AN ABSTRACT OF THE THESIS OF

Margaret A. Vogue for the degree of <u>Master of Science</u> in <u>Soil Science</u> presented on <u>July 9, 1990.</u> Title: <u>A Soil Property Model for Evaluating Pesticide</u> <u>Movement Potential</u>

Abstract approved: Redacted for Privacy Benno Warkentin

Prevention of groundwater contamination by agricultural chemicals requires an understanding of the complex processes that control pesticide movement below the soil surface. Through this understanding it is possible to try to predict which areas may be most vulnerable to contamination. The many models that have been developed to characterize pesticide movement vary widely in their conceptual approach and degree of complexity. A soil properties model was developed in this thesis to determine the relative overall pesticide movement potential in Oregon agricultural soils. Its focus is ease of use in both acquisition of input values and running of the model. The model is based on soil properties important in controlling pesticide movement. It is a rating system model that uses scoring of factors and matrices to weigh the soil values. It is organized into two processes: leaching and sorption. The leaching potential is based on soil permeability and drainage class. The sorption potential is based on organic matter content and texture of the soil surface horizon(s). The interaction of these two processes results in the overall pesticide movement potential.

A Soil Property Model for Evaluating Pesticide Movement Potential

by

Margaret A. Vogue

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed July 9, 1990

Commencement June 1991

APPROVED:

Redacted for Privacy Professor of Soil Science in charge of major

Redacted for Privacy

Head of department of Crop and Soil Science

Date thesis is presented July 9, 1990.

Thesis submitted by Margaret A. Vogue.

ACKNOWLEDGEMENTS

This work was funded by the United States Department of Agriculture - Extension Service, Water Quality Initiative Project #89-EWQ1-9118.

I would like to thank Lois Mayo for her help, patience, and use of her computer.

TABLE OF CONTENTS

INTRODUCTION	1
LITERATURE REVIEW	3
Soil Properties Controlling Pesticide Movement .	3
Sorption	5
Leaching	. 7
Review of Chemical Transport Models	9
MODEL DEVELOPMENT	12
	12
Data Input Sources	12
Flements of the Model	12
Leaching Potential - Permeability to a	
Wator Mable	12
Mater Table	10
Desticide Neuement Detentiel	73
Pesticide Movement Potential	23
Rating of Oregon Agricultural Solls	20
Hydraulic Surplus	26
Simulations with Other Models for Validation of	
Current Model	28
Results of Comparisons	36
DISCUSSION	44
LITTEDATTIDE CITED	48
	40
APPENDIX A	
SIMULATIONS WITH WILLAMETTE VALLEY SOILS	52
APPENDIX B	
SIMULATIONS WITH MALHEUR COUNTY SOILS 1	.04
APPENDIX C	
SIMULATIONS WITH COLUMBIA BASIN SOILS	.19
APPENDIX D	
SIMULATIONS WITH KLAMATH FALLS BASIN SOILS]	4 0

•

LIST OF TABLES

TABLE	1.	Scoring of permeability classes	15
TABLE	2.	Scoring of the permeability of the soil	16
TABLE	3.	Matrix for estimating soil leach potential based on permeability and drainage	18
TABLE	4.	Scoring of organic matter times depth	21
TABLE	5.	Scoring of surface texture	22
TABLE	6.	Matrix for estimating soil sorption potential based on surface organic matter times surface depth and surface texture	24
TABLE	7.	Matrix for estimating soil pesticide movement potential based on leaching and sorption potentials	25
TABLE	8.	Matrix for estimating risk of pesticide movement due to influence of hydraulic loading	27
TABLE	9.	Simulations of ten soils with the Soil Conservation Service Pesticide Interaction Procedures	29
TABLE	10.	Ranking system for attenuation potential - Wisconsin approach	31
TABLE	11.	Ranking of ten Oregon soils using the Wisconsin attenuation potential ranking system	32
TABLE	12.	Input parameters for the simulation of ten Oregon soils with the model of Jury (1987)	35
TABLE	13.	Comparison of four model simulations with ten Oregon soils for estimating pesticide movement through soil	37
TABLE	14.	Input parameters for thirty-nine soils for simulations with Jury (1987) model	39
TABLE	15.	Comparison of the results of thirty-nine soils using the Jury (1987) and the soil properties models	41

LIST OF APPENDIX TABLES

TABLE A-1.	Calculation of the soil permeability for Willamette Valley soils 53
TABLE A-2.	Rating of Willamette Valley soils for leaching potential
TABLE A-3.	Calculation of surface organic matter multiplied by surface depth 80
TABLE A-4.	Rating of Willamette Valley soils for sorption potential
TABLE A-5.	Rating of Willamette Valley soil series for pesticide movement potential 92
TABLE A-6.	Native pH and percent slope of Willamette Valley soils 98
TABLE B-1.	Calculation of the soil permeability for Malheur County soils 105
TABLE B-2.	Rating of Malheur County soils for leaching potential
TABLE B-3.	Calculation of surface organic matter multiplied by surface depth for Malheur County soils
TABLE B-4.	Rating of Malheur County soils for sorption potential
TABLE B-5.	Rating of Malheur County soils for pesticide movement potential 115
TABLE B-6.	Native pH and percent slope of Malheur County soils
TABLE C-1.	Calculation of the soil permeability for Columbia Basin area soils
TABLE C-2.	Rating of Columbia Basin area soils for leaching potential
TABLE C-3.	Calculation of surface organic matter multiplied by surface depth for Columbia Basin area soils
TABLE C-4.	Rating of Columbia Basin area soils for sorption potential

.

LIST OF APPENDIX TABLES (CONTINUED)

TABLE	C-5.	Rating of Columbia Basin area soils for pesticide movement potential 134
TABLE	C-6.	Native pH and percent slope of Columbia Basin area soils
TABLE	D-1.	Calculation of the soil permeability for Klamath County soils
TABLE	D-2.	Rating of Klamath County soils for leaching potential
TABLE	D-3.	Calculation of surface organic matter multiplied by surface depth for Klamath County soils
TABLE	D-4.	Rating of Klamath County soils for sorption potential
TABLE	D-5.	Rating of Klamath County soils for pesticide movement potential 147
TABLE	D-6.	Native pH and percent slope of Klamath County soils

.

A SOIL PROPERTY MODEL FOR EVALUATING PESTICIDE MOVEMENT POTENTIAL

INTRODUCTION

Approximately 16 million pounds of pesticides were used in Oregon in 1987 (Rinehold and Witt 1989). A comprehensive survey by Parsons and Witt (1988) indicates that ten pesticides have been found in Oregon groundwater, although all the well data has not been validated to exclude invalid or irreproducible results. Groundwater monitoring can identify areas where contamination has occurred, but it does not prevent further contamination.

Prevention of groundwater contamination by agricultural chemicals requires an understanding of the complex processes that control pesticide movement in the subsurface environment. Through this understanding it is possible to try to predict areas that may be most vulnerable to contamination. These areas can then be managed in such a way as to minimize the potential for pesticide movement to groundwater.

Prediction of vulnerable areas is not a simple task. There are many interactive factors that control pesticide movement to groundwater. Many models have been developed to characterize pesticide movement. These models vary widely in their conceptual approach and degree of complexity. The information needed to describe the basic processes of pesticide movement, the sensitivity of analysis, and the accuracy of simulations all depend on whether the modelers' approach is research or management. Research models that mathematically describe the complexity of the environment surrounding pesticide applications are needed to provide a basic understanding of the importance of the various parameters (McGrath, 1981). Research models tend to be highly sophisticated and require extensive input values, values that often need to be accurately measured in a laboratory setting first. Manipulations of the data often require the help of complex mathematical models.

Management models vary in their approach, but are usually based on scientific principles established in the research models. Management models should be accurate enough to identify areas of concern and simple enough to be used routinely. If a problem is identified with a simple model, more extensive testing can be done, and assessments can then be made using more sophisticated models.

The soil properties model described in this thesis is a simple management-type model. The model is based on soil processes found to be important in controlling pesticide movement and persistence. The processes were determined through evaluation of the literature and preexisting models.

LITERATURE REVIEW

A literature review was conducted to develop an understanding of the processes involved in pesticide movement, and to investigate existing predictive models of pesticide movement to groundwater.

Soil Properties Controlling Pesticide Movement

Bailey and White (1970) list seven factors that control the fate and behavior of pesticides in soil. These are: 1) chemical decomposition, 2) photochemical decomposition, 3) microbial decomposition, 4) volatilization, 5) plant and organism uptake, 6) movement, and 7) adsorption. Chemical and photochemical decomposition are functions of the pesticide and the environment. Microbial decomposition and plant and organism uptake are functions of the pesticide, the soil environment (for microbial decomposition) and management. Volatilization is a function of the chemical, the environment, and the type of application of the pesticide.

Movement of pesticides is a function of soil properties, climate (rainfall), and management (irrigation) water. And finally, adsorption is a function of the pesticide and the soil environment. Of the above factors only microbial decomposition, movement, and adsorption are directly influenced by the soil environment.

Microbial decomposition is difficult to predict and is not well understood (Jury, 1984a; Hamaker and Thompson, 1972). It is usually included in the calculation of the half-life of a chemical, so it will not be investigated in this thesis. Movement of pesticides in soil is most affected by adsorption, physical properties of the soil, and climatic factors (Bailey and White, 1970). Adsorption is considered to be the main factor controlling pesticide movement. It influences either directly or indirectly the availability of a chemical for action by any of the other factors (Bailey and White, 1970; Khan, 1980). Frequently researchers use the term sorption to describe the phenomenon of chemicals becoming attached to or incorporated into the soil matrix. Sorption is a general term for the processes of adsorption, absorption, and chemisorption. These three processes are thought to occur simultaneously in soil, with the common result being the retardation of the movement of pesticides. For this model, the term sorption will be used to describe this retardation phenomenon. Because of its known importance in controlling movement, sorption will be one of the main processes investigated in detail for development of this thesis model.

Leaching of pesticides, i.e. movement with soil water, is the other main process that will be investigated for use in the model. Climatic factors will not be directly incorporated into the model although they are important with respect to pesticide movement, since the total amount of rainfall or irrigation water received, as well as the intensity and frequency of received water, influence the depth to which a pesticide will move down through the soil. This effect of hydraulic loading will be considered separately from the pesticide movement model for use as a management tool.

<u>Sorption</u>

As discussed above, sorption is considered to be the primary factor controlling pesticide movement in soils. It controls the distance of movement and the pesticide concentration available for movement. To understand the importance of sorption, it is necessary to review the mechanisms involved and their relative importance in the binding of pesticides to soil particles. The mechanism(s) of action depend(s) on the nature of the soil colloid and the pesticide (Khan, 1980; Mortland, 1980; Green, 1974; Weed and Weber, 1974). Two or more mechanisms may occur simultaneously (Khan, 1980). The mechanisms most frequently cited are listed below and are described briefly.

Cation exchange - takes place for those pesticides that exist as cations or that become positively charged through protonation. Adsorption of cationic pesticides by ion exchange occurs on both organic matter and clay surfaces (Khan, 1980; Mortland, 1980; Green, 1974; Weed and Weber, 1974).

Hydrogen bonding - is a dipole to dipole interaction in which the hydrogen atom serves as the bridge between two electronegative atoms. Hydrogen bonding occurs on clay surfaces and edges, and on organic matter. Hydrogen bonding appears to be the most important mechanism for adsorption of polar nonionic organic molecules on clay minerals (Khan, 1980; Green, 1974). Organic molecules hydrogen bonded to organic matter are in direct competition with water for binding sites (Weed and Weber, 1974). van der Waals attraction - are short range dipoledipole interactions of several kinds (Bailey and White, 1970). These physical forces are very weak but additive, and they exist in all adsorbent-adsorbate relationships. Consequently van der Waals forces are responsible for adsorption to both clay and organic matter (Khan, 1980; Mortland, 1980; Green, 1974; Weed and Weber, 1974).

Hydrophobic bonding - influences the bonding of nonpolar pesticide molecules to hydrophobic sites of organic matter (Khan, 1980; Mortland, 1980; Weed and Weber, 1974).

Ligand exchange - occurs when partially chelated transition metals serve as the sites for ligand exchange, in which the pesticide may replace the water of hydration acting as a ligand (Khan, 1980; Weed and Weber, 1974). This mechanism may occur with both clay and organic matter, although very little discussion of this mechanism was found.

The opportunity for different pesticides to be sorbed by soil constituents is considerable. In all of the above mechanisms, greater adsorption takes place where there are a greater number of binding sites. Soil is made up of organic matter - clay complexes. It has been observed that above 2-3 percent organic matter, the clay surfaces are effectively blocked, and can no longer function as adsorbent surfaces (Weed and Weber, 1974; Khan, 1980). Numerous laboratory studies and reviews have shown that adsorption increases directly with increases in organic matter (Haque, 1975; Hamaker and Thompson, 1972; Briggs, 1969; Lambert et al., 1965; Koren et al., 1969). The combination of the large surface area, hydrophobicity, and chemical reactivity of organic matter lends credence to

the observations that organic matter is the most important soil constituent involved in the process of adsorption (Mortland, 1980; Weed and Weber, 1974; Khan, 1980).

<u>Leaching</u>

Two mechanisms control the transport of pesticides with soil water: diffusion and mass movement (Haque, 1975; Khan, 1980; Jury, 1986). Diffusion is the process by which solutes are transported as a result of their random molecular motions caused by their thermal energy. There is a resultant net movement from positions of higher concentrations to lower concentrations (Khan, 1980). Mass flow is the movement of the solutes through the soil as a result of being carried by water. Mass flow is considered to be the principal means of movement of a pesticide in soil (Bailey and White, 1970; Khan, 1980). From this point on, the term leaching will be used to describe the transport of pesticides within the soil profile by mass flow with percolating water.

Several soil properties influence the leaching of pesticides. Jury (1986) summarizes these parameters and their effects. They are as follows.

Soil water content - has a significant influence on diffusion, but does not directly affect leaching.

Bulk density or porosity - influences rate of water movement. Bulk density is related to porosity by the equation -

P = 1-Db/Dp

where P is the porosity, Db is the bulk density, and Dp is the particle density. Increasing bulk density corresponds to decreasing soil porosity. Porosity indirectly affects leaching since regions of low porosity are likely to have lower permeability to water movement. Jury (1986) states that no good structural models exist for relationships between porosity and permeability. It is generally accepted that within a given soil type, permeability decreases as porosity decreases. Between different soil types, such as a clayey soil compared to a sandy soil, the clayey soil has a higher porosity, but a lower permeability.

Saturated hydraulic conductivity or permeability defines the readiness with which water flows through soil in response to a given potential gradient (Brady, 1984). The saturated hydraulic conductivity of a soil depends on the size and configuration of the soil pores. Coarsetextured soils have a higher saturated conductivity than finer textured soils. Also, a well-aggregated soil with a high proportion of large conducting pores will be more permeable (Helling and Dragun, 1981).

Bailey and White (1970) also discuss the importance of soil texture and structure in controlling pesticide leaching. They review the work performed by numerous investigators, which has shown that pesticides are leached to a greater degree in light-textured (sandy) soils than in heavier-textured (clayey) soils.

Depth to groundwater - does not directly influence the ability of a soil to transmit water, but does affect the travel time for leaching. Shallow depth to groundwater will result in shorter travel time.

Review of Chemical Transport Models

That soil properties are important is confirmed by their use in many of the current models that numerically describe pesticide movement and persistence. Some of the more common models include: PRZM (Pesticide Root Zone Model), (Carsel et al., 1984), LEACHMP (Leaching Estimation And CHemistry Model-Pesticides), (Wagenet and Hutson, 1987), CMIS (Chemical Movement In Soil), (Nofziger and Hornsby, 1985), Jury et al. (1987), Wisconsin approach (Sutherland and Madison, 1987), DRASTIC (a standardized system for evaluating groundwater pollution potential using hydrogeologic settings), (Aller et al., 1985), Soil Conservation Service (Goss, 1989), SEEPPAGE (a System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments), (Moore, 1988), and GLEAMS (Groundwater Loading Effects of Agricultural Management Systems), (Leonard et al., 1987). The approach taken by each of these models varies widely. Many incorporate environmental and management conditions that influence pesticide fate and movement to groundwater, but are beyond the direct influence of soil parameters. Although these other conditions are extremely important, they will not be included in this thesis model. The discussion section at the end of this thesis addresses the importance of many of these conditions as well as the limitations of this thesis model. A brief discussion of the models and their input parameters follows.

Several models are relatively large, complex computer programs requiring extensive input (LEACHMP, PRZM, and GLEAMS). These models have soil components, but they also incorporate other factors such as pesticide variables, plant nutrition, erosion, soil evaporation, management

practices, and climatic factors. These factors are important in controlling pesticide movement to groundwater, but are beyond the scope of this soil properties model.

The DRASTIC model is mainly a rating of hydrogeologic settings, aquifer characteristics and subsurface transport. This information is very important in modeling groundwater vulnerability but is not pertinent to this thesis model. Included in the DRASTIC model is a weighting for "soil media", using only texture (a component for organic matter is included here) as the controlling factor. Depth to water table is also included as a weighting factor.

The SEEPPAGE model also incorporates aquifer components. This model, however, more thoroughly evaluates the effect of soil in controlling pesticide fate. The SEEPPAGE model uses the soil attenuation rating system developed by the Wisconsin Geological and Natural History Survey (Sutherland and Madison, 1987), discussed below.

The Wisconsin model was developed as a management tool for the State Agency personnel and County Extension agents to identify areas of concern for groundwater contamination from pesticides. It incorporates the influence of organic matter, texture, depth to a water table and the permeability of the least permeable layer. This thesis model most closely resembles the Wisconsin model.

The Chemical Movement in Soil (CMIS) Model is a simple computer model illustrating the influence of soil properties, chemical properties and weather patterns on the movement of chemicals in soil. The soil properties shown to be important in controlling pesticide movement that are used in the CMIS model are bulk density, volumetric water content, and soil organic carbon content. The model of Jury et al. (1987) is a mathematical model that incorporates soil, environmental, and chemical conditions. It was developed as a screening tool for estimating which compounds may reach groundwater with a high enough residual mass to pose a potential hazard. The focus of the Jury model is to update recent work to assess chemical movement to groundwater based on mobility and persistence (Jury 1984a and b). The Jury model strives to more accurately define microbial degradation based on declining microbial populations with depth. The soil conditions of drainage rate, bulk density, water content, and organic carbon content are used in Jury's model.

The Soil Conservation Service has developed a Soil-Pesticide Interaction Procedure that is used to describe the relative potential loss of pesticides from soils (Goss, 1989). The GLEAMS model was used to estimate the pesticide losses from a large combination of hypothetical pesticides and soils. Algorithms were then used to categorize soil series for leaching potential. (The SCS procedure has a surface loss portion which will not be discussed here). The algorithm is a grouping of the soils based on the hydrologic group and the organic matter content times the surface horizon depth. The hydrologic groupings were originally based on the use of rainfallrunoff data from small watersheds and infiltrometer plots. The purpose of hydrologic groupings is to estimate runoff from rainfall (SCS, 1983). The notion of using hydrologic groupings for this model was dismissed since these groupings are already an estimate based on observations and calculations of permeability.

MODEL DEVELOPMENT

Introduction

The soil properties model was organized to address separately the effects of two processes in soils: leaching and sorption. The leachability of a pesticide through soil considers the conditions that favor water movement through the soil (ease of passage) and the depth to a water table (length of travel distance). Sorption is the affinity of a pesticide to attach onto a soil particle, thereby inhibiting its movement down through the soil with water. Interaction between these two processes results in the overall pesticide movement potential.

Data Input Sources

The model was developed with ease of use and consistency of data inputs in mind. To this end, the input data come from published official soil series descriptions (Official Soil Series Description File, maintained at Fort Collins Computer Center, Colorado), and also available at most local Soil Conservation Service offices. Only the soil organic matter content was from a slightly different database. The database used is the Soils 5 Database developed by the Soil Conservation Service (SCS). This Database can be obtained through Iowa State University in Ames, Iowa.

In addition to ease of use, only two databases were used for input values so as to maintain some consistency in the input parameters. It is realized that some variability is inherent to the concept of the soil series, and that all soils of the same series will not have analytical values exactly the same as the data used in this model. The model strives to be general enough to account for important differences in soil properties, but specific enough to identify potential hot spots, or areas of concern.

Elements of the Model

Leaching Potential - Permeability to a Water Table

The ease with which water will move down through the soil to a water table influences the rate at which a pesticide will move. The permeability of the soil is an indication of the speed (or ease) that water can move through a soil. Depth to a water table is important, since a shallow water table will be reached in a shorter time period than a deep water table. The depth to a water table is indicated by drainage class. The interaction of soil permeability and drainage class results in an index of leaching potential for the soil.

1. Scoring of soil permeability

The permeability of a soil was based on the permeability of the "layers" as given in the Estimated Soil Properties section of the Soil Interpretation Record for each official series description. The permeability of each "layer" is given as a rate, i.e.).6 - 2.0 in/hr. These rates correspond to one of 7 permeability classes, ranging from very slow to very rapid. For the purpose of evaluating pesticide movement potential, each permeability class was assigned a score as shown in Table 1. The slower the permeability, the lower the score.

Every soil was evaluated to a depth of 60 inches. Where bedrock or weathered bedrock occurred at a shallower depth estimated permeability classes and their corresponding scores were assigned to the various types of rock. These are shown in Table 2.

To evaluate soil permeability, each layer's score was multiplied by its thickness and the product summed over the entire 60-inch depth of the soil. This allows the thickness of a layer to weight the effect of permeability. For instance, if a soil had a relatively thick layer that was rapidly permeable, it would result in a high score compared to a soil that had only a thin layer that was rapidly permeable. Conversely, a soil that has a thin layer of slowly permeable clay underlain by a thick layer of rapidly permeable soil would score high even with the layer of clay. This reflects the situation that after the clay becomes saturated, free water could then move rapidly through the lower soil. A thin clay layer will not slow the water movement as much as a thicker layer.

