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SIDUR - A FORMALISM FOR SiRUCTURING KNOWLEDGE BASES

INTRODUCTION AND MOTIVATION

Database and Artificial Intelligence (AI) technologies represent the

extremes of a continuum on which the solutions to information intensive

problems fall. These two technologies can be distinguished by the type of

information they use as well as the way they represent, store, access and

manipulate it.

Database applications are usually well understood and can be realized

through algorithmic methods. They require the maintenance of large

collections of facts which may change over time, but have a somewhat regular

structure. Therefore, the overriding concerns in representing and controlling

the information include data independence, integrity and consistency of the

stored information, and efficiency of manipulation [Dat81b].

Artificial Intelligence, on the other hand, is usually applied to problems

which are not fully understood. These problems therefore require the use of

heuristic inference techniques, because algorithmic solutions are unfeasible

[Barr81]. The information these problems require may not have a regular

structure and is often highly interconnected. Furthermore, the amount of

individual pieces of information is often much less than in database domains,

numbering only in the thousands, rather than in the millions. The important

considerations in these applications are representational richness to capture

the semantic nuances of the problem domain and amenability to manipulation

by the inference mechanism.

Recently, it has become apparent that there are many applications that

require combined features from Database and Artificial Intelligence
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technologies. These applications are characterized by a need to maintain large

databases while also requiring the inference capabilities of Artificial Intelligence

systems. Systems which address these applications have been called 'Knowledge

Information Processing' [Fuch82; Ohsu82; Suwa82], 'Knowledge Management'

[Ke1182] and 'Knowledge Base' [Wied84] systems.

Such systems must be capable of performing some deduction not only

during retrieval operations, but during updates as well [Ohsu82; Wied84].

Furthermore, they must present a irniform conceptual structure which can lend

itself to manipulation by general purpose reasoning mechanisms (such as those

based on first order logic).

The characteristics of these applications require inference mechanisms

which are not search-based, but capable of representing and performing simple

inferences on their own, as well as interfacing to more general and powerful

deductive systems. Such mechanisms must meet the functional requirements

of these new applications while at the same time reconciling two sets of

conflicting demands: representational adequacy or naturalness and

computational effectiveness. Representational adequacy refers to the ease with

which important aspects of the application can be expressed within the

constructs of the model. Computational effectiveness includes the pragmatics

of an application, such as avoiding combinatorial searches to minimize response

times.

The work presented in this paper describes a formalism for structuring

information based on a user oriented model of information. This formalism,

called SIDUR, integrates a manipulation mechanism with the representation

components of the model using a declarative notation known as the sigma

expression. These components can then be combined to form high-level,

semantically motivated schema designs. In particular, they enable the

specification of transactions, constraints and virtual information in a declarative

and natural way.
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Integrating representation paradigms is not a new idea, and the next

section discusses related research efforts, pointing out those which are

applicable to this new class of problems. Section 3 describes our information

model, SIDUR and its application in the development of the knowledge base for a

manager's decision support system. Section 4 presents conclusions and points

to further research.
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RELATED EFFORTS

The integration of different representation and manipulation paradigms is

not a novel approach. Other independent work can be roughly classified into

three major lines of development. The first of these attempts to integrate the

inferencing capabilities of logic based formalisms with the descriptive powers of

other knowledge representation schemes. [Brac83] is representative of this

work. The second group attempts to enhance the expressive power of data

definition languages with first order logic in order to support deductive question

answering, as exemplified in [Kono81]. There is a third effort that bridges these

two thrusts. The KM-1 architecture [Kell82] uses a logic-based inference engine

to support deductive question answering from relational databases, but also

enhances its knowledge structuring capabilities by providing a semantic

network-like concept graph [Ke1181].

The KRYPTON system [Brac83; Brac82] differentiates between

terminological and assertional competence. Terminological competence refers

to the ability to represent the specialized vocabulary used in application

domains and to maintain the relationships between the various terms. This

ability is best embodied by such knowledge representation mechanisms as KL-

ONE [Brac79]. Assertional competence, on the other hand, implies the ability to

form a theory of the world knowledge required to solve problems in a particular

domain and to reason with this theory. This type of competence is best achieved

in a first order logic framework, because the inferences required to support it

are much more complex. Brachman suggests that the two forms of competence

can be integrated in a, system where a KL-ONE style classifier [Lipk82] provides

the terminological component, while a general theorem prover provides the

assertional capability. Related works in this area include [Rich82] and [Moor82].

[Kono81] presents a method of formally representing the information

contents of a relational database with the primary aim of supporting deductive
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question answering. This is done by taking the view that the database forms a

model for a first order language based on the tuple relational calculus [Ul 1m80].

The application domain itself is a model of another first order language, called a

metalanguage, based on the domain relational calculus. User queries concern

the application domain itself, not merely the database, so they are posed in the

metalanguage. The two languages are integrated by mappings which generate

database requests when answering a query requires extensional information.

Other related works are found in [Ga1178] and [Ga1181].

The KM-1 architecture [Ke1182; Ke1184] supports the definition of virtual

relations derived from explicitly stored data. It consists of an inference

machine and a searching engine, each maintaining its own separate database.

An Intensional Data Base contains first order logic statements (called premises),

semantic advice rules and a type hierarchy used by the deductive component

known as DADM [Ke1181] for developing plans for searching and computing over

the extensional store. The Extensional Data Base can be any database although

most KM-1 development has focused on relational databases and the current

KM-1 configuration connects the deductive engine to a Britton-Lee IDM-600

relational database machine [BLI83]. The inferential component of the KM-1

architecture includes a concept graph to aid database administrators in

maintaining potentially large numbers of virtual relations (derived predicates).

Its maintenance is a cooperative task between the database administrator and

the system itself.

Although these works bear some relationship to the SIDUR effort, they do

not provide a complete database interface. The KM-1 application must resort to

mechanisms provided by the underlying database management system

(currently the IDM-600) in order to perform updates. The KRYPTON system aids

the maintenance of complex descriptions for the development of expert systems

(for example a computer systems configurator [Free83]), however it does not

address the problem of managing large databases. Finally, while Konolige's work
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addresses issues important to deductive question answering, other elements of a

database interface, namely updates, are not treated.

These works assume a static application domain where meaningful world

events do not reflect changes in database states. In contrast, one of the basic

constructs of the SIDUR formalism provides a structure around which database

transactions may be built. The emphasis in SIDUR is to provide useful inference

capabilities in all phases of Knowledge Management, including updates.
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SIDUR FRAMEWORK

SIDUR provides five basic constructs: Data. Value Classes, Object Classes,

Situations, Computations and Actions. Each SIDUR construct is defined by a set

of slots which specify the form of the construct and its connection to other

constructs. These slots can be divided into two classes: descriptive and

interpretative. Descriptive slots describe the inherent properties and

constraints of a construct, while interpretive slots describe the connections

between constructs of the same or different types.

A complete treatment of the syntax and semantics of the model is given in

[Frei83]. This section outlines the components of the model as well as its

manipulation language. The examples used throughout this section are taken

from the schema of a database underlying a decision support system for project

managers [Koga84], for which a complete SIDUR specification is given in the

appendix.

