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AN EFFICIENT FORMULATION AND SOLUTION METHOD OF ThE EVEN-AGED ROTATION

AND THINNING PROBLEM

INTRODUCTION

The problem of determining the optimal sequence of management

decisions for a stand has been one of the most frequently discussed

topics in forest management during the last two decades. The development

and spread of modern mathematical optimization tools allowed an early

theoretical discussion of the problem showing that dynamic programming

(Arimizu, 1958; Amidon and Akin, 1968) and optimal control (Naslund,

1969) were suitable mathematical approaches to its solution. During that

time the discussion was constrained to theoretical relations between the

mathematical approach and economic and silvicultural concepts traditional

in forestry. Solution methods were lacking in most of those reports, and

when present they dealt with simplistic situations.

The solution of practical problems came in the late 70's largely

estimulated by an increasing availability of electronic data processors

and the development of stand growth simulators capable of handling the

effects of silvicultural prescriptions. Brodie and Kao (1979) reported

solutions using an existing intensive management simulator and the

dynamic programming technique. Since then, the technique has been applied

to numerous stand models with a wide range of decision alternatives

(Brodie and Haight, 1985).

However, it is recognized that the current approach for dynamic

programming solution suffers the "curse of dimensionality" when applied

to practical problems requiring several state variables (Hann and Brodie,

1980), and therefore its applicability is restricted either by computing

hardware capacity or by computing budget.
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The search for new approaches to solve the problem has led to

the development of the solution method reported in the next sections. As

will be shown, the method has been derived from the application of a

combinatorial technique, and further explained by using other available

optimization techniques.

The method is next illustrated with a simple example, and

finally its efficiency is demonstrated by comparing it with an existing

dynamic programming algorithm.
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STATEMENT OF THE PROBLEM

The problem of optimizing a sequence of management decisions in

even-aged stands can be described in a number of ways; actually the

literature shows a wide range of formats and notations depending upon the

corresponding approach to solve it. For the purpose of this paper it is

described as a discrete-time control problem since it embodies the

dynamic allocation of scarce resouces among competitive activities over a

time interval. Even though the passage of time is continuous a discrete-

time version has been choosen given the focus on practical implementation

of the methods analyzed and proposed: activities are rather considered as

undertaken at points in time during the growth of stands.

where n : represents a stage or growth period. It is directly related

with stand age. N is the final stage.

vector describing the stand at stage n after a decision [Tn}

has been undertaken in a stand described by X at that
n

stage. It is often called the residual stand vector, state

descriptor or state variable.

The problem is therefore a multistage optimization problem that

can be described as maximizing, over T

N
= r(T) (1)

n=1

subject to:

X - T11 + Gn+i(Yn) = X1 (n=l,..,N-1) (2)

X - T = Y (n=1,..,N) (3)

XN _TN = 0 (4)

(alternative constraint for (2):)

+ G1(Y) - T+i = n+1
(n=1,...N-l) (5)
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objective function value of a management N-decisions

sequence yielding a stand described by In the context

of this paper Y corresponds to clearcut at stage N.

X : vector describing the stand at stage n after it grows from

its state Y . It is sometimes referred to as the initial
n-i

stand vector at stage n.

T : vector of feasible management decisions at stage n

transforming the stand Xn into Y and generating a return

r (X ,T ).n nn
r(T) : return generated at stage n when a decision Tn has been

taken

Gn+i(Yn) growth of a stand described by
n

at the stage n to the

next stage n+1. It is a function transforming Y into

X which together with T constitutes the transformation
n+i n

function as commonly presented in traditional dynamic

programming textbooks (Nemhauser, 1966).

Equation 1 is commonly refered to as the objective function and

shows that the solution values depend on the values collected along the

"path" from stage i to stage N. In control theory this equation is

referred to as the objective functional and it is normally presented as

decomposed into one term describing the sum (integration) of revenues

along the path itself, and another term describing the effect of terminal

conditions.

Equation 2 is known as the state equation since it links state

variables, decision variables and time. By transfering X to the left-

hand side this equation becomes the discrete-time analogue of the "motion

equation" of control theory. This equation can be further compressed into

functional notation, however the form choen here will allow for a
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clearer understanding of its meaning.

Equation 3 states that any change in the state of the stand,

within a stage, has to be derived from implementing a decision option.

This consistency constraint normally relies on the stand growth simulator

being utilized. In other words, the transformation functions to handle

the effect of decision variables and to generate state variables should

be available.

Equation 4 simply describes the state of the stand after stage

N: clearcut. The time at which this final state is reached remains

unspecified thus being also a decision variable.

A problem is then fully specified with the above equations and

given the initial stand conditions and the feasible space for decision

and state variables.

The boundaries of the feasible space are normally congruent with

boundaries embedded in the stand growth simulator. Particular features of

actual problems may suggest additional restrictions on the feasible

space, however in no case can this exceed that of the stand simulator.

Approaches to solution

This section describes some of the approaches already reported

to solve the complete version of the problem. Boundaries are traced

according to the treatment given to the time variable and to

constraints imposed in the feasible space.

The treatment of time permits differentiation into two classes

of problem approaches. The first approach relies on properties of the

production surface and solution space but not on the passage of time from

initial states through transitional states to steady state. This is
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characterized as a static optimization approach. The second approach

relies upon the dynamic nature of the problem thus giving a special role

to the passage of time: among these approaches are the classical calculus

of variations, dynamic programming and the maximum principle. The

following description of approaches refers particularly to the above.

The description is also centered on those approaches reported to

solve the complete specification of the problem. Therefore attention is

not given to restricted versions such as those with an empty feasible set

for intermediate decisions (from stage 1 to N-i), since in this situation

the problem becomes one of solving only for the optimum rotation age.

Also discarded is the version where the set of intermediate decisions is

so small that a brute force approach can be easily applied by evaluating

all the options.

Classical Calculus of Variations

The classical calculus of variations as a solution approach has

been reported only by Cawrse and others (1984). In essence the approach

is the dynamic analogue of the classic static programming problem: the

state equation is substituted into the objective function and necessary

conditions analogous to the first order conditions that the derivative

vanish lead to the Euler equation (Intriligator, 1971).

Despite its analytical elegance, the method presents certain

weaknesses when practical implementation is considered. First, it

imposes strong restrictions on the mathematical properties of the

functions modeling stand growth and control variables. These restrictions

are certainly consistent with biological and economic theory, however the

actual trend in forest modeling is characterized by stand simulators
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composed of a large number of interrelated functions that discourage a

calculus-based approach to solution. As shown in Cawrse and others (1984)

the successful application of the method depends on tailored and simple

production functions. Secondly, the method does not allow handling of

more constraints than the state equation. And finally the treatment of

the rate of thinning variable - and in general the rate at which the

control variable is applied - as a continuous differentiable function of

time does not reflect actual operation conditions in stand management

problems.

The Maximum Principle

The Maximum Principle approach (Intriligator, 1971) was early

proposed by Naslund (1969) as possible approach to solve the problem,

however he did not report a solution method. In general the method can be

considered as an e;tension of the method of LaGrange multipliers to

dynamic optimization problems. As in static problems a row vector of new

variables, the adjoint or costate variables, is added to the set of

constraints. These new variables are the dynamic analogues to the

LaGrange multipliers of static optimization problems with a contraint

set.

The approach, as in classical calculus of variations, requires

all functions involved to be nonzero continuously differentiable

functions of time.

The method also has analytical elegance but the practical

application of the continuous-time version is also restricted to simple

situations. The Maximum Principle approach has been later reported by

Sethi (1973), McDonough and Park (1975), and recently by Donnelly and



Betters (1985).

Dynamic programming

In the late 60's the dynamic programming approach began to be

proposed as a solution method to the discrete-time version of this

problem (Amidon and Akin, 1967). Its suitability has been shown since

then with a variety of growth models and decision variables, especially

during the last decade. It has characteristics and capabilities that

provide a useful solution framework for timing and intensity of thinning,

fertilization, pest control, and rotation age decisions. Also the

approach can generally handle any restriction in the control set by

construction of the recursive algorithm.

Early papers described the basic approach in stand management

problems for simultaneous determination of thinning regime and rotation

age solving with the backward recursive method (Amidon and Akin, 1967;

Schreuder, 1971); however, the growth models used were primitive and

simplified so the approaches were not extended or adapted to other

problems. Brodie and Kao (1979) implemented a useful approach utilizing

an existing stand growth simulator for Douglas-fir, DFIT (Bruce and

others, 1977), and a forward recursion to solve simultaneously for

thinning regime and rotation age. Their formulation has been, since

then, extended and adapted to solve for other decision variables and

species, such as grazing and thinnings for ponderosa pine (Riitters and

others, 1982), diameter structure and thinnings for lodgepole pine,

(Haight and others, 1985), hardwood release and thinnings for loblolly

pine (Valsta and Brodie, 1985), and for thinnings and rotation age in red

pine stands (Martin and Ek, 1981).

