9 1.9153 3.8893 1232 1223 0.6431 3.8893 969 962
17 4d 6 1.9153 3.8893 1464 1497 0.6431 3.8893 1149 1175
26 4d 6 1.9153 3.8893 1879 1868 0.6431 3.8893 1476 1467
13 4d 6.5 1.9153 3.8893 1374 1403 0.6431 3.8893 1077 1099

25.92 16.92 17.43 16.81 17.31



Avg:
COV:

Length Effect on Torsion Specimens

Specimen

No. MOE Length

Specimen Size/Weight

Width Depth Weight MC SG Max Torque Calibrated Torque

Torsion Results

Rotation Angle Time to failure Rate

(X 10^6 psi) (in) (in) (in) (Ibs) (%) --- (in-lb) (in-lb) deji2deg/( revs) (min) ( in/min)

28 5d 1.87 35.5 1.498 3.502 3.592 11.8 0.50 3313 3077 2.6 0.25
42 5d 1.91 35.5 1.499 3.506 3.330 12.1 0.46 2695 2503 27 3.0 0.25
47 5d 1.91 35.5 1.497 3.476 3.402 14.1 0.49 3485 3237 45 4.6 0.25
13 5d 1.97 35.5 1.500 3.493 3.444 13.2 0.49 2492 2315 36 4.1 0.23
29 5d 1.88 35.5 1.495 3.496 3.693 13.6 0.52 3064 2846 26 3.2 0.2
25 5d 1.92 35.5 1.500 3.499 2.322 11.7 0.57 2769 2572 31 3.6 0.22
7 at 1.94 35.5 1.497 3.491 2.754 11.5 0.52 4129 3836 27 3.4 0.23
26 5d 1.89 35.5 1.495 3.494 3.278 11.8 0.56 3964 3673 24 2.8 0.23
5 5d 1.92 35.5 1.492 3.485 3.722 12.9 0.57 4090 3807 34 4.3 0.21

17 5d 1.98 35.5 1.492 3.485 3.722 1 12.1 0.52 3E61 3298 43 2.2 0.21

1.88 0.20 0.25 13.72 7.20 6.90 17.71 17.71 23.66 22.96 7.95

Specimen

No.

Rings per

Inch

Shear

Gamma

Stress--SS-

Mu

(Middle Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress--SS--

Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

ti ill (psi) (Psi)

28 5d 8 1.9153 3.8893 1 0.6431 3.8893 1211 1207
42 5d 5 1.9153 3.8893 1253 1255 0.6431 3.8893 984 966
47 5d 6.5 1.9153 3.8893 1E37 1688 0.6431 3.8893 1276 1316
13 5d 6 1.9153 3.8893 11E0 1181 0.6431 3.8893 907 923
29 5:1 4.5 1.9153 3.8893 1435 1469 0.6431 3.8893 1126 1153
25 5:1 4.5 1.9153 3.8893 1287 1281 0.6431 3.8893 1008 1003
7 5d 5.5 1.9153 3.8893 1932 1917 0.6431 3.8893 1513 1501

26 sci 5.5 1.9153 3.8893 1853 1847 0.6431 3.8893 1454 1450
5 5d 7 1.9153 3.8893 1933 1963 0.6431 3.8893 1516 1537
17 5d 6 1.9153 3.8893 1675 1678 0.6431 3.8893 1314 1316

Avg: 5.85 1570.68 1581.36 1230.92 1239.27
COV: 18.92 18.09 17.86 18.11 17.87
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Length Effect of Torsion Specimens: ASTM (1996a) Small Clear Block Specimens

Specimen

No. MOE

Shearing

Length

Area

Width MC SG

Shear

Max Load

Results

Speed of testing

Shear

SS

Stress

Adjusted SS 12 %

i in in % - bs .n/min (.si

.----3---- . s's e e OF, ;

7 1.94 2.0025 1.9915 11.03 0.49 3820 0.024 958 944
13 1.97 2.0010 1.9915 12.58 0.45 4490 0.024 1127 1137
17 1.98 2.0015 1.9950 13.73 0.49 4940 0.024 1237 1270
25 1.92 1.9960 1.9890 10.98 0.46 4310 0.024 1086 1069
26 1.89 2.0020 1.9990 11.14 0.47 5030 0.024 1257 1241

28 1.87 1.9990 1.9930 12.02 0.50 4820 0.024 1210 1210
29 1.88 2.0010 1.9915 13.19 0.50 5530 0.024 1388 1413
42 1.91 1.9970 1.9905 11.83 0.43 4960 0.024 1248 1245

47 1.91 1.9990 1.9900 13.43 0.44 5110 0.024 1285 1312
Avg: 12.27 0.48 1201.92
COV (%): 8.36 6.28 10.86
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Appendix E
Depth Study Data

E.1 Identification code for the depth study data

MOE= the modulus of elasticity.