Data Value Classes

Data Value Classes specify displayable or publicly available data and the

form these data may take. They are analogous to data type specifications in

traditional programming languages.

The purpose of the data value class definitions is to allow the schema

designer to assign names to recognizable classes of data type values, which may

later serve as representatives for specific objects of interest to the application..

Two aspects of these definitions permit initial levels of integrity constraints: the

interpretation of the class and the precise formats to which values in the class

must adhere.
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A data value class specification can have up to six descriptive slots defined

below. Figure 1 shows the definition of three data value classes from the sample

schema.

(data-value-class: EmployeelD
(type: INTEGER)
(minval: 1)
(maxval: 99999)

)

(data-value-class: Person Name
(type: STRING)
(size: 30)
(form: t"A"-"Z"H"a"-"z1 < 15 ".2 ["A"-"Z"]{"a"-"z"] < 15)

)

(data-value-class: Salary
(type: REAL)
(minval: 0.0)
(maxval: 99999.00)
(precision: 8.2)

)

Figure 1- Data Value Class definitions.

The primary reason for the type slot is for checking the suitability of

individual values as arguments to computations. The size and form slots are

optional; respectively they permit the schema designer to allocate a maximum

number of characters for string data and a regular expression format for

defining acceptable members of the class. The maxval and minval slots specify

the range of permissible values for numeric data. The precision slot guarantees

that all operations on data of type real will be carried out to the specified

number of digits.

In addition to the displayable data values, represented by strings, integers

and real numbers, SIDUR also supports a special internal data value class called

a TOKEN. Values from this class are unique, similar to Lisp GENSYMs [Xero83]

and their use will be made clear in the next section.
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Object Classes

Philosophers, logicians and more recently computer scientists have

recognized the problems which can result from the failure to distinguish

between an object and its representation [Quin4O; Kent78]. Therefore, object

classes indicate the major components of an application and are roughly

equivalent to the specification of the domains underlying a universe of discourse

in logic. It is important to note that data value classes are a purely syntactic

construct; they acquire meaning only when they serve as a name or

representative for objects.

Three descriptive slots are associated with object classes: representative,

superclass, and names. Figure 2 shows examples of object class definitions.

Each object must have a representative which is the name of a data value

class. Notice that although each object must have a representative drawn from

some data value class, not all elements from a given class will necessarily be

representatives for some object. Furthermore, the representatives of important

object classes will generally be TOKENS rather than displayable data. TOKENS,

(object-class: Employee
(representative: TOKEN)
(names: (Person Name Employee Id))
(definition: Is Employee)

(object-class: Manager
(representative: TOKEN)
(superclass! Employee)
(definition: Is Manager)

(object-class: Project
(representative: TOKEN)
(names: (Project Name WorkOrderNumber))
(superclass: Work Order)
(definition: Is Project)

Figure 2 Object Class definitions.
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also known as surrogates [Kent78], are unique non-public data values which

make it possible to separate the representation of an object from any of its

properties including its name.

The names slot provides a way for objects represented by TOKENS to be

externally referenced, for example by users. It contains the name of one or

more associations connecting the tokens with the object's publicly available

names. The definition slot specifies the valid members of an object class. It is

similar in intent to the Be-Relations of [Bork79] and provides a means to enforce

a degree of referential integrity [Dat8la]. The superclass slot induces a type

hierarchy [Smit77] where the specialized class can inherit such properties as

representatives and names from its superclass.

Situations

A situation defines associations among objects which represent meaningful

information about the application. It unifies descriptive concepts commonly

known as attributes and relationships without imposing arbitrary distinctions

between them; this is a desirable feature since such distinctions are notoriously

ambiguous [Kent78] and subject to change depending on the user's view.

In a SIDUR implementation, the situation is the only structure which is

actually mapped into physical storage. Each instance of a situation provides a

connection between the representatives of the participants of that situation. An

instance of that connection is called a binding tuple because it binds the

participants to actual data values. The set of binding tuples which are valid for a

situation at any point in time is called the extension of the situation.

The situation construct has three descriptive slots: participants.

cardinalities, and extension. It also has three interpretive slots: definition,

necessary and required.
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The participants slot specifies those objects which participate in the

situation as well as the roles they play via a sequence of triples of the form:

<role name> / <variable> / <object class>

The purpose of the role names is to provide a position-independent label for the

participant; they do not imply any semantic properties of the filler * other than

those explicitly stated in the definition.

In general, roles are chosen from, but not restricted to, a fixed set which

bears a resemblance to case-grammar fillers [Fi 1168]: agent, object, source,

destination, time, location and value. The variable is used for identification of

the participant within the situation description itself and the object class

provides a domain from which the participant must be drawn.

The cardinalities slot represents a common form of integrity constraint

[Rous79; Brac79] it specifies the maximum number of instances in the current

extension with common values for the individual participants. Figure 3 shows a

partial definition of a situation specifying that a manager, can be in charge of at

most 3 projects.

The extension slot specifies whether the extension of a situation conforms to a

closed or open world assumption [Reit78]. Under the open world assumption, all

negative information must be explicitly represented. This means that separate

extensions for positive and negative instances of the situation are maintained.

(situation: IsTechnicalidanager
(participants: agent/E /Employee object/W/WorkOrder)
(cardinalities: 1 <E>, 3 <P>)

Figure 3- Situation with closed world interpretation.

The meaning of a role filler is, in accordance with the case-grammar terminology, the individual
(data value class, object, etc) with which a particular variable may be instantiated.
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Additionally, there is a potentially large set of instances which do not belong to

either positive or negative extension. For example in a mineral exploration

application, only those field claims which have been tested and are known to

either have (or not have) the desired ores are in the positive (or negative)

extensions of the situation representing known claims; no information can be

inferred concerning the contents of the other (untested) claims *.

Closed world situations, on the other hand, imply a more complete

knowledge about the application. If an instance is not a member of the positive

extension of a closed world situation, it can be inferred to belong to its negative

extension. For example, it can be deduced that an employee is not assigned to

work on a project if that association is not in the extension of the
EmployeeAssignement situation.

In order to complete the definition of situations as well as introduce the two

remaining SIDUR constructs, we must discuss the notation which permits

connections to be specified between constructs of the same or different types.

Sigma Expressions

Thus far only SIDUR's descriptive components have been outlined. SIDUR's

main strength lies in its ability to express higher order components of a

database application such as transaction definitions, inferred situations and

computed situations. The mechanism which permits this expressive power is

called the sigma expression, a symbolic expression syntax which is amenable to

several manipulative interpretations. The sigma expression notation is similar

to that of logic-based languages such as the predicate calculus or its database

variant, the relational calculus [UllmE31].

Real world occurrences of open world situations are not very common, since the Manager's Assis-
tant does not have any meaningful example which could elucidate the concept, one had to be drawn
from another problem domain.
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An atomic sigma expression has the form

(C1 (R : P )... (R n: Pr))

where C is the name of a situation or computation, the R are role names and

the P may be constants or variables.

