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As a significant class of nonlinear systems, bilinear
systems (BLS) are extensively developed in the past years.
In addition to their advantages over linear systems which
are often not adequate to represent accurately many control
processes, the BLS are particularly appealing in modeling
biological systems in which parametric controls are of
fundamental importance.

This dissertation is aimed at making a contribution to
the theory of bilinear control systems via Lie algebraic
methods, and the application of accomplished results in
immunology. To this end, the input-output relationship of
BLS is studied in terms of Volterra series expansion which
provides a convenient tool in examining the BLS stability
as well as controllability. Moreover, the Volterra series

associated with a BLS is in general an infinite series,



and thus in practice, it is important to know how many
terms are required to prevent the truncation error from
exceeding the maximum allowance. Criteria of acquiring
prescribed accuracy in terms of finite Volterra series
are derived for BLS with uniformly bounded input or with
exponentially stable linear subsystems.

The problem of inverse system design which is capable
of identifying both the input function and the state var-
iables based upon the output data, is also considered.

The observer theory of constant linear systems is then
extended into a special class of bilinear systems with
input matrices of rank one.

In view of the functional similarity between immune
processes and parametric control systems, a mathematical
model of humoral immune response is presented and analyzed.
The structural aspects of this nonlinear immune model is
examined with the aid of bilinear control theory. Approxi-
mate immune models which are amenable to the control-
theoretic analysis via foregoingly developed techniques are
proposed. Some computer simulations are performed to show
that the form of model responses is reasonable by comparing

with the experimental data.
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BILINEAR CONTROL PROCESSES WITH
APPLICATION TO IMMUNOLOGY

I. INTRODUCTION

1.1 Motivation and Objective

The development of bilinear system 'theory' has been
growing very fast. This is prompted by many reasons. The
bilinear control systems are general enough to model various
physical and biological processes on the one hand, but they
are specific enough to allow elegant mathematical analysis.
Recently, it is even shown that every nonlinear control
system with control entering linearly is locally almost
bilinear [1]. Unfortunately, most of these theoretical
contributions require sophisticated mathematical tools with
which practicing engineers are not familiar. Even worse,
many techniques proposed in past research are often either
too complicated or convenient for few particular situations,
and rarely feasible in tackling practical problems.

The objective of this thesis is two-fold. One is to
investigate some theoretical aspects of bilinear systems,
which are potentially useful in applications. The mathe-
matics employed is limited to be minimal in the sense that
only rudimentary concepts in Lie algebra and well-known
linear system theory are required. The other is to analyze
the immune response which is shown to involve bilinear

processes. It is intended to show the advantage of apply-
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ing control theory to facilitate understanding the immunol-

ogical process.

1.2 Mathematical Models

1.2.1 System Methodology

Throughout this thesis, the so-called 'dynamic systems
approach' is adopted. The system methodology in general
conceptual terms is outlined here, putting off the precise
definitions and interpretation in appropriate sections.

A dynamic system is conventionally defined to be a
collection of interacting components (objects) which as a
whole represent the realistic processes or tempo-spatial
behavior. Each component (or subsystem) is based upon the
physico-chemical principles by a mathematical equation.

In order that the whole system may function as desired, all
components should be interconnected in a suitable manner.
Hence a dynamic system is a mathematical representation or
model (usually a set of mathematical equations) from which
we are able to extract, via mathematical analysis with the
aid of computer simulation, the essence of phenomena of
concern. A dynamic system christened as above is said

to be 'closed' due to the neglect of its mutual inter-
action with the environment. In order to take interaction
between the system and its environment into account, the

notions of input and output to the system are introduced.
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In the context of mathematical representation modeled for
engineering design, the inputs to the system are called
control variables, control policies or simply controls.
Therefore a dynamic system endowed with input-output will
be called a 'dynamic control system.' Hereafter the word
'system' is used to mean a dynamic control system.

It will be seen that the theoretical contribution of
this research is to offer innovative mathematical tech-
nigues in the study of nonlinear control systems while
the applicative contribution is to apply them to facilitate
the understanding of immune responses viewed as an adaptive

control system.

1.2.2 System Representations

The characteristics of different processes vary from
one to another. Hence specific mathematical models are
only convenient for representing specific processes. In
what follows, only lumped models interpreted within the
framework by ordinary deterministic differential eguations
are considered. This by no means implies that other models
are not practically important, but this assumption is made
to keep the complex analysis as simple as possible.

Standard formulation of modern control theory 1is
supplied in order. A dynamic process or a plant will be

modeled by a nonlinear ordinary differential equation,



dx(t)
dt

x(t) = £(x(t), u(t), t), x(t)2

(1.1)

where §(t) is the state vector at time t, EERn

u(t) is the input or control function, geRm
f is the function that represents the system dynamics

r"x R™x [0, T]——— R®

=5

It will be assumed that f 1is sufficiently smooth so

as to guarantee the existence of a unique solution for each

initial state §O€Rn and each input E(t)eRm on O<t<T.

Constraints on input class such as piecewise continuous or
piecewise constant will be specified when this distinction
is significant in underlying discussion.

Systems as described by (1.1) are quite general. As
far as this research is concerned, there will be assumptions
imposed upon the vector-valued function f to make the model
mathematically tractable via only standard functional analy-
sis and Lie algebra. Necessary background on Lie algebra
will be presented in Section 2.3 and Appendix A. Control
systems which are studied in this thesis will be confined
to three main classes, namely, linear time-variant, bi-
linear and quadratic bilinear systems. Examples of these
models are presented in Section 1.3. Here the notations

and terminology are defined by:



a) Linear time-variant systems,
X(t)=A(t)x(t)+*B(t)u(t), xeR", ueR" (1.2)

b) Bilinear systems,
. m
x(t)=A(t)x(t)+ § B, (t)u, (t)x(t)+Cu(t) (1.3)
i=1
¢) Quadratic bilinear systems,
m

X(t)=A(t)x(t)*+ ] B (t)u (£)x(t)+Cu(t)
i=1

4 T
] 8 xT()Q(E)x(t) (1.4)
i=1 *

where A(t), Bi(t), Qi(t) are square matrices of proper

dimensions
C 1is a nxm matrix
61 denotes the standard basis vector, i.e.
1 in i-th component and zero elsewhere
§,=(0,0,...,1,0,...,0)7

Comments on these specific models are in order.

a') Time-variant linear system (TVLS) are direct
extensions of the well-known time-invariant linear
systems (i.e. A(t) and B(t) are constant matrices)
which are fully developed. It is recognized that
time-variant systems often provide better perfor-
mance than time-invariant systems do. This will
be put further systematically by employing Lie
algebraic techniques. Another interesting observa-

tion is that TVLS are closely related to the



b')

6
constant bilinear systems. This inherent relation-
ship as well as the significant difference will be
investigated in the next chapter.

Bilinear systems are featured by the fact that the
models are linear in the state x(t) and linear in
the input u(t) but not jointly so. A schematic
block diagram for a bilinear system is illus-
trated in Figure 1.1. Many significant (most of
them theoretical) results have been developed for
last decade since the study was initiated by
Mohler [2, 3]. However, there are still many
important topics left open which deserve to be
more deeply investigated; for example, these
include general estimation and identification
procedures, with related problems of identifiabil-
ity and observability, stability and optimal con-
trol. Effective contributions to the application
of bilinear systems theory to the solution of
practical modeling problems in the areas of
biology, ecology, social-economics and biomedicine
are still far from satisfactory [4]. The main
purpose of this research is to present new contri-
butions to some of the above mentioned issues with
particular emphasis on immunology.

Though bilinear systems are often appropriate

models for representing the dynamic processes



u(t)

Figure 1.1. Bilinear state diagram [11].




studied here, quadratic systems (i.e. Bi's are
null matrices in (1.4)) are often used as models
for predator-prey systems or rigid body motion
among many others. For such systems, the study
from standpoint of control theory has just begun
and only very few results are available. Some
significant progress out of non-associative
algebra was made recently by Frayman [5]. It is
of interest to notice here that quadratic systems
can be constructed as a bilinear system with a
linear feedback [6]. Beyond quadratic systems,
quadratic bilinear systems are among the most
important from applicative point of view [7].

An example in optimal control of pest management

will be presented in Section 1.3.2. A mathematical

model in immunology, which naturally fits into

this class, will be discussed in Chapter 1IV.

1.2.3 System Properties

Once a dynamic system is modeled by a set of mathemat-
ical equations, the next step is to investigate the attri-
butes of the model. Before proceeding with such a model
analysis, several necessary terms are recalled [8].

a) Controllability: A dynamic system is said to be

"completely controllable if it can be transferred

from any initial state §i€Rn to any prescribed



final state §f€Rn by some admissible control

u(t) in a finite interval of time. Otherwise,

the system is said to be uncontrollable. In

practice, the state space of interest will only
be a subset in R". For example, in analyzing
biological systems, the state variables concerned
may be nonnegative and hence the state space may
be the positive octant in Rn. Also, the magni-

tude of the input cannot be as large as desired.

Zero-input stability: A state X such that

f(x t)=0 for all t is called an equilibrium

e 2

state of the system. An equilibrium state X

is said to be: 1) stable i.s.L. (in the sense of

Lyapunov), if for any positive €, there exists

a positive (e, t;) such that |]§O-§e || <§ implies

| ¢(t; Xy tO)—§e|lie for all t>t,, where

o(t; X tO) denotes the solution of the given

system and ¢(t; x., t.)=x, (The notation || |

0’ 70 0
represents the usual Euclidean norm), and

2) asymptotically stable if it is stable i.s.L.

and if every motion starting sufficiently near X,

converges to X, as t 00,
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c¢) Bounded-input stability: a system is said to be

BIBO stable (bounded-input-bounded-output stable),

if for any bounded input, the output is bounded,
that is, || u(t)||<M implies || x(t)|| <= for all t.
The concept of controllability or stability as well
as their interrelationship is of practical importance.
They are well developed at least for linear time-invariant
systems [9]. But extensive research is still continuing
for bilinear and more general nonlinear systems [10]. A
variety of different definitions and criteria were proposed
in the past. Part of this thesis is to derive new results

pertaining to this.

1.3 Examples of Control Systems

1.3.1 Bilinear Systems

Linear models are frequently used to approximate the
dynamic nature of nonlinear processes due to their mathe-
matical tractability. However, in many cases, linear models
are not adequate, especially in modeling biological mech-
anisms. The analysis of bilinear systems has received much
attention in recent years primarily attempting to overcome
the difficulty that linear systems present. Various theor-
etical and practical aspects of bilinear systems can be
found from Mohler's monograph [11], which includes both

natural and artificial systems such as the populations in
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biological species, the neutron population in nuclear

fission, the regulation of CO2 in the respiratory system

and thermal exchange...etc. An excellent survey paper by
Bruni, et al. [4] summarizes most of significant results
up to 1973.

In this section, a recent application of bilinear
system to biological control problems is illustrated, which
presents a bilinear model describing microbial cell growth
and product synthesis in continuous cultures [12]. (See
Figure 1.2)

Let

xl(t)=concentration of cells in a continuous mass
culture

u(t)= flow rate of fresh nutrient into the growth
vessel of unit volume Oiu(t)imo

xz(t)=substrate concentration in growth vessel

s_=constant concentration of nutrient flowing
into growth vessel

r(t)=specific growth rate of xl(t)

xs(t)=product concentration (i.e. penicillin
productions)

Based on the mass conservation and approximations such
as constant environmental conditions (i.e. temperature and
pH) and unlimited supply of nutrient substrate xz(t), a

bilinear model is formulated as follows:



r---T- T T == - T 0= T
!
' |
] 1
t ! x5 (t)
u(t) } Cell Formation } > 40
|
: BLS } > x,(t)
i !
' |
! |
! |
’ |
|
| C .
: |
' |
|
|
| |
! LS |
u —> x5(t)
u(t) } Production Synthesis !
| 1
i |
| !
{ i
I |
e e e - e e e . ——— — — -
Figure 1.2. A Bilinear model of microbial growth.

[
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kl(t)=r(t)xl(t)-u(t)xl(t)-kBXB(t)

X, (t)=- Eéflxl(t)—u(t)x2(t)+sru(t)

x3(t)=a§1(t)+exl(t)-5x3(t)+k2u(t)
or x3(t)=(ur(t)+8)x1(t)—au(t)xl(t)—d'x3(t)+k2u(t)
where - 6x3(t) represents a first order penicillin destruc-

tion mechanism and —k3x3(t) represents the formation of

products which inhibit the production of cells; kl, o, B
are suitable constants. It is straightforward to put the

above equations into standard form:

x=(xy, Xy, Xg)

X1 %o

x(t)=A(t)x(t)+u(t)Bx(t)+cu(t)

with
N
r(t) 0 -kg -1 0 © 0
A(t)= —r(t)/k1 0 0 B= 0 -1 0 c= s,
ar(t)+8 0 -6 , -« 0 ol , k,
N /

where 6'=6+uk3

1.3.2 Quadratic Bilinear Systems

The uncontrolled prey-predator Lotka-Volterra models
used to study the population problems of interacting bio-
logical species abound in the literature [13, 14]. These
models are quadratic in state variables and characterized

by a set of Riccati eugations. Particularly in ecology and
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enzyme kinetics many results are available. However, there
is limited literature on the actual use of optimal control
theory for ecosystem management. In this section, a simple
model represented by a quadratic bilinear equation relevant
to optimal control of prey-predator system is illustrated
[15].

Consider the classical Lotka-Volterra model introduced
with biological and insecticide controls u & v, respectively.
The cost of control efforts is assumed to include: the cost
associated with the presence of prey on the crop, the cost
associated with using insecticide and the cost associated
with using biological controls. Then an approximate
optimization model, after nondimensionalizing all of the

variables, is of the form

X (£)=x; (£) (1-%5(£))-v(t)x{ ()
Xo (£)=X5 (£) (%, (£)-K)-2v(t)x,(t)+u(t)

T
cost= /I (axl(T)+bu(T)+cv(T))dT'
0

where xl(t): number of preys (pests) at time t
xz(t): number of predators at time t
u(t): rate of introducing predators, Oiu(t)ium
v(t): rate of application of the insecticide,

Oiv(t)ivm

a,b,c: appropriate constants associated with the
‘ particular system under investigation
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£ : a constant proportional to the relative effective-
ness of the insecticide on the predator compared
with the prey (i.e. £=0 corresponds to a pesticide
harmless to the predator)
After formulating as above, the problem then is to
to determine how to drive the system using admissible con-
trols u and v to the equilibrium point (K, 1), so that
the total cost of operations is minimized. Of course, the
well-established theory of optimal control (viz. nonlinear
control systems with controls entering multiplicatively)
[16] can be applied here. But the structural theory as
well as the higher dimensional situations still present
serious problems to establish the realistic control strate-
gies. Optimal control theory of quadratic bilinear systems
is yet in its infancy. The conventional Lie algebraic
techniques which are convenient in dealing with systems
of matrix Riccati equations fail to be applicable in the

vectorial Riccati models [17].

Rewriting the model offers

2 2
X(t)=Ax(t)+ ) B.x(t)u,+Cu(t)+ J 6.%(t)Q.x(t)
- - i=1 Lo i=1 1~
with  x(0)=(xq, x,)°, u(t)=(u, v)*
S
1 0 [o 0 -1 0 0 0
A= B_.= B = C=
1 2 |
O _K b4 O O y \O _Q/ 3 \l O
) <
0o -1 o 1
Qe= Q=
Lo of ., 2 o o
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The decomposition of such quadratic bilinear systems
into feedback combination of BLS is quite apparent, and
consequently optimal control of BLS may be useful in

solving these.

1.3.3 Quasi-nonlinear System

In this section, two examples which are nonlinear but
can be reduced into simpler ones are introduced. The first
example is to consider the problem of guiding an aircraft
in minimal time from an arbitrary point in the terminal
area to the outer marker [18, 19]. The second example is
a scalar nonlinear system which is chosen only for its
simplicity to illustrate the benefit of bilinear modeling.
These two examples are shown to possess, after introducing
new state variables, structures of bilinear and quadratic
bilinear systems, respectively.

Assuming that the thrust is equal to the drag and the
flight path angle is small, the centrifugal force due to
the turn and the weight of the aircraft are balanced by
the horizontal and vertical components of the 1lift,
respectively. Under these assumptions, no slideslip occurs
and the equations of motion of the aircraft in the hori-
zontal plane are

%(t)= cos Y(t), x(0)=xo

y(t)= sin y(t), y(0)=y°

W)= - £y tan o(t), v (0)=y°
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where x(t), y(t) and y(t) are the current coordinates and
heading angle of the aircraft, v(t) is the speed, ¢(t) is
the bank angle and g 1is the acceleration due to gravity.
See Figure 1. 3. In addition, the speed is assumed constant
so that the control function can be normalized and defined

as follows:

u(t) = V%t) tan ¢(t) =

R(t)
where R(t) denotes the radius of curvature of the flight

path. v, Ay

runway

Wni——— «

outmarker

Figure 1.3. Top view of aircraft in terminal area.

Introducing additional state variables, z(t)=cos y(t),
w(t)=sin y(t) gives

x(t)=z(t)

y(t)=w(t)

z(t)=u(t)w(t)

w(t)=-u(t)z(t)

P(t)=-u(t)
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In standard form, this is a bilinear system

x(t)=Ax(t)+Bx(t)u(t)+cu(t), x(0)=x_
with
s e
x(t) 0O 0 1 0 o 0O 0 0 O
y(t) 0O 0 0 1 o 0O 0 0 O
xX(t)=| z(t) A= 0 O O 0 O B=j0 0 0 1
w(t) O 0 0O 0 O 0O 0-1 0O
p(t) |, 0O 0 0 0 0}, 0O 0 0 O©
\ N /
s N / N
0 and x©
0 yo
c= 0 X5 cos wo
0 sin wo
-1, v°
/

Next, consider a scalar nonlinear system which is
described as

%l(t)=sin x(t)+u(t), x1(0)=0

Introducing new state variables xz(t)=sin xl(t),

x3(t)=cos xl(t) gives
kl(t)=x2(t)+u(t)
kz(t)=x2(t)x3(t)+u(t)x3(t)

Xg(t)==%2(t)~u(t)xy(t)
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In standard form, this is a quadratic bilinear system
3

X(t)=Ax(£)+Bu(t)x(t)+ | &x (£)Q x(t)
i=1

with

x(£)=(x,(t), %,(t), x4(t))7, and

0 1 0 0O 0 O 0 0 O
A={ 0 0 O B={0 0 1 Q=10 0 0
o 0 0], 0-1 0], 0o 0 o),
/
0O 0 O 0 0 0
Q,=[0 0 0 Qy={0 -1 0
o 0 0], 0O 0 O

Therefore, there are special classes of nonlinear
systems which are inherently bilinear or quadratic bilinear.
For such quasi-nonlinear systems, techniques developed for
bilinear and quadratic bilinear systems can be employed,
though unfortunately the number of state variables in the
system is increased and computation becomes much more
involved.

The examples presented above are much simplified.

In fact, there are much larger class of more complex
aircraft dynamics in which BLS theory may be useful by

considering the aerodynamic coefficient control, e.g.

by wing flaps etc. [20].
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1.4 Outline of Thesis

The next chapter, Chapter II, introduces Lie algebraic
methods in control theory with the intent of preparing
sufficient technical background for the rest of the thesis.
Volterra series and global solutions of bilinear systems
are selected as heuristic examples to aid illustrating the
mathematical concepts.

Chapter III develops the main theoretical results,
which include the structural decomposition, Volterra
series representation, as well as inverse system design
of bilinear control systems. In addition, the Lie alge-
braic conditions on finiteness of Volterra series associated
with bilinear systems are investigated pertaining to the
bilinear state observer.