Ratio= the ratio of beam depth to width. This ratio is used to determine the

geometric factors in the Torsion equations, Equation 3.9.

MC= the moisture content of the specimen at testing.

SG= the specific gravity of the specimen.

Calibrated Max Torque= the applied torque as calibrated according to

Appendix B.

Rotation angle= the amount of rotation of the specimen.

Time to failure= length of time until initial shear failure occurred.

Rate= the applied strain rate to the specimen.

Gamma= y, a geometric factor used in the torsion equations, Equation 3.9.

Mu=p., a geometric factor used in the torsion equations, Equation 3.9.

SS or Shear stress= the shear stress as calculated using the calculated

maximum torque and Equation 3.9.

Adjusted SS for 12%= the shear stress adjusted to the standard moisture

content of 12% according to ASTM D 1990-95 (ASTM 1996e).

Gamma 1= y,, a geometric factor used in the torsion equations, Equation 3.9.
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Specimen No.= the first number, which represents the specimen number, and

the second number, which represents the board number. Therefore, two

specimens that came from the same board will have individual first numbers,

but similar second numbers. For example, 2x4 specimens 70, 69, and 78

came from the same board, 26. The following a, b, or c designation

separates the specimens.



2x4

Avg:
COV (%):

Avg:
COV (%):

Depth Effect on Torsion Specimens

Specimen

No. MOE Length

Specimen

Width

Size/Weight

Depth Ratio Weight MC SG

Calibrated

Max Torque

Torsion Results

Rotation Angle Time to failure Rate

(X 10^6 psi) (in) (in) (in) of Sides (Ibs) (%) --- (in-lb) (degrees) (min) (degnn/min)

70 26a 1.74 27.9 1.528 3.411 2.2327 2.624 13.9 0.46 2917 28 3.8 0.27
69 26b 1.74 28.0 1.525 3.421 2.2434 2.572 13.6 0.48 2924 39 5.3 0.28
66 25b 1.60 28.0 1.513 3.43 2.2697 2.890 13.5 0.54 2937 23 2.9 0.29
87 1 d 1.63 28.0 1.530 3.482 2.2750 3.542 13.0 0.64 3079 24 3.5 0.26
77 24b 1.60 27.9 1.531 3.439 2.2461 2.758 10.7 0.48 2856 32 4.4 0.27
78 26c . 1.74 27.9 1.525 3.414 2.2393 2.594 14.1 0.46 2904 31 4.6 0.26
76 24a 1.74 27.9 1.521 3.436 2.2585 2.806 12.9 0.49 3101 25 5.0 0.19
72 3a,b 1.60 27.9 1.516 3.443 2.2717 2.694 13.0 0.50 2976 26 5.1 0.19
73 27a 1.74 27.9 1.523 3.466 2.2766 2.580 13.0 0.46 2194 22 4.1 0.19
80 2b 1.60 28.0 1.505 3.435 2.2816 2.786 . 13.3 0.51 2727 28 5.2 0.2

1.67 1.52 3.44 2.26 2.78 13.09 0.50 2861.52
4.42 0.54 0.64 0.79 10.32 7.15 10.99 8.99

27. 0.24
18.40 18.16 17.46

Specimen

No.

