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A SYNTHESIS OF SIGNIFICANT.._ DEVELOPMENTS IN THE

HISTORY, CALCULATION AND PROPERTIES OF THE

NUMBER e

INTRODUCTION

Interest in the number represented by the letter e

is relatively recent. It first came into notice in the

16th century. This interest grew and developed under such

capable minds as Napier, Louiville, Leibniz, Newton, Euler,

and Hermite to mention only a few. The history of e is

roughly broken into three periods. The first is the 17th

century when the mathematicians were using apprOximation

methods to find the value of e. The first half of the

18th century is almost completely dominated by the work of

Euler. The third part is in the latter half of the 18th

century when the actual nature of e was investigated and

the irrationality and transcendence of e was discovered.

This thesis is divided into three chapters. The first

deals with the actual historical development of e. The

second deals with the development of e from the defini-

tion of the logarithm. It includes the proof of the ir-

rationality and transcendence of e. Also included is

a report on the normality of e which, although not

truely a mathematical concept, sheds a more knowledge-

able outlook on e. The third has to do with the



2

approximations that have been made of e , and takes us

to the electronic computer and its amazing ability to

give a huge number of places in the decimal expansion.



CHAPTER 1

HISTORY

INTRODUCTION

3

This chapter is devoted to the historical development

of our knowledge of e , (see Appendix I and II). The num-

ber e is defined and used in several ways by mathemati-

cians. We here define it terms of the calculus as:

e = limit (1 + 1/n)n
n + 00

A fifteen place approximation is 2.718281828459045.

John Napier's Logarithms

The ancient Greek mathematicians considered many prob-

lems, the solutions of which completely escaped their grasp.

One such problem was the quadrature of the hyperbola (see

Appendix III). Pi is involved in the formulas of the cir-

cumference and area of a circle. In similar manner e is

involved in the area between the arm of the hyperbola and

a chord perpendicular to the transverse axis. Unknown to

the Greeks they were dealing with a number similar to pi,

but which would have to wait nineteen centuries to have its

mystery revealed.

cameThe discovery of e , as with many discoveries,
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about accidently. John Napier, a Scotish nobleman, had

two burning interests in life. One was religion and the

other was mathematics. He was very active in both disci-

plines and is reported to have said, "If I am ever famous,

it will be due to my religious publications." History has

shown him to be remembered and famous for his accomplish-

ments in mathematics.

To Napier we owe the invention of the decimal point,

the logarithms, two trigonometry formuli known as "Napier's

Analogies", and a mechanical device for multiplying, divid-

ing and taking square roots known as "Napier's Rods". As

C. G. Knott observed, "Perhaps no other mathematician has

as clear a title to his invention as Napier has to loga-

rithms."

In 1614, Napier publish Mirifici Logarithmorum

Canonis Descriptio, being interpreted "A Description of the

Admirable Table of Logarithms". In the Descriptio appears

the first table of Logarithms (Appendix VI). It is ex-

plained that these tables are to be used to shorten mult-

iplication and division, operations so fundamental that to

shorten them seemed impossible. (Kasner, 1963)

M. J. Cajori in his History of Mathematics, 1919, re-

counts that Henry Briggs (1556 - 1631) a professor of geom-

etry at Oxford University

"was so struck with admiration of Napier's
book that he left his studies in London to
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do homage to the Scottish philosopher. Briggs
was delayed in his journey, and Napier com
plained to a common friend, 'Ah, John, Mr.
Briggs will not come.' At that moment knocks
were heard at the gate, and Briggs was brought
into the lord's chamber. Almost one quarter
of an hour was spent, each beholding the
other without speaking a word. At last Briggs
began, 'My lord, I have undertaken this long
journey purposely to see your person, and
to know by what engine of wit or ingenuity
you came first to think of this most excellent
help in astronomy, viz, the logarithms; but
my lord, being by you found out, I wonder
nobody found it out before, when now it is
so easy." (p. 151)

At this conference between these two great men, Briggs sug-

gested the possibility of making the logarithm of one, or

some power of ten, equal to zero. Napier agreed the idea

had great merit and encouraged Briggs to continue his in-

quiry on that point. Thus, in 1624 when Briggs published

his work Arithmetica logarithmic, we find him using the

base ten in his logarithms, and making the logarithms of

one equal to zero.

Napier defined his logarithms as follows. Consider a

line segment AB and an infinite ray DE , as shown in

figure 1. Let points C and F start moving simultane-

ously from A and D , respectively, along these lines

with the same initial rate. Suppose C moves with a vel-

ocity always numerically equal to the distance CB , that

is, a decreasing velocity. At the same time, F moves

with a uniform velocity. Then, Napier defined DF to be

the logarithm of CB. That is, setting DF = x and



CB = y , x = Nap log y.
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Figure 1.

An association of this type between an arithmetic pro-

gression and a geometric progession was suggested as early

as 1544 by Michael Stifel. But not until Napier did any-

one come to a reasonable process of actually putting the

association to good use.

Our present day natural logarithms, also called

Napierian logarithms, are claimed by many people to be the

logarithms that John Napier invented. Such a claim is not

substantiated. The table in Appendix vi is a copy of part

of the logarithm Napier presented to the public in 1614 in

the Descriptio. One observes that the logarithms decrease

as the number increases, contrary to what happens with

natural logarithms.

The question arises as just what is the connection

between Napier's logarithms and the number e that we are

discussing. The idea of base, or base number, never sug-

gested itself to Napier. Yet we find the relationship bet-

ween the natural logarithms and Napierian logarithms only a

difference of the bases used. Napier, unknowingly, used



l/e as the base of his logarithms. We wish to show this

using the calculus.

Referring to figure 1, let AB = 107. Using CB = y

then AC = 107 - y. Then the velocity of C is - dy =
dt

Y or sly = - dt. Integrating, we have logey = - t + k.

To evaluate the constant of integration we set t = 0.

Thus, at t = 0 , y = 107, and loge 107 = - 0 + k or

k = loge 107. Therefore, loge y = - t + loge 107. The

velocity of F = dx/dt so that x = 107t. From this we

see that:

Nap log y = x = 107t = 107 (loge 107 - loge y)

= 107 loge (107/y)

= 107 logve(y/107)

We see that Napier used l/e as the base of his logarithms.

Two years after Napier first published his logar

rithms, there appeared on the market a translation of his

book into the English language by Edward Wright. In the

second edition published in 1618, there appeared an appen

dix compiled by William Oughtred-(Appendix IV) in which

appears the first table of what we recognize as natural

logarithms. Thus, four years after logarithms were in-

troduced, logarithms to the base number e were produced.

Discovery of e

After Napier's publication of the Descriptio loga-
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rithms became popular as a help in solving problems involv-

ing lengthy multiplication and division as well as helping

with calculations involving the extremely large numbers

that come in astronomy. But, knowledge of the number e

had not actually emerged to its full stature. In fact, its

being a real number had been only hinted at.

The quadrature of a hyperbola was still an unsolved

puzzle, and many great men were involved in its solution.

In 1647 a Belgian Jesuit, Gregory St. Vincent, published a

work in geometry in which, among other things, he consider-

ed the quadrature of a hyperbola. A theorem that he proved

is:

"If the equation of the hyperbola be referred
to its asymptotes as axes and the abscissae
be taken in geometrical progression, the
hyperbolic trapezia standing on the abscissae
are equal." (Mitchell and Strain, 1938. p. 481)

Vincent's pupil, Alfons de Sarasa, made additions to this

theorem and was the first to state it in terms of loga-

rithms. In modern terminology, this theorem states that

the area between the hyperbola and the corresponding

asymptote is divided into equal areas if we use a geo-

metric progression as the points on the asymptote. As an

example consider the following: let xy = 4 be the

hyperbola, and use as the geometric progression the se-

quence 1 , 2 , 4 , 8 , 16 ,... The area 'a' in figure 2 is
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xdx = 4 ln 2

1

While the area in

2

x4
dx = 4 (ln x)

4

2

b

= 4 (ln 4 - ln 2)

= 4 (ln 2
2

- ln 2)

of figure 1 is

= 4 (2 ln 2 - ln 2)

= 4 ln 2

9

All areas thus constructed using the geometric

series are equal.

