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The theory and numerical calculation of physical fields that are

governed by linear partial differential equations of the elliptic,

parabolic and hyperbolic types is a topic of fundamental interest in

the qualitative theory of various resources. Often, field situations

require the solution of the basic equations for different types of

domains with common boundaries. It will be shown that the introduc-

tion of fractional powers of the Laplacian can be a helpful device in

such cases.

The general setting involves coupled systems of P.D.E.'s defined

over two regions with a common boundary segment, E. These mixed

boundary value problems are then reduced to a single surface equation

on E with the dependency on one variable eliminated by the intro-

duction of an operator H in the original boundary condition. This

operator, which arises as a fractional power of the Laplacian

on E, is our main mathematical tool.

Several models of physical fields that are well suited to a
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reformulation in terms of H have been investigated by G. Bodvars-

son. In this thesis we will consider the example of the linearized

equations for internal water waves. This involves modeling of waves

of infinitesimal amplitude of a surface interface, under the influ-

ence of gravity and surface tension, in a homogeneous incompressible

and inviscid fluid.

While the use of H is highly motivated through specific physical

examples the main analytical results of this work are obtained in

considering its use in a more general format. A reformulation of the

basic equations governing internal water waves leads to a new type of

wave operator with the spacial part of the operator arising as a

fractional power of the Laplacian. In considering a mixed problem

for this wave equation, an existence and uniqueness theorem is

obtained within two settings. A class of generalized solutions is

defined, which is well suited for a formal eigenfunction expansion

solution technique, allowing existence and uniqueness in an L2

sense. Further, a result on eigenfunction expansions of distribu-

tions with compact support is given. This leads to existence-, by the

same solution technique, to the generalized wave equation in a dis-

tributional sense.
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FRACTIONAL POWERS OF THE LAPLACIAN WITH APPLICATION
TO SMALL AMPLITUDE WATER WAVES

Introduction

The theory and numerical calculation of physical fields that are

governed by linear partial differential equations of the elliptic,

parabolic and hyperbolic types is a topic of fundamental interest in

the qualitative theory of various resources. For example, fluid

pressure fields in petroleum, natural gas, water and geothermal

reservoirs are governed by equations of the parabolic type. The

propagation of seismic signals in subsurface formations involves

equations of the hyperbolic type. Finally, the fields of potential

type in exploration methods are governed by elliptic equations.

Often, field situations require the solution of the basic equa-

tions on domains consisting of different types of regions with common

boundaries. It will be shown that the introduction of fractional

powers of the Laplacian can be a helpful device in simplifying and

clarifying some aspects of the underlying theory in such cases. The

general setting involves mixed boundary and initial value problems

consisting of coupled systems of P.D.E.'s defined over two regions

with a common boundary segment, z. By the introduction of an opera-

tor H in the original boundary condition this type of problem is then

reduced to a single surface equation on E such that the dependency on

one variable is eliminated. This operator, that is referred to as a
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cross-surface differential operator and is our main mathematic tool

arises as a fractional power of the Laplacian on E .

The main application to be considered in this paper involves

linearized equations for surface and internal water waves of infin-

itesimal amplitude in homogeneous or layered incompressible and

inviscid liquids. The case of gravity waves on deep water is con-

sidered as a simple special case that portrays the precise setting

which motivates the definition of our cross-surface differential

operator. Through the use of H, the basic equations governing such

water waves are reformulated resulting in a single scalar equation

for the amplitude of the wavelike motion off the horizontal sur-

face E.

The theories of gravity and internal water waves has been of

interest to mathematicians and physicists for a long time. Early

work on the subject can be traced back to Cauchy and Poisson at the

start of the nineteenth century and research in the field is still

very active. A few well known books in this area giving an account

of the classical theory as well as containing more recent results

are, J.J. Stoker, Water Waves (1957), O.M. Phillips, The Dynamics of

the Upper Ocean (1966) and B. Kinsman, Wind Waves (1965). Although

it is clear that the theory is highly developed it is interesting to

note that, until recently, no single equation has been set forth that

could be referred to as the equation for gravity or internal water

waves of infitesimal amplitude. Other oscillatory scalar fields are



3

governed by well defined wave equations that provide the basis for

theoretical investigations. An example is the central role played by

d'Alembert's equation in the theory of sound . G. Bodvarsson has

derived such an equation for the case of gravity waves (1977, [1])

and has more recently applied this technique to internal water waves

under the influence of both gravity and surface tension.

In the first two chapters of the present thesis, the setting for

the definition of the cross-surface differential operator H is devel-

oped along with an eigenfunction expansion representation. Subse-

quently, in Chapter III, we derive a new type of wave equation where

the spatial part of the systems operator arises as a cross-surface

operator that is a fractional power of the Laplacian. Several other

models of physical fields which are well suited to a reformulation in

terms of such operators have been investigated by Bodvarsson (1977

[2]) and this author leading to equations of the parabolic type.

Further work on these examples, following the scope of this thesis,

will be forthcoming.

