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EXISTENCE OF SMALL ZERO-SUM SUBSETS

OF LARGE SETS OF RESIDUE CLASSES

CHAPTER 1

INTRODUCTION

We begin by mentioning several standard conventions

that we use. We let Zfl denote the commutative group of

residue classes modulo n under addition, and we write

R C Zfl to denote that R is a subset of the set of

elements of Z. The number of elements in the set R is

denoted by IRI and we refer to this as the size or

cardinality of R. Unless specified otherwise, we assume

that all sets are nonempty.

Small latin letters denote both residue classes and

residues. The meaning of the notation is made clear by

its context. If the sum of the elements of a set of

residue classes is equal to zero, we call the set a zero-

sum set. We take the sum of a single element to be the

element itself.

Consider an arbitrary nonempty set A of residue

classes modulo n. We obtain results related to the

following two problems. Find how large A must be in

order that A contains a nonempty zero-sum subset S with
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no restriction on the size of S, or with a maximum size

specified for S.

There are many other problems involving sets A of

residue classes mod n, zero-sum subsets S of A, and the

cardinality of one or both. We now list some of these

problems most of which to the author's knowledge are new.

These problems together with the two problems in the

preceding paragraph may be considered a branch of

additive modular number theory. How large must A be in

order that A contains a zero-sum subset of some specified

minimum size? Note that this is a companion to the

second of the two problems mentioned above. How many

zero-sum subsets S does A contain with no restriction, or

with some specified restriction, on the size of S?

Guy[5] reports that Erdos and He asked how large A

can be while remaining free of zero-sum subsets. Other

problems are obtained from those listed above by

replacing "zero-sum subset" with "r-sum subset" where r

is an arbitrary residue class, by imposing a particular

structure on A, by replacing the words "set" and "subset"

with the words "multi-set" and "multi-subset", or by

doing some or all of these things. Finally, one may seek

either finite or asymptotic results.

To the author's knowledge results have not been

obtained for any of these problems except for the two
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defining problems of this thesis, which are given above,

together with an r-sum subset variation on the first of

these two problems, the problem posed by ErdOs and

Heilbronn as reported by Guy, and some problems related

to multi-sets.

In 1964 Erdels and Heilbronn[3] obtained a condition

of the form IA1 > f(p), where p is prime, which guarantees

that any residue class r mod p can be represented as a

sum of elements from A. Furthermore, they conjectured

that their condition could be improved and extended in

its improved form to composite moduli provided that

r = 0. In 1984 and 1987 N. Alon[1,2] obtained conditions

of the form lAl > f(n,k) which guarantee that A contains a

zero-sum subset S of maximum size k for n sufficiently

large.

In Chapter 2 we give a more complete but still brief

history of developments in the area of our research from

the work of ErdOs and Heilbronn up through current

results including our work and the work of Alon. The

first section of the chapter is expository. In the last

two sections we tie off two loose ends.

In Chapter 3 we concern ourselves mainly with the

question of whether Alon's results can be improved.

Results related to Erd6s and Heilbronn's work led
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R. D. Stalley[8] to consider sets A C Z24, such that

AlI = qh, where h = 0 or h = 1. He determined the

least integers qo(h) such that for q > q0(h) A contains a

zero-sum subset S of at most three elements. In

Chapter 4 and Chapter 5 we obtain results for odd moduli

corresponding to Stalley's results for even moduli. In

Chapter 4 we let A c Z204 and IAI = q. We then determine

the least integer q0(0) such that for all q > q0(0) there

is a zero-sum subset S C A of at most 3 elements. In

Chapter 5 we let IA1 = 1 and determine the least such

integer q0(1). The proofs of our theorems in Chapter 4

and Chapter 5 are constructive.

Finally, in Chapter 6 we introduce some interesting

unsolved problems related to our work in this thesis.

The appendix provides the interested reader with

statements of the theorems and conjectures that are

mentioned in Chapter 2 as they appear in the literature

with only slight modifications of notation for

consistency. We remark that some of the results and

conjectures stated in the appendix use the language of

residue classes, some use the language of congruences,

and some use both languages interchangeably. This is

because in giving these statements we have been faithful

to each author's choice of language.
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We have been using and will continue to use the

language of residue classes. Some of the results

presented herein are finite and some are asymptotic.
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CHAPTER 2

HISTORICAL DEVELOPMENT

In the first section of this chapter we provide the

reader with a brief history of the area of our research

up through current results including our work and a deep

result that N. Alon obtained in 1987. Along the way we

make some claims which are related to an earlier result

of Alon. In Section 2.2 and Section 2.3 we provide the

reader with proofs of these claims.

2.1 Historical Background

Paul Erdos and H. Heilbronn[3] showed in 1964 that

if p is prime, A C Zp, 00A, and 1AI > (34-e),55, then there

exists a nonempty subset S C A such that 1] s = r, where
sES

r is an arbitrary residue class mod p. Furthermore, they

conjectured, first, that this result is true if 34-6 is

replaced by 2 and, secondly, that this replacement can be

made if p = n is composite, provided that r = 0. After

several years with no success reported in proving the

second conjecture, ErdOs[7] asked whether it could be

40proved under the stronger condition that IA! > Kn(2 9

where e > 0 and K is a positive constant independent

of n.
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Erdos and Heilbronn's result and conjectures may not

be intuitive but are plausible. For example, if we let

IA1 be the least integer greater than or equal to (34).4-5,

then as p oo, 0 but ' 1 * oo, where 21AI 1

is the number of nonempty subsets S C A.

J. Olson[6] proved the first conjecture in 1968.

C. Ryavec[7], also in 1968, answered the later question

posed by Erdas affirmatively. In 1970 E. Szemeredi[9] im-

proved Ryavec's result by obtaining Kfn as a lower bound

for IAL The second conjecture is still open, and

Szemeredi's theorem is the best so far. Note that the

results following Olson's result are asymptotic. Guy[5]

gave a brief survey of related results in 1981.

Rather than attempting to improve Szemeredi's

result by, for example, showing that K may be set equal

to 2 or finding a value for K such that his result holds

for all composite n, we proceed in a different direction

from ErdOs and Heilbronn's second conjecture. We add the

condition that 0 < ISI < 3 and set IA1, where A C Zn and

n = 2q+1, equal to a value that may be greater than

Szemeredi's lower bound. We then ask for those values of

n, if any exist, such that A contains a zero-sum subset S

that satisfies our condition.

R. Stalley[8] worked with even moduli n, n = 2q. He
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showed that if IAI = 9 = q and q > 5, then A always

contains a zero-sum subset S of at most three elements.

He obtained the same conclusion if IAI = 9-1 = q-1

provided that q > 8.

After discussing these results with Stalley in 1983,

M. Filaseta and D. Richman[4] showed that for every

positive integer h and modulus n such that n > ngh), if

IAI >
2
n-h, then A contains a zero-sum subset S of at most

three elements. A result of N. Alon[1], which was

communicated to M. Filaseta at MIT in 1984, implies this

same conclusion if pki > (5 On, where f > 0 and n > ngo.
5

In Section 2.2 we provide the reader with a formal

statement and proof of this corollary to Alon's

result[1] . We call this corollary Alon's two-fifths

result. In Section 2.3 we show that, for small values

of e, Alon's two-fifths result improves Filaseta and

Richman's result. Alon was undoubtedly aware of this im-

provement, but there is nothing

indicating this.

in the literature

Alon[2] went on to show in 1987 that, for any fixed

integer k > 1, if IAI > (-II + On, where e > 0 and

n > ngk,o, then there is a zero-sum subset S C A such

that 0 < isi < k. This is a very deep result, and we will

refer to it from now on as Alon's theorem. Stalley

conjectured the case k = 3 in 1983 before Alon proved his
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and, since 1 2
'

< this case improves Alon's
3 5

two-fifths result.

Alon[2] actually proved a stronger result than his

theorem. He calls this result a proposition and we refer

to it from now on as Alon's proposition. Alon's proposi-

tion specifies a smaller lower bound for lAl than his

theorem yet still has the same conclusion. We refer to

this conclusion from now on as Alon's conclusion.