8



Analysis of approaches

As pointed out by Intriligator (1971) the Maximum Principle

provides a more general solution approach to solution of the control

problem than dynamic programming. However in practical applications the

emphasis has shifted from analytical procedures to numerical techniques

applied to the discrete-time version of the problem. Two main reasons can

be pointed out to explain this: real situations in stand-level management

are often analytically intractable and a tailored production surface has

to be specially developed if calculus-based procedures are to be applied.

Secondly the availability of faster and better computers has, in general

stimulated the development of combinatorial algorithms and particularly

the usage of dynamic programming as an optimization approach for stand-

level management problems.

However, limitations in the application of the dynamic

programming approach. arise when the problem involves several state

descriptors and decision variables. The systematic search implicit in

existing dynamic programming algorithms results in large storage

requirements for state descriptions and therefore in massive iterative

computations as the dimensionality of the problem increases.

As pointed out by Hann and Brodie (1980) the approach currently

utilized for the dynamic programming (DP) formulation of stand management

decision presents limitations with regard to computational efficiency for

complex stand simulators and as a result, computing cost, or time may

become restrictive using either mainframe or personal computers.

The approach currently utilized in dynamic programming models

has been described in many textbooks. A description of the corresponding

algorithm applied to stand-level problems has been presented in Paredes

9
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and Brodie (1985).

The cause for the main drawback of the traditional formulation

is that it requires as many state descriptors as there are constraints

relating state and decision variables in the canonical form. In

practice the number of state descriptors is often more, depending upon

the complexity of the stand growth model embedded in the DP algorithm. As

pointed out by Hann and Brodie (1980) the approach would become

impractical when applied to whole stand/diameter class models, having

number-of-trees per diameter class as state descriptors. Generally the

canonical form has one or more types of constraints relating all the

decision variables and state descriptors. Furthermore the transformation

function (stand growth model transforming initial state and decision in

final state) may require one or more additional state descriptors to

adequately represent the response surface. Brodie and Haight (1985)

refer to these extra state descriptors as storage variables.

Therefore the number of elementary calculations required by the

systematic search in the traditional algorithm increases exponentially as

the number of state descriptors increases. Even in modern mainframe

computers the execution time involved restricts the range of practical

applicability for the method. The usage of microcomputers becomes even

more restricted to the solution of oversimplified networks.

Another characteristic of this formulation is that when searching

forward for the optimum path to each state it uses the cumulative return

as constituted by all revenues from previous silvicultural and stocking

decisions without including any value for the standing trees, except at

the final harvest node. However information describing the residual stand

is recorded through the set of state descriptors.

It will be demonstrated that this widely applied algorithm, whose



11

feasibility has been demonstrated on a number of growth models is

comparatively inefficient, from a computational viewpoint, especially

when solving decision sequences with a growth model capable of dealing

with several decision variables and requiring several state descriptors.

On the other hand, this algorithm is general, capable of dealing with a

high degree of nonconcavity in production and discontinuity in cost or

revenue functions.
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BASIS OF THE PROPOSED SOLUTION METHOD

The proposed algorithm can be derived either from a network

formulation of the problem, or from generalized LaGrange multipliers

theory, and even from the necessary conditions of the Maximum Principle.

This section presents the two first bases and also analizes the analogies

with a discrete-time version of the Maximum Principle.

A Network Approach

The proposed algorithm was derived from an appropriate application

of a commonly used algorithm, developed by Dijkstra (1959), to solve

for the shortest-path in networks. The algorithm is applied to a network

describing stand development under different management decisions.

Dijkstra's algorithm has been described in many textbooks of

operations research and consequently its formulation can be avoided in

the present paper. For description and examples Hu (1982), and Hillier

and Lieberman (1980) are suggested as references. For forestry

applications Dijkstra's algorithm is described by Dykstra (1984).

This shortest-path algorithm searches for the path of minimum

distance between a pair of nodes in a network without negative cycles. A

cycle in graph theory is a path with all the nodes distinct except the

first and the last, which are the same node. Thus if the network is

acyclic with positive or negative arcs the algorithm can be slightly

modified and applied to search for the longest path in the network

(Hu, 1982, sections 1.2 and 1.5). Therefore the equivalent maximization

problem results in

max (f) = -[mm (-f)1

and the problem of maximizing returns from a management regime can
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n=O n-i

xn__1_.__.---
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I

-

n n+1

13

be stated as the search for the longest route in a network describing the

stand development and decisions.

Figure 1 describes a segment of such a network for the n-th stage.

The nodes are clustered in stages, each stage representing a growth

period, and at each stage a node represents a candidate decision to be

taken. Obviously this is an acyclic network.

Figure 1. Interval [n-1,n+1} of a network describing stand management

options. Full lines are arcs incorporated in the objective function.

Dotted lines are arcs considered in recursion.

At each iteration, the algorithm examines those nodes with a

temporary label (a temporary label "h" is defined to be the length of a
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path from the origin to that node, so it is a lower limit to the

longest path) that are linked with the set of nodes permanently

labeled (a permanent label tth*?I is the true longest distance from the

origin to that node). In Figure 1, the set whose elements are

linked directly with the set [Y], already permanently labeled is

examined. We evaluate the distances between each element of {Y] and

2.
theoretically it would be necessary to evaluate K distances,

but in practice no more than K distances need be evaluated since

d(Yk,Y1) = d(Yk,Y1) for k=1,...,M (6)

kk
where K is the number of nodes at stages and d(Y,Yi) represents the

"distance" between a stand described by at stage n and the node

k
described by at the next stage.

In words this means that it does not matter which decision is to be

taken in the next stage since the stand will grow the same; what does

matter is the decision being taken at the present stage.

The purpose of examining n+i1 is to search for the node having

the maximum cumulative distance from the starting node. Accept for a

moment that the cumulative distance for all nodes in the set [Y] is

the same, then the search is for

* k kh1(Y1) = max [r CT) + G1(Y)] (7)

where h(Y) is the permanent label equal to the maximum revenue

generated by the decision Tk and the growth of a stand having state

after the decision Tk is implemented, G (Y ).
n n+1 n

Since it was accepted (for the moment) that the cumulative distance

for all nodes in the set [Y] was the same, then all nodes in the set

are going to receive the same permanent label equal to



h*1(Y1) + f(Yk)

where f(Y) is the cumulative distance up to stage n and the pair

[K,n] identifies the node for optimum h1(Y1).

So far the reader has been forced to accept that at stage n the

necessary to point out that the algorithm analyzes and solves completely

one stage at each single iteration. Thus it can be generalized that it

requires as many iterations as stages times the number of nodes at each

stage in the network. This is an upper limit because, as shown, at each

iteration the set of nodes at the next stage
n+i1

becomes

permanently labeled with the same value (i.e. cumulative return) and all

of them share an unique nexus with the previous stage: that node yielding

the maximum value of the objective function after solving the current

stage.

Two main outcomes arise from the above procedure; first, the

algorithm presents a tremendous increase in efficiency in terms of code

implementation and computing time when compared with traditional DP

formulations to solve the same problem, as will be demonstrated in the

following sections. Second, it is unnecessary to utilize the state

variables of the growth model as potential state descriptors for storing

cumulative distance f(Yk) is the same for all k. By using inductive

reasoning from stage n=1 it is observed that, for Y0 representing the

initial state of the stand, the growth of the stand up to the stage n=1

is necessarily the same, so f1(Y) is a constant for all k in the first

state. Now the search is in the set [Y2] and repeats the same steps to

assign a permanent label as described above. The proof is thus

completed.

Having already described the general iterative procedure, it is

15
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the residual stand in a multidimensional network after each decision

has been undertaken. This also makes the algorithm more easily

implementable.

The basic functional equation for the proposed approach is:

f(Y)
= :i[rn[Tn (Y1)1] + n-in-i

(9)

where r[T,G+i(Y)] represents the "net revenue" to be added (or

deleted, depending upon its sign) to the previous value of the functional

equation. For example, if the objective were to maximize the total

volume harvested from the stand, equation 9 would read, in volume

units,as

f(Y)=max[T +G (Y)]+f (Y )" "
[Ta]

n+i n n-i n-i

with f_1(T_1) representing the accumulated volume up to stage n

after deciding to leave a residual stand at the previous stage . T

is the harvested volume in the current stage Gn+i(Yn) is the volume

growth from a stand having a residual volume Y.

When implementing the algorithm to solve for an economic criterion

(present net worth, or soil expectation) the functional equation remains

the same but it requires some simple transformations to account for

revenue and cost functions, interest rate and inflation. In these cases,

the appropriate form of the functional equation is

f(Y) =

n

where f(Y) represents the accumulated present value of previous

decisions including the value of the residual stand after it grows to

stage n+i.

16
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The term r (X ,T ) is the value of the residual stand Y left at
n n n-i n-i

the previous stage n-i and since it is already included in it

has to be substracted and replaced by r+i(Xn+i,Tn).

It is noted, in equation ii, that the composite term

r (X ,T)-r(X,T )
n+i n+i n n n n-i

accounts for the growth, in monetary units, of the residual stand

after the decision T has been undertaken. It is the analogous concept

to Gn+i(Yn) in equation iO.