The use of H is highly motivated through specific physical exam-

ples and, while one concern of this thesis is to develope a rigorous

setting for its application to the water wave model, the main ana-

lytical results are obtained in a more general setting. A mixed ini-

tial and boundary value problem involving the wave operator att+ c2H

is investigated where an existence and uniqueness theorem is obtained

within two settings. In Chapter IV we apply the classical method of
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energy integrals to mixed typed problems governed by equations of the

hyperbolic type (Vladimirov, 1971). Upon defining an energy integral

associated with a suitably smooth solution to the mixed problem a key

result is obtained on the representation of this integral in terms of

the data. This leads to L2-norm estimates of solutions and first

time derivatives in terms of the data which immediately yields

uniqueness and continuous dependence theorems for this class of solu-

tions. Existence, however, presents more difficulties. The main

solution technique is by a formal eigenfunction expansion. That is,

we assume an eigenfunction expansion for the solution and derive an

ordinary differential equation for the undetermined coefficients by

formally carrying the operations and initial conditions through the

summation. A class of generalized solutions is defined which is well

suited for this expansion technique. It is verified that the L2-

estimates obtained earlier also hold for this class of solutions

allowing for the main theorem on existence, uniqueness and continuous

dependence on the data to be proven.

The above results demonstrate that a formal eigenfunction expan-

sion solution technique yields existence in an L2-sense. The final

section of Chapter IV is devoted to showing further properties of a

generalized solution which will attest to the suitability of this

class of solutions not only for the solution method used but also for

the problem at hand. By making use of the distributional setting for

H developed in Chapter II, it is shown in Chapter V that the same
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solution technique yields existence in a distributional sense. In

fact, far weaker restrictions can be imposed on the input data. This

leads to the formulation of a generalized wave equation where the

initial data and the causal source term are distributions of compact

support. An existence theorem for this problem is proven in the last

section of Chapter V.



I. THE CROSS-SURFACE DIFFERENTIAL OPERATOR H

1.1 Preliminary Considerations on a Symbolic Calculus for Functions
of an Operator

The main goal of this chapter is to develop, through a construc-

tive procedure an operator H, which behaves like the square-root of

the negative 2-dimensional Laplacian that we denote by

=2 = - (axx + ayy) .

As mentioned in the introduction, this operator plays a central role

in the reformulation of the equations for the water waves that are

derived in chapter III. On a more theoretical slant, we want to

emphasize the square-root nature of this operator and take up an

analysis of the resulting new type of wave equation. Here, a square-

root of an operator is with respect to the operation of composi-

tion. Hence, provided the domains are properly defined, B is a

square-root of A if and only if

B2 =130B=A.

This first section will be devoted to a brief account of a sym-

bolic calculus for functions of operators. More specifically, we

will be concerned about the meaning of functions of an operator f(A),

6



{Xk partions [a,b] and Ak is bounded by
Xk-i 4 Xi( 4 Xk

The

family, (E(x)} , is called the Resolution of the Identity correspond-

7

for what class of functions such operators exist and what are proper

representations of these operators. This is a subject found in most

texts on functional analysis or operator theory with the spectral

theorems as one of the main results of interest. Here, the emphasis

lies in obtaining a representation of f(A) that resembles the

diagonalization of matrices in the finite dimensional case. Briefly,

these results go as follows.

Consider the case when A is a bounded, self-adjoint operator on

a Hilbert Space. Then a representation for A is obtained (Schecter,

1971) in terms of a family of orthogonal projection operators {EN}

such that

A = f A dE( X) .

Since A is bounded and self-adjoint its spectrum a(A) is contained in

a closed interval [a,b] of the real line. Hence, the integral is

over a finite length and is to be understood as the limit under the

operator norm in the space of bounded linear operators of sums of the

form

n

k=1
A E(xk-in as max (Ak-Ak_1)40 where
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ing to A. As a consequence of the spectral theorem we can define for

any continuous function f on [a,b]

f(A) = f f(x) dE(A),
a

satisfying

lif(A)11 = IrEx If(Xcr(A) )1

These definitions can be generalized to the following two cases

(Rudin, 1973).

case i) Take A to be a normal operator. Then we obtain the

analogous representation

f x dE(X) , to be interpreted as; (Ax,y) = f A d(E(A)x,y)
a(A) a(A)

for all x,ydi where (.,.) is the inner product. Also, the defini-

tions are generalized to include bounded Sorel functions f on a(A)

and denoted by

f(A) = f f(A) dE(A) , where Ilf(A)11 < sup {If(A) :Ac a(A)1
a(A)

with equality holding for fe C(a(A)) .
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case ii) A is a linear, normal not necessarily bounded operator with

a dense domain of definition. The above calculus now applies to all

measurable functions on a(A).

When A is assumed to have a more simple structure, these

spectral representations bear a simple relation to the eigenvalues of

A. Suppose A e B(H) is normal and has a countable spectrum

a(A) = {X1,A2...} consisting of eigenvalues of A (in this case, the

isolated points of a(A) are necessarily eigenvalues) along with a

complete orthonormal system (C.O.S.) of eigenfunctions Ixil to A,

x. for all i = 1,2,..., where any two eigenfunctions

corresponding to distinct eigenvalues are orthogonal and every xeH

has a unique expansion of the form, x = ax . From this expansion
'

we immediately obtain the representation,

Ax = X.a.x.
1 1 1

which can also be derived from a simplification of the spectral rep-

resentation under the above conditions. Notice, the formal calculus

now obeys the rule of carrying the function inside to the

eigenvalues, i.e.,

f(A)x = f(xi) a1 x1 .
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Another approach (Schecter, 1971) is via a Cauchy integral type

formula. Let Ac B(X), with X a complex Banach space. Then

(z-A)-1 is an analytic function of z on the resolvent of A,

p(A) (where Xe p(A) iff the null space N(A-x) = 10 and the range

R(A-X) = X, in which case (A-x)-le B(X).). Then we obtain the

representation,

1
;A =I z ( -1dz

where c is any curve containing a(A) in its interior. Moreover, if

f(z) is analytic on an open set a with a(A) C n, then we can always

find an open set with a(A)cwcWCO, whose boundary aw consists

of a finite number of non-intersecting simple closed curves. Then

1 rTri f(z) (Z-A)dz
aw

(1.2)