The summed products ranged from 60 to 600. These products were then evenly split into ten groups and assigned a score ranging from 1 to 10. A score of 1 is slowest, indicating a soil with 60 inches of very slow permeability, while a 10 is most rapid, indicating a soil with very rapid permeability throughout. The scoring breakdown is shown in Table 2.

Permeability Class and	Permeability Score		
impeding layers or bedrock	(in/hr)		
very slow, and duripans	<0.06	1	
slow, and weathered bedrock	0.06-0.2	2	
moderately slow	0.2-0.6	4	
moderate, and R horiz-silt;sand stone	0.6-2.0	6	
moderately rapid	2.0-6.0	8	
rapid	6.0-20	9	
very rapid, basalt	>20	10	

TABLE 1. Scoring of permeability classes.

Calculated Result	Soil Permeability Score		
60 - 113	1		
114 - 167	2		
168 - 221	3		
222 - 275	4		
276 - 329	5		
330 - 383	6		
384 - 437	7		
438 - 491	8		
492 - 545	9		
546 - 600	10		

TABLE 2. Scoring of the permeability of the soil.

2. Drainage Class

The drainage class of a soil is given in its series description. A well drained soil indicates that the upper 100 centimeters of the soil is rarely saturated for more than a day or so at a time. A poorly drained soil is saturated within the upper 20 centimeters of the soil for periods long enough to create reducing environments. An excessively drained soil indicates that water is removed very rapidly. In this case, very rapid movement of water, not depth to a water table, is the problem.

3. Scoring of Leaching Potential

The leaching potential of a soil depends on the interaction between permeability and drainage class, which is expressed in a matrix format (Table 3). The matrix shows that a soil that has both very rapid permeability and excessive drainage is rated as having a very high leaching potential. A soil with rapid permeability and very poor drainage is also given a very high leach potential. This situation would probably occur mainly with coastal sandy soils where the water table comes up near the surface. This situation is the worst of both worlds; a soil that allows water to move rapidly to reach a shallow water table in a short period of time. At the other extreme are soils that have a very slow permeability and are well drained. These are rated as having a very low leaching potential. Intermediate combinations of permeability and drainage are given moderate ratings.

Note that permeability has somewhat more influence on the leaching potential than drainage. For almost all

				DRAINAGE CLA	SS		
PERME WEIGH AVERA SCORE	ABILITY ITED AGE	EXCESSIVELY AND SOMEWHAT EXCESSIVELY	WELL	MODERATELY WELL	Somewhat Poorly	POORLY	VERY POORLY
1	Slowest	Very low	Very low	Very low	Low	Low	Low
2		Very low	Very low	Low	Low	Low	Low
3		LOW	Very low	Low	Low	Moderate	Moderate
4		Low	Low	Moderate	Moderate	Moderate	Moderate
5		Moderate	Low	Moderate	Moderate	Moderate	High
6		High	Moderate	Moderate	Moderate	High	High
7		High	Moderate	High	High	Very high	Very high
8		Very high	High	High	High	Very high	Very high
9		Very high	High	Very high	Very high	Very high	Very high
10	Most Rapid	Very High	Very high	Very high	Very high	Very high	Very high

TABLE 3. Matrix for estimating soil leach potential based on permeability and drainage.

drainage classes, a permeability score of 3 or less gives a low or very low leaching potential, whereas a permeability score above 7 gives a high or very high leaching potential.

Sorption Potential

Sorption potential describes the tendency of the pesticide to attach onto the surface of soil particles. The stronger a pesticide sorbs to soil particles, the less likely it will move down through the profile with water. The sorption of a pesticide to soil is a function of the surface area of the soil. Organic matter increases a soil's ability to sorb pesticides because of its high surface area. The texture of the soil also influences the surface area of a soil because clayey soils provide more surface area than sandy or silty soils. Texture is particularly important in soils that are low in organic matter to which positively charged pesticides are applied. The overall sorption potential is thus a function of organic matter content and soil texture.

1. Organic Matter

The effect of organic matter on sorption was evaluated using data available in the Soils 5 Database. This database provides a range of organic matter content for the surface layer of each soil. A typical entry would indicate a surface layer thickness of 12 inches and an organic matter content of 2-4 percent. For the purposes of this pesticide movement model, the average of the range was used for rating the sorption potential. This average value was then multiplied by the depth of the surface layer (A horizon). This product is a better measure of the amount of organic matter available to sorb a pesticide than either the percent organic matter of the A horizon thickness by themselves. A thick surface horizon with plenty of organic matter provides the opportunity for many binding sites. A thin layer of topsoil may provide numerous binding sites, but because the layer is thinner, it is possible that a chemical could be quickly carried through this layer without complete sorption and therefore be more available for leaching.

This product was then given a score between 1 and 10. A score of 1 indicates a relatively very thick surface horizon with a relatively high organic matter content. A score of 10, on the other hand, indicates a thin surface soil with very little organic matter. The scoring breakdown is shown in Table 4.

2. Soil Texture

The texture of the surface layer (A horizon(s)) is given both in the official series description and in the Soils 5 database. The textures were divided into classes and given a score (see Table 5). Organic matter and clayey textures were given the lowest score because of their large surface areas and opportunities for sorption binding sites. The lower the score the higher the sorption potential.

3. Rating of Sorption Potential

The sorption potential of a soil is a result of the interaction of the organic matter content and texture, as

TABLE 4.	Scoring	of	organic	matter	times	depth.
INDUU 4.	000119					-

ORGANIC MATTER * DEPTH:						
Result Score						
> 104	1					
52 - 104	2					
26 - 52	4					
13 - 26	6					
6.5 - 13	8					
0 - 6.5	10					

.

TABLE 5. Scoring of surface texture.

.

SURFACE TEXTURE Type	Class
organic, clay, silty clay, and sandy clay	fine
sandy clay loam, clay loam, and silty clay loam	mod. fine
loam, silt loam, and very fine sandy loam	medium
fine sandy loam, sandy loam, and loamy very fine sand	mod. coarse
all loamy sands, sands, very fine sands, and fine sands	coarse
NOTE: if texture is very gravelly then ad 1 to the score, up to a maximum sco	dd ore of 5.

shown in the matrix in Table 6. A soil with a very high organic matter content and a fine texture is given a very high sorption rating. A soil with very little organic matter and a coarse texture results in a very low sorption potential. The importance of organic matter is reflected in the structure of the matrix. Notice that up to medium textures an organic matter score of 4 or less results in ahigh or very high sorption potential. Only with the coarse soils is the effect of organic matter shown to be reduced.

Pesticide Movement Potential

The overall pesticide movement potential is a result of the interaction of the leaching and sorption potentials of the soil. A matrix was developed to combine these two processes (Table 7). A soil with a very high leaching potential and a very low sorption potential results in a rating of very high pesticide movement potential. This means that water will move quickly through the soil and the soil has few sorption sites. Conversely, a soil with a very low leaching potential and a very high sorption potential results in a very low pesticide movement potential rating. Water does not move quickly through the soil, and in addition the soil has an abundance of sorption sites. Both factors work together to provide a high probability that a chemical will be removed from the soil water or will move slowly enough to undergo degradation long before it can move all the way to groundwater.

TABLE 6. Matrix for estimating soil sorption potential based on surface organic matter times surface depth and surface texture.

AVERAGE SURFACE ORGANIC MATTER TIMES DEPTH SCORE			SURFACE TEXT	URE CLASS AND S	CORE	
		FINE 1	MODERATELY FINE 2	MED1UM 3	MODERATELY COARSE 4	COARSE 5
1	High O.M. average	Very high	Very high	Very high	High	Moderate
2	1	Very high	High	High	Moderate	Moderate
4		High	High	High	Moderate	Moderate
6		Moderate	Moderate	Moderate	Low	Low
8		Moderate	Moderate	Low	Low	Very low
10	Low O.M. average	Low	Low	Very low	Very low	Very low

TABLE 7. Matrix for estimating soil pesticide movement potential based on leaching and sorption potentials.

LEACHING POTENTIAL	SORPTION POTENTIAL						
	VERY HIGH	HIGH	MODERATE	LOW	VERY LOW		
VERY LOW	Very low	Very low	Very low	Low	Moderate		
LOW	Very low	Very low	Low	Moderate	Moderate		
MODERATE	Low	Low	Moderate	High	High		
HIGH	Moderate	Moderate	High	Very high	Very high		
VERY HIGH	Moderate	High	Very high	Very high	Very high		

Rating of Oregon Agricultural Soils

The model was used to evaluate several agricultural soils in Oregon. Four major agricultural regions were chosen: Willamette Valley, Malheur Valley, Columbia Basin, and the Klamath Falls Basin. The results of these evaluations are listed in Appendices A through D. The tables give the leaching potential, sorption potential, and the final pesticide movement potential.

Hydraulic Surplus

The hydraulic loading onto a soil influences the rate and distance a pesticide may move through the soil. A pesticide will not move if there is no carrier for transport. In addition, pesticides will sorb less on a wet soil than a dry soil because of the competition with water for binding sites. For the soil properties model, the concept of hydraulic surplus incorporates the combined effect of rainfall and irrigation minus evapotranspiration and runoff losses. Hydraulic surplus and the soil pesticide movement potential rating are combined in the matrix in Table 8. The matrix provides an estimate of the risk of pesticide movement due to hydraulic influence. The matrix was developed with the close attention and assistance of Dr. Jim Vomocil, Department of Soil Science, Extension Scientist.

PESTICIDE MOVEMENT POTENTIAL	RAINFALL + 1 0 - 5	HYDRAULIC SURPLUS = RRIGATION - EVAPOTRANSPIRATION (inches) 5 - 15 15 - 25		ATION - RUNOFF > 25
VERY LOW	Very low	Low	Low	Moderate
LOW	Very low	Low	Moderate	Moderate
MODERATE	Low	Moderate	Moderate	High
HIGH	Moderate	Moderate	High	Very high
VERY HIGH	Moderate	High	High	Very high

TABLE 8. Matrix for estimating risk of pesticide movement due to influence of hydraulic loading.

Simulations with Other Models for Validation of Current Model

Three of the models discussed in the Literature Review were used to validate this model. The models used were Jury (1987), the Wisconsin approach, and the SCS Soil Pesticide Interaction Procedure. These models were chosen for their ease of use and variety of approach.

Ten representative soil series were used to develop the current model. These same ten soils were evaluated with the other three models to compare results and validate the procedures. The Jury model requires a chemical compound and its associated parameters to complete the evaluation. For this purpose, aldicarb and dicamba were arbitrarily chosen.

SCS Ratings of Soil Leach Potential -

The soil leach ratings were taken directly from the Soils-5 database (Table 9).

Wisconsin Ratings of Attenuation Potential -

This approach requires surface (A horizon) texture, subsurface (B horizon) texture, soil order (indication of organic matter content), surface pH, depth of soil solum, permeability of subsoil, and soil drainage class. Information regarding all of these parameters is available in the official series descriptions. The Wisconsin scoring
TABLE 9. Simulations of ten soils with the Soil Conservation Service Pesticide Interaction Procedures.

	SCS RATI	NGS
SOIL SERIES	Soil Leach Potential	Soil Surface Loss Potential
Amity	Nominal	Intermediate
Dayton	Nominal	Nominal
Woodburn	Nominal	Intermediate
Madras	Nominal	Intermediate
Ritzville	Intermediate	Intermediate
Quincy	High	Nominal
Algoma	Nominal	Nominal
Flagstaff	Nominal	Nominal
Fordney	High	Nominal
Nyssa	Nominal	Intermediate

.

system, the input values, and the results are listed in Tables 10 and 11 respectively.

Jury et al., 1987 Evaluation of Pesticide Groundwater Pollution Potential -

The Jury model is a numerical model that requires specific, measured input parameters. Several values for Oregon soils had to be estimated because exact data were not available. For instance, the Jury model requires a value for average water content. This value was estimated as 0.80 of the pore space. Eighty percent was arbitrarily chosen; since water content changes over time any percentage could have been used as long as it was used consistently. The pore space was calculated using the equation of 1 - (bulk density/particle density). The result of this estimation of water content for soils agrees with an 80 percent estimate of the saturation water content given by Hillel (1982) for sandy, loamy, and clayey soils. For example, a loamy fine sand such as a Quincy soil was estimated to have a water content at 80 percent saturation of 0.3. Hillel (1982) assigns a saturation water content for sandy soils as 0.4. Eighty percent of this is 0.32. For a loam soil such as Madras, the water content was estimated to be 0.4. This coincides with 80 percent of the estimated saturation value of 0.5 given by Hillel (1982).

TABLE 10. Ranking system for attenuation potential - Wisconsin approach.

PHYSICAL/CHEMICAL CHARACTERISTICS	CLASSES	WEIGHTED VALUES
Texture - Surface (A) Horizon	l, sil, scl, si c, sic, cl, sicl, sc lvfs, vfsl, lfs, fsl	9 8 4
	s, ls, sl, organic materials	
	and all textural classes	
	class modifiers	1
Texture - Subsoil (B) Horizon	c, sic, sc, si	10
	scl, l, sil, cl, sicl	7
	lvfs, vfsl, lfs, fsl	4
	s, ls, sl, organic materials	
	and all textural classes	
	With coarse tragment	1
	class modifiers	
Occapic Matter Content	Mollisols	8
organie nacter content	Alfisols	5
	Aridisol, Entisols, Inceptisols, and Spodosols	3
	Histosols, Aquic suborder, and	
	Lithic, Aquollic, and Aquic subgroups	1
pH - Surface (A) Horizon	>= 6.6	6
	< 6.6	4
Depth of soil solum	> 40 in.	10
(A + B horizons)	30 - 40 in.	8
	20 - 30 in.	3
	< 20 in.	1
Permeability - Subsurface (B)	very low	10
Horizon	moderate	8
	high	4
	very high	1
Soil Orainage Class	l Well drained	10
	well to moderately well drained	7
	moderately well drained	4
	somewhat poorly, poorly, and very	
	poorly drained, and excessively well drained	1
	ION POTENTIALS - SCORES	
		natontial
Least potential	Marginal potential Good potential Best	potentiat
0 - 30	31 - 40 41 - 50 51 +	

TABLE 11. Ranking of ten Oregon soils using the Wisconsin attenuation potential ranking system.

SOIL SERIES		TEXTURE SURFACE (/ Class	A) HORIZON Value	TEXTU SUBSO Class	RE (L (B) V	HORIZON alue		ORGANIC MATTER CON Class	TENT Value	pi (/ ci	H - SURFAC A) HORIZON Lass	CE I Value
<u></u>	1						1			1		
AMITY		sil	9	sicl,	sil	7		Mollisol	8	\ `	6.6	4
DAYTON		sil, sicl	8.5	c, si	₽,	10		Alfisol	5	<	6.6	4
WOODBURN		sil	9	sicl		7		Mollisol	8	<	6.6	4
MADRAS		ι	9	l, cl		7		Aridisol	3	6	.4 - 6.6	5
RITZVILLE		sil	9	sil		7		Mollisol	8		= 6.6	6
QUINCY		lfs	4	lfs		4		Entisol	3	>	= 6.6	6
ALGOMA		sil	9	sil		7		Inceptisol	3	>	= 6.6	6
FLAGSTAFF		sil	9	sicl		7		Aridisol	3	>	= 6.6	6
FORDNEY		lfs	4	ls		1		Mollisol	8	>	= 6.6	6
NYSSA		sil	9	sil		7		Entisol	3	>	= 6.6	6
				1						ł		

SOIL SERIES	DEPTH OF SOIL SOLU Class	M(in.) Value	PERMEABILITY SUBSOIL (B) HORIZON Class Value	SOIL DRAINAGE CLASS Class Value	SUM OF VALUES	ATTENUATION RATING POTENTIAL
	> 40	10	0.2-0.6 mod 8	smwhat poorly 1	47	Good
DAYTON	30 - 40	9	<0.06 v.low 10	poorly 1	47.5	Good
WOODBURN	> 40	10	0.6-2.0 mod 8	mod.well 7	53	Best
MADRAS	>= 20	3	mod-slow 9	well drained 10	46	Good
RITZVILLE	30 - 40	8	0.6-2.0 modi 8	well drained 10	51	Best
QUINCY	0	0	6-20 rapid 4	excessively 1	22	Least
ALGOMA	< 20	1	very low 10	poorly 1	37	Marginal
FLAGSTAFF	< 20	1	slow 9	smwhat poorly 1	36	Marginal
FORDNEY	< 20	1	6.0-20 high 4	excessively 1	25	Least
NYSSA	~20	2	0.6-2.0 mod 8	well drained 10	45	Good
	I		I	1	r	I

TABLE 11. (CONTINUED).

ယ ယ The average flux rate (defined by Jury et al., 1987 as the rate at which water is applied to the soil) was used consistently at 1 m/yr. This is a high rate of water input, but used as a constant for all soils it gives mass pesticide residue results at visible levels for easy comparisons.

Bulk density values were taken from Huddleston (1982). The fractional organic carbon is the midpoint of the range of organic matter values given in the SCS Soils-5 database divided by 1.6. The depth of surface zone is the same depth used in the current thesis model. Depth of the vadose zone is 1.52 meters (60 inches) - the standard cutoff depth for the soils used in the current model. If the soil was shallower to bedrock, then that depth was used. The depth of the deep zone is the same as the depth of the vadose zone. It is the point at which the chemical arrives at the calculated time with a calculated residual mass. This depth is intended by the model to be the depth to ground water, but since that is unknown, the depth to the bottom of the soil profile (or 60 inches, which ever is shallower) will be used. The depth constant, which is involved in calculating biodegradation, is 3. This is the value used by Jury. The input parameters used for this model are shown in Table 12.

				INPU	PARAMETE	RS		
CO11 SERIES	Bulk Density	Volumetric Water Content	Fraction organic carbon	Depth Surface Zone (m)	Depth Vadose Zone (m)	Average Drainage Rate (m/yr)	Depth Constant (/m)	Depth (m)
SULL SERIES	(Kg/110)		Foc	L	Н	JW	Г	z
Amity	1400	0.38	0.025	0.406	1.52	. 1	3	1.52
Dayton	1500	0.35	0.016	0.229	1.52	1	3	1.52
Woodburn	1300	0.41	0.025	0.432	1.52	1	3	1.52
Madras	1300	0.41	0.009	0.203	1.02	1	3	1.02
Ritzville	1300	0.41	0.009	0.229	1.52	1	3	1.52
Quincy	1700	0.29	0.005	0.381	1.52	1	3	1.52
Algoma	1400	0.38	0.044	0.279	1.52	1	3	1.52
Flagstaff	1300	0.41	0.005	0.076	1.52	1	3	1.5
Fordney	1600	0.32	0.028	0.203	1.52	1	3	1.5
Nyssa	1400	0.38	0.008	0.33	1.52	1	3	1.5

TABLE 12. Input parameters for the simulation of ten Oregon soils with the model of Jury (1987).

Results of Comparisons

Table 13 shows the results of the comparison of the three models described above with this thesis model. Note that the Jury model gives a mass fraction of pesticide and time result. The mass fraction is the amount of pesticide expected to reach the specified depth given in the input. The time is the time it will take for that amount of pesticide to reach the specified depth. For comparisons it is best to look at the mass fraction of pesticide first to see which soil allows the greater amount to pass, and then look at the time to see how long it will take the pesticide to move to the specified depth. A large mass fraction in a relatively shorter time period poses the greatest risk, whereas a small mass after a long time poses the least risk.

There is a general agreement among the four models, although there are some discrepancies. The results for the Amity, Woodburn, Quincy and Fordney soils agree for all models. Minor discrepancies appear with the Dayton and Nyssa soils. These two soils are rated as moderate with this thesis model, although with the other three models it has a low potential for movement. The Dayton soil is rated as moderate with this thesis model because of the soil's poor drainage, whereas the Nyssa soil has moderately rapid permeability. For the remaining soils, the discrepancies are with the results of one of the other three models. For instance, with the Madras soil the Jury model give a higher rating than the other three. With Ritzville, the Wisconsin model gives a lower rating than the other three, but with the Algoma soil it gives a higher pollution rating. With the Flagstaff soil, the SCS model

TABLE 13. Comparison of four model simulations with ten Oregon soils for estimating pesticide movement through soil.

<u></u>		JURY	MODEL			UISCONSIN	5011
	(Fraction of to reach d	[;] pesticide lepth speci	(Mr) & time fied Table 1	(T, years) 2)	Soil Leach Potential 1/	APPROACH Attenuation potential	PROPERTIES MODEL 3/
	Aldica	arb	Dicamb	a		rating 2/	
SOIL SERIES	Mr	т	Мг	T			
Amity	0.012496	2.4928	0.002230	0.6946	Nominal	Good	LOW
Dayton	0.084808	1.8453	0.016684	0.6123	Nominal	Good	MODERATE
Woodburn	 0.012645	2.4016	0.001282	0.7319	Nominal	Best	LOW
Madras	0.192525	0.8669	0.014489	0.4456	Nominal	Good	LOW
Ritzville	0.177746	1.2919	0.011800	0.6641	Intermediate	Best	MODERATE
Quincy	 0.225069	0.8780	0.018864	0.4675	High	Least	VERY HIGH
Algoma	 0.003186	3.9484	0.003331	0.7836	Nominal	Marginal	LOW
flagstaff	 0.393770	0.9575	0.043618	0.6436	Nominal	Marginal	MODERATE
Fordney	0.023597	2.9379	0.017304	0.6362	High	Least	VERY HIGH
Nyssa	 0.156684	1.1751	0.007882	0.6141	Nominal	Good	MODERATE

1/ Soil Leach Potential - possible ratings are: Nominal, Intermediate, and High

.

2/ Attenuation Potential - possible ratings are: Least, Marginal, Good, and Best. - ranking of soil series on the basis of its ability to attenuate chemicals. - Does not take into account specific pesticides.

3/ Pesticide Movement Potential - possible ratings are: Very Low, Low, Moderate, High, and Very High.

underestimates the leaching potential compared with the other three. This shows that all models will differ in their estimation of groundwater vulnerability. The choice of a model to use should take into account the specific purpose of the model and the accuracy of the input parameters with respect to the design of the model.

