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The design considerations for fast-settling operational

amplifiers (opamps) differ significantly between sampled-data switched-

capacitor (SC) and conventional continuous-time applications. In SC

circuits, the shape of the output voltage waveform of an opamp is of no

consequence provided that the output settles to within a specified

tolerance of its steady-state value prior to the next sampling instant.

This feature allows for an optimum opamp frequency shaping to obtain a

minimum small-signal settling time. The theory applies to any opamp

that is well-approximated by a two-pole model, including the

conventional two-stage and single-stage folded-cascode topologies. As

the commonly-used equivalent-circuit Miller-effect model for frequency

compensation has generally been improperly applied to two-stage

transconductance amplifiers, it does not provide sufficient accuracy to

achieve the optimum phase margin condition. Therefore, the use of

equivalent-circuit models has been refined to provide greater accuracy

and to eliminate some previous misconceptions.
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DESIGN CONSIDERATIONS FOR FAST-SETTLING

OPERATIONAL AMPLIFIERS

I. INTRODUCTION

Since the first simple monolithic amplifier was fabricated in the

early 1960s, analog integrated circuits (ICs) have expanded rapidly

into one of the most important areas in modern electronics due to their

high performance, low cost, and wide applications.

Prior to the mid-1970s, analog integrated circuits were

implemented by using silicon bipolar transistor technology, while

silicon metal-oxide-semiconductor field effect transistor (MOSFET)

technology was utilized primarily for digital integrated circuits. In

many applications (e.g., analog to digital converters), both analog

and digital functions are required for the subsystem. It is

undesirable to partition such subsystems into two separate

technologies: bipolar analog and MOS digital ICs. In order to

implement the subsystems containing both analog and digital functions

on a single chip, analog MOSFET ICs have been developed. Although the

first paper on analog MOS ICs was published in 1969 by Chalfan and

Looney of Oregon State University [1], MOSFET technology did not make

its profound impact to analog integrated circuits until a number of

significant papers were published in the 1970s [2]. In the late-1970s,

switched-capacitor (SC) circuits, which have been perhaps the most

important application of MOS technology for analog ICs, were developed

at AT&T Bell Labs and the University of California at Berkeley for
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telecommunication systems [2]-[4]. Since then, analog MOS ICs have

become one of the major members in the IC family.

MOS operational amplifiers (opamps) are core building cells for

switched-capacitor circuits, and their performance, such as settling

time and frequency response, directly affect the performance of SC

circuits. Many aspects of the settling behavior and frequency response

of operational amplifiers have been analyzed by various authors [5]-

[10]. Generally, it has been shown that in order to obtain the desired

settling/frequency characteristics, accurate frequency shaping must be

employed. In conventional continuous-time applications, operational

amplifiers are frequency compensated (either internally for two-stage

opamps or via the loading capacitance for single-stage opamps) for a

unity-gain phase margin of approximately 60 degrees to insure closed-

loop stability, and to maximize flatness of the closed-loop amplitude

response [6]. Flat gain characteristics are particularly important in

minimizing waveform distortion in continuous-time pulse-amplifier

applications. By contrast, the specific shapes of the opamp output

waveforms are of no consequence in some applications such as in

sampled-data switched-capacitor circuits where it is only necessary

that the outputs settle to within a specified tolerance of their final

values prior to the next sampling instant. By exploiting this unique

feature of SC circuits, an optimum opamp phase margin criterion has

been developed that gives the minimum settling time (MST) of an opamp

for a given gain/bandwidth product.

Our analysis has shown that the small-signal settling time of a

two-pole (one or two-stage) operational amplifier exhibits a well-

defined minimum for a specific value of the unity-gain phase margin.



3

Since the settling time is also shown to be strongly dependent on phase

margin, precise frequency shaping is required in order to achieve the

minimum settling time. Unfortunately, the commonly-used equivalent-

circuit model of the opamp based on the Miller approximation has in the

past been improperly applied to two-stage transconductance amplifiers

and does not provide sufficient accuracy with which to achieve the MST.

Therefore, improved equivalent-circuit models have been developed. In

addition to being significantly more accurate than the previous

modeling wherein the dominant pole was always associated with the

first stage, the improved modeling accounts for the possibility of a

second-stage-dominant pole. In fact, for CMOS and GaAs operational

transconductance amplifiers (OTA) that drive on-chip capacitive loads,

the dominant pole is usually associated with the second stage. Our

results show that whichever pole is dominant before compensation

remains dominant after compensation. Hence, some considerable

confusion that has existed previously regarding pole-splitting

frequency compensation is eliminated.