St. Vincent had thus reduced the problem of the quad-

rature of the hyperbola to one of infinite series.

Figure 2.
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Eight years later, in 1655, John Wallis published his

Arithmetica Infinitorum, in which he explains the method of

effecting the cmac7,ratures. His method was that of inter-

polation which gave him the value of it as

Tr = 2
2.2.4.4.6.6.8-8

1-3.3-5.5.7.7-9

For a detailed account of the method of interpolation, the

reader is referred to W. W. R. Ball (1889). This difficult

and elaborate method used by Wallis was used by many math-

ematicians of the seventeenth century. Yet, this very

difficulty led Isaac Newton to the discovery of the bi-

nomial theorem, and was the means of interesting Lord

Brounc:aer in obtaining the area bounded by the equalat-

eral hyperbola, xy = 1 , one of its asymptotes, and the

lines x = 1 and x = 2.

In 1667 James Greogory showed how to compute loga-

rithms by approximating to the hyperbolic asymptotic

spaces, that is, the area between the hyperbola and the

asymptotes, by means of a series of inscribed and circum-

scribed polygons. Thus, the quadrature of the hyperbola

became equivalent to the computation of lograthims. The

logarithms were called hyperbolic logarithms.

The calculus had its beginning in finding areas, vol-

umes and tangexts to curves. The means of expressing the

hyperbolic logarithm of numbers also came from determining
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areas connected with the hyperbola, as explained above.

Isaac Barrow was a mathematician and theologian as

well as the gifted teacher of Isaac Newton. Barrow was in

terested in the quadrature of the hyperbola and seems to

have improved on Gregory St. Vincents' work in that field.

To Newton was intrusted the care and publication of

Barrow's Lectiones Opticae. Newton took the liberty of

writing two appendices in the 1704 edition. The second ap-

pendix was titled De quadratura curvarum and was written in

response to a letter from Leibniz asking for the method

used in deriving the binomial theorem. This appendix con-

tains three methods for obtaining the value of a number by

use of a series: first, interpolation, the method used to

obtain the binomial theorem; second, the binomial theorem;

and third, fluxions. In the appendix the series

2y= z+
z

2

z
3

z
4

6 24
+

is derived and Newton explains that the use of this series

greatly simplifies the work in the computation of loga-

rithms. We know this series as the exponential series, and

observe that Newton was the first to derive it.

A professor of geometry at Oxford University, Dr.

Edmund Halley, published an essay in 1695 dealing with the

construction of logarithms and antilogarithms without re-
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gard to the hyperbola. In the closing paragraph of the es-

say, Dr. Halley writes,

"Thus, I hope I have cleared up the doctrine
of logarithms, and shown their construction
and use independent from the hyperbola,
whose affection have hitherto been made use
of for this purpose, tho" this be a matter
purely Arithmetical, nor properly demonstrable
from the Principles of Geometry. Nor have I
been obliged to have recourse to the Method
of Indivisible or the Arithmetick of
Infinites; the whole being no other than
an easie Corolary to Mr. Newton's General
Theorem for forming Roots and Powers."
(p. 67)

For the first time we have logarithms being constructed by

using exponents.

In 1772 Roger Cotes suggested that a relation existed

between the exponential and the trigonometric functions.

He invented the terms modulus and modular ratio. The mod-

1 1 1
ulus is the ratio of

1

1

7 7.31- 7.3.4

to one. The modular ratio was the ratio of one to

1 1 1 1

1
-r

2 2.3 3.4
The modulus we recognize as the ratio of 2.71828.... to

1 and the modular ratio as the ratio of 1 to the num-

ber 0.367897944:1171.... Probably due to Cotes' early

death, he did not fully recognize the relation between the

trigonometric and the exponential function. His discovery

becomes ie = loge (cos 8 + i sin 8). This relationship

was left for Euler to bring forth.
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One of the first men to have a clear understanding of

the nature of logarithms as exponents was William Jones.

He realized that almost any number might be taken as the

base of a system of logarithms. Quite possible he was the

first to recognize e as belonging to the real numbers.

William Jones wrote a tract in 1771 in which he explains

that "any number may be expressed by some single power of

the same radical number." By radical number Mr. Jones

means "base."

In the first half of the eighteenth century, the con-

tribution to the concept of e is almost soley centered

upon one man, Leonard Euler. One of the most notable

treatises dealing with e was published by Euler (1748)

entitled, Introductio In Analysin Infinitorum. In this he

derives the exponential series from the binomial series,

the same as Halley had done. He further explained that the

sum of this series, when z = 1 , would be denoted by the

letter "c". Later he changed the notation to e. From

papers and letters written by Euler, it appears that he

used e for this number as early as 1727. The use of the

symbol is original with Euler. He recognized the existence

of a real number as the sum of a series and also as the

base of the system of hyperbolic logarithms.

Euler did a great amount of work with continued frac-

tions and developed many continued fractions that involved
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e. The connections between the trigonometric and exponent-

ial function which he discovered are

1
cos x =

1
(e
ix

+ e-ix ) , sin x =
2 2i

(e
ix

-e
-ix

)

Perhaps, as Kasmer and Newman (1963) report, the most

beautiful discovery accredited to Euler is the formula

ei + 1 = 0 which combines in one simple formula the two

most popularly known transcentental numbers, the base of

the complex number system and the two identities of the

arithmetic operations on real numbers.

"Elegant, concise and full of meaning, we
can only reproduce it and not stop to
inquire into its implications. It appeals
equally to the mystic, the scientist, the
philosopher, the mathematician. For each
it has its own meaning." (Kasner and Newman.
1940. p. 103)

The Nature of e

Leonard Euler may have been the first mathematician to

infer that e is irrational. In his work with continued

fractions he suggested that to every rational number there

corresponds a finite continued fraction and an infinite

continued fraction can have only an irrational value.

The first published proof that e is irrational was

by J. H. Lambert in 1761. Lambert used Euler's continued

fraction for e 1 and developed a continued fraction
2

whose value was for e - 1 .

ex + 1
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But e
x

- 1 = e
x/2

- e
-x/2

-6-77T-r ex/2 + e-x/2 = tanh x = 1 tan ix . By
2 i 2

letting ix = z , the continued fraction for tan z is ob-
2

tained.

From this continued fraction, Lambert was able to

prove that e could not be rational.

In 1815 J. B. Fourier proved e to be irrational
CO

(Tropfke, 1902) by using the series e = 1 . By as-
17!

0

suming e was rational he was able to contradict the num-

ber property that there is no integer between zero and one.

Attempts to prove e was transcendental were made as

soon as the difference between an algebraic number and a

transcendental number was clearly defined. In 1844 Lio-

ville proved the existence of transcendental numbers.

Charles Hermite, a French mathematician, in 1873, proved

in two distinct ways that e was transcendental. Since

then the proof has been much simplified, but the simplified

proofs still depend largely upon a function that Hermite

used. That e is a transcendental number is still refer-

red to as Hermite's theorem.
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MATHEMATICAL PROPERTIES OF e

INTRODUCTION
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In this chapter we propose to develop the exponential

function, ex , by beginning with the definition of the

logarithm of x. This closely follows the historical ap-

proach. In many calculus texts, to save time and get di-

rectly to the differentiation and integration of the ex-

e
xoonential function, is defined as a limit or as the

sum of an infinite series. We nropose to develop both of

these formulas and thus find several ways of expressing e.

In this approach we define the exponential function as the

inverse of the logarithmic function and derive a limit and

series expression for ex. This development follows

closely that found in Calculus: An Introductory Approach

by Ivan Niven (1961). The development is more detailed

than given by Niven.

Development of ex

Our notation for the logarithm of x will be L(x)

throughout this chapter. This is to caution us against

using intuitive properties that we may already know about

the logarithmic function.