Open sigma expressions are built from atomic sigma expressions using the

connectives and. or, not and empty. Therefore, if S are atomic sigma

expressions, then the following denote open sigma expressions.

(AND S S k) (OR S S k) (NOT S (EMPTY S

The open sigma expression in Figure 4 specifies that the skills required by a

project P are the same as those associated with employee E.

(AND (HasEmployeeSkills (agent E) (object S))
(HasSkillRequirements (agent W) (object S)))

Figure 4 Sample open sigma expression.

Finally a closed sigma expression is built from an open one via the form

(sigma (V ... V d S

where S is an open sigma expression and the V are variables which may or

may not appear in the expression. Figure 5 shows a closed sigma expression

denoting a project whose expected completion date is not met. The extension of

a closed sigma expression is equivalent to that of the open sigma expression it

contains, projected onto the sigma variables of the expression.
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(sigma (P)
(AM)
(ExpectedCompletionDate (agent P) (time D1))
(Current Date (agent D2))
(LESSTHAN (agent D1) (object D2))

Figure 5 Sample closed sigma expression.

Semantic Interpretations of Sigma Expressions

In order to utilize the syntactically declarative sigma expression to support

inference and update, an operational interpretation must be assigned to these

structures. Most attempts to add inferential capabilities to an information

model [Brac83; Kono81; Ke1178], usually stop with a single semantic

interpretation of intensional expressions. This single interpretation relates

intensional expressions as to their use in query, or data retrieval, but not to

their use in updates.

The SIDUR approach is to explicitly define several interpretations relative to

the model in which the expression is used, for in this fashion a reliable update

semantics. can also be assigned to these expressions. Accordingly, we assign

three distinct manipulative interpretations to sigma expressions, known as

*enquire. *assert and *deny. These interpretations correspond respectively to

inquiry, addition and removal of information.
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*enquire

The *enquire interpretation returns the extension associated with a sigma

expression. It is analogous to DADM's QUERYANALYSIS function and the Prolog

interpreter when used in question answering mode. The rules for determining

which binding tuples belong to the extension of a sigma expression are outlined

below.

The extension of an atomic sigma expression is the extension of its
underlying situation.
The extension of two sigma expressions joined by and corresponds to the
cartesian product of their extensions if they do not have common variables
and the equijoin of their extensions if they do have variables in common.
The extensions of two sigma expressions joined by or corresponds to the
union of the extensions of their component sigma expressions.
The extension of an atomic sigma expression enclosed in not corresponds to
the negative extension if the indicated situation is interpreted under the
open world assumption. Otherwise not is interpreted as set subtraction and
can only be used under certain conditions.
The extension of a sigma expression enclosed in empty is a Boolean (true or
false) value, depending on whether its sigma expression has an empty
extension or not.
The extension of a closed sigma expression corresponds to the relational
projection of the extension of the enclosed open sigma expression onto the
sigma variables.

*assert and *deny

Retrieval operations are only part of the complete set of capabilities an

information manipulation mechanism must possess. The purpose of the *assert

interpretation is to perform such actions are are necessary to ensure that the

extension underlying a sigma expression is not empty. The *deny

interpretation, on the other hand, acts to ensure that the underlying extension

is empty.
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The rules for determining the actions to be performed under the *assert

interpretation are given below,

If S is an atomic sigma expression and it is fully instantiated, update the
extension of S to reflect the binding tuple.
If S is atomic but only partially instantiated, If the representative of the
iininstatiated participant(s) is(are) TOKEN(S), then fill the missing
participant(s) with generated (GENSYM) token(s). If the missing
participant(s) can not tokens, but elements of other data value classes, the
*assert fails as those cannot be generated automatically.
If S is an open sigma expression and the connective is AND Then, ensure
that the common variables are filled with same values, and assert each of
the constituent conjuncts.
If S is an open sigma expression and the connective is NOT And the
underlying sigma expression conforms to the OPEN WORLD assumption,
Then apply *assert to the negative extension and *deny to the positive
extension.
If S is an open sigma expression and the connective is NOT And the
underlying sigma expression conforms to the CLOSED WORLD assumption,
Then remove applicable instances from its extension.
If S is an open sigma expression and the connective is EMPTY Apply the
same interpretation as for negation.
If S is an open sigma expression and the connective is OR Invoke CHOICE to
decide which disjunct receives the *assert interpretation.
IF S is a CLOSED sigma expression apply *assert to its underlying open
sigma expression.

The rules for determining the actions to be taken under the *deny

interpretation applied to a sigma expression S are outlined below.

If S is an atomic sigma expression and conforms to the open world
assumption, then apply *assert interpretation to negative extension of S.
If S is an atomic sigma expression and conforms to the closed world
assumption, then remove applicable instances from its extension.
If S is an open sigma expression and its connective is AND Invoke CHOICE
to decide which conjunct will be applied the *deny interpretation.
If S is an open sigma expression and its connective is OR recursively apply
the *deny interpretation to each of the constituent disjuncts.
If S is an open sigma expression and its connective is NOT apply the
*assert interpretation to S.
If S is an open sigma expression and its connective is EMPTY apply the
*assert interpretation to S.
If S is a closed sigma expression, apply *deny to its underlying open sigma
expression.
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If an atomic sigma expression contains no variables, then its interpretation

is straightforward. Under *assert a binding tuple corresponding to the

constants in the expression is added to the extension of the situation in the

sigma expression, whereas under the *deny interpretation it is removed. This is

done only if constraints specified in the corresponding cardinality, maxval,

minval, and form are not violated. For example, the extension of

*assert [(Has Name (agent TOK001) (value "John Doe"))]

adds the binding tuple

<(agent -> TOK001) (value -> "John Doe")>

to the extension of Has Name That same expression under the *deny

interpretation would effect the removal of the binding tuple.

Atomic expressions containing variables can match several binding tuples.

For example,

(Employee Assignment (agent X) (object T0K999))

represents all employees working for the project represented by the token

TOK999. The *deny interpretation of such expressions demands that alt binding

tuples matching it are removed. Under the *assert interpretation, binding

tuples are added with new tokens created to fill the slots represented by

variables (in a similar fashion to the way GENSYM creates new atoms in Lisp).

However, new tokens are created only for slots whose fillers are token values;

other slots must be filled with actual values. Although SIDUR does not provide

null values, the action construct enables them to be specified in a way

meaningful to the application.

Sometimes the interpretation of sigma expressions produces ambiguity.

This is the case with disjunction under *assert and conjunction under *deny.

Consider, for example, the expression in Figure 6 which can be satisfied by non-

deterministically removing appropriate instances of either conjunct.
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deny [(AND
(HasEmployeeSkills (agent E) (object S))
(HasSicillRequirements (agent W) (object 5)))

Figure 6 *deny in a conjoined sigma expression.

Though it may be possible under certain conditions to infer which choice to

make from context, it is not reasonable to encode these decisions into the data

model itself. A general solution to this problem would require generation of

combinatorial search requests, resulting in unacceptable performance costs.

SIDUR's solution is to invoke a function extraneous to the model called CHOICE

which is assumed to be able to resolve these ambiguities. A particular

implementation of CHOICE depends on the demands of the application :Roth84].