Chapter IV is devoted to the modeling of humoral
immune responses. A mathematical model of B cell dynamics
stimulated by T-independent antigens is presented. The
positive invariance and stability of the B Model are in-
vestigated. Computer simulations are contained to assess
model validity in comparison with the experimental data.

Finally, approximated versions of the B Model are
derived. Optimization criterion assumed in conjunction
with the simplified immune model leads to a time-optimal
control problem from which foregoing techniques can be

applied.



21

II. LIE ALGEBRAIC METHODS IN CONTROL THEORY

2.1 Lie Algebraic Methods

2.1.1 Review of Past Research

Dynamic control systems are very frequently modeled by
a set of ordinary differential equations. It is well-known
that there are versatile methods that are appropriate for
dealing with the theory of differential equations such as
functional-theoretic, algebro-geometric and differential-
topologic methods among many others. Hence it is of no
surprise in control theory that there are many different
branches of mathematics at our disposal. In what follows,
a brief review is given on the development of applying Lie
algebras to the study of control theory, especially those
relevant to the bilinear systems. No complete survey is
attempted in order not to be lead too far afield. A basic
introduction of this issue may be found in the survey
papers of Bruni et al. [4] and Mohler [21]; other more
mathematically involved results may be consulted from the
conference proceedings [22, 23]. Terminology and basic
facts to be used in the rest of this thesis are summarized
in Appendix A.

Hermann [24] first studied the accessibility1 problem

1Accessibility is referred to as the property that,
for any given state, the set of points attainable from that
state has a nonempty interior.
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in control theory via differential-geometric approach.
His result is based upon Chow's theorem which is a general-
ization of a famous theorem of Caratheodory in thermody-
namics giving a geometric condition that a Pfaffian form
be completely integrable. Kucera [25] was the first to
analyze a particular class of control constrained bilinear
systems with the theory of Lie groups. He shows that for
his problem, the attainable states form a maximal integral
manifold and they can be reached with piecewise constant
control of values -1, O, 1 for an admissible set defined
m
such that k£1|uk| = 1. Since 1970, Lie algebra in contrast
to the linear algebra was extensively adopted as a mathe-
matical tool to tackle theoretical problems of bilinear
and linear-analytic systems. Sigmificant results are often
accredited to Brockett [26], Elliott [27], Sussmann [28],
Krener [29, 30] among many others. Many of these results
are applicable for those control systems defined on group
manifolds which are out of the scope of this study. Hence,
we will not discuss details here but simply mention that:
a) the Lie algebraic approach was successful in

investigating the complete controllability and

observability, as well as structural decomposition

problems, but are less convenient in dealing with

“the optimal control and system identification

problems;
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b) the criteria derived via Lie algebras for checking
controllability and observability require calcu-
lating the dimension and classifying the Lie
algebra associated with the underlying control
systems. This is by no means a simple task,
particularly difficult for high dimensional
systems.
The research of control theory utilizing the concept
of Lie algebra as well as other related branches of mathe-
matics is still active, and it may very well have an

impetus on control theory and applications in the future.

2.1.2 New Directions of This Study

By examining the specific structure of bilinear
systems, the tools of linear algebra are seen no longer
convenient in many respects. For instance, if we are
aiming at decomposing bilinear systems for finding canon-
ical forms, then a set of matrices has to be simultaneously
dealt with in contrast to that of linear time-invariant
systems where only a single matrix should be considered.

It will be recognized that the study of bilinear systems

is intimately connected with a set of matrices which are
closed under vector space and Lie bracket operation

(i.e. Lie algebra). Two main advantages that Lie algebraic
methods provide in control theory are realized as follows.

Firstly, it carries as far as possible the well-known



24
results in linear time-invariant systems over to
bilinear systems such as 'rank test' for controllability
analysis in the form of Lie algebraic criterion. Secondly,
it provides the global results up to linear-analytic con-
trol systems while classical methods give only the local
results. Here the notions of 'global' and 'local' are
vaguely referred in the context of localization or approx-
imation problems of non-linear systems.

In the next section, some basic topics in control
theory in which Lie algebra plays a significant role are
posed. Solutions to these problems as well as new results
originate from them form the theoretical contribution of
this research. Then in Section 2.3, a brief review on Lie
algebra is presented. The well-known Baker-Campbell-
Hausdorff formula as well as the notion of adjoint operator
are introduced. Armed with these algebraic concepts, the
Lie algebra associated with bilinear systems is given and
some relevant theorems presented in Section 2.4. Section
2.5 is devoted to the global solution of matrix bilinear
equations with the aid of Wei-Norman's [31] and Wichmann's
decomposition theorems [32]. Finally, the techniques
developed in previous sections are envisaged with practical
control problems. Analysis of closed-form expression of
Volterra kernels for time-variant bilinear systems is
established via a global solution approach. Concluding

with Section 2.6 is alternative design of a single-input
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bilinear system to illustrate Kucera's mathematical result
from an adaptive control-theoretic viewpoint.

In short, the purpose of Chapter II is to prepare a
technical background for the main results in the next
chapter and control analysis of immunological models

following it.

2.2 Examples and Questions

2.2.1 Controllability

To begin with, constant bilinear systems of the follow-

ing form are considered,

m

x(t) = (A+ § w, B, )x(t) + Cu(t) (2.1)
k=1

y(t) = Dx(t) (2.2)

where §(t)€Rn, E(t)ERm, X(t)eRr, the matrices A, D, C and

B k=1,2,...,m are of appropriate dimensions; the controls

K’
u; (t) are piecewise continuous and ]ui(t)lil.

It is of practical importance to know the sufficient
and/or necessary conditions under which the transfer of
one state into another state is possible within a finite
time interval. The sufficient conditions are derived by
Mohler and Rink [3, 11] by the equilibrium point approach.
While the original result is applicable for general BLS,

here only a specific but simple result is stated. Formally,
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if C 1is a nonzero matrix, if the BLS is in phase-
variable canonical form, and if all eigenvalues of the

m

system matrix A+ z ukBk can be shifted across the imagin-
k=1

ary axis of the complex plane without passing through zero,
as u ranges continuously over a subset of the input

space QM , then system (2.1) is completely controllable.

It is seen that this criterion also suggests some relation-
ship between BLS stability and controllability. This will

be furthermore elaborated in Section 3.1.3.

A question of interest that may be asked is what are

the conditions which {A, B "Bm’ C} should satisfy

10
in order that the system (2.1) to be completely controll-
able. Of course, it is more convenient that the answer
should not require the computation of eigenvalues. The
answer to this question was partially resolved for

special BLS in the literature, e.g. the following result

is due to Kucera [25].

Lemma 2.1

Consider the homogeneous BLS with scalar input

x(t) = Ax(t) + Bu(t)x(t) (2.3)
If the system (2.3) is controllable, then the Lie algebra
Ze associated with (2.3) is transitive, that 1is,

rank (Pl§, P2§,...,P2§)=n for all §€Rn—{0} (2.4)

where {Pl, P2,...,P2}is a basis of )f?.
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Condition (2.4) is also a sufficient condition for

(2.3) to have accessibility property.

2.2.2 Observer Design

It frequently occurs that not all the state variables
of a control system are directly measurable. 1In order to
estimate the states based on the measurable outputs,
observer design may be used. For constant linear systems,
the observer theory is a well-developed topic [33}].
However, observer design for bilinear systems recently
attracts attention and few methods have been proposed
[12, 34]. 1If the input of a BLS is a priori known, then
its states can be estimated in the same way as linear time-

variant systems. Thus a state observer for a single-input

single-output (SISO) bilinear system

x(t) = (A+u(t)B)x(t) + bu(t),  x(t)eR" (2.5)

et x(t)

y(t)

can be constructed as follows [18]:

x(t) = K (£)x(t) + ky(t)y(t) + bu(t) (2.6)
where

Ky (t) = (A+u(t)B) -ky(t)c’

ky(t) = 317 (t)e
and L(t) = -L(t)(A+u(t)B) - (A+u(t)B)TL(t) - R(t) + ¢ ET

R(t) is an arbitrary real, symmetric, positive-definite nxn

matrix.
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Implementing this observer requires finding L(t)

explicitly which cannot be done in general. Thus it is
of interest to ask:

(1) What is the 'maximal' class of SISO bilinear
systems for which a state observer can be
constructed as in (2.6)7?

(2) If the input u(t) is inaccessible, then how to
estimate the unmeasurable states using only
output data?

These questions will be answered in Section 2.5 and

Chapter III, respectively.

2.2.3 Volterra Series

Under some regularity conditions, the output of a
nonlinear system may be directly expressed in terms of
input by a functional series [35]. This approach is parti-
cularly appropriate for many aspects in the study of
bilinear systems. Bruni et al. [36] show that the input-
output relationship of system (2.1) and (2.2) can be

expressed as a Volterra series which consists of a uniformly

convergent sequence {§i(t), i=1,2,3,... },
i.e. 1lim x.(t) = x(t), where x.(t) satisfies
i+ 1 - —1

Xo T Ay * Cu, x,(0)=x,

(2.7)

W
1l
=
W
+
~1
[ss}
o
o
o
[
H.
1
—
@]
o
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with x;(0)=x,, and i=1,2,3,...

Thus

oo

I+ L jii[Tl jTi—l i
i=1 1=k ,k k., 0 70 0 }I

m
y(t)=Dett]

1Koy Ky 1

—ATJ' A‘[j ~
e Bkje ukj(rj)d l]go

o m t T T, .
et 7T j‘ j l°°/ ' ‘Fr
<1 15k, k.. kL, /0 /0 o
—-AT 5 . — .
(e A JBk eATJ)e ATj+1

TT Y (T0a Logp (2.8)

C=leq, cp0 770 g <

c,, ", c 1, gj's are column
vectors.

In general, the Volterra series (2.8) for a bilinear
system is an infinite series which characterizes the output
depends multilinearly on the input. Truncation is usually
used to approximate the input-output relationship. Recently,
Brockett [37] developed a necessary Lie algebraic condition
for a bilinear system to have only finite Volterra kernels.
Now it is significant to ask:

Under what conditions is 'truncation' a reasonable

procedure? What does 'truncation' mean with respect to
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the structure of bilinear systems? These problems will be

further studied in Chapter III.

2.3 Brief Review of Lie Algebra

The mathematical background and some preliminary facts
in Lie algebra required throughout the text are summarized
here. More profound Lie algebraic theorems can be found
in Appendix A with details in Reference 49. Throughout
this thesis, only finite dimensional matrix Lie algebras
over a real field are considered. Recall that a set of

matricest?= {Al, A ,...,Am} form a matrix Lie algebra

2

if its elements are closed under the nonassociative Lie

bracket or commutator operator, [X, Y]= XY - ¥YX, X, Yefg.

A subset off?,58= {Bl, B.,...,B

o }, %<m, is called a basis

£

of i? if every element in f? can be expressed as a linear

combination of Bi's, i=1,2,...%2, where £ 1is referred
as the dimension of)é?. Moreover,
_ k
Ay, 451 = }zaij AL A, A, Ay e K& (2.9)

where the constants a?j which uniquely characterize.ﬁ?

are called the structure constants of the algebra2é>.

A most important operator in Lie algebra is now introduced,

that is, the adjoint operator. The adjoint operator,

denoted by 'ad', is a linear mapping from the Lie algebra

into itself, and can be defined inductively as
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ad: 22 - f?

o, _ 1.
ad,B = B, ad,B = [4, B]
k., _ k-1
ad,B = [A, ad, 'B], A, Bcf (2.10)

A significant property of the adjoint operator is that
it has a matrix representation consisting of entries speci-
fied by structure constants of the corresponding Lie
algebra.

One version of the well-known Baker—Campbéll—Hausdorff

formula [38] (abbreviated hereafter BCH formula) is stated

below,
eABe—A = B + [A, B] + 5%[A, [A, B}] + -
= adXB + adiB + 5% adiB + ee
- E adiB
k=0 k!
= eadAB (2.11)

2.4 Bilinear Systems and Lie Algebras

Important results on bilinear systems using Lie algebra
as a tool are depicted here without proof, however adequate
references are supplied.

To begin with, equivalent state space representations
are examined. A constant bilinear system as represented

in (2.1) can be reformulated into the homogeneous form by
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introducing an additional state variable, Xn+1=1’ such that

L r\J m

y(t) = Ay(t) + ¥ B.u,(t)y(t) (2.12)

i=p t 1
T

y(0) = (%5, 1)

where X = (A 0 %. = Bi 0
o 0], + 0 0

\
As a consequence, only multiplicative input to the
bilinear systems is indicated with additive input presumably

suppressed. The solution to (2.1) with C=0 is often

conveniently expressed as §(t)=X(t)§O [39 ], where X(t)

is an nxn matrix-valued function of t which is the corres-

ponding matrix bilinear system

m
AX(t) + ) u,(t)B.X(t) (2.13)
i=1 % t

X(t)

X(0)

%o

If XO is assumed to be nonsingular, then X(t)

evolves in GL(n,R), the general linear group of non-
singular nxn real matrices.

It is well-documented that the reachable set for (2.1)
is related to the structure of the Lie algebras:

Z? = {4, Bl, Bz""’Bm}LA
k
Z?O {adA

EZ?=u{B1, By,...,B )i,

Bi’ k=0,1,2,...; 1=1,2,...,m}LA
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where {Ml,...,Mihﬂxdenotes the smallest Lie algebra

generated by Mi’ i=1,2,...,2. Obviously, the following

inclusion relationship holds

Bcl = F

‘More concisely, it is shown that [39]

Theorem 2.1

Associated with the matrix bilinear system (2.13)

is the triple Lie algebra {fEXQOSBL X(t) is reachable from

. . At
XO at time t if X(t)ee {epr?O}GXO (2.14)

Moreover, if Zg is an ideal1 inwg?o, then the reachable

. . At
set of X, at time t is e {exngo}GXO, where {expE?O}G

denotes the Lie group consisting of elements in the form
exp M, i.e.

{epr?O}G A {exp M: MeXgO}G

Theorem 2.2

Suppose that {fzz?oﬁg} is the triple Lie algebra
associated with the system (2.1), andfgg is an ideal in
ﬁ?, then the set of vectors reachable from §O at time t,

Q(t), is

Rty = 2t iexp 2 Y Xo (2.15)

1A subalgebra S is an ideal of,f?, if [s,fﬁes, or,
in other words, if XeS, Ye ¥ implies [X, Y] eS.
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Applying this result to linear systems, i.e. (2.1)

with B1=B2=...=Bm=0, it is readily deduced that
qzz(t)=eAt§O+Range (C, AC,...,An_1C) which is the usual
rank test [40]; i.e. a linear system, é(t)=A§(t)+CE, is

completely controllable if and only if Rank

(C, AC,... A" tcy=n.

2.5 Global Solution of Bilinear Systems

Since the bilinear system with input u(t) specified
a priori is a linear though generally time-variant system,
certain techniques for linear time-variant systems may be
useful. In what follows, rudimentary Lie algebraic theorems
which are useful in linear time-variant systems are intro-
duced.

Keeping in mind the resemblance between bilinear and
linear time-variant systems, it is convenient to write a

homogeneous BLS in the form

m
(A+ § u,(t)B,)x(t) (2.16)
i=1 * *

x(t)

x(0) X

=0
or equivalently for given ui(t)
x(t) = A(t)x(t) (2.17)

m
where A(t) = A+ ) u.(t)B,
i=1 * *
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Let ¢(t,0) denote the state transition matrix for

(2.17), then x(t)=0(t, 0)5O and

é(t, 0) = A(t)e(t,0), ¢(0,0)=I (2.18)

It is significant to observe that (2.18) is nothing
but the matrix bilinear system (2.13) if ui(t) is speci-
fied (i=1,2,...,m).

Now a well-known assumption is that unless A(t)

possesses some specific properties, an explicit solution

to (2.18), in general, cannot be found with known techni-

ques. A specific exception is that A(t) commutes with
its integral, i.e. [A(t), }; A(t)dt]=0 for all t,
yielding
t
o(t,0) = exp( jOA(r)dT) (2.19)

More recently, Freedman and Lawson [41] derive a
sufficient condition for the above commutativity to hold,
that is, A(t) 1is a diagonizable matrix and has a set of
constant eigen-vectors for all t.

A convenient mathematical tool to find the maximal
class of A(t) which gives explicit solution in the form
of product of exponentials (global solution) seems to be
Lie algebra. Though this is well-developed in algebraic
theory of differential equations and its application to
physical problems, a thorough treatment in the context
of control theory is yet not completely established.

In the rest of this section, two fundamental Lie
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algebraic theorems on the global solution to the matrix

bilinear equation with specified controls are introduced,

namely, the Wei-Norman theorem [31] and the Wichmann's

theorem [32].

For convenience, equation (2.18) is rewritten as

X(t) = A(t)X(t), X(0) = I, t>0 (2.20)

where

A(t)

m
12 ui(t)Ai'

0

Then, the famous theorem of Frobenius [42] implies that

for small |t| and suitable g;(t)'s,

A, g.(t)
T (2.21)

m
i=0

X(t)

This local solution may be furthermore elaborated with

the aid of the implicit function theorem [43] to develop

global solutions by imposing conditions on the structure

of the set of matrices {AO, Al,...,Am}.

Theorem 2.3 (Wei-Norman [31])

If {Ai, i=0,1,2,...,m} generate a solvable Lie algebra

then X(t) admits a global solution
g 81 (M,

2

i=1
where {Mi, i=1,2,...,%} denotes a basis for the -

dimensional f? and gi(t)'s which are functions of ui(t)

can be found by solving a set of differential equations.
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In particular, if {Ai, i=0,1,2,...,m} itself is a

pasis for (i.e. 2=m+1), then
g. (t)A,
X(t) = —ﬁ— e T 1 (2.23)
i=0

A derivation of differential equations which gi(t)‘s

must satisfy is given in order. Rigorous proof can be found

in the original paper of Wei and Norman [ 31].

By equation (2.23),

. . g.(t)A. - g (t)A g.(t)A,
X(t)=g0(t)AO _H_ e 1 1+gl(t)e e} oAl T%_e i i+.
i=0 i=1
. g (t)A g (t)A g (t)A
+gm(t)e o) O....e m-1 m—-lAme m m
=éo(t)AOX(t)+é1(t)ego(t)AoAle“go(t)AoX(t)+....
. g (t)A g J(t)A -g J(t)A
+gm(t)e © O ... ™ 1 m lAme m-1 m-1
-g (t)A
e © °X(t) i
g (t)ad
=(B (t)A_+E (t)e © AoAl+....
: m o Cret 2.24
+g (t) T € AJ)X(t) (2.24)
1=1

Comparing (2.24) and (2.21) yields

g, (t) = u (t) =1
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. g4(t)A -g (t)A
gl(t)e 0 0Ale 0 0 _ ul(t)Al
‘ g l(t)adA
gl(t)—ﬁr e -1, - u, ()4, (2.25)
j=1

which is a set of nonlinear differential equations that
gi(t) must satisfy and can be solved in terms of the input

u(t) and Ai’ i=0,1,2,...,m.

A particular class of solvable Lie algebra is the

abelian (commutative) Lie algebra. If {Ai, i=0,1,...,m}

generates an abelian Lie algebra, i.e. AiAj=Ain-Vi,

j=0,1,...,m, then (2.25) becomes éi(t)=ui(t) i=0,1,...,m.
Thus,
t
X(t) = o eAigi(t)= m eAi jO ui(T)dT
i=0 i=0
m t t o
= exp ) j u.(t)A.dt = exp( j Y ou.(t)A,dt)
i=o0 ‘0 * t i=0 * .

which is of course the same as (2.19).

While abelian bilinear systems are a very special
class of bilinear systems, there are some significant
results in the literature. Sussmann shows that the reach-

able set of abelian BLS with bang-bang controls is closed
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[44]. Wei and Pearson studied the minimum energy control
of abelian BLS and its applications in a two-dimensional
missile intercept problem [45].