Cefine L(x) as follows:

L (x) = dt t
_1 dt for any x > 0

J1

We note that L(1) -

-1

j-3E" dt = 0 and L(x) < 0 for

1

0 < x < 1. Thes follow from the general definition of an

integral.

Theorem 2.1. The derivative of L(x) is l/x. ie

L' (x) = 1/x.

Proof: By definition of a derivative

17

L' (x) = limit L(x + Ax) - L(x) _
AxAx + 0

lim 1
Ax + 0 Ax

rx + Ax

dt - dt

1 1

These integrals may be combined to give

L' (x) = limitAx + 0
1

Consider the limit as Ax tends to zero through positive

values. The integrand has maximum value l/x and minimum

value 1/(x + Ax).
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rx + Ax
Ax

x + Ax < dt < Ax
x

Dividing by Ax we have

x + Ax

X +
1

Ax dt <
x

x

As Ax tends to zero we see that the center term is

caught between l/x and a fraction tending to l/x. It

follows that L'(x) = l/x.

Now as Ax tends to zero through negative values the

minimum value of the integrand is l/x and the maximum

value is 1/(x + Ax).

Then we have

x

-x
< dt < -Ax

x t

x + Ax
x + Ax

Multiplying by -1/Ax > 0 , and interchanging the upper and

lower limits on the integral we have

x + Ax

1
f tx -4= x + x

3

x

[1

As Ax tends to zero it follows that L'(x) = l/x.

Therefore, L'(x) = 1/x for all x > 0.



19

Many theorems could be developed, but only those that

will be of value in establishing our goal will be consider-

ed.

Theorem 2.2. For any positive numbers a and x,

L(ax) = L(a) + L(x)

Proof: In this proof we shall use theorems from the cal-

culus that are .proved in most calculus texts. Let us re-

gard a as a constant and x as the variable. Let

u = ax. Then v = L.(u) , u = ax

dy/du = L"(u) = 1/u , du/dx = a

d/dx [L(ax)] = dy/dx = dy/du du/dx

= 1/u a

= 1 /ax a

= 1/x

Thus L(ax) and L(x) have the same derivative and differ

by at most a constant. L(ax) = L(x) + c.

By setting x = 1 we have L(a) = c , where L(1) = 0.

Therefore L(ax) = L(x) + L(a)

Lemma 1. L(2) < 1 and L(3) > 1.

2 3/2 2

f
L(2) = 1 ut = 1 + 1 dt = I

1
+ I

2t t t

1 1 3/2

as 1/t < 1 when t > 1 we may replace 1/t by its

maximum of one in I
1

and 2/3 in I
2

.
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J

r 3/2

I
1

= I dt = t

Jl

3/2

1

2

I
2 3 3

=
a

dt a t

3/2

= 3/2 - 1 = 1/2

2

= 4/3 - 1 = 1/3

3/2

L(2) = I1 + 12 = 1/2 + 1/3 = 5/6 < 1

(3
L(3) = dt which we shall break down into the follow-

-I'
1

ing six integrals:

3 5/4 3/2 7/4 2 5/2 3

1 1
1- dt =ft dt +fi.-- dt +jri dt +1.11 dt ±14 dt +p dt

1 1 5/4 3/2 7/4 2 5/2

and let the respective integrals equal

I
3

+ I
4

+ I5 + I
6

+ I
7

+
I8

As l/t < 1 when t > 1 we replace l/t by the minimum

values.

Thus;

L ( 3 )

5/4 3/2 7/4 2 5/2 3

dt +1-4. dt +jr; dt +.14 dt +14 dt 11-4 dt

5/4 3/2 7/4 2 5/2

= 4 1 2 1 4 1 1 1 2 1 1 1
-5-(T) 74) + 7(i) + 74) + -5(7) + 7 7)
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841
> 1

840

Therefore: L(3) > 1

From the definition of L(x) we can see that since

the integrand 1/t is positive, the value of L(x) in-

creases as x increases and decreases as x decreases.

That is, L(x) is a monotonic increasing function. We

prove that as x tends to infinity L(x) is unbounded,

that is for every positive number M (no matter how large)

there exist values of x such that L(x) > M. When

y = x we know from Theorem 2.2 that L(x
2

) = 2L(x). Again

with y = x2 we have L(x
3

) = 3L(x) , and by induction,

L(xn) = nL(x) for every integer n > 1. When x = 2 this

becomes L(2n) = nL(2) and hence we have. L(2n) > M

n > M/L(2). Thus L(x) is unbounded.

Since the function y = L(x) is a monotonic increas-

ing differentiable function, with L'(x) 0 for all

positive values of x , the calculus reveals that the in-

verse function is also differentiable. (Apostol, 1961.

p. 197). We denote the inverse function by x = E(y).

Then E'(y) = dx/dy. We know from calculus (Apostol, 1961.

p. 197) that sly. dx with dy/dx = L'(x)
dx d 1'Y

and dx/dy = E'(y) we have L'(x) - E'(y) = 1. Since

L'(x) = 1/x and E'(y) = 1/L'(x) = 1/(1/x) then

E'(y) = x. Also x = E(y). Writing this using usual

variable we have E(x) = E'(x).
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By using Lemma 1 above, we can obtain a useful con-

cition on E(x). Let L(a) = c , L(x) = y L(ax) = w

then w = c + y. In terms of the inverse function we get

a = E(c) , x = E(y) , ax = E(w) and ax = E(c + y)

(1) Hence E(c + y) = ax = E(c) E(y)

This property shall now be used to analyze the function

E(x). By substitution:

(2) y = 0
E(0) = 1

y = 1, c = 1, E(2) = [E(1))2

y = 1, c = 2, E(3) = [E(1)]3

y = 1, c = 3, E(4) = [E(1)]
4

(3) y = 1, c = n 1 , E(n) = [E(1)]n

Now, for any positive rational number p/q , p,q positive

integers, form the product with q factors;

E(p/q) E(p/q) E(p/q) = [E(p/q)](4.

By successively applying (1) to the left side we find the

total product to equal E(p). From (3) we obtain

(4) [E(p/q)](1 = E(p) = [E(1)] , E(p/q) = [E(1)]P/c1

By replacing c for p/q and y for -p/q in (1) and

then using (2) and (4) we obtain

(5) E(p/q) E(-p/q) = 1 or E(-p/q) = [E(1)] 7P/c1

With E(1) playing such an important role in the above

equation, we name E(1) = e. Then the equations (3), (4)
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(5) become

E(n) = en , E(p/q) = eP/q and E(-p/q) = eP/q

We conclude that

(6) E(x) = ex for all rational values of x.

Now we show that (6) is true for irrational values of

x. Consider one specific irrational number a. Let the

sequence of rational numbers

(7) a
l'

a2, a
3

an,....

have a as a limit Consider the sequence of numbers
a
2

a
3

a
n

e
a
1

e(8) , , e

We wish to show that this sequence has a well defined

limit. Sequence (8) can be written

(9) E(al) , E(a2) , , E(a
n
),

Since E(x) is differentiable it is continuous and

limit E(an) exists and is equal to E(a). But (8) is
n c0

an
the same sequence as (9) then limit e exists. This

n 00

limit we shall call ea. Thus E(x) = ex is true for

all real x.

Having established that E(x) is a differentiable

continuous function for all real values of x , we turn

our attention to finding an infinite series converging to

E(x). The normal development is through power series,

using the Maclaurin and Taylor series. We choose to

continue the development through the limit concepts and
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some basic theorems in calculus.

The following theorems are used in the development of

the infinite series for ex.

II.1. If y is a differentiable function of u , and u

is a differentiable function of x , then

dy dy du
dx du dx .

1 111.2. If a and b are positive, then a > b and a- < B-

are equivalent.

11.3. If two integrable function F(x) and G(x) satisfy

inequality Rx) < G(x) for all values of x

a< x < b , then b b

Jr

F(x) dx < (G (x) dx.

a a

11.4. Let c be a constant and let {an} be a sequence

of numbers with no term less than c , and {bil}

be a sequence of numbers with no term greater than

c.

ie. a
n
>c, b

n
<c for all values of n.