(1.3)

defines an operator in B(X) and is independent of the choice of w .

In this setting the formal calculus defines f(A) as the integral in

(1.3).

The representation given in (1.2) can, in many cases, be shown

to reduce to an eigenfunction expansion such as in (1.1) presented

earlier. In fact, when A is a differential operator arising within

certain Sturm-Liouville problems, this approach is taken (Friedman,

1956). In such cases, the resolvent operator, which now plays the
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role of the integral operator induced by the Green's function for the

differential equation, can be determined and the integration is

explicitly carried out to obtain an eigenfunction expansion.

We will make frequent use of eigenfunction expansions for repre-

sentations of operators and as a solution technique. The repre-

sentation (1.1) therefore makes a good starting point for the

problems to be considered below. However, our setting will involve a

differential operator arising from a boundary value problem (BVP)

context. This adds several complications to the general setting out-

lined above. In general, differential operators are unbounded and we

must restrict the setting considerably to obtain the simple structure

as above. Furthermore, within the context of a BVP, it is important

to recognize the central role played by the domain of definition,

that is, the specified boundary conditions and underlying function

space. This point will be illustrated soon through an example.

In the next section, we will outline a setting, that is, a class

of differential operators including regions of definition and

boundary conditions, that allows the simple structure mentioned

above. These operators have an eigenfunction expansion and the

corresponding formal calculus will apply. In particular, the

operator it is included and consequently a square-root operator is

obtained by carrying the square-root inside to the eigenvalues.

However, some confusion can arise with the notion of a square-root.

In general, if an operator has a square-root it need not be unique.



(1) Some care is needed with this terminology. Many texts will
refer to a differential operator as self-adjoint or formally self-
adjoint when, on the domain specified, it is only symmetric. A is
symmetric on a Hilbert space iff (Au,v) = (u,Av) for all u,veDA, in
which case, the adjoint A* is an extension of A but is not neces-
sarily equal to A. It can be the case that by enlarging the domain
of the operator, by closing the operator, it is then self-adjoint.
Such an operator, whose closure is self-adjoint, is called
essentially self-adjoint. Since, in most cases we are only inter-
ested in the symmetric nature of II, the precise domain to obtain a
closed, self-adjoint operator won't be specified.

12

A well known result along these lines (Schecter, 1971) states that

every bounded, positive operator on a Hilbert space has a unique

bounded, positive square-root. This can be generalized to unbounded,

non-negative, self-adjoint operators (Weidman, 1980) and, in all

cases, the square-root is obtained via the spectral representation.

Within the setting to be developed, it will be a symmetric', positive

operator of simple structure. To be precise, from now on a simple

operator will refer to an operator whose spectrum consists of a

countable set of eigenvalues of finite multiplicity (the multiplicity

is the dimension of the eigenspace) and having a C.O.S. of

eigenfunctions. We have in mind a preferred square-root of II that

also exhibits these same properties. Essentially, this square-root

is obtained from the formal calculus.

Consider the following example with the differential operator,

where D = d/dx. This is an easy enough operation and we can

immediately recognize a square-root operation given by either +iD.

But, we haven't as yet completely defined the operator to be con-
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sidered. A domain of definition has to be specified. Clearly, dif-

ferent choices of boundary conditions and underlying function spaces

result in operators with entirely different characteristics. We will

present an example where the expressions +iD have no relation to the

preferred notion of a square-root that is to be used.

In particular, lets take, n = -D2 defined on the interval,

(0,1), with the domain

D11 = A(Ifu(x): u(o) = u(1) = ol , where

A = fud_2(0,1): u' is absolutely continuous on (0,1), u" EL2(0,1)}.

A is, in a classical sense, the largest class of functions we can

apply -D2 on and stay within an 1.2-setting. The set A was chosen

over a smooth class of functions such as C2[0,1] so that n defines a

closed, self-adjoint operator. In fact, if we define operators,

11 for i = 0,1,2 by

D = C (0,1) (infinitely differentiable functions with
TrO

C

compact support)