In Chapter II, we develop a new optimum phase margin design

criterion for OTA's used in SC applications. In Chapter III, we

present some improved modeling techniques for two-stage opamps that

provide sufficient accuracy with which to achieve the optimum phase

margin condition. In Chapter IV, we extend the MST design technique to

a one-stage folded-cascode CMOS opamp by using a newly developed two-

pole small-signal model. Chapter V concludes this thesis with

discussion on sensitivities to MOS process variations and suggestions

for future work.
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II. OPTIMUM PHASE MARGIN FOR SC APPLICATIONS

We begin this chapter with a brief review of the frequency and

step-response equations of a second-order system. We then use this

theory to derive an optimum unity-gain phase margin that allows for the

maximum sampling frequency in SC circuits. Finally, design equations

are developed to allow two-pole operational amplifiers to be

compensated for the optimum phase margin condition.

2.1 Frequency/Time Response Equations for a Two-Pole System

In most switched-capacitor circuits, the maximum size of the

output voltage step between sampling instants is small enough so that

only small-signal analysis is necessary. Therefore, the operational

amplifier is modeled using a linear two-pole model which is very useful

in determining the pole-splitting compensation capacitance [11],[12].

The open-loop transfer function of the two-pole small-signal circuit

prior to frequency compensation is given by

ao
a(s) (1)

(1 s/w1)(1 s/w2)

where ao is the low-frequency gain of the operational amplifier and w/

and w2 are the radian frequencies of first and second left-half-plane

(LHP) poles, respectively. The unity-gain closed-loop transfer

function is given by

where

a(s) Ao

A(s)=
a(s) + 1 (s/w0)2 + 2k(s/w0) + 1

A
o

a o

a 0 + 1

wo l[w1w2(ao 1)]
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wl + w2
k . (5)

2wo

Defining the pole separation factor as $ = w2/wi, the damping factor

is expressed in terms of /3 as

1 + $
k . (6)

2173(ao + 1)]

The second-order system of Eqn. (2) has three possible responses to

a voltage step input; namely, overdamped, critically damped and

underdamped corresponding to k > 1, k = 1 and k < 1, respectively. The

normalized time responses are obtained from Eqn. (2) using the inverse

Laplace transform as:

Overdamped (exponentially approaching the steady-state value),

k > 1:

1 11 1

vo(t) = 1 I exp(-kiwot) --- exp(-k2w0t)] (7)
2j(k2 1) L kl k2

where kl = k j(k2 1) and k2 = k + j(k2 1);

Critically damped (also exponentially approaching the final

value), k = 1:

volt) = 1 (1 + wot) exp(-wot); (8)

Underdamped (overshoot followed by exponentially damped sinusoid),

k < 1:

r k
volt) = 1 I sin(11 k2 wot) + cos(J1 k2 wot)] exp(-kwot)

14(1 k2)

(9)
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2.2 Small-Signal Settling Behavior of a Second-Order System

The small-signal settling time of an operational amplifier, ts,

is defined (Fig. 1) as the minimum time required for the output voltage

of the amplifier to settle to within an error tolerance, D, of its

final steady-state value. Using Eqns. (7)-(9), it can be shown that the

settling behavior of a two-pole system is strongly dependent on the

damping factor k. For a nominal value of the low-frequency open-loop

voltage gain, a0, the damping factor is only a function of the pole

separation factor, fl, according to Eqn. (6).

The time response of a second-order system is usually discussed

in terms of the normalized variable w0t [6]. Since wo is a function of

k from Eqn. (5), and therefore also of /3 from Eqn. (6), w0t is a

dependent variable. As a first step in finding the shortest response

time of the second-order system, the time of the first peak of the

underdamped response, tp (Fig. 1), is determined by setting the first

derivative of Eqn. (9) equal to zero to obtain

71.

t . (10)
P

w01(1 k2)

Now, using Eqn. (4) in Eqn. (10), tp as a function of $ is

71.

t, .

wij[$(1 + ao) (1 + /3)2/4]

The minimum of t, with respect to $ determines the shortest possible

response time, and is determined by setting the first derivative of

Eqn. (11) equal to zero and solving to obtain $ = 1 + 2a
0.

Substituting this value into Eqn. (6) gives the optimum damping factor

as
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0
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7

Fig. 1. Definition of small-signal settling time, ts, with an error

tolerance of D percent. The first positive peak of the

underdamped response occurs at time tp.
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1 + ao
k (12)

J[(1 + 2a0)(1 + an)]

Since 430 >> 1 is usually true in practical cases, Eqn. (12) simplifies

to k = 0.707 meaning that the absolute fastest response of the system

corresponds to the Butterworth response. However, this does not

indicate the minimum settling time in general since the error band, D,

was not considered in the above analysis. In fact, it can be shown

that the Butterworth response is underdamped exhibiting a transient

overshoot of 4.3 percent, and therefore yields the minimum settling

time only for the cases where D > 0.043. The Butterworth response

provides a unity-gain phase margin of approximately 60 degrees.