After a review of these results, 39 soils from differing locations across the state were evaluated using the soil properties model. These ratings were then compared to the results obtained when these 39 soils were evaluated using the Jury et al., (1987) model. The Jury model was used for this more extensive comparison because it was considered to be a more accurate model than the Wisconsin or SCS models. This is in part due to the reputation and extensive work Dr. Jury has done to characterize pesticide movement through soil. Again, the Jury model requires a chemical compound - Aldicarb and dicamba were used. Table 14 lists the input values and Table 15 gives the results. The pesticide mass fraction values were sorted and then split into groups of either low, moderate, or high pesticide movement potentials. The split into the groups was arbitrary, but generally follows a natural split among the results. The range of the splits is given at the bottom of Table 15. The time to reach a specified depth is also important and should be taken into account. But in general, those pesticides with a larger mass fraction had a shorter time to reach depth.

Out of the 39 sets of ratings compared there is good or relatively good agreement between all but five. These five are for the Fordney, Madras, Newberg, Owyhee, and Virtue soils. Of these five there is a discrepancy among the two chemicals for Fordney and Newberg, with the pesticide Dicamba agreeing with the thesis model results.

	INPUT PARAMETERS										
SOIL SERIES	Bulk Density (kg/m3)	Volumetric Water Content (80% sat)	Fraction organic carbon (surface) Foc	Depth Surface (surface) Zone (m) L	Depth Vadose Zone (bedrock) (m) H	Average Drainage Rate (constant) (m/yr) Jw	Depth Constant (/m) F	Depth Deep Zone (m) Z			
Algoma	1400	0.38	0.044	0.279	1.52	1	3	1.52			
Amity	1400	0.38	0.025	0.406	1.52	1	3	1.52			
Dayton	1500	0.35	0.016	0.229	1.52	1	3	1.52			
Flagstaff	1300	0.41	0.005	0.076	1.52	1	3	1.52			
Fordney	1600	0.32	0.028	0.203	1.52	1	3	1.52			
Madras	1300	0.41	0.009	0.203	1.02	1	3	1.02			
Nyssa	1400	0.38	0.008	0.330	1.52	: 1	1 3	1.52			
Quincy	1700	0.29	0.005	0.381	1.52		1 3	1.52			
Ritzville	1300	0.41	0.009	0.229	1.52	· ·	1 3	1.52			
Woodburn	1300	0.41	0.025	0.432	1.52	2	1 3	1.52			
Calimus	1400	0.38	0.025	0.356	5 1.52	2	1 3	1.52			
Henley	1200	0.44	0.009	0.279	0 1.52	2	1 3	1.52			
Klamath	600	0.62	0.038	0.279	9 1.52	2	1 3	1.52			
Lorella	1550	0.33	0.019	0.127	7 0.5	1	1 3	0.51			
Tulana	500	0.65	0.141	0.584	4 1.5	2	1 3	1.52			
Irrigon	1350	0.39	0.005	0.07	6 1.0	0	1 3	1.00			
Моггон	1350	0.39	0.009	0.22	9 1.0	2	1 3	1.02			
Rhea	1350	0.39	0.009	0.35	6 1.5	2	1 3	1.52			
Valby	1350	0.39	0.009	0.20	3 1.0	2	1 3	1.02			
Winchester	1600	0.32	0.005	0.20	3 1.5	2	1 3	1.52			

TABLE 14. Input parameters for thirty-nine soils for simulations with Jury (1987) model.

1				INPUT PARAME	ETERS			
	Bulk Density	Volumetric Water	Fraction organic	Depth Surface (surface)	Depth Vadose Zone	Average Drainage Rate	Depth Constant	Depth Deep
		Content	carbon	Zone	(bedrock)	(constant)		Zone
SULL SERIES	(Kg/m3)	(80% sat)	(surtace) Foc	(m) L	(m) H	(m/yr) Jw	(/m) r	(m) z
Chehalis	1270	0.42	0.047	0.305	1.52	1	3	1.52
Jory	1400	0.38	0.028	0.406	1.52	1	3	1.52
Newberg	1300	0.41	0.019	0.178	1.52	1	3	1.52
Feltham	1620	0.31	0.009	0.152	1.52	1	3	1.52
Greenleaf	1250	0.42	0.009	0.203	1.52	1	3	1.52
Owyhee	1300	0.41	0.009	0.254	1.52	1	3	1.52
Prosser	1300	0.41	0.009	0.102	1.02	1	3	1.02
Sagehill	1450	0.36	0.009	0.203	1.52	1	3	1.52
Stanfield	1350	0.39	0.009	0.152	1.52	1	3	1.52
Umapine	1200	0.44	0.005	0.229	1.52	1	3	1.52
Virtue	1300	0.41	0.013	0.178	1.52	1	3	1.52
Alicel	1350	0.39	0.019	0.457	1.52	1	3	1.52
Catherine	1320	0.40	0.044	0.762	1.52	1	3	1.52
Conley	1220	0.43	0.013	0.330	1.52	1	3	1.52
Ноораі	1100	0.47	0.009	0.254	1.52	1	3	1.52
Hot Lake	1030	0.49	0.013	0.356	1.52	1	3	1.52
Imbler	1500	0.35	0.016	0.356	1.52.	1	3	1.52
La Grande	1320	0.40	0.034	0.356	1.52	1	3	1.52
Palouse	1400	0.38	0.019	0.356	1.52	1	3	1.52

TABLE 15. Comparison of the results of thirty-nine soils using the Jury (1987) and the soil properties models.

SOIL SERIES	SOIL RATING POTENTIAL	ALDICARB Mass Fraction	Time (years)	JURY: ESTIMATED PESTICIDE MOVEMENT POTENTIAL	DICAMBA Mass Fraction	Time (years)	JURY: ESTIMATED PESTICIDE MOVEMENT POTENTIAL
Algoma	LOW	0.003277	3.9290	LOW	0.003453	0.7786	LOW
Amity	LOW	0.012585	2.4888	LOW	0.002310	0.6906	LOW
Dayton	MODERATE	0.089126	1.8081	MODERATE	0.017403	0.6059	HIGH
Flagstaff	MODERATE	0.395202	0.9538	HIGH	0.044417	0.6399	HIGH
Fordney	VERY HIGH	0.023472	2.9420	LOW	0.017758	0.6322	HIGH
Madras	LOW	0.193443	0.8644	HIGH	0.014837	0.4431	MODERATE
Nyssa	MODERATE	0.157679	1.1711	MODERATE	0.008136	0.6101	MODERATE
Quincy	VERY HIGH	0.226941	0.8731	HIGH	0.019661	0.4626	HIGH
Ritzville	MODERATE	0.178635	1.2882	HIGH	0.012098	0.6603	MODERATE
Woodburn	LOW	0.012731	2.3979	LOW	0.001326	0.7282	LOW
Calimus	LOW	0.016958	2.4888	LOW	0.003494	0.6906	LOW
Henley	HODERATE	0.154324	1.2826	MODERATE	0.005965	0.7031	MODERATE
Klamath	VERY LOW	0.042242	2.1719	LOW	0.000611	1.0159	LOW
Lorella	VERY HIGH	0.100474	0.7044	MODERATE	0.037039	0.2021	HIGH
Tulana	LOW	0.000026	4.8334	LOW	0.000002	1.2216	LOW
Irrigon	HIGH	0.399100	0.6209	HIGH	0.049474	0.4064	HIGH
Morrow	HIGH	0.177973	0.8663	HIGH	0.013956	0.4288	MODERATE
Rhea	MODERATE	0.120666	1.2909	MODERATE	0.005334	0.6390	MODERATE
Valby	VERY HIGH	0.192759	0.8663	HIGH	0.017003	0.4288	HIGH
Winchester	VERY HIGH	0.320065	0.8933	HIGH	0.039454	0.5070	HIGH

SOIL SERIES	SOIL RATING POTENTIAL	ALDICARB Mass Fraction	Time (years)	JURY: ESTIMATED PESTICIDE MOVEMENT POTENTIAL	DICAMBA Mass Fraction	Time (years)	JURY: ESTIMATED PESTICIDE MOVEMENT POTENTIAL
Chehalis	LOW	0.002751	3.8856	LOW	0.001814	0.8320	LOW
Jory	VERY LOW	0.008290	2.7263	LOW	0.002033	0.7051	LOW
Newberg	VERY HIGH	0.092710	1.9568	LOW	0.014107	0.7012	HIGH
Feltham	VERY HIGH	0.221561	1.3059	HIGH	0.048753	0.5236	HIGH
Greenleaf	MODERATE	0.194128	1.2854	HIGN	0.012947	0.6817	MODERATE
Owyhee	LOW	0,165467	1,2882	HIGH	0.009942	0.6603	MODERATE
Prosser	VERY HIGH	0.263899	0.8644	HIGH	0.032891	0.4431	HIGH
Sagehill	HIGH	0.203380	1.2489	HIGH	0.022749	0.5933	HIGH
Stanfield	MODERATE	0.237256	1.2466	HIGH _	0.025444	0.6363	HIGH
Umapine	HIGH	0.271898	0.9740	HIGH .	0.010312	0.6842	MODERATE
Virtue	VERY LOW	0.159836	1.5087	MODERATE	0.016661	0.6738	HIGH
Alicel	LOW	0.023948	1.9853	LOW	0.001655	0.6814	LOW
Catherine	LOW	0.000054	3.7740	LOW	0.000029	0.8036	LOW
Conley	VERY LOW	0.095256	1.4907	MODERATE	0.003784	0.7072	LOW
Ноораі	HIGH	0.168052	1.2771	HODERATE	0.005473	0.7458	MODERATE
Hot Lake	LOW	0.093307	1.4479	MODERATE	0.001594	0.7864	LOW
Imbler	нісн	0.051715	1.8081	MODERATE	0.006991	0.6059	MODERATE
La Grande	LOW	0.006282	3.0950	LOW	0.001945	0.7621	LOW
Palouse	LOW	0.036923	2.0138	LOW	0.004432	0.6616	LOW
			RATING		1	RATING	
		LOW	MODERATE	HIGH	LOW	MODERATE	HIGH
		<= 0.05	0.05-0.17	>=0.17	<=0.005	0.005-0.015	>=0.015

RANGE OF TIME RANGE OF TIME 0.6209 years to 4.8334 years 0.4064 years to 1.2216 years

<= 0.05 0.05-0.17 >=0.17

The discrepancies for the other three soils could be explained by variations due to the using estimated input values, estimating the rating of risk, and inherent differences in the structure of the models. But overall, there is reasonably good agreement between the two models' results.

DISCUSSION

The soil properties model in this thesis was developed to determine the relative overall pesticide movement potential in Oregon agricultural soils. The model is based on soil properties important in pesticide movement. The intent is to identify soil areas that may be vulnerable to groundwater contamination by pesticides.

Several existing models each attempt to predict the potential for groundwater contamination. Some of these incorporate climatic, pesticide, and management factors in addition to soil factors. Some are large, complex computer programs requiring extensive, and very precise, input. The objective here was to develop a reliable, easy to use model, where the input values are easy to obtain and are from a single published source. To achieve this objective, many simplifications were required with regard to both the soil system and the whole environmental and management system surrounding pesticide applications. These simplifications of the model are discussed below.

The Oregon soil properties model characterizes a soil series as a relatively homogeneous system. This has limitations since soils vary considerably from point to point in their textural composition, structural properties and mineralogical constituents (Jury, 1986b). This can result in lateral and vertical variations of the parameters used in this soil properties model.

The presence of an impervious layer in the soil will decrease the rate of water movement downward, but may increase flow laterally. The pesticide could then be carried out to a surface water body, or may reach another soil without an impervious layer and continue its downward movement. In addition, an impervious layer may promote conditions of saturation above it. This would then increase the process of desorption, making more pesticide available for movement.

The modeling of the sorption process considers the organic matter content of the surface layer only. Some sorption will most likely take place below the surface horizon, particularly in soils that have organic matter accumulations to a considerable depth. This sorption was not estimated because of lack of data for subsurface organic matter contents.

The pH of the soil can affect the sorption of organic acids and bases. At high pH the dissociated anion of an organic acid has a higher water solubility and may be repulsed by the surface negative charge of the organic matter (decrease adsorption). At low pH some cationic species show increased adsorption through ion exchange (Chiou et al. 1979).

Biological activity of the soil affects the degradation of pesticides. A more active and larger population will degrade more pesticides, thereby reducing the amount available for transport. The biological activity in the soil was not incorporated in this thesis model.

The slope of the soil surface is also important when considering whether pesticides may move to groundwater. Soils with slopes greater than 20 percent are more likely to have runoff, which will decrease the amount of pesticide available for movement down through the soil. Lateral transport, however, may carry pesticides to soils in footslope positions, where leaching to groundwater might occur, or all the way to a surface water body.

The composition of the bedrock and aquifer are very important when considering the vulnerability of the groundwater resource. They both influence rate of leaching and amount of sorption. They are not considered in this thesis model below a depth of 60 inches.

The properties of the chemical are extremely important in controlling pesticide movement. A companion to this soil model is a model that rates a pesticide's leaching potential based on its Koc (partition coefficient for adsorbing onto organic matter), and half-life in soil. The soil model and pesticide model were developed together as part of a Water Quality Initiative project funded by the USDA - Extension Service. The result is a combined report entitled Pesticide Application Guidelines to Reduce Water Contamination in Oregon.((Reference Here)).

In addition to the physical and chemical properties of the pesticide, the management of pesticide application is also very important in controlling pesticide movement. The amount of chemical applied is one of the most important factors. The more pesticide applied, the more that is available for movement.

Timing of application with respect to rainfall or irrigation can influence the sorption of pesticides. Pesticides will sorb less on a wet soil than a dry soil because of the competition of the pesticide with water for binding sites.

Application method will control how much pesticide may be lost to volatilization. Aerially and above surface applied pesticides will have a greater amount lost to volatilization, and therefore less will be available for movement down through the soil.

Plant uptake is an important mechanism for removal of pesticides from soil. Pesticides applied to the land can be intercepted by growing vegetation so that a portion of the chemical enters the plant. The chemical will then undergo sorption, chemical transformations and degradation, as well as bioaccumulation in the plant

(Donigian and Rao, 1986). Unfortunately, there is very little quantitative information available to model organic chemical uptake. Plant uptake is not incorporated in this soil properties model.

Large computer modeling programs attempt to incorporate as many of the above variables as possible. But it is important to remember that many of the input values are probably estimates and the model itself is an estimate of the system. Increasing the complexity of a model does not necessarily increase the accuracy or precision of a model. A simple model, based on scientific principles and observations, can provide a quick but reliable assessment of areas of concern. Field sampling and then more complex modeling can then be used to quantify the degree of risk.

LITERATURE CITED

- Aller, L., T. Bennett, J.H. Lehr, and R.J. Petty. 1985.DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings. U.S. Environmental Protection Agency. Robert S. Kerr Environmental Research Laboratory. Ada, OK. EPA-600/2-85/018.
- Bailey, G.W. and J.L. White. 1970. Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Reviews 32:29-91.
- Brady, N.C. 1984. The Nature and Properties of Soils, Ninth Edition. Macmillan Publishing Co. New York, NY. 750 pp.
- Briggs, G.G. 1969. Molecular structure of herbicides and their sorption by soil. Nature 223:1288.
- Carsel, R.F., C.N. Smith, L.A. Mulkey, J.D. Dean, and P. Jowise. 1984. Users Manual for the Pesticide Root Zone Model (PRZM), Release 1. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.
- Chiou, C.T., L.J. Peters, and V.H. Freed. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831-832.
- Donigian, A.S., and P.S.C. Rao. 1986. Overview of terrestrial processes and modeling. pp 3-35. <u>In</u> Hern, S.C. and S.M. Melancon (eds.). Vadose Modeling of Organic Pollutants. Lewis Publishers, Inc. Chelsea, MI.
- Goss, D. 1989. Personal Communication. Two unpublished reports: Soil and Pesticide Information for Implementing Water Quality, and Pesticide Soil Interaction, Potentials for Loss. National Soil Survey Center, Soil Conservation Service, Lincoln, NE.
- Green, R.E. 1974. Pesticide-clay-water interactions. <u>In</u> Pesticides in Soil and Water. W.D. Guenzi (ed). Soil Science Society of America, Inc. Madison, WI.

- Hamaker, J.W. and J.M. Thompson. 1972. Adsorption. pp 49-143. <u>In</u> Goring, C.A.I. and J.W. Hamaker (eds.). Organic Chemicals in the Soil Environment. Volume 1. Marcel Dekker, Inc. New York, NY. pp 49-143.
- Haque, R. 1975. Role of adsorption in studying the dynamics of pesticides in a soil environment. pp 97-114. <u>In</u> Haque, R. and V.H. Freed (eds.). Environmental Dynamics of Pesticides. Plenum Press. New York, NY.
- Helling, C.S. and J. Dragun. 1981. Soil leaching tests for toxic organic chemicals. pp 43-88. <u>In</u> Test Protocols for Environmental Fate and Movement of Toxicants. Proceedings of a Symposium. Association of Official Analytical Chemists. Arlington, VA.
- Hillel, D. 1982. Introduction to Soil Physics. Academic Press, Inc. San Diego, CA. pp 5-17.
- Huddleston, J.H. 1982. Soils of Oregon: Summaries of Physical and Chemical Data. Oregon State University Extension Service Special Report 662. June 1982.
- Jury, W.A. 1984a. Behavior assessment model for trace organics in soil: II. chemical classification and parameter sensitivity. J. Environ. Qual. 13(4):567-572.
- Jury, W.A. 1984b. Behavior assessment model for trace organics in soil: III. application of a screening model. J. Environ. Qual. 13(4):573-579.
- Jury, W.A. 1986a. Chemical movement through soil. pp 135-158. <u>In</u> Hern, S.C. and S.M. Melancon (eds.). Vadose Modeling of Organic Pollutants. Lewis Publishers, Inc. Chelsea, MI.
- Jury, W.A. 1986b. Spatial variability of soil properties. pp 245-269. <u>In</u> Hern, S.C. and S.M. Melancon (eds.). Vadose Modeling of Organic Pollutants. Lewis Publishers, Inc. Chelsea, MI.
- Jury, W.A., D.D. Focht, and W.J. Farmer. 1987. Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16(4):422-428.

- Khan, S.U. 1980. Pesticides in the Soil Environment. Elsevier Scientific Publishing Co. New York, NY. 240 pgs.
- Koren, E., C.L. Foy, and F.M. Ashton. 1969. Adsorption, volatility, and migration of thiocarbamate herbicides in soil. Weed Science 17:148-153.
- Lambert, S.M., P.E. Porter, and R.H. Schieferstein. 1965. Movement and sorption of chemicals applied to the soil. Weeds 13:185-190.
- Leonard, R.A., W.G. Knisel, and D.A. Still. 1987. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Transactions of the ASAE. 30(5): September-October 1403-1418.
- McGrath, P.E. 1981. Development and use of models in the regulation of pesticides. pp 213. <u>In</u> Test Protocols for Environmental Fate and Movement of Toxicants. Proceedings of a Symposium. Association of Official Analytical Chemists. 94th Annual Meeting, October 21, 22, 1980. Washington, D.C.
- Moore, J.S. 1988. SEEPAGE: A System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments. Geological Technical Note No. 5. Soil Conservation Service, Northeast National Technical Center, Chester, PA.
- Mortland, M.M. 1980. Surface reactions of low-molecularweight organics with soil components. pp 67-72. <u>In</u> Agrochemicals in Soils. Banin, A. and U. Kafkafi (eds.). Pergamon Press. New York, NY.
- Nofziger, D.L. and A.G. Hornsby. 1985. Chemical Movement in Soil:IBM PC User's Guide. Computer Series. Florida Cooperative Extension Service. Institute of Food and Agricultural Sciences. University of Florida, Gainesville, FL.
- Parsons, D.W. and J.M. Witt. 1988. Pesticides in Groundwater in the United States of America. A Report of a 1988 Survey of State Lead Agencies. Oregon State University Extension Service. Corvallis, OR.
- Rinehold, J.W. and J.M. Witt. 1989. Oregon Pesticide Use Estimates of 1987. Oregon State University Extension Service. Corvallis, OR. 75 pp.

- SCS. 1983. National Soils Handbook, Part 603 Application of Soil Information. Soil Conservation Service, US Department of Agriculture, Washington, DC.
- Sutherland, A.W. and F.W. Madison. 1987. Soils of Barron County and their Ability to Attenuate Pollutants. Wisconsin Geological and Natural History Survey. Madison, WI.
- Wagenet, R.J. and J.L. Hutson. 1987. LEACHM Leaching estimation and chemistry model. Continuum 2, Water Resources Institute, Center for Environmental Research, Cornell University, Ithaca, NY.
- Wagenet, R.J. and P.S.C. Rao. 1985. Basic concepts of modeling pesticide fate in the crop root zone. Weed Science. Vol. 33 (Suppl. 2): 25-32.
- Weed, S.B. and J.B. Weber. 1974. Pesticide-organic matter interactions. <u>In</u> Pesticides in Soil and Water. W.D. Guenzi (ed). Soil Science Society of America, Inc. Madison, WI.

.