If
n
lim (a

n
- b

n
) = 0 then lim

oo

a
n

= c and
n

lim b
n

= c.
n co

cn
11.5. For any constant c , lim 17- 0.

n co

-x
We first find the derivative of e . With y = eu

and u = -x , dy/du = eu , du/dx = -1, and dy/dx = -e -x.



IThen by integration, e
-x

dx = -e-x

Jo

'b

=
0

When x > 0 we know ex > 1 , so that by

e
-x

=
-x

< 1. Thus for x >_0 , e
e

with F(x) = e-x and G(x) = 1 , and when

iredx ldx giving us 1 - e
-b

< b
-x

0 0

This holds for any positive b. With x

we may replace b by x and obtain 1 -

1 - e-b .
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11.2,

< 1. Using 11.3

b > 0

or 1 b
-b

< e

also positive,

x < e
-x

. Again

applying 11.3 with F(x) = 1 - x and G(x) = e-x , b > 0

1,2

jr(1 - x) dx <ire -x
2

dx giving b <
-b + 1 or

b
2

1 - b + > e
-b

. As this holds for any b > 0 , it holds
2

for x > 0. Thus 1 - x + x2/2 > e-x . Integrating this

inequality we obtain

jrb

(1 - x + x2/2) dx > e-x dx where b > 0

b - b 2
/2 + b 3/23 > - -b + 1 or

1 - b + b 2
/2 b

3/3! < e-b for all b > 0.

For x > 0 we have 1 - x + x2/2 - x 3
/3! < e

-x
.

By iteration of this process we obtain the following

chain of inequalities:



e
-x

< 1 -x
e > 1 - x

e
-x

< 1
2 -x

1
2 3

/3-

x
x
3

x
4 2 3 4 5

e
-x < 1- x+ - e x> 1- x+ x x

+ +
x

2 3! 4! - 2 3! 4! 5!
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etc....

-xThus for x > 0 , e is always between any two success-_

ive partial sums of the series

1 - x/1! + x2
/2! - x 3/3! + x 4/4! - x5/5 + x6

/6 -

Take the partial sums Sn as follows:

SO = 1

S
1
= 1 -x

S
2 = 1 - x + x2/2!

S
n
= 1 - x + x 2

/2! - x
3
/3! + + (-1)

2n+1
x
n
/n!

Every member of the sequence Si, S3, S5... is less than

-x
e , and every member of the sequence So, S2, S4,... is

greater than e
-x

. By fixing x , we also fix e
-x

. By

11.4 if the limit (S
2n-1

- S
2n

) = 0 then both sequences
n co

tend to some constant c.

[

2n - 1)! TfErd
2n-1

x
I

limit (S2n-1 S
2n

) = limit
(

n 4- co n -0- co

With x fixed and by 11.5 this limit tends to zero as n

tends to infinity. We conclude by 11.4 that both sequences

have the same limit, namely e-x . As S
2n-1

and S
2n

are complementary subsequences of Sn , we conclude that
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1 - x/1! + x2
/2! - x

3
/3! + + (-1)

2n-1
x
n/n! + = e x

for all x > 0. Replacing (-x) by x we obtain

e
x = 1 + x/1! + x 2

/2! + x 3/3! + x 4
/4! + + x /n! +

for all x < O.

We need to prove that the above series is true for

values of x > 0. Consider the function f(x) =

1 + xec - ex where c > 0 and fixed. We see that f(0)=0

and f'(x) = ec - ex. Since ex is a monotonic increasing

function then f'(x) > 0 when 0 < x < c. Hence f(x)

is a monotonic increasing function for 0 < x < c. It

follows that with f(x) > 0 , 1 + xec - e
x

> 0 or

1 + xec > e
x

> 1. Integrating this inequality we obtain:

i
b b b

(1 + xec) dx > ex dx > 1 dx 0 < b < c

0 o o

b + b2/2.ec > eb - 1 > b. Replacing b by x we get

x + x 2
/2 ec > ex - 1 > x

Integrating this inaquality

b b b

irD

(x + x2/2 ec ) ddx > (ex - 1) dx > x dx 0 < b < c

o o

b
2/2 + ecb3/2.3 > eb - 1 - b > b2 /2

Again replacing by x and integrating
b b b

Jr(x
2 /2 + x3/3! e c

) dx > (e
x 1 - x) dx > 1 x

2 /2 dx

.0
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b
3
/3! 4/4! e e

c
eb 1 - b - b2/2 > b3/3! 0 < b < c

Repetition of this process leads to

b
n

b
n4-1

+
n+1)!

ec > eb - 1 - b b2 /2
n!

. bn-1/ (n -1)! > bn/n

But the limit bn/n! = 0 by 11.5 and
n + co

limit n bn+1

n co in! (n+1)!
L

ec b
n c b

n+1

AiT4 n! e A4.4 (1+1)!

= 0

Taus, as n tends to infinity,

+ e
c

0 = 0

eb - 1 b - b2 /2! b
3
/3! - - bn-1/(n-1)! = 0

Replacing b by x where 0 < x < c where c is any

positive number we obtain

ex - 1 - x - x2 /2! - x
3
/3! - xn-1/(n-1)! - = 0

or

ex = 1 + x + x2 /2! + x
3
/3! + + xn/n! +

for all values of x.

By substituting; x = 1 in the above series, we find

a convenient series representing e.

e = 1 + 1/1! + 1/2! + 1/3! + + l/n! +

We wish to establish another representation for the

number e , only this time in the form of a limit.
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Previously it was shown that L(2) < 1 and L(3) > 1.

Using the inverse function of L(x) , we have E(1) > 2 and

E (1) < 3. Thus E(1) is bounded above by the real number

three. We now prove limit (1 + 1/n)n = e.
n + co

With L'(x) = 1/x then by definition of a derivative

limit L(x + Ax) - L(x) 1

Ax + 0
Ax x . When x = 1 , L(x) = 0

and we obtain

limit L(1 + Ax) 0
1 or limit 1 , L(1 + Ax) = 1.

+ 0 Ax + 0
7

L'

7

Let Ax + 0 through the positive sequence

1 , 1/2 , 1/3 ,... so that the above limit becomes a limit

of a sequence. With 1/n = Ax , Ax + 0 implies n +

Thus limit [n L(1 + 1 /n)] = 1
n + co

By a property of L(x) , nL(1 + 1/n) = L(1 + 1/n)n thus

limit [nL(1 + 1 /n)] = limit [L(1 + 1/n)n] = 1
n + n + co

For brevity let L(1 + 1/n)n = a
n

. Then the sequence

al , a2 , a3 ,... has limit 1. Since E(x) is continuous

and differentiable, we can conclude that the sequence

{E(a
n
)} = e

a
1

, eat
a
3 has limit e

1
or e.

But E(x) and L(x) are inverse function. Then

E(an) = E[L(1 + 1/n) n) = (1 + 1/n) n
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Therefore e = limit (1 + 1/n)n.
n co

Irrationality of e

Many authors now include in their analysis books the

topic of the irrationality of e. Lambert (Tropfke, 1902)

in 1761 first proved the irrationality of e by using two

of Euler's continued fractions. The following is essent-

ially the proof given by J. B. Fourier in 1815. The proof

that e is irrational is accomplished by assuming e to

be rational and arriving at a contradiction. This is the

basis of the following proof.

Let us assume that e is rational and therefore may

be expressed in the form e = p/q where p,q are pos-

itive integers. The infinite series for e is:

e

00

n=0

1 /n! = 1 + 1/1! + 1/2! + 1/3! + + 1 /n! +

If we let S = El/n! = 1 + 1/1! + 1/2! + + 1/q!
q

n=0

03

then e - S = 1/n!
q

1

(q + 1)! (q + 2)!
n=q + 1

1

9 q 2).(q 3)

+1 1
1 +

(q + ! q +

thus e - S < 1 + 1 + 1
q (q + 1) ! q + 1 (q + 1) 2 +
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The second factor on the right is a geometric infinite

series with the ratio being 1/(q + 1). We know the

geometric series converges with the ratio Irl < 1. With

q > 1
0 <

1
< 1.q + 1

converges to

Thus the geometric series

1 - 1 = q + 1
q + 1

1 q + 1 1Therefore e- S <
q 717-7-17! q!q

that is, 0 < e Sq < 1/(q!q)

Multiplying the inequality by the integer q! we have

0 < ql (e Sq) < l/q

But by assumption q!e is an integer and

q!Sq = q! [1 + 1/1! + 1/2! + 1/3! + + 1/q1]

is also an integer.