For high precision SC circuits, an error tolerance smaller than

4.3 percent is required. The minimum settling time is obtained when the

two-pole opamp is underdamped and the phase margin is chosen so that

the first peak of the step response just touches the upper settling

error limit as shown in Fig. 2. Referring to the figure, it is clear

that this is the minimum since either an increase or decrease in the

damping factor results in greater settling time*. Therefore, to

realize the maximum sampling frequency, the phase margin condition

"upper error bound = first peak" must be satisfied. The normalized

voltage of the first peak determined from Eqn. (9) is equal to one plus

the overshoot,

First peak = 1 + exp [-kir/1(1 k2)] (13)

* Actually, the absolute minimum settling time occurs for the case wherein a doublet is

deliberately introduced to give a three-pole one-zero response with the singularities placed so

that the first peak just touches the upper bound, and the second peak just touches the lower error

bound. It has been shown that this is probably not a practical solution because of high

sensitivities to parameter variations [13].
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Fig. 2. Definition of the minimum small-signal settling time (MST) for

a two-pole system with an error tolerance of D percent.

Settling time is increased for either more or less damping.



and since the upper error bound voltage is (1 + D), then

D = exp[-kir/1(1 k2)].

Using Eqn. (6) with fi >> 1, the optimum pole-separation factor,

determined from Eqn. (14) as [14],[15]

4(a0 + 1)

Po
1 + (n /1n D)2

10

(14)

$0,
is

(15)

For a given error band, D, the minimum settling time of the SC circuit

is achieved by designing the two-pole opamp so that the poles are

separated in accordance with Eqn. (15). In opamp design, the settling

time is usually considered as a function of phase margin, Om, rather

than of the pole separation factor, $, or equivalently of the damping

factor, k. Thus, a relationship between the settling time and the

phase margin is desirable. Approximating the small-signal unity-gain

frequency as wu = aowl, and the unity-gain time constant, as ru = //wu,

the phase margin, of of a two-pole system (assuming widely separated

poles) is expressed as

Om = 180° tan-1(wu/w1) tan-1(6)11/6)2)

= 180° tan-1(w11 /w1) tan-1(wu/fiwi). (16)

For example, with a0 = 1000 V/V and f1 = w1/27r = 1 KHz, the normalized

small-signal settling time, ts, of the two-pole system is plotted

versus the unity-gain phase margin in Fig. 3. Clearly, is is a very

strong function of the phase margin, and thus in order to obtain

maximum operating speed, an accurate phase margin is required. The

phase margin corresponding to the minimum settling time, 0177(MST), is

also a function of the error band tolerance as seen in Fig. 3, and is

derived using Eqns. (15) and (16) (with the assumption that

tanl (wu/wi) = 90°) as



11

0' 1 1 1 1 1

30 40 50 60 70 80 90
PHASE MARGIN (DEGREES)

Fig. 3. Normalized small-signal settling time versus unity gain phase

margin for common values of the error tolerance, D. The

discontinuities in response time are associated with the

natural frequency of the system, and occur when response peaks

or valleys just enter the bounded region for increasing phase

margin.
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1-

4 J1

+ (w /in D)2
I.Om(MST) = 90° tan' [ (17)

For D = 0.01, Eqn. (17) gives 0m(MST) = 70°. Note that when D --> 0,

Om(MST) --> 76° which corresponds to the critically damped response of

the two-pole system.

2.3 Frequency Compensation Considerations

In the previous section, it was shown that the Butterworth

response provides the minimum settling time only for the rather

impractical and imprecise cases wherein D > 0.043. For higher

precision applications, D is much smaller, and therefore an improved

compensation technique is required to achieve the minimum settling

time.

Figure 4 shows a two-pole small-signal equivalent circuit of a

two-stage operational amplifier which after adding compensation

elements exhibits three LHP poles and one zero. Solving the network

equations and using the dominant pole approximation technique [5],[16],

the pole and zero frequencies after compensation are

gl g2

and

wi=-
(gm2 + gl + g2)Cf + g2C1 + g1C2

(gm2 + g1 + g2)Cf + g1c2 + g2C1
w2 '

CiCf + C2Cf + C1C2

w3 -, - (___ + ___ + ___)

Rf C1 C2 Cf

1

wz 1,0' 1/gm2 Rf)

(18)
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where g/ = 1/17/ and g2 = 1/R2. The values for the compensation

capacitance, Cf, and the nulling resistance, Rf, are usually chosen so

that the zero exactly cancels the first non-dominant pole [17].