According to the above concepts and definitions the new algorithm

can be summarized as an iterative procedure involving the following

steps:

Step 0 f0(T0) = r0(X0) + R

n <-- 1

Step 1 P(T) < r(X,T) + r 1(X 1,T ) - rn(Xn,Tni)

< + f1(Y1)]

*
Save T

n
*

Step 2 f (Y =0) < f (Y =0) ===> STOP, PRINT [T I
n n n-i n-i

n <--- n + 1

X <___Y* +G(Y
n n-i n n-i

GO TO Step 1

The first statement of step 2 provides the stopping rule when the

maximum value of the objective function has been surpassed. Since

local maxima may exist when determining rotation age with an economic

criteria, for example a christmas trees or pulpwood rotation the stopping

rule has to be designed considering such a possibility.

17



Lagrange Multipliers approach

The algorithm already described can also be derived from the

canonical form of the problem (equations 1 through 4) by using LaGrangian

multipliers in those constraints relating state and decision variables.

This procedure is straightforward for resolving the main drawback of

the traditional DP formulations derived directly from the canonical form:

its high dimensionality in the state space.

Equation 2 describes those constraints. Using a LaGrangian

multiplier for the left-hand side of each constraint allows them to be

shifted to the objective function and thus eliminates the associated

state descriptors. This procedure to eliminate constraints was initially

proposed by Dreyfus (1957), later extended in dynamic programming by

Bellman and Dreyf us (1962), and generalized as a method to solve problems

of optimum allocation of resources by Everett (1963).

The objective function in canonical form becomes:

N N

max =r(T) - A[X - T + G1(Y)]
[TI n=1 n=1

where An is the LaGrange multiplier, shadow price or opportunity

cost of the resource (X+i) constraining the solution space; and the

functional equation of the dynamic programming problem associated with

the modified canonical form becomes:

f (Y ) = max[r (T )- A [X -T +G (Y )}]+f (Y )
"

[Ta]
fl n n n+1 n n-i n-i

The problem has been reduced in dimensionality of the state space at

the cost of introducing one decision variable for each dimension

eliminated from the state space of the original problem. The search is

now for the pair (TnAn) that maximizes the objective function and

18
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satisfies the constraint eliminated.

It is noted that the relation between the term An[Xn_Tn+Gn+i(Yn)]

in equation 13 and the composite element [rn+i(Xn+iTn) - rn(Xn,Tn_i)]

from equation 11 becomes straightforward. Both terms represent increments

or decrements to the objective function value at the previous stage. The

second one presents the advantage of being easily computed.

As described above the algorithm thus analyses and solves completely

one stage at each single iteration in the way of Everett's procedure for

optimum allocation.

Generally, when the procedure is applied to allocation problems,

this technique implies a search for a value of An that satisfies both

conditions. Everett (1963) solved multistage allocation problems by

searching the values of
'n

that resulted in an optimum allocation while

satisfying the constraint of the problem. Methodological aspects of the

search have been discussed by Fox (1966), Fox and Landi (1970), and

summarized by Denardo (1982). For the optimal stocking problem in stand

management the resource being utilized when a decision Tn is taken is the

stand available at the beginning of the next stage, X1. This is the

resource for which the shadow price must be estimated.

Therefore Xn can be interpreted as the price per unit of resource

X1 the manager is utilizing when deciding T. In this way An can be

positive or negative implying that a decision T means, respectively, a

cost or a revenue for utilizing the standing trees, depending upon the

reaction of the stand to T , and the cost factors.
n -

This interpretation of the multipliers is congruent with

silvicultural criteria traditionally utilized for prescribing a sequence

of treatments to a stand since each decision is evaluated by considering
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both the direct return (or cost) from the decision and the return from

future productivity of the residual growing stock after the decision is

taken. The multipliers thus represent the opportunity cost of modifying

the residual stand.

The advantages over the traditional dynamic programming algorithm

become obvious: a problem having N stages and K states at each stage

requires [K*(K_1)+1}*(N_2)+2K (K)N elementary calculations of the

transformation function with the traditional algorithm. The proposed

approach would require only [K(N-1)} K*N elementary calculations, and

therefore reduces the computing time by a factor of K, the number of

states. Certainly for small number of states and stages the savings are

unimportant, but for a real situation involving M state descriptors each

having K possible states the savings increase exponentially, by a factor

M
of K

An interpretation with the Maximum Principle

The Maximum Principle approach to the optimal control problem

introduces the Hamiltonian term to define the necessary conditions for an

optimum solution to the problem (Intriligator, 1971). The term is

composed by two elements: the first accounts for the flow of accumulated

dividends to the objective functional, and a second term representing

the flow of investment in capital stock times its shadow price (Dorfman,

1969; Clark, 1976). The sum of both terms results in the Hamiltonian, an

expresion for the total rate of increase of the total assets. Therefore,

by the Maximum Principle, an optimal control must maximize , along the

time path, the rate of increase of total capital.

In the proposed algorithm the first two terms on the right-hand
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side of equation 13 become a discrete time analogue for the Hamiltonian,

gn representing the adjoint (costate) variable or the marginal value of

the capital stock (residual stand) at stage n as defined by Dorfman

(1969). The Hamiltonian is then maximized at each stage by choice of

decision variables according to step 1 of the algorithm.

In a control problem the adjoint variable refers to the fact that

the asset's value is not its direct sale value, but the value imputed

from future productivity presuming that an optimal sequence of decisions

is to be utilized in the remaining stages. The algorithm is consistent

with the definition since the residual stand is evaluated after it

develops to the next stage, when the next set of decisions is to be

considered. At this point it could be argued that this procedure does not

result in an exact evaluation of future productivity and it can lead to

erroneous results when maximizing the Hajuiltonian at each stage.

An implicit assumption is embedded in our method: a one-period

.growth of the residual stand is an unbiased estimate of future

productivity as long as the time length of the period allows all the

effects of a decision variable to be represented either as direct return

from the decision undertaken or as incremental growth in the residual

stand. This is not an unknown assumption since it is also required for

stage specification in dynamic programming. The recursive structure of

all complex growth models also provides a sound base to the above

assumption.

The Hamiltonian is therefore maximized by any suitable search

technique on the decision space, and even by exhaustive enumeration when

it represents an ill-behaved response surface.



AN ILLUSTRATIVE EXAMPLE

The foregoing sections were devoted to a mathematical formulation

and analysis of the traditional and new algorithms. A simple example

will show how the new algorithm can be used in practice, how it compares

with the traditional approach, and how it can be simply implemented. In

order to allow for a better understanding of the new algorithm an example

is presented using the same data and functions that Johnson and Sleavin

(1984) used to explain a traditional DP model they developed to optimize

the management of Douglas-fir stands.

The statement for the problem presented by Johnson and Sleavin

(1984) can be summarized as follows: a stand is 15 years old and it

presents a standing volume of 500 cu.ft.; the ages for possible thinnings

are 20, 25, and 30 years; the rotation age has been fixed at age 35

years; the feasible stocking levels at each stage are full stocking

(unthinned stand), 1500 and 1000 cu.ft. for all stages except the last

when the stand has to be clearcut. Figure 2 describes the stand

development for different management options under the traditional DP

approach.

Using the notation introduced in previous sections and the data

provided by Johnson and Sleavin, the above problem is described by the

following vectors
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Y0 = [500] X0 = [500]

=

=

[1992,

[3648,

1500,

1500,

10001

1000]

X1 =

X2 =

[1992]

[3648, 3055, 2371]

=

=

[4337,

[ 0 1

1500, 1000] X3 =

X4 =

[4337,

[4185,

2545,

2253,

1995]

1778]
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Figure 2. Network describing decision options for hypothetical stand:

traditional DP algorithm. Full lines are arcs incorporated in the

objective function, dotted lines are used in recursion.

-The following volume equation is used to evaluate the term +

log V5 = 1.5 + [(t+5)It]*log V'iT

where t represents age of the stand, and V is the standing volume.

In figure 2 the node Y0 corresponds to the initial state (X0 = = 500

cu.ft.) of the stand at age 15; the sets [Y1], [Y2] and [Y3} are the

feasible states at ages 20, 25 and 30 respectively; and the node is

the only feasible state at age 35. So the problem is to find the path

yielding the maximum accumulated volume at rotation age.

The traditional DP method focuses the problem as identifying the



24

best path for reaching each state at stage n; for example there are three

different ways of obtaining astocking level of 1500 cu.ft. at age 30

(i.e. reaching the node Y) one way is by thinning the natural stand,

thus removing 4337-1500= 2837 cu.ft. at that age; the second option is by

letting the stand grow from state and removing 2545-1500=1045 cu.ft.;

and the third way is by thinning the stand grown from and then

thinning a volume equal to 1995-1500=495 cu.ft. Thus in the traditional

2
procedure the best option for reaching node has to be selected as the

one with the maximum cumulative volume removed so far. This implies also

considering the volume removed up to the nodes from which can be

reached, [4 Y, Y], which by induction from the first stage are

also the maximum for each node.

In the traditional DP algorithm the numerical expression of the

recursive equation when solving, for instance, the state Y becomes :

f2(Y2) = max[0-i-2148; 492+1555; 992+871]

= max[2148; 2047; 1863] = 2148

and this value is obtained by following the path Y0 -Y -Y.