APPENDICES

APPENDIX A

SIMULATIONS WITH WILLAMETTE VALLEY SOILS

APPENDIX A. TABLE A-1

PERMEABILITY OF INDIVIDUAL SOIL LAYERS 111 111 RESTRICTIVE SCORE * TOTAL SOIL SERIES LAYER THICKNESS LAYER TYPE PERMEABILITY SCORE VALUE THICKNESS 111 RESULT ----- - - -294 Abiqua 0-21 21 0.6-2.0 6 126 111 0.2-0.6 21-54 33 4 132 0.6-2.0 36 111 54-60 6 6 |||0-8 8 0.6-2.0 48 |||256 Aloha 6 111 8-46 38 0.2-0.6 4 152 14 56 46-60 0.2-0.6 4 111 . Alspaugh 0-14 14 0.6-2.0 6 84 111 268 14-43 29 0.2-0.6 4 116 43-60 17 0.2-0.6 4 68 111 0.6-2.0 111 334 Amity 0-22 22 6 132 13 0.2-0.6 52 111 22-35 4 35-60 25 0.6-2.0 150 6 0.6-2.0 111 Apt 0-8 8 6 48 0.2-0.6 4 8-24 16 64 24-60 0.2-0.6 4 144 111 256 36 Ш Astoria 0-19 19 0.6-2.0 6 114 111 19-50 0.6-2.0 6 186 31 111 10 0.6-2.0 6 60 360 50-60

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	•••••			• • • • • • • • • • • • • • • • • • • •				
	1	PERMEABI	LITY OF INDIVIDUAL SO	IL LAYERS				
	1		RESTRICTIVE			SCORE *	111	TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Awbrig	0-7	7		0.6-2.0	6	42	111	
	7-29	22		<0.06	1	22	111	
	29-60	31		0.2-0.6	4	124	iii	188
Bandon	 0-17	17		0.6-2.0	6	102		
	17-30	13 wea	kly cemented hardpan	0.06-0.2	2	26	iii	
	30-60	30		2.0-6.0	8	240	iii	368
Bashaw	 0-14	14		<0.06	1	14		
	14-48	34	•	<0.06	1	34		
	48-60	12		<0.06	1	12	iii	60
Bellpine	 0-10	10		0.6-2.0	6	60		
	10-26	16		0.06-0.2	2	32	iii	
	26-60	34 par	t. weathrd sandstone	0.06-0.2	2	68	iii	160
Borges	 0-18	18		0.2-0.6	4	72		
	18-45	27		<0.06	1	27	111	
	45-60	15		0.2-0.6	4	60	III	159
Bornstedt	 0-8	8		0.6-2.0	6	48		
	8-33	25		0.6-2.0	6	150	111	
	33-60	27		0.06-0.2	2	54		252
Brallier	0-60	60		0.6-2.0	6	360		360

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	PERMEABI	LITY OF INDIVIDUAL RESTRICTIVE	SOIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	III	RESULT
	 I						111	
Brenner	0-7	7		0.6-2.0	6	42	HI	
	7-21	14		0.2-0.6	4	56	111	
	, 21-60	39		0.06-0.2	2	78	111	176
	i							
Briedwell	0-15	15		0.6-2.0	6	90		
	, 15-25	10		0.6-2.0	6	60	111	
	25-60	35		0.6-2.0	6	210	111	360
	i							
Bullrun	0-13	13		0.6-2.0	6	78	111	
	, 13-60	47		0.6-2.0	6	282	111	360
	i						111	
Burlington	0-12	12		2.0-6.0	8	96	111	
•	12-60	48		6.0-20	9	432	111	528
	i						- 111	
Camas	0-13	13		2.0-6.0	8	104	- 111	
	13-60	47		>20	10	470	111	574
							111	
Canderly	0-7	7		2.0-6.0	8	56	- III	
	7-46	39		2.0-6.0	8	312	- III	
	46-60	11		2.0-6.0	8	88	- III	456
		-					iii	
Carlton	0-12	12		0.6-2.0	6	72		
	12-42	30		0.2-0.6	4	120		
	1 42-60	18		0.2-0.6	4	72	111	264

ა წ

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

		PERMEABILITY O	SCORE *		TOTAL			
SOIL SERIES	LAYER TH	ICKNESS LA	YER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
	 I							
Cascade	0-8	8		0.6-2.0	6	48		
	8-27	19		0.6-2.0	6	114	111	
	27-60	33		0.06-0.2	2	66	111	228
							111	
Cazadero	0-21	21		0.6-2.0	6	126		
	21-60	39		0.2-0.6	4	156		282
	i						111	
Chapman		8		0.6-2.0	6	48		
	8-42	34		0.6-2.0	6	204	111	
	42-50	8		2.0-6.0	8	64		
	50-60	10		6.0-20	9	90		406
	i						111	
Chehalem	0-23	23		0.2-0.6	4	92	- 111	
	23-60	37		0.06-0.2	2	74		166
							111	
Chehalis	0-60	60		0.6-2.0	6	360	111	360
							111	
Chehulpum	0-4	4		0.6-2.0	6	24	111	
	4-12	8		0.6-2.0	6	48	111	
	1 12-60	48 semi-cons	ol. sandstone	0.6-2.0	6	288	111	360
							111	
Clackamas	, 0-15	15		0.6-2.0	6	90	111	
	1 15-24	9		0.2-0.6	4	36		
	24-60	36		0.2-0.6	4	144	111	270

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	 	PERMEABI	LITY OF INDIVIDUAL RESTRICTIVE	SOIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	iii	RESULT
	1							
Cloquato	0-12	12		0.6-2.0	6	72		
•	12-60	48		0.6-2.0	6	288	- İII	360
	i							
Coburg	0-18	18		0.6-2.0	6	108	III	
	18-53	35		0.2-0.6	4	140	111	
	53-60	7		2.0-6.0	8	56	111	304
	1						- 111	
Concord	0-15	15		0.6-2.0	6	90	111	
	15-29	14		0.06-0.2	2	28	111	
	29-60	31		0.2-0.6	4	124	111	242
	1						111	
Conser	0-9	9		0.6-2.0	6	54	111	
	9-41	32		0.06-0.2	2	64	111	
	41-60	19		0.6-2.0	6	114		232
	I							
Cornelius	0-17	17		0.6-2.0	6	102		
	17-38	21		0.6-2.0	6	126	111	
	38-60	22		0.06-0.2	2	44		272
	1							
Cottrell	0-24	24		0.6-2.0	6	144	- 111	
	24-55	31		0.2-0.6	4	124	111	
	55-60	5		0.2-0.6	4	20		288
	l						111	
Courtney	0-12	12		0.2-0.6	4	48	H	

•••••								
	1	PERMEABILIT	Y OF INDIVIDUAL	SOIL LAYERS		+		
			RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER THI	CKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	INICKNESS		RESULT
	12-24	12		<0.06	1	12	111	
	24-49	25		0.2-0.6	4	100	- iii	
	. 49-60	11		6.0-20	9	99	iii	259
							111	
Cove	0-8	8		0.2-0.6	4	32	111	
	8-60	52		<0.06	1	52	111	84
	1						- 111	
Crims	0-9	9		0.6-2.0	6	54	111	
	9-40	31		0.6-2.0	6	186		
	40-60	20		0.6-2.0	6	120		360
	I							
Cumley	0-9	9		0.6-2.0	6	54		
	9-60	51		0.2-0.6	4	204	111	258
	1						- 111	
Dabney	0-15	15		6.0-20	9	135	- 141	
	15-60	45		6.0-20	9	405	111	540
	1							
Dayton	0-15	15		0.6-2.0	6	90	- 111	
	15-40	25		<0.06	1	25	HI	
	40-60	20		0.6-2.0	6	120	HI	235
	1						- 111	
Dixonville	0-4	4		0.6-2.0	6	24	111	
	4-34	30		0.06-0.2	2	60		
	34-60	26 vargto	i saprolite	0.6-2.0	6	156		240
	1	semico	onsol. bedrock				111	

.

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

		PERMEABILITY	OF INDIVIDUAL SO	IL LAYERS				
	1		RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Dupee	0-15	15		0.6-2.0	6	90	111	
	15-40	25		0.2-0.6	4	100	111	
	40-60 	20 part. W	thrd. sandstone	0.06-0.2	2	40		23
Eilertsen	0-17	17		0.6-2.0	6	102		
	17-49	32		0.6-2.0	6	192	111	
	46-60 	14		0.6-2.0	6	84		37
Faloma	0-10	10		0.6-2.0	6	60	111	
	10-15	5		0.6-2.0	6	30		
	15-60	45		6.0-20	9	405		49
Gapcot	0-10	10		2.0-6.0	8	80	III	
	10-15	5		0.6-2.0	6	30	111	
	15-60	45 frctrd.	. sandstone	0.6-2.0	6	270		31
Goble	0-14	14		0.6-2.0	6	84	111	
	14-37	23		0.6-2.0	6	138	111	
	37-60 	23		0.06-0.2	2	46		20
Grande Ronde	0-6	6		0.2-0.6	4	24	111	
	6-24	18		0.06-0.2	2	36		
	24-60 	36		0.06-0.2	2	72		13
Hardscrabble	0-8	8		0.6-2.0	6	48	iii	

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	PERMEABI	LITY OF INDIVIDUAL SO RESTRICTIVE	DIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
	8-14	6		0.6-2.0	6	36	111	
	14-60	46		<0.06	1	46		130
Hazelair	0-11	11		0.6-2.0	6	66	iii	
	11-18	7		0.2-0.6	4	28	111	
	18-30	12		<0.06	1	12		
	30-60	30 san	dstone & siltstone	0.6-2.0	6.	180		286
Helmick	0-10	10		0.6-2.0	6	60	111	
	10-16	6		0.06-0.2	2	12	111	
	16-60 	44		<0.06	1	44		116
Helvetia	0-5	5		0.6-2.0	6	30	111	
	5-10	5		0.6-2.0	6	30		
	10-48	38		0.2-0.6	4	152	- 111	
	48-60	12		0.2-0.6	4	48		260
Hillsboro	0-48	48		0.6-2.0	6	288	111	
	48-57	9		2.0-6.0	8	72	111	
	57-60	3		6.0-20	9	27		387
Holcomb	0-18	18		0.6-2.0	6	108		
	18-24	6		0.6-2.0	6	36	- III	
	24-50	26		<0.06	1	26		
	50-60	10		0.06-0.2	2	20	III	190

.

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	PERMEABI		111				
	i		RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER TH	CKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
							111	
Honeygrove	0-12	12		0.6-2.0	6	72	111	
	12-60	48		0.2-0.6	4	192	111	264
	1							
Hullt	0-15	15		0.6-2.0	6	90	111	
	15-55	40		0.6-2.0	6	240		
	55-60	5 wet	hrd. sandstone	0.06-0.2	2	10	111	340
	1						111	
Jimbo	0-14	14		2.0-6.0	8	112		
	14-43	29		2.0-6.0	8	232	111	
	43-60	17		>20	10	170	H	514
	I						111	
Jory	0-16	16		0.6-2.0	6	96		
	16-60	44		0.2-0.6	4.	176	111	272
	1						111	
Kinney	0-10	10		0.6-2.0	6	60	111	
	10-40	30		0.6-2.0	6	180		
	40-53	13		0.6-2.0	6	78		
	53-60	7 prt	. wthrd. ign. aglor	nte. 0.06-0.2	2	14	111	332
							111	
Kinton	0-10	10		0.6-2.0	6	60	111	
	10-39	29		0.6-2.0	6	174	111	
	39-60	21		0.06-0.2	2	42		276
Knappa	0-14	14		0.6-2.0	6	84		

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

		PERMEABII	.ITY OF INDIVIDUAL RESTRICTIVE	SOIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER	THICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	iii	RESULT
	14-60	46		0.6-2.0	6	276		360
Labish	 0-16	16		0.06-0.2	2	32		
	16-60	44		0.06-0.2	2	88	iii	120
Latourell	 0-9	9		0.6-2.0	6	54		
	9-56	47		0.6-2.0	6	282	HI	
	56-60	4		2.0-6.0	8	32		368
Laurelwood	0-11	11		0.6-2.0	6	66		
	11-52	41		0.6-2.0	6	246	111	
	52-60	8		0.2-0.6	4	32		344
Linslaw	0-16	16		0.6-2.0	6	96		
	16-42	26		0.06-0.2	2	52	111	
	42-56	14		0.06-0.2	2	28	111	
	56-60 	4		0.6-2.0	6	24		200
Lint	0-16	16		2.0-6.0	8	128	iii	
	16-60	44		0.6-2.0	6	264		392
Malabon	0-12	12		0.6-2.0	6	72		
	12-42	30		0.2-0.6	4	120	111	
	42-60 	18		0.6-2.0	6	108		300

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	SCORE *		TOTAL				
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Marcola	0-15	15		0.6-2.0	6	90	111	
	15-60	45		0.06-0.2	2	90		180
McAlpin	0-23	23		0.6-2.0	6	138		
	23-60	37		0.2-0.6	4	148		286
Мсвее	 0-10	10		0.6-2.0	6	60		
	10-42	32		0.6-2.0	6	192	111	
	42-60	18		0.6-2.0	6	108		360
McCully	0-10	10		0.6-2.0	6	60		
	10-57	47		0.2-0.6	4	188	111	
	57-60	3	weathrd bdrck	0.06-0.2	2	6		254
McNulty	0-9	9		0.6-2.0	6	54		
	9-32	23		0.6-2.0	6	138		
	32-60	28		0.6-2.0	6	168		360
Meda	0-10	10		0.6-2.0	6	60	İİİ	
	10-32	22		0.6-2.0	6	132	- iii	
	32-60 	28		6.0-20	6	168		360
Melbourne	, 0-13	13		0.6-2.0	6	78	iii	
	13-34	21		0.6-2.0	6	126	III	
	34-47	13		0.2-0.6	4	52		
	l	PERMEABII	LITY OF INDIVIDUAL SO	IL LAYERS		SCORE *		TOTAL
-------------	-------------	-----------	-----------------------	--------------	-------------	-----------	-------	--------
SOIL SERIES	I LAYER TH	I CKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
	47-60	13		0.2-0.6	4	52		308
Mershon	 0-15	15		0.6-2.0	6	90		
	15-56	41		0.2-0.6	4	164	- iii	
	56-60	4		0.2-0.6	4	16		270
Moag	l 0-10	10		0.2-0.6	4	40		
	10-60	50		0.06-0.2	2	100		140
Molalla	0-5	5		2.0-6.0	. 8	40		
	5-13	8		2.0-6.0	8	64	İİİ	
	13-44	31		0.6-2.0	6	186	Ш	
	44-60	16	wthrd tuff. rock	0.06-0.2	2	32		322
Multnomah	I 0-8	8		0.6-2.0	6	48		
	8-39	31		0.6-2.0	6	186	111	
	39-60 	21		6.0-20	9	189		423
Natal	0-9	9		0.2-0.6	4	36	111	
	9-60	51		0.06-0.2	2	102		138
Natroy	0-5	5		0.06-0.2	2	10		
	5-57	52		<0.06	1	52	111	
	57-60	3		<0.06	1	3		65

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	PERMEABII	LITY OF INDIVIDUAL S RESTRICTIVE	OIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER THI	CKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Nehalem	0-17	17		0.6-2.0	6	102	111	
	17-37	20		0.6-2.0	6	120	111	
	37-60	23		0.2-0.6	4	92		314
Nekia	0-9	9		0.2-0.6	4	36		
	9-36	27		0.2-0.6	4	108		
	36-60 	24	frctrd. bdrck	0.6-2.0	6	144		288
Nekoma	0-11	11		0.6-2.0	6	66		
	, 11-20	9		2.0-6.0	8	72	111	
	20-60 	40		6.0-20	9	360		498
Neskowin	0-12	12		0.6-2.0	6	72		
	12-27	15		0.6-2.0	6	90	111	162
	27-60	33	igneous rock					
Nestucca	0-14	14		0.6-2.0	6	84	- III	
	14-41	27		0.2-0.6	4	108		
	41-60	19		0.06-0.6	2	38		230
Netarts	0-6	6		6-20	9	54	111	
	6-47	41		2.0-6.0	8	328	111	
	47-60	13		6.0-20	9	117		499
Newberg	0-28	28		2.0-6.0	8	224	III	

•••••								
SOIL SERIES	 LAYER TH	PERMEABII	.ITY OF INDIVIDUAL S RESTRICTIVE LAYER TYPE	OIL LAYERS PERMEABILITY	SCORE VALUE	SCORE * THICKNESS		TOTAL RESULT
	28-60	32		6.0-20	9	288	111	512
Noti	 0-9	9		0.6-2.0	6	54		
	9-34	25		0.6-2.0	6	150	iii	
	34-44	10		2.0-6.0	8	80	iii	
	44-60	16		0.06-0.2	2	32	iii	316
	1						ш	
Oxlev	i 0-17	17		0.6-2.0	6	102		
	17-23	6		0.2-0.6	4	24	iii	
	23-41	18		0.2-0.6	4	72	iii	
	41-60	19		2.0-6.0	8	152	HI	350
	i						111	
Panther	0-14	14		0.2-0.6	4	56		
	14-60	46		<0.06	1	46	111	102
	i						iii	
Peavine	0-10	10		0.2-0.6	4	40	İİİ	
	10-36	26		0.2-0.6	4	104	İİİ	
	36-60	24	Cr1&Cr2-shale	0.06-0.2	2	48	İİİ	192
	i		(fractured)					
Pengra	0-6	6		0.2-0.6	4	24		
	6-21	15		0.2-0.6	4	60	111	
	21-60	39		<0.06	1	39		123
Philomath	0-9	9		0.6-2.0	6	54	111	
	9-18	9		0.06-0.2	2	18		

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

								· · · · · · · · · · · · · · · · · · ·
5011 SEDIES		PERMEABII	LITY OF INDIVIDUAL SO RESTRICTIVE			SCORE *		TOTAL
SUIL SERIES	LAIEK		LAIER FE		SCORE VALUE			
	18-60 	42	wthrd semiconsl b	dr0.06-0.2	2	84		156
Pilchuck	0-20	20		6.0-20	9	180	111	
	20-38	18		6.0-20	9	162	111	
	38-60	22		>20	10	220		562
Powell	0-8	8		0.6-2.0	6	48	111	
	8-16	8		0.6-2.0	6	48		
	16-60 	44		0.06-0.2	2	88		184
Preacher	0-14	14		2.0-6.0	8	112	111	
	14-42	28		0.6-2.0	6	168		
	42-60 	18		2.0-6.0	8	144		424
Price	0-5	5		0.6-2.0	6	30		
	5-50	45		0.2-0.6	4	180		
	50-60	10	prt wthrd basalt	>20	10	100		310
Quafeno	0-16	16		0.6-2.0	6	96	111	
	16-36	20		0.2-0.6	4	80	111	
	36-60	24		2.0-6.0	8	192		368
Quatama	0-15	15		0.6-2.0	6	90	111	
	15-30	15		0.2-0.6	4	60		
	30-60	30		0.2-0.6	4	120		270

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

								•••••
	I	PERMEABI	LITY OF INDIVIDUAL S	SOIL LAYERS				
	I		RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
							111	
Rafton	0-9	9		0.6-2.0	6	54	- III	
	9-40	31		0.2-0.6	4	124		
	40-60	20		0.6-2.0	6	120	III	298
	Ì							
Rickreall	0-5	5		0.6-2.0	6	30		
	5-17	12		0.06-0.2	2	24	111	
	17-60	43		0.06-0.2	2	86	111	140
	1						111	
Ritner	0-15	15		0.6-2.0	6	90	- 111	
	15-24	9		0.2-0.6	4	36		
	24-38	14		0.2-0.6	4	56	111	
	38-60	22	frctrd bdrck	0.6-2.0	6	132		314
	1						111	
Salem	0-9	9		0.6-2.0	6	54	- 111	
	9-30	21		0.6-2.0	6	126		
	30-60	30		>20	10	300	111	480
	1							
Salkum	0-19	19		0.6-2.0	6	114		
	19-27	8		0.06-0.2	2	16	111	
	27-60	33		0.2-0.6	4	132	111	262
							111	
Santiam	0-13	13		0.6-2.0	6	78		
	13-30	17		0.2-0.6	4	68		
	30-60	30		0.06-0.2	2	60		206

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

CALCULATION OF	THE SOI	PERMEABILITY	FOR	WILLAMETTE	VALLEY	SOILS	
-							

	1	PERMEABI	LITY OF INDIVIDUAL	SOIL LAYERS				
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
••••								
Saturn	0-10	10		0.6-2.0	6	60		
	10-32	22		0.6-2.0	6	132	iii	
	, 32-60	28		6.0-20	9	252	iii	444
	l.						111	
Saum	0-8	8		0.6-2.0	6	48		
	8-23	15		0.6-2.0	6	90		
	23-50	27		0.2-0.6	4	108	111	
	50-60	10	basalt	>20	10	100	111	346
	1							
Sauvie	0-15	15		0.2-0.6	4	60		
	15-39	24		0.2-0.6	4	96		
	39-60	21		2.0-6.0	8	168		324
0		17		0 () 0	4	70		
Sawtell		15		0.6-2.0	0	78		
	13-43	50		0.8-2.0	0	180		
	43-60	17		0.2-0.6	4	80		320
Semiahmoo	0-53	53		0.2-0.6	4	212		
	53-60	7		0.2-0.6	4	28	iii	240
	1						111	
Sifton	0-21	21		2.0-6.0	8	168		
	21-30	9		6.0-20	9	81	III	
	30-60	30		>20	10	300	III	549
							111	

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

	1	PERMEABII	LITY OF INDIVIDUAL SO	IL LAYERS				
COLL SERIES		TONNESS	RESTRICTIVE		SCORE VALUE	SCORE *		
SUIL SERIES		IUNNE33	LATER TIPE	PERMEABILIII	SLORE VALUE	181CKNE33		RESULT
Silverton	0-16	16		0.6-2.0	6	96	111	
	16-25	9		0.2-0.6	4	36		
	25-37	12		0.06-0.2	2	24	111	
	37-60	23	frct&prt wthrd bd	rk0.06-0.2	2	46		202
Springwater	 0-7	7		2.0-6.0	8	56		
	7-37	30		0.6-2.0	6	180	İİİ	
	37-60	23	sandstone	0.6-2.0	6	138		374
Stayton	0-12	12		0.6-2.0	6	72	iii	
	12-19	7		0.6-2.0	6	42	iii	
	19-60	41	consol basalt	>20	10	410		524
Steiwer	0-6	6		0.6-2.0	6	36		
	6-27	21		0.2-0.6	4	84	111	
	27-60	33	prt wthrd shle sn	ds0.6-2.0	6	198		318
Suver	0-11	11		0.6-2.0	6	66	iii	
	11-42	31		<0.06	1	31	111	
	42-60	18	wthrd sed bedrck	0.06-0.2	2	36		133
Treharne	0-15	15		0.6-2.0	6	90	iII	
	15-41	26		0.6-2.0	6	156		
	41-60 	19		0.2-0.6	4	76		322