Moreover, abelian bilinear systems are particularly
appealing in modeling biocontrol processes for which it is
convenient that X(t) has only nonnegative entries if the
off-diagonal entries of A(t) and the initial condition
are nonnegative [46]. From the control-theoretic view-

point, this implies that the reachable set is confined to

the first orthant under any positive perturbation, a
property that many biocontrol models should possess [47].
In applications, not all and possibly very few Lie
algebras generated by A(t) are solvable. A most import-
ant class of Lie algebras which are not solvable directly
but can be algebraically solved indirectly as shown below

is the semisimple Lie algebra [48]. Recall that the

Levy-Malcev theorem [49] which says that any semisimple

Lie algebra S <can be factored as a direct sum of simple

ideals, i.e. S = 8§, OS2 CL..C>Sk, where the elements of
distinct Sj must commute. Based on this algebraic decom-

position, one can then find the solution to (2.20) in terms
of simpler structures of the Lie algebra generated by A(t).

This may be illustrated by

Theorem 2.4 (Wichmann [32] )

Consider the matrix differential equation



40
X(t) = A(t)X(t), X(0) = I

m
with A(t) = izoui(t)Ai

Decomposing the system matrix A(t) into

A(t)

Ar(t) + AS(t)

k
Ar(t) + JZlAS.(t), AS SSJ, S=Sl(D 32 ® ... ®S

J J k

where 'Ar(t) and AS(t) generate the radical Rl and the

semisimple subalgebra S of the Lie algebra

A . .
f?— {Ai: 1=O,l,...,m}LA. respectively. Then

X(t) = &r(t)xs(t)

where X (t) = k ij(t)
j=1
and X (t) = A (t)X_ (t), X_ (0) =1
Sj Sj Sj Sj
2 B -1 ~ B
X.(t) = X (t)Ar(t)XS(t)] X.(t), X.(0) = I (2.26)

It merits attention that once XS(t) is obtained,
then (2.26) can be solved by quadrature, since Ar(t)

generates the radical of,E?.
The following example shows a semisimple Lie algebra

associated with a bilinear system. Consider a BLS

lThe radical R of a Lie algebra ¥ is the maximal
solvable ideal (containing all solvable ideals) in ¥/ .
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X =X2

bel
Il

9 -—xl+u(t)xl

i.e. é = Ax + u(t)Bx with

A = and B = 0
-1 ol, 1 0
N
Then
1 0 0 -2
[A, B] = (A, [A, B]] =
0 -1 , -2 0

It can be checked that {B, [A,B], [A,[A,B]]l} is a basis of

the Lie algebra X? = {4, B}LA which is indeed a 3-dimensional

special linear Lie algebra with zero traces, i.e. s(2,R).
After some calculation, it is seen that X? has no abelian
ideals except O and itself. Thus X? , by definition, is
a semisimple Lie algebra. This example will be further

discussed in Section 3.1.3.

2.6 Applications in Control Systems

2.6.1 Volterra Series of Time-Variant Bilinear Systems

The intent of this section is to apply previous theor-

ems to develop preliminary results concerning the SISO

bilinear systems.

x(t) = A(t)x(t) + u(t)B(t)x(t), x(0) = x (2.27)

x(t)eR™, A(t),B(t)er"*"
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The coefficient matrices in (2.27) are now allowed to
be time-dependent, unless otherwise specified. As stated
in Section 2.2.3, the internal representation of a constant
bilinear system can be characterized by a sequence of
Volterra kernels. Here the Volterra series expansion is
extended into a class of time-variant bilinear systems,
while instead of using a set of recursive linear differ-
ential equations, the Peano-Baker series approach is under-

taken [37].

Making a change of variable, z(t)=%(t,0)x(t) reduces

(2.27) into z(t) = u(t)é(t)g(t) (2.28)
where é(t) = ¢(0,t)B(t)®(t,0), and
d(t,0) = A(t)e(t,0), ©(0,0) = I

Hence, by Peano-Baker series, (2.28) yields

t t o A~ ~
Z(t)=[1+ jou(ol)B(ol)dol+J jol u(0,)B(0,)u(0,)B{0,)
0
do,do+. ...+ ] 2(0) (2.29)

Therefore, the Volterra series for (2.27) is
t
§(t)=©(0,t)[I+J0u(01)©(0,Ol)B(ol)Q(Ol,O) dog+..... 1 X,
In general, closed form expression for Volterra kernels
is not available, due to the difficulty that A(t) 1is a
time-variant matrix. However, by Wei-Norman theorem,

Volterra kernels can be explicitly calculated if A(t)

generates a solvable Lie algebra. There are two special
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classes of bilinear systems for which the corresponding
Volterra series can be explicitly found. These are the
constant BLS (A(t)=A, B(t)=B) and quasi time-variant
BLS (A(t)=A). The Volterra series for the constant BLS
has been developed in Section 2.2.3, here the gquasi time-
variant case is treated. Deducing from (2.30) leads to

t ~-Ac Ao

x(t)=e"*[1+] u(ope  'B(ope Tdogt ... Ix

(2.31)
0 1

0

It is remarkable that all Volterra kernels of a bilin-

ear system are related to the expression eAtB(t)e_At or

its integrals. By introducing the notion of adjoint
operator, (2.31) can be put into a more concise form.

t -o,ad
x(t)=e®t 1+ [ e 1 PB(ou(oy)do,

0

t o -g,ad ~-g,ad
g Jole Y %Boppe ? #Bloyuloyuloy)
0

d02d01+...]§
N S W I |
=eAt[I+Z ) J...J ll
i=1 ‘0 ‘0 0 =1
-o.ad
J A (2.32)
(e B(oj)u(oj)doj)] X0

In particular, the Volterra series for a constant BLS is

o]

. t %1 Oi-1 .
x(t):eAt[I+ z J J ")f 1
~j=1 70 /0 0 !

j=1

—o-adA
(e 9 ®Bu(o.)do.)] x (2.33)
J J -0
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By examining the above equations, it is now apparent
that the structure of bilinear systems is closely related

to the Lie algebra {ad,, B}

A’ LA’ i.e. smallest Lie algebra

containing B and closed under the adjoint operator adA.
More details on this relationship will be presented in

Section 3.1.3.

2.6.2 Adaptive Design of Constant BLS with Single Input

In practice, it is often important to reformulate the
mathematical models within equivalence in favor of more
tractable analysis. Derivation of various canonical forms
is a concrete example in linear system theory. Meanwhile,
model reformulation also provides alternative design tech-
nigues for maneuvering adaptive systems subject to struc-
tural variations. Bilinear models allow more flexibility
from a design point of view than do linear models. There-
fore, the above equivalence concept merits further investi-
gation. The rest of this section is devoted to a pre-
liminary development concerning single input bilinear
systems.

The paper of Kucera cited in Section 2.2.1 deals with
certain aspects of controllability of a bilinear system
of the form:

x(t) = [A(1-u)+Bul] x(t), |u(t)|<1 (2.34)

In éontrast to the representation of single-input

BLS as to be given below, (2.34) possesses distinctive
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properties. For example, the matrices A and B can be
viewed as linear operators mapping from the convex input
space into itself. However, as far as controllability is
concerned, system (2.34) is equivalent to

X(t)=Ax(t)+Nx(t)u (2.35)
where N 1is decomposed as B-A.

As a consequence of the commutator [A,N] and [ A,B]

are identical, the corresponding adjoint operators ad,B

)

=4

and adiN,V]&, are also identical. Keeping in mind the
reachable set for a BLS is determined by the associated
Lie algebra and hence the adjoint operator (see Theorem 2.1),
the controllability equivalence between (2.34) and (2.35)
is at hand established. State diagrams for these two
different representations are given in Figure 2.1 to
illustrate the structural designs.

It is significant to observe that the structural
variation of bilinear systems can be accomplished by

augmenting either the subsystem N or the subsystem B.
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u(t)
x(t)

l u(t)

)

(b)

Figure 2.1 (a) Bilinear state diagram for (2.34)
(b) Bilinear state diagram for (2.35)
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2.6.3 A Biocontrol Example

Analysis of a bilinear control system with single
input is presented here to illustrate the foregoing tech-—
nigques. This example is in fact a simplified model of
immune response. Only theoretical aspects are considered
here, and the biological interpretation on the model itself
and parameters will be deferred until Chapter IV and
references therein.

Consider the following bilinear model as also shown

in Figure 2.2,

kl(t)=kx2(t)+rkx3(t) (2.36a)
ko (£)=bU(E) %, (£)=A(1-u( ) )%y (£)=h Xy () (2.36b)
X(£)=d(1-u(t))xy(t) = g%g(t) (2.36¢)

with O<u(t)<1

and initial condition x;(0)=x5(0)=0, x,(0)=x,,

In standard form, (2.36) can be rewritten as

x(t)=Ax(t)+u(t)Bx(t) (2.37)
N
with 0 k rk 0 0 0
A=10 —d—pz 0 B =10 b+d 0
0 d Vg , 0 -d 0
/

and x(t)=(x,(t), x,(t), xg4(t))", x(0)=(0, x5y, 07

After some manipulation, it can be verified that A

and B generate a 4-dimensional solvable Lie algebraﬁ?.
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More precisely,

£ - (A, B} 14 has a basis {4, B, C;, C,}
£ = (ad®B, k= i
0 {adAB, k 0,1,2,...}LA has a basis {B, Cl’ C2}

EZB= {B}LA has a basis {B}

where
0 1 0 0 0 0
C1 =10 0 0 C2 = |0 0 0
0 0 o, 0 1 0
AN

Obviously fzgis not an ideal,E?O (i.e. [B, C

1]
—(b+d)Cltﬂg), and hence the bilinear model (2.37) does not

satisfy the hypothesis of Theorem 2.2. In fact, the reach-

able set which will be calculated in Section 5.2.2 is
confined to the first quadrant in R3 so that the system
(2.37) is not completely controllable. Moreover, thanks
to the solvability and Wei-Norman theorem, system (2.37)
admits a global solution as follows:

-RBt+av(t)

xz(t)=x20e (2.38a)
t
—Ut
x,(t)=dx, e 3 J’ eBT=av(T) 1 u(1))dr (2.38b)
0
t
Xl(t)=kX20[J, e BTHoOv(T) g &
0
t t

rd }’ e W10 J' e BT-aV(T) (1 _y(1))drdo 1(2.38¢)
0 0
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t

where o & b+d, B8 & d+u2, v(t) :}’ u(t)dr.
0

A significant observation is made here. The existence
of global solution attributed to the fact that Jé? is
solvable, is a consequence of the specific structure of
bilinear model, that is, the model is 'partially decoupled'.
This may be seen readily from the fact that (2.36b) is
independent of the equations (2.36a) and (2.36c). The
Figure 2.2 also shows that this multivariate model is
composed of a scalar BLS followed by two scalar linear
systems in series. The problem of decoupling a BLS
into simpler subsystems is thus conceivably resolved by
examining the structural properties of the Lie algebra
associated with the BLS as will be discussed in the next

chapter.



u(t)

X, (t)

b+d

XS(t) —
\

j 9(F)
b+U2
Figure 2.2.

Structural decoupling of a bilinear model.

%, (1)

06
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ITI. ANALYSIS OF BILINEAR SYSTEMS

3.1 BLS Analysis via Volterra Series

3.1.1 Convergence and Boundedness

As discussed in the preceding chapters, Volterra
series 1is a convenient tool in studying some special classes
of bilinear systems. This section is devoted to the exam-
ination of several properties of BLS via Volterra series
expansion. As far as the convergence and boundedness of
Volterra series on a finite time interval are concerned,
basic results are at hand in literature [50, 51]. These
will be summarized here as Lemmas (to be given below)
While these lemmas are significant, they fail to be useful
if the time domain of interest is allowed to be infinite.
A particularly important situation is relevant to the
asymptotic stability of bilinear systems —— a property
that will be proved useful in analyzing immune models of
the next chapter.

For simplicity, some notations are defined in order.
A constant BLS is described by the following state and
output equations:

) m

§(t)=(A+kzlukBk)§(t)+CE(t), §(0)=§O (3.1)

y(t)=Dx(t) (3.2)

where x(t) eRn, E(t)eRm, X(t)eRr, the matrices A, C, D
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and Bk’ k=1,2,...,m are of appropriate dimensions, u(t)

is bounded and measurable on [0, «). The following norms

n n
are used; ||x(t)]| = ) |x,(t)] and || All = max J|a_ |
i=1 j i=1 %Y
with A=[a..]. The Volterra series representation of the

1]
above system has been developed as (2.9) in Section 2.2. 3.

Lemma 3.1 [50]

The Volterra series for (3.1) and (3.2) is uniformly
convergent on [0, T] if the input u(t) is in C[O0,T],
where C[0, T] denotes the space of continuous functions

on [0, T], T<e.

Lemma 3.2 [51]

If the conditions in Lemma 3.1 are met and max HBleiMl,

max || ukllil, max || QkaiMz: then for all tel[0, TI]
k k

1 +miM, )t
1y O DI (I 2ol + = may)e(WHmiMy)
1
- || p|| 5~ mem, (3.3)
where w = || Al

It is seen from (3.3) that the upper bound for the

output y(t) becomes very conservative if t approaches a

very large value, i.e. T +», To establish an upper
bound for y(t) which remains valid as T-——>=, more
restrictive conditions on the coefficient matrices and input

are desirable.
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Theorem 3.1

Given any finite dimensional BLS as (3.1) and (3.2).
Assume that for t>0

-s,t
|Lisle 2 , S{,85>0

(1) || At

v2t

(2) ||E(t)H§ﬁ? , vl,v2>0
(3) || Cll<M,, max | B |[< My

Then, for each initial condition, there exists a positive

constant M such that for the solution to (3.1) it holds:
-t mln(sz,vz)

| y(t)||<ne (3.4)
where p 1is an appropriate positive constant.
Proof —— The proof is similar to that given in Reference

52 1in which the counterpart of this theorem for infinite
dimensional BLS is provided. Consider the sequence

{§i(t)} of solutions of the equations:

x,(t)= Ax,(t) + Cu(t), x,(0) = x (3.5)

=0

m
x;(t) = Ax. (t) + klekuk(t)_zgi_l(t), x,;(0)=0,1>1 (3.6)

Without loss of generality, assuming 52<\)2 gives

t
| x,() ]| = 1e*tx(0) +[ e*Tcu(t-1)dr||
0

t -S,T VT
2 2

-s,t }
+ Cll v,s e e dt
| ”110

2

I A

s11l x(0)]| e

-S.t Sl\)le (3.7
e 2 (uyfs Il x,(0) ] + ) )

I A

M1
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Using (3.6),

| 2, (0[] = | j z Bl (=05 (6= dr |
-S,5T V,T -S,(t-1)
< sllivlul j— e 2 e 2 e 2 dr
0]
—szt t Vot
< Slli 1My © J— e dt
0]
-s,t -V, t s, mM_v
2 2 177171
Sughge T (e T, (uT R (3.8)
Similarly,
-s,t -Vt . .
2 27,1i-1 i-1
IIX (t) || < TI_ITT Hie (1-e ) Ho (3.9)
Combining (3.7)~——(3.9) and the fact lim 2 %, (t) = x(t)
J—+oo i= l
results in
—vzt
o —szt uz(l—e )
IxCeoll < 1 Il x(e)lf <uje “ e
i=1
U, —-s,t
Mo 2772
<He Te
Wy —S,t -s,t
2
or || y(t)|| <|I DI ne “e 2 -pe 2 (3.10)
u
where ué | DIl wnqe 2 Q.E.D.

By examining the assumption (1) in Theorem 3.1 and re-
calling that this assumption holds if A 1is a stable matrix

(meaning that the eigenvalues of A have negative real
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parts [53]), it follows

Corollary 3.1

A constant BLS in R" with exponentially bounded input

and stable matrix A is BIBO stable.

If the assumption (2) in Theorem 3.1 is relaxed to

bel|l u(t)|| < vy, i.e. uniformly bounded rather than exponen-
tially bounded and the system is initially at rest, i.e.
x(0)=0, then in line with the proof given above, it immed-

iately yields:

Corollary 3.2

A constant BLS in Rn with stable matrix A 1is bounded-
input-bounded-output (BIBO) stable, if slli/sz<l/\)l with

output bounded by
-s,t

|| D|| v s,(1-e 2 )
Iyl = M, L (3.11)
1 17171
(=g

It is easily seen now that the Volterra series provides
a convenient tool for examining the stability behavior of
a constant BLS via the coefficient matrices as well as
input classes. An example is given below (which is in
fact a subsystem of the immune model to be derived in

Chapter 1IV) to illustrate these stability criteria.

Example 3.1

Consider a bilinear system with state equations,
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X
: 1
Xy = aul(t)xl— T + B, xl(O) = TlB
. X2 (3.12)
Xg = 2uu2(t)xl— —?;—— , x2(0) =0

and with output equation y(t) = xz(t), where —liul(t)il,
Qﬁuz(t)il’ and o, B, T and T, are suitable positive
constants. By defining §1 = Xl—TlB, Xq % Xg, (3.12) is

recast into

- ~ 2 A~ A~
X = Ax + 7§ B, u, (t)x + Cu(t), x(0)=0 (3.13)
k=1
with
/
- -%—— 0 a 0 20 0
1 _ _
A = Bl = Bz—
N
’['2 0 0 ) 0 0 y
\ )
uTlB 0
C =
0 2uT18

Using Lemma 3.2, it can be shown that for 0<t<e
(?l— + 4a)t
||x2(t)||i(4aTlT28)e 2 ~40TT,B (3.14)
If the multiplicative inputs are moreover restricted

by ui(t)=0, if t>t, or t<tl, i=1,2, then those condi-

tions in Theorem 3.1 are satisfied. And therefore after

some algebraic manipulation, it can be shown that
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”2 —szt
||x2(t)||iu1e e (3.15)
20T, RV
. 1771
with u, = ————, v, ,>>1
1 vV, —S, 1
4q 1
Hoy = — , Vv, = —— 1nv and s, = —/
2 Vo 2 fz 1 2 Ty

Figure 3.1 shows the upper bounds for xz(t) in (3.14)

and (3.15) by using data of immunological relevance which

will be explained later.

3.1.2 Finite Volterra Series

Up to now, three different methods of generating
Volterra series for a constant BLS have been presented,
namely, the Peano-Baker series, (Section 2.6.1), and
other two in terms of a set of recursive linear equations
(3.5) and (3.6) as well as (2.8), respectively. The
latter two methods seem similar, but are significantly
different with each other in view of Volterra kernel
synthesis with respect to the structure of bilinear
systems [54].
| Associated with a BLS, there is, in general, an
infinite number of Volterra kernels. Hence, it is natural
to pose two questions. One is for practical purposes how
many terms are sufficient to accurately represent a BLS?
The other is for what class of bilinear systems, the

corresponding Volterra series has only finite terms.
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.t
0O 15 30 45 60 75 90 105 120 135 150 165
t] (a)
log X,
A
6
5
;‘ =2 _ (3.14)
2
-
-0
-
-2
_3 (3.15)
3 o/
-5
-6
-7
-8
-9
-10 ot
0O 15 30 45 60 15 90 115 120 135 150 165
4 t

Figure 3.1. A simulation result for (3.14) and (3.15)
(a) upper bounds of ui(t), i=1,2
(b) upper bounds of Xz(t) by (3.14) and
(3.15); 0=0.0578, T1=7140, =72,

8=8.262x10"17, t,=65, t =30.

To

1 2=165, vy
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To resolve these two problems, for instance, may lead to
a better understanding of the structural aspects of
bilinear systems. The first problem involving the trunca-
tion accuracy will be studied in this section, while the
second is more intricate and will be dealt with the aid
of Lie algebras in Section 3.1.4.