0 = lueC2(0,1) C[0,1] with u"EL2(0,1) and u(0) = u(1) = 0}
11_ 1

Dil2

= A



This shows that, although no is a symmetric operator, neither

n nor
n2

are self-adjoint or essentially self-adjoint. Also, this0

illustrates how, by enlarging the domain of ni, we obtain the closed

operator it. As to the domain of the adjoint, intuitively the situa-

tion is as follows. First, the adjoint is always closed and we must

have the minimal homogeneous boundary conditions necessary to elimi-

nate all boundary terms that arise upon integration by parts of,

(

111.u,v), when transferring the differentiation to v. Since the

boundary terms are,

x=1
-u'(x) v(x) + u(x) v'(x)

x=0

14

where for all i = 0,1,2, Hi is induced by -D2; (no and n2 are known

as the minimal and maximal operators, resp. induced by -D2) then it

can be shown (Weidman, 1980) that

***
n = n2 , so II = n= R0 (the closure of n ) ,0 2 0 0

D- = A fu:u(0) = u1(0) = u(1) = u'(1) = 0} and
0
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it is only necessary to specify homogenous boundary conditions on the

functions themselves (not, also, their derivatives). Hence, II

defines a self-adjoint operator (Weidman, 1980). For our purposes it

is sufficient to deal with the symmetric and essentially self-adjoint

operator, ni. The precise domain of its closure was given in this

one dimensional case since it was relatively easy to come by.

In this setting, the normalized eigenfunctions and eigenvalues

for ii are,

u(x) = V 2 sin(nloc) ,n = n2w2 , for n = 1,2,...

So, we do indeed have a simple operator with the C.O.S. of eigen-

functions giving rise to Fourier Sine expansions,

CO

u(x) = (u,un) u(x)
n=1

with convergence in L2(0,1) for all 11E1_2(0,1) . Of course, in this

case quite a bit more can be said concerning convergence of Fourier

series. For example, a result which will hold in the more general

setting also, for every ueDIT , we have regular convergence (uniform

convergence of the series of absolute values) on [0,1]. Also, the

following is the eigenfunction expansion for II,



2 2u(x) =In272 (u,un) u(x) =V2 1n7 unsin(n7x)
n=1 n=1

where the notation an refers to the expansion coefficient,

1

an'un) = ir f u(x) sin(n7x) dx .

0

Now, according to our formal calculus developed earlier, a square-

root of n is given by,

16

1/2

n u(x) = 1/ 2 1 n7 a sin(n7x) .

n=1
(1.4)

What of its domain? In general, when dealing with a square-root

of a differential operator the question of appropriate boundary con-

ditions and underlying function space would appear to be a major

problem. The above construction frees us of these considerations.

Notice, we are not attempting to view as induced by some differ-

ential expression (this may not be possible). Also, recall that one

purpose in this example was to show that + iD may have no bearing on

the construction of a square-root of -D2. In the setting chosen this

is certainly the case since a general expansion for ±iul(x) given by

(1.4) doesn't hold. In fact, if the main concern is in obtaining an

eigenfunction expansion representation for an operator that is to

behave as a square-root of n in an L2-sense and maintains the same
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properties inherent to n; then, (1.4) is the starting point for the

definition of 11/2 . The only necessary stipulation is to stay within

an L2-setting, i.e., that T1/2uEL2(0,1). Hence, if we impose this

restriction on its domain and set,

D = Did_2(0,1): n272112
n=1

IL7n12

1/2

and define Jr U(X) by (1.4); then we can show directly that this

gives a self-adjoint, simple operator where, as expected, its spec-

trum consists of the eigenvalues, n7, with the corresponding C.O.S.

of eigenfunctions, u(x) = I 2 sin(n7x), for n = 1,2 ... . More-

over, by construction,

1/2 if 1 _2(n )4 u(x) n27Tn sin(n7x) = n u(x) , in L2(0,1) .

n=1

To finish these preliminary considerations let's take a slight

variation on the domain of it . Set,

D = AnIu(x):u(o) = u(1), u'(0) = u1(1)1 .

So, we now have periodic boundary conditions instead of the homo-

geneous Dirichlet condition of the last example. Again, it is known



that II is a self-adjoint, simple operator. The eigenvalues and

eigenfunctions for n are,

+i2knx
xk = (2k7r)2 , u(x) = e , for k = 0,1,2,...

(we now have multiplicity 2). Hence, the eigenfunction representa-
1/2

tions for it and the square-root it are,

i2knx
nu(x) = (2k7)-0 a.1( e

k=-.

1/2 i2kirx
n u(x) = .(21(7) irk e

k=

with domain consisting of all L2(0,1) functions, u(x), such that

k=-.
(2k702 K12 0°

Next, define an operator T, induced by iD, with domain

DT = {ueL(0,1):u is absolutely continuous on

(0,1), u'EL2(0,1), u(0) = u(1)) .

It can be shown (Rudin, 1973) that this operator is also self-adjoint

and simple. Moreover, the eigenvalues and eigenfunctions for T are
1/2

precisely 2kff and e for k = 0,+1,+2,..., as for it . Hence, T

18

(1.5)
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has the same representation given in (1.5) and, so, defines a satis-

factory square-root of ff. This example is enlightening in illustrat-

ing the domain of the preferred square-root of It when it is induced

by a differential expression. Essentially, the same boundary condi-

tions are carried over to the square-root operator (still periodic

B.C.'s but involving one less derivative, however, the eigenfunctions

for R are determined by the one condition, u(0) = u(1)). Implicit in

the formal calculus rule of construction is the use of the same

-boundary conditions. This is necessarily the case since we maintain

the same eigenfunctions.

These simple examples demonstrate the close connection between

the domain of definition of a differential operator and basic

properties of closure, symmetry and self-adjointness. Also, they

serve to illustrate a construction of a square-root of a differential

operator that will be tied in with the construction of the cross-

surface differential operator H to be developed in the next section.