2.2 Alon's Two-Fifths Result

In this section we show that Alon's result[1],

Theorem A.12 in the appendix, implies the following

corollary which was alluded to in Section 2.1.

COROLLARY 1. For every fixed e > 0, if n > no(e) and

A C Zn satisfies Al > (E +f)n, then there is a subset

S C A such that 0< isi < 3 and I] s = 0.
sES

Proof. Theorem A.12 is stated in terms of G, an

arbitrary finite abelian group. We use the contra-

positive of Theorem A.12 restricted to G = Zn, which

reads as follows:

THEOREM A.12' Let A C Z. Define



A(k) = la1++ak : al ,...,ak are distinct elements of A}

and r2 to be the number of elements gEZn

g+g = 0. If

n + 2r2 + 3 < 21A1 + (1A1r2)1A1

then 0EA(2) or A(2)U A(3) = Zn

21A1r2 '
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such that

We first show that the hypotheses of Corollary 1

imply the hypothesis of Theorem A.12/. Thus, we show for

every f > 0, that if n > nom and A C Zn satisfies

Al1 > (E +On, then

(1) n + 2r2 + 3 < 21A1
1 (1A1
+ 21A1

r2

r2

)1A1

Let f > 0 be given and choose no(e) 4> T.

P = q +On. Since

r2 =

it follows that

n + 2r2 + 3 =

f 21:

n even

n odd

{n+7, n even

n+5, n odd

To establish (1) we begin by showing that

Also, let



(2) (14r2n + 2r2 + 3 4_

(2r.
CaseCase 1 (n even). Since 4 6

n E > 2 +5e

> (R+ e)(25f) = g .

Since also r2 = 2, then we have

(Pr2)11 2n (11-2)122p +

5p2_6p
2p-2

p(5/1-6)
2p-2

µ(5µ -6)
2p

= -1--(5p-6)2

= (g. e)n 3

n + -5en 32

n + 7

then

11
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n + 2r2 + 3,

and inequality (2) is proved.

Case 2 (n odd). From our work at the beginning of

Case 1 we have that p > g > 5. Also, since 4 13n > T >

and r2 = 1, then

(pr2)P 2u (11-1)112p +

=p2_3p
= u2p-1

P(5P-3)
2p-1

12(51.1 3)
2p

= 2(5p-3)

5(+
2 5

n 8en

5c(13)
2(5e) 2

n + 5



n + 2r2 + 3 ,

and inequality (2) is proved again.

(3)

Next we show that

(1-1 r2)11 (iAlr2)1A1211 + < 21A1 +2p r2 21A1r2

Since n > -4 2 +> and 1A1 > , we have that
c

21A1r2 > 2p r2

2 Ni 5> 2(3 +c)k2+5e) r2

2 r2

> 0 ;

and, hence, if

(4) ii(Pr2)(21Air2) < lAi(iAlr2)(2Pr2)

then

(5) P(Pr2) r2)
2p r2 < 21A1r2

13
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Inequality (3) follows readily from inequality (5) , so we

show that ineqaul ity (4) holds. Since All > p, then

21AI + p > 2p + IA1 .

From this inequality we have that

2IAlr2 pr2

and hence

= -(21Al+p)r2

< -(2p + IAI)r2

= 2pr2 lAlr2
,

(p r2)(2IAI r2) = 21Alp + r22 21A1 r2 pr2

< 2IAlp + r22 2pr2 lAir2

= ( jAl r2)( 2p r2)

Inequality (4) now follows, and so inequality (3) is

proved.

Inequality (1) follows from inequality (2) and

inequality (3) . Hence the conclusion of Theorem A.12'

holds ; that is , 0 E A(2) or A(2) U A(3) = Z, .
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We now show that the conclusion of Corollary 1

follows. If 0EAM, then there exist distinct residues

a1 ,a2E A such that al+ a2 = 0 and we let S = {ai , a2} . If

0 A(2) , then A(2) UA(3) = Z,, . Hence , 0 E A(2) U A(3) and so 0 E A(3) .

Thus there exist distinct residues ai , a2 , a3 EA such that

± a2+ a3 = 0 and we let S = {a1,a2,a3}.

the proof of Corollary 1.

2.3 A Comparison

This completes

In this section we show that Alon's two-fifths

result; that is, Corollary 1, improves Filaseta and

Richman's result[4] ; that is, Theorem A.11 in the

appendix. We will show that, for sufficiently large n,

Theorem A.11 follows from Corollary 1 but that the

converse is not always true. For convenience we restate

both results.

THEOREM A.11 For every positive integer h, if

n > no(h) and A C Z. satisfies At > ah, then there

exists a subset S C A such that 0 < ISI < 3 and E s = O.
sES

COROLLARY 1. For every fixed e > 0, if n > no(c) and

A C satisfies IA1 > (R. + , then there is a subset

S C A such that 0< ISI < 3 and E s = 0.
sES
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First we notice that for any fixed positive

1 Ainteger h, AlI > Et
2
h is equivalent to All > (

2
--On, where

AC = H.

Next, let a positive integer h and a real number e

be given, where 0 < e < 6. Since > E we have

> (5 i-f) provided that n is large enough so that

= k is sufficiently small; that is, provided that

n > Hence, if n > max{no(h),nom,n1(01, then

Corollary 1 implies Theorem A.11.

Finally we give an example in which Theorem A.11

does not imply Corollary 1. Let a real number e be given,

where 0 < e < J.0 . Let h be any positive integer. Choose
2

n = 20s, where s is a positive integer large enough so

that n > max{no(h),n0(0} and 10 > 20. Finally, let

A C Zfl be any subset such that W = _An. We conclude our

example by noticing that

> IAI > (R±e)n.

It follows that Corollary 1 is the stronger result.
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CHAPTER 3

ALON'S THEOREM

Alon[2] actually proved a stronger result than his

theorem and leaves it to the reader to show that his

theorem follows. We call this stronger result Alon's

proposition and show in the first section of this chapter

that his theorem does, in fact, follow. His theorem and

proposition appear as Theorem A.13 and Proposition A.14,

respectively, in the appendix.

Alon's proposition decreases the lower bound

inequality on lAl from (1-1z +On to Ili + (1 +,13(k-2))r3(n) and

has the same conclusion as his theorem. We call this

conclusion Alon's conclusion. The factor r3(n) denotes

the maximum cardinality of a subset B C {1,2 ,...,n} that

contains no arithmetic progression of three terms. In

the second section of this chapter we determine a

specific limitation as to how much the lower bound on IAI

can be decreased without compromising Alon's conclusion.

We now restate both these results of Alon[2] for the

reader's convenience.

THEOREM A.13 For every fixed e > 0 and k > 1, if

n > n0(k,0 and A C Zn satisfies Al > (i- + On, then there
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is a subset S C A such that 0 < < k and E s = 0.
sES

PROPOSITION A.14 Let A be a subset of Zn of

cardinality IAI > + (1 + 13(k-2))r3(n). Then there is a

subset S C A of cardinality 1 < ISI < k such that

s = 0(in Zn).
sES

3.1 A Note on the Proof of Alon's Theorem

To show that Alon's proposition implies his theorem

and is the stronger result, we need only show, for fixed

e > 0 and k > 1, that (1 + ,13(k-2))r3(n) < en for

sufficiently large n. Notice that Alon's proposition

makes no reference to a lower bound restriction on the

size of n. However, even if such a restriction did

appear, it would not affect what we do here. We show

this inequality by using a result that K. F. Roth[2]

proved more than 30 years ago and which Alon[2] cites:

r3(n) < 0(
log log n

). Letting e > 0 and k > 1 be given, we

have that

(1 + .13(k-2 ))r3(n) < (1+13(k-2 ))logKnlog n < en

for K some positive constant and n sufficiently large.