To simplify the exposition, all notations follow the
last section, and it is understood that §(t)=.§ §i(t),

i=1

where §i(t)'s are defined in (3.5) and (3.6).

Lemma 3.3 51 ]

If the assumptions on Lemma 3.2 are kept the same and

the Volterra series is truncated after  r terms, then the

x

output truncation error, &(t)=D Y x;(t) is bounded by
i=r+1

a by 1
Iyl =D 7 %Ol <l DIl ([l 21l + =~ meMy)
i=r+1

r.T
(w+m2Ml)t (szl) t

= , r>1 (3.16)

e

It is acknowledged here that the above error bound
is very conservative, if t approaches a very large value.

However, for the class of BLS as specified in Theorem 3.1,

more accuracy can be established by,

Theorem 3.2

For a constant finite dimensional BLS with stable
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matrix A and exponentially bounded input, the truncation

error is bounded by

(e[| <uye o (3.17)
—vzt
where 6 = uz(l—e )
" o0 o0
Proof: || y(t)|[=[ID J x ()| <l DIl |l ] x;,,Ct)]l
i=r+1 i=r
. -Vt .
syt @ u,l(1-e 271
<lIplfue 21 ¥ —
i=r
. -Vt
(using (3.9)) v
_s.t Moll-e ) Vot
<|| D|| IRy re (S (l"e )
— 172 r!
(3.18)
The last step follows from Taylor's theorem [55]:
r-1 i ¢ r
e? = ) 9| + 2 ?
j=o 1! r!
for some ¢ between O and 9; therefore
r-1 i o i d,T 6,1
0 0 _ 0 _e'g e 06
e’ - ) 47 L 57 % v ST
i=0 i=r
which is used to arrive at (3.18). Q.E.D.

Corresponding to Corollary 3.2, which is obtained by

summing an infinite geometric series, the following can
be easily obtained by summing the series with first r

terms deleted.
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Corollary 3.3

The truncation error for a constant BLS with stable
matrix A and uniformly bounded input is
|| DI} vys (1-e ) grel
1-Q

| ¥Ce) <M,

Q- ——/—— , 1if Q<1. (3.19)
2

Based on the above analysis, if the required accuracy
on the output is assigned, then sufficiently many Volterra
kernels can be appropriately chosen to achieve the
accuracy. This can be verified from (3.16) or (3.17) or
(3.19) in which the error apporaches zero as r-». These
truncation errors are shown in Figure 3.2, where the
direction of the arrow corresponds to the error reduction

as Ir 1increases.

3.1.3 Controllability and Stability

vControllability is a basic property of systems which
is indicative of the ability to control. A most harsh
requirement of a system would be to specify that it must
be completely controllable. Formally, a system is said
to be completely controllable if it can be driven from

any finite initial state X eR"” to any prescribed finite

0
terminal state §f€Rn in finite time with an admissible
control. The precise definition has been given in Section

1.2.3.
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errors
A
(3.16)
f* - =—(3.19)
*
£(t )
(3.17)
0~ N -
t
Figure 3.2. Comparison of truncation errors
* -ln m
t = ——
\$?)
2 .22 2
_ B (v2+sz+rv2)—/(v2—sz) +r v2+2rv2+2rszv2
with m=
2v
2
TRRTES Bo(1l-m) S
*
£(t)= i'z (l—m)re 2 m 2/\)2
.ot | ID|[vysq

1-Q S, 2
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Apparently, there is some inherent relationship between
stability and controllability. Such a connection is well
exploited for constant linear systems [8]. For constant
BLS, the work was initiated by Mohler and Rink who derived

sufficient conditions for complete controllability [3].

Their criterion, while especially useful for phase-variable
canonical BLS, is to check if all eigenvalues of the
m

system matrix A+ )

u, (t)B can be shifted across the
K k 7k

1
imaginary axis of the complex plane without passing through
the origin, as u(t) ranges continuously over an admissible
subset of ﬁy . This work suggested the connection between
controllability and stability and has recently attracted
much attention. Some interesting results with applications
in nonconservative elastic systems are now available due

to Jurdjevic and Quinn [56], and Slemrod [57].

The above remarks are made not only because the con-
nection stays a fruitful research arena, but more import-
antly, the conceptually simple analysis developed in the
preceding sections provides insight and new link as far as
the controllability and stability of BLS are concerned.
This will be explained in more detail in the next section.

A well-known criterion concerning the uncontrollability

of a constant linear system is
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Theorem 3.3 [11]

A constant linear system with uniformly bounded input

u(t),

x(t) = Ax(t) + Cu(t) (3.20)
is not completely controllable if the eigenvalues of A
have only negative real parts, i.e. A 1is a stable
matrix.

By recalling the definition of complete controllability
as well as the results developed so far on the bounded-
ness property of BLS with constrained inputs, the above
theorem can be easily extended. All parameters are defined

the same as in the previous section.

Theorem 3.4

A constant BLS with uniformly bounded input u(t)

m

x(t) = Ax(t) + ) u (t)B x(t) + Cu(t) (3.21)
k=1

is not completely controllable if A is a stable matrix

and Slli/SZ <1/v1,

It is easily understood that just the same as the
stability, the controllability depends crucially on the

input classes. As a consequence of Theorem 3.1, it follows

that

Theorem 3.5

A constant BLS with exponentially bounded input u(t),
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viz, (3.21) is not completely controllable if A 1is a
stable matrix.
It is of interest to note that the condition on A in

Theorem 3.3 cannot be relaxed because it is readily seen,

for example, that the second-order linear system with
imaginary eigenvalues (e.g. linear harmonic oscillator)

is completely controllable with bounded control if a suff-
icently large number of switchings are permitted with a
bang-bang control [58]. Similarly, the eigenvalue con-

dition on A in Theorem 3.4 cannot be relaxed in view of

Lemma 3.2 which immediately implies that if A is not a
stable matrix (A has purely imaginary eigenvalues is a
special case of this), then the reachable set of x(0) may
be unconstrained. In other words, such a BLS may be
completely controllable as expected.

It is seen from the above that control systems, linear
or bilinear, whose system matrix A has only purely
imaginary eigenvalues merit particular attention in control
theory and applications. For the sake of completeness,
the theorem of Jurdjevic and Quinn [56] is stated with
an example to substantiate the link between BLS controll-

ability and stability via eigen modes of BLS.

Theorem 3.6 [56]

Consider the control system

x(t) = Ax(t) + u(t)Bx(t), x(t)eR’- {0} (3.22)
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where the control u(t) is a piecewise continuous function
defined on [0, ), and A is a constant matrix with
real entries such that its eigenvalues are purely imagin-

ary and distinct. If

Span {Ax, angE, adiBgé,...} = R" (3.23)

for all §9Rn— {0}, then (3.22) is completely controllable.
Concluding with this section, bilinear models proposed
by Mohler [11] are selected as examples to illustrate and

compare the use of above theorems.

Example 3.3(a)

Consider the bilinear system

X = X

1 2

(3.24)

X, —2x1--x2 + u + xlu + 2x2u

or in concise form, é(t) Ax(t) + Bu(t)x(t) + cu(t)

with

I
\.)

|
=
=
\.)
=

It is easily checked that the linear part of (3.24),
that is, é(t) = Ax(t) + cu(t), is completely controllable

if input u(t) 1is unconstrained. However, by Theorem 3.3,

this linear system is not completely controllable if the
input u(t) 1is bounded, for instance, |u(t)|<1l, because
A is a stable matrix (with eigenvalues (-1+/7 i)/2 and

(-1-V/7 i)/2). Even though the matrix A is stable and
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the input is bounded, by employing the theorem of Mohler
and Rink, the BLS (3.24) can be shown to be completely
controllable. This can be further verified by the fact

that the condition slli/s2<1/\)1 in Theorem 3.4 is viol-

ated (with m=1, M1=2, sl=1, and sz=1/2 for this example).

Example 3.3(b)

Consider the bilinear system (3.22) with

0 1 1 0
A = and B =
-1 0 , 0 1
The eigenvalues of A are *i. To show that the condition
T ,2

(3.23) is satisfied, let x=(a, b) eR™, and use the fact

that [A, B] = 0 so as adzB =0 yi>1,

0 1
Span {Ax, adAB§, adAB§,...}

=Span {Ax, B§}=R2tr§#9, since
b a 9 9
det = b” +a” # 0 unless a=b=0.
-a b

Thus by Theorem 3.6, this BLS is completely controll-

able. It is of some interest to observe here that the
eigenvalues of (A+u(t)B) are uti, which can be shifted
across the imaginary axis without passing through the
origin by ranging u(t) from negative to positive or vice
versa. The complete controllability is therefore verified

by the theorem of Mohler and Rink.
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Example 3.3(c)

The BLS example presented in Section 2.5 is again

considered,
X = Ax + u(t)Bx,  x(0) = (0, 1)7T

with

0 1 0 0

A = B =
-1 0 1 0
It is easily seen that §(t)29}#t, if u(t) is

restricted to be greater or equal to one. In this case,
the system is not completely controllable. Moreover, the

eigenvalues of A+uB are *jv/l1-u if wu(t) 1is less than

or equal to one. If x=(a, b)T, then det {Ax, Bx} = ab
which can be zero when either a or b 1is zero. Thus

both the theorem of Mohler and Rink and Theorem 3.6

are not appropriate to apply for this particular example.
Though the above situation may arise from the semi-

simplicity of the Lie algebra {a, B}LA’ this will not

be pursued here [27, 28].

3.1.4 Structural Aspects of Bilinear Systems

It is apparent that the BLS structure is determined

by the coefficient matrices, S={A, B,, i=1, 2,...,m, C}.

In this section, the second question raised in Section
3.1.2, what class of BLS has only finite terms of Volterra

series, will be answered. Here the Lie algebra provides
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a convenient tool demarcating Volterra series and con-
sequently shed light on the intrinsic link between
algebraic structure of the set S and internal structure
of a bilinear system. For convenience, a BLS which can
be fully represented by a finite Volterra series is said

to have F.V.S. property.

It has been shown in Section 3.1.2 that for a BLS
without FVS property, special care should be taken to the
problem of truncation accuracy. However, if a BLS has
FVS property, then truncation is no longer meaningful
in practice, unless the truncation is inevitable out of
numerical difficulty such as large scale BLS, etc.

Recalling that solving (3.5) and (3.6) explicitly
will give the Volterra series corresponding to the BLS
(3.1). Without loss of generality, only homogeneous BLS
with scalar input (with the output equation y(t)=gT§(t)
understood),

x(t) = Ax(t) + u(t)Bx(t),  x(0)=x/7#0 (3.25)

will be considered. The vectorial input case is not pur-
sued since it does not introduce any conceptual difficulty
but does complicate notations considerably.

The Volterra series for (3.25) is obtained as
x(t) = ) x,(t) from
i=1

X (£)=Ax,(t),  x,(0)=X, (3.26)

X, (£)=Ax; (t)+Bx; ()u(t), x,(0)=0, i=1,2,...
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By (3.26)

_ At _ At
El(t)—e §1(O)—e .4

t
§2(t)=)j eA(t_T)BeATu(T)dT'§
0

| tT A(t-1q) A(Ty-1,) Aty
Es(t)= J"j e Be Be U(Tl)u(TZ)dTldT
070

0

2" %o

Hence, x(t)= ) x.(t)
i=1t

o t T4 T,
i-1
=eAt§O+ .Z J,/{ o J’ eA(t—Tl)BeA(Tl—TZ)
1=1/6 /0 0
AT

. i i
B e X0 I U(Tj)de (3.27)
j=1
Employing the notion of adjoint operator and BCH

formula in Section 2.3, (3.27) can be concisely expressed

as
At 0 t oty Tia A ~Tiad, ~Tad,
x(t)=e” "X * Y J J, .J e Be Be--
i=1 /5 /o 0
—T.adA i
e B —I'T— U(Tj)dT.'_PEO
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or

o LTy Tilg
_ At
X(t)=e §O+ Z J J ...J
i=1 0

070
SAt ;EE (e_TJadAB)u(Tj)de°§O (3.28)
The above equation gives clue to the fact that whether
a BLS has FVS property critically depends on matrices A
and B, more precisely, on the algebraic property of the

set {ad B}.

A’
The following theorems due to Brockett [37] and Crouch

[59] relate the algebraic structure of {ad B} with

A)

the finiteness of Volterra series for BLS.

Theorem 3.7

The nilpotency of the Lie algebraﬁé7= {adA, B}LA is

necessary for the Volterra series of the system (3.25)
to be finite, where )é? denotes the smallest Lie algebra

containing B and closed over the operation adA:Z?—+[A,fﬁ.

Theorem 3.8

The nilpotency of the algebra~%2= {B, adKB}AA is a

necessary and sufficient condition for the Volterra series

of the system (3.25) to be finite, where ﬂfg denotes the
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smallest associative algebral that contains B and

adiB, k=0,1,2, "

As a consequence of these general results and the
global solution technique presented in Section 2.5,
structural aspects of BLS can be thoroughly examined,

at least, in theory. This argument is further furnished

by,

Example 3.4

Suppose that a BLS is commutative (abelian), i.e.

[A, Bl= AB-BA = 0, then by (3.28),

o Yo T1 Tiog
_ At
s 3L
i=1 74570 0

eAtgl 7%— u(t)dr - x (3.29)
j=1
It is seen that the R.H.S. of (3.29) is a finite series
if and only if B is nilpotent (that is, there exists
a positive integer n such that Bn=0). However,

owing to the assumption of [A, B]=0, the nilpotency of B

implies that A 1is transformable to upper-triangular form.

1That is, the smallest vector space of matrices,
closed under usual multiplication. An associative algebra
is nilpotent if there exists a positive integer n such
that the product of any n elements of the associative
algebra vanishes.
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Thus for abelian BLS having FVS property, they are fully

represented by

x(t)=e? x+Z jj J

Atgl 77‘ u(ry)dr, (3.30)
j=1

where q denotes the index of the nilpotent matrix B

(i.e. Bq_l#O, but BY=0). It is apparent that this parti-
cular BLS class can be structurally decoupled as a cas-
cade of linear systems. For example, a second-order SISO
abelian BLS with a finite Volterra series is represent-

able by the equations:

Xy 211 219 | | %1 0 b %
— +u(t) (3.31)
X, 0 322 Xq 0 0 \xz
y(t) = [cl, °s)  [%1
Xg

It is easily seen that (3.31) can be decomposed in
terms of two linear systems in cascade. The Volterra
series (3.29) can also be obtained directly from the global

solution of the abelian BLS, that is,
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t
§(t)=expj (A+u(T)B)dT§O
0
t
=eAtexp(B/j u(T)dT)§O
0
at T Bhl() a ("
="t ] TR (v(t) -j u(t)dr)
i=0 0
t T T,
o ; 1 i-1 .
_ At_1i i .
1£o ° P j J j 71wyt E
0o ‘0 0 j=1

Where the last equality is arrived by using the identity

t t Tq T
n n-1
[J’ u(t)dr] = n!J’ J) J U(Tnﬁl)u(Tn_z)f..U(Tl)
0 0O O 0

dTn_ldTn_2 ... dTl (3.32)

As shown in the previous example, some BLS with FVS
property may be synthesized as linear systems in cascade.
However, such BLS may also be decomposed into other inter-
connection of linear subsystems for which the linear
system theory can be advantageously applied. An inter-

esting class of linear composite systems, called factorable

Volterra systems and developed by Harper and Rugh [60] for

approximating nonlinear systems, are closely related to

such decomposable bilinear systems.

Example 3.5

The factorable Volterra system T (Figure 3.3)
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Linear | yl(t)

System 1

Linear yz(t)

System 2

Linear yk(t)

System k

Figure 3.3. The factorable Volterra system M [60].

composed of k linear dynamic subsystems connected in
parallel with the outputs multiplied (in the time domain)
are defined by

x(t)=Ax(t)+bu(t)

(3.33)
k T k
y(t)= y77 ¢;%; (t)=y T Vi (8
i=1 i=1
where
N
xq(t) Ay by €1
_)Ez(t) A2 92 02
§(t)= . A: . 9: . El= .
§k(t)) ’ Ak ’ Ek ’ “n.
\ § Y, i
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i.e.,
o I'liXI'li ni
= + .eR i =
%, (£)=A.x. (t)+b. u(t), Ase , byeR ', i=1,2,... k
_ T
and the vector x(t) is of dimension n=n1+n2+ C e +nk.
It can be seen that the system 7 can be represented

k
by a Volterra series and also can be realized as a BLS

which is nevertheless not a natural representation.

As an example, consider the Ty system with transfer
functions
b b
_ 1 _ 2
Hl(s) = =% ay and Hz(s) = _E—:—E;

A bilinear system which has the same input/output behavior

as the Ty system, with x3(t)=x1(t)x2(t) is as
follows:

é(t)=A§(t)+uB§(t)+£u, §(t)eR3

T (3.34)
y(t)=d"x(t)



where
N
-a4 0 0
A= 0 ~a, 0
0 0 -(a1+a2) ,
AN /
0 0 0 b1 0
B= 0 0 0 c=| b, and d= 0
b2 b1 0 0 L 1

The homogeneous BLS associated with (3.34) is

. AA

X(t)=Ax(t) + uBx(t), x(t)eR’

y(t)=d x(t)

~ T
where x(t) = (x,(t), x5(t), x(t)x,(t), 1)
and
~ay 0 0 0 0 0
3 0 -a, 0 0 - 0 0
0 0 -(a1+a2) 0 b2 b
0 0 0 o |, 0 0
N
0
0
- 1
0

77

(3.35)
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It can be shown that the associative algebra

k . .
{B, adAB}AA, k=0, 1,2,... is nilpotent, hence by Theorem

3.8, the BLS (3.35) has the FVS property. Consequently,

the Volterra system To has also the FVS property.

3.2 Inverse of Bilinear System

3.2.1 Concept of the Inverse System

Investigation of a 'system' employing a mathematical
model normally grants that the input (control) and output
(measurement) are known, at least in the probabilistic
sense. This is the essence of the well-known 'black-box
approach'. Formally speaking, the object is to construct
a model that will accurately represent the underlying
system by way of, for instance, estimating the parameters,
realizing the system structure, etc. However, very often
the situation is not so. The communication system is an
illustrative example. The main concern is to retrieve
the message (input) based on the output (the received
signal which may be corrupted by noises).

To this, it is remarkable that the question of inver-

tibility — when the output of a control system uniquely
determines the input — is of practical as well as theor-
etical interest. The construction of an 'inverse model'

which is able to predict the unknown input of a model from

measured output data, is particularly important in biolog-
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ical modeling [61]. Fish [62] made a model of the movement
of uranium in the body, in which uranium was picked up by
the body from the surroundings and appeared in the urine.
The output could be measured, but the history of the input
was unknown. In immunology, the measurable output data |
usuélly is the antibody concentration in the serum, the
threshold (input or parametric control) which determines
the cell stimulations and differentiations is unknown
[63, 64]. This issue of considerable importance in under-
standing the immune system will be furthermore studied
in Chapter V.

There is a considerable amount of literature dealing
with the construction of an inverse system for a linear
system (references [65, 66] and other references therein).

The main result is summarized as follows without proof.

Theorem 3.9

Consider the SISO completely controllable linear

system.

X(t)=Ax(t) + bu(t) ; x(0)=x,, x(t)eR"

T (3.36)
y(t)=c x(t)

If the relative order al of (3.36) is finite, 1i.e.