1.2 Construction of H

The construction of H takes place through a process of embedding

the problem into a higher dimensional setting. We will be concerned

with the two dimensional Laplacian defined on a region z c R2, and we

construct H by embedding z as a boundary face in a region B c R3.

Then, we perform operations in B and take a limit back to E. This is

a natural scheme for the applications of H, since they involve
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harmonic functions in a region such as B with specified boundary

values on the surface E. The square-root nature of the operator

arises through the technique of factoring out the 2-dimensional

Laplacian from the equation for a harmonic function on B. That is,

if u(P) is harmonic for PE B then,

,2.
A3u(P) = (azz A2) u(P) = 0 implies that -21 (P) = u2u(P) .

Hence H is constructed by extending a boundary value function

harmonically off E, performing one derivative w.r.t. z in B and then

taking a limit as P approaches E . This will be explained in detail

later. First, we want to outline a general setting within which n is

a simple operator and allows eigenfunction expansion methods as

presented in the first section.

Let E cR2 be a bounded region in the plane (in many cases this

setting can be generalized to include unbounded regions and, in fact,

several examples where this is the case will be presented). We will

consider the elliptic Sturm-Liouville type operator,

L = -div(p grad . ) + q

defined on E, where we associate to L the domain DL, as all func-

tions, u(x), of class C2(z)c1(z) satisfying the boundary condition,



au
au c

plus the condition that &le L2(z). Also, the following restrictions

are imposed on all coefficients;

peC1(1), qeC(/) with p > 0, q > 0 on z

and for the boundary condition, we consider the cases where

EEO or e21, aeC(y), (3)0, a+e > 0 on y .

We wish to have a setting where L is a symmetric, simple oper-

ator. This will depend on the smoothness of the boundary y and coef-

ficients, p, q and a . We will call y a sufficiently smooth curve

if, for the above setting, we have the following properties;

property i All Green's formulas hold for functions

u,veC2(z)/1 Ca ) with AU,AVe L2(z) and having a correct normal der-

ivative over y.

By a correct normal derivative we mean that for every

Lie C1(z), with y a surface of class C1, there exists a uniform limit

w.r.t. Sey of

= 0 , where y = 3E

21
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9U
(S,) as with s'e--

an

where, is the outward unit normal to y at S. The value of this

limit will be denoted in the usual fashion as the normal deriva-

tive, au/an' (S), evaluated at Sey. Under these conditions this

defines a continuous function over y. In particular, Green's 2nd

formula, which is hypothesised, states that

9V 3Uf V Lu - u Lv = fu--- v
- .

y an' an

With the above boundary conditions, this gives the symmetric nature

of L.

property ii L is a simple operator. That is, the eigenvalues of L

are countable, no finite limit points, with finite multiplicity and a

corresponding C.O.S. of eigenfunctions that can be chosen real-

valued. Moreover, for every uEDL, the eigenfunction expansion con-

verges regularly over 1 (uniform convergence of the series of abso-

lute values) and allows term-by-term partial differentiation, once,

w.r.t. each variable with the result converging in L2(E).

On the basis of this property, we can order the eigenvalues by magni-

tude 04X14 , Ak+m as k+.. We have repeated the eigenvalues

according to multiplicity and such that each
Ak

corresponds to



IN(S,R)I = 0 (in TiP ,T-11 ') (where D = diam (z)).
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exactly one eigenfunction uk(s) satisfying Luk = Akuk with Uke DL.

Also, we have that for every tic DL,

00

u(S) = ilio,(S) (converging regularly over 1)
k=1

and (1.6)

00

grad u(S) = u grad u (S) (converging in L2(z))
k=1

property iii There exists a Neumann function N(S,R) defined

on EXE of the form,

1 1

I
N(S,R) = in + n(S,R) , where

eir S-R

Asn(S,R) = Tir , for S,Re

and satisfies the appropriate boundary condition such that

aN (s,R)
0 , for all Sey, ReZ .

an

Moreover, N(S,R) is of class, C2(zNIRIn C(Z\IRI) w.r.t. S and uni-

formly of order,

(1.7)
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The general approach in developing this theory is to seek the

Neumann function (some authors refer to all such kernels as Green's

functions or, in the case of non-uniqueness, as a Green's function in

the broad sense) via the method of potentials. This entails that the

potentials satisfy certain criterion and that we can solve a certain

type of Neumann boundary value problem. To meet these conditions,

the necessary restrictions and smoothness of y can be spotted.

Vladimirov (1971) develops this setting with the Dirichlet boundary

condition for a class of sufficiently smooth Liapunov surfaces or

lines. A much more general setting including Neumann boundary condi-

tions is considered by Miranda (1970). Once the Neumann function is

obtained, the eigenvalue problem, Lu = Au, can be expressed as an

integral equation with this Neumann function as the kernel. Property

ii is then obtained as a consequence of the Fredholm and Hilbert-

Schmidt theorems.