Since the problem has N=4 stages and K=3 states at each stage, except

the last one when only one state is feasible, [K*(K_1) + 1]*(N_2) +2K =20

calculations (i.e. evaluations as above) are required to solve it. The

maximum yield is obtained with the path Y0 - - - Y - and it

is 5471 cu.ft.

To solve the problem with the new algorithm the network presented in

Figure 3 is more appropriate, nevertheless the production data used are

the same as that of Figure 2.

By following the algorithm presented in the previous section the first

iteration is made to solve the set [Y1] which corresponds to age 20

(i.e. state 1). Since the problem is one of maximizing volume, equation



V3.
n

xo=Yo

25

9 is appropriate but implemented as equation 10 for easy computation.

Figure 3. Network describing decision options for hypothetical stand:

New algorithm. Full lines are arcs incorporated in the objective

function, dotted lines are arcs used in recursion.

Therefore at age 20 the algorithm solves

[ 0 + 3648] - 1992 + 1992
f1(Y1) = max [492 + 3055] - 1992 + 1992 = 3648

[992 + 23711 - 1992 + 1992

which corresponds to select node as the nexus for all nodes in

the next stage and all those nodes become permanently labeled with the

value 3648 (cu.ft.). The next search is on the set [Y2] at age 25, then

[ 0 + 4337]- 3648 + 3648
f2(Y2) = max [2148 + 2545] - 3648 + 3648 = 4693

[2648 + 1995] - 3648 + 3648

and this cumulative volume can be reached through the path Y0 -

2 . . .

- The iteration for stage 3 implies the evaluation

n=O n =1 n=2 n=3 n=4



corresponds to selecting node Y in the 3rd stage. Node is the final

stage so it is also solved by the previous iteration.

The optimum stocking regime is the same solution provided by

traditional DP (path Y0 - - - Y - however the number of

calculations was reduced to K*(N_1)=9 evaluations of the functional

equation 12. In this case the correct evaluation of A as the shadow

price of the residual stand has lead to the optimal solution.

For small problems, as in this example, the savings in number of

calculations are not so impressive, however the difference in computing

effort between both algorithms is exponentially increased when the size

of the problem is increased. A problem with 40 states and 12 stages

will require 7690 calculations with traditional DP and 440 with the new

method.
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[ 0 + 3067] - 2545 + 4693

f3(Y3) = max [1045 + 2253] - 2545 + 4693 = 5471

[1545 + 1778] - 2545 + 4693

which is the optimum possible value to obtain from the stand and



COMPARISON WITH AN EXISTING DP MODEL

Any comparison with an existing DP model requires the new algorithm

to use identical production and cost functions. The growth model for

Douglas fir embedded in DOPT corresponds to a version of DFIT (Bruce and

others, 1977) with minor modifications introduced by Brodie and Kao

(1979) when developing DOPT. These growth, cost and revenue functions

were extracted from DOPT and utilized in the new algorithm, insuring a

comparison over identical production surfaces. For the remainder of the

paper we will refer to the traditional approach as the DOPT algorithm and

the new approach as the PATH algorithm.

Both algorithms are written in FORTRAN 77 and were compiled with the

same optimization level of the FORTRAN Compiler, NOS operating system for

a Control Data Corp. CYBER 73/16 mainframe computer.

Two sample problems were stated and solved with each algorithm in

order to illustrate the real differences in execution time. We include

these examples to illustrate the practical advantage of the new approach

and not merely as a software comparison.

The following data is shared by the two problems: the stand is a

natural growth of Douglas-fir site index 140 (McArdle, 1961); it has not

been precommercially thinned nor fertilized. The only decision variable

is number of trees (in 15-trees intervals) left after thinning, and the

state descriptors are age (in 10-year intervals), number of trees (in 15-

tree intervals), and basal area (in multiples of 20 sq.ft./acre). The

last two descriptors are required by DOPT. A $200 per acre regeneration

cost is assumed to have been incurred before the age of the first

thinning option (30 years).

Specifically each problem is defined through the following data:
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-net interest rate
-hauling costs
-net interest rate
-hauling costs

1= 4%
H= 50 $/Mcu.ft.
i= 2%
H= 100 $/Mcu.ft.
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where net interest rate refers to the real cost of capital, and

logging and hauling costs are evaluated as described by Sessions (1979).

The feature used to demonstrate efficiency was the comparable

computer times required to solve a given problem using DOPT and PATh.

Comparisons should be between algorithms for the same problem and same

computer. Table 1 presents the results in execution time for both, CYBER

73/16 mainframe computer and the IBM-XT 5160/087.

Table 1 Computing time on a mainframe and a personal computer.

DOPT PATh

CDC CYBER 73/16 [CPU secs]

problem A 99.78 4.19

problem B 187.30 5.45

IBM-XT/DOS 3.10 [pecs]h/'

problem A 4475 48

problem B 10775 57

1/ Timing with internal clock, includes processing and I/O operations.

In DOPT reading and writing consumes a greater amount of time than

processing.

As was expected the ratio in mainframe execution time between

algorithms was about 30 times to solve this type of simple DP problem;

for complex DP formulations such as those involving several decision

variables and more state descriptors, the ratio will increase

exponentially. -

An interesting sidelight of the comparative analysis was that the

solutions reported by the two algorithms present occasional

discrepancies. It was expected that the solutions for a given problem

Problem A:

Problem B:



(1) Soil expectation value for optimal rotation age.

For certain rotation lengths, PATH and DOPT tend to find identical

optimal values of the objective function, and therefore the algorithms

report the same optimum solution. However, there are instances where the

algorithms report different solutions and consequently different

objective function values. Since both algorithms utilize the same

functions to grow the stand and to evaluate alternatives, these

discrepancies have to be explained in terms of the characteristics of the

solution methods here compared.

In the cases presented these slight discrepancies occur from an

artifact of the "neighborhood storage" method of DOPT to reduce the

number of feasible values of each state variable. In this method

continuous stand variables are classified to discrete nodes and artifacts

were noted by Kao (1980) when wider state spaces sometimes gave higher
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would be identical since both methods are nested in a unique canonical

form. Table 2 summarizes the optimum values for all rotations reported

as solutions by each model.

Table 2 Soil expectation value for optimal stocking regimes, different
rotation ages.

[$/acre}

Age
Problem A

DOPT PATH
Problem B

DOPT PATH

60 35.1 35.1 604.1 604.1

70 98.9 98.9 1097.9 1097.9
80 101.1 101.1 1305.0 1305.0

90 107.2(1) 108.6(1) 1379.8 1379.8

100 102.3 103.1 1393.4(1) 1386.4

110 1386.6 1405.9(1)

120 1396.4
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objective function values; alternatives are classified to different nodes

and thus not eliminated from future stages. This discretization

procedure, also known as the "coarse grid approach", has been long

recognized as potential source of discrepancies in the optimal solution

of dynamic programming problems (Neinhauser, 1966).

Additionally, a potential source of differences are the cost

functions embedded in DOPT to evaluate the cost of logging thinned and

clearcut volumes. The cost evaluation routine, developed by Sessions

(1980), is composed by several equations forming an overall discontinuous

or segmented cost function with independent variables being the

parameters of the removed stand volume. These discontinuities may result

in a source of inestability in the objective function values whenever the

optimal solution includes, at any stage, a decision option being

evaluated at any of the discontinuities. In the examples presented here

the optimal solutions reported by both algorithms do not intersect the

illconditioned poits of the cost function and therefore the solutions

from either algorithm can be certified as optimal for each problem.

In general, it is expected to find such discrepancies when parallel

mathematical methods are used to solve the same control problem.

Discrepancies in optimal solutions were noted and analized by Everett

(1963) when solving a problem with dynamic programming and LaGrange

multipliers algorithms. Fan and Wang (1964, p78) also reported the same

type of discrepancies when solving a replacement problem wth both a DP

algorithm and a discrete Maximum Principle algorithm which, as pointed

out earlier, uses the adjoint variables as an equivalent concept to the

LaGrange multipliers.

Such discrepancies would only be noted in the case of parallel
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specifications as developed here. They can be controlled or eliminated

by reducing the intervals and are reported here for additional insight

into artifacts in DP solutions.



CONCLUSIONS AND EXTENSIONS

During the last decade dynamic programming and optimal control

have shown their general suitability to solve the stand level control

problem. The dynamic programming approach can provide numerical solutions

to actual situations up to the point where the dimensionality of the

problem being solved becomes a binding constraint. On the other hand, the

optimal control approach (specifically the Maximum Principle) provides

interesting economic insights to the nature of the problem by utilizing

concepts such as shadow prices or opportunity cost of a given

alternative, however its application has been restricted to the

continuous-time version of the problem and simplified growth models.

Furthermore, as claimed by Nemhauser (1966), dynamic programming is

an approach to optimization rather than a computational method for

optimizing particular objective functions and specifications. An analyst

may use any suitable method of optimization to construct and solve the

recursive equation. The LaGrange multipliers of Everett (1963) provide

such method to reformulate the traditional approach and simultaneously

getting an interesting analogy with the discrete-time Maximum Principle.