Therefore, to obtain a simple two-pole system and to minimize the

small-signal settling time for a given amplifier bandwidth, Eqns. (18)-

(21) must satisfy

(d2 wz (22)

and
w.3 Pow/ (23)

where so is determined from Eqn. (15). Solving Eqns. (22)-(23) gives

the element values for optimum compensation as

and

1 + (n/1n D)2 1

Rf [(gm2+gl+g2)Cf + g1C2 + g2C11 (24)

4 gml gm2 Cl

cf.-
C1 + C2

(Rf 1 /gm2)(gm2 + g1 + g2)

(25a)

Substituting Eqn. (24) into (25a) and solving for Cf gives

Cf = [-b + J(b2 4ac)J /2a (25b)

where

and

[1 + (n /In D)2] (gm2 + gl + g2)2
a (25c)

4 gm/ gm2 C1

[1+(n/1n D)21(gm2+g1 +g2)(g2C1 +g1C2) (gm2+g1 +g2)
b = (25d)

4 gml gm2 Cl

C = CI + C2

gm2

(25e)
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The solutions of Eqns. (24) and (25) give the compensation element

values which provide the MST response for the opamp.
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15

Fig. 4. Small-signal model of two-pole operational amplifier with

pole-splitting compensation elements Rf and Cf.
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III. IMPROVED EQUIVALENT CIRCUIT MODELING

In this chapter, we examine the use of small-signal equivalent

circuits in frequency compensating two-pole operational amplifiers. Our

results show that the previous techniques based on Miller-multiplied

capacitance models are suitable only for those amplifiers in which the

first-stage pole is dominant prior to compensation. In most SC

circuits, the internal opamps are transconductance amplifiers which

drive on-chip capacitive loads, and thus, for these opamps, the

second-stage pole is dominant. Hence, in order to more accurately model

the second-stage-dominant pole systems, and to subsequently realize the

optimum phase margin condition, we have extended the small-signal model

to include resistance effects in addition to Miller capacitance

effects.

3.1 Problem Description

In order to test the accuracy of the compensation techniques, a

CMOS two-stage transconductance amplifier (Fig. 5) was designed. As a

first step in compensation, the parameter values (Table I) for the

small-signal model of Fig. 6(a) were determined from Fig. 5.

Unfortunately, this two-pole one-zero model is not convenient for

calculating Rf and Cf because of the presence of the RHP zero

introduced by Cgd**. Therefore, the next step usually involves using

the Miller effect to develop the two-pole no-zero model of Fig. 6(b)

[16],[18]. In this circuit, Miller capacitance Cm/ (CM2) is shunted

** With the series Rf-Cf compensation network connected in parallel with Cgd, the system actually

exhibits three LHP poles and two zeros. The zero associated with the Rf-Cf network is the one that

is moved into the left-half-plane to cancel the first nondominant pole. The zero associated with

C
gd

remains fixed in the right-half-plane at its original frequency.
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CMOS operational amplifier used to

exercise the compensation model. The fractions represent

MOSFET (W/L) ratios in microns. Rf and Cf are the frequency

compensation elements.
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TABLE I

1st Stage 2nd Stage

9m(AS)

C'(pF)

R'(k0)

Cgd (fF)

87.60 266.00

0.59 10.28

866.55 197.63

20.80

Table I. Small-signal parameter values for the CMOS two-stage opamp of

Fig. 5, and its small-signal model of Fig. 6(a).
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across the first (second) stage to account for the effect of the gate-

drain capacitance, Cgd, on the frequency of the first (second) stage

pole. The RHP zero is assumed to be at a very high frequency relative

to the unity-gain bandwidth, and is therefore ignored. In the two-pole

model of Fig. 6(b), the total branch resistances are R1 = R1'= 1/g1'

and R2 = R2'= 1/g21, and the total branch capacitances are given by

C1 = C1' + Cm (26)

and C2 = C2' + Cm2 = C2' (27)

with Cmi = Cgd (gm2/92' + 1) (28)

(gM2/g2/ + 1)Cgdand Cm2 = ,..gd (29)

gm2/g21

We now show that when applied to a second-stage-dominant

transconductance amplifier, this modeling approach does not allow

frequency compensation to a sufficient degree of accuracy to obtain the

MST response. Using the small-signal parameter values given in Table

I, the two-pole one-zero model of Fig. 6(a), and the simplified two-

pole model of Fig. 6(b) were simulated using SPICE2. It is clear from

the responses shown in Fig. 7 that the simplified two-pole model (curve

B) is a poor approximation to the two-pole one-zero model (curve A)

especially at critical frequencies near the unity-gain frequency. This

error in modeling before compensation significantly affects the

accuracy of the unity-gain phase margin after compensation. For

example, a desired error tolerance of D = 0.01 requires an optimum

phase margin of 70 degrees. Using Eqns. (24)-(29) in conjunction with

the model of Fig. 6(b), the compensation element values are calculated

as Rf = 12.3 kO, and Cf = 4.97 pF. Using these values in compensating

the CMOS two-stage opamp of Fig. 5 results in a simulated unity-gain
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phase margin of 84 degrees. Because the resulting phase margin deviates

significantly from the optimum value of 70 degrees, and because a

doublet is also created due to inexact pole-zero cancellation, a very

long settling time is observed. (Doublets may also result in reduced

settling time in SC circuits [13] with a tradeoff in increased

sensitivity to MOS process variations. In practice, an adaptive

compensation technique [17] may be used to guarantee accurate pole-zero

placement in the presence of typical variations.)