19

3.2 A Lower Bound Limitation

A natural question to ask is whether the term

(1 + 13(k-2))r3(n) can be replaced by another non-

decreasing function f(l ,k) < (1 +.413(k-2))r3(n) in the

statement of Alon's proposition without compromising his

conclusion for any k > 1. In particular, we ask if this

term can be replaced by some fixed real number c > 0 such

that, once this replacement is made, his conclusion holds

for all k > 1. In Theorem 2 below we show that for any

such constant c > 0, no matter how large, this

replacement cannot be made in the sense that if k > 2c+3

and n > k(kc-1) then Alon's conclusion fails to hold

for at least one set A C Zn such that IAI > k + c. In

Theorem 3 we show that this replacement cannot be made if

k = 3 and 0 < c < 3. Following Theorem 4 and Theorem 5

we conjecture a best possible replacement if k > 3. In

Theorem 7 we show that if k = 2, then the replacement

c = 0 can be made.

THEOREM 2. For every fixed real number c > 0,

integer k > 2c+3, and integer n > k(kc-1) there is a

set A C Zn such that 'Al > -Ir+c and such that there is no

subset S C A where 0 < ISM < k and 1: s = 0.
sES

Proof. Let c > 0, k > 2c+3, and n > k(kc-1) be
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given and consider the set A C Zn defined by

A = {i
I
i < I < x}, where x > 1. Note that IAI = x and that

the subsets S of A, such that 0 < ISI < k, whose elements

form the smallest possible sum and largest possible sum

are S = {1} and S = {x , x-1 ,...,max{1 ,xk+1}}, respec-

tively. Thus, the theorem is proved if we can show the

existence of at least one integer solution x to the fol-

lowing system of inequalities:

(1)

[

x > 1

x > n + c

n > x + (x-1) + + max {1 ,x k +1} .

First, we notice that for all n > 1, the first two ine-

qualities in (1) are satisfied simultaneously if

x >
k
11+c; so (1) reduces to

(2)
{

x > k
11+ c

n > x + (x-1) + + max {1 ,x k +1} .

Furthermore, n > k(kc 1) implies that
k
Li + c > k 1.

Therefore, x >
k
n + c implies that x > k and from this it

follows that xk+1 > 1. Thus,

max {1 , xk+1} = xk+1 ,
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and the system (2) reduces to

(3)

Since

{

x > k11 + c

n > x + (x-1) + + (xk+1) .

n > x + (x-1) + + (xk+1) = 2[(xk+1) + x]

then kx < n + k2 2I( '

(4)
{

= kx + k-2k2
'

and (3) reduces to

x > k + c

x < n + k 1
k 2

Since k > 2c +3, then

(I-7c1 k2-1)

(2c +3) 1
> c

2

= 1 ,
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and so (4) has at least one integer solution x. This

completes the proof of the theorem.

We remark that we state Theorem 2 for n > k(kc-1)

because this is sufficient to insure x > k which greatly

simplifies the task of showing that (1) has an integer

solution. However, by imposing this requirement we lose

integer solutions x for smaller values of n. There are

two cases; namely, (i) n < k(kc-1) and x > k, and (ii)

n < k(kc-1) and 1 < x < k. We give an example of an

integer solution to (1) for each case.

Example 1. Let c = 0 and k -- 4. Then we require

n < k(kc 1) = 12. Let n = 11. Choose x = 4 so that

x > k = 4 and x > E + c 4 So max{x 3 , 1} -z-- 1 and we

have that n = 11 > 4 + 3 + 2 + 1 = 10. Hence , x = 4 is a

solution.

Example 2. Let c = 0 and k = 4. Then we require n < 12

as we did in example 1 above. Let n = 7. Choose x = 2

so that x < k = 4 and x > 11 + c =
k 4

So max{x 3 , 1} = 1

and we have that n = 7 > 2 + 1 = 3. Hence x = 2 is a

solution.

We remark further that we state Theorem 2 for

k > 2c+3 because in our proof of the theorem this is a
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sufficient condition for the system (4) to have an inte-

ger solution. However, it may not be necessary. There-

fore, in addition to losing integer solutions x to (1)

for smaller values of n, we may also be losing such solu-

tions for smaller values of k.

The loss of such solutions to (1) does not affect

our purpose, however, which is to show that for any real

constant c > 0, no matter how large, Alon's conclusion

sometimes fails to hold for sufficiently large k and n;

that is, for k > ko(c) and n > no(k,c), if we only require

lAl > k + c. Furthermore, we have shown that Alon's

conclusion sometimes fails to hold for any k > 3 and

n > k(k-1) if we only require W > E.

In Theorem 3 below we show, but only for certain

arbitrarily large values of n, that Alon's conclusion

sometimes fails to hold when k = 3 under the restriction

Al
I > c if 0 < c < i. When we write that a result is

true for arbitrarily large values of n, we mean that for

any modulus no a modulus n larger than no can be found for

which the result is true.

THEOREM 3. If k = 3 and 0 < c < , then there

exist arbitrarily large integers n and a set A C Zn for

each such n, so that Al1 >
3
Il+c and so that there is no
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subset S C A where 0 < ISI < 3 and I: s = 0.
sES

Proof. Let c be given such that 0 < c < 3 and let

n = 3q+1 , where q > 2 . Let A = {1 , ... , q+ 1 } . Then

IAI = q+1 = n 3 33
1+1 = 11+ 2 >

3
n + c . The subsets S of A,

where 0 < ISI < 3, whose elements form the smallest possi-

ble sum and largest possible sum are S = {1} and

S = {q+1 ,q,q-1}, respectively. Since

(q+1) + q + (q-1) = 3q < n ,

the theorem is proved.

We remark here that the condition c > 0 is not used

in the proofs of Theorem 2 and Theorem 3, but these

theorems are stated for c > 0 so that it is clear that

Alon's conclusion does not always hold for k > 3 if we

only require IAA > E.

The hypotheses of Theorem 2 include three restric-

tions; namely, c > 0 a fixed real number, k > 2c+3 an

integer, and n > k(kc-1 ) an integer. An alternative

form for the first two of these restrictions is k > 3 a

fixed integer and c a real number such that 0 < c < k-2 3 .

Thus, if we choose k first we have an upperbound

restriction on c which is a function of k. In Theorem 4
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and Theorem 5, which follow, we increase this upperbound

on c for k = 4 and k = 5, but only for certain

arbitrarily large values of n dependent on k that are

specified in the proofs of these theorems. These

theorems suggest that, in a similar way, the upperbound

restriction on c can be increased for each k > 5.

THEOREM 4. If k = 4 and 1
4'

< c < 5 then there
2

exist arbitrarily large integers n and a set A C Zn for

each such n, so that AlI > 4 + c and so that there is no

subset S C A where 0 < < 4 and 1] s = 0.
sES

Proof . Let c be given such that < c < and let

n = 4q +3, where q > 2. Let A = {1 , , q + 2} . Then

lAi = q+2 = n 4 3 + 2 =
4
n

4 4
+ > + c. The subsets S of A,

where 0 < ISI < 4, whose elements form the smallest possi-

ble sum and largest possible sum are S = {1} and

S = {q+2,q+1,q,q-1}, respectively. Since

(q+2) + (q+l) + q + (q-1) = 4q + 2 < n ,

the theorem is proved.

THEOREM 5. If k = 5 and 1 < c < R, then there

exist arbitrarily large integers n and a set A C Z, for
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each such n, so that lAl > 5 + c and so that there is no

subset S C A where 0< ISI < 5 and E s = 0.
sES

9Proof. Let c be given such that 1 < c < g and let

n = 5q + 1, where q > 3. Let A = {1,...,q+2}. Then

9
lAl = c1+2 = n51+2 = 513+ 3 > n3 + c . The subsets S of A,

where 0 < ISI < 5, whose elements form the smallest possi-

ble sum and largest possible sum are S = {1} and

S = fq+2,q+1 , q ,q-1 ,q-21, respectively. Since

(q+2) + (q+1) + q + (q-1) + (q-2) = 5q < n

the theorem is proved.