We will also note some consequences of this setting that will be

referred to below. From the order of N(S,R) in (1.7) and by Green's

2nd formula, we can show that N is a symmetric kernel, i.e.,

N(S,R) = N(R,S) for all S,Re z and has the bilinear expansion,

ul,(S) u (R)

N(S,R) = " , (1.8)
k
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where the sum is k=1,2,... since
X0
=0 and which converges, uniformly

for RE,. in L2(z) w.r.t. S. As a result of (1.8) and by Dini's

lemma, we have

2

7 luk(S)
X 2

k k

- f IN(S,R)
2
dz

which shows that the series in the L.H.S. of (1.9) converges uni-

formly over 1 (since f IN(S,R)I2dER defines a continuous function

of SE1 ). Next, we have the following representation theorem for

solutions to the Poisson equation,

-AU = f on z

(problem * )

au
(1) on y

an

where 'FE c(E)n L2(z), 0C(y) and satisfies the solvability condition

of

fzf = fy4)

Then, if u(s) is a solutiion to (problem * ) with uE C2(z)c1 C(1) and

having a correct normal derivative over y, we have that
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u(s) = fzN(S,R) f(R)dER + fiN(S,R)*(R)die 5 (1.10)

where 5 is an arbitrary constant equal to the average value of u

(Duff and Naylor, 1966). This assumes that solution to problem *

with the above properties exists (for weaker hypotheses see Miranda,

1970). For existence, the following result holds. By further

restricting fe C1(E) C() with average value T = 0 the unique solu-

tion to

-AU = t on E

with is u(S) = E N(S,R)f(R)dER .

(if ?*0 we can't have a solution but we can replace f with f -T) .

Equation (1.10) can be used to transform the eigenvalue problem

Lu = Au, au/aril 0 into an equivalent integral equation.

Now, getting back to the problem of defining the operator, H,

let E C R2 be a bounded region whose boundary az = y is a suffi-

ciently smooth curve as outlined above. Then, a complete definition

of iris given by

= -A2 on E , with D =
IT

E) C1(/) {u:A2ueL2(E) , 3111 = 0}
au



which certainly falls within the previous setting. So, there exists

a C.O.S. of eigenfunctions uk(S), with corresponding eigenvalues

xk
such that

aU
ki

uk(S) = Xkuk(S) for Sc E , = 0 , uk

al;

and with all the properties in i) - iii) and results in (1.8

(1.10) holding.

Now, form the cylindrical region BcR by B = Ex(0,00)

with aB Evr (so r represents the sides, y x [0,.)).

Definition 1.1

Given a function (p(S) defined for Scz, solve the BVP

-Au(P) = 0 , PeB

(BVP*) with 211 = 0 and ulE = .
an
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Then, we define the Cross-Surface Differential Operator H by

H(S) = - u(P)I+0

Provided the limit as z+0 exists.
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Of course, a class of boundary values for 0(S) allowing a solu-

tion to BVP*, in what sense it is a solution and ensuring that the

limiting process back to z exists has to be specified. However,

given a suitable function 0(S) defined on E, there will exist a

unique harmonic extension u to B with those boundary values and

satisfying the prescribed boundary condition on r. This definition

explains the use of the terminology that H is a cross-surface

differential operator since, we then perform a differentiation w.r.t.

z off z and take a limit as z+0, back to E.

Formally, it is easy to see that H will behave like a square-

root of n. To apply H twice to 0(S) we need to extend the boundary

values H0(S) to a harmonic function v(P) on B with these values

on E. If 0 is sufficiently smooth, this unique harmonic extension

will be given by,

v(P) = zzu(P)

So,

H20(S) = H(H0) (S) = - v(P)I0 = a u(P)I
az z + z4,0

= -A2u(P)Iz+0 = no(S) .
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This illustrates how we seek a square-root of It by factoring it from

the 3-dimensional Laplacian. However, it must be stressed that these

manipulations are purely formal in nature and considerable work is

needed to make this rigorous. In particular, the necessary condi-

tions to justify the starred (*) steps above must be examined.

Since one of the main interests is to obtain a square-root of

II in an L2-sense, a good approach to this problem is through an

eigenfunction expansion method. Several results will come from this

approach. First, a result (see theorem 1.2) giving a class of func-

tions which allows a classical solution to B.V.P.* is given. This

gives a suitable setting for H for the application to the water wave

model in chapter III. It must be emphasized, however, that this is a

formal definition for H in the sense that Definition (1.1) gives the

prescription for calculating 1-1,1) when the limit as z4Dexists. Lemmas

1.3 and 1.4 in the next section give domains of definition for H

guaranteeing that this limit exists. Then, H is related back to the

formal calculus methods presented in section 1.1, where we ignore the

previous background with the boundary value problem BVP*, and begin

the definition of H by an eigenfunction expansion representation.

This yields an operator which is a square-root of IT in an L2-sense.

Finally, in chapter II, this eigenfunction expansion method is

extended to a distributional setting.



By a classical solution to BVP* we will refer to a solution

u(p) satisfying, ucC2(B)AC1 (g\ C(g) with K/317 = 0 on r as a

correct normal derivative. This entails the following compatibility

conditions on (1) for a solution; namely, 4,6 C1(E)n C(/)

with avail' = 0 on y as a correct normal derivative.

A solution to BVP* is sought through a partial expansion in

terms of the eigenfunctions uk(S). That is, we try a solution of the

form,

u(P) = a6(z)uk(S) , where a (z) = (u,uk)
k "

Then, formally plugging this into BVP*, a differential equation for

the undetermined coefficients ak(z) is obtained as

ak
(z) =

k ak
(z) , for z > 0 , and we want ak(z) bounded as z+.0.