This means that q!(e - Sq) is an integer. Since

q > 1, 1/q < 1, and 0 < '011(e Sq) < 1/q our conclusion

is that there is an integer between 0 and 1. Thus we

have reached a contradiction by assuming e is rational.

Thus, e p/q Therefore e is an irrational number.

Transcendence

The number e was first proved transcendental by

Charles Hermite in 1873. ..This proof is relatively
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complicated; however once the breakthrough was made,

several simpler proofs were found. Subsequent mathemati-

cians who were to offer proofs of a less demanding nature,

though still substantial, are Stieltjes, Hilbert, Gordan,

Mertens, Klein and Vahlen. Translation of Hermite's

original proof is found in Smith's Source Book in Mathe-

matics, 1929, pp. 99 to 106. Proofs other than those

mentioned above may be found in the following sources,

Klein (1932), Beman (1897), Young (1911), Hobson (1913)

and Niven (1957). The following proof of the transcen-

dentality of e is that of Herstein (1965).

This proof is expanded extensively beyond what can be

found in the literature. The original source omitted

several items which we have entered to make the proof more

readable. This proof should be comprehensible to the

bright student of elementary calculus.

We prove the transcendence of e by the indirect

method. It is assumed, to the contrary, that e is an

algebraic number; then e is a root of a polynomial eq-

uation with integral coefficients.

Let f(x) be a polynomial of degree r with real

coefficients. Let P(x) = f(x) + f'(x) + f2(x) +

+ f
r
(x) where f

i (x) stands for the ith derivative

of f(x) with respect to x.
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e xF(x) = e xf (x) + e xf (x) + + e
x r

(x)

ax [e xF(x)] = - e xf(x) + e xf'(x) - e xf'(x) + e
-x

(x)

+ + e-x fr(x) - e-xfr (x)

Since f
r+1

(x) = 0.

dThus aK [e-xF(x)] = -e- xf(x)

The mean value theorem of calculus asserts that if

g(x) is a continuously differentiable single valued

function on the closed interval [a,b] then

g(b) - g(a)
b - a g' [a + 0- (b a) ] 0 < rif < 1

The function e-xF(x) is a continuously differentiable

single valued function on the closed interval [0,k], where

k is any positive integer. Then by the mean value theorem

or

e
-k

F(k) - F(0)
e
-(0+0 k)

k 0 f(0 + 0k)

e
-kF(k) - F(0) = -e

- 0k -k
f(k'O )k

where fak depends on k and is a real number between 0

and 1.

Multiplying this equation by ek we obtain

(1 - 0
k
)k f(k-0 )kF(k) - e F(0) = -e
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By substituting successive values of k into the above

equation we get

F(1) - e1F(0) = -e
(1 01)

f (01) = s
1

2(1 - 02)
F(2) e

2F(0) = 2e f(20 ) = s
2

3(1 0 )
(1) F(3) - e3F(°) = - 3e f(303) =

n(1 - On)
F(n) - enF(0)= -ne f(n0

n
) = s

n

To show e is transcendental, we assume it is not a

transcendental number. That is, assume e to be an

algebraic number that satisfies the relation

(2) c en + cn-1
en- 1 + cn-2

en-2 + + c1e + c
0
= 0

where c
0

, c
1

,

2
, .... gare integers and c0 > 0.

In equations (1) we will multiply the first one by

c
1

, the second by c
2

and in general the nth one by c .

(1 - 01)
c
1
F(1) - c eF(0) = -c

1
e f(01) = c

1
s
1

n(1 - On)
c
n
F(n) cnen F(°) = -c ne f(n0n) = c sn n

Adding these together we get
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c
1
F(1) + c

2
F(2) +...+ c F(n) - F(0)(c e + c e +...+ c en )

= c
1
s
1
+ c2s +cs + c s

2 3 n n

This simplifies by (2) into

(3) c0F(0) + c1F(1) +...+ cnF(n) = cis/ + c2s2 +...+ cnsn

Recall that F(x) was constructed from an arbitrary

polynomial f(x). Hermite, the French mathematician who

was the first to prove e transcendental, composed a very

specific polynomial to test this condition. It was

f (x)
1

1)!
xP-1 (1 - )P(2 - x)P (n - x)P

where p is any prime number chosen so that p > n and

p > c0. By expanding f(x) we get the form

a xp a
1
x
p+1

X
p-1

+
(p

o
- 1)!

+ +
(p 1) !

f(x)
(n! )p

(p - 1) 1

where Hermite proved that a0 , a1
'

.... are integers.

The reader may demonstrate to himself that when

i > p , fi(x) is a polynomial, with coefficients which

are integers all of which are multiples of p. Thus for

any integer j , fi(j) , for i > p is an integer and is

a multiple of p.

From its very definition f(x) has a root of mult-

iplicity p at x = 1 , 2 ,..., n. Thus for j = 1 2 ,

n , f(j) = 0 , f'(j) = 0 ,...., fP-1(j) = 0.3 ,
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However, from the discussion above,

F(j) = f(j) + f'(j) +...+ fP-1(j) + fP(j) +...+ fr(j)

for j = 1 , 2 , 3 ,..., n is an integer and is a multiple

of p.

Let us turn our attention to F(0). Since f(x) has

a root of multiplicity p - 1 at x = 0 , f(0) = f'(0) =..

..= fP-2(0) = 0. For i > p , f1(0) is an integer which

is a multiple of p. But fP-1(0) = (n!)P and since

p > n and is a prime number p does not divide (n1)P

so that fP-1(0) is an integer not divisible by p. Since

F(0) = f(0) + f'(0) + fP-2(0) + fP-1(0) + fP(0) +

+ f
r
(0) and

f(0) + f' (0) + + fP-2(0) = 0 and

fP-1(0) is not divisible by p and

fP(0) + + fr( 0) is divisible by p , we conclude

that F(0) is an integer not divisible by p. Since

0 , p > co and because p does not divide F(0) but

p divides F(1) , and p divides F(2) , and ...., and p

divides F(n) , we can assert that c0F(0) + c1F(1) +

+ C
n
F(n) is an integer and is not divisible by p.

By (3) we know

c
o
F(0) + c

1
F(1) +...+ c F(n) = c1s1 + c2s2 +...+ chsn
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i(1 0i)
But s = -ie f(i0 ) i

i(1 04)
-ie

(343')P-1(1 i0i)P .0.)P

(p 1) 1

with 0 < 01. < 1 and i < n we make these substitution

and obtain the following inequality.

Is-1 <
ennP(n!)P

1 (p 1) !

holding n fixed, limit ennP(n!)P
p -0- cc (p - 1)!

= en limit nP(n!)P
p (p 1)!

= e
n

0

= 0

Thus Is.' tends to zero as p tends to infinity.

Then a prime number can be found that is larger than both

c
0

and n and large enough to force

lc
1
s
1

+ c
2
s
2

+ + cnsn I < 1

But c1s1 + + s.
n

= c0F(0) + + c F(n)

and must be an integer. Since it is smaller in value than

one, and it is an integer, cls1 + c2s2 + + c
n
s
n

must

be zero. Thus,
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c
o
F(0) + c

1
F(1) + + c

n
F(n) = 0. This cannot be true

since p does not divide c
o
F(0) + c

1
F(1) + . . + c

n
F(n),

whereas p does divide zero. This contradiction, coming

from our assumption that e is algebraic, proves e must

be transcendental.