We remark that had we stated Theorem 3 for c such

that 0 < c < 1

3'
we could also have shown that Alon's

conclusion sometimes fails to hold when k = 3 if

n = 3q+2, where q > 2. However, we wanted to maximize

the upperbound on c, not the number of specific forms of

the arbitrarily large values of n. Likewise, in

Theorem 4 and Theorem 5 we maximize the upperbound on c

at the expense of showing for fewer specific forms of the

arbitrarily large values of n that Alon's conclusion

sometimes fails to hold. The observation of this trade-

off between maximizing c and maximizing the number of

specific forms of the arbitrarily large moduli n leads us

to a conjecture.
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CONJECTURE 6. Let A C Z. For each integer k > 3

there exists a real number co(k) > 0 such that

(1) for all c > co(k) Alon s conclusion holds if we

only require IAI > k + c , where n > no(k,c), and

(2) for all c < co(k) Alon's conclusion sometimes

fails to hold for arbitrarily large n under the same

restriction on Al.I

Finally, we show that Alon's conclusion does hold

when k = 2 if we only require lAl >

THEOREM 7. If n > 0, and A C satisfies IAI >

then there is a subset S C A such that 0 < IS' < 2 and

E s = O.
sES

Proof. If n = 1, then zero is the only residue and

we are done.

If n > 2 , let n = 2q+ r , where r = 0 or r = 1 .

Then jAl > 2 implies that IA1 > q+ 1.

First suppose that r = 0. We have A C (BUC) where

B = {±i 1 < i < q-1} and C = 10,q1 are sets of residue

classes mod n. We may assume 00A since otherwise the

conclusion of the theorem is true. Hence, we have that
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q+1 < = IA n (BUC)

= 1(AnB) u (AnC)I

= jAnsj + lAnd .

0 or 1 , it follows that !Ansi > q and so

{i ,i} C A for some i. Hence, we let S = {i ,i}

In a similar way we prove the theorem for r = 1.

In this case we have A C (BUC), where B = {±i I 1 < i < q}

and C = {0} are sets of residue classes modn. Once again

we may assume that 0¢A. Hence, we have that

q + 1 < IAI = IA n (Buqj

= l(AnB) u (AnC)I

= lAni31 + lAncl

= lAnBi .

Once again we have that {i ,i} C A for some i and we let

S = {i, i }. This completes the proof.

For sets A of smaller cardinality; that is, sets A
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such that IAI < 51, the conclusion of Theorem 7 does not al-

ways follow according to the example A = {1,2 ,...,q}. In

this sense, Theorem 7 is the best possible result for

k = 2.
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CHAPTER 4

SETS OF q RESIDUE CLASSES MOD(2q+1)

The work of N. Alon[2] shows that if A C Zn and

On, for some fixed f > 0, then there exists a

subset S C A such that 0 < 151 < 3 and I] s = 0 provided
sES

that n > nge). In this chapter we deterimine exactly how

large n must be for odd moduli given a certain more

severe constraint on the size of A. In particular, we

set n = 2q+1, where q > 1, and restrict the sets A to

those that satisfy Al
1 = q. We then determine the

smallest integer qg0) such that for all q > q0(0) any such

A contains a zero-sum subset S of at most three residue

classes mod n. Notice that given this constraint on A,

there does exist a sufficiently small fixed e > 0 such

that IAI + On for all sufficiently large odd n since

qim
1AI = 12. Therefore, Alon's theorem assures us that

-+co n

such a q0(0) exists. We then state and prove two theorems

for smaller values of q. Specifically, for each q < q0(0)

we determine whether every set A of q residue classes

mod(2q+1) contains at least one zero-sum subset S and, if

so, the smallest integer to(q) so that every set A

contains at least one zero-sum subset S such that

0 < 151 < to(q) < q. All of our proofs are constructive.
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4.1 The General Theorem (q > 6)

THEOREM 8. Any set A of q residue classes

mod(2q+1), where q > 6, has a nonempty subset S of at

most three residue classes that sum to zero mod(2q+1),

with three residue classes necessary for some sets A.

Proof. First we notice that at least three residue

classes are necessary for some sets A because of the sets

A = {i 11 < i < q} since no two residue classes from 1 to q

can sum to zero mod(2q+1).

Next we show that no more than three residue classes

are necessary for any set A. Let B = {±ill<i<q} and

C = {0}. Then BUC = Z20.1. We may assume 00A, for

otherwise we let S = {0}. Therefore, we may assume A C B.

Also, for any i such that 1 < i < q, we may assume

{i, i} A since otherwise we let S = Hence,

q = = IAnBI

IA 11 (60,-0)1
=i

I (A n
i=1

= E IA rl 0,-01
i=1
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Since IA n fi,_ill = 0 or 1, then IA n {i,i}l = 1 for

each i. In otherwords, for each i such that 1 < i < q

either iEA or iEA. Next, we may assume lEA since if

1EA, then the residue classes of A may be replaced by

their negatives without changing the validity of the

theorem. This is because zero sums will not be affected

by this change.

We give an example. Even though q > 6 in the

statement of the theorem we take q = 3 for simplicity.

If q = 3, then the four possibilities remaining for A

after the above elimination process are Al = {1,2,3} ,

A2 = {1,-2,3} , A3 = {1,2,-3} , and A4 = {l,- 2, -3 }. This

concludes our example and we continue with our proof of

the theorem.

Notice that if iEA, where 2 < i < q-1, then we may

assume (i+1)EA for, otherwise, we let S =

Thus, for i and j such that 2 < i < j < q, iEA implies

jEA. By the contrapositive it follows that jEA implies

iEA. Therefore, in the above example A3 is also elim-

inated.

Consider the following possibilities for A:

(1) 3EA , (2) qEA , and (3) 3EA and qEA. Notice that

these are all of the possible cases and that these cases

do not overlap since 3EA implies qEA and qEA implies
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3EA. If 3EA, then (q-2)EA and qEA, and we let

S = {3,q-2,q}. If qEA, then (q-2)EA and 3EA, and we

let S = {-3,(q-2),q}. (Notice that this proof is

invalid for q = 5 because of the two previous subsets S.

As will be seen later, the theorem is not true for

1 < q < 5.) Now suppose that 3EA and qEA. If 4EA,

then 5EA. Since 3EA, then 2EA and we let

S = {-2,-3,5}. If 4EA, then there is some j, with

4 < j < q-1, such that jEA and (j+1)EA. Since jEA, it

follows that (j -1)EA and we let S = {-2,(j-1),j+1}.

This completes the proof.

A comment regarding our choice of cases in the proof

of Theorem 8 is appropriate before proceeding further.

Although Theorem 8 is not true for q = 5, a modified

version, Theorem 10 which follows, is true. In our proof

of Theorem 10 we will look at those sets A for which the

proof of Theorem 8 is invalid in the event q = 5. The

number of these exceptional sets A can be reduced by

choosing our cases in the proof of Theorem 8 to be

(1) 2EA , (2) qEA
, (3) 2EA and qEA. However, this al-

ternative choice of cases lengthens the proof of

Theorem 8. Since simplicity in the proof of the general

Theorem 8 is our primary goal, the inconvenience of

having to deal with a greater number of exceptional sets

A in our proof of Theorem 10 is judged worthwhile. This
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goal of simplicity in the proof of a general theorem also

guides our choice of cases in the proof of the general

Theorem 11, which follows in Chapter 5.

We now continue with Theorems 9 and 10 and their

proofs.

4.2 The Theorems for 1 < q < 4 and q = 5

THEOREM 9. If 1 < q < 4, then for each q there

exists at least one set A of q residue classes mod(2q+1)

which does not have a nonempty, zero-sum subset S.

Proof. If q = 4 we let A = {1,- 2,3,4} ; if q = 3

we let A = {1,2,3} ; if q = 2 we let A = {1,2} ; and if

q = 1 we let A = {1 }. 0

THEOREM 10. Any set A of 5 residue classes mod 11,

has a nonempty subset S of at most 5 residue classes

whose sum is zero mod 11, with five residue classes

necessary for some sets A.

Proof. The parts of the proof of Theorem 8 which

are invalid for q = 5 are cases (1) 3EA and (2) qEA.

If 3EA, then we note that either 2EA or 2EA but not

both. Thus the only two possibilities for A are the sets
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Al = {1,-2,3,4,5} and A2 = {1,2,3,4,5}. With respect to

A1, the only nonempty subset whose elements sum to zero

mod 11 is S = A1. With respect to A2, we let S = {2,4,5 }.