As previously stated, on-chip CMOS and GaAs transconductance

amplifiers are usually second-stage dominant-pole systems with

Ri'Cl' < R2'C2' in the model of Fig. 6(a). Conventional application of

the Miller-multiplied capacitance effect in developing the equivalent

circuit of Fig. 6(b) predicts that the first-stage pole moves to a

lower frequency for a nonzero value of Cgd and will become dominant if

Cgd and/or gm2 is large enough as indicated in Fig. 8(a). This

commonly-held view (c.f. [18], p. 377) is incorrect in terms of basic

root locus theory wherein the poles of a two-pole system can never

cross one another as pole-splitting negative feedback is applied [5].

The correct pole movements are as indicated in Fig. 8(b). With an

increase of Cgd or gm2, the second-stage pole moves to a lower

frequency remaining dominant, while the first-stage pole moves to

higher frequency remaining non-dominant. In general, the poles are

always split apart with the application of pole-splitting compensation

no matter which of the poles is dominant. It is now clear that the

equivalent circuit model of Fig. 6(b) with Miller-multiplied

capacitances is not an accurate representation of second-stage-dominant
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Fig. 6. Small-signal models of (a) the two-pole one-zero, and (b) the

two-pole opamp before frequency compensation.
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Fig. 8. (a) Unrealizable root-locus plot of pole splitting implied by

conventional application of the Miller capacitance model to a

second-stage dominant pole system, and (b) correct root locus

plot predicted using the improved model.
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transconductance amplifiers, and therefore cannot be used to

achieve the MST response in this case.

3.2 Improved Equivalent Circuit Model

In order to achieve the MST response, modeling techniques have

been developed that are more accurate at frequencies near the unity-

gain frequency of the opamp. The improved equivalent circuit model

includes the conventional first-stage-dominant one as a special case,

and it is able to predict accurately the pole movement for optimum

frequency compensation of second-stage-dominant transconductance

amplifiers.

In the circuit of Fig. 6(a), the impedance looking into Cgd from

the left, Z1, is found from Fig. 9(a) as

1 1 + s(C2'+ Cgd)/g21
Z . 30l

sCgd(gm2/g2'+ 1) 1 + sC2'/(gm2+ g2')
( )

When the operating frequency is low, Eqn. (30) becomes

1 1

1 - (31)
sCilli sCgd(gm2/g21+ 1)

Since Cgd(gm2/g2' + 1) is simply the Miller capacitance, the

conventional model clearly applies at low frequencies (Fig. 10). When

the operating frequency is between

(gm2 + g2')/C2',

1

ZI = Rmi (1 + C2' /Cgd).

gm2 + g2'

g2//(c2' + Cgd) and

(32)

In this frequency range, the impedance is not due to the Miller

capacitance, but rather to a resistor, Rm.', which may be called a

"Miller resistance". When the operating frequency is higher than

(gm2 + g2')/C2',
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Fig. 9. Circuits for calculating impedance looking into Cgd (a) from

the first stage, and (b) from the second stage.
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1 1 Cgd + C2'
Zl (33)

sCs/ s Cgd C2'

which is due to a capacitance, Cs/, equivalent to Cgd and C2' in

series. The impedance looking into Cgd from the right (Fig. 9(b)) is

just Cgd in series with R1' and C11. The complete equivalent circuit

model shown in Fig. 11 is based on the impedances derived above. From

this analysis, it is clear that the conventional equivalent circuit

using the Miller-multiplied capacitors is an incomplete model accurate

only for low frequencies.

SPICE simulations on the improved equivalent circuit model of

Fig. 11 using the small-signal circuit parameters listed in Table I are

compared with simulations of the original circuit model (Fig. 6(a)) in

Fig. 12. Excellent agreement between the two circuits is obtained over

the frequency range of interest. The high-frequency RHP zero due to

Cgd is not included in the new equivalent circuit as the frequency of

the zero is usually large relative to the unity-gain frequency.