It has also been demontrated that the increasing availability of

combinatorial techniques during the last decades represent a source of

useful optimization methods suitable to forestry applications that are

otherwise intractable.

The method proposed in the previous sections has proved its

feasibility with much less dimensionality and computation than

traditional dynamic programming where some properties of the production,

cost and revenue functions can be assumed. Comparison of the two methods

using a modern stand growth simulator revealed a substantial increase in
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efficiency.

Growth models are becoming more prevalent in forestry applications

and more complex in structure. The usefulness of optimization techniques

is becomming widely recognized. Concerns about the dimensionality and

computational burden of these newer models when transformed to an

optimization framework, have been expressed, but the gains in efficiency

demonstrated here, indicate a scope for further applications to

increasingly complex problem structures.

The method permits utilization of additional computational

refinements such as seeking methods when the response surface satisfies

requirements of concavity or unimodality.

Nevertheless, we recognize that further investigation of the

estimation of the LaGrange multipliers is required. The opportunity cost

of the residual stand utilized in the example (equal to the stumpage

value of the stand after one more growth period) is not necessarily a

rule but a good initial guess for other applications of the method. Even

though Everett (1963) does not impose restrictions on the functions being

optimized (since his method implies a search for the multiplier values),

it appears reasonable to suggest, for stand management problems, a

preliminary investigation of the production surface (i.e., the stand

growth simulator) being utilized. Conditions of quasiconcavity in the

growth function, and continuity or at least monotonicity in the revenue

and cost functions are desirable if the search in the value for the

multipliers is to be avoided or minimized. The time spent in this

investigation and in formulating the problem can save a vast amount of

computing time. Judgement and preliminary investigation can substitute

for the full enumeration of a network used in the traditional dynamic

programming approach.
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APPENDIX Program PATH

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM PATH

PROGRAM PATH. FORTRAN 5 INTERACTIVE VERSION AS
CORRECTED ON AUGUST 1986.
THIS IS AN ALGORITHM TO OPTIMIZE ROTATION AND
THINNING REGIME IN EVEN-AGED STANDS OF DOUGLAS
FIR. IT IS BASED ON THE GROWTH MODEL DFIT BY

BRUCE El. AL. (1977) AS MODIFIED IN DOPT BY
BRODIE AND KAO (1979).

SEE ABOVE REFERENCES FOR A DEFINITION OF GROWTH
VARIABLES AND STAND PARAMETERS

DIMENSION THVAL(39),THVLM(39),THRUET(39),THRUEBA(39),FIVAL(39)
DIMENSION OPTRUET(20),OPTVOL(20),OPTBA(2O),HRVOL(20)
DIMENSION VCUT(39),DMEAN(39),OPOLVR(39),OPOLHR(39)
DIMENSION HRVSTD(14),HRVSTB(14),HRVSTP(14),HRVSTS(14),HRVSTC(14)
DIMENSION NN(15),TNORM(14),GNORM(14),VNORM(14),Z(14),DRATIO(5)
DIMENSION OUT(14,6),NITMP(14),IPAGE(14),XAGE(14)
DIMENSION JFERT(14), DATIOD(14)
COMMON TAGE, TBASE, SITE, TRATIO. GRATIO, VGRATIO

COMMON PMORTN(25), PMORTG(25), PMORTV(25), YMORTN(250), YMORTG(250)
COMMON TNONMER(25),GNONMER(25),VNONMER(25)
INTEGER OPOLVR, OPOLHR, W
CHARACTER *10 SKIP(14)
OPEN(6, FILE= 'OUTPUT')
OPEN(5, FILE='INPUT')
DRATIO(1 )=1 .0

TRATIO=1 .0

GRATIO=1,O
N=1

L=1

MAX VR=39
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DATA INPUT, AS IN DOPT

WRITE(*, 6000)

6000 FORMAT(//' PROGRAM P A T H'!!
1 ' A ROTATION AND THINNING REGIME OPTIMIZER FOR EVEN-AGED 'I
2 ' STANDS OF DOUGLAS-FIR. 'I
3 ' IT USES DElI AS A GROWTH MODEL IN A RECURSION PROCEDURE 'I
4 ' THAT EVALUATES DECISION OPTIONS BY PROJECTING THE RESIDUAL 'I
5 ' STAND TO THE NEXT STAGE (10-YEARS LOOKAHEAD) 'I
6 ' END ALL ENTRIES WITH RETURN. 'I
7 ' ZEROES MUST BE ENTERED FOR VALUES NOT USED.'!)

7001 WRITE(*,6001)
6001 FORMAT(' ENTER TREE THINNING INTERVAL (USE 15)')

ASSIGN 7001 TO W
READ (*,*,END=7999) INTVR

7002 WRITE(*,6002)
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6002 FORMAT(' ENTER MCCARDLE 100 YEAR SITE INDEX')

ASSIGN 7002 TO W

READ (*,*,END=7999) SITE

IF (SITE LT. 10 OR. SITE .GT. 300) GO TO 8999

TESTA=1 3.22-0. 033*SITE

7003 WRITE(*, 6003)

6003 FORMAT(' ENTER 0 FOR NORMAL STAND OR 1 FOR NON-NORMAL STAND')

ASSIGN 7003 TO W

READ (*,*,END4999) TESTN

IF (TESTN .NE. 0 .AND. TESTN .NE. 1) GO TO 8999

7004 WRITE(*, 6004)

6004 FORMAT(' ENTER AGE OF FIRST COMMERCIAL ENTRY FOR NORMAL STAND,'!

1
' (NORMALLY 30 OR GREATER)'!

2 ' OR CURRENT AGE FOR NON-NORMAL STAND')

ASSIGN 7004 TO W

READ (*,*,END=7999) TBASE

IF (TESTN .EQ. 0 .OR. TBASE .GT. TESTA) GO TO 7005

WRITE (*,6O23) TESTA

6023 FORMAT(' TRY AGAIN.'!' ENTER A VALUE GREATER THAN ',F3.0)

GO TO 7004
7005 WRITE(*, 6005)

6005 FORMAT(' ENTER 0 FOR NO PRECOMMERCIAL THINNING OR'!

1
' OR 1 FOR PRECOMMERCIAL

THINNING (PCI)')

ASSIGN 7005 TO W

READ (*,*,END7999) TESTP

IF (TESTP .NE. 0 .AND. TESTP .NE. 1) GO TO 8999

7006 WRITE(*, 6006)

6006 FORMAT(' ENTER 0 FOR NO
FERTILIZATION OR 1 FOR FERTILIZATION')

ASSIGN 7006 10 W

READ (*,*,END=7999) TESTF

IF (TESTF NE. 0 .AND. TESTF .NE. 1) GO TO 8999

7008 WRITE(*, 6008)

6008 FORMAT(' ENTER DECIMAL RATE OF INTEREST (FOR 3%, ENTER .03)'!

1 ' AND DECIMAL RATE OF REAL PRICE INCREASE'!

2 ' (USUALLY BETWEEN .01 AND .03)')

ASSIGN 7008 TO W

READ (*,*,END=7999) R, Ri

7010 WRITE(*,6010)
6010 FORMAT(' ENTER THE HIGHEST NUMBER OF TREES AFTER PCT FOR A',

1 ' NORMAL STAND'!

2 ' OR THE TOTAL NUMBER OF TREES IN A NON-NORMAL STAND')

ASSIGN 7010 TO W

READ (*,*,END7999) STREE

7011 WRITE(*, 6011)

6011 FORMAT(' ENTER BASAL AREA FOR A NON-NORMAL STAND',

1 ' OR 0 FOR A NORMAL STAND')

ASSIGN 7011 TO W

READ (*,*,END=7999) SBA

7014 WRITE(*,6O14)
6014 FORMAT(' ENTER REGENERATION COST PER ACRE'!

1 '
AND HAUL COST IN $ PER THOUSAND CUBIC FEET')

ASSIGN 7014 TO W

READ (*,*,END=7999) REGENC, HAUL

1001 WRITE(*,6018)
S=1.0



C

C

C

C

C
BHAGE=TAGE-1 3.22+0. 033*5 lIE

DNATURE=1O'(O. 1O97-3.4857!BHAGEO.25+1 .0531*ALOG1O(SITE))
TNATURE=10(3. 91O8+5.2306/BHAGEO.25-1 . 5803*ALOG1O(SITE))
GNATURE=1O(1 .8669-1 .7408!BHAGEO.25+O. 5259*ALOG1O(SITE))
I-IT=1 O(O. 1567-15. 673/TAGE+ALOG1 O(SITE))

VG=1 O(-O. 0282+0. 791 7*ALOG1 O(HI))
VGRATIO=VG
VNAIURE=GNATURE*VGRATI 0

TRAIl O=STREE!TNATURE

GRATIO=SBA!GNATURE
IF(TESTN.EQ.O.) TRATIO=1.
IF(TESTN.EQ.O.) GRATIO=1.