1The relative order of a linear system is referred to as
the difference in the degree of numerator and denominator
polynomials of its transfer function G(s)=gT(Is—A)‘19.
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o<= then there is a unique inverse system which is
also completely controllable and is defined by,

T

x(ty=[a-(b cTa%/cT

A% 1p)] k(t) +

. . (3.37)
+ (1/¢ A% Mo)bu( ), X(0)=x,

y(t)= - (cTa%/c A Toykie) + (1/7¢Ta% Ipydce)

Let ﬁ(t) = y(a)(t), then §(t)=u(t)

3.2.2 Inverse of a Class of BLS

In the last section, the design of the inverse system
of a given linear system is shown to be available if cer-

tain conditions are met (see Theorem 3.9). The extension

of constructing the inverse system for a bilinear system
is a much more difficult task. A significant contri-
bution in BLS analysis owing to Hirschorn [67] generalized

the Theorem 3.9, which states:

Theorem 3.10 [67]

Consider the SISO BLS,

X(t) = Ax(t) + u(t)Bx(t), x(0) = x,eR"

0
(3.38)

e'x(t)

y(t)
If the BLS (3.38) is invertible, then its relative order1

is o <o,

1The relative order of a BLS is referred to the least
positive integer Kk such that gTadﬁ‘lB # 0 or
a=w jif gTad§B=0 for all k>O.
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T a-1 . . .
If oa<e and ¢ adA BEO # 0, then the BLS is invertible

with inverse system defined by

X(t) = a(x(t)) + WEB(X(L)), X(0)=%,=x,cR"
. N R . (3.39)
() = d(X(1)) + W(t)e(x(t))
where
a(x(t)) = AX(t) - (¢ A“X(t)/c A% 1BR(t))BR(t)
b(k(t)) = (1/c A% 1BR(t))BX(t)
(3.40)
d(x(t)) = - (¢ A%&(t)/c A% BR(t))
e(x(1t)) = 1/¢"a% BX(t)

1t 4(t) = y % (t), then $(t) = u(t)

Proof of this theorem is omitted here since it is
quite lengthy and involves mathematical machineries out-
side of the scope of this thesis. Reader who is inter-
ested in the proof is referred to the original paper [67].

There are a few consequences of Theorem 3.10 which are of

particular relevance to this research. Firstly, it can be
proved that when a(t) = y(a)(t), the state %(t) = x(t), the
state of the original BLS (3.38). Thus the inverse system

(3.39) acts as state observer (defined in Section 2.2.2)

for the BLS, a result which itself is of practical import-
ance. Secondly, the inverse system (3.39) is in general

a highly nonlinear system. The vector fields a (%(t)) and
b (%(t)) may not be complete, that is, the integral curves

for these vector fields need not be defined for all time.
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In other words, there is a possibility that the solution
to (3.39) may go without bound at a certain finite time.
Thirdly, the above theorem presents a sufficient condition
for inverting vector BLS (3.38) in case where oa<»,
but this condition is far from being necessary. Fourthly,
Hirschorn raises the question whether or not an invertible
BLS has a bilinear inverse system. This is indeed only
a specific question of the more subtle one, that is,
what 1s the connection (if any) of BLS and its inverse
as far as their structural aspects are concerned. For
instance, the inverse system is linear and controllable

if and only if the original system is linear and control-

lable (see Theorem 3.9). Can this connection be carried

over to bilinear systems? While aforementioned problems
are interesting of their own right, the last question is
treated here, leaving the description of using inverse
system as a state observer to the next section.

The inverse system (3.39) is obviously a linear-
analytic system which includes BLS as a special case.
In order to have the inverse system of simpler structure,
it is reasonable to impose conditions on the matrices
A and B of the original BLS (3.38). It is shown here
that if the rank of B 1is unity, then the inverse system
(3.39) is much simplified.

First consider the following fact in matrix theory

[68].
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Lemma 3.4
Any n-dimensional square matrix of rank one can be

uniquely (within a scalar factor) expressed as a product

of a column and a row n-vector.

Theorem 3.11

Consider the SISO BLS (3.38) with relative order o

if the system is invertible and rank (B) = 1, then the

inverse system of (3.38) is a linear time-invariant

system with nonlinear output defined by (3.39) with

g ol
a(x(t)) = (A - —=F——)x(t) (3.41a)
c A TR
~ 1
b(x(t)) = —F5—=1 L (3.41b)
c AT X
. TA%% (1)
d(x(t)) = - - (3.41c)
- ETAa—l& mTé(t)
e(x(t)) = T 11 T (3.41d)
e A% mUR(t)
where B = £ QT

The assumption that rank (B)=1 seems very restrictive,
but BLS with this property stands out as a special BLS
of particular interest both in theory and in practice.
For instance, discrete BLS with rank (B)=1 has been
extensively studied as far as the controllability and

optimal control are concerned [69, 70, 71]. Many natural
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bilinear systems do satisfy this rank assumption as can
be found in the next section and elsewhere [11, 72].

It is observed from this theorem that the inverse
system (3.41a) and (3.41b) is exactly the same as that

for the constant linear system (see Theorem 3.9). The

following stronger result can be established,

Theorem 3.12

Consider the BLS (3.38) as described in Theorem 3.11,

then the inverse system of (3.38) is a linear time-
invariant system which is completely controllable if the
original system is completely controllable.

The proof of this theorem is based on the following

two remarks, and is somewhat straightforward:

Remark 1 [66]

Rank (%, AL,...,A" 12) = Rank (&, Ar,...,A0 1y

A—(&gTAa)/ETAa_l&.

where ﬁ

Remark 2 [69]

If the BLS (3.38) with rank (B)=1 is completely con-
trollable, then Rank @, A%,...,A" 1) = n.

In other words, if BLS (3.38) with rank(B)=1 is com-
pletely controllable, then by the above remarks Rank (%,
A&,...,An_¥&)=n. The inverse system of (3.38), which is

a constant linear system by Theorem 3.11, is thus complete-

ly controllable as a consequence of the well-known rank test.
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3.2.3 Numerical Examples

Example 3.6

The biocontrol example (a simplified immune model)
presented in Section 2.6.3 is adopted here again for the
purpose of illustrating the inverse system of BLS. For
convenience, the model described in (2.36) is transformed
by z(t)=Px(t), b=d and u(t)=3(1+u(t)), into

T

. N v
2(t) = Kz(t) + u(t)Bz(t), z(0)=(zy,, 0, 0) (3.42)
where
—Hg 0 0 b 0 0
v
A= b —Uq 0] B= ~2b 0 0 and
k rk 0y}, 0 0 03y,
0 1 0
b= 0 0 1
1 0 0

v
If the input u(t) is not known and ZS(t) is the only

measurable state, viz, y(t)=gTE(t)=(O, 0, 1)z(t), then the
BLS observer theory developed in the previous section can

be applied to estimate the inaccessible input and states.

v
For this particular example, rank (B)=1, the relative
order o = 21, and therefore by Theorem 3.11, the inverse

1It should be noted here that a=2 only if r#2, other-
wise a=», i.e. c'adfBz,=0 for all k=0, 1,2,... . By
Theorem 3.10, if a=w, then the BLS (3.42) is not invertible.
This can also be seen from the inverse system (3.43) and
(3.44).
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system of (3.42) is via (3.41) a constant linear system:

2(t) = AZ(O)+I(D)B, 2(0)=(z45, 0, 0)7 (3.43)
A ;‘ A
A(t) ) Gu3rkzz(t)—6(—u2k+2brk)zl(t) .
Y b2, (1)
At ) (3.44)
bz, (t) )
A 1
where 6- 1/(k-3rk)
+8k } Sy Tk ) )
~UgoHtSk(ug-3br) Sugr 0 S
A =| 3b-38k(uy-3br) -ug-38ugrk O b = | -%s
\k rk O/ L 0 p

Since the relative order of (3.42) is equal to two,
: e N _(2) gy A~
it follows that if u(t)—z3 (t), then u(t)=y(t).

Since the input to inverse system (3.43) involves

second derivative, a first-order approximation is used

for the numerical simulation. The procedure of simula-
tion is shown in Figure 3.4. Figure 3.5 shows the simu-
lation result using a set of immunological data. It is

seen that the inverse system favorably estimate the state
av

variables. The input function wu(t) 1is recovered from

the inverse system, basing on the second derivative of

the output from the original system (Figure 3.6).
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| (t) [ y(t)
rl\.IJ(t) | BLS z 9 Calculate
l ( )

(y(t+AT) -2y (t)+
| (y (£-AT)) /(aT)?

Lo 1
Original System
y(z)(t)
r——— — — = — — — —|= - —
R l n
y(t) | Output z(t) Linear |
-« Equation [« System I
l (3.44) (3.43)
- - — — — _ . _ _ _

Inverse System

Figure 3.4. Flowchart of Simulation in Example 3.6.
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zl(t), zz(t) x 10
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Figure 3.
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z,(t)

10 20 30 0 50 B0 70— 80 —3op >t

(a)

10 20 30 40 50 60 70 80 90

(b)

Simulation of BLS (3.42) and its inverse
system (3.43) and (3.44), the dots denote

the estimated values.

Data: k=3.6x10%, r=10, b=0.1, u2=1o‘5,
_ - 4 _
U3—0.02 and zl(O)—4x10 , 22(0)—0,

23(0)=O.
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I
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0 10 20 30 40 50 60 70 80 90
i
I .
l
[ J
-1 k—————————
. n
Figure 3.6 Input function u(t) reproduced from

the output of the original system
(3.42). Data used is the same
specified in Figure 3.5.
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Example 3.7

The Volterra system To described in Section 3.14 is

studied here to furthermore illustrate the role of the

inverse system of a BLS acting as a state observer. The

output of a Mo system is inherently nonlinear in the
form of product of state variables. However, as shown

in Example 3.5, the Volterra system is transformable to a

decomposable BLS. And therefore in view of the BLS inverse

design, each state variable of T, can be estimated from

the available output without knowing the input function.
Recall the homogeneous BLS (3.35) which is associated

with a system with transfer functions Hl(s)=b1/(s+a

2 1)

and Hz(s)=b2/(s+a2). It can be easily shown that the

relative order of BLS (3.35) is unity and rank (§)=2.

Employing Theorem 3.10, the inverse system of (3.35) is

readily derived as

b, (a +a,)X, X b, X%
R, = —agkyr R 203 1y Gy L (3.450)
DyX by X%, byX +b Xy
. b, (aj+a,)X.X ) b, X
R, = cagh 22234 gy 22 (3.45b)
b2X1+b1X2 b2x1+b1x2
§3 = U(t) (3.45¢)
S 2o (3.45d)
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- _ T

x(0) = (%945, X545 Xip¥ggr 1)
(a,+a )§

~ 1tag - 1

gty = —2° 3 4 Jt)——2—— (3.45¢)
b.X.+b.X b.x,+tb. X

271 7172 271 "172

Using (3.45d) and (3.45e), and the fact that

x3(t)=x1(t)x2(t)=y(t), the above equations are simplified

into,
. b.(a;+a,)y(t) b.y(t)
X, = —a Rk —— 2 1 (3.46a)
byXi+by X, byx tby X,
" . b,(a +a,)y(t) b, y(t)
X = -a.x. + -2 12 + 2 (3.46Db)
2 272 b.X.+b.X b.X.+b. X
2%1701%9 2%17P1%9

with x1(0)=x10 and x2(0)=x20.

It is seen from this equation that the state variables

xl(t) and xz(t) can be found from the available output

y(t) and its first derivative y(t). This fact can be

verified directly from the original system Ty in which

the input function u(t) can be found as u(t)=(y(t)+

(a1+a2)x1x2)/(b2xl+blx2). The state observer (3.46) is

obviously a nonlinear dynamic system which is of course a

consequence of rank (ﬁ)=2>1 (Theorem 3.11).
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IV. MODELING OF IMMUNE PROCESSES

4.1 Essentials of Immunology

4.1.1 Outline of Immune System

The immune system of an organism is a collection of
organs, cells, and proteins (macromolecules) working as a
whole to maintain the functional integrity of itself via
elimination of the intruded alien substance. A very
simplified theory to delineate the immune system is pre-
sented here. After being attacked by foreign substance
(antigen), the immune cells (committed lymphocytes) are
stimulated to divide themselves or differentiate into
plasma cells. Plasma cells are short-lived and nondivid-
ing, but can produce significant amount of immunoglobulins

IgM, IgG, etc. (antibody) to combine with the antigen to

form immune complexes, which in turn are removed by scan-
venger cells (macrophages). The immune response is an
extremely complex phenomenon of which many internal mech-
anisms are still uncertain.

In general, the immune response can be divided into

two major types — humoral response and cell mediated

response [73]. The former is referred to the immunity

mediated by specific antibodies which are present in the
blood serum and tissue fluids of the body. The latter is

pertaining to sensitized thymus-dependent lymphocytes
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which are responsible to graft-rejection and delayed

hyper-sensitivity and so on.

There are three particular classes of cells partici-

pating in the immune reaction, namely, B cells, T cells

and accessory cells:

a)

b)

B cells—immunocompetent cells (ICC) which, while
not yet making an active immune response, are
capable of being immediately stimulated by antigen
to generate effector offspring. ICC arise from
stem cells of bone marrow, processed through the
bursa of Fabricius or its equivalent in mammals.

B cells are also called bone marrow-derived

lymphocytes.

T cells—these cells are derived from uncommitted

stem cells which migrate into the thymus, and
proliferate and differentiate there. T cells
have a variety of functions, which not only play
an important role in cell-mediated immunity, but
also are decisive in the regulation of B-cell

dynamics. T cells are also called thymus-derived

lymphocytes.

Accessory cells—macrophages and other mono-

nuclear phagocytes elicit phagocytosis and lysis

on antigens. Macrophages participate in immune

. response in various aspects, the most important

functions of which is to cooperate with T cells in

regulating the B cell dynamics.
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Figure 4.1 illustrates a simplified version of cell
lineages involved in humoral immune response.

It is understood now that the immune system consists
of various types of cells and molecules to perform defense
mechanism against hostile environment. As one of the most
rapidly progressing branch in biomedicine, it is pro-
hibitive even to present here a less satisfactory outline.
A comprehensive overview of modern immunology and its
ramifications may be referred to the excellent text by
Cunningham ([74].

Concluding with this section, a general description
on the immune system by Nobel Laureate Burnet is excerpted
for better appreciating the essence of immunology [76]:

"From all these perspectives, then, we arrive
at a concept of the immune system as a homeostatic
and self-monitoring unit with a control system
reminiscent of the computerized control of a
modern petrochemical complex with its sensors
constantly monitoring for change in vital para-
meters and automatically calling positive or
negative feedback mechanisms into action. The
immunological controls differ from this computerized
control in their flexibility and their need to
respond to major calamities as well as to the minor
fluctuations in average functioning, and control
is of course limited to processes that are possible
with biological material. I like to think of this
system as an immensely complex interacting network
of mobile lymphocytes comprising thousands of
distinguishable sub-populations. Control involves
the impact of patterned macromolecules, carrying
genetically coded information, on receptors they
can recognize and, depending on circumstances,
can stimulate to give synthesizing, proliferative,
or destructive signals to the cell."
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Bone Marrow Stem Cells

B cell Precursor T Cell Precursor - Blood Monocyte

Jr {immature macrophage)
Bursa of

Fabricius in
birds; the Thymus
mammalian

analog is unknown J
'3

B Cells © T Cells Tissue macrophage

Small
lymphocytes

lT I

Large

Iymphocytes

Plasma Cell

Figure 4.1 Maturation pathways of the principal
cells in the immune response. Anti-
body molecules are secreted by large
lymphocytes (*) and especially by
plasma cells (**) in the B-cell lin-
eage. (After Eisen, Reference 75)
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4.1.2 Mathematical Models in Immunology

Applying the concept of mathematical modeling to the
study of immune system have attracted much attention ever
since Bell presented an interesting model of the antibody
production of humoral response about 1970 [77]. His model
consists of six nonlinear differential equations, and so
not amenable to mathematical analysis, though the model is
successful in simulating several immunological phenomena.
Later on, many different models are proposed including
prey-predator model, network model, compartmental model,
and functional differential model, just to name a few.
Various mathematical techniques are called upon to analyze
these models, for instance, Hopf bifurcation theorem,
optimal control theory as well as the catastrophe theory.
A brief survey up to 1976 may be found in a technical
report by Merrill [78]. A more expository collection of
immune models can be referred to the recently published
monograph edited by Bell, Perelson, and Pimbley [79].

In this section, immune models proposed by Merrill
[80] and Perelson et al. [81] are discussed in order to
compare them later with the model developed by Mohler,
Barton and the author [82] and the main results of this
thesis.

To determine the possible regulatory mechanisms for

B-cell proliferation and differentiation when the immune
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system responds to an antigenic challenge, a very simple
model was formulated as a BLS with a scalar input,

1

kl(t)=a(2u(t)-1)x1(t)- —;I xq(t)
%, (t)=a(l-u(t))x; (t)- —%; x,(t) (4.1)
%S(t)=a'x1(t)+a”x2(t), te[0,T]

x1(0)=x10>0, x2(0)=0, x3(0)=0
where xl(t), xz(t) and x3(t) respectively denote the

population of large lymphocytes, plasma cells and antibody.
The input u(t) 1is the fraction of cells that remain

large lymphocytes (i.e. O<u(t)<1l), 1-u(t) 1is the fraction

that differentiates into plasma cells. Definitions of rate
constants «a, Tq> T2, a', and o are obvious from the
context.

It has been shown that the optimal input to minimize
the total time T required to secrete a specified amount

of antibody xg

is bang-bang. However, it should be
observed that in model (4.1), it is assumed that the injec-
tion of antigen has caused a fraction of the virgin B
lymphocytes to undergo blast transformation resulting in

X large lymphocytes. Based upon this crucial assumption,

10
no antigen dynamics is considered and hence the model 1is
bilinear rather than quadratic bilinear as would be without

this assumption. In fact, model (4.1) is a very particular
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class of bilinear systems, which will be furthermore
investigated in the next chapter.

Merrill [80] derived a nonlinear model for immune
response which is similar to the well-known model of
heartbeat and nerve impulse by Zeeman {83]. This model
enjoys dynamic characteristics that can be geometrically
interpreted via catastrophe theory. For instance, the
primary immune response is visualized as a path around the

cusp. His model is rewritten as below,

e3; (£)== (x5 () +(xy(£)=3)xy (£)+x5(£)x,(£)=3)

%o (£)= (1-x (£)) =%y () =YX, (£)Xg(t)
(4.2)
X5 (£)==v X5 (£)X5(t)=y X5 (1)

X g (£)=7 %, (£) (xg(t)=x,(t)) (x x,(t))

4max
xl(0)=l, x2(0)=0, x3(0)=x30i1, X4(0)=X4Oix4max

_ y(t)-z(t) . . . _
where xl(t) V() Fz(t) considered as a stimulation para
meter -1<x.(t)<1l (+1 when unstimulated,
-1 when stimulated)

y(t)= number of unstimulated B-cells which
can respond to a particular antigen

z{(t)= number of stimulated B-cells which
have been stimulated by the presence
of that antigen

xz(t)= concentration of free antibody

x3(t)= concentration of unbound antigen (sites)

£ )= number of small B-cells + memory cells
X4(t)= original number of small B cells
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All other parameters are obvious from the context, except
€, 1>>¢>0, which indicates the fact that the cell stimu-
lation itself is taking place on a much faster time scale
than the time scale of other responses in (4.2). Moreover,
all numerical values including the time scale are normal-
ized. Merrill showed that model (4.2) has the following

properties: h(

)< %1 (£)<L, 0<xy(0)<3(1-h(x, ),

X \
dmax’— 4max

Oix3(t)ixgoi1’ and Oix4(t)ix4max for all te[0,x), where

h( ) is the unique real root of the equation

X
4dmax

>
4dmax 1.