If qEA, then the only possibility for A is the set

A3 = {1,-2,-3,-4,-5} and we let S = {-2,-4,-5}. This

completes the proof.
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CHAPTER 5

SETS OF (q-1) RESIDUE CLASSES MOD(2q+1)

In this chapter we consider subsets A C Zn, where

n = 2q+1 and q > 2, such that 1AI = q-1 and we deter-

mine the smallest integer q0(1) such that for all q > q0(1)

any such A contains a zero-sum subset S of at most three

residue classes mod n. Once again, reasoning as we do at

the beginning of Chapter 4, Alon's theorem assures us

that q0(1) exists. We then state and prove three theorems

for smaller values of q. All of our proofs in this

chapter are constructive. As expected, the results in

this chapter are somewhat deeper than those in Chapter 4.

5.1 The General Theorem (q > 8) and

the Theorem for 2 < q < 5

THEOREM 11. Any set A of (q -1) residue classes

mod(2q+1), where q > 8, has a nonempty subset S of at

most three residue classes that sum to zero mod(2q+1),

with three residue classes necessary for some sets A.

Proof. First we notice that at least three residue

classes are necessary for some sets A because of the sets

A = {i 1 < i < q -1} since no two residue classes from 1 to
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(q-1) can sum to zero mod(2q+1).

Next we show that no more than three residue classes

are necessary for any set A. Once again let

B = {±iI1<i<q} and C = {0} so that BUC = Z2v.1 . As in

the proof of Theorem 8 we may assume that 0¢A and

{i, i} A for 1 < i < q. Hence again, A C B and

q

q-1 = IAI = lAnBI = E IA n {i, -i}I
i=1

Since IA n 0,-01 = 0 or 1, then there is exactly one d,

where 1 < d < q, such that IA n Id
,
(111 = 0. Further-

more, for 1 < i < q and i 0 d, IA CI {i, ill = 1. In

other words, for each i such that 1 < i < q and i 0 d

either iEA or iEA. Next, let g be the residue class

from A having the smallest absolute value. We may assume

g > 0 since all of the residue classes of A may be

replaced by their negatives without changing the validity

of the theorem. This is because zero sums will not be

affected by this change. Futhermore, if d 0 1, then lEA

and, similarly, if d = 1, then 2EA. The remainder of the

proof will be organized by cases on d.

Consider d > 1. We know then that lEA. Also, if

iEA and 2 < i < d-2 or d+1 < i < q-1, then it follows

that (i+1)EA since, otherwise, we let S = {1,i,(i+1)}.

Therefore, if 2 < i < j < d-1 or d+1 < i < j < q, then
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iEA implies that jEA. By the contrapositive we also have

that jEA implies iEA. This result is useful in all of

the cases on d that follow except for the case d = 1 for

which there is a similar, but different, result.

Accordingly, we will save the proof of the case d = 1

until last since we wish to begin with the most general

case first, namely, the case where 4 < d < q-3.

Case 1 (4 < d < q-3). First suppose that (q -1)EA.

It follows that (q-2)EA and (d +1)EA. If 2EA, then

(d -1)EA and we let S = 12,d-1 ,-0-1-1. If 2EA and qEA,

we let S = {-2,(q-2),q}. If 2EA and qEA, we let

S =

Next suppose that (q -1)EA. This implies that qEA.

If 2EA, we let S = {2,q-1,q}. If 2EA, we consider the

subcases (d+1)EA and (d+1)EA. If (d +1)EA, then there is

some j, with d+1 < j < q-2, such that jEA and (j+2)EA.

So we let S = {-2,j,j+2} . Now assume that (1-1-1)EA. If

it is also true that (d -1)EA, then we let

S = {- 2, (d- 1),d +1 }. If, however, we have that (d -1)EA,

then there is some j, with 2 < j < d-2, such that jEA

and (j +1)EA. If j > 4, we let S = {-2,(j-1),j+1}. If

j = 3, then 4EA, and since (d +1)EA we have (q-2)EA; so we

let S = {4,q-2,q-1}. If j = 2, then 3EA and again

(q -2)EA, and hence we let S = {3,q -2,q }.
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Case 2 (d = 2) . If 3EA, then (q-2)EA and qEA. Hence

we let S = ,q-2 ,q}. If qEA, then (q-2)EA and 3EA.

Thus we let S = (q-2), q} . If 3EA and qEA, then

there is some j, with 3 < j < q -1, such that j EA and

(j+1)EA. If j > 6, then (j 2)EA and we let

S = {-3, j+1}. If j = 4 or j = 5, then 3EA,

4EA, and 7EA. Hence we let S = {-3, 4 ,7}. If j = 3,
then 4EA, (q-2)EA, and (q-1)EA.

S = {4 ,q-2 ,q-1}.

So we let

Case 3 (d = 3) . If 4EA, then (q-2)EA and (q-1)EA.

Therefore we let S = {4 , q-2 , q-1}. If (q-1)EA, then

(q-2)EA and 4EA. Thus we let S = {-4 , (q-2) , (q-1)} .

If 4EA and (q-1)EA , then qEA and there is some j , with

4 < j < q-2, such that j EA and (j+2)EA. If 2EA, then

we let S = {-2,j, j+2}. If 2EA, we let S = {2 , q-1 ,q}.

Case 4 (d = q-2 and d = q-1) . First suppose that

4EA, which implies (q-3)EA. If it is also true that qEA,

then we let S = {4,q-3,q}. (Notice that because of this

set S this is the first instance of this proof being

invalid for q = 7. As will be seen later, this theorem

is false if 2 < q < 7.) If instead we have 3EA and

qEA , then we let S = {3,q-3,q}. If , however , 3EA and

qEA, then we let S = {-2,-3,5} since 3EA implies 2EA

and 4EA implies 5EA.
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Next suppose that (q-3)EA. This implies 4EA and

3EA. If we also have qEA, then we let

S = {-3, (q-3),q} . If instead we have qEA, then we let

S = {-4 , (q-3) , q} .

Finally, suppose that 4EA and (q-3)EA. In this

case there is some j, with 4 < j < q -4, such that jEA
and ( j +1)EA. Hence we let S = {-2,(j-1), j+1}.

Case 5 (d = q) . If 3EA, then 4EA, (q-2)EA , and

(q-1)EA. Therefore we let S = {4 ,q-2 ,q-1} . If (q-1)EA ,

then (q-2)EA and 4EA. So we let

S = {-4,(q-2),(q-1)}. If 3EA and (q-1)EA , then 2EA

and there is some j , with 3 < j < q-3, such that jEA
and (j +2)EA. Thus we let S = {-2 , j , j +2} .

Case 6 (d = 1) . Since 1 OA it fol lows that 2EA.

Therefore , we may assume further that if iEA, where

3 < i < q -2, then (i +2)EA since, otherwise, (i +2)EA and

we let S = {2 , i , (i +2)} . Thus, if 3 < i < j < q and (j i)

is even, then iEA implies jEA and, by the contrapos it ive ,

jEA implies iEA.

If (q-1)EA and qEA, then we let S = {2 ,q-1 , q} .

If (q-1)EA and qEA, then 3EA and (q-2)EA.

Hence we let S = {-3, (q-2), q} .

If (q-1)EA and qEA, then (q-3)EA. If we also have
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that 3EA, then we let S = {-3,(q-3),q). If instead we

have that 3EA, then (q-2)EA since, otherwise, (q-2)EA and

(q -1)EA would imply 3EA. Thus we let S = {3,q -2,q }.

If (q-1)EA and qEA, then (q-2)EA. If we also have

that 3EA, then we let S = {-3,(q-2),q}. If instead

we have that 3EA, then (q-3)EA since, otherwise, (q-3)EA

and (q-2)EA would imply 3EA. Therefore we let

S = {3,q-3,q}. This completes case 6 and the proof of

the theorem.

THEOREM 12. If 2 < q < 5, then for each q there

exists at least one set A of (q-1) residue classes

mod(2q+1) which does not have a nonempty, zero-sum

subset S.

Proof. If q = 5 let A = {1,2,3,4} ; if q = 4 let

A = {1,2,3} ; if q = 3 let A = {1,2} ; and if q = 2 let

A = {1 }.

5.2 Methods of Proof for q = 6 and q = 7

A few preliminary comments are in order before we

begin the proofs of the theorems for q = 6 and q = 7.