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

		PERMEABI	LITY OF INDIVIDUAL RESTRICTIVE	SOIL LAYERS		SCORE *		TOTAL
SOIL SERIES	I LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	iii	RESULT
Veneta	0-14	14		0.6-2.0	6	84		
	14-39	25		0.06-0.2	2	50	111	
	39-60	21		<0.06	1	21	111	155
Verboort		19		0.2-0.6	4	76		
	19-33	14		<0.06	1	14	111	
	33-60	27		0.06-0.2	2	54		144
Waldo	0-10	10		0.6-2.0	6	60	iii	
	10-60	50		0.06-0.2	2	100		160
Wapato	 0-16	16		0.2-0.6	4	64		
• •	16-32	16		0.2-0.6	4	64	111	
	32-60	28		0.2-0.6	4	112		240
Vauna	 0-8	8		0.6-2.0	6	48		
	1 8-26	18		0.2-0.6	4	72	- iii	
	26-60	34		0.2-0.6	4	136		256
Whiteson	I 0-11	11		0.6-2.0	6	66	iii	
	, 11-15	4		0.2-0.6	4	16	111	
	15-43	28		<0.06	1	28	- 111	
	43-60	17		0.2-0.6	4	68		178
Willakenzie	0-12	12		0.2-0.6	4	48		

						•••••		•••••
	1	PERMEABIL	ITY OF INDIVIDUAL SOI	L LAYERS				
	1		RESTRICTIVE			SCORE *	111	TOTAL
SOIL SERIES	LAYER TH	ICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
	12-36	24		0.2-0.6	4	96	111	
	36-60	24	frcturd siltstone	0.6-2.0	6	144		288
Willamette	 0-24	24		0.6-2.0	6	144		
	24-53	29		0.6-2.0	6	174	111	
	53-60	7		0.6-2.0	6	42	III	360
Willanch		13		2 0-6.0	8	104		
WICCOLOR	13-35	22		2.0-6.0	8	176	111	
	35-60	25		2.0-6.0	8	200		480
	I				_			
Winchuck	0-18	18		0.6-2.0	6	108		
	18-46	28		0.2-0.6	4	112		
	46-60	14		0.2-0.6	4	56		276
Witham	0-4	4		0.2-0.6	4	16		
	4-60	56		<0.06	1	56		72
Witzel	0-4	4		0.6-2.0	6	24		
	4-19	15		0.2-0.6	4	60	- HI	
	19-60	41	prtly wthrd basal	t >20	10	410	111	494
Wollent	0-10	10		0.6-2.0	6	60		
	10-60 	50		0.2-0.6	4	200		260

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

			PERMEABIL	ITY OF INDIVIDUAL SOIL RESTRICTIVE	L LAYERS		SCORE *		TOTAL
SOIL SERIES	i	LAYER	THICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
 Woodburn	 ا	0-32	32		0.6-2.0	6	192	111	
	i	32-60	28		0.06-0.2	2	56	111	248
	- i							111	
Yamhill	i	0-16	16		0.6-2.0	6	9 6	111	
	i	16-24	8		0.2-0.6	4	32	111	
	i	24-39	15		0.2-0.6	4	60	111	
	i	39-60	21	prt wthrd frc bslt	>20	10	210		398

CALCULATION OF THE SOIL PERMEABILITY FOR WILLAMETTE VALLEY SOILS

SOIL SERIES	SCORE PERMEABILIT TIMES THICKNESS	IES		 LEACHING
I	OF LAYERS	SCORE	DRAINAGE CLASS	POTENTIAL
Abiqua	294	5	Well	LOW
Aloha	256	4	Somewhat poorly	MODERATE
Alspaugh	268	4	Well	LOW
Amity	334	6	Somewhat poorly	MODERATE
Apt	256	4	Well	LOW
Astoria	360	6	Well	MODERATE
Awbrig	188	3	Poorly	MODERATE
Bandon	368	6	Well	MODERATE
Bashaw	60	1	Poorly	LOW
Bellpine	160 	2	Well	VERY LOW
Borges	159	2	Poorly	LOW
Bornstedt	252	4 	Moderately well	LOW
Brallier	360 	6	Very poorly	HIGH
Brenner	176 	3	Poorly	MODERATE
Briedwell	360 	6 	Well	MODERATE
Bull run	360 	6 	Well	MODERATE
Burlington	528 	9 	Somewhat excessively	VERY HIGH
Camas	574 	10 	Excessively	VERY HIGH
Canderly	456 	8	Somewhat excessively	VERY HIGH
Carlton	264 	4 	Moderately well	MODERATE
Cascade	228 	4	Somewhat poorly	MODERATE
Cazadero	282	5	Well	LOW
Chapman	406	7	Well	MODERATE

SOIL SERIES	SCORE PERMEABILIT TIMES THICKNESS OF LAYERS	IES 	 DRAINAGE CLASS	 LEACHING POTENTIAL
Chehalem	166	2	Somewhat poorly	LOW
Chehalis	360	6	Well	MODERATE
Chehulpum	360	6	Well	MODERATE
Clackamas	270	4	Somewhat poorly	I MODERATE
Cloquato	360	6	Weli	I MODERATE
Coburg	304	5	Moderately well	I MODERATE
Concord	242	4	Poorly	MODERATE
Conser	232	4	Poorly	I MODERATE
Cornelius	272	4	Moderately weli	I MODERATE
Cottrell	288	5	Moderately well [MODERATE
Courtney	259	4	Poorly	MODERATE
Cove	84	1	Poorly	 LOW
Crims	360	6	Very poorty	I HIGH
Cumley	258	4	Moderately well	I MODERATE
Dabney	 540	10	 Somewhat excessively	 VERY HIGH
Dayton	235	4	Poorly	MODERATE
Dixonville	 240	4	Wett	ILOW
Dupee	230	4	Moderately well	MODERATE
Eilersten	 378	6	Well j	MODERATE
Faloma	 495	9	Poorly	I VERY HIGH
Gapcot	 380	6	Well	MODERATE
Goble	 268	4	Moderately well	MODERATE
Grande Ronde	 132	2	i Somewhat poorly	I LOW

SOIL SERIES	SCORE PERMEABILI TIMES THICKNESS OF LAYERS	TIES	DRAINAGE CLASS	 LEACHING POTENTIAL
Hardscrabble	130	2	Somewhat poorly	LOW
Hazelair	286	4	 Mod.well - sm. poorly	 MODERATE
Helmick	 116	2	 Somewaht poorly	 LOW
Helvetia	 260	4	i Moderately well	MODERATE
Hillsboro	387	7	 Well	 MODERATE
Holcomb	 190	3	 Somewhat poorly	 LOW
Honeygrove	264	4	 Well	 LOW
Hullt	340	6	 Well	 MODERATE
Jimbo	 514	9	 Well	HIGH
Jory	 272	4) Well	 LOW
Kinney	332	6	 Well	 MODERATE
Kinton	276	5	 Moderately well	 MODERATE
Knappa	360	6	 Well	 MODERATE
Labish	 120	2	 Poorly	 LOW
Latourell	 368	6	 Well	 MODERATE
Laurelwood	344	6	Well	MODERATE
Linslaw	 200	3	Somewhat poorly	 LOW
Lint	392	7	l Well	 MODERATE
Malabon	300	5	Well	II II LOW
Marcola	 180	3	 Moderately well	 LOW
McAlpin	286	5	Moderately well	 MODERATE
Мсвее	 360	3	 Moderately well	 LOW
McCully	 254	4	 Well	 LOW

SOIL SERIES	SCORE PERMEABILIT TIMES THICKNESS OF LAYERS	IES	 DRAINAGE CLASS	 LEACHING POTENTIAL
McNulty	360	6	Well	MODERATE
Meda	 360	6	 Well	 MODERATE
Melbourne	 308	5	Well	II LOW
Mershon	270	4	Moderately well	II MODERATE
Moag	140	2	Very poorly	II LOW
Molalla	322	5	 Well	 LOW
Multnomah	423	7	 Well	 MODERATE
Natal	 138	2	 Poorly	 LOW
Natroy	65	1	Poorly	II LOW
Nehalem	 314	5	Well	 LOW
Nekia	288	5	i Well	 LOW
Nekoma	498	9	 Well	 HIGH
Neskowin	 162	2	 Well	 VERY LOW
Nestucca	230	4	 Somewhat poorly	 MODERATE
Netarts	 499	9	Well	 HIGH
Newberg	512	9	 Somewhat excessively	 VERY HIGH
Noti	316	5	Poorly	 MODERATE
Oxley	350	6	 Somewhat poorly	 MODERATE
Panther	 102	1	 Poorly	 LOW
Peavine	 192	3	 Well	 VERY LOW
Pengra	 123	2	Somewhat poorly	 LOW
Philomath	 156	2	Well	 VERY LOW
Pilchuck	 562	10	 Somewhat excessively	 VERY HIGH

SOIL SERIES	SCORE PERMEABILIT TIMES THICKNESS	IES		 LEACHING
	OF LAYERS	SCORE	DRAINAGE CLASS	POTENTIAL
Powell	184	3	Somewhat poorly	LOW
Preacher	424	7	Well	MODERATE
Price	310	5	Well	LOW
Quafeno	368 	6	Moderately well	MODERATE
Quatama	270	4	Moderately well	MODERATE
Rafton	298 	5	Very poorly	HIGH
Rickreall	140 	2	Well	VERY LOW
Ritner	314 	5	Well	LOW
Salem	480 	8	Well	HIGH
Salkum	262	4	Well	LOW
Santium	206 	3	Moderately well	LOW
Saturn	444 	8	Well	HIGH
Saum	346 	6	Well	MODERATE
Sauvie	324 	5	Poorly	MODERATE
Sawtell	326 	5	Moderately well	MODERATE
Semiahmoo	240	4	Very poorly	MODERATE
Sifton	, 549 	10	Somewhat excessively	VERY HIGH
Silverton	202	3	Well	VERY LOW
Springwater	374	6	Well	MODERATE
Stayton	524	9 	Well	HIGH
Steiwer	, 318 	5 	Well	LOW
Suver	133 	2	Somewhat poorly	LOW
Treharne	322	5	Moderately well	MODERATE

DIL SERIES	SCORE PERMEABILITT	SCORE	DRAINAGE CLASS	LEACHING POTENTIAL
eneta	155	2	Moderately well	LOW
erboort	144	2	Poorly	LI LOW
ildo	160	2	Poorly	LOW
pata	240	4	Poorly	HODERATE
una	256	4	Poorly	MODERATE
niteson	178	3	Somewhat poorly	LOW
llakenzie	288	5	Well	LOW
llamette	360	6	Well	MODERATE
llanch	480	8	Poorly	VERY HIG
inchuck	276	5	Well	II LOW
itham	 72	1	Somewhat poorly	LOW
itzel	494	9	Well	 HIGH
ollent	260	4	 Poorly	II MODERATE
oodburn	 248	4	 Moderately well	II MODERATE
	1 308	7	 	II HODERATE

.

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Abiqua	4.5	21	94.5
Aloha	2.5	8	20
Alspaugh	6	14	84
Amity	4	16	64
Apt	6	8	48
Astoria	7.5	19	142.5
Awbrig	3.5	7	24.5
Bandon	2	3	6
Bashaw	6	31	186
Bellpine	 4.5	6	27
Borges	 3	1 12	36
Bornstedt	3.5	8	28
Brallier	60	60	3600
Brenner	7.5	13	97.5
Briedwell	4	15 	60
Bull run	8 8	7	, 56
Burlington	 3 	12	36
Camas	2	10	20
Canderly	5	15 	75
Carlton	3.5	12 	42
Cascade	5.5	8	44
Cazadero	3.5	12	42
Chapman	4	14	56

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH

.

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Chehalem	3.5	23	80.5
Chehalis	7.5	12	90
Chehulpum	4	12	48
Clackamas	3.5	15	52.5
Cloquato	7.5	40	300
Coburg	5	1 18	90
Concord	3	6	18
Conser	6	9	54
Cornelius	3	6	18
Cottrell	3.5	15	52.5
Courtney	4	 12	48
Cove	6	8	48
Crims	10	20	200
Cumley	5	9	45
Dabney	6	15	90
Dayton	2.5	9	22.5
Dixonville	4.5	12	54
Dupee	2.5	9	22.5
Eilersten	3.5	17	59.5
Faloma	4	 10	40
Gapcot	3.5	 10	35
Goble	6	14	84
Grande Ronde	1.5	6	9

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Hardscrabble	5	8	40
Hazelair	3	 11	33
Helmick	3	10	30
Helvetia	3	10	30
Hillsboro	3.5	15 	52.5
Holcomb	4	18 18	72
Honeygrove	6.5	12 	78
Hullt	4.5	15 	67.5
Jimbo	5.5	1 14	77
Jory	4.5	19 1	85.5
Kinney	6	 10	60
Kinton	3.5	10 	35
Knappa	10	14	140
Labish	16 	1 16	256
Latourell	2.5	 16 	40
Laurelwood	3 3	1 11	33
Linslaw	3 	16 	i 48
Lint	12.5	16	200
Malabon	5	12 	60
Marcola	 5	1 15 1	75
McAlpin	4.5	14	63
МсВее	 5	10	50
McCully	9.5	l 10	95

.

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
McNulty	2	9	18
Meda	2	10	20
Melbourne	5.5	8	44
Mershon	3.5	15	52.5
Moag	2	10	20
Molalla	5	13	65
Multnomah	5	8	40
Natal	3	9	27
Natroy	 4.5	26	117
Nehalem	7.5	17	127.5
Nekia	 5.5	9	49.5
Nekoma	 6	l 11	66
Neskowin	 10	12	120
Nestucca	 6	14	84
Netarts	 6	6	36
Newberg	3	19	57
Noti	 5	9	1 45
Oxley	4	23	92
Panther	 4	14	56
Peavine	6	10	 60
Pengra	 5	6	 30
Philomath	3	18	54
Pilchuck	1.5	 20	30

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Powell	5	8	40
Preacher	6.5	14	91
Price	3.5	5	17.5
Quafeno	2.5	16	40
Quatama	1.5	9	13.5
Rafton	2	9	18
Rickreall	2.5	5	12.5
Ritner	3	5	i 15
Salem	5	9	45
Salkum	4	14	56
Santium	2.5	13	32.5
Saturn	7	10	70
Saum	3	14	 42
Sauvie	3	 15	45
Sawtell	3	 13	39
Semiahmoo	45	l 22	99 0
Sifton	7.5	 16	120
Silverton	3	 16	48
Springwater	5	l 15	75
Stayton	6.5	i 15	97.5
Steiwer	3.5	6	21
Suver	2.5	 11	 27.5
Treharne	 1.5	29	43.5

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Veneta	3	14	42
Verboort	7	12	84
Waldo	6	10	60
Wapata	6	16	96
Wauna	3	8	24
Whiteson	6	11	66
Willakenzie	4.5	4	18
Willamette	4	24	96
Willanch	3.5	13	 45.5
Winchuck	6	8	48
Witham	5	4	20
Witzel	 2.5	4	 10
Wollent	 2.5	10	25
Woodburn	4	17	68
Yamhill	4.5	 7	 31.5

.

SOIL SERIES	SURFACE	TEXTURE Class	 Scor e	RESULT OF SUR ORGANIC MATTE * DEPTH So	RFACE R core	SORPTION POTENTIAL
Abiqua	sicl	mod. fine	2	94.5	2	HIGH
Aloha	sil	medium	3	20	6	MODERATE
Alspaugh	cl	mod. fine	2	84	2	I HIGH I
Amity	sil	medium	3	64	2	I HIGH
Apt	с	fine	1	48	4	I HIGH I
Astoria	sicl	mod. fine	2	142.5	1	I VERY HIGH
Awbrig	sicl	mod. fine	2	24.5	6	I MODERATE
Bandon	sl	mod. coarse	4	6	10	VERY LOW
Bashaw	c	fine	1	186	1	I VERY HIGH
Bellpine	sicl	mod. fine	2	27	4	HIGH
Borges	sicl	mod. fine	2	36	4	I HIGH
Bornstedt	sil	medium	3	28	4	 HIGH
Brallier	peat	fine	1	 36 00	1	I VERY HIGH
Brenner	sil	medium	3	97.5	2	I HIGH I
Briedwell	sil	medium	3	60 	2) HIGH
Bullrun	sil	medium	3	 56 	2	I HIGH I
Burlington	fsl	mod. coarse	4	36 	4	MODERATE
Camas	grav. sl	mod. coarse + 1	5) 20	6	 LOW
Canderly	sl	mod. coarse	4	75 	2	MODERATE
Carlton	sil	medium	3	42	4	HIGH
Cascade	sil	medium	3	i 44	4	HIGH
Cazadero	sicl	mod. fine	2	42	4	HIGH
Chapman	l l	medium	3	i 56	2	 HIGH

APPENDIX /	. TABLE A-4	(Continued)

SOIL SERIES	SURFACE	TEXTURE Class	 	RESULT OF SUR ORGANIC MATTE * DEPTH SC	FACE R ore	 SORPTION POTENTIAL
Chehalem	sicl	mod. fine	2	80.5	2	HIGH
Chehalis	sil	medium	3	90	2	HIGH
Chehulpum	sil	medium	3	48	4	 HIGH
Clackamas	grav. l	medium + 1	4	52.5	2	MODERATE
Cloquato	sil	medium	3	300	1	VERY HIGH
Coburg	sicl	mod. fine	2	90	2	HIGH
Concord	sil	medium	3	18	6	MODERATE
Conser	sicl	mod. fine	2	54	2	1 HIGH
Cornelius	sil	medium	3	18	6	I MODERATE
Cottrell	sicl	mod. fine	2	52.5	2	I HIGH
Courtney	grav. sic	l mod. fine + 1	3	48	4	і нісн
Cove	sicl	mod. fine	2	48	4	HIGH
Crims	peat	fine	1	200	1	VERY HIGH
Cumley	sicl	fine	1	45	4	I HIGH I
Dabney	ls	coarse	5	90	2	I MODERATE
Dayton	sil	medium	3	22.5	6	MODERATE
Dixonville	sic	fine	1	54	2	VERY HIGH
Dupee	sil	medium	3	22.5	6	MODERATE
Eilersten	sil	medium	3	59.5	2	HIGH
Faloma	sil	medium	3	40	4	HIGH
Gapcot	grav.l	medium + 1	4	35	4	MODERATE
Goble	sil	medium	3	84	2	HIGH
Grande Ronde	sicl	mod. fine	2	9	8	I MODERATE

 SOIL SERIES 	SURFACE	TEXTURE Class	 	RESULT OF SURF ORGANIC MATTER * DEPTH Sco	ACE 	SORPTION POTENTIAL
Hardscrabble	sil	medium	3	40	4	HIGH
Hazelair	sicl	mod. fine	2	33	4	HIGH
Helmick	sil	medium	3	30	4	HIGH
Helvetia	sil	medium	3	30	4	HIGH
Hillsboro	ι	medium	3	52.5	2	I HIGH
Holcomb	sil	medium	3	72	2	HIGH
Honeygrove	c	fine	1	78	2	VERY HIGH
Hullt	cl	mod. fine	2	67.5	2	I HIGH
Jimbo	sil	medium	3	77	2	I HIGH I
Jory	sicl	mod. fine	2	85.5	2	I HIGH
Kinney	cob. l	medium + 1	4	60	2	MODERATE
Kinton	sil	medium	3	35	4	HIGH
Knappa	sil	medium	3	140	1	VERY HIGH
Labish	sic	fine	1	256	1	I VERY HIGH
Latourell	ι	medium	3	40	4	HIGH
Laurelwood	sil	medium	3	33	4	, Hich
Linslaw	ι	medium	3	48	4	I HIGH
Lint	sil	medium	3	200	1	 VERY HIGH
Malabon	sicl	mod. fine	2	60	2	' HIGH
Marcola	cob. sicl	mod. fine + 1	3	75	2	 HIGH
McAlpin	sicl	mod. fine	2	63	2	' HIGH
McBee	sict	mod. fine	2	50	4	HIGH
McCully	cl	mod. fine	2	95	2	HIGH

SOIL SERIES	SURFACE	TEXTURE Class	Score	RESULT OF SURFA ORGANIC MATTER * DEPTH Scor	CE	SORPTION POTENTIAL
McNulty	sil	medium	3	18	6	MODERATE
Meda	 l	medium	3	20	6	MODERATE
Melbourne	 l	medium	3	44	4	HIGH
Mershon	sil	medium	3	52.5	2	 HIGH
Moag	sicl	mod. fine	2	20	6	MODERATE
Molalla	 l	medîum	3	65	2	I HIGH
Multnomah	 sil	medium	3	40	4	 HIGH
Natal	sicl	mod. fine	2	27	4	 HIGH
Natroy	 sic,c	fine	1	 117	1	I VERY HIGH
Nehalem	 sil	medium	3	 127.5	1	I VERY HIGH
Nekia	 sicl	mod. fine	2	 49.5	4	I HIGH I
Nekoma	 sil	medium	3	 66	2	I HIGH I
Neskowin	 sicl	mod. fine	2	 120	1	I VERY HIGH
Nestucca	 sil	medium	3	 84	2	I HIGH
Netarts	fs, ls	coarse	5	36	4	I MODERATE
Newberg	 fsl	mod. coarse	4	 57	2	I MODERATE
Noti	 l	medium	3	45	4	HIGH
Oxley	 grav.sil	medium + 1	4	92	2	I MODERATE
Panther	 sicl	mod. fine	2	56	2	HIGH
Peavine	 sicl	mod. fine	2	60	2	HIGH
Pengra	 sil	medium	3	30	4	HIGH
Philomath	c	fine	1	54	2	I VERY HIGH
Pilchuck	 fs	coarse	5	 30	4	I MODERATE