- 1 -1 =

Xy 5Xq + X amax" 2 0 (assume x
Though model (4.2) is capable of simulating primary

and secondary response as well as low-zone and high-zone

tolerance, it is not derived from basic mechanisms of

immune response. For instance, the nonlinear term

xi(t) in (4.2) seems to be chosen just in favor of mathe-
matical convenience (more precisely, to have a cusp singu-

larity). Another drawback is h(x ) may be less than -1;

dmax

i.e. xl(t) is no longer restricted to [-1, 1]; the defini-

tion for xl(t) given as above fails to hold and needs
ramification. It will be shown later that the models to
be presented can overcome this and other shortcomings.
Simulation results for a particular set of data are
shown in Figure 4.2 and Figure 4.3 to illustrate the

dynamic behavior of mathematical models (4.1) and (4.2).
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The simulation of modelv(4.2) which is not included in
Merrill's paper is preformed by the author.

It is of some interest to compare these two simulation
responses. The antibody production in Figure 4.1 (b)
is exponentially increasing, while that in Figure 4.2 (b)
is increasing first and then decreasing. Moreover, model
(4.2) includes the dynamics of antigens x3(t) and a stimu-
lation factor xl(t), both of which model (4.1) does not
take into account. It is seen that response behavior of
(4.2) is more immunologically realistic than that of (4.1),

at the expense of model complexity. This will be further-

more discussed in Chapter V.
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4.1.3 A Systems Approach to Immunology

This section is devoted to elaborating the research
methodology and objective of the rest of this thesis.
Figure 4.4 gives a functional description of the inter-
relationships of experimentation, immune theory, modeling
and simulation. In contrast to the conventional approach,
the 'systems approach' requires formulation of a mathe-
matical model based upon assumptions and immunological
phenomena which clearly illustrates the interacting sub-
systems. With the aid of computer simulation and control
theory, an effective experimental plan may be designed to
provide time-series data for identifying the parameters
upon which the understanding of the homeostatic mechanisms
of the immune system faithfully depends.

This study began with the viewpoint of applying
optimal control and system theory (with special emphasis
on bilinear processes) to the investigation of immune
system. What is to be presented is confined to the B-cell

dynamics stimulated by non-replicating antigens. The

generally accepted clonal selection theory is adopted.
The humoral immune response involves both cellular and
molecular reactions, it is not surprising that the model
initially developed (see next section) is highly nonlinear.
This first model (hereafter called B Model) is simulated

with a set of parameters and initial conditions. The
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simulation result is then compared with the experimental
data available in the literature. The mathematical
analysis of the B Model is carried out to validate the
model equations. This encompasses the existence and
uniqueness of solution to the mathematical model. More-
over, asymptotic stability and positive-invariance (to
be defined later) are proved.

The B Model itself, as will be derived in detail in
the next section, is a fairly complete model of humoral
immune response for T-independent antigens. However, it is a
5-dimensional bilinear system with two nonlinear feedback
controls entering multiplicatively. This nonlinearity
plus high dimensionality render the rigorous control-
theoretic analysis infeasible (if not impossible). In
order to overcome this disadvantage, some assumptions are
made to seek a simplified version of B Model. The effort
ends up with a 3-dimensional bilinear system with scalar
input. This new approximated B Model enjoys also other
structural aspects which make it very convenient to be
investigated via the techniques developed in Chapter III.

Finally, immunological implication arising from the

acquired results is discussed.
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4.2 B Model

4.2.1 Derivation of B Model

A mathematical model of B-cell kinetics is presented
to explain the dynamic behavior of the humoral immune
respbnse. This model is based on the clonal selection
theory, classical birth-death cell population balances and
law of mass action. Only the consequence of an animal
injected with thymus independent antigen is considered.

Before modeling the B-cell dynamics, elementary phe-
nomena of B-cell stimulation and differentiation are dis-
cussed. The mechanisms that determine whether an immuno-
competent cell can be stimulated and can differentiate
into a plasma cell have not been fully elucidated. The
initiation of an immune response critically depends on
these two basic cellular events. As suggested by some
experimental results, it is assumed that stimulation occurs
only when the fraction of receptors which is occupied by

the antigen falls between two values 94 and Og- Also

the probability of differentiation into plasma cells is
assumed to be proportional to that fraction of occupancy.
Equipped with these assumptions, probabilities for stimula-
tion and differentiation are derived and shown to be
functions of free antigen concentration and antibody aff-

inity, due to Bruni et al. [84].
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If F(k,t) and B(k,t) are respectively the number

of free and bound receptors on the cell surface per unit

volume, then at given concentration of antigen h(t),

B(k,t)  _
F(k,t)h(t)

where Kk is the affinity of B-cell receptor with respect
to determinants of antigens. The probability that a
receptor of affinity k be occupied is

_ B(k,t) _ kh(t)
P(Kh) = 3+ F (K, Ty = 1Fkh(t) (4.3)

The probability that n receptors, out of a total

number m per cell, be occupied as expressed by binomial

distribution
p{™ (kny = (1) p"(kh) (1-p (kR )™

The probability that a cell with affinity Kk be stimulated

is therefore

n
n 22 <m) (kh)n
2 (n) n=n \n
pg(kh) = ) p "7(kh) = - (4.4)
n=n, (1+kh)
where nq is the smallest integer such that nlimol, and

n, is the largest integer such that nzimoz. Because of

the high value of m (usually m2105), the distribution
(4.4) can be approximated by

1 if 91 <kh < 09
ps(kh) = 1-01 — — 1-04

4.5
0 otherwise ( )
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The probability that a cell of affinity k with n

occupied receptors to be differentiated has been taken

equal to the ratio —%—, and therefore

kh
1+kh

L 5™ (kn) =

He~1g

pd(kh) = i

(4.6)
0

Equations (4.5) and (4.6) are important for modeling

B-cell dynamics as will be presented next. A word of
caution is that the numerical values of 01 and 02 are
not known a priori, except by definition Q§01§02i1°

While this may be considered as a drawback, it consoli-
dates the necessity of computer simulations as well as
control-theoretic analysis beyond modeling the immune
system. The following derivation follows that of Mohler,
Barton and Hsu [82].

The primary humoral immune process is described by
the following variables with the arguments (t, time and k,
affinity or association constant) omitted for brevity:

Xqs population density of immunocompetent cells (ICC),
which are sensitized lymphocytes with particular
surface receptors which in turn have affinity (or
association constant), k, for antigen. They may
differentiate into plasma cells or proliferate
into memory cells. The latter may further divide
and enter the pool of immunocompetent cells.
population density of plasma cells which are

non-reproducing offspring of stimulated immuno-
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competent cells.
X population density of "antibody sites,'" unbound
to antigen.
X population density of immune complexes, which
individually include antibody sites and antigen.
h, antigen concentration, unbound to antibody,
which triggers the response mechanism.
Consideration of immunocompetent cells first leads
to a change of population density, Axl, on an interval
At due to mitosis, given by

{2a(1—pd) P X1 —apsxl} At,

where o 1is the birth-rate constant of stimulated immuno-
competent cells, Py and pg are respectively the probability
that an immunocompetent cell differentiates into a plasma
cell and the probability that antigen stimulates a cell.
These probability terms are function of antigen h, and
affinity k as given in (4.5) and (4.6).

To this must be added the source of new stem cells
BkAt and the death of cells xlAt/Tl, where Bk is the
rate of generation of new immunocompetent cells (from bone
marrow), and Tq is the mean lifetime of immunocompetent

cells. In the limit, the process is described by an

ordinary differential equation of form

X. = au Xy - 1 + B (4.7)
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where uy = ps(l—Zpd). Similarly, plasma cells, antibody

sites and immune complex generation for each Kk may be

approximated by birth-rate minus death-rate equations as

follows:

. X9

Xy = 20Lu2xl - , (4.8)

2

. ' " X3 v

Xg = 0 Xy t a Xo = T, - kckx3h + C¥a (4.9)

. X4

Xy = kckx3h - < = Xy (4.10)
where 12, Tg, T, are appropriate life times,

Ug = PgPy

1

oo 1is plasma-cell antibody production rate, a” is ICC
antibody production rate, and Cl s kck are dissociation rate
and association rate constants of immune complex, respect-
ively.

After inoculation of the antigen population dhi(t)=
ﬁi(t)dt, the rate of generation of a free antigen density

may be approximated by the inoculation rate minus rate of

catabolism minus net rate of immuno-complex formation,

. . h
h = h(t) - —— - Yke, X,h + Je X (4.11)
i h K k™3 k k"4
where Ty is the average lifetime, and k extends over

the whole range of the association constants of antibodies.
Antigens administrated into an animal is often mixed

with Freund's complete adjuvant (an emulsion of mineral
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o0il, detergent, and mycobacteria), which may enhance the
immune response by increasing the local recirculation of
lymphocytes, and slow, continual release of antigen.

Consequently, the antigen inoculation rate ﬁi(t) may be

represented by the sum of two functions; a step function
'6_1 accounting for two-thirds of the total amount of
antigen injected and an exponential function accounting

for the remaining one-third. So that, for convenience,

it is assumed that

Q —t/Tu

. _ ‘_?‘_ Q
hi(t) = 2o e + 26 (T -, (4.12)
u u
1, if O<t<T
— ="
§ (T -t) =
-1 v 0, otherwise

where Q 1is the total inoculation of antigen, V is the
estimated volume of circulating animal fluids in which the
antigen distributes itself and Tu is the interval of

time for which the constant level of antigen is diffused
from Freund's adjuvant. If antigen is injected without
Freund's adjuvant, the inoculation of antigen may be

represented by h(0) with amount

e ] [os]

-t/1
i - _Q u 2 _Q )
j h; (t)dt ‘[ 3 v © A+ 357y Ty = v
0 0 u u
Equations (4.5) - (4.12) comprises a mathematical

model for B cell dynamics, if appropriate initial con-

cition is provided. An interesting structural feature of
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this model is that the model is a bilinear system with two
nonlinear state feedbacks entering multiplicatively (i.e.
a quadratic bilinear system). In addition to this feed-
back nonlinearity, there is quadratic nonlinearity arising
from antigen-antibody reaction characterized by law of
mass action. Recalling that a gquadratic system may be
decomposed as a BLS with a linear state feedback (see
Section 1.2.2), B Model can also be viewed as a cascade
of two BLS's with one linear and two nonlinear feedbacks.
Figure 4.5 illustrates such decomposition. The first BLS

describes the cellular dynamics (x1 and x2), while the

second represents the molecular dynamics (x3, and h).

X4
The interaction between these two subsystems is apparently
taken by the nonlinear feedbacks. Though only structural

decomposition is heuristically touched upon here, more

details will be given in Section 4. 3.

4.2.2 Data Interpretation in B Model

Before proceeding with simulation and mathematical
analysis of the B Model, the immunological relevance of
the model is discussed by examining numerical values of
initial conditions, parameters, as well as input variables.
Numerical data collected from animal experiments usually
vary considerably among different species and different

antigens. Of particular concern here is the data from
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rabbit immunized with DNP-BGG (2,4-dinitrophenyl bovine
Y -globulin) in complete Freund's adjuvant.

One outstanding feature of the immune response is of
course the antibody-antigen reaction, symbolically, it is

ke,
Ag + Ab <o Ag-Ab (4.13)
k

where Ag, Ab and Ag-Ab stand for antigen, antibody, and
immune complex, respectively. At equilibrium, the rates
of forward and reverse reactions are the same, which may
be characterized by the ratio of association and dissocia-

tion constants, i.e. Kk, the average affinity. Values of

k and ¢

K may be experimentally determined but not

s

precisely. The value of k may range from 103 liter/mole

0

to 101 liter/mole, while <c¢ from 1 sec"1 to 100 sec—.1

k
The discussion above holds only for in vitro situation.
In vivo, the immune complex is normally removed out of cir-
culation shortly after it is formed. And therefore only
local equilibrium can be established. Accumulation of
immune complexes within the immune system is harmful to
the body, because they not only cause the so-called serum
sickness disease, but also possibly act as a blocking
factor to the destruction of tumor cells [85]. However,
this pathological consequence cannot be deduced from B
Model as will be shown in Section 4.3, because the antigen

injected is not replicable. Immune models for replicable
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antigens are more complicated and will not be pursued since
experimental data is rarely available.

The B Model assumes that the rates of antibody pro-

' (A}

duction by ICC, o , and plasma cells, a , are constant,
though they may be affected by specific hormones or cell
cycle. Experimental results shows that plasma cells
attribute much more antibody than ICC. Jerne estimated
that at full synthetic rate a cell may turn out 2000 anti-
bodies per second [86]. And so the numerical values of

(R

o and o' may be taken to the order of 6x10'17 and

6x10"12 moles Ab cell —1hr_1, respectively.

The average lifetimes from Tq to T are now dis-

5

cussed. T-independent antigens tend to persist in body
tissue and are only slowly degraded by metabolic processes.
The elimination of free antigen is largely due to its
combination with antibody. 1In addition to the dissocia-
tion, the soluble immune complexes are normally taken

out of the immune system pretty soon by phagocytic cells.
The metabolic turnover of antibody is about ten days [87].
The mean lifetimes of ICC and plasma cells are more
thoroughly studied. Plasma cells are nondividing and sur-
vive at most only a few weeks, while ICC may persist more
than one year [88]. Based on this, it is not unreasonable

to take values as T1=104hr, T2=72 hr, T3=200hr,

=50hr,‘and T-=100hr. There are two external inputs

T4 5
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Bk and ﬁi(t) appearing additively in B Model. It is
known that the bone marrow continually replenishes the
B-cell population at a rate which is slow compared to the
time course of the response to a T-independent antigen [89] .

The input Bk takes this into account and its value is
around 2x106 cells/hour. The other input ﬁi(t) has been

discussed in the last section and will not be repeated
here.

It is recalled that, if free antigen concentration is
within some range, ICC may be stimulated and then prolif-
erate itself or differentiate into plasma cells. The

proliferation rate of stimulated ICC is estimated to be

about 0.05~0,2 hr—l, in other words, estimates of the
average time between ICC cell divisions vary, but are
mostly from 5 to 20 hours [90].

Since only primary response is concerned, the initial
populations of plasma cells, antibody, immune complex and
free antigen are all taken to be zero. The initial con-

centration of ICC population for rabbit is estimated to

be 5x108 cells/liter, about one percent of total lympho-
cytes.

It should be admitted here that all numerical values
presented above are only roughly deduced from experimental
data, which is often not so consistent among different

experiments.
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4.2.3 Simulations and Implication

In the previous subsections, model of B cell dynamics
and its immunological relevance has been given. It is
seen that the B Model is high-dimensional and nonlinear,
information on qualitative properties can only be surmized
from numerical simulations. However, this does not imply
that partial but rigorous mathematical analysis of the B
Model is out of the question. Indeed, analysis will be
carried out in the next section to justify the B Model and
also confirm the simulation results presented in this
section.

B Model deals with both the molecular (antigen, anti-
body, and immune complex) and cellular (ICC and plasma
cells) events. This immediately gives rise to two compu-
tational problems. One is to have consistent units for
the model, the other is the wide separation of different
response times. The former can be resolved by expressing
the number of cells and concentration of molecules in a
homogeneous manner, say, moles per liter. To do so, the
number of cells per unit volume must be divided by Avogadro
number (6.02217x1023), while molecular concentration
(usually expressed in mg/ml) must be divided by appropriate
molecular weight. The time scale for all simulations is
with unit 'hours'.

The widely different response times may cause computa-
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tional difficulty, if the numerical integration formula is
not appropriate for the model. The notion of stiffness of
differential equations has been demonstrated to be particu-
larly important for simulating biomedical models [91].
Experience of the B Model simulation concurs this argument.
Stiffness associated with the B Model is brought about here,
because the simulation results to be presented are actually
obtained by using the DVOGER SUBROUTINE (a modified
Gear's algorithm [92]) rather than the familiar Runge-Kutta
4th order formula. Numerical computations are carried out
by CDC Cyber 73 NOS 1.2 Version at Oregon State University.

The B Model is simulated with the data set given in
Table 4.1 and the result is shown in Figure 4.6. The

probability terms Pq and pd induced by the antigenic
injection ﬁi(t) are shown in Figure 4.7. From the time

response of antibody production, it is observed that the
model predicts with some accuracy the experimental concen-
tration of antibody [93]. While experimental data on the
other variables have not been obtained, their kinetics
seems reasonable and consistent with known immunological
phenomena.

If Freund's complete adjuvant is not used for anti-

genic injection, the initial free antigen is taken by

Q

h(0) = —~ - Simulation of B Model using nonzero h(0)

is presented in Figure 4.8. If the dissociation of immune



TABLE 4.1

Parameters Used in the Simulation
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complex is assumed to be negligible, then B Model may be

simplified by taking the term ¢ Xy out of equations

k
(4.8), (4.9) and (4.10).

The results presented as above confirm that the B
Model is in favor of the available experimental data and
the clonal selection theory on which the model itself is

founded.

4.3 Analysis of B Model

4.3.1 Existence and Uniqueness of Solution to Model

Equations

Several fundamental system-theoretic properties of the
B Model are studied to confirm the numerical simulations
presented in the last section. Among many system-theoretic
characteristics on which the quality of a biomedical model
crucially depends, perhaps the most important are the
existence, uniqueness, positive invariance as well as
stability of solution to the model equations. To investi-
gate mathematically whether the B Model satisifes all of
these properties is the main concern in the rest of this
chapter.

The B Model endowed with initial condition forms an
initial value problem. Equations (4.7) —— (4.11) may be
written as

x(t) = £(x, u(t), v(t)), x(0) = Xgs 0<tee (4.14)
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T

where x(t) (Xl(t), Xz(t), Xs(t), X4(t), h(t))

uct) & (ugct), uy(en’

v(t) = (8, h (t)7

f is a 5-vector nonlinear function of x(t)

and  x(0) = (x,(0), 0, 0, 0, 0)"

It is straightforward to show that ul(t) and uz(t)
are uniformly bounded, recalling that ul(t)=ps(1—2pd),

u2(t)=pspd and equations (4.4) and (4.6),

No
m n
g: () (kh)

lu. ()] = | n=n . 1-kh|_|(1+kh)™||1=kh )
1 ‘ (1+k0)" Lrkh | =" peny®| | TFKR |~

n

1 m n
LT () (kh)
n=n
1 kh
|u, (t)| = . <1
2 (1+kn)" 1+kh |~

The above inequalities hold only when h 1is non-
negative, which will be proved later.

The local existence and uniqueness of solution to
(4.14) can be guaranteed if ul(t) and uz(t) are also

Lipschitzian [94].
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luy(hy) - uy(h)) |

Do Ng
m n b m

I () (khy) I ((kn)"

) n=n4 . khz . n=ny . kh1
(1+kh2)m 1+kh2 (1+kh1)m (1+kh1)
N
+1 +
L) Lshy) ™ akn )™ (den )™ (1ekn )™
n=n1 ,
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where Fn+j(h2’ hl) is a homogeneous form of degree n+j

in h2 and hl’ M is a suitable constant. A similar proof

holds for ul(t). Consequently, it is seen that:

Lemma 4.1
There exists (in some interval te[0, a],.a>0) a

unique solution to the B Model if the free antigen concen-
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tration h(t) 1is nonnegative, as it is in reality.
The global existence and uniqueness of solution to
(4.14) can be established by showing that the solution is uni-
formly bounded for all t>0 [95]. This will be investi-

gated in the next section.

4.3.2 Positive Invariance and Stability

A most obvious and striking property of a biomedical
model is that all state variables which describe poupla-
tions, chemical or biochemical concentrations, etc. must
be nonnegative for all t. That is, it makes no sense to
speak of negative populations, negative chemical concentra-
tions, etc. A dynamic bio~control model is even more
restrictive, and expected to possess nonnegativity under
all possible control perturbations. Usually, such pertur-
bations are constrained owing to their physical realiza-
bility. Another advantage of examining nonnegativity comes
from the simulation of the stiff model equations. When a
numerical integration formula used is not appropriate. for
simulated model, the errors accumulate rapidly and the
system 'blows up' or fails to provide any further meaningful
answers. Experience of simulating the B Model shows that
whenever one of the state variables becomes negative, the
error starts accumulating and the simulation 'blows up'.
Thus, if a model is proved to be positively invariant (to

be defined below), then this unsuccessful simulation can be
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blamed on numerical integration rather than the model

itself.