At its simplest, CHOICE returns to the user for more advice.

Back to Situations

In addition to the descriptive slots described above, situations have three

manipulative slots called definition, necessary and required_ The definition slot

either specifies that a situation can be instantiated directly via database lookup,

ie: the extension of the situation is stored directly in the database, or it provides

a formula (via a sigma expression) for deducing the extension. The necessary

and required slots contain expressions representing consistency criteria which

must hold before a situation can be asserted.

The simplest filler for the definition slot is the atom PRIMITIVE. It stipulates

that the extension of a situation is stored directly in the database. In this

respect, it acts much like the "support indicators" associated with each

predicate in DADM [Ke1177].
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However, not all situations need be explicitly stored. An advantage of

higher order information structuring formalisms is their ability to specify

inferred data. A sigma expression filling the definition slot indicates how the

extension of the situation can be deduced. Figure 7 shows a non-primitive

situation defining a qualified employee to be one having those skills required by

a particular work order. The extension of this situation is the extension of the

expression filling the definition slot. As explained earlier, this extension can be

computed via an equijoin over S on the extensions of HasSkils and

Has SkillRequirements

(situation: IsQualifiedFor
(participants: agent /E /Employee object 1W /WorkOrder)
(defalition:
(AND (HasEmployee5kills (agent E) (object 5))

(HasSkillRequirements (agent W) (abject 5)))))

Figure 7 Sample non-primitive situation

The necessary and required slots are filled by sigma expressions and

represent two types of constraints [Serg82].. The term "necessary" can be

viewed in the sense of logically necessary; the expression filling it must always

hold. The required slot, on the other hand, refers to conditions which in general

must hold, but can admit to exceptions, for example, administrative policy

which can be violated when good reason exists.

Operationally, the differences between these two types of constraints are

implemented in the way the two slots are interpreted. The sigma expression

filling the necessary slot is checked before any update is performed by either

the REFLECT or ASSERT operations (see Data Manipulation Interface) The sigma

expression filling the required slot is only checked by the REFLECT operator,

during an ASSERT operation; it may be overridden. For example, the situation

defined in Figure 8 specifies that a project must have a funding source and a

work order number.
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(situation: Is Project
(participants: agent/P /Project)
(required: (HasProjectName (agent P) (value N)))
(necessary:
(AND
(HasFundingSource (agent 13) (value 5))
(HasProjectWorkOrder (agent P) (value W))))

(definition: PRIMITIVE)
(extension: CLOSED)

Figure 8- The necessary slot.

Computations

Computations are special forms of situations which can be thought of as

associations between several "argument" participants and a "result" participant

such that unique combinations of non-result participants (called arguments)

determine a unique result. However, since the potential set of arguments can

be very large, it is clearly impossible to store the extension of a computation.

The computation definition, therefore, provides a method by which the unique

result participant can be determined.

Computations can be defined over individual instances of situations and

used in sigma expressions, such as EARLIER-THAN in Figure 9. This use of

computations is analogous to DADM's "compute relations" [Ke1177] or the use of

"experts" in [Ston80].
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(computation: EARIJER-THAN
(participants: domain-1 /X/DATE domain-2 /Y/DAIL)
(definition: SYSTEM)

(situation: LateProject
(participants: agent /P /Project)
(definition: (sigma (P)

(AND
(ExpectedCompletionDate (agent P) (time D1))
(CurrentDate (agent D2))
(EARLIER-THAN (agent D1) (object D2)))))

Rowe 9- Computations over individual instances.

Computations can also be defined over whole extensions, permitting the

specification of aggregate information, a common component of database

applications. Figure 10 specifies a computation listing the number of employees

assigned to work on each project.

(computation: COUNT-OF
(participants: domain/X /EXTENSION -OF (3)

measure /Y/ROLE-OF (S)
result/Z/INTEGER)

(definition: SYSTEM)

(computation: NumberOfEmployeesPerProject
(participants: agent /P /Project value /N/INTEGER)
(definition:
(sigma (P

(AND
(EmployeeAssignment (agent: El) (object: P))
(COUNT-OF
(domain:
(sigma (E2)

(EmployeeAssignrnen.t
(agent: E2) (object: P))))

(measure: E2)
(result: N)))))

Figure 10 Computations over whole extensions.

Notice that no additional notation is required to specify the partition on the

extension of the EmployeeAssignment situation. Such additional constructs as
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"group by" found in languages like QUEL [Yous77] and SQL [Cham76], are

unnecessary because the attributes which induce a partition can be explicitly

delineated by linking the appropriate sigma variables. Operationally, the

extension of the sigma expression filling the domain role is a vector composed of

employee instances representing all assignments to one particular project. One

such vector is constructed and its cardinality is determined for each instance in

the extension of the first sigma expression. Finally the cardinality of each

vector representing the number of employees assigned to the project is

associated with the project itself via the sigma variable P. This is similar to the

implementation of aggregates in Ingres as described in [Epst79].

Actions

Actions describe events in the application domain which affect the

underlying database. These constructs permit the.schema designer to specify

transactions in a natural, declarative way.

Actions are syntactically similar to situation definitions. However, rather

than denoting an extension or a method for determining an extension, actions

specify operations on the extension of some situations, or alternately, a set of

update functions which map one set of current extensions into another. Figure

11 shows a simple action describing the transfer of an employee from one work

order to another.

The participants slot identifies the object classes which participate in the

action as well as the roles they play, just as for situations.

The prerequisites slot permits database administrators to control the

conditions under which certain actions can take place. This slot is filled by a

sigma expression possibly having constants substituted for variables. In order

for the action being defined to be carried out (by the PERFORM! operator,
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(action: Transfer Employee
(participants: agent/E /Employee

objectl /W1 /WorkOrder
object2 /W2 /WorkOrder)

(prerequisites:
(AND
(NOT (EMPTY (EmployeeAssignment (agent E) (object W1))))
(EMPTY (EmployeeAssignment (agent E) (object W2)))
(IsQualifiedFcr (agent E) (object W2))))

(results:
(AND
(EMPTY (EmployeeAssigr_ment (agent E) (object W1)))
(NOT (EMPTY (EmployeeAssignment (agent E) (object W2))))))

Figure 11 - Sample action definition.

following section), the expression in the prerequisites slot must have a non-

empty extension.

The results slot describes the state of the database after the action has

been carried out. Like the prerequisites slot, the value for the results slot is a

sigma expression. When an action is PERFORMed, this slot is *asserted causing

the database to be appropriately updated so: that a non-empty extension is

created.

The action construct permits the construction of database transactions in a

declarative fashion. As was mentioned earlier, it also permits the schema

designer to specify how incomplete knowledge is handled, frequently without

having to resort to 'null' values. For example, Figure 12 shows how an

employee's salary can be initialized to the lower bound of his/her salary grade.
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(action: Initialize Salary
(participants:

agent /E /Employee
value IS /Salary)

(prerequisites:
(AND
(EMPTY (Has Salary (agent E) (value 5)))
(HasSalaryGrade (agent E) (object G))
(HasSalaryLevels (agent G) (lowerBound 5) (upperBound S1))))

(results:
(Has Salary (agent E) (value 5)))

Figure 12 - Incomplete information and actions.