This implies that,

z
ak(z) = a e

where the boundary condition u = (1) on E (for z = 0) is satisfied by

setting

ak = ^(1;1( = (4),uk) .

u(P)u (S)dEs .

30



Hence, we have the following expansion for u(P),

1/2

-x, z
u(P) = 70 e uk(S)

k

(here, Scr and P = (S,z)EB) .

From here, an analysis, of this expansion to determine the

smoothness of u in terms of various restrictions on 0 involves the

repeated use of the Cauchy-Buniakowski inequality. This allows the

expansion to be factored into two series, one containing the eigen-

functions or their derivatives, scaled down by dividing by the appro-

priate power of the eigenvalues so it will converge. But, then, the

other series, which contains the expansion coefficients of 0, must

pick up those powers of Xk. This allows the necessary restrictions

on 0, to obtain a solution, to be spotted. This is illustrated

through the following estimate.

Let a be a non-negative integer and a= (al,a2) a multi-index°2a2with Da = aal/ax aa2/ay (here, S = (x,y)Er) . Then, for any real

r we have

1/ 1/-A2 m -2X62z1/2 m (S)I21/2a (e k zwuk(s)1 ( Ark'r01k14 e ) ( y

xr
)k=n azi3 k=n k=n

31

(1.12)



+ 0 as n,m
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In particular, fore = al = a2 0, with r=2, by (1.9) there exists a

constant M such that

,
in -Xcz m 1/2ek u(s) 14,1( x.2 RIX)
k=n K k=n K

2 it2if we assume that ASEL2(E) (since then,
k1 1/ Xk

41(112 _ 4112- 11 < ).
=

2In this case, ucC(g). In fact, if we only assume SeL (z), we have

uniform convergence of these partial sums on any region of the form

x[,..), for any 00. This holds, since, by keeping the exponen-

tial terms, for k sufficiently large

1/9
2

nate,w) xk
e < 1 and 1

k
= Ik11; <

It seems clear that for z>0, u(P) given by (1.11) should define

an infinitely continuously differentiable function due to the rapid

convergence of the exponential term. In fact, we will show that u(P)

defines a generalized harmonic function and hence (Vladimirov, 1971)

for ASeL2(E), when ucC(g), it is harmonic on B.

Let T be a test function, i.e., of class C(B) with compact

support in B. Then,

co C Z

(u,A*)ek uk(S) A*(P) dzdz
k " E 0
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1/0 1/1
Z CO ..X1:" Z

"711- f uk(S)clEe 4e P)dz - f e " dz f uk(S)4(P)dEsl.
zzi1k a 0 0

Here, by integration by parts

1/002
-Xk z ,

00 az
k ,f e 4031) dz =

Ak
j e p(P) d'z , and

zz
0 0

uk(S)11*(P)dzs = x, f ul,(S) Ip(p)dEs.z

So, both terms cancel in the above series and (u,A1p) = 0.

We can show directly that (1.11) defines a C(B) function and

allows term-by-term partial differentiation of all orders by making

use of an estimate on the partial derivatives of the eigenfunctions

in terms of a power of the eigenvalues. This result, which will be

given later in Section 2.2 (see lemma 2.5), where it is used to

extend the setting for H to include distributions, states that for k

sufficiently large,

Ipauk(S)1 < C xrikl , for all S in a compact subset of E

(here, m depends on / al )

Then, choosing r = m2+ 2, the 2nd series in (1.12) is dominated by



1
0 as n,m . (since, in 2-dimensions,

Ak k
k=n

Ak2
see Courant and Hilbert (1953))

and, no matter what r is, the 1st series converges if z is bounded

away from zero. In particular, this shows that

11/)2Z au,

(Pi) = / 71). e m m (S')
k K

s

-
where Say, Sle-n, and P = (S,z), P' = (S1,z) with z>0. Then, since

1
"auk

ukeC(z) with - 0 on y, given any 00 there exists a 5>0 such
an

that

auk
S'SI < d, Sey, SleE implies that (S')1 < E.

an

So, we obtain

1/2

H!
u (pi)I 4 ( e k ITI(12)

an

Xi2( rik 12 112 ( 4) 1/2

kk

aUk

an

2 )1/2

Xk

f t4EL2(E), then these last two series will converge which shows

34



au (s. ) 70-1(

33'S
k an5

1) 0 as S' S, in L2(z).

-Also, to obtain ucC1 (B\r) or equivalently that the eigenfunction
expansion for 4)(S),

(s) = uk(S) (1.13)

defines a function in C1(z), a more stringent growth condition on the

expansion coefficients 3:1( must be imposed. By assuming 0011 we

have A4cL2(z) which is equivalent to 1 Akri,k1 < By imposing the

more stringent growth condition, namely,

35

au

=
as a correct normal derivative.

Hence, we have seen that if 0011, then (1.11) defines a harmonic

function u(P) on B with ucr(B)AC(g). However, we only have a

correct normal derivative over my. The corner to the domain B, aty,

poses some problems for obtaining a classical solution. The sense

in which auiari 0 on y is not as a correct normal derivative with

uniform convergence as we approach the boundary but with convergence

in L2(z). This follows from property ii where, if 0DIT, then for

z=0



au 1= 0
as a correct normal derivative,r\y

can be extended to include all of r since we no longer have to

require z to be greater than zero.