Normality

One of the reasons that e has been computed to

100,256 decimal places is to examine this decimal expansion

for normality. A normal number has been defined by Borel

in 1909 (Niven, 1957) as "a real number x which has all

possible blocks of j digits appearing with the relative

frequency of 1/10i (or 1/gi, where g is the base of the

representation of x)." Borel also defined an 'absolute'

normal number as one which is normal to every base. He

proved that "almost all" real numbers are normal to every

base.

An example of a normal number is the positive integers

listed in their natural order as a decimal expansion.

0.12345678910111213141516171819202122232425262728293031..

This number has all digits in their proper proportions and

all blocks of digits in their proper proportions. (Davis,

1961).

Mathematicians have not been lax in developing the

theory of normal numbers. There have been several theorems
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established concerning the properties of normal numbers.

Schmidt (1960) proved that there exist numbers that are

normal to one base but not absolutely normal. These

theorems are based on measure theory and describe the pro-

perties of a normal number. That is, this number is nor-

mal, therefore the following theorems apply. Unfortunate

ly, the theorems give us no way to tell if a given number

is normal.

The first study of e for normality was done by John

von Newman (1950). Further studies have been done in the

hope of establishing the random characteristics of the

decimal places of e. If this could be done it would make

the transcendental numbers available as a computer source

of internally programmed pseudo-random numbers for Monte

Carlo methods.

H. Geiringer, in 1954 stated that since e , and other

transcendentals as Tr and Euler's constant, are formed by

mathematical laws, they do not form a 'random' sequence

or a 'collective' even though we are not yet able to estab-

lish any prevailing regularities. She continues by saying

that such numbers do exhibit 'local' or 'restricted' ran-

domness.

Many mathematicians have tried to show the random and

normal properties of e , John von Neumann (1950), R. K.

Pathria (1961), and Fisher and Yates (1938) have great
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interest in this field.

To test e for normality many statistical tests have

been carried out. These were done using a 60,000 digit

decimal expansion of e. The tests include (1) poker,

(2) serial, (3) frequency, (4) gap test, (5) chi-square

measure for each of the above tests, (6) the chi-square

for the accumulated frequency of the counts of single

digits computed every 500 digits, (7) the chi-square values

for 60 blocks of 1000 digits (8) a goodness-of-fit test

using the chi-squares for 120 blocks of 500 digits, (9) a

study of these 120 blocks as Bernoulli trials, (10) plots

of the deviation of each separate digit from zero to nine

from expectation for the accumulated counts of 600: blocks

of 100 digits, (11) the values of Sl/n and Sli/n, where

ratios represent relative frequencies of single and pairs

of digits for normality studies (12) and finally a test of

randomness based on a criteria for randomness in a col-

lective' proposed by von Mises wherein one chooses a sub-

set by some choice of place selection.

The above tests were reported to the American Mathema-

tical Monthly by R. G. Stoneham. (1965). He summarizes

the statistical findings by writing

"In general, all the statistical tests
support the hypothesis of pure chance
selection in the sequence of digits in
e with but a few anomalies and also
the relative frequencies of the single
and pairs of digits in e are approx-
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imately 1/10 and 1/100, respectively,
thus empirically supporting normality
in the sense of Borel." (p. 484)

Although these statistical tests seem to suggest that

e is a normal number, most mathematicians are not ready to

dismiss the possibility that if carried out to a billion

decimal places, e might begin to favor some one digit,

or a sequence of digits might show up more frequently than

others. As of yet, there is no mathematical proof that e

is normal.
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CHAPTER 3

DECIMAL APPROXIMATIONS

George Mallory was asked in 1922 why he attempted

Mount Everest. "It was there", he answered (Davis, 1961).

The number e is there and has been for some time, and

although its computation to 100,000 decimal places is com-

parable to the conquering of Mount Everest by helicopter,

there are enough difficulties present to make it interest-

ing. We may learn something along the journey, if not at

the destination.

An American astonomer and mathematician, Simon

Newcomb, who lived in the last half of the nineteenth cen-

tury, said,

"Ten decimal places are sufficient to give
the circumference of the earth to the
fraction of an inch, and thirty decimals
would give the circumference of the whole
visible universe to a quantity impercept-
ible with the most powerful microscope."
(Kasner and Newman, 1963, p. 78)

Yet men continue to look for greater and greater dec-

imal expansions in the number e. Perhaps it is the

sportsmanlike interest in making a record that attracts

them to this labor. Yet, man's insatiable curiosity and

drive to know and do everything is reason enough in itself

for these approximations.

The demand for lists of random digits has increased
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considerably in the last quarter century, particularly in

connection with the application of Monte Carlo methods to

various problems in mathematical physics and the drawing of

random samples in statistics. Test for randomness in the

sequence of digits in the decimal approximation for e

have been referred to in chapter 2. These tests give every

evidence that e is a random sequence of digits.

Perhaps if e had failed the test for randomness, it

would have been more significant than the success. There

are no known properties of e that would predict such a

failure, and hence the failure would give new information

about the nature of e. Another reason for obtaining more

decimal places is the possibility of new properties of e

being revealed.

At one time it was believed that the decimal approxi-

mations would reveal the repetitive or terminating prop-

erty of e. Since Lambert showed that e was irrational,

all hope of e being a repetitive or terminating decimal

was dispelled.

Use of continued fractions

In a discussion of the history of mathematics, E. T.

Bell (1945) gives the following on continued fractions:

"The first systematic discussion of con-
tinued fractions was Euler in 1737.
Apart from the sporadic appearence in
the arithematic of the Greeks, the
Hindus, and the Moslems that can now be
interpreted as results of continued
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fractions." (p. 476)

Euler not only named the number e and calculated it

to 23 decimal places, but he also developed several con-

tinued fractions converging to e. These continued fract-

ions play an important part in the history of e as well

as in its decimal expansion. The following seven continued

fractions are credited to Euler.

e = 2 + 1

1

e

= 1 +

1 + 1

2 + 2

3 + 3

4 + 4

5 + 5 ...

1 + 2

2 4

3 + 4

1 + 1

9 +

4 +

1

5 + 6
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In 1875 Glaisher used this continued fraction to find

1/(e 1) = .581976706869....

e - 1 = 1

2 + 1

e = 2 + 1

6 + 1

1

...

10 + 1

14 +

18 + 1

1 +

2 +

1 +

4 + 1

1 + 1

1+ 1 ...

e + 1
2 +e - 1

6 + 1

10 + 1

14 + 1

18 + 1

e
2

- 1
3 + 1

2

5 + 1

7 + 1

9 +

11 + 1

The mathematically prolific Euler also found the fol-

lowing two equations. From these ex and e-x can read-

ily be expressed in terms of infinite products.
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ex + e
-x = (1 + z) (1 + z/9) (1 + z/25) (1 + z/49)....

2

ex - e
-x

= (1 + z) (1 + z/4) (1 + z/9) (1 + z/16)

2

J. H. Lambert was an admirer of Euler and had great

interest in the above continued fractions. From these

fractions Lambert developed and used the following con-

tinued fraction for the first proof of the irrationality

of e.

ex - 1 1

e
x + 1 a + 1

x
6

x + 1
10
x

14
1

x

Fractions approximating e

After men found that e was a decimal fraction that

could not be expressed as a ratio of two integers, the

search began for a close approximation using the quotient

of two integers.

It is well known (Trigg, 1962) that

2721 -
- 2.7182817

1001 approximates the value of e, being

accurate to six decimal places. This is equivalent to

4 16 9 11 5 9 4 5 22e z + -- + = 7 + + = + +
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In closely examining the above sums, we find in all three

cases the denominators are consecutive primes. The third

sum has the sum of the numerator equaling the sum of the

denominators, ie. 37.

The approximating fraction may also be written as

877 + 907 + 937

7 11 13

which the denominator is the product of three consecutive

primes, and the numerator is the sum of three primes in

arithmetic progression with the common difference being

30. The numerator may be written with primes in at least

23 other ways in which 907 is the mean. The smaller terms

of the arithmetic progression's are 3,13,31,61,67,73,151,

157,193,271,283,331,367,433,487,523,601,613,643,661,727,

751, and 823.