Currently, database mechanisms must typically resort to arbitrary

procedural inclusion [Abri74; .137.183; Mylo80], either via application programs or

specially designed transaction facilities for performing updates while preserving

integrity and consistency. Consider, for example, the transaction for updating

the cost-log relation in the Manager's Assistant [Koga84]; as shown in appendix

B, it consists of over 100 lines of IDL [BLI83] code.

The Data Manipulation Interface

Data manipulation in the SIDUR data model is not performed through the

primitive semantic interpretations *enquire, *assert and *deny. Rather it is

performed via a more developed set of semantic manipulation operators which

in turn are defined in terms of the primitive semantic interpretations. Four

operations on situations are shown: ENQUIRE, CHECK, ASSERT and REFLECT.

ENQUIRE and ASSERT are expanded applications of the *enquire and *assert

interpretations of sigma expressions. CHECK returns a boolean value depending

on whether a situation holds or not. REFLECT will update a situation as long as

both its necessary and required slots hold.
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ENQUIRE accepts a sigma expression as argument and returns its

extension. Figure 13 shows the semantics of ENQUIRE expressed in terms of the

underlying *enquire interpretation.

[1] Check that all constants filling slots in the expression S
are of the correct type, i.e.: they belong to the correct data
value class.

[2] Apply *enquire interpretation to S

Figure 13 ENQUIRE (S).

CHECK is a closed [Ga.1178] form of ENQUIRE which returns a boolean value.

CHECK returns the EMPTY extension if ENQUIRE does, otherwise it returns the

FULL extension which acts as boolean 'true'.

REFLECT updates the extension of the sigma expression in its argument. It

is a weak application of the *assert interpretation which only performs the

updates if both the necessary and required slots do not return an EMPTY

extension. Figure 14 shows the semantics of REFLECT in the same style used

above.

[1] Check that all constants filling slots in the expression S
are of the correct type, i.e.: they belong to the correct data
value class.

[2] Perform CHECK on the expressions filling the necessary
and required slots of S; if either returns EMPTY, REFLECT
fails and must be backed out.

[3] Apply *assert interpretation to S, backing out of the
operation if *assert fails at any step.

Figure 14 - REFLECT (5).

A stronger application of the *assert interpretation, called ASSERT, differs from

REFLECT in that it performs the CHECK only on the necessary slot. It is shown in

Figure 15.
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[1] Check that all constants filling slots in the expression S
are of the correct type, i.e.: they belong to the correct data
value class.

[2] Perform CHECK on the filler of the necessary slot of S; If
CHECK returns EMPTY, ASSERT fails and must be backed
out.

[3] Perform REFLECT on the filler of the required slot of S.

[4] Perform REFLECT on S.

Figure 15 ASSERT (5).

In addition to the four operations on sigma expressions defined above,

several operations can also be defined which take actions as arguments. The

simplest one is PERFORM which models the occurrence of an action, as shown in

Figure 16.

[1] Check that all constants filling slots in A are of the
correct type, i.e.: they belong to the correct data value
class.

[2] Perform CHECK on the filler of the prerequisite slot of
A. If CHECK returns EMPTY, the action can not be per-
formed.

[3] If CHECK succeeds, perform REFLECT on the filler of the
results slot of A.

Figure 16 PERFORM (A).

More operations can be built in this fashion; for example, PERMIT?

determines whether an action can be performed by CHECKing its prerequisites

slot, while PERMIT! ensures that an action can be performed by ASSERTing the

expression filling its prerequisites slot (this ensures that the database remains

consistent). The definitions for these operations are given in appendix C.

As a final example, we show how how an event, the transfer of employee

"John Brown" from one project, "System Design" to another, "Formal

Verification" is modeled by the following request:
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PERFORM [(Transfer Employee
(agent "John Brown")
(source "System Design")
(destination "Formal Verification"))]

The first step is to ensure that the constants filling each of the arguments

belongs to data value classes representing the expected object class. This is

equivalent to ensuring that the person being transferred (John Brown in this

case) is a valid employee and that the two projects are similarly valid, thus

providing an initial level of referential integrity. This is performed by consulting

the extension for the situation filling the definition slot of the object class

person.

The next step, ensuring that the prerequisites are met, invokes a CHECK

operator with the arguments substituted:

CHECK [(Can Support
(agent "John Brown")
(object "Formal Verification"))]

CHECK returns the EMPTY extension if the project can not support an additional

employee, otherwise it returns the FULL extension, representing boolean 'true'.

If CHECK returns EMPTY and the transaction fails, the user can issue

to generate

PERMIT [(Transfer Employee
(agent "John Brown")
(source "System Design")
(destination "Formal Verification"))]

REFLECT [(Can Support
(agent "John Brown")
(object "Formal Verification"))]

and force a state of affairs where the action can be carried out. Finally,

enabling the transaction to be carried out consists of REFLECTing the sigma

expression in the results slot of the Transfer Employee, with the appropriate

values instantiated:
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REFLECT [(AND
(NOT (Employee Assignment

(agent "John Brown") (object "System Design")))
(Employee Assignment

(agent "John Brown") (object "Formal Verification")))
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CONCLUSIONS

SIDUR is a structuring formalism for Knowledge Information Processing

Systems. It permits the definition of virtual information, specification of

transactions and the enforcement of constraints. It does so by integrating

manipulation and representation components of the model via the declarative

formalism of the sigma expression.

Because SIDUR does not resort to arbitrary procedural inclusion to define

its manipulation operators, it becomes a more tractable vehicle around which

applications for Knowledge Information Processing Systems can be built and a

valuable complement to AI languages such as Prolog. The integration of a

manipulative interpretation with its descriptive constructs enables the

specification of semantically meaningful relationships and maintenance of

integrity and consistency constraints. In the absence of an information model

which incorporates transaction definitions with data structure definitions, the

two components must be implemented independently. Such a process can lead

to inadvertent inconsistencies in the specifications of updates versus queries,

not to mention excessive conceptual complexity.

It should be stressed that SIDUR does not enhance the representational

power of first order logic. Rather, it adds discipline to the use of an underlying

inference mechanism for database intensive applications. This discipline is

applied to structuring as well as maintaining the information.

The six SIDUR constructs suggest a structuring discipline around which a

set of rules of "good" schema design can be developed. Two such rules suggest

that the representatives of important object classes should be TOKENs and that

each situation should be used to represent only one meaningful association

among its participants. Schemas designed in accordance to these rules seem to

be amenable to evolutionary growth in accordance to the demands of the

application in a manner similar to normalized relations [Kent83]. The design of
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the Manager's Assistant knowledge base was made more tractable by following

these guidelines. It should be noted that these design rules can serve as the

basis for automated design tools once they evolve to a mature state.