Rings per

Inch

Shear Stress-SS-(Middle

Gamma I Mu

Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress

Mu

- -SS-- (Middle Point

SS

of Short Side)

Adjusted SS for 12%

4* (psi) (psi) (Pei)

70 26a 5 1.9153 3.8893 1443 1484 0.6431 3.8893 1082 1113
69 26b 5 1.9153 3.8893 1448 1483 0.6431 3.8893 1091 1117
66 25b 8 1.9153 3.8893 1471 1505 0.6431 3.8893 1121 1147
87 1d 13 1.9153 3.8893 1488 1510 0.6431 32893 1136 1153
77 24b 8 1.9153 3.8893 1395 1369 0.6431 3.8893 1052 1032
78 26c 5 1.9153 3.8893 1442 1487 0.6431 31693 1084 1118
76 24a 8 1.9153 3.8893 1537 1558 0.6431 3.8893 1166 1181
72 3a,b 5 1.9153 3.8893 1483 1505 0.6431 3.8893 1131 1148
73 27a 5 1.9153 3.8893 1076 1091 0.6431 3.8893 822 834
80 2b 8 1.9153 3.8893 1380 1408 0.6431 3.8893 1058 1079

36.89 9.03 9.29 8.90 9.15



2x6

Avg:
COV (%):

Avg:
COV (%):

Death Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen

Width

SizeNVeight

Depth Ratio Weight MC SG

Calibrated

Max Torque

Torsion Results

Rotation Angle Time to failure Rate

kx 10^6 psi) (in) of Sides C )lbs (%) - (del8rees)

i )49 8a 1.85
4i,tabi

1%1'18 5.446 3.5869 6. 1S. i 0.48
tisbti

r. 2i 1 11n13m

51 4a 1.91 44.0 1.519 5.420 3.5691 6.994 12.6 0.48 3563 31 5.40 0.13
52 35a 1.85 44.0 1.507 5.468 3.6287 7.772 12.9 0.58 6327 35 5.78 0.13
53 22a 1.98 44.0 1.516 5.464 3.6050 7.246 13.4 0.53 4643 38 6.37 0.14
54 19b 1.91 44.0 1.523 5.420 3.5580 6.750 14.0 0.48 5671 44 7.30 0.14
55 22b 1.78 44.0 1.499 5.498 3.6671 7.336 13.3 0.51 5465 40 6.52 0.14
57 19a 1.85 44.0 1.519 5.404 3.5574 6.892 13.9 0.49 4523 47 7.44 0.15
62 23a 1.78 44.0 1.528 5.402 3.5362 8.002 13.8 0.59 5302 34 5.42 0.15
63 39a 1.85 44.0 1.528 5.506 3.6036 7.254 13.4 0.52 5735 41 6.36 0.15
64 64b 1.91 44.0 1.518 5.506 a 6274 7.174 13.1 0.52 6160 44 7.07 0.15

3.32 0.58 0.75 1.12 6.52 5.19 7.56 16.72 12.77 11.34 6.21

Specimen

No.

Rings per

Inch

Shear Stress-SS--(Middle

Gamma I Mu

Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress

Mu

-SS-- (Middle Point

SS

of Short Side)

Adjusted SS for 12%

(psi) (Psi) i (Psi) (Psi)

49 8a 5 1.9882 4.3970 1287 1348 0.4155 4.3970 965 1011

51 4a 5 1.9882 4.3970 1031 1040 0.4155 4.3970 769 776
52 35a 10 1.9882 4.3970 1844 1867 0.4155 4.3970 1396 1416
53 22a 5.5 1.9882 4.3970 1338 1367 0.4155 4.3970 1008 1030
54 19b 8 1.9882 4.3970 1631 1682 0.4155 4.3970 1213 1251

55 22b 6 1.9882 4.3970 1600 1632 0.4155 4.3970 1226 1250
57 19a 7 1.9882 4.3970 1312 1349 0.4155 4.3970 975 1003
62 23a 5 1.9882 4.3970 1521 1563 0.4155 4.3970 1124 1155
63 39a 6 1.9882 4.3970 1615 1648 0.4155 4.3970 1216 1241

64 64b 6 I 1.9882 4.3970 1757 1786 0.4155 4.3970 1332 1364

25.19
1483.56 .