CALL SUBMORT( DNATURE)
L=TBASE/'l 0. -2.
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NDRATIO=1
DRATIO(1)=1 .0

NADD=0
6018 FORMAT(' YOUR DATA INPUT HAS BEEN ACCEPTED 'I

1 ' SO I AM RUNNING

GO TO 7022
7999 WRITE(*,6999)
6999 FORMAT(' ZEROES MUST BE ENTERED FOR VALUES NOT USED.'!

1 ' TRY AGAIN.')
GO TO W, (7001,7002,7003,7004,7005,7006,7008,7010,7011,7014)

8999 WRITE(*, 9999)
9999 FORMAT(' SORRY, YOUR DATA IS NOT ACCEPTABLE. TRY AGAIN.')

GO TO W,(7003,7004,7005,7006)
CLOSE (UNIT=5)

C

7022 WRITE(*,6020)
6020 FORMAT('l'///' P A I H - DEVELOPED AT OREGON STATE UNIVERSITY',

1 ' BY GONZALO'/' AND DOCUMENTED IN 1985 SUMMER.'!

2 ' FOR QUESTIONS, CONTACT D. BRODIE AT FOREST '!

3 ' MANAGEMENT DEPARTMENT, PHONE 503-754-2796'!

4 ' OR 503-754-4951.'!!)
C

C ECHO DATA TO OUTPUT FILE
C

WRITE(6,3) TBASE,SITE,R,R1,REGENC,S,HAUL
3 FORMAT(' AGE IS',F6.1/[ SITE INDEX IS',F7.1/'/' INTEREST RATE IS',

$F5.3//' PRICE INFLATION RATE IS',F6.3/'/' REGENERATION COST',
$' IS $',F7.2!!' LOGGING COST SHIFT FACTOR IS',F6..2,//
$' HAUL COST PER THOUSAND CUBIC FEET IS $',F7.2)
WRITE(6, 1 3)(DRPtTIO( I), 1=1, NDRATIO)

13 FORMAT(/' THINNING RATIOS(DCUT/DTOTAL) ARE:',5F6.2)
SITEOLD=SITE
TAG E=TBASE

EVALUATES PARAMETERS NORMAL STAND
CALCULATE NATURAL STAND AT BASE AGE

C

C CALCULATE MERCHANTABLE PART AND MORTALITY LATER PART

C



C

C

C
16

C

C

C

C

17

C

C

C

18

C

C

C

C

IF(L.LT.1) L=1
GMERCH=GNATURE-GNONMER(L)/GRATIO
TMERCH=TNATURE-TNONMER(L)/TRATIO
VMERCH=VNATURE-VNONMER( L)/GRATIO

DEFINES INDEX FOR INITIAL STATE SETTING I MAXIM

I=TMERCH*TRATIO/INTVR+1 .999999
IF(I.LT.1) 1=1
IF(I.GT.MAXVR) I=MAXVR
TRUET=TMERCH*TRATI 0
TRUEBA=GMERCH*GRATIO
VLM=VMERCH*GRATI 0

VAL=-REGENC

WITH NS THE THINNINGS ARE RESTRICTED TO A 50%
IN THE FIRST STAGE

NS=TMERCH/(2.*INTVR)+1 .999999
IF((NS-i. )*INTVR.GT.TRUET) NS=TRUET/INTVR+1 .999999
IF(NS.LT.1) NS=1
IF(NS.GT.MAXVR) NS=MAXVR

CALCULATE NATURAL STAND AND MERCHANTABLE TREES.

DO 18 I=L,14
AB=3O+1 O( I.....i)

B=AB-1 3.22+0. 033*S lIE

TNORM(I)=1O(3.9108+5.2306/BO.25_1.58O3*AL0Gi0(SITE))
GN0RM(I)=1O(L8669_i.7408/B0.25+.5259*ALOG1O(SITE))
VN0RM(I)=iO(i.9628_12.4083/AB_1.74O8/B.25+1.3176*ALOG10(SITE))
Z( I )=TNORM( I )-TNONMER( I )/TRATIO

CREATE PARAMETERS TO ITERATE

SITE5O=21 .5-0. 18127*30..+O. 721 14*SITE

TMORT1=O. 0

GMORT1 =0.0

VMORT1 =0.0

GMORT2=O. 0

VMORT2=0. 0

VFERT=O. 0

OPVALUE=-99999. 99

C

C STARTS THE LOOP FOR EACH STAGE

C

19 CONTINUE
WRITE(6,802)N

802 FORMAT(//' STAGE NUMBER ',12//)
TAGE=TBASE+1O.*( Ni)

IF(N.EQ.i) GOTO 25
NS=2
HT=1O(O.i567-15.673/(TAGE-1O. )+ALOG1O(SITE))
VG=1 O(-0. 0282+0.791 7*ALOG1 O(HT))
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25 KJ=TAGE/1O.
IF(KJ.LT.1) KJ=1
IF(KJ.GT.14) KJ=14

C-
C REPLACES NUMBER OF TREES AND VOLUME BY OPTIMUM NODE

C
IF(N.EQ.1) GO TO 300

VLM=OPTVOL(N-1)
TRUET=OPTRUET(N-1)

300 BHAGE=(TAGE-10. )_13.22+0.033*SITEOLD

GBOUND=O.
IF(N.EQ.1.OR.TAGE.GT.7O..0R.TESTF.EQ.) IQUANT=1

C

C NEXT OUTPUT STATEMENTS ARE OPTIONAL FOR

C DEBUGING PURPOSES

C

C
C(DEBG OPT 1) WRJTE(6,777)N,L,TRUET,0PTBA(N1),IM

C(DEGB OPT 1) 777 FORMAT(t STAGE N='12,' L='121t TRUET =',F6.1/

C(DEBG OPT 1) $ TRUEBA=',F7.1/' VLM=',F7..1/)

C

C-
C STARTS THE LOOP FOR THE I THINNING OPTIONS ACCORDING

C TO STANDING NUMBER OF TREES

C

C IN THE FIRST STAGE THIN FIRST THEN GROW

C
IF(N.EQ.1) GOTO 28
VOL=VLM+VNONMER( NL-1)

C

C IF IT IS NOT THE FIRST STAGE CALL GROWTH

C
CALL GROWTH(TRUET. VOL,VMER, VMORT1 , GMER, GMORT1 ,N,TESTP)

C

VLM=VMER
TRUE BA=GMER

PNORM=TRUET/Z ( N+L-2)

TMORT1=(Z(N+L-2)-Z(N-I-L-1 ) )*PNORM

IF(TESTP. EQ. 1.) TMORT1=0.

TRUET=TRUET-TMORT1

C

C LOOP FERTILIZATION ELIMINATED IN THIS VERSION OF PATH

C

28 NT=TRUET/INTVR+1 .999999
IF(NT.LT.1) NT=1
IF(NT. GT. MAXVR) NT=MAXVR

C

42

DIAM=SQRT(TRUEBA/(0. 0054541 54*TRUET))

VOLMOR=VMORT1
BALMOR=GMORT1
DO 41 K=NS,NT

41 THVAL(K)=0.0
FIVAL(K)=0. 0

THRUET(K)=0.O
THVLM( K)=0. 0



C

C

C

C

C

C

C

C

C

NS IS CONSTRAINED TO 50% STOCKING

DO 40 K=NSNT
TAGE=TBASE+1O.*(N._1)

FOR K=NT WHICH IS NO THINNING

IF(K.LT.NT) GOTO 32
TMPBA=TRUEBA
IMP VLM=VLM

CUT=O.
REV=O. 0

GOTO 35
C

C NOW FOR K<NT WHICH ARE THE THINNINGS
C

32 TMPBA=TRUEBA*(1 .-DRATIO(1 )2*(TRUET_(K_1 )*
$INTVR)/TRUET)
IF(K. EQ. 1) TMPBA=O.

IF(TMPBA.LT.O.) GOTO 40
IMP V LM=VLM*TMPBA/TRUE BA

CUT=VLM-TMPVLM+VOLMOR
DIAM1=SQRT( (TRUEBA-IMPBA+BALMOR)/(.0054541 54*(IRUET_

$(K-1 )*INTVR+TMORT1 )))

CALCULATE CUBIC VOL TO A 4-INCH TOP

HD=1O(. 1567-15. 673/IAGE+ALOG1O(SITE))
N1=(TAGE-20. )/1O.
ALLTREE=TRUET+TNONMER(N1)
HM=HD*( 3040. -ALLTREE )/3000.

IF(HM.GT.HD) HM=HD
VOL4=CUT*(.8758. 001 049*HM_. 000OO2824*HM2+. 3221 /DIAM1 -

$45. 647/DIAM13)
VAR=4. 0725O. 065722*SITE+O. 00001 5O8*TAGE*SITE2
TRUED=SQRT(DIAM1 -2-VAR)
IF(TRUED.GT.22. )TRUED=22.