In addition to a structuring discipline, SIDUR also provides a manipulation

discipline. This discipline is embodied by the *assert and *deny interpretations

of sigma expression when used in conjunction with the required and necessary

slots. These control pragmatics permit the specification of transaction

definitions while ensuring the consistency of the information. An

implementation of database transactions in Prolog [Kowa74], for instance would

require the incorporation of a teleological semantics as well as control

pragmatics similar to SIDUR's This would permit the specification of conditions

under which clauses are evaluated when performing assert's and deny's to the

database of ground clauses. These notions are approximated in the metalevel

control suggested by [Bowe82; Ga1182].

SIDUR's power stems from the sigma expression whose underlying

interpretations support data description as well as data manipulation.

Descriptively, i.e: under the *enquire interpretation, SIDUR provides the

expressive richness of the relational calculus [U1 1m80] extended to permit the

specification of complex calculations in a non-procedural and uniform way.

Under the *assert and *deny interpretations, these same logical expressions can

be viewed as prescribing update transformations from one database state to

another. This permits the development and maintenance of database

applications based on semantically motivated descriptions and operations.
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APPENDIX A

This is the complete schema which underlies the database for a management

decision support system [Koga84] called the Manager's Assistant. It contains

information concerning organizations, employees and the tasks and projects

(known as work orders) to which they are assigned.

; DATA VALUE CLASSES

(data-value-class: PersonName
(type: STRING)
(size: 30)
(form: PA"-"Z"]["a"-"zu] < 20 "_.2 PA"-"Z"H"a"-"z"])

)

(data-value-class: EmployeeID
(type: INTEGER)
(minval: 1)
(maxval: 99999)

)

(data-value-class: Salary
(type: REAL)
(minval: 0.0)
(maxval: 99999.00)
(precision: 8.2)

)

(data-value-class: SalaryGrade
(type: STRING)
(size: 3)
(maxval: E14)
(minval: E02)

)

(data-value-class: SkillNames
(type: STRING)
(size: 10)

)

(data-value-class: SkillLevels
(type: REAL)
(maxval: 1.00)
(minval: 0.00)
(precision: 4.3)

)



(data-value-class: WorkOrderNumber
(type: STRING)
(size: 11)

)

(data-value-class: ProjectName
(type: STRING)
(size: 20)

)

(data-value-class: FundingType
(type: STRING)
(form: ("Internal" "Contract"))

)

(data-value-class: OrganizationCode
(type: INTEGER)
(size: 4)

)

(data-value-class: OrganizationName
(type: STRING)
(size: 20)

)

(data-value-class: OrganizationTitle
(type: STRING)
(size: 10)
(form: ("Company" 1 "Division" 1 "Department"

"ResearchCenter" 1 "Branch"))
)

(data-value-class: OtherDirectChargeCode
(type: STRING)
(size: 4)
(form: ["A"-"Z"] < 4)

)

(data-value-class: OtherDirectChargeName
(type: STRING)
(size: 20)

)

(data-value-class: MonthName
(type: STRING)
(size: 3)
(form: ("JAN" 1

"MAY" 1

"SEP" 1

)

(data-value-class:
(type: INTEGER)
(maxval: 991231)
(minval: 520101)

)

"FEB" 1 "MAR" 1 "APR" 1

"JUN" 1 "JUL" 1 "AUG" 1

"OCT" 1 "NOV" 1 "DEC" ))

Date

36
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(data-value-class: NumberOfHours
(type: INTEGER)
(minval: 0)
(maxval: 40)

)

; OBJECT-CLASSES

(object-class: Person
(representative: TOKEN)
(names: PersonName)

)

(object-class: Employee
(representative: TOKEN)
(definition: IsEmployee)
(names: (PersonName Employeeld))

)

(obejct-class: Manager
(representative: TOKEN)
(definition: IsManager)
(superclass: Employee)

)

(object-class: Organization
(representative: TOKEN)
(names: (OrganizationCode OrganizationName))
(definition: IsOrganization)

)

(object-class: WorkOrder
(representative: WorkOrderNumber)
(definition: ValidWorkOrders)

)

(object-class: Project
(representative: TOKEN)
(names: (ProjectName WorkOrderNumber))
(definition: IsProject)
(superclass: WorkOrder)

)

(cbject-class: Task
(representative: TOKEN)
(names: (TaskName WorkOrderNumber))
(definition: IsTask)
(superclass: WorkOrder)

)

(object-class: FiscalMonth
(representative: MonthName)
(definition: IsFiscalMonth)

)



(object-class: FiscalQuarter
(representative: Quarter)
(definition: IsFiscalQuarter)

)

; SITUATIONS DEFINING OBJECT CLASSES

(situation: IsEmployee
(participants: agent/E/Employee)
(required:
(AND (HasEmployeelD (agent E) (value I))

(HasEmployeeNarne (agent E) (value N))
(HasHomeOrganization (agent E) (value 0))
(HasSalaryGrade (agent E) (value G))
(HasSalary (agent E) (value S))))

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsManager
(participants: agent /E /Employee)
(definition:
(OR (IsTechnicalManager (agent E) (object W))

(IsOrganizationalManager (agent E) (object 0))))
)
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(situation: IsTechnicalManager
(participants:

agent/E/Eraployee
object/W/WorkOrder)

(cardinalities: 1 <E> 3 <W>)
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsOrganizationalManager
(participants:

agent/E/Employee
object /0 /Organization)

(cardinalities: 1 <E> 1 <0>)
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsOrganization
(participants: agent/O/Organization)
(required:
(AND
(HasOrgName (agent 0) (value N))
(HasOrgCode (agent 0) (value C))
(HasOrgTitle (agent 0) (value T))))

(definition: PRIMITIVE)
(extension: CLOSED)

)
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(situation: ValidWorkOrder
(participants: agent/W/WorkOrder)
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsProject
(participants: agent/P/Project)
(required: (HasProjectName (agent P) (value N)))
(necessary:
(AND
(HasFundingClass (agent P) (value X))
(HasProjectWorkOrder (agent P) (value W))))

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsTask
(participants: agent/T/Task)
(required: (HasTaskName (agent P) (value N)))
(necessary: (HasTaskWorkOrder (agent P) (value W)))
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsFiscalMonth
(participants:

agent/M/Month
begDate/D1/Date
endDate/D2/Date)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsFiscalQuarter
(participants:

agent/Q/Quarter
begDate/D1/Date
endDate/D2/Date)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: IsWorkOrder
(participants: agent/W/WorkOrder)
(definition: PRIMITIVE)
(extension: CLOSED)

)

;SITUATIONS DEFINING PROPERTIES OF OBJECT CLASSES
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(situation: HasEmployeeID
(participants:

agent/E/Employee
object/I/EmployeeID)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasEmployeeName
(participants:

agent/E/Employee
object/N/PersonName)

(definition: PRIMTIVE)
)

(situation: HasHomeOrganization
(participants:

agent/E/Employee
object/O/Organization)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasSalary
(participants:

agent/E/Employee
object/S/Salary)

(required:
(AND
(HasSalaryGrade (agent E) (object G))
(HasSalaryLeveIs

(agent G) (lowerBound S1) (upperBound S2))
(IsBetween

(valuel S) (value2 S1) (value3 S2))))
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasSalaryGrade
(participants:

agent/E/Employee
object/G/SalaryGrade)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasEmployeeSkills
(participants:

agent/E/Employee
object/S/Skills)