Definition 4.1

A mathematical model is said to be positively invariant

if its solution (all state variables) is nonnegative for
all t>0, provided that the initial condition is non-

negative.

Definition 4.2

A dynamic control system is said to be positively

invariant 1if its state space (reachable set) is confined

to the positive quadrant, for all admissible controls,

provided that the initial condition is nonnegative.

Lemma 4.2

The B Model is positively invariant if B and ﬁi(t)

k
are nonnegative for all t>0.
Proof of Lemma 2 may be easily done by applying the

following theorem [96]:

Theorem 4.1

Consider the initial value problem of a system of a
n-dimensional autonomous differential equation,

x = £(x), x(0)=x, (4.15)

1l

in J [0, T] , O0<T<+», Assume that
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(1) there is a solution of (4.15) in J and is uniquely
determined

(2) x(0)=x.20
= .._O —

(3) for any i=1,2,...,n if x,=0 and xjio (j#i),
then fi(g)zo

Then the solutions of system (4.15) are all nonnegative.
The above theorem is also applicable for control
sytem such as (4.14), if control(s) is differentiable and

considered as another state variable. Two things merit
attention; one is the theorem gives only sufficient but
not necessary conditions, the other is the theorem may be
thought as an extension of the well-known nonnegativity
criterion for linear system. That is, a linear system is
positively invariant if the off-diagonal entries of system
matrix and the initial condition are nonnegative.

Stability consideration of the B Model is now presented.
To begin with, it is observed that with ﬁi(t)=0, the
B Model has a unique equilibrium point,

! T
O! a T3T18k, O, O) .

Lemma 4.3

The unique equilibrium point X of the B Model is

asymptotically stable.

The proof of this lemma may be carried out along these

lines:



(1)

(2)

(3).
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Recall that B Model is decomposed as a bilinear
system and a quadratic system with nonlinear

feedbacks (Section 4.2.1). By Corollary 3.2,

the BLS (i.e. (4.7) and (4.8)) is BIBO stable
owing to the fact that the matrix A has only

negative eigenvalues —l/Tl and —l/Tz, as well

as [ul(t)li 1 and luz(tﬂf_l. If the probability
of stimulation Pg is approximated as in (4.5),

then Theorem 3.1 holds and thus the BLS is BIBO

stable.
By (1), xl(t) and xz(t) as bounded inputs to
the quadratic system, combining (4.10)and (4.11)

gives

X L]
x4+h=_—§-9——+h_(t) (4.16)
T4 Th 1

. . . . A
Then x4+hi —d(x4+h) + hi(t), d-= l/max(T4, T

0D
which is a differential inequality. Solving this
with x4(0) = h(0) = 0,

t
x4<t>+h<t>§/[
0]

<|O

e_d(t_s)ﬁi(s)dsé/ ﬁi(s)ds =

0]
(4.17)

But x4(t) and h(t) have been shown to be non-

negative for t>0, and therefore x4(t) and h(t)

are both bounded by Q/V.
Using (1) and (2), it is straightforward to have

the boundedness of x3(t). Put t——» in (4.17)
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and a little algebraic calculation completes

the proof of Lemma 4.3.

The system-theoretic properties of B Model can now

be summarized by the following:

Theorem 4.2

For each nonnegative initial state, and each bounded

Bk’ and ﬁi(t), there exists a unique solution of B Model

for all t>0. Moreover, the solution is positively
invariant and asymptotically stable with respect to the

unique equilibrium point.

4.3.3 More About B Mogdel

Until now the B Model is shown to be a special class
of variable structure system. Structural decomposition is
given in light of cellular and molecular subsystems. The
control aspects are also discussed together with system-
theoretic properties. As emphasized earlier, this research
is aiming to apply modern cbntrol theory to facilitate
understanding the immune systems. The B Model is moreover
exploited qualitatively to examine its dynamic behavior
and immunological interpretations.

The B Model comprising from equations (4.5) to (4.12)

can be represented by
2

3'5(t)=A1§(t)+i£lBiui(t)§_(t)+glvl (4.18)
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i(t)=A2X(t)+<X,QX> p+Cv(t) (4.19)

where x(t)=(x,(t), x,(t))", y(t)=(x3(t), x,(t), h(t)T,

A . T
vi88,,¥(£)=(x(t), x,(t), h (£))" and ¢;=(1, 0)7,
p=(-1,1,-1)T
-%— 0 o 0 0 0
RS _ _
A= ., By= Bo=
0 - = 0 o], 20 o) ,
2
1 N 7 N
- ck 0 o' o' 0
3
A= 0 -1 _c o c=1 o 0 0
2 T k -
4
1
0] Ck -;ql', \0 0 l/,
N /
0 0 0
Q= 0 0 0
kck 0 0

It is seen that (4.18) is a 2-dimensional BLS with
two multiplicative and one constant additive inputs. This
BLS may also be realized as a cascade of two scalar BLS.

Hence it can be explicitly solved (obviously, {Al, Bl’ Bz}

generates a solvable Lie algebra),

t t

t
xl(t) = XlOeijé r(s)ds+8k); exp(exg{)r(s)ds)ds (4.20)
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L 5
Tz t Tz
xz(t) = 2ae /[ e uz(s)xl(s)ds (4.21)
0
_ 1
where r(t) = aul(t)— —
T

Since 1r(t) is function of ul(t) which in turn is
a nonlinear function of h(t), not much information can
be conveyed from these explicit solutions. But taking
the approximation of Py into account, i.e. (4.5), pro-
vides interesting interpretation on B Model dynamics.
For convenience, the overall primary immune response is

divided into three periods, namely, latent state, active

immune state and memory state [97].

In the latent state, concentration of free antigen is
below the threshold of ICC stimulation, so the immune
system as defined in B Model remains unaffected, e.g.

ul(t)=u2(t)=0. Equations (4.20) and (4.21) reduces to
-t -t

T T
e 1+T18k(1—e Ly (4.22)

xl(t) x10

xz(t) 0, O<t<t

——"1

ICC population decays exponentially as a consequence
of catabolism, but nonsignificantly (T1>>t1), and no plasma
cells are generated.

If ICC is stimulated, the immune response is active
and the underlying dynamics is much more complicated.
During this period,

1-kh(t) 1 kh(t)

- "T¥kh(t) " Ty uy ()= 1+kh(t)

r(t)
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Unless h(t) 1is known explicitly, it seems difficult
to accurately predict the time course of lymphocytes. A
way to undertake this problem is to do B Model approxima-
tion which will be studied later. However, it is not un-
reasonable to expect that ICC and plasma cell populations
would be rising up until kh(t) surpasses 02/1—02 (see

(4.5)). Suppose that at t=t2, values of Xq and x are

2
A and B, respectively.

As soon as free antigen concentration reaches the
upper limit, ICC is saturated and stimulation is blocked.
The active immune response is diminished and ensues memory

state for the next antigenic attack. Again ul(t)=u2(t)=0,

SO
-(t-t2) _(t_t2)
T T
_ 1 1
xl(t) = Ae + Tlek(l—e )
. (4.23)
- (t‘t2)
T2
x2(t) = Be , ti_t2

Population of plasma cells decays significantly (owing
to its short life time), while ICC (more precisely, memory

cells) levels off slowly due to large value of Ty

A moment of reflection shows that (4.19) is similar
to some sort of prey-predator model. Analogy of immune
system and prey-predator system can be simply interpreted
in the manner that the antigen acts as 'food' for the

antibody and the antibody is stimulated by that antigen.
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Bell and Pimbley presented some interesting immune models
from this point of view but for the replicating antigens
(98, 99].
In the latent state there is no ICC stimulation, and

(4.19) becomes

-t -t
T T X

. ' 1 1 3
Xa= o [xloe + TlBk(l-e )1 - ;g - kckx3h+ckx4
L] X4
X4= kaXBh - ¥; - CpX, Oititl (4.24)
h = B.(t) - k c,x,h + ¢ x

i Ty k™3 k™4

To simplify the analysis, ﬁi(t) is replaced by non-

zero h(0), (see Section 4.2.3) and T4 is known to be very

large compared to other lifetimes, Tl>>tl. Hence equation

(4.24) may be approximated by

X
. 3
= ! — —— — =
x3 a'Xqy T kaXBh + ckx4, x3(0) 0
L] X4
X4 = kaXBh - .T—[; - CkX4, X4(O) = 0 (4.25)
. h _ )
h = - —ﬁ: kckx3h + CiXgq> h(0)#0; Oititl

The only antibody production comes from the basal
unstimulated ICC, which is usually much less than that in

active response. Eliminating the second equation of (4.25)

. VAN §
gives (¢ = =+ ¢),

T4
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' [
x3=a'x10 - ;g - kckx3h+kcke e x3(s)h(s)ds
0
' t (4.26)
-C. t !
* k C, s
h = - & _ ke x_htkcle e ¥ X3(s)h(s)ds
Th k™3 k

0
Unfortunately the closed-form solution for (4.26)
is not available. It is of some interest to notice that
(4.26) which represents the antibody-antigen reaction

is in fact a model of two competing species —— one of

1

which has a constant rate of introduction (i.e. o xlo),

the other has no progeny. Recall that Ck is quite large

3

(3.6x10%hr"1~3.6x10°hr™ 1) and o<t<t,. For sufficiently

1
small tl (the latent state is not long) the integral terms

in (4.26) may be neglected, and the equation becomes

Y o= _ -3 _
x3 =0, x10 T3 kaXSh
(4.27)
ﬁ = - h_ - ke, x,h
Th k™3

Now it is obvious that the free antigen concentration
decreases, while the antibody production increases during
the latent period.

If the immune response is active (tlititg) accurate

prediction on its dynamics is not acquired. What may be
expected is the decrease of antigen and the increase of

antibody will be faster than that of the latent period.
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Assume that x3(t2)=C, x4(t2)=D, and h(t2)=E, then, by

(4.23),
-S_ -S_ -S_
. T Tt To %3
Xg = a [Ae +T18k(1—e )]+a"Be —{g - kaXSh
. t
-C, s -C, s c. o
k
+c, [De +ke, e K e K x5(0)h(0)do] (4.28)
ty
t
. h -C, S -C, s €\ 0
h=- T kckx3h+ck[De +kcke e x3(o)h(o)do]
ty
where s é t - t2

Dynamic behavior of the molecular subsystem of the B
Model is summarized in Figure 4.9(b). Comparison of
Figure 4.9 with simulation result in Figure 4.8, shows that
response curves of the latter are fairly reasonable.
Partial analysis of the B Model is now accomplished.
What needs to be resolved boils down to the investigation
of active immune state, which is the theme of the next

chapter.
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V. SYSTEM-THEORETIC CONTROL IN IMMUNOLOGY

5.1 Approximated B Models

5.1.1 A Simplified Model of Active Immune Response

In the previous Chapter, the B Model has been presented
and its dynamic behavior in the latent and memory states
is discussed. This section is devoted to the simplifica-
tion of the B Model so as to arrive at approximated immune
models which are amenable to dynamic analysis, in particu-
lar, in the active state. The simplified models presented
below will be shown to possess specific structures which
make it more convenient to characterize their dynamic
behavior via BLS theory.

For convenience, the B Model is restated by

Xy = psul(t)xl+8k (5.1a)
. ~ g
Xy = Zapsuz(t)xl— T (5.1b)
. Xq
Xq = a'x,ta"x,— T, - kckx3h+ckx4 (5.1c)
L] X4
Xq = kckxsh— T - CpXy (5.14d)
. h .
h = _kckXSh - —?; + C1 Xy + hi(t) (5.1e)
~ 1 _ 1-kh 1
where ul(t) = aul(t) - —?I = 97%kh T ,
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Uy(t) = ToB—— = 3(1-u (1)),

and the initial conditions are
x1(0)=x10, x2(0)=x3(0)=x4(0)=h(0)=0.

It is seen from the model equations that the compli-
cating nonlinearity arises from multiplicative inputs
(parametric controls) ﬁl(t) and ﬁz(t). For some situ-
ations, the term kh may be much less than one, i.e. kh<<1,

then al(t) and az(t) can be approximated by oa- —%—

1
and Kkh, respectively. As far as the immune response in
the active state is concerned, the probability of stimula-

tion, p is equal to one (see (4.5)), and thus (5.1la) and

S >

(5.1b) can be simplified as

s 1

X = (a - —?I)X1+Bk (5.2a)

. X

X, = 2akhx1— - (5.2b)

2

These two equations together with (5.1lc) (5.1le)

form a model of active immune response, tlitit2> with
~t. /T -t,/14) ,

s _ 171 177174
initial data xl(tl)—xloe +T18k(1—e X10°

x2(t1) =0, x3(t1)=F, x4(t1) = G, h(tl) = H, where F, G, H

are final values at t=t1 of (4.25). The simulation result

(with data the same as in B Model simulation) is given

in Figure 5.1.
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Explicit solutions to (5.2a) and (5.2b) are

~ ' t R
x,(t) = exp(a(t—tl))[xlo+8k// eXp(—a(tl—T))dT]
ty (5.3)
—t/Tz t T/Tz
xz(t) = 2oake e h(T)Xl(T)dT
v t

~

where a= a-

T

It is observed that xl(t) in (5.3) is no longer a
function of h(t) and can be explicitly solved, that is,

a(t-t.) 8 a(t-t.)
x,(t) = e 1 x g * _gE (e 1 —l)éfl(t) (5.4)

This is not unreasonable, because as stated earlier that
the antibody production comes mostly from plasma cells not
ICC. Coordination of (5.3) and (5.4) as well as the assump-
tion that immune complexes are removed out of the immune
system immediately after they are formed, will give the
following simplified model which characterizes the antibody-

antigen dynamics,
t

. Xq —t/Tz T/Tz
X, = o'f . (t)- —+2a'"ake e h(t)f,(t)drt
3 1 Tq 1
ty
- kaXSh
ho= -2 _ ke x,h o+ h.(t), t,<t<t
T k™3 i ! 1- -2

The integral term can be eliminated by redefining state

variables yl(t)=x3(t), yz(t)=§3(t), and y3(t)=h(t), that
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is, Yis Vg and Y3 denote the antibody concentration, the

rate of change of antibody concentration, and the free
antigen concentration, respectively. Then an equivalent

model is obtained as,

Y1 7 ¥y
. Y1 1 1
Vo = S(t) = - (== + =)y, t2a"akf (t)y
2 T2T3 T3 T2 2 1 3
(5.5)
1 1 2 2 2
ke, vaysg (12 - Th)yly3+k CkY1Y3
. YB
Y3 =T - keyy vy,  tyststy

where S(t) 2 o't (t) + & £ (t), f.(t) is defined in
1 T2 1 1
(5.4). The initial condition of model (5.5) is
_ _ eyl | F
yl(tl)—F, y3(t1)—H, and yz(tl)—a xlo—kckFH - 7 ,

where yz(tl) is obtained from (5.3).

Though (5.5) may be used as an approximate model to
represent the active immune response, its cubic nonlinear-
ity and time-varying property still make it difficult for
analytical study, and it is not pursued further here.

It may be appropriate to compare here the simplified
model (5.5) with Merrill's model (4.2). It is easily
seen that both models have cubic nonlinearity. In Merrill's
model, one state variable (i.e. xl(t)) is referred to the
'stimulation factor', others are concentrations of mole-

cules and cells. The dynamic equation for this 'stimula-
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tion factor' is a nonlinear cubic equation which is nothing

but the well-known Van der Pol equation [100]. The cubic

nonlinearity contributes several qualitative character-
istics of Merrill's model, which describes some features

of humoral immune response [80]. However, two disadvantages
are easily singled out. One is that it seems obscured that
the Van der Pol equation can be derived from biological
assumptions (immune mechanism). The other is that it is
difficult to test the model against the experimental data.
The B Model and the model (5.5) overcome these short-
comings but only by increasing the complexity of the model
equations (compare the second equation of (5.5) and the
first equation of (4.2)). 1In contrast to the 'stimula-

tion factor', the corresponding state variable in (5.5)

is yz(t), which stands for the rate of change of antibody
production. This observation is particularly significant

in the sense that the model (5.5) may be used to help inter-
pret part of the theory, proposed by Rosen [101], that

states: the features of rate-sensitive chemoreceptors

automatically possess many of the basic features of an
immune mechanism, such as tolerance inducibility, memory,
biosynthesis of antibody-like material, cellular proli-
feration and possibility of co-operative interaction

between cells.
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9.1.2 A Simple Model for Antibody Formation

The B Model as well as its simplified version pro-
posed so far, are seen to be nonlinear. Direct application
of control theory to such immune models is difficult and
rare results can be expected. The rest of this chapter is
devoted to the construction of simplified immune models,
which are more tractable from the viewpoint of control
applications. These simplified models will be derived as
based on some stronger hypotheses. 1In fact, a very simple
model (4.1) of immune response, which only include immuno-
competent cells (ICC), plasma cells and antibodies as

state variables, has been studied in Section 2.6.3, Section

3.2.3 and Section 4.1.2.

For convenience of comparison, the model (4.1) is
repeated here,

X
1
1= a(l—2ul(t))xl-?z—, xl(0)=x10

o]
|

X
- _ 2 —
Xy = 2aul(t)x1— —?g—, x2(0) 0 (5.6)
* _ 1 [ —
Xgq = 0 xl+a Xg x3(0) 0
where X5 Xg, and x3 denote the concentrations of ICC,

plasma cells, and antibody, respectively. The input ul(t)
is the probability of differentiation from ICC to plasma

cells, Oiul(t)il (pd in the B Model).



144

This model is a homogeneous BLS with scalar input
ul(t) which is simulated with immunological data and shown
in Figure 3.5 and Figure 4.2. From these simulations, it
is seen that the antibody production is unlimited due to
only one switching of the input function. In contrast to
this behavior, the B Model simulation shows that the anti-
body production is a saturated curve, as a consequence of
two switchings of its input function (Figure 4.7).

In addition to the negligence of antigen dynamics,
the catabolism of antibody as well as the generation of
stem cells from bone marrow are also neglected in model
(5.6). Removing the later two assumptions leads to the

following immune model.

X

. _ l _

Xy = a(l—2ul(t))xl— Ty + Bk’ xl(O) = Xqp

. X

Xg = 2au1(t)xl— ?;— , x2(0) =0 (5.7)
. X3

x3 = a'xl+a”x2— ¥g— , XB(O) = 0

where ul(t), Oiul(t)il, denotes the probability of
differentiation (pd in the B Model); Bk is the rate of
generation of ICC from bone marrow, and T is the mean
lifetime of free antibody sites.

Model (5.7) is more realistic than model (5.6) as

can be seen that there is an additional additive input Bk

in the model. Moreover, the main assumption of not consid-
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ering the antigen can be partially offset by redefining

l/r3 as another multiplicative input, say u2(t). Both

inputs ul(t) and u2(t) may be viewed as parametric
controls in the immune response, which are functions of
the injected antigens. From the above argument, model

(5.7) is revised as

L ] _ l _

Xy = a(l—2ul(t))xl— T, + Bk’ xl(O) = X190

L ] X2

Xy = 2aul(t)xl— —?;— , x2(0) =0 (5.8)

X

3 a‘xl+a”x2—u2(t)x3, x3(0) =0

Though models (5.7) and (5.8) are less realistic than
the B Model, they are more amenable to control-theoretic
analysis and may provide insight to the more complete
system. For example, as pointed out by Perelson et al.
[81], if the performance index of the immune system is
chosen to be the minimal time interval in which a prescribed
amount of antibodies can be produced, then an optimal
strategy can be found. This will be elaborated in more
detail in the next section.