C

C EVALUATES PNW FOR THINNED VOLUMES
C

REV=REVNOW(VOL4, TRUED, S, Ri, TAGE, HAUL)

C

35 FERTCST=0
TMPVAL=(REV-( FERICST)*( iR)**1 0)/C (1. +R)TAGE)+VAL
IF(K.GE.2) DIAM=SQRT(TMPBA/(O.005454154*(K_1 )*INTVR))
DMEAN(K)=DIAM
THVAL( K)=TMPVAL
OPOLVR(K)=(I-i )*INTVR

THRUEBA(K)=TMPBA
IF(TMPBA.GT.GBOUND) GBOUND=TMPBA
THRUET(K)=(K-i )*INTVR
IF(K.EQ.1) THRUET(K)=O.
IF(K. EQ.NT) THRUET(K)=TRUET
IF(K. EQ. 1) HRVSTB(KJ)=IRUEBA
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THVLM(K)=TMPVLM
VCUT( K)=CUT

C

C IN (K) ARE STORED THE PARAMETERS OF THE STAND
C CORREPONDING TO THE STATE BEING EVALUATED.

C NOW ITERATES TO PROJECT THE RESIDUAL STAND.

C A NUMBER OF IX LOOKAHEAD PERIODS CAN BE USED

C

IPPHH=IPLHOR/1 0-2

I X=1

XTRUET=THRUET( K)
XVLM=THVLM( K)

XTAGE=TAGE
C

DO 800 IIX=l,IX
C

C NEXT FORMAT STATEMETS (779 AND 776) FOR

C DEBUGING PURPOSES
C

C

C(DEBG OPT 2) WRITE(6,779)IIX,IX,XVLM,XTRUET
C(DEBG OPT 2) 779 FORMAT(' IIX=',13,' IX=',13/' XVLM ',F6.1/' XTRUET ',F6.1)

C

NX=N+IIX
XVOL=XVLM + VNONMER(NX+L-1)
TAGE=XTAGE+1 0. *1 IX

C

C(DEBG OPT 3) WRITE(6,776)XVOL,VNONMER(NX+L-1),TAGE
C(DEBG OPT 3) 776 FORMAT(' XVOL',F6..1/' VNONMER ',F6.1/' TAGE ',F6.1)

C

CALL GROWTH(XTRUET,XVOL,VMER,VMORT1,GMER,GMORT1 ,NX,TESTP)
C

XV LM=VME R

XPNORM=XTRUET/Z( NX+L-2)
XMORT1=(Z(NX+L-2)-Z(NXL-1 ) )*XPNORM
IF(TESTP. EQ. 1. )XMORT1=0.

XTRUET=XTRUET-XMORT1
IF(IIX.LT.IX) GO TO 800

XCUT=XVLM+VMORT1
XDIAM1=SQRT((GMER+GMORT1 )/(O.005454154*(XTRUET+XMORT1 )))

XMM=1 5. 673/TAGE

HD=10(. 1567-XMM+ALOG1O(SITE))
N1=(TAGE-20. )I10.
ALLTREE=XTRUET+TNONMER( Ni)
HM=HD*( 3040. -ALLTREE )/3000.

IF(HM. GT. HD)HM=HD
VOL4=XCUT*(O. 8758+0.001 049*HM_O. 000OO2824*HM2+O. 3221 /XDIAM1-

$45. 647/XDIAMi3)
VAR=4. 0725-0. O65722*SITE0. 00001 5O8*TAGE*SITE2

TRUE D=SQRT( XDIAM1 2-VAR)
IF(TRUED.GT.22. )TRUED=22.

EVALUATES PNW OF RESIDUAL STAND

44

C

C

C

C



C

C

REV=REVNOW(VOL4, TRUED, S, Ri, TAGE, HAUL)

C

CORTA=REV/((i .+R)TAGE)
F I VAL (K )=CORTA+TMPVAL

C

800 CONTINUE
C

IF(FIVAL(K).LT.OPVALUE) GO TO 850
OPVALUE=FIVAL(K)
PREVAL=THVAL( K)
OPTRUET( N )=THRUET( K)

OPTVOL(N)=TMPVLM
OPTBA(N)=THRUEBA( K)

STMPAGE=CORTA
HR VOL( N ) =VCUT( K )

C

850 CONTINUE
WRITE(6, 778)K, NT, FIVAL(K)

778 FORMAT(' STATE PARAMETERS ',2(13,2X),'FIVAL ',F7.1)
40 CONTINUE

C

C AGE AND STAGE INDICATORS FOR NEXT ITERATION

C
N=Ni
TAGE=XTAGE+1 0.

VAL=PREVAL

WRITE FOR EACH STAGE THE OPTIMUM SUBPATH

C

C

C

C

WRITE(6, 77)XTAGE

77 FORMAT(' OPTIMUM NODE AT STAGE ',F4.O,' YEARS'!!)
WRITE(6, 78)OPTRUET(N-1)

78 FORMAT('RESIDUAL NUMBER OF TREES',F6.1!)
WRITE(6, 79)OPTVOL(N-1)

79 FORMAT(' RESIDUAL VOLUME ',F7.iI)
WRITE(6, 82)HRVOL(N-1)

82 FORMAT(' THINNED VOLUME ',F7.1/)

WRITE(6, 81 )PREVAL, STMPAGE

81 FORMAT(' PREVIOUS VAL=',F7.1,' STUMPAGE AGE 100 ',F7.1/)
WRITE(6, 80)OPVALUE

80 FORMAT(' ACCUMULATED PNW ',F7.1//!I)
IF(N.EQ.IPPHH)GO TO 955
GO TO 19

95.5 CONTINUE
CLOSE (6)

END
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SUBROUTINE SUBMORT(DD)
COMMON TAGE,TBASE,SITE,TRATIO,GRATIO,VGRATIO
COMMON PMORTN(25),PMORTG(25),PMORTV(25),YMORTN(500),YMORTG(500)

C

C SUBROUTINE SUBMORT(DD) *
C



C

C

C

C

COMMON TNONMER(25),GNONMER(25), VNONMER(25)

CALCULATE PERIODIC MORTALITY
STARTS FROM THE AGE OF FIRST THINNING

B30=30. -13.22+0. 033*SITE
D3O=1O(O. 1O97-3.4857/B3OO.25+1 .0531*ALOG1O(SITE))
DM=(D30/O.875)*O. 75

DL=O. 698*D30

L=TBASE/1 0. -2.

IF(L.LT.1) L=1
TNONMER(L)=1O(3.8622+3. 1994*ALOG1O(DM)_4.7*ALOG1O(DD))*TRATIO
YMORTN(L)=TNONMER( L)
GNONMER(L)=1O(1 .4034+4. 9394*ALOG1O(DM)_4.44*ALOG1O(DD))*GRATIO
YMORTG( L)=GNONMER( L)
VNONMER(L)=GNONMER(L)*VGRATIO*TARI F(DD)/TARIF(DL)
DO 10 JJ=L,18
AGE=30+JJ*1 0.
BHAGE=AGE-1 3.22+0. 033*SITE
D=10**(O.1097_3.4857/BHAGEO.25+1.O531*ALOG1O(SITE))
TNONMER(JJ+1)=1O(3.8622+3.1994*ALOG1O(DM)_4.7*ALOG1O(D))*TRATI0
GNONMER(JJ+1)=1O(1.4O34+4.9394*ALOG10(DM)_4.44*ALOG1O(D))*GRATIO
DMORTL=SQRT( (GNONMER(JJ+1 )/TNONMER(JJ+1 ) )/O. 005454154)

HT=1O(O. 1567-15.673/AGE+ALOG1O(SITE))
VG=10(-O.O282+O. 791 7*ALOG1O(HT))
TAVE=(VG*TARIF(D)+VGRATIO*TARIF(DD))/2.
VNONMER(JJ+1 )=TAVE/TARI F( DMORTL)*GNONMER(JJ+1)

PMORTN(JJ)=(TNONMER(JJ)-TNONMER(JJ+1))
PMORTG(JJ)=(GNONMER(JJ)-GNONMER(JJ+1))
DMORT=SQRT((PMORTG(JJ)/PMORTN(JJ))/O. 0054541 54)

PMORTV(JJ)=TAVE/TARIF( DMORT)*PMORTG(JJ)

10 CONTINUE
C

C CALCULATE YEARLY MORTALITY
C STARTS FROM THE AGE OF FIRST THINNING

C

LL=(L-1 )*1O+1

DO 20 II=LL,18O
AGE=30.+II
BHAGE=AGE-1 3.220. O33*SITE
D=1O*(O.1O97_3.4857/BHAGEO.25+1.0531*ALOG1O(SITE))
YMORTN(II+1)=1O(3.8622+3. 1994*ALOG1O(DM)_4.7*ALOG1O(D))
YMORTG(II+1)=1O(1.4O34+4.9394*ALOG1O(DM)_4.44*ALOG1O(D))
YMORTN(II)=(YMORTN(II)-YMORTN(II+1 ))*TRATIO
YMORTG(II)=(YMORTG(II)-YMORTG(II+1 ))*GRATIO

20 CONTINUE
RETURN
END

C
CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.*

C SUBROUTINE GROWTH *
CXXX XX XX XXX XXX XX XXX XXX XXX XXX XXX XI-X XX XXX XXX XX XX XXX XXX XXX XXX XXXXXX X

SUBROUTINE GROWTH(TREE,V,VMER,VMORT1 ,GMER,GMORT1,M,TESTP)
COMMON TAGE, IBASE, SITE, TRATTO, GRATIO, VGRATIO

COMMON PMORTN(25), PMORTG(25), PMORTV(25),YMORTN(500),YMORTG(500)
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C

C

C

C

C

C

COMMON TNONMER(25),GN0NMER(25),0NM(25)
VGROW=0.
VGROW1=O.