(definition: PRIMITIVE)
(extension: OPEN)

)
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(situation: HasODCName
(participants:

agent/O/ODC
object/N/ODCName)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasODCCode
(participants:

agent/O/ODC
object/C/ODCCOde)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasOrgName
(participants:

agent /0 /Organization
object/N/OrganizationName)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasOrgCode
(participants:

agent/O/Organization
object/C/OrganizationCode)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasOrgTitle
(participants:

agent /0 /Organization
value/OrganizationTitle)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: Has ProjectName
(participants:

agent/P/Project
object/N/ProjectName)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasProjectWorkOrder
(participants:

agent/P/Project
object/W/WorkOrderNumber)

(definition: PRIMITIVE)
(extension: CLOSED)

)
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(situation: HasFundingClass
(participants:

agent/P/Project
value/T/FundingType)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasSkillRequirements
(participants:

agent/W/WorkOrder
object/S/Skills)

(definition: PRIMITIVE)
(extension: OPEN)

)

(situation: HasTaskName
(participants:

agent/T/Task
object/N/TaskName)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasTaskWorkOrder
(participants:

agent/T/Task
object/W/WorkOrderNumber)

(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: HasSalaryLevels
(participants:

agent/G/SalaryGrade
1owerBound/S1/Salary
upperBound/S2/Salary)

(necessary: (LESS-THAN S1 S2))
(definition: PRIMITIVE)
(extension: CLOSED)

)

; SITUATIONS DEFINING RELATIONSHIPS AMONG OBJECT CLASSES

(situation: EmployeeAssignment
(participants:

agent/E/Employee
object/W/WorkOrder)

(definition: PRIMITIVE)
(extension: CLOSED)

).
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(situation: CanSupportAdditionalWorkers
(participants: agent/W/WorkOrder)
(definition: PRIMITIVE)
(extension: OPEN)

)

(situation: IsQualifiedFor
(participants:

agent/E/Employee
object/W/WorkOrder)

(definition:
(AND (HasEmployeeSkills (agent E) (object S))
(HasSkillRequirements (agent W) (object S))))

)

(situation: CostLog
(participants:

agent/E/Employee
object1/0/Organization
object2/W/WorkOrder
time/D/Date
value/H/Number0fHours)

(cardinality: 1 <E 0, W, D, H>)
(definition: PRIMITIVE)
(extension: CLOSED)

)

(situation: ODCLog
(participants:

agent /0 /OtherDirectCharge
object1/0/Organization
object2/W/WrokOrder
time/D/Date
value/C/Money)

(cardinality: 1 <E 0, W, D, C>)
(definition: PRIMITIVE)
(extension: CLOSED)

)

MISCELANEOUS SITUATIONS

(situation: CurrentDate
(participants: agent/D1/Date)
(definition:
(sigma (D1)

(MAXIMUM
(domain:
(sigma (D)

(Cost Log
(agent E)
(objects W)
(object2 0)
(time D)
(value H))))

(result: DM))
(extension: PRESENT)

)
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(situation: CurrentMonth
(participants: agent/M/Month)
(definition:
(AND (CurrentDate (agent D))
(IsFiscalMonth (agent M) (begDate D1) (endDate D2))
(IsBetween (valuel D) (value2 D1) (value3 D2))))

(extension: PRESENT)
)

(situation: CurrentQuarter
(participants: agent/Q/Quarter)
(definition:
(AND (CurrentDate (agent D))
(IsFiscalQuarter (agent Q) (begDate D1) (endDate D2)
(IsBetween (valuel D) (value2 D1) (value3 D2))))

(extension: PRESENT)
)

; COMPUTATIONS

(computation: LESS-THAN
(participants:

domain-1/X/NUMBER
domain-2/Y/NUMBER)

(definition: SYSTEM)
)

(computation: IsBetween
(participants:

argl/Sl/Number
arg2/S/Number
arg3/S2/Number)

(definition:
(AND (LESS-THAN (domain-1 S1) (domain-2 S))

(LESS-THAN (domain-1 S) (domain-2 S3))))

(computation: MAX-OF
(participants:

domain/X/VECTOR-OF (S)
results/Y/INSTANCE-OF (5))

(definition: SYSTEM)
)

(computation: NextEmployeeID
(participants: results/I/EmployeeID)
(definition:
(AND
(MAX-OF
(domain
(sigma (I1)

(HasEmployeeID (agent E) (value I1)))))
(result 12)
(PLUS (domain-1 12) (domain-2 "1) (result I))))

)
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(computation: COUNT-OF
(participants:

domain/X/EXTENSION-OF (S)
measure/Y/ROLE-OF (S)
result/Z/INTEGER)

(definition: SYSTEM)

(computation: NewCostLogEntry
(participants:

agent/E/Mmployee
objectl/W/WorkOrder
object2/Organization
time/D/Date
value/H1/Number0fHours
result /H2 /NumberOfHours)

(definition:
(AND
(COUNT-OF
(domain:
(Cost Log
(agent E)(objectl W)(object2 0)(tiine D)(value H)))

(measure: E)
(result: C))

(TIMES (domain -1 C)(domain-2 H)(result H2))))

(computation: NewODCLogEntry
(participants:

agent/D/OtherDirectCharge
objectl/W/WorkOrder
object2/Organization
time/D/Date
value/C1/Money
result/C2/Money)

(definition:
(AND
(COUNT-OF
(domain:
(ODCLog
(agent D)(objectl W)(object2 0)(tine D)(value L:1))

(measure: D)
(result: C))

(TIMES (domain-1 C)(domain -2 C1)(result C2))))
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; ACTIONS

(action: HireEmployee
(participants:

agent/P/Person
object/O/Organization
object2/G/SalaryGrade)

(prerequisites: NIL)
(results:
(AND
(NextEmployeelD (value I))
(HasEmployeeID (agent P) (value I))
(HasEemployeeName (agent P) (object N))
(HasEmployeeHomeOrganization (agent P) (object 0))
(HasSalaryGrade (agent P) (value G))
(IsEmployee (agent P))))

(action: RemoveEmployee
(participants:

agent/P/Person
object/O/Organization
object2/G/SalaryGrade)

(prerequisites:
(AND
(NextEmployeelD (value I))
(HasEmployeelD (agent P) (value I))
(HasEemployeeName (agent P) (object N))
(HasEmployeeHomeOrganization (agent P) (object 0))
(HasSalaryGrade (agent P) (value G))
(IsEmployee (agent P))))

(results:
(AND
(NOT (NextEmployeelD (value I)))
(NOT (HasEmployeeID (agent P) (value I)))
(NOT (HasEemployeeName (agent P) (object N)))

(NOT (HasEmployeeHomeOrganization (agent P) (object 0)))
(NOT (HasSalaryGrade (agent P) (value G)))
(NOT (IsEmployee (agent P)))))

Initialize an employee's salary to be the ; lower bound
of his/her salary

(action: InitializeSalary
(participants:

agent/E/Employee
value/S/Salary)