16.56 16.31 17.10 16.82



2x8

Avg:
COV (%):

Depth Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen

Width

Size/Weight

Depth Ratio Weight MC SG

Calibrated

Max Torque

Torsion Results

Rotation Angle Time to failure Rate

10°6 i in in in of Sides lbs % - in-lb min in/min

31 6b.: -..e . 7c ..- '. . s 1 . -11 , 2 L. .
32 11b 2.01 55.0 1.488 7.333 4.9297 10.4500 13.4 0.52 6713 47 7.40 0.12
33 6a 2.01 55.0 1.522 7.291 4.7915 11.4500 13.4 0.48 6385 47 7.84 0.11
37 13b 1.89 55.1 1.521 7.230 4.7525 12.5840 13.0 0.54 8744 58 9.30 0.11
39 15a 1.78 55.0 1.505 7.311 4.8591 12.5160 ' 13.5 0.53 7673 49 8.63 0.1
41 17a 2.01 55.0 1.522 7.357 4.8337 12.372 12.8 0.53 7660 47 8.08 0.11
42 36b 1.82 55.0 1.517 7.261 4.7856 11.792 12.5 0.52 8634 51 9.16 0.11
44 5a 2.05 55.0 1.502 7.238 4.8191 13.202 13.0 0.56 8203 53 9.14 0.11
45 36a 2.09 55.0 1.532 7.193 4.0965 11.934 12.8 0.53 6763 50 8.64 0.11
46 38a 2.01 55.0 1.522 7.278 4.7818 10.862 12.3 0.45 4431 45 7.59 , 0.11

1.95 1.52 7.27 4.80 11.91 12.99 .52 7232.3w X560
5.68 0.87 0.69 1.33 6.95 3.07 6.15 17.63 7.56

8.42 0.11
8.03 4.29

Specimen

No.

Rings per

Inch

Shear Stress--SS--(Middle

Gamma I Mu

Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress--SS--

Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

(Psi) (Psi) (Psi) (Psi)
1 ir5 1.9973 4.6661 1450 1472 0.3118 4.6661 1078 1094

32 11 b 5 1.9973 4.6661 1417 1448 0.3118 4.6661 1090 1114
33 6a 6.5 1.9973 4.6661 1295 1323 0.3118 4.6661 969 989
37 13b 7.5 1.9973 4.6661 1789 1817 0.3118 4.6661 1328 1348
39 15a 23 1.9973 4.6661 1588 1625 0.3118 4.6661 1205 1232
41 17a 6 1.9973 4.6661 1539 1558 0.3118 4.6661 1162 1176
42 36b 6.5 1.9973 4.6661 1769 1782 0.3118 4.6661 1322 1331
44 5a 4 1.9973 4.6661 1721 1748 0.3118 4.6661 1296 1315
45 36a 6 1.9973 4.6661 1373 1390 0.3118 4.6661 1007 1019
46 38a 6 . 1.9973 4.6661 900 904 0.3118 4.6661 672 675

Avg: 7.70 148407 1506.54 1112.60 1129.49
COV (%): 70.88 17.96 18.00 18.02 18.09



2x10

Avg:
COV (%):

Avg:
COV (%):

Death Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen

Width

SizeNVeight

Depth Ratio Weight MC SG

Calibrated

Max Torque

Torsion Results

Rotation Angle Time to failure Rate

X 10"6 .- i in in in of Sides lbs % --- in-lb min :- in/min
. -, ,'.!. '...# . -*.'

. . -1 . e.

17 14b 1.80 55.0 1.521 9.277 6.0963 14.890 12.9 0.48 7053 38 4.92 0.14
18 10b 1.68 55.0 1.513 9.154 6.0525 17.056 12.9 0.58 7780 43 6.36 0.12
21 16b 2.22 55.0 1.526 9.305 6.0991 16.034 13.1 0.54 8629 58 8.53 0.13
23 16a 2.16 55.0 1.506 9.273 6.1490 16.580 13.2 0.57 9421 44 6.43 0.13
24 20a 1.89 55.0 1.511 9.308 6.1598 17.132 13.4 0.57 9800 49 6.95 0.13
25 20b 1.99 55.0 1.518 9.294 6.1245 17.412 13.4 0.57 8618 39 6.27 0.11
26 21a 1.89 55.0 1.513 9.147 6.0466 16.880 13.4 0.59 7998 46 7.44 0.11
28 33a 2.16 55.0 1.530 9.190 6.0052 14.980 12.9 0.51 8778 46 7.26 0.12
30 10a 2.16 55.0 1.513 9.177 6.0641 16.632 13.0 0.62 7816 40 6.27 , 0.12

9.03 0.46 0.70 0.79 7.78 1.63 9.46 10.54 13.29 14.30 7.79

Specimen

No.