SOIL SERIES	SURFACE	TEXTURE Class	Score	RESULT OF S ORGANIC MAT * DEPTH	URFACE TER Score	SORPTION
Powell	sil	medium	3	40	4	HIGH
Preacher	cl	mod. fine	2	91	2	HIGH
Price	sicl	mod. fine	2	17.5	6	MODERATE
Quafeno	ι	medium	3	40	4	HIGH
Quatama	ι	medium	3	13.5	6	MODERATE
Rafton	sil	medium	. 3	18	6	MODERATE
Rickreall	sicl	mod. fine	2	12.5	8	MODERATE
Ritner	grav. sicl	mod. fine + 1	. 3	15	6	MODERATE
Salem	grav. sil	medium + 1	4	45	4	MODERATE
Salkum	sicl	mod. fine	2	56	2	HIGH
Santium	sil	medium	3	32.5	4	HIGH
Saturn	cl	mod. fine	2	70	2	HIGH
Saum	sil	medium	3	42	4	HIGH
Sauvie	sicl	mod. fine	2	45	4 []	HIGH
Sawtell	sil	medium	3	39	4	HIGH
Semiahmoo	sapric	fine	1	990	· 1	VERY HIGH
Sifton	grav. l	medium + 1	4	120	1	HIGH
Silverton	sil	medium	3	. 48	4	HIGH
Springwater	cl	mod. fine	2	75	2	HIGH
Stayton	sil	medium	3	97.5	2	HIGH
Steiwer	sicl	mod. fine	2	21	6	MODERATE
Suver	sicl	mod. fine	2	27.5	. 4	HIGH
Treharne	sil	medium	3	43.5	4	HIGH

 SOIL SERIES 	SURFACE	TEXTURE Class	Score	RESULT OF SURFACE ORGANIC MATTER * DEPTH Score	 	SORPTION POTENTIAL
Veneta	ι	medium	3	42	4	HIGH
Verboort	sicl	mod. fine	2	84	2	I VERY HIGH
Waldo	sicl	mod. fine	2	60	2	I HIGH I
Wapata	sicl	mod. fine	2	96	2	I HIGH I
Wauna	sil	medium	3	24	6	I MODERATE
Whiteson	sil	medium	3	66	2	I HIGH 1
Willakenzie	sicl	mod. fine	2	18	6	I MODERATE
Willamette	sil	medium	3	96	2	I HIGH I
Willanch	fsl	mod. coarse	4	45.5	4	I MODERATE
Winchuck	sil	medium	3	48	4	 HIGH
Witham	sicl	mod. fine	2	20	6	I MODERATE
Witzel	v.stny si	l medium + 1	4	 10	8	 LOW
Wollent	sil	medium	3	25	6	MODERATE
Woodburn	sil	medium	3	68 	2	I HIGH I
Yamhill	sil	medium	3	 31.5	4	HIGH
					.	•••••

 SOIL SERIES 	 LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Abiqua	LOW	HIGH	I VERY LOW
Aloha	MODERATE	MODERATE	MODERATE
Alspaugh [LOW	HIGH	II VERY LOW
Amity	MODERATE	HIGH	LOW
Apt	LOW	HIGH	I VERY LOW
Astoria	MODERATE	VERY HIGH	LOW
Awbrig]	MODERATE	MODERATE	MODERATE
Bandon	MODERATE	VERY LOW	HIGH
Bashaw	LOW	VERY HIGH	VERY LOW
Bellpine	VERY LOW	HIGH	VERY LOW
Borges	LOW	HIGH	I VERY LOW
Bornstedt	LOW	HIGH	VERY LOW
Brallier	HIGH	VERY HIGH	MODERATE
Brenner	MODERATE	I HIGH	LOW
Briedwell	MODERATE	HIGH	LOW
Bull run	MODERATE	HIGH	LOW
Burlington	VERY HIGH	MODERATE	VERY HIGH
Camas	VERY HIGH	i lowi	VERY HIGH
Canderly	VERY HIGH	MODERATE	VERY HIGH
Carlton	MODERATE	, нідн 	LOW
Cascade	MODERATE	, HIGH 	LOW
Cazadero	t LOW	HIGH 	VERY LOW
Chapman	MODERATE	, HIGH	 LOW

SOIL SERIES	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Chehalem	LOW		VERY LOW
Chehalis	MODERATE	HIGH	 LOW
Chehulpum	MODERATE	HIGH	 LOW
Clackamas	MODERATE	MODERATE	MODERATE
Cloquato	MODERATE	VERY HIGH	LOW
Coburg	MODERATE	HIGH	l LOW
Concord	I MODERATE	MODERATE	I MODERATE
Conser	MODERATE	HIGH	LOW
Cornelius	MODERATE	MODERATE	MODERATE
Cottrell	MODERATE	HIGH	
Courtney	MODERATE	HIGH	LOW
Cove	LOW	HIGH	VERY LOW
Crims	HIGH	VERY HIGH	MODERATE
Cumley	MODERATE	HIGH	LOW
Dabney	VERY HIGH	MODERATE	VERY HIGH
Dayton	MODERATE	MODERATE	MODERATE
Dixonville	LOW	VERY HIGH	VERY LOW
Dupee	MODERATE	MODERATE	MODERATE
Eilersten	MODERATE	HIGH	LOW
Faloma	VERY HIGH	HIGH	HIGH
Gapcot	MODERATE	MODERATE	MODERATE
Goble	MODERATE	HIGH	LO¥
Grande Ronde	LOW	MODERATE	LOW

.

 SOIL SERIES 	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Hardscrabble	LOW	HIGH	VERY LOW
Hazelair	MODERATE	HIGH	 LOW
Helmick	LOW	HIGH	VERY LOW
Helvetia	MODERATE	HIGH	 LOW
Hillsboro	MODERATE	HIGH	LOW
Holcomb	LOW	HIGH	II VERY LOW
Honeygrove	LOW	I VERY HIGH	VERY LOW
Hullt	MODERATE	I HIGH	
Jimbo	HIGH	HIGH	MODERATE
Jory	LOW	HIGH	VERY LOW
Kinney	MODERATE	I MODERATE	MODERATE
Kinton	MODERATE	I HIGH I	 LOW
Knappa	 MODERATE	I VERY HIGH	LOW
Labish	 LOW	I VERY HIGH	VERY LOW
Latourell	I MODERATE	I HIGH 	LOW
Laurelwood	I MODERATE	I HIGH I	LOW
Linslaw	i į low	I HIGH	U VERY LOW
Lint	I MODERATE	VERY HIGH	LOW
Malabon	LOW	HIGH	I VERY LOW
Marcola	I I LOW	HIGH	U VERY LOW
McAlpin	I MODERATE	HIGH	LOW
МсВее	I LOW	HIGH	I VERY LOW
McCully	I LOW	I HIGH	VERY LOW

I	1	ļ	PESTICIDE
SOIL SERIES	LEACH	SORPTION	MOVEMENT
1	POTENTIAL	POTENTIAL	POTENTIAL
McNulty	MODERATE	MODERATE	MODERATE
Meda (MODERATE	MODERATE	I MODERATE
Melbourne	LOW	HIGH	VERY LOW
Mershon	MODERATE	HIGH	LOW
Moag	LOW	MODERATE	LOW
Molalla	LOW	HIGH	VERY LOW
Multnomah	MODERATE	HIGH	LOW
Natal	LOW	HIGH	VERY LOW
Natroy	LOW	VERY HIGH	VERY LOW
Nehalem	LOW	VERY HIGH	VERY LOW
Nekia	LOW	HIGH 	VERY LOW
Nekoma	HIGH	HIGH	MODERATE
Neskowin	VERY LOW	VERY HIGH	VERY LOW
Nestucca	MODERATE 	HIGH	LOW
Netarts	HIGH 	MODERATE	HIGH
Newberg	VERY HIGH 	MODERATE	VERY HIGH
Noti	MODERATE	HIGH	LOW
Oxley	MODERATE	MODERATE	MODERATE
Panther	LOW	HIGH	VERY LOW
Peavine	VERY LOW	HIGH	VERY LOW
Pengra	LOW 	HIGH 	UERY LOW
Philomath	VERY LOW 	VERY HIGH	VERY LOW
Pilchuck	VERY HIGH	MODERATE	VERY HIGH

•

SOIL SERIES	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Powell	LOW	HIGH	I VERY LOW
Preacher	MODERATE	HIGH	 LOW
Price	LOW	MODERATE	LOW
Quafeno	MODERATE	HIGH	LOW
Quatama	MODERATE	MODERATE	II MODERATE
Rafton	HIGH	MODERATE	HIGH
Rickreall	VERY LOW	MODERATE	U VERY LOW
Ritner	LOW	MODERATE	 LOW
Salem	HIGH	MODERATE	HIGH
Salkum	LOW	HIGH	II VERY LOW
Santium	LOW	HIGH	VERY LOW
Saturn	HIGH	HIGH	II MODERATE
Saum	MODERATE	I HIGH	 LOW
Sauvie	MODERATE	I HIGH	 LOW
Sawtell	MODERATE	I I HIGH	LOW
Semiahmoo	MODERATE	I VERY HIGH	 LOW
Sifton	VERY HIGH	I HIGH I	 HIGH
Silverton	VERY LOW	HIGH	VERY LOW
Springwater	1 MODERATE	I HIGH I	
Stayton	I HIGH	 HIGH }	MODERATE
Steiwer	LOW	MODERATE	LOW
Suver	I LOW	HIGH	VERY LOW
Treharne	I MODERATE	I HIGH	MODERATE

SOIL SERIES 	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Veneta	LOW	HIGH	VERY LOW
Verboort	LOW	HIGH	VERY LOW
Waldo	LOW	HIGH	VERY LOW
Wapata	MODERATE	HIGH	LOW
Wauna	MODERATE	MODERATE	MODERATE
Whiteson	LOW	HIGH	VERY LOW
Willakenzie	LOW	MODERATE	LOW
Willamette	MODERATE	HIGH	LOW
Willanch	VERY HIGH	MODERATE	VERY HIGH
Winchuck	LOW	HIGH	VERY LOW
Witham	LOW	MODERATE	LOW
Witzel	HIGH	LOW	VERY HIGH
Wollent	MODERATE	MODERATE	MODERATE
Woodburn	MODERATE	HIGH	LOW
Yamhill	MODERATE	HIGH	LOW

NATIVE PH AND PERCENT SLOPE OF WILLAMETTE VALLEY SOILS

I nH					
SOIL SERIES	A HORIZON	RANGE FOR PROFILE	PERCENT SLOPE		
Abiqua	5.1-6.5	5.1-6.5	0-5		
Aloha	 5.6-6.0	5.6-6.5	0-8		
Alspaugh	5.6-6.0	4.5-6.0	2 - 50		
Amity	5.6-6.0	5.6-6.5	0 - 3		
Apt	4.5-5.5	4.5-5.5	2 - 50		
Astoria	4.5-5.0	4.5-5.0	0 - 90		
Awbrig	5.1-6.5	5.1-7.3	0 - 2		
Bandon	5.6-6.5	5.6-6.5	0 - 30		
Bashaw	5.6-7.3	5.6-7.3	0 - 12		
Bellpine	5.1-6.0	4.5-6.0	2 - 60		
Borges	5.1-6.0	5.1-6.0	0-8		
Bornstedt	5.1-6.0	4.5-6.0	0 - 30		
Brallier	3.6-5.0	3.6-5.0	0 - 1		
Brenner	4.5-5.5	4.5-6.5	0-3		
Briedwell	5.1-6.5	5.1-6.5	0 - 20		
Bull run	 5.1-6.0	5.1-6.0	3 - 80		
Burlington	6.1-6.5	6.1-7.3	0 - 15		
Camas	5.6-7.3	5.6-7.3	0 - 5		
Canderly	5.6-6.5	5.6-6.5	0-8		
Carlton	5.6-6.0	5.1-6.0	0 - 20		
Cascade	 5.6-6.0	5.6-6.0	3 - 60		
Cazadero	5.1-6.0	5.1-6.0	0 - 60		
Chapman	5.6-6.5	5.6-7.3	0 - 3		

NATIVE PH AND PERCENT SLOPE OF WILLAMETTE VALLEY SOILS

SOIL SERIES	AHORIZON	RANGE FOR PROFILE	PERCENT SLOPE		
Chehalem	5.6-6.0	5.6-6.0	2 - 12		
Chehalis	5.6-6.5	5.6-7.3	0-3		
Chehulpum	5.6-6.5	5.6-6.5	3 - 50		
Clackamas	5.6-6.0	5.1-6.0	0 - 3		
Cloquato	5.6-6.5	5.6-6.5	0-3		
Coburg	5.6-6.5	5.6-7.3	0 - 7		
Concord	5.6-6.5	5.6-7.3	0 - 2		
Conser	5.6-6.5	5.6-7.3	0-3		
Cornelius	5.6-6.0	5.1-6.0	2 - 60		
Cottrell	5.1-6.0	5.1-6.0	2 - 30		
Courtney	5.1-6.0	5.1-7.3	0 - 3		
Cove	5.6-6.5	5.6-7.3	0 - 2		
Crims	4.5-5.5	3.6-5.5	0-3		
Cumley	 5.1-6.5	5.1-6.5	2 - 20		
Dabney	5.1-5.5	5.1-6.0	0 - 3		
Dayton	 5.1-6.0	5.1-7.3	0 - 2		
Dixonville	 5.6-6.5	5.6-6.5	3 - 60		
Dupee	 5.1-6.0	4.5-6.0	2 - 20		
Eilersten	4.5-6.5	4.5-6.5	0 - 7		
Faloma	5.6-6.5	5.6-6.5	0-3		
Gapcot	5.6-6.5	5.6-6.5	 3 - 60		
Goble	 5.1-6.0	4.5-6.0	l 2 - 60		
Grande Ronde	4.5-5.0	4.5-5.0	 0-2		
NATIVE PH AND PERCENT SLOPE OF WILLAMETTE VALLEY SOILS

	r	 он	
SOIL	A .	RANGE FOR	PERCENT
SERIES	HORIZON	PROFILE	SLOPE
Hardscrabble	5.1-6.0	4.5-6.0	2 - 20
Hazelair	5.6-6.5	5.1-6.5	2 - 35
Helmick	5.6-6.0	4.5-6.0	3 - 50
Helvetia	5.6-6.5	5.1-6.5	2 - 30
Hillsboro	5.1-6.0	5.1-6.0	0 - 20
Holcomb	5.6-6.5	5.6-7.3	0-3
Honeygrove	4.5-6.5	4.5-6.5	0 - 60
Hullt	5.1-6.0	4.5-6.0	2 - 60
Jimbo	5.6-6.0	5.1-6.0	0-5
Jory	4.5-6.5	4.5-6.5	2 - 90
Kinney	5.1-6.5	3.6-6.5	2 - 75
Kinton	5.1-6.0	5.1-6.0	2 - 60
Кпарра	4.5-5.5	4.5-5.5	0 - 30
Labish	4.5-7.3	4.5-7.3	0 - 1
Latourell	5.1-6.5 	5.1-6.5	0 - 30
Laurelwood	5.6-6.0 	5.1-6.0	3 - 60
Linslaw	1 5.1-6.0	4.5-6.0	0 - 3
Lint	4.5-5.5 	4.5-5.5	0 - 40
Malabon	5.6-6.0 	5.6-7.3	0-3
Marcola	5.6-6.5 	5.6-7.3	2 - 7
McAlpin	5.1-6.0	5.1-6.0	0-6
McBee	5.6-6.5	5.6-7.3	0 - 3
McCully	 5.1-5.5	4.5-5.5	2 - 70

.

NATIVE PH AND PERCENT SLOPE OF WILLAMETTE VALLEY SOILS

SOIL SERIES	F A HORIZON	H RANGE FOR PROFILE	 PERCENT SLOPE
McNulty	5.6-6.5	5.6-6.5	0-3
Meda	5.1-6.0	5.1-6.0	 2 - 20
Melbourne	5.6-6.5	4.5-6.5	 0-60
Mershon	5.6-6.0	5.1-6.0	 0-30
Moag	5.6-6.0	5.6-6.5	1 0-2
Molalla	5.6-6.0	5.1-6.0	2 - 30
Multnomah	5.6-6.0	5.6-6.5	0 - 60
Natal	5.6-6.5	4.5-6.5	 03
Natroy	5.1-6.0	5.1-7.3	0 - 2
Nehalem	4.5-6.0	4.5-6.0	0-3
Nekia	5.1-6.0	4.5-6.0	2 - 50
Nekoma	5.1-6.0	4.5-6.0	0-3
Neskowin	4.5-5.5	4.5-5.5	 12 - 60
Nestucca	4.5-5.5	4.5-5.5	0-3
Netarts	4.5-5.0	4.5-5.5	0 - 40
Newberg	7	5.6-7.3	0-3
Noti	 4.5-5.5	4.5-5.5	0-3
Oxley	 5.1-6.0	5.1-7.3	0-3
Panther	 5.6-6.5	3.6-6.5	2 - 20
Peavine	 5.1-6.0	4.5-6.0	2 - 75
Pengra	 5.6-6.0	5.6-7.3	1 - 30
Philomath	5.6-6.5	5.6-7.3	3 - 70
Pilchuck	 6.1-7.3	5.6-7.3	 0-3

NATIVE PH AND PERCENT SLOPE OF WILLAMETTE VALLEY SOILS

		ж	1
SOIL	A	RANGE FOR	PERCENT
SERIES	HORIZON	PROFILE	SLOPE
Powell	5.1-6.0	5.1-6.5	0 - 30
Preacher	4.5-5.5	4.5-5.5	0 - 75
Price	5.1-6.0	5.1-6.0	3 - 75
Quafeno	6.1-6.5	6.1-7.3	0 - 15
Quatama	5.6-6.0	5.6-6.0	0-3
Rafton	5.6-6.0	5.6-6.5	0 - 2
Rickreall	5.1-5.5	5.1-5.5	3 - 75
Ritner	5.6-6.0	5.1-6.0	2 - 90
Salem	5.6-6.5	5.6-7.3	0 - 12
Salkum	5.6-6.5	4.5-6.5	0 - 65
Santium	5.1-6.0	5.1-6.0	0 - 20
Saturn	5.1-6.0	4.5-6.0	, 0-5
Saum	 5.6-6.0 	5.6-6.0	2 - 60
Sauvie	5.6-6.5	5.6-6.5	0-3
Sawtell	, 5.1-6.0	5.1-6.0	0 - 15
Semiahmoo	4.5-6.5	4.5-6.5	0-3
Sifton	, 5.6-6.0 	5.6-6.5	0 - 3
Silverton	5.6-6.5	5.6-6.5	2 - 20
Springwater	5.6-6.0	5.6-6.0	2 - 60
Stayton	5.1-6.0 	5.1-6.0	0 - 7
Steiwer	5.1-6.5 	5.1-6.5	2 - 50
Suver	5.6-6.0	5.1-6.0	3 - 50
Treharne	5.1-6.5	4.5-6.5	0-3

NATIVE PH AND	PERCENT	SLOPE OF	WILLAMETTE	VALLEY	SOILS
---------------	---------	----------	------------	--------	-------

	F	рΗ	1
SOIL	A	RANGE FOR	PERCENT
SERIES	HORIZON	PROFILE	SLOPE
Veneta	5.6-6.0	5.1-6.0	0 - 20
Verboort	5.6-6.0	5.6-7.3	 0-3
Waldo	5.1-6.5	5.1-6.5	0 - 3
Wapata	5.1-7.3	5.1-7.3	0-3
Wauna	4.5-5.0	4.5-5.5	0-3
Whiteson	5.6-6.5	5.6-7.8	0-3
Willakenzie	5.6-6.0	4.5-6.0	2 - 50
Willamette	5.6-6.5	5.6-6.5	0 - 20
Willanch	5.6-6.5	5.6-6.5	0 - 3
Winchuck	5.1-5.5	5.1-5.5	0 - 30
Witham	5.1-6.0	5.1-6.5	2 - 12
Witzel	5.6-6.5	5.6-6.5	3 - 75
Wollent	5.6-6.0	5.6-6.0	0-3
Woodburn	5.6-6.5	5.6-6.5	0 - 20
Yamhill	5.6-6.5	5.1-6.5	2 - 50

•

NATIVE PR AND FERGENT SLOVE OF WILLAMETTE VALLE, GOLE

APPENDIX B

SIMULATIONS WITH MALHEUR COUNTY SOILS

APPENDIX B. TABLE B-1

CALCULATION OF THE SOIL PERMEABILITY FOR MALHEUR COUNTY SOILS

	PER	MEABILITY	OF INDIVIDUAL SOIL	LAYERS				
			RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Ahtanum	0-21	21		0.6-2.0	6	126		
	21-31	10	CaCO3,Si hardpan	<0.06	1	10		
	31-50	19		0.6-2.0	6	114		
	50-60	10		6.0-20	9	90		340
	1							
Baldock	0-8	8		0.6-2.0	6	48		
	8-56	48		0.6-2.0	6	288		
	56-60	4		2.0-6.0	8	32	111	368
	1							
Bully	0-60	60		0.6-2.0	6	36 0	HI	360
	1							
Cencove	0-24	24		2.0-6.0	8	192		
	24-60	36		>20	10	360	111	552
	I						111	
Chilcott	0-8	8		0.6-2.0	6	48		
	8-24	16		0.06-0.2	2	32		
	24-30	6		0.2-0.6	4	24		
	30-47	17	dur i pan	<0.06	1	17	111	
	47-53	6	weak cem. s+grav	0.06-0.2	2	12	111	
	53-60	7	sand+grav	6.0-20	9	63		196
	Ì							
Falk Variant	0-36	36		2.0-6.0	8	288	111	
	36-60	24		>20	10	240	111	528
	· -						111	
Feltham	0-32	32		6.0-20	9	288		

CALCULATION OF THE SOIL PERMEABILITY FOR MALHEUR COUNTY SOILS

	PER	MEABILITY	OF INDIVIDUAL SC RESTRICTIVE	DIL LAYERS		SCORE *		
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	INIUKNESS	111	KESULI
	32-60	28		2.0-6.0	8	224		512
Frohman	I 0-12	12		0.6-2.0	6	72	iii	
	12-18	6	duripan	<0.06	1	6	111	
	. 18-36	18	·	0.6-2.0	6	108	111	
	36-60 	34	duripan	<0.06	1	34		220
Garbutt	0-40	40		0.6-2.0	6	240	iii	
	40-60	20		0.6-2.0	6	120		360
Greenleaf	0-8	8		0.6-2.0	6	48	111	
	8-60	52		0.2-0.6	4	208		256
Harana	0-21	21		0.2-0.6	4	84		
	21-60	39		0.2-0.6	4	156		240
Kimberly	0-10	10		2.0-6.0	8	80	111	
·	, 10-26	16		2.0-6.0	8	128		
	26-60	34		2.0-6.0	8	272		480
Malheur	0-9	9		0.6-2.0	6	54	111	
	9-23	14		0.2-0.6	4	56		
	. 23-31	8		0.6-2.0	6	48	111	
	31-60	29	ca duripan	<0.06	1	29		187

CALCULATION OF THE SOIL PERMEABILITY FOR MALHEUR COUNTY SOILS

	i PER	MEABILITY	OF INDIVIDUAL SO	DIL LAYERS			111	
			RESTRICTIVE			SCORE *	İİİ	TOTAL
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	Ш	RESULT
Nyssa	0-25	25		0.6-2.0	6	150		
	25-31	6	duripan	<0.06	1	6	111	
	31-60	29		0.6-2.0	6	174		330
Owyhee	0-44	44		0.6-2.0	6	264	iii	
	44-60	16		0.2-0.6	4	64		328
Poden	0-30	30		0.6-2.0	6	180	111	
	30-50	20		6.0-20	9	180	111	
	50-60	10		>20	10	100		460
Powder	0-60	60		0.6-2.0	6	360		360
Prosser	0-30	30		0.6-2.0	6	180	- III	
	30-60	30	basalt	>20	10	300		480
Quincy	0-60	60		6-20	9	540		540
Sagehill	, 0-19	19		2.0-6.0	8	152	- HI	
	19-60	41		0.6-2.0	6	246		398
Stanfield	0-22	22		0.6-2.0	6	132	iII	
	22-60	38	duripan	<0.06	1	38		170
Truesdale	0-24	24		2.0-6.0	8	192	iii	

	I	PERMEABILITY	OF INDIVIDUAL SOIL	LAYERS		60085 *		TOTAL
SOIL SERIES	 LAYER	THICKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
	24-32	8	hardpan	0.06-0.2	2	16	111	
	32-60	28	·	2.0-6.0	8	224		432
Turbyfill	0-3	3		2.0-6.0	8	24	III	
,	3-60	57		2.0-6.0	8	456		480
Umapine	0-60	60		0.6-2.0	6	360		360
Virtue	0-7	7		0.6-2.0	6	42	- III	
	7-29	22		0.2-0.6	4	88	III	
	29-60	31	cemented hardpan	<0.06	1	31		161

CALCULATION OF THE SOIL PERMEABILITY FOR MALHEUR COUNTY SOILS

.