(prerequisites:
(AND
(EMPTY (HasSalary (agent E) (value S)))
(HasSalaryGrade (agent E) (object G))
(HasSalaryLevels
(agent G) (lowerBound S) (upperBound Si))))

(results:
(HasSalary (agent E) (value S)))
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(action: AssignEmployee
(participants:

agent/E/Employee
object/W/WorkOrder)

(prerequisites:
(EMPTY ( EmployeeAssignment (agent E) (object W))))

(results: ( EmployeeAssignment (agent E) (object W)))

Transfer Employee E from WorkOrder W1 to W2

(action: TransferEmployee
(participants:

agent/E/Employee
objectl/W1/WorkOrder
object2/W2/WorkOrder)

(prerequisites:
(AND
(NOT
(EMPTY ( EmployeeAssignment (agent E) (object W1)))

(EMPTY ( EmployeeAssignment (agent E) (object W2)))
(IsQualifiedFor (agent E) (object W2))))

(results:
(AND
(EMPTY (EmployeeAssignment (agent E) (object WO))
(NOT
(EMPTY (EmployeeAssignment (agent E) (object W2)))

(action: DeAssignEmployee
(participants:

agent/E/Employee
object/W/WorkOrder)

(prerequisites:
(NOT
(EMPTY
( EmployeeAssignment (agent E) (object W)))))

(results-
(NOT (EmploTeeAssignment (agent E) (object W))))

replace employee El on project/task W by employee E2

(action: ReplaceEmployee
(participants:

agent/W/WorkOrder
objectl/El/Employee
object2/E2/Employee)

(prerequisites:
(AND
(NOT
(EMPTY (EmployeeAssignment (agent El) (object W)))

(EMPTY (EmployeeAssignment (agent E2) (object W)))
(IsQualifiedFor (agent E2) (object W))))

(results:
(AND
(EMPTY (EmployeeAssignment (agent El) (object W)))
(NOT
(EMPTY (EmployeeAssignment (agent E2) (object W)))
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If there is already a log instance for that
(employee or ODC)/organization/work-order/date
combination then the participant filling the
value slot must be updated.
Otherwise add the instance to the extension.

(action: UpdateCostLog
(participants:

agent/E/Employee
objects /0 /Organization
object2/W/WorkOrder
time/D/Date
value /H /NumberOfHours)

(prerequisites:
(AND
(IsEmployee (agent E))
(IsOrganization (agent 0))
(IsWorkOrder (agent W))))

(results:
(AND (NewLogEntry (agent E)

(objectl 0)
(object2 W)
(time D)
(valueln H)
(valueOut N))

(CostLog (agent E)
(objectl 0)
(object2 W)
(time D)
(value N))))

(action: UpdateODCLog
(participants:

agent/D/ODC
objectl /0 /Organization
object2/W/WorkOrder
time/D/Date
value/C/Cost)

(prerequisites:
(AND
(IsODC (agent D))
(IsOrganization (agent 0))
(IsWorkOrder (agent W))))

(results:
(AND (NewLogEntry (agent D)

(objectl 0)
(object2 W)
(time D)
(valueln C)
(valueOut N))

(CostLog (agent D)
(objectl 0)
(object2 W)

(time D)
(value N))))
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APPENDIX B

This appendix shows the IDL statements used to define the command to update

an employee's cost log. The command first checks if any of the key participants

are missing from the database, ie: does this record reflect a new employee,

project (wo), organization (org); if so, append a new tuple to the appropriate

relation, Next, it checks to see if there is already a tuple for the combination of

employee, project, organization and date. If so then that record is updated by

adding to the number of hours worked, otherwise a new tuple is appended to the

relation.

up_cost_log
This command updates the cost log relation by either
adding the number of hours worked to the current total,
or entering the tuple if the key (emp, org, wo, date)
does not already occur.

*/

destroy up_cost_log go
define up_cost_log

begin

/* new org ? */

range of org is org
append to org (

name = "NO_NAME#",
code = Si,
title = ""

where count(org.code where org.code = Si) = 0

append to newObject (id= $1, name=" ", type= "ORG")
where count(org.code where org.code = Si) = 0

/* new work order ? */

range of work_order is work_order
append to work_order (

= max (work_order.idm_id) + 1,
mis_code = $2,
name = " NO_NAMEV

where count
(work_order .mi s_code

where work_order.mis_code = $2) = 0
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append to newObject
(id= work_order.idm_id,
name = $2, type="WO#")

where work_order.mis_code = $2 and
count

( work_order.mis_code
where work_order.mis_code = $2) = 0

/ new emp ? /

range of emp is emp
append to emp (

num = $3,
name = $4,
org = 00000

where count(emp.num where emp.num = $3) = 0

append to newObject (id= $3, name= $4, type= "env")
where count(emp.num where emp.num = $3) = 0

/ entry already exists, hours updated *1

range of cost_log is cost_log
range of work_order is work order

replace cost_log (

nhrs = cost_log.nhrs + bcdflt (7, $5))
where

count ( cost_log.emp where
cost_log.org = $1 ana
cost_log.wo = work_order.idm_id and
work_order.mis_code = $2 and
cost_log.emp = $3 and
cost_log.date = $6) ?= 0 and

cost_log.org = $1 and
cost_log.wo = work_order ithm_id and
work_order.mis_code = $2 and
cost_log.emp = $3 and
cost_log.date = $6

/ new entry, append to relation */

end
go

append to cost_log(
emp = $3,
org = $1,
wo = work_order.idm_id,
nhrs = bcdflt (7, $5),
date = $6

where
count ( cost_log.emp where

cost_log.org = $1 and
cost_log.wo = work_order.idm_id and
work_order.mis_code = $2 and
cost_log.emp = $3 and
cost_log.date = $6) = 0 and

work_order.mis_code = $2
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APPENDIX C

The following definitions represent other semantic level operators which are

commonly useful. PERFORM! is a stronger version of PERFORM, it REFTECTs the

sigma expression filling the prerequisites slot of the given action. PERMIT?

determines whether an action can be performed by CHECKing its prerequisites

slot. Finally, PERMIT! ensures that an action can be performed by ASSERTing

the expression filling its prerequisites slot thus ensuring that the database

re mains consistent.

PERFORM! (A)

[1] Check that all constants filling slots in A are of the correct type, i.e.: they

belong to the correct data value class.

[2] Perform REFLECT on sigma expression filling the PREREQUISITE slot of A

thus ensuring that the database remains consistent after the action is

performed.

[3] Perform REFLECT on sigma expression filling the RESULTS slot of A.

PERMIT! (A)

[1] Check that all constants filling slots in A are of the correct type, i.e.: they

belong to the correct data value class.

[2] Perform ail LECT on the sigma expression filling the PREREQUISITE slot of

A enabling the action to be PhEFORMed.

PERMIT? (A)
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[1] Check that all constants filling slots in A are of the correct type, i.e.: they

belong to the correct data value class.

[2] Perform CHECK on sigma expression filling the PREREQUISITE slot of A,

return the value of CHECK.