Rings per

Inch

Shear Stress--SS--(Middle

Gamma I Mu

Point

SS

of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress--SS--

Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

(Psi) (Psi) (Psi) (Psi

a It. .7 c r.:1. '.-.Tic ;T;ic .0

17 14b 4 1.9996 4.7803 1100 1115 0.2485 4.7803 833 845
18 104D 7 1.9998 4.7803 1243 1261 0.2485 4.7803 935 948
21 16b 6 1.9996 4.7803 1333 1355 0.2485 4.7803 1011 1027
23 16a 6 1.9996 4.7803 1495 1521 0.2485 4.7803 1143 1163
24 20a 12 1.9998 4.7803 1543 1576 0.2485 4.7803 1182 1207
25 20b 13 1.9998 4.7803 1348 1376 0.2485 4.7803 1026 1048
26 21a 9 1 9998 4.7803 1279 1306 0.2485 4.7803 961 981

1.999828 33a 9 4.7803 1366 1384 0.2485 4.7803 1019 1033
30 10a 8 1.9998 4.7803 1245 1264 0.2485 4.7803 938 952

37.00
1311.94 1334.

10.40 10.52 10.88 11.00



2x12

Avg:
COV (%):

Avg:
COV (%):

Depth Effect on Torsion Specimens
Specimen

No. MOE Length

Specimen

Width

SizeNVeight

Depth Ratio Weight MC

,

SG

,

Calibrated

Max Torque

Torsion Results

Rotation Angle Time to failure Rate

X 10^6 in in in of Sides lbs % - in-lb d rees min d inimin

. .

4 7a 1.90 54.9 1.494 11.115 7.4406 17.888 13.4 0.50 9999 49 6.74 0.14
5 37b 1.90 55.0 1.474 11.200 7.5999 18.334 12.2 0.53 10081 40 5.37 0.14
6 7b 1.90 55.0 1.512 11.163 7.3835 17.864 13.1 0.49 11529 47 6.48 0.14
7 28a 1.90 55.0 1.491 11.162 7.4845 17.130 13.0 0.47 9768 54 8.17 0.12
8 28b 1.79 55.0 1.509 11.196 7.4180 17.578 13.2 0.49 10169 44 6.47 0.13

11 30a 1.90 55.0 1.500 11.184 7.4546 17.090 13.4 0.47 9306 51 7.38 0.13
12 29 2.16 55.0 1.503 11.127 7.4032 20.676 13.3 0.58 10611 38 5.37 0.13
14 31b 1.96 55.0 1.518 11.098 7.3102 19.098 13.0 0.55 10382 52 7.07 0.14
15 31a 1.96 55.0 1.521 11.110 7.3033 19.510 13.1 0.54 10730 42 5.75 0.14

1.94
5.05

1.50
1.00

11.15 7.43 18.34 12.99 0.52 10164.78
0.34 1.23 6.15 3.39 6.97 7.51

46.00 6.57 0.13
11.77 13.58 6.19

Specimen

No.

Rings per

Inch

Shear Stress-SS-(Middle

Gamma 1 Mu

Point

SS

-
of Long Side)

Adjusted SS for 12% Gamma 1

Shear Stress-SS--

Mu

(Middle Point

SS

of Short Side)

Adjusted SS for 12%

(psi) (Psi) (Psi) (psi)
1 37a 8.5 2.0000 4.8790 1179 1183 0.2015 4.8790 894 897
4 7a 5 2.0000 4.8790 1322 1350 0.2015 4.8790 991 1012
5 37b 10 2.0000 4.8790 1359 1363 0.2015 4.8790 1041 1044
6 7b 5 2.0000 4.8790 1482 1506 0.2015 4.8790 1103 1120
7 28a 5 2.0000 4.8790 1290 1310 0.2015 4.8790 973 988
8 28b 5 2.0000 4.8790 1307 1332 0.2015 4.8790 977 995

11 30a 5 2.0000 4.8790 1212 1237 0.2015 4.8790 911 929
12 29 6 2.0000 4.8790 1410 1436 0.2015 4.8790 1052 1073
14 31b 4 2.0000 4.8790 1331 1351 0.2015 4.8790 981 995
15 31a 4 2.0000 4.8790 1309 1391 0.2015 4.8790 1007 1023

34.11 6.68 6.84 6.32 6.42



Avg:
COV (%):
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..