Parts of our proof of Theorem 11 are invalid for q = 6

and for q = 7. However, this does not mean that the

theorem is false for these values. In the remainder of
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this chapter we determine those sets A for which the

proof of Theorem 11 is invalid when q = 6 or q = 7, then

determine for which of these sets Theorem 11 is false,

and finally proceed to examine these latest sets to

complete the proofs of the theorems for q = 6 and for

q = 7.

We consider six methods for finding the sets A, if

any exist, of (q-1) residue classes, when q = 6 or q = 7,

which have no nonempty zero-sum subsets S or which have

only zero-sum subsets S of four or more residue classes.

These six methods correspond to the steps, which we

describe in detail below, of a six step screening

process. The steps are numbered 0 through 5. The

methods are correspondingly numbered 0 through 5. A

method consists of applying a certain number of steps of

the screening process, starting from step 0, followed by

analyzing the remaining sets A for nonempty zero-sum

subsets S of minimal cardinality. For example, method 2

consists of applying step 0, step 1, and step 2 of the

screening process followed by the aforementioned

analysis. Methods 4 and 5 will soon appear to be the

best. We now describe each step of the screening process

while keeping in mind that any set A of (q-1) residue

classes mod(2q+1) is a subset of BUC, where B and C are

defined in the proof of Theorem 11. Step 1, step 2,
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step 4, and step 5 of the screening process filter out

sets A for which the proof of Theorem 11 is valid. In

step 0 we consider all sets A of (q-1) residue classes

mod(2q+1). Step 3 of the process filters out sets A

which when paired with certain retained sets form pairs

of sets for which the proof of Theorem 11 is valid for

either both members or neither member of the pair.

Step 0. Consider all sets A of (q-1) residue

classes mod(2q+1).

Step 1. Retain only those sets A such that

00A.

Step 2. Retain only those sets A such that

{i,i} A for 1 < i < q.

Step 3. Retain only those sets A such that

the (nonzero) residue class g from A having

smallest absolute value is positive.

Step 4. Retain only those sets A such that

one of the following holds:

a. If d 0 1, then iEA implies jEA

provided that 2 < i < j < d-1
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or d+1 < i < j < q.

b. If d = 1, then iEA implies jEA

provided that 3 < i < j < q

and (ji) is even.

Step 5. Of the sets A which remain after

step 4, screen out those for which the proof

of Theorem 11 is valid according to the

following procedure:

First, examine the separate cases

on d in the proof of the theorem and deter-

mine exactly where each case is invalid for

q = 6 or for q = 7.

Second, list those sets A remain-

ing after step 4 that satisfy the descrip-

tions of sets affected by these invalid

parts of the proof. Those sets A for which

the proof of Theorem 11 is valid are not

listed and hence are screened out.

Table 1, which follows, lists the number of sets A

that remain after each successive step of the screening

process. Equivalently, the table gives the number of



sets A which must be analyzed for zero-sum subsets S

minimal cardinality under the corresponding method.

number of sets remaining after steps 0 through 3

45

of

The

is

determined by using elementary counting methods. The

number of sets remaining after steps 4 and 5 is

determined by enumerating them.

TABLE 1. Sets Remaining After Each Step

of the Screening Process

After

Step

Number of Sets Remaining

q =6 q=7 Total

0 (V) = 1287 (I) = 5005 6292

1 (V) = 792 (V) = 3003 3795

2 25 = 192 (76).26 = 448 640

3 24 = 96 (76).25 = 224 320

4 44 68 112

5 32 13 45

A computer can be programmed to perform part or all

of the sequence of steps from 0 through 4 of the

screening process and to individually analyze the

remaining sets A for zero-sum subsets of minimal

cardinality. It is in step 5 where one is required to

closely analyze the logic of the proof of Theorem 11 at a

level where it is no longer practical to program a

computer. Step 5, requiring the type of analysis that it
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does, is what persuaded us to choose method 5 over the

other methods. The fact that there are fewer sets A to

individually analyze under method 5 is of secondary

importance to us. Having made our choice, we found our-

selves meticulously examining the proof of Theorem 11.

During this process we acquired deeper insight into the

proof and rewrote parts of it, not because they were

flawed, but because we saw more efficient ways of

organizing them.

5.3 The Theorems for q = 6 and q = 7

We now prove our results for q = 6 and q = 7 follow-

ing the style of deferring the statements of these

theorems until the end of the section. Under method 5

the 45 sets A that must be analyzed for zero-sum

subsets S of minimal cardinality arise from the parts of

the proof of Theorem 11 that are invalid for q = 6 or for

q = 7. Table 2 on the following page indicates the

validity or invalidity of the proof of Theorem 11 for

these values of q with respect to cases on d.

In Table 2 invalid is written when we mean that all

or part of the proof is invalid for that particular value

of q and case on d. Note that Case 1 is vacuous when

q = 6.
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TABLE 2. Validity of the Proof

of Theorem 11

Case q=6 q = 7

1 (4 <d < q 3) Vacuous Val id

2 (d = 2) Invalid Val id

3 (d = 3) Invalid Val id

4 (d = q -2) Invalid Invalid

4 (d = q-1) Invalid Invalid

5 (d = q) Invalid Val id

6 (d = 1) Invalid Val id

Table 3 on the following page is organized by cases

on d and displays the result of applying method 5 when

q = 6. Thus Table 3 contains a list of the 32 sets A

that remain after applying step 0 through step 5 of the

screening process when q = 6. Furthermore, we list with

each set A its zero-sum subsets S of minimal cardinality.

Table 4 is the same as Table 3 except that q = 7.

Examination of Table 3 and Table 4 shows that

Theorem 11 is false for q = 6 and q = 7. For both these

values of q, although each listed set A has at least one

zero-sum subset S, there is at least one of these sets A

which has no zero-sum subset S satisfying 0 < BSI < 3.

For q = 6 there are 18 of these sets A whose zero-sum

subsets S have smallest cardinality greater than three:
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TABLE 3. Zero-Sum Subsets S

for q=6

d A S

2 A1= {1, -3,- 4,5,6,} S1= {1,- 3, -4,6}
A2={ 1,-3,-4,-5,6} S2={ 1,-3,-4,6}
A3={ 1,-3,4,5,6} S3=A3

3 A4= {1,2,4,5,6} S4= {2,5,6}
A5 = {1,- 2,4,5,6} S5 = {- 2,4,5,6}
A6= {1,2,- 4, -5,6} S5 =A6

A7= {1,2,- 4, -5, -6} S7={2,-4,-5,-6}
A8={1,-2,-4,-5,6} S8={ -2,-4,6}
A9={ 1,-2,-4,-5,-6} S9={ -2,-5,-6}

q-2 A10={ 1,2,3,5,6} S10= {2,5,6}
A11={1,2,3,-5,6} S11= {2,3, -5}
Al2={ 1,2,3,-5,-6} S12= {2,3, -5}
A13={ 1,-2,3,5,6} S13 = Ai3

A14 = {1 , 2,3,-5,6} S14 = { 1 , 2,-5,6}
A15 = {1 , 2,3,-5,-6} S15 = { 2,-5,-6)
A16= {1, -2,- 3,5,6} S16= {- 2, -3,5}
A17 = {1 , 2,-3,-5,6} S17 = { I. , 2,-5,6}
A18={1,-2,-3,-5,-6} S18={-2,-5,-6}

(Table 3 is continued on the next page.)
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TABLE 3 (continued).

d A S

q-1 A19= {1,2,3,4,6} S19={3,4,6}
A20={1,2,3,4,-6} S20={2,4,-6}
A21={1,-2,3,4,6} S21= {3,4,6}
A22 = {1 9 2 , 3 , 4 , 6} S22 = A22