The above models are obtained by assuming that
antigens have already stimulated the ICC. This may also
be interpreted as these models are for the immune response
in the active state, i.e. ps=l. Moreover, the model

(5.7) can be considered as a specific case of the B Model.
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To be precise, the notion of instantaneous equilibrium is

introduced. In view of the rate constants for association
and dissociation of the immune complex,  they are higher
than those relative to the other immune phenomena (compare
the rate constants in Table 4.1). Consequently, it is not
unreasonable in studying the long-range (slow transients)
to assume that a condition of instantaneous equilibrium
between antigen, antibody and immune complex is established
so that (5.1d) can be substituted by the instantaneous
relationship:

X4 = kx3h (5.9)

It is seen that the model (5.7) follows immediately
from the B Model by using (5.9). 1t should also be noted
here that the assumption of instantaneous equilibrium
reduces the state equation of free antigen concentration,

(5.1e), into

h=--2 4+ 0 (t), h(o) =0 (5.10a)
Th 1

whose solution can be explicitly found if the rate of
releasing the injected antigen ﬁi(t) is a priori known.
This is consistent with the fact that in immunological
experiments, the free antigen concentration is a directly
measurable quantity [102].

However, the assumption of instantaneous equilibrium
is a very strong one so as the free antigen concentration

is independent of antibody. This is not quite realistic,
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though this may probably be explained by that 'at equili-
brium' there is no 'net' reaction between free antigen and
antibody. It is known from immunological experiments
that the free antigen is distributed with respect to the
association constant k which may range from 103 liter

mole_1

to 1010 liter mole~1 [87]. Thus total free antigen
for all Kk 1is more accurately described as given by
(4.11). While (5.10a) may be used to approximate the
dynamic behavior of total free antigen h(t), it is not
accurate due to large number of small terms which are

neglected. But assuming x, =0 such that x4:khx

4 3

(ck>>l/r4) [82], somewhat more accurate approximation

seems to be

h=h, - & -7 4 (5.10b)
Ta

5.2 Control-theoretic Analysis of Immune Models

5.2.1 Optimization of an Immune Model

The mathematical immune models proposed in the last
section are 3-dimensional bilinear systems with particular
structure. The optimal control theory of bilinear systems
may be readily applied to exploit the homeostatic immune
system which seems to be endowed with the evolutionary
goal of eliminating antigen in some optimal manner.

However, optimization of immune models may be somewhat
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speculative, since it can be very difficult to ascertain
the optimization criteria which may include minimum response
time, minimum control effort, and minimum likelihood of
failure as well as other criteria [82, 103, 104]. The
following quotation, however, does seem reasonable:

"Although there is not a priori reason which
assures that the immune system responds to anti-

gen in an optimal way, the mammalian immune system

has been evolutionarily static for a long time.

It is quite possible that the system has become

static because it has evolved to the point where

it performs optimally" [105].

To illustrate the application of bilinear optimal
regulation to the approximate model (5.6), a time-optimal
control problem is formulated and resolved below. It will
be shown that the structure of BLS as emphasized previously
is important in the determination of optimal strategy.

The performance index (optimization criterion) is to
choose ul(t) so as to minimize the total time, T,

*
required to secrete an amount of antibody, Xq sufficient
to neutralize a given antigenic assault. This can be

formally stated as

min t *

ul(t) dt, X3(T) = Xq
0
The matrix B of model (5.6) is seen to have rank one,

and hence this time-optimal problem can be solved via the

following:
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Theorem 5.1 [19, 106]

Consider the BLS §=A§+u(t)B§, §(O)eRn—{O}, with the
input u(t)é?/= {uct); Sliu(t)iSZ’ measurable on te [0, T]}.

If rank (B)=1, i.e. B=g m', and rank (L:A%:...:A" 1p)= n,
then
(a) there exists a bang-bang time-optimal control
strategy uO(t) which transfers x(0) to the

prescribed x(T).

(b) if, furthermore, the BLS is positively invariant

(defined in Section 4.3.2), and all components

of m are nonnegative, uo(t) is uniquely

defined (almost everywhere) by

s, if AT-e'At&<o

0 =
us(t) = T oAt (5.11)
Sq if A e 2>0

where the costate vector A 1is the outward
normal to the terminal manifold 6(x(T)) at t=T.
(c) the optimal singular trajectories (i.e.

T -A

Aee t& = 0, for a nonzero time interval),

if they exist, lie completely on the hypersurface
defined by QT§ = 0.
This theorem is stated in a different format without

proof in the references cited above. For the sake of

completeness, the proof is outlined as follows:
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Proof of Theorem 5.1

It can be shown that the BLS, §=A§+u(t)B§ is equiva-

lent to i=u(t)enAtBeAtX by the transformation x=eAty

Hence by the rank assumption on B

() = u(t)e ™ mle y(t) (5.12)

The Hamiltonian, H, associated with the BLS (5.12) is

T -At T At

H = XO + (A7 e 2 mie” Ty(t))u(t) (5.13)
Owing to the assumption of rank (2 : AL ... }AD_I&)=n,
T -At . - . .
AT e % 1s a nonzero scalar unless Az0. With the aid

of assumptions on positive invariance of the BLS, the proof

is then established by direct application of the Pontryagin

Maximum Principle [107] to (5.13).

By Theorem 5.1, the time-optimal strategy of model

(5.6) is seen to be bang-bang, namely, (réa”/a'),

0, O0<t<T if 1r<2

0
u(t) = "
1, 0<t<T if r>2 and Xq is sufficiently
small
%
If Xq is sufficiently large and r>2, then a switch-

ing is needed, that is, uO(t)=O, Oit<t*; uO(t)=1, t*itiT.
The value of r (by definition the ratio of antibody

production rates of plasma cells and ICC) is pivotal

when r=2. This is 'no accident', but instead reminiscent

of the fact stated in Section 3.2.3 that the relative order

of (5.6)"is infinite it r=2.
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An interpretation of the above optimal strategy is
given below in view of immunological relevance, mostly
following the work of Perelson et al. [81]. If r<2,

then plasma cells hold no advantage over ICC and the optimal

policy is uO(t)=O, 0<t<T; i.e. no production of plasma

cells, pd=0. If r>2, then over some time interval it is

advantageous to differentiate ICC into plasma cells. The
time at which this differentiation occurs depends upon the
antigen concentration. If x3* is sufficiently small
that a single generation of plasma cells could produce

x3*, then clearly the control should be uo(t)=1, 0<t<T.

In the case of x3* is sufficiently large, the optimal
. . . . 0 *
strategy consists of a single switching: u (t)=0, O<t<t ,

*
uo(t)=1, t <t<T. 1In other words, the lymphocyte population
proliferates, producing antibody at a rate, a'xl, until a
critical time, t*, is reached. Then all proliferation

ceases and all ICC differentiate into plasma cells until

the antibody required x * is reached. The switching time,

3
%
t , can be found from the switching equation
AT' _At& ETeAtX(t)=O, where A= - %g
In general, the maximum principle only gives necessary
conditions for optimality of a control. However, in this

case the extremal controls satisfy a sufficient condition

as well [81]. Thus no intermediate 'graded' response is
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more efficient ————— a fact that is perhaps not intuitively
obvious.

The control of bang-bang type is frequently used in
engineering systems, for example, flip-flop in switching
circuits, etc. It may be said with some reservation that

the bang-bang control is analogous to the all-or-none

principle in neurophysiology [108]. The analogy in the
expression of the immune system and nervous system has been
a great impetus in contemporatory immunology since it was
introduced by Jerne [109, 110]. Mathematical immune models
proposed by Richter [111] and Hoffmann [112] which are now

called network models, are relevant to this analogy, that

is, regarding the immune system as a lymphocyte-antibody

network similar to neural network in the nervous system.

5.2.2 Reachability Analysis

The simplified immune models in Section 5.1.2 are

studied here from the viewpoint of BLS controllability
theory. The foregoingly developed results are used to
achieve a more complete analysis of these immune models
so as to acquire some immunological implication.

To begin with, it is recalled that the model (5.6)
is equivalent to the biocontrol example (2.36) with b=d

(Section 2.6.3). This model has also been studied in

Section 3.2.3 (Example 3.6), Section 4.1.2 (Figure 4.2)

and Section 5.2.1 (time-optimal control). It has been
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shown that this BLS model is positively invariant and
satisfies the rank assumption. As a consequence of its
positive invariance, the model is not completely controll-
able, while the same conclusion may also be easily veri-

fied from the results presented in Section 3.1.3. The

uncoﬁtrollability is expected for this model in the sense
that all state variables must stay positive under any
admissible control. Based upon this argument, the complete
controllability which often plays no role in biological
models with constrained control(s) will be replaced by

the consideration of reachability. Formally speaking, a

state X1 of a control system is said to be reachable from
another state X5 if there exists an admissible input

function that transfers X5 into §1 in a finite interval
of time. The collection of all states that are reachable

from a state is referred as the reachable set of that

state. Hence, it is of practical interest to characterize
the reachable set of the equilibrium state(s), so as to
know explicitly the effect of admissible control on the
state variables of concern [2]. For an immune model such
as (5.6), reachability study makes it possible to predict
the dynamics of the immune system after being applied with

control Py More important, the control Py is not only

a function of free antigen concentration h(t), but can

be augmented by nonspecific factors [113].
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The theory of BLS reachability is presented in

Section 2.4, where the results are obtained from Lie

algebraic techniques. By examining the specific structure
of the model (5.6), the following result is readily appli-

cable.

Theorem 5.2 [106]

Let A(t), Ei(t) and gi(t) be measurable and the
components of gi(t) be nonnegative for all t>0. Suppose

that X satisfies the R"-valued differential equation

. m
x(t) = ACE)x(t)+ )

T n
l_1ui(t)gi(t)gi(t)§(t); x(0)eR,

(5.14)
o<y (B By

and assume for each admissible ui and all t>0 the matrix
m

A(t)+ )
i=1

ui(t)gi(t)gg (t) 1is nonnegative off the diagonal.
Then the reachable set at time t,egz(t), is convex for all
positive t. RE denotes the open subset of R"  con-
sisting of those n-tuple having positive entries.

An immediate consequence of the above theorem is

Corollary 5.1

Consider the BLS with scalar input u(t), O<u(t)<1

x = Ax + u(t)Bx, x(0)eR} (5.15)
If the BLS is positively invariant, and Rank (B)=1, then

‘%e(t) is convex for all t>0.
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It can be easily checked that the model (5.6) is
positively invariant and rank (B)=1. Therefore, by the
above corollary, the immune system represented by (5.6)
can be regulated by varying the probability of differentia-

. . . . n . .
tion Py within a convex set in R+. This seems obvious

that, for example, if the immune system is capable of
producing two levels of antibodies, then it is theoretic-
ally possible to regulate the antibody production falling
between these two levels. Other state variables, ICC

and plasma cells can be similarly controlled.

The above analysis confirms the convexity of the
reachable set of a simplified immune model, while the
problem of finding the reachable setegZ(t) remains. This
is resolved as below with the aid of material presented

in Section 2.4.

It is known from Theorem 2.2 that the reachable set

2@2(t) for (5.15) can be expressed as eAt{epo?O}G§0
where {expi?O}G denotes the Lie group consisting of

elements in the form exp M, i.e.

{epo§B}G A {exp M: Mezf%}G. Computation ofégg(t) for

(5.6) is shown:
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o~ %— 0] 0] -q 0 0
1
1
A = 0 — 0] B = 20 0 0]
T
2
o o 0 , \0 0] 0
N /
N
0 0 0
[A, B]= —%—0‘— - 292+ 22 0
2 T
-aa'+2aa" 0 O)
[[A, B], B] = -alA, B]
0 0 0
(A, [A, Bll=| &4 0 0
62 0 0)
5, 2 2o+ - - 12
2 1
18]
6y & af(a - 2)(al-4 am)- 22
1 2
A k _ )
Hence &/ 0 {adAB, k=0,1,2,...1} LA has basis {B, Cl’ C2},
where
0 0 0 0] 0 0
C1= 1 0 0 C2_ 0] 0] 0
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-0.0
e 1 0 0 )
0 -0,0
2 1 1
+ <= -
{exp,Z? } .= (2 $ a)(l © ) 1 0 61, Og> 635R+
0°G 1
93 -0 .o
\6—3(1_8 ) 0 1 )
N (5.16)
(a- l/Tl)t 0 0
e
-t/1
At 2
e =10 e 0 (5.17)
\Al(t) Az(t) 1
(a—l/TJ)t
é ¢ € ) -1
where Al(t) = o o 1/T1
-t/
A 2
Az(t) = 0 Tz(l—e )
Consequently, the reachable set at time t 1is found
via (5.16), (5.17) and x,=(x;,, O, 0)', that is,
(a- %—)t—ela h
e 1 X410 .
t 61,805,038k,
T 0 -0,0
Kty ={| e 2(2+6—%)(1—e Y xg,
1 A3=A1—A2(2+
-0,a 0 0
1 2 3 8 8
Xjple T Agrh (gt ) | 2y 3
1 1 1% ela
N
(5.18)

The characterization of the reachable set for the

simplified immune model (5.6) is now completed.

The same
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approach can be extended to models (5.7) and (5.8), though
the computation is expected to be more involved.

In addition to providing the insight of the immun-
ological regulation, the task conducted in this section
also elicits an interesting issue, namely, the link
bet@een ‘iz(t) and the Volterra series representation of
BLS. Both results arising from characterizing the reach-
able set as presented here and from deriving the Volterra

series of BLS as presented in Section 3.1.1 lead to the

boundedness criteria of BLS. It seems worthwhile to clarify

this connection in a future study.
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VI. CONCLUSIONS

In this thesis, bilinear systems and their applica-

tions in analyzing immune models are studied with the aid

of Lie algebraic techniques. The results accomplished are

now summarized:

1)

2)

Analysis of bilinear systems is presented via
Volterra series. Stability criteria are derived
for specific classes of BLS. Estimates on the
bound of the system output and on the trunca-
tion error are developed. The results obtained
are used to examine the connection of BLS con-
trollability and stability as well as the
structural aspects of BLS.

The inverse system design for a special class

of bilinear systems with input matrices of

rank one is established. It has been shown

that for such BLS, their corresponding inverse
systems are constant linear systems with non-
linear outputs. Moreover, in view of the in-
verse system as a state observer, a simplified
immune model is used as an example to illustrate
the estimates of unmeasurable states and

unknown input from the known output data. The
implication of this approach in immunology is

the estimate of dynamic behavior of ICC and
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plasma cells from the antibody production which
is assumed as a measurable quantity.

3) A mathematical model of humoral immune response
stimulated by T-independent antigens is pre-
sented. The model is shown to be acceptable in
the sense that with respect to the equilibrium
state, it possesses a unique solution, positive
invariance and globally asymptotic stability.
Results of computer simulations are provided
to conclude that the model behavior is consistent
with the experimental data available from the
literature.

4) Simplified immune models are proposed, which are
shown to be BLS with particular structure so
that theoretical results developed earlier can
be advantageously applied. The reachability
analysis and a time-optimal control problem of
an approximate immune model are presented and
interpreted from the immunological viewpoint.

Possible future study which may extend and take

advantage of this research is suggested as the following:

a) It is known (see Figure 4.1) that the humoral
immune response 1is also regulated by thymus-
dependent lymphocytes (T cells) and phagocytic
cells (macrophages). However, the detailed

mechanism of this cellular interaction is not
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certain. A mathematical model which takes this
into account and contains the B Model as a sub-
system, may be invaluable to help unravel many
a multi-cellular event in immunology.

The inverse system of a BLS is in general highly
nonlinear. The current research investigates a
specific class of BLS which possess inverse
systems of simpler structure. However, for
general BLS, much remains to be developed. 1In
theory, the control-theoretic properties of the
inverse system of a general BLS need to be
exploited. 1In application, available data from
immunological experiments may be used to study
more realistically the dynamic behavior of an
immune system. The biomedical significance

of designing inverse systems is already given

in 2).
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APPENDIX A

Some Definitions and Facts on Lie Algebra

Basic facts on Lie algebra which are needed in this
thesis are summarized here. Details can be found in
Refefences 1 and 2. Throughout this appendix, only
finite dimensional (matrix) Lie algebras over the field

R of real numbers are considered.

Part A: Definitions
1. Let f? be a linear space over a field R.
Suppose that‘Z? admits an operation denoted by

[x, y]l, which satisfies the following con-

ditions

a) bilinearity: [Alxl+A2x2,y] = Al[xl, yl+
Ao lxg, ylx,ye &£

b) antisymmetry: [x, yl= -ly, X]&%X,YEJf?

c) the Jacobi identity:
[[x, yI, zl+[ly, z], x]+[[z, x], y]l=0
VX,y,zeg
then,E?is called a Lie algebra.
2. A Lie subalgebra I is an ideal of,E?if [x, ylelI
whenever xef?and yel.

3. The derived series of1é7is the decreasing sequence

of ideals DQ&? D¥f?, DZZ?, o ofif’defined

inductively by Do)g=g, Pt ~[pP¥Z, DPY
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The descending central series of_f?is the decreas-
ing sequence of ideals CQE?, ClZ?,'°° of aé?
defined inductively by CQE?=XQ, Cp+lﬁ? =
(£, cP¥P ]
The Lie algebra f? is said to be
abelian (commutative) if Dlﬁg =0
nilpotent if Cpl? = 0 for some p
solvable if DR&? = 0 for some p
simple if it contains no nontrivial ideals
semisimple if it contains no nontrivial abelian
ideals.
The radical R of a Lie algebra{f? is the unique
maximal solvable idealfg (i.e. R 1is the sum of
the solvable ideals of,E? )
The center of a Lie algebra,ﬁ? is the set of all

elements xe % such that [x, y] = OVygg

The adjoint operator on Z? is defined by adgy=y,

i+1

x y=1[x, ad;y] where x,ye,f?

adiy =[x, y], ad

A group G 1is said tb act transitively on a

linear space X if every point of X can be
carried into every other point of X by some
element in G. 1i.e. for every pair of points

X, v 1in X, there exists TeG such that Tx = y.
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Basic Facts

CIZDCZZDCBZD"° :DCn:D"'

I U2U U

plop2opi> s opto -

Hence abelian (commutative)=>nilpotent=solvable,
but none of the reverse implications holds in
general.

1f l? is solvable, then the subalgebra [f?,z?]

is nilpotent.

Engel's Theorem: A Lie algebra is nilpotent

iff theadx is nilpotentJVer?(i.e. (adx)n=0
for some n)

Levy-Malcev Theorem: Any Lie algebra can be

decomposed as the direct sum, in the sense of
vector spaces, of its radical R and a semi-
simple subalgebra S :X? = R@®S ,; Any semisimple
Lie algebra § can be written as a direct sum of

simple ideals: S = S @S 9 ® " ® S x Where
the elements of distinct Sj must commute.
Hence g=R@ (S, @52 @ " @Sk)

A matrix Lie algebra f? is solvable, iff there
exists a (possibly complex-valued) nonsingular
matrix P such that PxP—1 is in upper triangular
form for all XEZ?.

Let X? be a solvable Lie algebra, acting on the
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vector space V (both over C); then there exists
a simultaneous eigenvector for all x of,f?.
7. A matrix Lie algebra f? is nilpotent iff there
exists a (possibly complex-valued) nonsingular

matrix P such that for all xe,ﬁ?, PXP—1

has the nilpotent canonical form. i.e.
-1 . cee
PxP = diag (@1(x),®2(x), ) where each
@i(x) is a matrix of the form ¢1(x) *
¢5(x)
0 65 (%)

and ¢i's are linear mappings: ¢k:ﬁ?+ﬁ?,

6, (12, 21) = {0},
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