RATING OF	MALHEUR	COUNTY	SOILS	FOR	LEACHING	POTENTIAL	

SOIL SERIES	SCORE PERMEABIL TIMES THICKNESS OF LAYERS	ITIES Score	 DRAINAGE CLASS	LEACHING POTENTIAL
Ahtanum	340	6	Somewhat Poorly	MODERATE
Baldock	368	6	Poorly	HIGH
Buily	 360	6	 Well	MODERATE
Cencove	552	10	 Well	VERY HIGH
Chilcott	196	3	 Well	VERY LOW
Falk Variant	528	9	 Somewhat Poorly	VERY HIGH
Feltham	 512	9	 Somewhat Excessively	VERY HIGH
Frohman	220	3		VERY LOW
Garbutt	360	6	 Well	MODERATE
Greenleaf	256	4	 Well	LOW
Harana	240	4		MODERATE
Kimberly	480	8	Well	HIGH
Malheur	 187	3	 Well	VERY LOW
Nyssa	330	6	 Well	MODERATE
Owyhee	328	5	Well	LOW
Poden	 460	8	 Well	HIGH
Powder	360	6	 Well	MODERATE
Prosser	480	8	 Well	HIGH
Quincy	540	9	Excessively	VERY HIGH
Sagehill	398	7	Well	MODERATE
Stanfield	 170	3	 Moderately well	LOW
Truesdale	432	7	 Well	MODERATE
Turbyfill	480	8	 Well	HIGH

SOIL SERIES	SCORE PERMEABI	LITIES	1	11	
	TIMES THICKNES	s	1	11	LEACHING
	OF LAYERS	Score	DRAINAGE CLASS		POTENTIAL
Umapine	360	6	Somewhat poorly		MODERATE
	1		1	11	
Virtue	161	2	Well	11	VERY LOW

RATING OF MALHEUR COUNTY SOILS FOR LEACHING POTENTIAL

APPENDIX B. TABLE B-3

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH FOR MALHEUR COUNTY SOILS

.

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Ahtanum	2	10	20
Baldock	3.5	8	28
Bully	1.5	9	13.5
Cencove	0.75	9	6.75
Chilcott	1.5	8	12
Falk Variant	0.75	8	6
Feltham	1.5	6	9
Frohman	0.75	8	6
Garbutt	0.5	9	4.5
Greenleaf	1.5	8	12
Harana	3	24	72
Kimberly	1.5	10	15
Malheur	2	5	10
Nyssa	1.25	13	16.25
Owyhee	1.5	10	15
Poden	5	13	65
Powder	4	13	32.50
Prosser	1.5	4	6
Quincy	0.75	15	11.25

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Sagehill	1.4	8	11.2
Stanfield	1_4	6	8.4
Truesdale	1.5	3	4.5
Turbyfill	1.5		4.5
Umapine	0.75	9	 6.75
Virtue	2	7	14

£

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH

		KATING OF MAL	ILUK COONTT			
SOIL SERIES	SURFACE	TEXTURE Class	Score	RESULT OF SURFACE ORGANIC MATTER * DEPTH Score	: 	SORPTION POTENTIAL
Ahtanum	sil	medium	3	20	6 []	MODERATE
Baldock	 l	medium	3	28	4	HIGH
Bully	sil	medium	3	1 13.5	6	MODERATE
Cencove	 fsl	mod. coarse	4	 6.75	8	LOW
Chilcott	 sil	medium	3	12	8	LOW
Falk Variant	 fsl	mod. coarse	4	 6 '	10 11	VERY LOW
Feltham	 lfs 	coarse	5	9	8	VERY LOW
Frohman	l sil	medium	3	6	10 11	VERY LOW
Garbutt	 sil	medium	3	4.5	10	VERY LOW
Greenleaf	 sil	medium	3	12	8	LOW
Harana	 sict	mod. fine	2	72	2	HIGH
Kimberly	 l	medium	3	15	6	MODERATE
Malheur	 sil	medium	3	l 10	 8	LOW

L

ł

ł

1

I

I

ł

I

I

L

1

1

I

1

3

3

3

3

3

5

4

3

4

4

16.25

15

65

52

6

11.25

11.2

8.4

4.5

4.5

1

I

L

1

L

1 fsl

I

L

Nyssa

Owyhee

Poden

Powder

Prosser

Quincy

Sagehill

Stanfield

Truesdale

Turbyfill

| sil

| sil

sil

sil

sil

lfs

sil

fsl

fsl

medium

medium

medium

medium

medium

coarse

medium

mod. coarse

mod. coarse

mod. coarse

PATING OF MALHEUR COUNTY SOILS FOR SORPTION POTENTIAL

Ш

11

11

11

11

11

11

11

11

10 11

8 ||

8 ||

2 ||

4

10 - 11

> 8 Ш

6 || MODERATE

6 || MODERATE

HIGH

HIGH

VERY LOW

VERY LOW

LOW

LOW

VERY LOW

10 || VERY LOW

	RATING OF	ALHEUR COUNTY	SOILS FOR	SORP	TION POTENTIAL			
SOIL SERIES	SURFACE	TEXTURE Class	Score		RESULT OF SURFAC ORGANIC MATTER * DEPTH Score	:Е :	 	SORPTION POTENTIAL
Umapine	sil	medium	3		6.75	8		LOW
Virtue	sil	medium:	3	Ì	14	6	İİ	MODERATE

.

.

APPENDIX B. TABLE B-4 (Continued)

SOIL SERIES	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Ahtanum	MODERATE	MODERATE	MODERATE
Baldock	HIGH	HIGH	MODERATE
Bully	MODERATE	MODERATE	MODERATE
Cencove	VERY HIGH	LOW	VERY HIGH
Chilcott	VERY LOW	LOW	VERY HIGH
Falk Variant	VERY HIGH	VERY LOW	VERY HIGH
Feltham	VERY HIGH	VERY LOW	VERY HIGH
Frohman	VERY LOW	VERY LOW	MODERATE
Garbutt	MODERATE	VERY LOW	HIGH
Greenleaf	LOW	LOW	MODERATE
Harana	MODERATE	HIGH	LOW
Kimberty	HIGH	MODERATE	II HIGH
Malheur	VERY LOW	LOW	LOW
Nyssa	MODERATE	MODERATE	MODERATE
Owyhee	LOW	MODERATE	LOW
Poden	 	HIGH	II MODERATE
Powder	MODERATE	HIGH	LOW
Prosser	HIGH	VERY LOW	VERYHIGH
Quincy	VERY HIGH	VERY LOW	VERY HIGH
Sagehill	MODERATE	LOW	HIGH
Stanfield	LOW	LOW	MODERATE
Truesdale	MODERATE	VERY LOW	HIGH
 Turbyfill	HIGH [VERY LOW	 VERY HIGH

RATING OF MALHEUR COUNTY SOILS FOR PESTICIDE MOVEMENT POTENTIAL

AP	PENDIX	Β.	TABLE	B-5	(Continued)
----	--------	----	-------	-----	-------------

	RATING O	F MALHEUR COUNTY	SOILS FOR	PESTICIDE	MOVEMENT	POTENTIAL	
				1			PESTICIDE
SOIL SERIES	Í	LEACH		so	DRPTION	11	MOVEMENT
	Ì	POTENTIAL	L	PC	DTENTIAL	H	POTENTIAL
Umapine	·····	MODERATE		L(DW .		HIGH
Virtue	1	VERY LOW		j Mo	DERATE	11	VERY LOW

APPENDIX B. TABLE B-6

NATIVE PH AND PERCENT SLOPE OF MALHEUR COUNTY SOILS

			•••••		
	F	Ы			
SOIL	A	RANGE FOR	PERCENT		
SERIES	HORIZON	PROFILE	SLOPE		
Ahtanum	8.5-9.0	7.4-9.0	0 - 5		
Baldock	7.9-8.4	7.4-9.0	 0-5		
Bully	7.9-8.4	7.9-8.4	0-2		
Cencove	7.4-8.4	7.4-8.4	0 - 12		
Chilcott	6.6-7.8	6.6-8.4	0 - 12		
Falk Variant	7.9-8.4	7.9-8.4	0 - 2		
Feltham	7.8-8.4	7.8-8.4	0 - 12		
Frohman	7.4-8.4	7.4-8.4	0 - 20		
Garbutt	7.9-8.4	7.9-8.4	0 - 12		
Greenleaf	6.6-7.8	6.6-8.4	0-5		
Harana	8.5-9.0	7.9-9.0	0-3		
Kimberly	6.6-7.8	6.6-9.0	0-3		
Malheur	7.9-8.4	7.9-9.0	0-8 		
Nyssa	7.4-8.4	6.6->9.0	0 - 20		
Owyhee	7.9-8.4	7.9-9.0	0 - 20		
Poden	7.9-8.4	7.9-8.4	0-5		
Powder	6.6-8.4	6.6-8.4	0-3		
Prosser	7.2	7.0-8.3	0 - 20		
Quincy	6.8	6.7-8.4	2 - 12		
Sagehill	7.4-8.4	7.4-9.0	0 - 20		
Stanfield	>9.0	>9.0	0 - 2		
Truesdale	 7.4-8.4	7.4-8.4	0 - 12		
Turbyfill	6.6-8.4	6.6-9.0	 0 - 35		

	NATIVE	рН	AND	PERCENT	SLOPE	OF	MALHEUR C	OUNTY	SOILS
						рН			
SOIL				1	A		RANGE FOR	2	PERCENT
SERIE	is			НО	RIZON		PROFILE		SLOPE
Umapi	ine				9.2		>7.8		0 - 2
Virtu	Je			6.	6-8.4		6.6-8.4	Ì	0 - 20

•

APPENDIX C

SIMULATIONS WITH COLUMBIA BASIN SOILS

.

APPENDIX C. TABLE C-1

	PER	PERMEABILITY OF INDIVIDUAL SOIL LAYERS								
	İ		RESTRICTIVE			SCORE *	Ш	TOTAL		
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	III	RESULT		
Adkins	0-60 	60		2.0-6.0	8	480		480		
Anderly	0-30	30		0.6-2.0	6	180	Ш	480		
	30-60	30	basalt	>20	10	300	H			
	Ì						III			
Athena	0-60	60		0.6-2.0	6	360	111	360		
	l									
Burbank	0-30	30		6.0-20	9	270				
	30-60	30		>20	10	300		570		
	1									
Burke	0-22	22		0.6-2.0	6	132				
	22-60	38	duripan	<0.06	1	38		170		
	ļ									
Cantala	0-60	60		0.6-2.0	6	360		360		
	I						111			
Condon	0-31	31		0.6-2.0	6	186	111			
	31-60	29	basalt	>20	10	290		476		
	1									
Cowsly	0-19	19		0.6-2.0	6	114				
	19-42	23		<0.06	1	23	111			
	42-60	18		0.2-0.6	4	72		209		
							111			
Ellisforde	0-24	24		0.6-2.0	6	144	111			
	24-60	36		0.2-0.6	4	144		288		

CALCULATION OF THE SOIL PERMEABILITY FOR COLUMBIA BASIN AREA SOILS

	PER	MEABILITY	111							
	I		RESTRICTIVE			SCORE *	111	TOTAL		
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT		
Endersby	0-53	53		2.0-6.0	8	424	111			
	53-60	7		>20	10	70	111	494		
Esquatzel	0-60	60		0.6-2.0	6	360		360		
Freewater	 0-20	20		0.6-2.0	6	120				
	20-60	40		>20	10	400		520		
	i						iii			
Hermiston	0-60	60		0.6-2.0	6	360	111	360		
	1									
Hezel	0-18	18		6.0-20	9	162				
	18-60	42		0.2-0.6	4	168		330		
Inciden		22		0 4-2 0	4	179				
trigon	0-23	23		0.0-2.0	0	100		7/0		
	23-60	57	sandstone	0.6-2.0	0	222		300		
Kimberly	0-60	60		2.0-6.0	8	480		480		
	1						iii			
Koehler	0-31	31		6.0-20	9	279	111			
	31-60	29	duripan	<0.06	1	29	111	308		
	1									
Mikkalo	0-38	38		0.6-2.0	6	228				
	38-60	22	basalt	>20 .	10	220		448		
M		C				E /				
MOLLOM	1 0-9	У		0.0-2.0	0	54	111			

.

CALCULATION OF THE SOIL PERMEABILITY FOR COLUMBIA BASIN AREA SOILS

•

	PER	MEABILITY	OF INDIVIDUAL SC	DIL LAYERS			Ш	
			RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER THIC	KNESS	LATER ITPE	PERMEABILIIT	SLORE VALUE	INICKNESS		RESULI
	9-14	5		0.2-0.6	4	20	111	
	14-26	12		0.6-2.0	6	72		
	26-60	34	basalt	>20	10	340		486
Onyx	0-60	60		0.6-2.0	6	360		360
Palouse	0-60	60		0.6-2.0	6	360		360
Pedigo	0-60	60		0.6-2.0	6	360		360
Pilot Rock	0-27	27		0.6-2.0	6	162		
	27-45	18	duripan	<0.06	1	18		
	45-60	15		>20	10	150		330
Powder	0-60	60		0.6-2.0	6	360		360
Prosser	0-30	30		0.6-2.0	6	180		
	30-60	30		>20	10	300		480
Quincy	0-60	60		6-20	9	540		540
Rhea	0-60	60		0.6-2.0	6	360		360
Ritzville	0-60	60		0.6-2.0	6	360		360

CALCULATION OF THE SOIL PERMEABILITY FOR COLUMBIA BASIN AREA SOILS

-

	PER	MEABILITY	OF INDIVIDUAL SO RESTRICTIVE	DIL LAYERS		SCORE *		TOTAL
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	iii	RESULT
Royal	0-60	60		2.0-6.0	8	480		480
Carabill		10		2 0-6 0	8	152		
Sageniti	1 10-19	1 9 / 1		2.0-0.0	8	2/4		308
	19-00	41		0.0-2.0	0	240		370
Shapo	I I 0-60	60		0 6-2 0	6	360		360
3110110		00		0.0 2.0	U			
Soow	I I 0-60	60		0.6-2.0	6	360	ш	360
	1						111	
Taunton	0-5	5		2.0-6.0	8	40	iii	
	5-24	19		0.6-2.0	6	114	iii	
	24-60	36	duripan	<0.06	1	36	III	190
	1							
Thatuna	0-37	37		0.6-2.0	6	222		
	37-60	23		0.06-0.2	2	46	111	268
Valby	0-30	30		0.6-2.0	6	180	- 111	
	30-60	30	basalt	>20	10	300	111	480
	1							
Veazie	0-24	24		0.6-2.0	6	144	III	
	24-60	36		>20	10	360		504
Waha	0-13	13		0.6-2.0	6	78		
	13-28	15		0.2-0.6	4	60		
	28-60	32	basalt	>20	10	320		458

CALCULATION OF THE SOIL PERMEABILITY FOR COLUMBIA BASIN AREA SOILS

	PEF	RMEABILITY	OF INDIVIDUAL S	OIL LAYERS		SCOPE *		TOTAL
SOIL SERIES	 LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
Walla Walla	0-60	60		0.6-2.0	6	360	Ш	360
	I							
Warden	0-60	60		0.6-2.0	6	360		360
	I						111	
Willis	0-29	29		0.6-2.0	6	174		
	29-40	11	duripan	<0.06	1	11		
	40-60	20	basalt	>20	10	200	111	385
	ł						111	
Winchester	0-60	60		6.0-20	9	540	111	540
	Ì							
Yakima	0-30	30		0.6-2.0	6	180		
	30-60	30		>20	10	300	111	480

CALCULATION OF THE SOIL PERMEABILITY FOR COLUMBIA BASIN AREA SOILS

APPENDIX C. TABLE C-2

SOIL SERIES 	SCORE PERMEABILIT TIMES THICKNESS OF LAYERS	IES Score	 	LEACHING POTENTIAL
Adkins	480	8	Well	HIGH
Anderly	480	8	Well	HIGH
Athena	360	6	Well	MODERATE
Burbank	570	10	Excessively	VERY HIGH
Burke	170	3		VERY LOW
Cantala	360	6	Well	MODERATE
Condon	476	8	Well	HIGH
Cowsly	209	3	Hoderately well	LOW
Ellisforde	288	4	 Well	LOW
Endersby	494	9	Somewhat excessively	VERY HIGH
Esquatzel	 360	6	 Well	MODERATE
Freewater	520	9	 Somewhat excessively	VERY HIGH
Hermiston	 360	6	 Well	MODERATE
Hezel	 330	6		HIGH
Irrigon	 360	6		MODERATE
Kimberiy	 480	8	 Well	HIGH
Koehler	308	5		MODERATE
Mikkalo	448	8	 Well	HIGH
Morrow	 486	8	I II Well	HIGH

RATING OF COLUMBIA BASIN AREA SOILS FOR LEACHING POTENTIAL

RATING OF COLUMBIA BASIN AREA SOILS FOR LEACHING POTENTIAL

SOIL SERIES	SCORE PERMEABILIT TIMES THICKNESS OF LAYERS	IES Score	DRAINAGE CLASS	 LEACHING POTENTIAL
 Onyx	360	6	Well	MODERATE
Palouse	360	6	Well	 MODERATE
 Pedigo	360	6	Somewhat poorly	MODERATE
Pilot Rock	330	6	Well	MODERATE
Powder	360	6	Well	MODERATE
Prosser	480	8	Well	HIGH
Quincy	540	9	Well	HIGH
Rhea	360	6	Well	MODERATE
Ritzville	360	6	Well	MODERATE
Royal	480	8	Well	HIGH
Sagehill	398	7	Well	MODERATE
Shano	 360	6	Well	MODERATE
Snow	 360 ·	6	l Well	MODERATE
Taunton	 190	3	1 Well 1	VERY LOW
Thatuna	 268	4	Moderately well	MODERATE
Valby	 480	8	Well 	HIGH
Veazie	504	9	Well 	HIGH
Waha	458	8	Well 	HIGH
Walla Walla	360	6	Well 	MODERATE
Warden	360 	6	Well 	MODERATE
	1			

SOIL SERIES	SCORE PERMEABI	LITIES S	 		LEACHING
	OF LAYERS	Score	DRAINAGE CLASS		POTENTIAL
 Willis	385	7	Well		MODERATE
	l		ļ		
Winchester	540	9	Excessively		VERY HIGH
	1	·	1	11	
Yakima	480	8	Well	11	HIGH

RATING OF COLUMBIA BASIN AREA SOILS FOR LEACHING POTENTIAL

APPENDIX C. TABLE C-3

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Adkins	1.5	7	10.5
Anderly	1.5	10	15
Athena	3	15	45
Burbank	0.75	5	3.75
Burke	1.5	4	6
Cantala	 2	13	26
Condon	2.5	7	17.5
Cowsly	1.5	15	22.5
Ellisforde	 1.5	8	1 12
Endersby	2	10	20
Esquatzel	 1.5	7	10.5
Freewater	 1.5	4	6
Hermiston	 2	16	32
Hezel	 0.25	7	1.75
Irrigon	 0.75	3	2.25
Kimberly	 1.5	10	15
Koehler	 0.75	4	3
Mikkalo	 1.5	3	4.5
Morrow	 1.5	9	 13.5

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH FOR COLUMBIA BASIN AREA SOILS