Although the complete equivalent circuit is very accurate, it is

complicated, and must be simplified for ease of use in frequency

compensation calculations. In SC applications, the OTA is usually a

second-stage dominant-pole system with the non-dominant pole at the

output of the first stage. Therefore, in the high frequency range

between g2'/(C2' + Cgd) and (gm2 + g2')/C2', the "Miller resistor"

(Eqn. (32)) dominates the effect of the impedance Z1 on the first

stage, while the capacitances CM1 and Cs/ can be ignored. For the

second stage, R1' is removed for simplicity without a significant

reduction in accuracy. The simplified equivalent circuit for the

second-stage dominant-pole system is shown in Fig. 13(a). Perhaps
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Fig. 11. A complete small-signal circuit model prior to frequency

compensation.
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surprisingly, it has the same form as the previous simplified model of

Fig. 6(b), with the only difference being in how the element values

are determined. For the first stage of Fig. 6(b),

R1 = R1' Rmi/(Ri' + RM1), C1 = C1' (34)

and for the second stage,

R2 = R2', C2 = C2' + Cgd C1' /(Cgd + C1'). (35)

This two-pole circuit with new element values is applied to frequency

compensation in the same manner as before. In the case of the

transconductance amplifier, note that R1 is reduced significantly from

R1' due to the small Miller resistance, RM1 (Eqn. (32)), and C1 is

almost unchanged. Therefore, R1C1 < Ri'Cli, i.e., the first-stage pole

moves to higher frequency because of the Miller resistor effect, while

the second-stage pole moves to a lower frequency.

For most general purpose opamps with output stages, the condition

Ri'Cl' > R2'C2' is usually satisfied. Therefore, the opamp is a first-

stage dominant-pole system prior to compensation. In this case, RM1

and Cs1 in Fig. 11 may be ignored due to their very high impedances at

low frequencies, while at the output of the second stage, removing R1'

is usually a valid approximation. With these simplifications, the

equivalent circuit for the first-stage dominant-pole system reduces to

the conventional Miller capacitor model of Fig. 13(b), [19].

3.3 Applications in Frequency Compensation

The simplified equivalent circuit for the second-stage dominant-

pole system (Fig. 13(a)) was derived using Eqns. (34)-(35) and applied

to frequency compensation for the MST response. The compensation

element values were calculated using Table I, and Eqns. (24)-(25) with

D = 0.01 as Rf = 18.86 kn and Cf = 2.65 pF. SPICE simulations with
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these values for the simplified equivalent circuit and the original

circuit of Fig. 6(a) are compared in Fig. 14(a). The agreement is

excellent at frequencies near the unity gain crossover frequency where

the phase margin, and thus the settling time, is determined. Although

the agreement is not as good at low frequencies, this is of no concern

in frequency compensation. The simulated unity-gain phase margins were

72.4 and 73.1 degrees for the original and the simplified equivalent

models. The small difference was caused by neglecting the high-

frequency zero introduced by Cgd in Fig. 6(a). The conventional first-

stage dominant-pole equivalent circuit (Fig. 13(b)) using the Miller

capacitance effect was also applied to the compensation of the

transconductance amplifier with Rf = 12.63 kit and Cf = 4.97 pF, as

calculated previously. The SPICE simulation results of Fig. 14(b) show

poor agreement with the original circuit in both the low- and high-

frequency ranges.

Finally, the more accurate compensation element values obtained

using the improved model, Rf = 18.86 kit and Cf = 2.65 pF, were used in

a simulation of the CMOS opamp of Fig. 5. The results indicated good

cancellation of the pole-zero doublet, and a unity-gain phase margin of

67.6 degrees which is an error of less than four percent relative to

the ideal 70 degree phase margin. For comparison, the previous

technique yielded a phase margin of 84 degrees giving a 20 percent

error. With some minor empirical adjustment, the 70 degree phase

margin, and thus the MST response for D = 0.01 is achieved with

Rf = 17 1(0 and Cf = 2.9 pF. The simulation results of the step

responses for the 70 degree MST and the commonly-used 60 degree phase

margin responses are shown in Fig. 15. It is seen that the MST
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response, (the first peak of the response touches the upper error

limit), reduces the settling time considerably as compared with the 60

degree phase margin case even though a slightly larger compensation

capacitance is required to achieve the larger phase margin.
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(b)

Fig. 14. Simulated frequency responses of the original circuit of

Fig. 6(a) versus (a) the new model using the Miller

resistance, and (b) the old model using the Miller

capacitance.
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Fig. 15. Simulated step responses of the CMOS opamp for (1) the

optimum (approximately 70 degree) cases, and (2) the

conventional 60 degree. Note that the optimum design is

faster even though the compensation capacitance required to

achieve the larger phase margin is somewhat larger.
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IV. MST DESIGN FOR ONE-STAGE FOLDED-CASCODE OPAMP

Another widely used CMOS opamp in SC circuits is the one-stage

folded-cascode opamp. It provides higher frequency operation and a

higher power supply rejection ratio than the conventional cascode and

two-stage opamps. An early version of the folded-cascode opamp was

analyzed by Ribner and Copeland in 1984 [20]. Figure 1 shows a newer

version of the folded cascode opamp which has been used for several

years [21], but was first published in 1987 [22]. For switched-

capacitor applications, a major advantage of this version over the one

analyzed by Ribner and Copeland is that this is a one stage opamp.

Therefore, the loading capacitance is used to provide closed-loop

stability and no additional compensation capacitance is required as in

two-stage opamps.