Of the fractions with denominators less than 100, the

one most closely approximating e by defect is 106 ,
39

2.717949 being accurate to three decimal places. The

fraction most closely approximating e by excess is

193 -
2.718310 which is accurate to four decimal places.

71

When Hermite.'s proof of the transcendental nature of

e was published, he also gave the following fraction as

approximating e.

58291
e 2.718289, correct to six decimal

21444

places. Hermite also approximated e2
158452
21444
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Electronic computer calculations of e

After Euler computed e to 23 decimal places, other

men joined in the task of the decimal computation of e.

With curiosity prodding them ahead, the mathematicians

reached further and further into that non-terminating ex-

pansion. In 1849 F. J. Studnicke had e expanded to 113

decimal places. After many years of work, J. W. Boorman

had the decimal expansion to a staggering 346 places. With

the Boorman expansion in 1884, the computation of e dim-

inished as it required years of a man's life to come up

with more decimal places. Any further expansion was to

wait until the development of statistics and the invention

of electronic computer.

The advent of the electronic computers brought man

an amazing ability to do calculation in a fractional part

of the time previously taken. It was inevitable that

computers would be brought to the task of the decimal ex-

pansion of e. With the formula

e = 1 + 1 + 1/2! + 1/3! + 1/4! +

as the guide, the computers were able to extend the ex-

pansion beyond previously dreamed of limits. In 1949 the

ENIAC (Electronic Numerical Integrator and Calculator) at

the Army's Ballistic Reasearch Laboratories in Aberdeen,

Maryland, was used to compute an approximation of e to

2,036 places. As the electronic computers increased in
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reliability and speed, the accuracy of decimal approxi-

mations of e further increased. In 1952 an electronic

computer at the University of Illinois, under the guiding

eye of D. J. Wheeler, carried e to the staggering total

of 60,000 decimal places! In the United Kingdom, H. G.

Simon used an IBM computer in 1961 to obtain e to 20,000

decimal places with the corresponding digits being the

same as Wheeler's expansion.

August 19, 1961 was the date that Daniel Shanks and J.

Wrench had reserved to use the IBM 7090 for the great test.

To have a decimal expansion of e to 100,000 places was

their goal. After just 2.5 hours, the computer had com-

puted and printed the expansion of e to 100,256 decimal

places. (Shanks & Wrench, 1961).

In Appendix III is printed e to 2,450 decimal

places.

It has been predicted by Shanks and Wrench that to

compute e to one million decimal places

"It would take months and then the memory
would be too small. One would really
want a computer 100 times as fast, 100
times as reliable and 10 times as large."
(p. 78)

With the rapid advance of technology, computers are faster,

more reliable and larger. We can expect e to one million

decimal places to be computed soon.
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APPENDIX I

Conspectus of the historical development of the concept

of 'e'.

Hyperbola - from antiquity

Natural logarithms - 1618

Hyperbolic Logs - 1647

Exponential Series - 1665

Lilmit of
Series

Logarithms as Exponents - 1695

1

Exponential and Tri onometric Relation - 1706

The number 'e' - 1728

Limit of
continued
fraction

n
I

limit 1 +
[

1 Approx-

n + 00
imationsTi

Irrationality of 'e' - 1761

Transcendence of 'e' - 1873
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APPENDIX II

Significant Contributions of men in the history of e

DATE NAME CONTRIBUTION

1614 Napier, John Invented logarithms

1618 Oughtred, William Table of logarithms to base e

1624 Briggs, Henry Table of logarithms to base
10

1647 Vincent, Gregory St. Quadrature of hyperbola.

1655 Wallis, John

1667 Gregory, James

1666 Newton, Isaac

1676 Leibnez, G. W.

1676 Newton, Isaac

1694 Leibniz, G. W.

1695 Bernoulli, John

1695 Halley, Edmund

1722 Cotes, Roger

Method of quadrature of hy-
perbola in the invention of
interpolation.

Computed logarithms by means
of a series of inscribed and
circumscribed polygons.

Expansion of series by the
binomial theorem.

Developed series of vers x,

sin x , cos x , ex , e-x.

Developed exponential series

Relationship between calculus
and exponential function.

Determined an expansion for
x log x in a series.

Logarithms independently of
hyperbola.

Relation between the expon-
ential and trigonometric
function.

1727 Euler, Leonhard Symbol of e

1740 Euler, Leonhard Cos x and Sin x in terms of
e
x

.
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1740 Euler, Leonhard Computed e to 23 decimal
places.

1748 Euler, Leonhard Developed series for e.

1749 Jones, William Logarithms are exponents.

1761 Lambert, J. H. Proved e irrational.

1849 Studnicke, F. J. e to 113 decimal places.

1873 Hermite, Charles Proved e transcendental.

1875 Glaisher, 1/(e - 1) = .581976706869...

1884 Boorman, J. W. e to 345 decimal places.

1952 Gruenberger and
Marlowe e to 3000 decimal places.

1953 Page and Pfeil e to 3333 decimal places.

1953 Wheeler, David e to 60,000 decimal places.

1961 Simon, H. G. e to 20,000 decimal places.

1961 Wrench and Shanks e to 100,256 decimal places.
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APPENDIX III

Quadrature of a hyperbola

Due to the profound effect that the quadrature of a

hyperbola had on the development of the logarithms, it was

felt that a brief discussion on the subject should appear

in this work.

An equation for an ellipse is x
2
/a

2
+ y

2
/b

2
= 1.

The area of the ellipse derived by the calculus is irab.

With the circle being a special ellipse, the irrational and

trandcendental number it was discussed in great depth by

the Greeks. Not as popular, but certainly as important was

the area between the hyperbola and a chord perpendicular to

the transverse axis. An equation for a hyperbola is

x
2
/a

2
- y

2 /b2
= 1. The area between the curve and a chord,

found by calculus involves the number e in its inverse

form, that of a natural logarithm. Following is the quad-

rature of a hyperbola, using the calculus.

The graph of the hyperbola x2/a2
y2/b2

1 is

given below. The area to be found is shaded.
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xo

bf
A = (x

2
dxa

2
)

a
a

Figure 3.

b , 2 2 o
-a-

2 X kX a
2)T

- n (x + (x2 a
2 T

a

= a -1-x0 (x02 - a2)2 -0- a
2 ln(xo + (x2 - a2)* ) + 12(Za21n a)]

x b=
2a
o

(x2 -

since

2 ab in (xo + (x2 - a2)-2- ) + 2 ab in a

b
v0 =

a o
(x2

- a2)2 , by substitution-

= -0 [x
o
y
o

- ab in x0

= 2 [X
o
y0 - ab in a -a--

xo + 17)Yo

o
y
o

- ab In
(o
a

Yo)

+ ab in a]

ab in a

- ab in a + ab in a]
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=* [X
o
yo - ab In

(xa
o Yon

b 1.1

Since we want the area in the complete arc of the hyper-

bola, that is, the area between the hyperbola and the chord

x = x
o

, we must double the above to obtain, in addition,

the lower half of the arc. The area becomes

Yo
x
o
y
o
- ab In

a
+

The area is in terms of the natural logarithms, in-

verse of the exponential function.
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APPENDIX IV