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Onyx	2.5	8	20
Palouse	3	24	72
Pedigo	3	34	102
Pilot Rock	2	10	20
Powder	4	13	52
Prosser	1.5	4	6
Quincy	0.75	15	11.25
Rhea	1.5	14	21
Ritzville	1.5	9	13.5
Royal	0.75	5	3.75
Sagehill	0.75	5	3.75
Shano	1.5	8	12
Snow	3.5	21	73.5
Taunton	1.25	5	6.25
Thatuna	 4_5	19	85.5
Valby	 1.5	8	12
Veazie	2.5	9	22.5
Waha	2.5	 13 	32.5
Walla Walla	2.5	 13	32.5
Warden	2	6	12
Willis	 1.5	 8	 12
	1	I	l

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH FOR COLUMBIA BASIN AREA SOILS

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH FOR COLUMBIA BASIN AREA SOILS

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	M C T	NULTIPLIED RESULT NGGANIC MATTER IMES DEPTH
Winchester	0.75	12	ļ	9
Yakima	2.5	30	l	75

APPENDIX C. TABLE C-4

SOIL SERIES	SURFACE	TEXTURE Class	 Score	RESULT OF SUR ORGANIC MATTER * DEPTH Sc	FACE R pre	SORPTION POTENTIAL
Adkins	vfsl	medium	3	10.5	8	LOW
Anderly	sil	medium	3	15	6	MODERATE
Athena	sil	medium	3	45	4	HIGH
Burbank	ls	coarse	5	3.75	10 	VERY LOW
Burke	sil	medium	3	6	10	VERY LOW
Cantala	 sil	medium	3	26	6	MODERATE
Condon	l sil	medium	3	17.5	6	MODERATE
Cowsly	 sil	medium	3	22.5	6	MODERATE
Ellisforde	l sil	medium	3	12	8	LOW
Endersby	 t	medium	3	20	6	MODERATE
Esquatzel	 sil	medium	3	10.5	8	LOW
Freewater	 vg.l	medium + 1	4	 6	10	i very low
Hermiston	 sil	medium	3	32	4	нтен
Hezel	 lfs	coarse	5	 1.75	10	I VERY LOW
Irrigon	 fsl	mod. coarse	4	2.25	10	VERY LOW
Kimberly	 l	medium	3	 15	6	I MODERATE
Koehler	 ts	coarse	5	3	10	VERY LOW
Mikkalo	 sil	medium	3	 4.5	10 	I VERY LOW
Morrow	l sil	medium	3	13.5	6	MODERATE

RATING OF COLUMBIA BASIN AREA SOILS FOR SORPTION POTENTIAL

SOIL SERIES	SURFACE	TEXTURE Class	Score	RESULT OF SUR ORGANIC MATTE * DEPTH So	RFACE R ore	SORPTION POTENTIAL
Onyx	sil	medium	3	20	6	MODERATE
Palouse	sil	medium	3	72	2	HIGH
Pedigo	sil	medium	3	102	2	HIGH
Pilot Rock	sil	medium	3	20	6	MODERATE
Powder	sil	medium	3	52	4	HIGH
Prosser	vfsl	medium	3	6	10	VERY LOW
Quincy	lfs	coarse	5	11.25	8	VERY LOW
Rhea	sil	medium	3	21	6	MODERATE
Ritzville	sil	medium	3	13.5	6	MODERATE
Royal	fsl	mod. coarse	4	3.75	10	VERY LOW
Sagehill	fsl	mod. coarse	4	3.75	10	VERY LOW
Shano	sil	medium	3	 12	8	LOW
Snow	sil	medium	3	73.5	2	HIGH
Taunton	fsl	mod. coarse	4	 6.25	10	VERY LOW
Thatuna	sil	medium	3	85.5	2	HIGH
Valby	sil	medium	3	 12	8	LOW
Veazie	l	medium	3	22.5	6	MODERATE
Waha	 sil	medium	3	32.5	4	HIGH
Walla Walla	l sil	medium	3	32.5	4	I HIGH
Warden	 vfsl 	medium	3	 12 	8	 LOW

RATING OF COLUMBIA BASIN AREA SOILS FOR SORPTION POTENTIAL

•

SOIL SERIES	 SURFACE 	TEXTURE Class	 Score	RESULT OF SURFACE ORGANIC MATTER * DEPTH Score	 	SORPTION POTENTIAL
Willis	sil	medium	3	12 8		LOW
Winchester	 S 	coarse	5	98		VERY LOW
Yakima	g.sil	medium + 1	4	75 2	İİ	MODERATE

RATING OF COLUMBIA BASIN AREA SOILS FOR SORPTION POTENTIAL

APPENDIX C. TABLE C-5

RATING OF COLUMBIA BASIN AREA SOILS FOR PESTICIDE MOVEMENT POTENTIAL

•

SOIL SERIES	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Adkins	HIGH	LOW	VERY HIGH
Anderly	HIGH	MODERATE	HIGH
Athena	MODERATE	HIGH	LOW
Burbank	VERY HIGH	VERY LOW	VERY HIGH
Burke	VERY LOW	VERY LOW	MODERATE
Cantala	MODERATE	MODERATE	MODERATE
Condon	HIGH	MODERATE	 HIGH
Cowsly	LOW	 MODERATE	
Ellisforde	LOW	 LOW	MODERATE
Endersby .	VERY HIGH	MODERATE	VERY HIGH
Esquatzel	MODERATE	 LOW	 HIGH
Freewater	VERY HIGH	UVERY LOW	VERY HIGH
Hermiston	MODERATE	 HIGH	 LOW
Hezel	HIGH	VERY LOW	 VERY HIGH
'Irrigon	MODERATE	VERY LOW	 HIGH
Kimberly	HIGH	I MODERATE	 HIGH
Koehler	MODERATE	VERY LOW	HIGH
Mikkalo	HIGH	I VERY LOW	VERY HIGH
Morrow	HIGH	I MODERATE	 HIGH

RATING OF COLUMBIA BASIN AREA SOILS FOR PESTICIDE MOVEMENT POTENTIAL

 SOIL SERIES 	LEACH POTENTIAL	SORPTION POTENTIAL	PESTICIDE MOVEMENT POTENTIAL
Onyx	MODERATE	MODERATE	MODERATE
Palouse	MODERATE	HIGH	 LOW
Pedigo	MODERATE	HIGH	II II LOW
Pilot Rock	MODERATE	MODERATE	MODERATE
Powder	MODERATE	HIGH	 LOW
Prosser	HIGH	VERY LOW	 VERY HIGH
Quincy	HIGH	VERY LOW	II VERY HIGH
Rhea	MODERATE	MODERATE	MODERATE
Ritzville	MODERATE	MODERATE	 MODERATE
Royal	HIGH	VERY LOW	VERY HIGH
Sagehill	MODERATE	VERY LOW	HIGH
Shano	MODERATE	LOW	II HIGH
Snow	MODERATE	HIGH	 LOW
Taunton	VERY LOW	VERY LOW	II MODERATE
Thatuna	MODERATE	HIGH	 LOW
Valby	HIGH	LOW	VERY HIGH
Veazie	HIGH	MODERATE	 HIGH
Waha	HIGH	HIGH	II MODERATE
 Walla Walla	MODERATE	HIGH	 LOW
 Warden	MODERATE	LOW	 HIGH
APPENDIX C. TABLE C-5 (Continued)

RATING OF COLUMBIA BASIN AREA SOILS FOR PESTICIDE MOVEMENT POTENTIAL

SOIL SERIES	LEACH POTENTIAL	 SORPTION POTENTIAL	 	PESTICIDE MOVEMENT POTENTIAL
		1		
Willis	MODERATE	LOW		HIGH
			11	
Winchester	VERY HIGH	VERY LOW		VERY HIGH
1		1		
Yakima İ	HIGH	MODERATE	11	HIGH

136

APPENDIX C. TABLE C-6

			••••••
SOIL	р А	RANGE FOR	PERCENT
SERIES	HORIZON	PROFILE	SLOPE
Adkins	6.6-7.3	6.6-8.4	0 - 25
Anderly	6.6-7.3	6.6-7.8	1 - 35
Athena	6.1-7.3	6.1-9.0	0 - 55
Burbank	7.4-8.4	7.4-8.4	0 - 45
Burke	7.4-8.4	7.4-9.0	0 - 30
Cantala	6.6-7.3	6.6-7.8	1 - 35
Condon	6.1-7.3	6.1-7.8	0 - 40
Cowsly	 6.1-7.3	6.1-7.3	2 - 20
Ellisforde	6.6-7.8	6.6-9.0	0 - 60
Endersby	 6.6-7.8	6.6-7.8	0 - 3
Esquatzel	 6.6-7.8	6.6-8.4	0 - 5
Freewater	6.6-7.3	6.6-7.3	0 - 3
Hermiston	 6.6-7.8	6.6-9.0	0 - 3
Hezel	6.6-8.4	6.6-9.0	0 - 30
Irrigon	6.6-7.3	6.6-7.3	2 - 12
Kimberly	6.6-7.8	6.6-9.0	0 - 3
Koehler	7.4-8.4	7.4-8.4	0 - 10
Mikkalo	 6.6-7.8	6.6-9.0	0 - 40
Morrow	 6.6-7.3	6.6-8.4	 1 - 40

NATIVE PH AND PERCENT SLOPE OF COLUMBIA BASIN AREA SOILS

APPENDIX C. TABLE C-6 (Continued)

SOIL SERIES	P A HORIZON	H RANGE FOR PROFILE	PERCENT SLOPE
Onyx	6.6-7.8	6.6-7.8	0 - 5
Palouse	6.6-7.3	6.6-7.8	0 - 60
Pedigo	>8.4	7.9-8.4	0 - 3
Pilot Rock	6.6-7.3	6.6-9.0	1 - 40
Powder	6.6-8.4	6.6-8.4	0 - 3
Prosser	6.6-8.4	6.6-8.4	0 - 30
Quincy	6.7-8.4	6.7-8.4	2 - 12
Rhea	6.6-7.3	6.6-9.0	1 - 50
Ritzville	6.6-7.8	6.6-9.0	0 - 60
Royal	7.4-7.8	7.4-9.0	0 - 35
Sagehill	 6.6-8.4	6.6-9.0	0 - 35
Shano	6.6-8.4	6.6-9.0	0 - 65
Snow	6.6-7.8	6.6-7.8	3 - 30
Taunton	 7.4-8.4	7.4-9.0	0 - 45
Thatuna	 5.6-7.3	5.6-7.3	1 - 50
Valby	 6.6-7.8	6.6-8.4	1 - 30
Veazie	 6.1-7.3	6.1-7.3	0 - 5
Waha	6.1-6.5	6.1-7.3	0 - 65
Walla Walla	 6.6-7.8	6.6-9.0	0 - 60
Warden	 6.6-7.8 	6.6-9.0	0 - 65

NATIVE PH AND PERCENT SLOPE OF COLUMBIA BASIN AREA SOILS

APPENDIX C. TABLE C-6 (Continued)

NATIVE pH AND I	PERCENT SLOPE OF	COLUMBIA BASIN	AREA SOILS
		рł	
SOIL	A	RANGE FOR	PERCENT
SERIES	HOR I ZON	PROFILE	SLOPE
Willis	6.6-7.8	6.6-9.0	0 - 30
Winchester	6.1-8.4	6.1-8.4	0 - 10
Yakima	6.1-7.8	6.1-7.8	0 - 3

,

139

.

APPENDIX D

SIMULATIONS WITH KLAMATH FALLS BASIN SOILS

APPENDIX D. TABLE D-1

	PER	MEABILITY	OF INDIVIDUAL SOIL	AYERS		SCODE *		TOTAL
SOIL SERIES	 LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS		RESULT
	 0-30	30	••••••	0.06-0.2	2	60	111	
	30-60	30		2.0-6.0	8	240	111	300
	i							
Bedner	0-21	21		0.06-0.2	2	42		
	21-31	10	duripan	<0.06	1	10	111	
	31-60	29		0.2-0.6	4	116		16
							Ш	
Calder	0-8	8		0.06-0.2	2	16		
	8-14	6		<0.06	1	6	111	
	14-60	46	duripan	<0.06	1	46		6
	l l						111	
Calimus	0-60	60		0.6-2.0	6	360		36
	1							
Capona	0-25	25		0.6-2.0	6	150		
	25-60	35	basalt	>20	10	350		50
	I							
Deter	0-60	60		0.06-0.2	2	120	- 111	12
	1							
Dodes	0-12	12		0.6-2.0	6	72	111	
	12-22	10		0.2-0.6	4	40		
	22-60	38	prt wth. sandstone	0.06-0.2	2	76		18
	l							
Fordney	0-8	8		2.0-6.0	8	64		
	8-60	52		6.0-20	9	468		53

CALCULATION OF THE SOIL PERMEABILITY FOR KLAMATH COUNTY SOILS

APPENDIX D. TABLE D-1 (Continued)

	PER	MEABILITY	OF INDIVIDUAL SOIL	LAYERS				
	Ì		RESTRICTIVE			SCORE *		TOTAL
SOIL SERIES	LAYER THIC	KNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	111	RESULT
 Harriman	0-18	18		0.6-2.0	6	108	111	
	18-42	24		0.2-0.6	4	96	111	
	42-48	6		0.6-2.0	6	36		
	48-60	12	lacust. bedrock	0.6-2.0	6	72		312
Henley		11		0.6-2.0	6	66		
nencey	1 11-36	25		0.6-2.0	6	150	iii	
	36-60	24	duripan	<0.06	1	24		240
Lakeview	0-14	14		0.2-0.6	4	56		
	14-60	46		0.2-0.6	4	184		240
Laki	0-60	60		0.6-2.0	6	360		360
Lobert	 0-60	60		0.6-2.0	6	360		360
Modoc	0-12	12		0.6-2.0	6	72		
	12-36	24		0.2-0.6	4	96		
	36-41	5	duripan	<0.06	1	5	111	
	41-60	19		0.6-2.0	6	114	Ш	287
Poe	 0-30	30		2.0-6.0	8	240		
	30-60	30	duripan	<0.06	1	30		270
Scherrard	 0-5	5		0.06-0.2	2	10		

.

•

.

CALCULATION OF THE SOIL PERMEABILITY FOR KLAMATH COUNTY SOILS

142

.

APPENDIX D. TABLE D-1 (Continued)

) PE	RMEABILITY	OF INDIVIDUAL SO RESTRICTIVE	DIL LAYERS		SCORE *		TOTAL
LAYER THI	CKNESS	LAYER TYPE	PERMEABILITY	SCORE VALUE	THICKNESS	III	RESULT
5-21	16		0.06-0.2	2	32	111	
21-33	12	duripan	<0.06	1	12	111	
33-60	27		0.6-2.0	6	162		216
0-60	60		6-20	9	540		540
0-60	60		0.6-2.0	6	360		360
	PE LAYER THI 5-21 21-33 33-60 0-60 0-60	PERMEABILITY LAYER THICKNESS 5-21 16 21-33 12 33-60 27 0 60 0 60	PERMEABILITY OF INDIVIDUAL Second s	PERMEABILITY OF INDIVIDUAL SOIL LAYERS RESTRICTIVE LAYER THICKNESS LAYER TYPE PERMEABILITY 5-21 16 0.06-0.2 21-33 12 duripan <0.06	PERMEABILITY OF INDIVIDUAL SOIL LAYERS RESTRICTIVE LAYER THICKNESS LAYER TYPE PERMEABILITY SCORE VALUE 5-21 16 0.06-0.2 2 21-33 12 duripan <0.06	PERMEABILITY OF INDIVIDUAL SOIL LAYERS SCORE * LAYER THICKNESS LAYER TYPE PERMEABILITY SCORE VALUE THICKNESS 5-21 16 0.06-0.2 2 32 21-33 12 duripan <0.06	PERMEABILITY OF INDIVIDUAL SOIL LAYERS RESTRICTIVE SCORE * LAYER THICKNESS LAYER TYPE 5-21 16 0.06-0.2 2 21-33 12 duripan <0.06

.

CALCULATION OF THE SOIL PERMEABILITY FOR KLAMATH COUNTY SOILS

PATING O	E KAIMATH	COUNTY	SOILS	FOR	LEACHING	POTENTIAL
KALING U)F KALMAIN	LUUNIT	20112	ruk	LEACHING	FOILAITAL

SOIL SERIES	SCORE PERMEABI	LITIES	1	11
	TIMES THICKNES	S		LEACHING
	OF LAYERS	Score	DRAINAGE CLASS	
Algoma	300	5	Poorly	MODERATE
Bedner	 168	3	Moderately well	LOW
Calder	68	1	Hoderately well	U VERY LOW
Calimus	360	6	Well	MODERATE
Capona	500	9	Well	HIGH
Deter	 120	2	Well	II VERY LOW
Dodes	 188	3	 Well	VERY LOW
Fordney	532	9	Excessively	VERY HIGH
Harriman	312	5	 Welt	LOW
Henley	 240	4	Somewhat poorly	MODERATE
Lakeview	240	4	 Moderately well	MODERATE
Laki	360	6	i Moderately well 	MODERATE
Lobert	360	6	i j Well	MODERATE
Modoc	287	5	l Well	LOW
Poe	270	4	Somewhat poorly	MODERATE
Scherrard	216	3	Somewhat poorly	LOW
Sycan	540	9	Excessively	VERY HIGH
Tulana	360	6	ı Poorly	HIGH

SOIL SERIES	ORGANIC MATTER SURFACE ZONE (est. percent)	DEPTH SURFACE ZONE (inches)	MULTIPLIED RESULT ORGANIC MATTER TIMES DEPTH
Algoma	7	11	77
Bedner	3.5	6	21
Calder	2.5	5	12.5
Calimus	4	14	56
Capona	1.5	 11	16.5
Deter	3.5	8	28
Dodes	2	 12	24
Fordney	2	8	 16
Harriman	1.5	18	27
Henley	1.5	 11	 16.5
Lakeview	2	14	28
Laki	1.5	19	 28.5
Lobert	3	9	 27
Modoc	1.5	12	 18
Poe	2	9	l 1 18
Scherrard	4	10	40
Sycan	1.5	5	7.5
Tulana	6.5	23	 149.5

CALCULATION OF SURFACE ORGANIC MATTER MULTIPLIED BY SURFACE DEPTH FOR KLAMATH COUNTY SOILS

SOIL SERIES	SURFACE	TEXTURE Class	Score	RESULT OF SURFACE ORGANIC MATTER * DEPTH Score	 	SORPTION POTENTIAL
Algoma	sil	medium	3	77	2	HIGH
Bedner	cl	mod. fine	2	21	6 11	MODERATE
Calder	sil	medium	3	12.5	8	LOW
Calimus	ι	medium	3	56	2	HIGH
Capona	ι	medium	3	16.5	6	MODERATE
Deter	cl	mod. fine	2	28	4	HIGH
Dodes	ι	med i um	3	24	6 11	MODERATE
Fordney	lfs	coarse	5	16	6	LOW
Harriman	1	medium	3	27	4	HIGH
Henley	ι	medium	3	16.5	6 11	MODERATE
Lakeview	sicl	fine	1	28	4	HIGH
Laki	ι	medium	3	 28.5	4	HIGH
Lobert	ι	medium	3	 27	4	HIGH
Modoc	 sl	mod. coarse	4	 18	6	LOW
Poe	 lfs	coarse	5	1 18	6 11	LOW
Scherrard	cl	mod. fine	2	i 40	4	HIGH
Sycan	 ls	coarse	5	1 7.5	8 1	VERY LOW
Tulana	 sil	medium	3	1 149.5	1	VERY HIGH

RATING OF KLAMATH COUNTY SOILS FOR SORPTION POTENTIAL

 I			PESTICIDE
	LEACH	SORPTION	MOVEMENT
	POTENTIAL	POTENTIAL	POTENTIAL
lgoma	MODERATE	HIGH	LOW
ediner	LOW	MODERATE	LOW
alder	VERY LOW	LOW	¦ LO₩
alimus	MODERATE	HIGH	LOW
apona	HIGH	MODERATE	HIGH
eter l	VERY LOW	HIGH	U VERY LOW
odes	VERY LOW	MODERATE	U VERY LOW
ordney ·	VERY HIGH	LOM	VERYHIGH
arriman	LOW	HIGH	VERY LOW
enley	MODERATE		II MODERATE
.akeview	MODERATE	HIGH	LOW
.aki	MODERATE	I HIGH	LOW
.obert	MODERATE	HIGH	LOW
fodoc	LOW	LOW	MODERATE
Poe	MODERATE	LOW	HIGH
Scherrard	LOW	HIGH	U VERY LOW
Sycan	VERY HIGH	VERY LOW	U VERY HIG
Tulana	HIGH	VERY HIGH	MODERATE

•

APPENDIX D. TABLE D-6

NATIVE PH AND PERCENT SLOPE OF KLAMATH COUNTY SOILS

рН			
SOIL SERIES	A HOR I ZON	RANGE FOR PROFILE	PERCENT
Algoma	7.9-9.0	7.9-9.0	0 - 1
Bedner	6.6-8.4	6.6-8.4	0 - 1
Calder	6.6-7.3	6.6-7.3	 0-1
Calimus	6.1-8.4	6.1-8.4	 0 - 35
Capona	6.1-7.3	6.1-7.3	 0 - 35
Deter	6.1-7.3	6.1-8.4	0 - 15
Dodes	6.1-7.3	6.1-7.3	 0 - 15
Fordney	6.6-8.4	6.6-8.4	 0 - 20
Harriman	6.6-7.3	6.6-8.4	0 - 35
Kenley	>8.4	7.9-9.0	0 - 2
Lakeview	6.6-7.3	6.6-7.8	0 - 2
Laki	7.9-9.0	7.9-9.0	 0-2
Lobert	6.1-7.3	6.1-7.3	 0 - 25
Modoc	6.1-7.3	6.1-8.4	 0-9
Poe	>7.8	>7.8	0-2
Scherrard	7.4-9.0	7.4-9.0	0 - 1
Sycan	6.6-7.8	6.6-7.8	0 - 2
Tulana	6.6-7.8	6.6-7.8	0 - 1