For first-order analysis, the folded-cascode CMOS opamp is

usually approximated as a one-pole opamp [18]. However, in order to

design the opamp for the minimum settling time (MST) response, second-

order effects must be considered. In this chapter, a two-pole model of

the folded-cascode opamp of Fig. 16 is developed based on a complete

small-signal analysis. The developed model represents the opamp very

accurately, and is easily applied in the design for the MST response.

Based on the optimization criterion proposed in Chapter II, the design

equation for the MST response of the one-stage folded cascode opamp is

derived and verified with SPICE simulations.
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Fig. 16 A one-stage CMOS folded-cascode operational amplifier.
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4.1 Small-Signal Modeling

A complete small-signal model for the folded-cascode opamp

(Fig. 16) is shown in Fig. 17 [23], where the loading capacitance CL is

included in Cd and Vout is associated with node d in Fig. 16. The node

equations for this circuit can be written as (neglecting Cgdio)

gml(Vin/2) + (1/Ra + sCa)Va + gds4(Va Vb) + Gm4Va = 0 (36)

(l/Rb + sCh)Vb + gds4(Vb Va) Gm4Va = 0 (37)

gm/OVb + (l/Rc + sCc)Vc + gds9(Vc Vout) + GmgVc 0 (38)

sCdVout + gds9(Vc Vout) Gm9Vc + gds8(Vd Ve)
Gm8Ve = 0 (39)

gm/(-Vin/2) + (1/Re + sCe)Ve + gds8(Ve Vd)+ Gm8Ve = 0 (40)

where gm gmbs.Gm In deriving the above equations, the very small

Cgd10 in Fig. 16 is neglected as a good approximation. Due to the fact

that RbCb << RcCc, Cgdio does not act as a Miller capacitance, but

rather as a Miller resistance, which is much larger than Rb, at node b.

Using a dominant-pole approximation, we derive the transfer function of

the small-signal circuit model of Fig. 17 as

with

ao(1 s/szl)(1 s/sz2)
a(s) (41)

(1 s/wd)(1 s/wa)(1 s/wb)(1 s/wc)

gm1Gm8
ao

(gdsl gds7)gds8 gds9gds10(Gm8/Gm9)

(gdsi gds7)gds8/Gm8 gds9gds10/Gm9

Cd

(42)

(43)
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Fig. 17 A complete small-signal model for the opamp in Fig. 16. Nodal
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.
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(44)

(45)

(46)

szl, sz2 (wb wc)/2 ± (462 Wc2)/4 3wbwc/2 (47)

where ae is the DC gain of the opamp. Eqn. (40) shows that the

transfer function of the folded-cascode opamp has four left-half-plane

(LHP) poles and two LHP zeros. The dominant pole (Eqn. (43)) of the

opamp is at the output node d due to the large values of loading

capacitance and output impedance. The frequencies of the three non-

dominant poles (Eqns. (44)-(46)) are of the same order. It can be

shown that the two LHP zeros (Eqn. (12)) are usually a conjugate

complex pair, where the real part of the frequency,

Re(sz/, sz2)
(wb + wc)/2, is the average of wb and wc. For a first

order approximation, Re(sz/, sz2) can be considered to be cancelled

with the two poles wb and wc. Thus, the transfer function of Eqn. (40)

is simplified to a two-pole model with

ao

a(s) (48)

(1 sAdd)(/ s/we)

Figure 18 shows the two-pole small-signal circuit model of the folded

cascade opamp in which

(
gmI

(49a)

C1 = Ce, (49b)

RI = 1/Gm8, (49c)
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Fig. 18 A simplified two-pole small-signal model for the folded-

cascode opamp.



and gmII Gm8,

C11 = Cd,

1

R11 ,

(gdsl gds7)gds8/Gm8 gds9gds10/Gm9

42

(50a)

(50b)

(50c)

The dominant pole of this circuit is always associated with the second

stage. Figure 18 shows a comparison of the SPICE simulated frequency

responses of a folded-cascode CMOS opamp and its two pole model. The

two-pole model is accurate up to the unity-gain frequency. Although

the phase responses of the model and the opamp disagree slightly at the

unity-gain frequency due to the inexact pole-zero cancellation, they

are still in fairly good agreement and can be used to design the MST

response for the opamp.

4.2 Opamp Design for MST Response

In Chapter II, we have shown that the minimum small-signal

settling time response of a two-pole system is obtained when the

response to a step input is underdamped so that the first peak just

touches the upper error bound. Equation (15) shows that a well-defined

pole separation factor provides the MST response for the two-pole

opamp; This pole separation value for the folded-cascode opamp is:

we 4 (a0 + 1)

So=
wd 1 + (ir /ln D)2

Using Eqn. (51) with Eqns. (7)-(9) and assuming Cd = CL, we obtain

(51)

CL[1 + (Or/1n 0)2] 4(gml/Gm8)Ce = 0 (52)
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Equation (52) can be used either to determine the optimum loading

capacitance for a given opamp, or as an opamp design equation for a

given CL.