Specimen

No. Length

Shear Area

Width MC SG

Shear

Max Load

Results

Speed of testing, SS

Shear Stress

Adjusted SS 12 %

s

78 2.410 1.4i85 12.87 0.45 0 .02 1/09 155
70,69 2.0020 1.9970 12.37 0.47 4470 0.024 1118 1124

66 1.9985 1.9875 12.50 0.48 4120 0.024 1037 1045

87 2.0085 2.0015 12.47 0.54 4790 0.024 1192 1200

76,77 1.9995 1.9800 11.96 0.50 4920 0.024 1243 1242

72 2.0005 1.9990 11.42 0.50 4890 0.024 1223 1212

73 2.0070 1.9955 12.19 0.46 4910 0.024 1226 1229

80 1.9990 1.9900 12.54 0.47 4730 0.024 1189 1199

49 1.9995 1.9965 12.62 0.45 5100 0.024 1278 1289

51 2.0015 1.9935 13.07 0.52 4500 0.024 1128 1146

52 2.0035 1.9950 12.65 0.54 5280 0.024 1321 1334

53 2.0015 1.9950 12.86 0.50 4570 0.024 1145 1159

55 2.0010 1.9950 12.56 0.52 5280 0.024 1323 1334

54 2.0040 1.9950 13.34 0.49 4870 0.024 1218 1243

57 2.0020 1.9865 13.08 0.47 4150 0.024 1044 1060

62 2.0015 1.9875 13.22 0.61 6530 0.024 1642 1672

63 2.0020 1.9950 13.15 0.51 5350 0.024 1340 1363

64 2.0050 1.9925 12.58 0.46 4960 0.024 1242 1252

31,33 2.0000 1.9925 12.03 0.47 4830 0.024 1212 1213

32 2.0020 1.9950 1250 0.48 5620 0.024 1407 1418

37 2.0010 1.9850 12.07 0.54 5440 0.024 1370 1371

39 2.0050 1.9900 13.08 0.52 5050 0.024 1266 1286
41 2.0000 1.9890 12.26 0.51 5500 0.024 1383 1388

45 1.9990 1.9880 12.36 0.51 4780 0.024 1203 1209
42 2.0025 1.9900 12.10 0.53 5860 0.024 1471 1473
44 2.0020 1.9870 12.43 0.54 5680 0.024 1428 1437

46 2,0075 1.9925 12.21 0.43 4410 0.024 1103 1106
16 21)035 1.9890 12.89 0.45 3830 0.024 961 974
17 1.9980 1.9960 11.52 0.43 4160 0.024 1043 1036

23 2.0005 1.9840 12.90 0.55 5900 0.024 1487 1507
21 1.9995 1.9930 12.34 0.49 4640 0.024 1164 1170
24 2.0005 1.9955 12.80 0.59 6190 0.024 1551 1569

25 2.0005 1.9915 12.25 0.58 5660 0.024 1421 1426

26 2.0035 1.9935 12.51 0.55 5380 0.024 1347 1357
28 2.0020 1.9750 11.86 0.50 4440 0.024 1123 1121

30 2.0025 1.9970 12.41 0.49 5490 0.024 1373 1381

18 2.0065 1.9975 12.44 0.60 5440 0.024 1357 1366
1 . .30 . ''''r 2. 0.53 5146 -o.o2-4- 12 iii -12 0
5 2.0055 1.9915 11.29 0.51 5330 0.024 1335 1321

4 2.0025 1.9895 12.72 0.50 5430 0.024 1363 1378
6 2.0040 1.9975 12.20 0.48 4970 0.024 1242 1245
7 1.9975 2.0060 12.47 0.45 4620 0.024 1153 1161

8 2.0005 1.9965 12.08 0.48 4590 0.024 1149 1151

11 2.0080 1.9915 12.71 0.54 6170 0.024 1543 1559
12 2.0015 1.9915 12.59 0.59 4780 0.024 1199 1210
15 2.0025 1.9940 12.84 0.57 6910 0.024 1731 1752
14 1.9995 1.9960 12.00 0.53 5790 0.024 1451 1451

3.61 8.81
.61 90.57

12.56 12.71