ASSUME FIRST COMERCIAL THINNING AT FIRST STAGE

ADJ1=(405.TBASE)/400.
GLIMIT=1 O( 3.3446-0. 3328*ALOG1 0(TREE))

HT=lO(O.lS67_15.6731(TAGE_b0+AL0Gb0ITE
TMPAGE=TAGE-9. 5

DO 10 1=1,10
NN=TMPAGE-30. +2.
IF(NN.LT.1) NN=1
IF(NN.GT.200) NN=200
BHAGE=TMPAGE-1 3.22+0. 033*SITE

HT=HT+DHT
VG=1 0(O. 0282+0.791 7*ALOG1 O(HT))

CALCULATES GROSS GROWTH

N=(TBASE-30. )/10.+M

IF(N.LT.1) N=1
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DVA=1 . 12+0.01 05*TMPAGE_O. 00005*TMPAGE2

IF(TMPAGE.GT. 105.) DVA=1O0.223O4
DV0L=1O(ALOG1 0(2. 3026)+ALOG10(12. 4083/TMPAGE2+.

4352/BHAGE

$1 . 25)+ALOG1 O( DVA)+1 .9628-12. 4083/TMPAGE-1 .
7408/BHAGE0. 25+

$1 .3176*ALOG10(S1TE))
DVOL=DVOL*ADJ 1

TMPVOL=VGROW+DV0L+V
G=TMPVOL/VG
GMERCH=GYMO RIG ( NN)

CR=GMERCH/GLIMIT
ADJ2=1 ._16.*(CR_0.

5)**4

DVOL=DVOL*ADJ2
VG RO W=VG ROW+DVOL

C

C
CALCULATES NET GROWTH

C
DV0L1=1O(ALOG10(2. 3O26)ALOGlO(l2.4083/TMP24352

$1 .25)+1 .g62S_l2.4083/TMPAGE_1.7408/AG
.25+1 .3176*ALOG1O(SITE))

DVOL1 =DVOL1*ADJ1

TMPVOL1=VGROW1+DV0L1+V
G1=TMPVOL1 /VG
GMERCH1 =G1 YMORTG(NN)
CR1 =GMERCH1 /GLIMIT

ADJ21=1 ._16.*(CR1_O.5)4
DVOL1 =DVOL1 *A0321

VGROW1 =VGROW1+DVOL1

TMPAGE=TMPAGE+1.

10 CONTINUE

C

C CALCULATE MERCHANTABLE MORTALITY

C AND MERCHANTABLE LIVE TREES.

C



C

C

C

C

C

C
C

IF(N.GT..24) N=24

VMORT1 =VGROW-VGROW1
VMER=V+VGROW1 -VNONMER( N+1)

IF(TESTP. EQ. 1.) VMER=VMER+VMORT1
GMORI1 =(VVGROW)/VG-(V+VGROW1 )/VG

GMER=(V+VGROW)/VG-GMORT1-GNONMER(N+1)
IF(TESTP. EQ. 0.) RETURN
VMER=V+VGROW-VNONMER( N1)
GMER=VMER/VG
GMORT1 =0.

VMORT1 =0.0

RETURN
END

FUNCTION REVNOW

FUNCTION REVNOW(VOL, D, S, Ri, TAGE, HAUL)

IF(VOL. LI. 0) VOL=. 1

CALCULATES STUMP TO TRUCK LOGGING COST

IF(D.GT.6.05) GOTO 5
COST=7790. 9*VOL(_O. 2834)
GOTO 150

5 IF(D.GT.7.63) GOTO 10
IF(VOL.GT.1000.) GOTO 7
C1=779O. 9*VOL*31(.... 2834)

C2=4954. 7*VOL3*(_. 2726)

DELTA=(C1-C2)/(7. 63-6.05)
COST=C1_DELTA*(D_6. 05)
GOTO 150

7 C1=78O0.8*VOL(_.2539)
C2=7187. 5*VOL*3E(_. 2891)

DELTA=(C1-C2)/(7. 63-6. 05)
COST=C1 _DELTA*( D-6. 05)

GOTO 150
10 IF (D.GT.9.23) GO TO 20

IF(VOL..GT.1000.) GOTO 15
C1=4954. 7*VOL**(_. 2726)

C2=3768. 0*VOL(_. 2662)
DELTA=(C1-C2)/(9. 23-7.63)
COST=C1DELTA*(D_7. 63)
GOTO 150

15 IF(VOL.GT.2000..) GOTO 18
C1=7187. 5*VOL*3(_. 2891)
C2=6254. 8*VOL(_. 3013)
DELTA=(C1-C2)/(9. 23-7.63)
COST=C1_DELTA*(D_7. 63)

GOTO 150
18 Ci=14353.0*VOL(_. 3782)

C2=1 0336. 6*V0L(_. 3627)
DELTA=(C1-C2)/(9. 23-7.63)
COST=C1_DELTA*(D_7. 63)
GOTO 150

*
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20 IF(D.GT.10.87) GOTO 30
IF(VOL.GT.1000.) GOTO 25
Cl =3768. 0*VOL(_. 2662)
C2=4375. O*V0L(_. 2833)
DELTA=(C1-C2)/(lO.87-9. 23)
COST=C1 _DELTA*( D-9. 23)

GOTO 150
25 IF(VOL.GT.2000.) GOTO 28

Cl =6254. 8*V0L(_. 3013)
C2=4375. 0*VOL(_. 2833)
DELTA=(C1-C2)/(10.,87-9. 23)

COST=C1 _DELTA*( D-9. 23)

GOTO 150
28 C1=10336. 6*V0L(_. 3627)

C2= 8479. 6*VOL(_. 3626)
DELTA=(C1-C2)/(1 0.87-9.23)
COST=C1_DELTA*(D_9. 23)

GOTO 150
30 IF(D.GT.12.31) GOTO 40

C1=8479. 6*VOL(_. 3626)
C2=6839. 5*VOL**(_. 3492)
DELTA=(C1-C2)/(12.,31-10.87)
COST=C1 _DELTA*( D-1 0.87)

GOTO 150
40 IF(D.GT.13.66) GOTO 50

Cl =6839. 5*VOL*3E(.... 3492)

C2=6276. 4*VOL*31(.... 3498)

DELTA=(C1-C2)/(13.66-12.31)
COST=C1_DELTA*(D_12. 31)

GOTO 150
50 IF(D.GL15.03) GOTO 60

C1=6276. 4*VOL**(.... 3498)

C2=5848. 5*VOL**(.... 3548)

DELTA=(C1-C2)/(1 5.03-13.66)
COST=C1 -DELTA( D-1 3.66)

GOTO 150
60 IF(D.GT.16.19) GOTO 70

Cl =5848. 5*VOL*ä(.... 3548)

C2=4980. 1*V0L(_. 3475)
DELTA=(C1-C2)/(16. 19-1 5. 03)
COST=C1_DELTA*(D_1 5.03)

GOTO 150
70 IF(D.GT.17.26) GOTO 80

Cl =4980. 1*V0L(_. 3475)
C2=3765. 6*V0L(_. 3238)
DELTA=(C1-C2)/(17.26-16. 19)
COST=C1 _DELTA*(D_1 6. 19)

GOTO 150
80 IF(D.GT.18.31) GOTO 90

Cl=3765. 6*V0L(_. 3238)
C2=421 5. 0*V0L(_. 3402)
DELTA=(C1-C2)/(18. 31-1 7.26)

COST=C1_DELTA*(D_1 7.26)
GOTO 150

90 IF(D.GT.20.25) GOTO 100
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C

C

C

C

C1=421 5. O*VOL(_. 3402)
C2=3377. 5*VOL41*(_. 3207)

DELTA=(C1-C2)/(20.25-18.31)
COST=C1_DELTA*(D_18. 31)
GOTO 150

100 IF(D..GT.21.90) GOTO 110
C1=3377. 5*VOL*3(_ 3207)
C2=4209. 5*VOL**(_. 3488)

DELTA=(C1-C2)/(21 .9-20.25)
COST=C1 _DELTA*( D-20. 25)

GOTO 150
110 COST=4209. 5*VOL**(_. 3488)

C
C CALCULATE CURRENT REVENUE AS POND VALUE LESS

C LOGGING AND HAUL COST ($/CF)
C

150 PONDVAL=(9.91+70.,81*D)*(1+R1 )**TAGE
REVNOW=VOL*( PONDVAL-COST/S-HAUL )*O. 001

RETURN
END

FUNCTION TARIF(DIAM)
TARIF=(O.00497819*DIAM2)/(0. 0054541 54*(DIAM216. )*(1.0378+

$1 .4967*(O.0134(DIAM/1O. )))-O. 174532)
RETURN
END

50

FUNCTION TARIF *