A23 = {1 9 2,-3,4,6} S23={1,-2,-3,4}
A24={1,-2,-3,4,-6} S24={1,-2,-3,4}
A25 ={1,-2,-3,-4,6} S25 = { 2 , 4 , 6}

A26={1,-2,-3,-4,-6} S26=1-3,-4,-61

q A27={1,2,3,4,5} S27={1,3,4,5}
A28 = {1,- 2,3,4,5} S28={1,3,4,5}
A29={1, 2,-3,-4,-5} S29 = A29

1 A30={2,-3,4,-5,6} S30={2,-3,-5,6}
A31 = {2,-3,-4,-5,6} S31 = {2,-3,-5,6}
A32 = {2,3,-4,5,-6} 532 = A32
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TABLE 4. Zero-Sum Subsets S
for q=7

d A S

q-2 A33={1,2,3,4,6,7} S33={2,6,7}
A34 = {1 ,2,3,4, 6,7} S34 = {2,4,-6}
A35={1,-2,3,4,6,7} S35,1={1,3,4,7}

S36,2 = { 2,4,6,7}
A36={1,-2,3,4,-6,7} S36,1={1,3,4,7}

S362 = {1,-2,-6,7}
A37={1,-2,-3,4,6,7} S37,1 = {1 , 2,-3,4}

S37,2 = {-2,4,6,7}
A38 = {1 , 2,-3,4,-6,7} S38,1 ={1 , -2 , -6 , 7}

S38,2 = {1 , 2,-3,4}
A30={1,-2,-3,4,-6,-7} S30={-2,-6,-7}
A40={1,-2,-3,-4,-6,-7} S40 = {-2,-6,-7,}

q-1 A41={1,2,3,4,5,7} S41 = {3,5,7}

A42={1,-2,3,4,5,7} S42={3,5,7}
A43={1,-2,-3,4,5,7} S43={-2,-3,5}
A44={1,-2,-3,-4,5,-7} S44={ -2,-3,5}
A45={1,-2,-3,-4,-5,-7} S45={ -3,-5,-7}
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cardinality five for six sets A, in which case S = A, and

cardinality four for 12 sets A. For q = 7 there are four

of these sets A whose zero-sum subsets S have smallest

cardinality greater than three: cardinality four for all

four sets A. These observations complete the proofs of

Theorem 13 and Theorem 14.

We now explain the precise origin of each set listed

in Table 3 and Table 4.

First suppose q = 6 and d = 2. The sets AI, A2, and

A3 originate in that part of the proof of Case 2 where we

suppose that 3EA and qEA. Then j = 3, j = 4, or j = 5.

When j = 4 or j = 5, the set S = {-3,-4,7} is not a

subset of A. When j = 3, then {4,q- 2,q -1} is not a set

because q-2 = 4. The sets Al, A2, and A3 correspond to

j = 4, j = 5, and j = 3, respectively.

Now suppose that q = 6 and d = 3. The sets A4 and

A5 originate in that part of the proof of Case 3 where we

suppose 4EA. Because q-2 = 4, then {4,q- 2,q -1} is not a

set. The sets A6, A7, A8, and A9 originate in that part

of the proof of Case 3 where we suppose (q -1)EA. Since

(q -2) = 4, then {-4,(q-2),(q-1)} is not a set.

Next suppose that q = 6 and d = q-2 = 4 or

d = q-1 = 5. This is the only instance where the proof

of Theorem 11 breaks down in some way other than that the
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sets S are not sets or are not subsets of A. Actually,

the steps in this part of the proof of Theorem 11 are all

either vacuous or invalid when q = 6, and so we abandon

the proof entirely in favor of an enumeration of the sets

for this case. Hence, we list the sets An, An, An, An,

A14 A15, A16 A17, A18, A19, A20, A21,

and A96.

A27

A22 , An, Alm, A95,

Next suppose that q = 6 and d = q = 6. The sets

and A.,8 originate in that part of the proof of Case 5

where we suppose that 3EA. Since q-2 = 4, then

{4,q- 2,q -1} is not a set. The set A99 comes from that

part of the proof of Case 5 where we suppose (q -1)EA.

Because (q-2) = 4, then {-4,(q-2),(q-1)1 is not a

set.

Now suppose that q = 6 and d = 1. The sets A30 and

A31 originate in that part of the proof of Case 6 where we

suppose that (q -1)EA and qEA. Then 3EA, and since

(q -3) = 3, then {-3,(q-3),q} is not a set. The set A32

comes from that part of the proof of Case 6 where we

assume that (q -1)EA qEA, and 3EA. Since q-3 = 3,

then {3,q-3,q} is not a set.

Next suppose that q = 7 and d = q-2 = 5. The sets

A33 , A34 , A35 , A36 , A37 , and A38 originate in that part of

the proof of Case 4 where we assume that 4EA and qEA.
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Since q-3 = 4, then {4,q-3,q} is not a set. The set A39

originates in that part of the proof of Case 4 where we

assume that 4EA and also that 3EA and qEA. The set

S = (-2,-3,5} is not a subset of A since d = 5. The set

A40 comes from that part of the proof of Case 4 where we

suppose that (q-3)EA and qEA. Since (q -3) = 4, then

{-4,(q-3),q} is not a set.

Finally, suppose that q = 7 and d = q-1 = 6. The

sets A41, A42, and A43 originate in the same part of the

proof of Case 4 as do the sets A33 , A34 , A35 , Au , A37 , and

A38 and for the same reason. Similarly, the sets A44 and

A45 originate in the same part of the proof of Case 4 as

does the set A40 and for the same reason.

Once the sets A remaining after step 5 of the

screening process are determined, they must be analyzed

individually for zero-sum subsets S. For each set A we

are interested only in those zero-sum subsets having

minimal cardinality and we list them all. Following is a

systematic procedure for locating these subsets:

1. If q = 6, sum the residue classes of A.

If this sum is zero, then by steps 1 and 2

of the earlier screening S = A. If the

residue classes of A sum to a non-zero

residue class r, search for subsets of A



of cardinality 2 or 1 which sum to r since

the complements of these subsets are all

of the zero-sum subsets of A with 3 or 4

elements, respectively.

2. If q = 7, sum the residue classes of A.

If this sum is zero, then again by the

earlier screening S = A or S is a subset

of A with 3 elements. Such a subset of

3 elements must be found by enumerating

all subsets of A with 3 elements. If

the residue classes of A sum to a nonzero

residue class r, then search for subsets

of cardinality 3, 2, or 1 which sum to r

since the complements of these subsets are

all of the zero-sum subsets of A with 3,

4, or 5 elements, respectively.

This concludes
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our explanation of Table 3 and

Table 4. The following two theorems follow immediately

from these tables.

THEOREM 13. Any set A of five residue classes

mod 13 has a nonempty subset S of at most five residue

classes that sum to zero mod 13, with five residue
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classes necessary for some sets A.

THEOREM 14. Any set A of six residue classes mod 15

has a nonempty subset S of at most four residue classes

that sum to zero mod 15, with four residue classes

necessary for some sets A.



56

CHAPTER 6

FURTHER PROBLEMS

We have already listed several general problems in

the introduction. In this chapter we list specific

unsolved problems arising out of our work in this thesis.

In Section 6.1 we introduce some interesting

unsolved problems arising from our attempts to decrease

the lower bound restriction on !AI in Alon's theorem.

These attempts led to our results in Chapter 3. In

Section 6.2 we introduce some interesting unsolved

problems arising from our research with respect to odd

moduli developed in Chapter 4 and Chapter 5. All of the

variables used in this chapter are integers unless stated

otherwise. Of course e is always real.

6.1 Problems Related to Our Results in Chapter 3

(i) Immediately before the statements and proofs of

Theorem 4 and Theorem 5 we mention that these theorems

suggest that similar theorems can be constructed for each

k > 5. A more interesting problem is to construct a

single theorem for k > 3, which includes Theorem 3,

Theorem 4 and Theorem 5 as special cases.
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(ii) Prove or disprove Conjecture 6.

(iii) If Conjecture 6 cannot be proved, determine

if there exists a real number c(k) > 0 for each k > 3

such that Alon's conclusion holds if we only require

1AI > E4- c(k), where A C Zfl and n > no(k,c(k)) .

(iv) If Conjecture 6 cannot be proved and problem

(iii) cannot be solved, find an increasing function f(n,k)

satisfying 0 < f(n,k) < (1 +,13(k-2))r3(n) such that Alon's

conclusion can be shown to hold if we only require

AlI > k+f(n,k), where k > 3, A C Zn, and n > no(k).

(v) If a function f(n,k) described in problem (iv)

is found, determine if it is the minimum such function

for which Alon's conclusion can be shown to hold.