A folded-cascode opamp was designed using Eqn. (52) with

CL = 5 pF and D = 0.01 with the device sizes listed in Table II. The

frequency responses of the opamp and its two-pole model are shown in

Fig. 19. Figure 20 shows the simulated MST response (CL = 5 pF)

compared with a more underdamped, yet wider bandwidth response

(CL = 4.5 pF) and a more overdamped, yet narrower bandwidth response

(CL = 5.5 pF). Interestingly, longer settling times are observed when

CL is either larger or smaller than 5 pF even though the unity-gain

bandwidth increases for smaller CL values. (Similar behavior has been

reported for SPICE simulations of one-stage GaAs opamps [24].) The

simulated phase margin for the MST response of this opamp is about 67

degrees which is slightly smaller than the MST phase margin predicted

in Chapter II for the ideal two-pole opamps (around 70 degrees). This

is because the third and fourth poles of the folded-cascode opamp are

not exactly cancelled by the complex zeros, which results some

additional phase shift. The small-signal settling time of the opamp

versus the loading capacitance is plotted in Fig. 21. It is shown that

the settling time is a very strong function of CL, and the minimum

settling time is obtained at 5 pF as designed. Similar to Fig. 3, the

discontinuities in response time of Fig. 21 are associated with the

natural frequency of the system, and occur when response peaks or

valleys just enter the bounded region for increasing loading

capacitance.
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Table II

M1 120/6 M7 460/6

M2 120/6 M8 332/6

M3 460/6 M9 126/4

M4 332/6 M10 126/4

M5 126/4 Mll 240/6

M6 126/4 M12 240/6

Table II. W/L ratios (in microns) of a one-stage folded-cascode

opamp for MST response with CL = 5 pF.
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Fig. 19 SPICE simulated frequency responses for the original opamp of

Fig. 16 (curve 1) and its two-pole model of Fig. 18 (curve 2).
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V. DISCUSSION AND CONCLUSIONS

A frequency compensation technique for fast-settling opamps has

been presented, and an improved equivalent circuit model for a two-

stage operational amplifier was also proposed. The results show that

for a first-stage dominant-pole system, the Miller capacitance

approximation is appropriate whereas for the second-stage dominant-pole

system, the Miller resistance approximation is required. This improved

modeling not only provides for much more accurate compensation, but

also improves the understanding of pole-splitting compensation. The

minimum small-signal settling time analysis is also applicable to the

optimization of one-stage two-pole opamps as presented in Chapter IV.

One potential concern relates to the sensitivity of the MST

response to process variations. Variations in phase margin were

simulated with standard process variations about both the MST and

nominal 60 degree cases for the two-stage opamp. The compensation

capacitance was varied by ±10 percent, while the gm's and the

compensation resistance were varied by ±25 percent. As shown in

Table III(a), the MST exhibited nearly identical sensitivity to the

commonly-used 60 degree case. As shown in Table III(b), the

sensitivities were also simulated for ±25 percent variations in R/' and

R2', and ±10 percent variations in C1' and C2'. Again, the

sensitivities were similar. Obviously, we cannot compensate the opamp

exactly at the MST point over processing variations. The key point

here is that if we select the MST as the nominal condition, then

including process variations, the range of settling times is always

less than the range obtained if we select 60 degrees as the nominal

condition. The improvement is typically a factor of two. This argument
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obviously applies for temperature variations as well. A similar

sensitivity to process variation was also observed in the folded-

cascode opamp.

We are somewhat justified in neglecting slew-rate effects in many

applications. Using conventional two-stage or cascode opamps, slew-

rate effects may be ignored for cases wherein the maximum output

voltage change during any sampling period is less than about 500 mV.

For high frequency CMOS SC filters, either class-AB or adaptively-

biased [25]-[30] opamps may be used as they do not exhibit slew-rate

limiting, and therefore small-signal analysis is applicable. The slew-

rate limitation on the MST design is suggested for future study.

Another suggestion for future work is the applications of the MST

design techniques for SC filters.
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TABLE III(a)

0.75Cf 1.0Cf 1.1Cf

0.75gm 65.7
(52.4)

68.6
(59.4)

70.8
(56.4)

1.00gm 65.9 70.0 73.6
(56.2) (60.0) (62.7)

1.25gm 61.7 65.7 69.7
(54.2) (58.0) (61.4)

TABLE III(b)

0.9 C' 1.1 C'

0.75 R' 74.6 67.5
(64.0) (57.4)

1.25 R' 73.7 66.9
(62.8) (56.5)

Table III. Comparison of phase margins (in degrees) versus typical

process variations for the MST compensation versus the 60-

degree compensation (numbers in parentheses) for the

circuit of Fig. 6(a) with Rf-Cf compensation elements.
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