DECIMAL REPRESENTATION OF e TO 2450 DECIMAL PLACES

71828 18284 59045 23536 02874 71352 66249 77572 47093 69995

95749 66967 62772 40766 30353 54759 45713 82178 52516 64274

27466 39193 20030 59921 81741 35966 29043 57290 03342 95260

59563 07381 32328 62794 34907 63233 82988 07531 95251 01901

15738 34187 93070 21540 89149 93488 41675 09244 76146 06680

82264 80016 84774 11853 74234 54424 37107 53907 77449 92069

55170 27618 38606 26133 13845 83000 75204 49338 26560 29760

67371 13200 70932 87091 27443 74704 72306 96977 20931 01416

92836 81902 55151 08657 46377 21112 52389 78442 50569 53696

77078 54499 69967 94686 44549 05987 93163 68892 30098 79312

77361 78215 42499 92295 76351 48220 82698 95193 66803 31825

28869 39849 64651 05820 93923 98294 88793 32036 25094 43117

30123 81970 68416 14039 70198 37679 32068 32823 76464 80429

53118 02328 78250 98194 55815 30175 67173 61332 06981 12509

96181 88159 30416 90351 59888 85193 45807 27386 67385 98422

87922 84998 92086 80582 S7492 79610 48419 84443 63463 24496

84875 60233 62482 70419 78623 20900 21609 90235 30436 99418

49146 31409 34317 38143 64054 62531 52096 18369 08887 07016

76839 64243 78140 59271 45635 49061 30310 72085 10383 75051

01157 47704 17189 86106 87396 96552 12671 54688 95703 50354

02123 40784 98193 34321 06817 01210 05627 88023 51930 33224

74501 58539 04730 41995 77770 93503 66041 69973 29725 08868

76966 40355 57071 62268 44716 25607 98826 51787 13419 51246

65201 03059 21236 67719 43252 78675 39855 89448 96970 96409

75459 18569 56380 23637 01621 12047 74272 28364 89613 42251

64450 78182 44235 29486 36372 14174 02388 93441 24796 35743

70263 75529 44483 37998 01612 54922 78509 25778 25620 92622

64832 62779 33386 56648 16277 25164 01910 59004 91644 99828

93150 56604 72580 27786 31864 15519 56532 44258 69829 46959

30801 91529 87211 72556 34754 63964 47910 14590 40905 86298

49679 12874 06870 50489 58586 71747 98546 67757 57320 56812

88459 20541 33405 39220 00113 78630 09455 60688 16674 00169

84205 58040 33637 95376 45203 04024 32256 61352 78369 51177

88386 38744 39662 53224 98506 54995 88623 42818 99707 73327

61717 83928 03494 65014 34558 89707 19425 86398 77275 47109

62953 74152 11151 36835 06275 26023 26484 72870 39207 64310

05958 41166 12054 52970 30236 47254 92966 69381 15137 32275

36450 98889 03136 02057 24817 65851 18063 03644 28123 14965

50704 75102 54465 01172 72115 55194 86685 08003 68532 28183

15219 60037 35625 27944 95158 28418 82947 87610 85263 98139

55990 06737 64829 22443 75287 18462 45780 36192 98197 13991

47564 48826 26039 03381 44182 32625 15097 48279 87779 96437

30899 70388 86778 22713 83605 77297 88241 25611 90717 66394

65070 63304 52795 46618 55096 66618 56647 09711 34447 40160

70462 62156 80717 48187 78443 71436 98821 85596 70959 10259

68620 02353 71858 87485 69652 20005 03117 34392 07321 13908

03293 63447 97273 55955 27734 90717 83793 42163 70120 50054

51326 38354 40001 86323 99149 07054 79778 05669 78533 58048

96690 62951 19432 47309 95876 55236 81285 90413 83241 16072

59
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APPENDIX V

This table appears from the second edition (1618) of

Edward Wright's English translation of Napier's Descripto.

According to Glasier (1915) it was probably written by

William Oughtred. This is the first logarithm table to the

base e. In modern notation it is 10 6
ln

e
N.

.sin logarithm sin logarithm sin logarithm

1 000000 100 4605168 10000 9210337
2 693146 200 5298314 20000 9803483
3 1098612* 300 5703780 30000 10308949

4 1386294 400 5991462 40000 10596631
5 1609437 500 6214605 50000 10819774
6 1791758 600 6396925 60000 11002095

7 1045905 700 6551077 70000 11156246
8 2079441 800 6684609 80000 11289778
9 2197223 900 6802391 90000 11407560

10 2302584 1000 6907753 100000 11512921
20 2995730 2000 7600899 200000 12206067
30 3401196 3000 8006365 300000 12611533

40 3688878 4000 8294047 400000 12899215
50 3911021 5000 8517190 500000 13122358
60 4094342 6000 8699511 600000 13304679

70 4248493 7000 8853662 700000 13458830
80 4382025 8000 8987194 800000 13592362
90 4499807 9000 9104976 900000 13710114

The supplement of the table for tenth and hundreths parts

11 095311 17 530628 104 39222
12 182321 18 587786 105** 48790
13 262364 19 641953 106 58269

14 336473 101 9951 107 67659
15 405465 102 19803 108 76962
16 470004 103 29560 109 86177



* *

This logarithm is printed 1096612 in the Appendix.

Printed 126 in the Appendix.

61



APPENDIX VI

Gr. 0

min Sinus Logarithmi Differentia Logarithmi

Napier's Original (1614) Logarithms

Sinus min Sinus Logarithmi Differentia Logarithmi Sinus

0 0 infinitum infinitum 0 10000000 60 30 87265 47413852 47413471 381 9999619 30

1 2909 81425681 81425680 1 10000000 59 31 90174 47085961 47085554 407 9999593 29

2 5818 74494213 74494211 2 9999998 58 32 93083 46768483 46768049 434 9999566 28

3 8727 70439564 70439560 4 9999996 57 33 95992 46460773 46460312 461 9999539 27

4 11636 67562746 67562739 7 9999993 56 34 98901 46162254 46161765 489 9999511 26

5 14544 65331315 65331304 11 9999989 55 35 101809 45872392 45871874 518 9999482 25

6 17453 63508099 63508083 16 9999986 54 36 104718 45590688 45590140 548 9999452 24

7 20362 61966595 61966573 22 9999980 53 37 107627 45316714 45316135 579 9999421 23

8 23271 60631284 60631256 28 9999974 S2 38 110536 45050041 45049430 611 9999389 22

9 26180 59453453 59453418 35 9999967 51 39 113445 44790296 44789652 644 9999357 21

10 29088 58399857 58399814 43 9999959 50 40 116353 44537132 44536455 677 9999323 20

11 31997 57446759 57446707 52 9999950 49 41 119262 44290216 44289505 711 9999289 19

12 34906 56576646 56576584 62 9999940 48 42 122171 44049255 44048509 746 9999254 18

13 37815 55776222 55776149 73 9999928 47 43 125079 43813959 43813177 782 9999218 17

14 40724 55035148 55035064 84 9999917 46 44 127988 43584078 43583259 819 9999181 16

15 43632 54345225 54345129 96 9999905 45 45 130896 43359360 43358503 857 9999143 15

16 46541 53699843 53699734 109 9999892 44 46 133805 43139582 43138686 896 9999105 14

17 49450 53093600 53093577 123 9999878 43 47 136714 42924534 42923599 935 9999065 13

18 52359 52522019 52521881 138 9999863 42 48 139622 42714014 42713039 975 9999025 12

19 55268 51981356 51981202 154 9999847 41 49 142531 42507833 42506817 1016 9998984 11

20 58177 51468431 51468361 170 9999831 40 50 145439 42305826 42304768 1058 9998942 10

21 61086 50980537 50980450 187 9999813 39 51 148348 42107812 42106711 1101 9998900 9

22 63995 50515342 50515137 205 9999795 38 52 151257 41913644 41912499 1145 9998856 8

23 66904 50070827 50070603 224 9999776 37 53 154165 41723175 41721986 1189 9998811 7

24 69813 49645239 49644995 244 9999756 36 54 157074 41536271 41535037 1234 9998766 6

25 72721 49237030 49236765 265 9999736 35 55 159982 41352795 41351515 1280 9998720 5

26 75630 48844826 48844539 287 9999714 34 56 162891 41172626 41171299 1327 9998673 4

27 78539 48467431 48467122 309 9999692 33 57 165799 41006643 41005268 1375 9998625 3

28 81448 48103763 48103431 332 9999668 32 58 168708 40821746 40820322 1424 9998577 2

29 84357 47752859 47752503 356 9999644 31 59 171616 40650816 40649343 1473 9998527 1

30 87265 47413852 47413471 381 9999619 30 60 174524 40482764 40481241 1523 9998477 0

Gr. 89 min