(vi) If Conjecture 6 cannot be proved and problem

(iii) cannot be solved, find an increasing function

g(n,k) > 0 for which it can be shown that Alon's

conclusion sometimes fails to hold if we only require

'Ad > k+g(n,k), where k > 3, A C Zn, and n is arbitrarily

large.

(vii) If a function g(n,k) described in problem (vi)

is found, determine if it is the maximum such function

for which it can be shown that Alon's conclusion some-

times fails to hold for arbitrarily large moduli n.
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(viii) If Conjecture 6 can be proved, consider the

term co(k) in the statement of the conjecture. Determine

if Alon's conclusion holds for each k > 3 if

IA1 > it + co(k), where A C Z. and n > no(k,c0(k)).

(ix) Extend Alon's theorem to finite noncyclic

abelian groups and to finite nonabelian groups.

6.2 Problems Related to Our Results

in Chapter 4 and Chapter 5

(x) Extend Stalley's and the author's results to

sets A of (qh) residue classes mod(2q) or mod(2q+1),

where q > h > 2. Alon's theorem assures us (and also

Filaseta and Richman's result[4] but for a different

reason) that there is a solution to this problem for each

Al
l = > (h+e),

small. However, such solutions will probably require

h > 2 since lim
cr-00

for e > 0 sufficiently

techniques different from those used for h = 0 and

h = 1. Even with h = 2 these techniques become extreme-

ly cumbersome and possibly inadequate.

(xi) Let A C Z. and lAl = qh where n = 3q+r,

O < r < 3, and q > h > 0. Further, let qo(h) = cio(r,h).

Determine the smallest integer cio(h) so that for all

q > cio(h) any such A will contain a zero-sum subset S of

at most four residue classes mod n. Alon's theorem
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assures us that there is a solution to this problem for

IAI
each h > 0 since Arg. = > (i+e), where e > 0 is3

sufficiently small.

(xii) More generally, let A C Zfl and IAI = qh

where n = kq+r, k > 3, 0 < r < k, and q > h > 0. In

addition, let qgh) = qgk,r,h). Determine the smallest

integer q0(h) so that for all q > qo(h) any such A will

contain a zero-sum subset S of at most (k+1) residue

classes modn. Once again, Alon's theorem assures us that

solutions exist to this problem since

lim 1
n

> (k+1 +c), for e > 0 sufficiently small.q.c.0

A reasonable assumption to make is that q0(h) > k

because of the sets A = { iI1<i<qh}. For suppose that

q < k. The subsets S of such a set A whose elements form

the smallest possible sum and largest possible sum are

S = {1} and S = {1 ,...,qh}, respectively. Since

1 + 2 + + (qh) < (qh)2 < = n ,

it follows that no such set A, when q < k, has a zero-sum

subset S.

(xiii) Extend problem (xi) and, more generally,

problem (xii) to smaller values of q. Specifically, for

each q < q0(h) determine whether every set A of (qh)
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residue classes mod(kq+r), where k > 3, 0 < r < k, and

q > h > 0, contains at least one zero-sum subset S and,

if so, the smallest integer to(q) = to(q,k,r,h) so that

every set A contains at least one zero-sum subset S such

that 0 < ISI < to(q) < qh.

(xiv) Extend Stalley's and the author's results to

finite noncyclic abelian groups and to finite nonabelian

groups.

This completes our list.
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APPENDIX 1

STATEMENTS OF THEOREMS

In this appendix we provide the reader with authors'

verbatim statements of the theorems and conjectures, list-

ed in chronological order, that are mentioned in the

historical background section of Chapter 2. In some

cases we use different letters to be consistent with the

symbols used in this thesis. Also, minimal explanatory

material provided by each author precedes these

statements when necessary. We mark the end of each

statement with the symbol .

In the following theorem let p be a prime, al, ... ,am

distinct non-zero residue classes modp, r a residue

class modp. Let

F(r) = F(r ; p; al, ... , am)

denote the number of solutions of the congruence

elai + -- + emam E r(modp),

where the e1,...,em are restricted to the values 0 and 1.
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Note of clarification: Here e1, are not all

THEOREM A.1 (P. ErdOs and H. Heilbronn, 1964[3]).

F(r) > 0 if m > (34).,1-17).

CONJECTURE A.2 (Erdos and Heilbronn, 1964[3]).

It is possible to replace the constant 346 in

Theorem A.1 by the constant 2.

CONJECTURE A.3 (Erdos and Heilbronn, 1964[3]).

F(0) > 0 for m > 244-5 , where p is not necessarily a

prime.

This conjecture may also be true for finite abelian

groups of composite order p, and possibly even, midis

mutandis, for nonabelian groups.

In the following theorem let be distinct

non-zero residue classes modulo the prime p and let r be

the number of residue classes x of the form

x = emam,

where the ei are restricted to the values 0 and 1 and are
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not all 0.

THEOREM A.4 (John E. Olson, 1968[6]).

If m > 4(4p-3) , then r = p. 0

THEOREM A.5 (Charles Ryavec, 1968[7]).

Let a"...,am be m distinct, nonzero residues

modulo n, where n is any natural number and where

4Iog n
m > 3,W-1 exp c

where c > 0 is some large constant. Then the congruence

elal + + emam = 0(modn)

is solvable with e = 0 or 1 and not all e = O. 0

In the following theorem let G be an abelian group

of n elements. Let H denote the set of elements of G and

let A denote a subset of H. Put

A* = 02eiai : a; EA, ei = 0 or 1 but not all ei are 01.
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THEOREM A.6 (E. Szemeredi, 1970[9]).

There exist a real number K > 0 and an integer no

such that for every n > no, for every G, and for every

A C H, lAl > Kin',

OEA *.

THEOREM A.7 (Robert D. Stalley[8]).

Any set A of q distinct residues mod2q, where q > 5,

has a nonempty subset S of at most three residues whose

sum is zero mod2q, with three residues necessary for some

sets A.

COROLLARY A.8 (Stalley[8]).

Any set A of q distinct residues mod2q, where q = 4,

has a nonempty subset S of at most four residues whose

sum is zero mod2q, with four residues necessary for some

sets A.

THEOREM A.9 (Stalley[8]).

Any set A of (q-1) distinct residues mod2q, where

q > 8, has a nonempty subset S of at most three residues

whose sum is zero mod2q, with three residues necessary
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for some sets A.

COROLLARY A.10 (Stalley[8]).

Any set A of (<1-1) distinct residues mod2q, where

q = 7, has a nonempty subset S of at most four residues

whose sum is zero mod2q, with four residues necessary for

some sets A, and where q = 6, has a nonempty subset S of

at most five residues whose sum is zero mod2q, with five

residues necessary for some sets A.

THEOREM A.11 (M. Filaseta and D. Richman [4]).

For every positive integer h, if n > no(h) and A C Zn

satisfies 1A1 > 9h, then there exists a subset S C A

such that 0 < 'SI < 3 and I: s = 0.
sES

In the following theorem let G be a (finite) abelian

group and let A C G. Define

A(k) = fal-f----i-ak: al,...,ak are distinct elements of Al.

Define r2 to be the number of elements gEG such that

g-Fg = O.
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THEOREM A.12 (N. Alon [1] ) .

If 00A(2) and if A(3)U A(2) 0 G, then

AiIGI + 2r2 + 3 > 21A1 ( l21A1 I-2
r2
M

THEOREM A.13 (Al on ' s Theorem, 1987 [2] ) .

For every f ixed e > 0 and k > 1 , if n > no(k ,e) and

A C Zn sat isf ies Al1 > ( k + e)n , then there is a subset

S C A such that 0 < IS1 < k and E s = 0.
sES

In the following proposition let r3(n) denote the max-

imum cardinal ity of a subset B C {1 , 2 , ... , n } that con-

tains no arithmetic progression of three terms.

PROPOSITION A.14 (Alon's Proposition, 1987[2]).

Let A be a subset of Zn of cardinal ity

Al1 > -11- + (1 + 43(k 2 ))r3(n). Then there is a subset S C A

of cardinal ity 1 < 1S1 < k such that E s = 0 ( in Zn) .
sES