So, in summary the following theorem has been proven.

Theorem 1.2

If 4101, satisfies the growth condition of (1.14); then u(P)

given by (1.11) is a classical solution to BVP* (i.e. it is a solu-

tion with uer(B)rC1(g\r)C1C(g) and "an= 0 on r as a correct

normal derivative). However, by only assuming (1)611, u(P) is still a

(2)
It is possible this can be weakened. Lemma 2.5 mentioned

earlier, gives the following estimate for a single partial differ-
entiation; l a u (s)I 4 C x2for k sufficiently large and for

I

x1 .
k I k'

all S in a compact subset of z. Then a similar argument as given on
page 31 using (1.12) where we now choose r=6 gives the condition in
(1.147:

36

rscI2 <

(2)

(1.14)

the series in (1.13) now allows term-by-term partial differentiation

once w.r.t. all variables with the partial sums converging uniformly

on any compact subset of z. Hence, cp given by (1.13) is of the

class C1(E).

In this case, the argument used to show



harmonic function on B with ueC(8), where u = (1) on z and

au/aR = 0 on rv as a correct normal derivative.

Now we obtain an eigenfunction representation for H. For z>0,

azu
(P) can be calculated by term-by-term differentiation of (1.11)

to yield

I-4(S) = 112
_xk2 z

uk(S). (1.15)

Recall that, for (peDn, an eigenfunction representation for n is

given by

4(S) = A6 (pkuk(S), with convergence in L2(E).
k

Notice the similarity in the expansion given in (1.15) and that of a

square-root of Jr as dictated by the formal calculus. The exponential

factor and limit as z40 reflects the scheme of embedding the surface

problem into a 3-dimensional region, performing a differentiation

there and then coming back down to the surface. If (I) is smooth

enough, for example, satisfying the first set of conditions of

Theorem 1.2 (4011 and condition (1.14) holds), then as we will see

in the next section the limit as z+0 can be brought inside the

37
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series yielding an expansion which obeys the formal calculus rule of

bringing the square-root inside to the eigenvalues. In general, we

can't expect this to be the case. For example, if we take oDn or

even 0L2(z), u(P) given in (1.11) still defines a harmonic funciton

on B so we can perform the differentiation wx.t. z for z>0.

However, the behavior as zg) is unknown and so the limit and

exponential factor must remain in (1.15).

In the next section a weaker growth condition than (1.14) will

be given which allows the limit as zg) to be brought inside the

series. Also, a domain for H will be specified which yields exactly

the same square-root operator as the symolic calculus methods out-

lined in the first section.

1.3 Domains of Definition

In considering an appropriate domain for H, just as was the case

when defining a square-root operator by the formal calculus rule in

the 1-dimensional example of Section 1.1, the previous background

involving BVP* can be ignored. If the concern is to obtain an

operator that behaves as a square-root of it in L2(z); then the rep-

resentation in (1.15) can be used as a starting point for the defini-

tion of H. Later, in Chapter III, we will return to the full con-

struction of H, since by design, it fits the models we wish to apply

H to.



If we define the square-root operator,

1/2
n 4)(s) = Ak2 ybk uk(S)

defined on all functions, 4)(S), that satisfy

I 4)k <

1/2
z

42 e 4)k uk(s)

k
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(1.16)

condition (A)

then, it might seem that the exponential factor and limit as z+0, in

(1.15), should give an extension of this operator, since these fea-

tures would seem to help the convergence of the series. Two classes

of functions will be considered as a domain of definition for H. In

one case, the series

(1.17)

will converge in L2(0, uniformly w.r.t. zE[0,m). So, HoL2(E),

and, somewhat surprisingly, dis precisely the operator 54. In the

other case, H+(S) , will define a continuous function on 1 with the

series in (1.17) converging uniformly on 1 x

Lemma 1.3

.
HOL2 (E) iff cl) satisfies condition (A), in which case H4)(S) in

given (1.15) equals 4124)(S) in L2(E). Hence, taking



Hence,

11(1)(S) = AL,4 41( uk(S) = k'2 (S) , in L2( z) and
k

1122 = / Xk ITkI2 ce*

(4=) Next, suppose condition (A) is satisfied. It will be shown that

-xk z
lim e uk(S) converges in L2( E) to r2 4(S).

DH = {4) : co satisfies condition (A)} =11/2,

H = 1[4 and this notation is justified, since H is a square-root of

Ii in L2(z).

Proof (r4 ) This direction is easy. If H4cL2(E), then we can cal-

culate its expansion coefficients, namely

-Ak(Hu) = lim A62 e (pk (uk,ui

4 z+0 k

z+0 k

For this it is sufficient to show that

1/2 1/2

- z 1/9
= 1.c.e =

z40
J

40



Set,

OD

-ln (1-Z)
where12 and take, 0 -M = Xk I (I)k

AN
k=1

- C1/2

= (50

Now, for every

1/0-ANa Z -14-Z
-k e0<z<d, 1-e <E which implies that (1 - e )2<-0-4- for every k=1,2,...,N

Hence, we have that

- x
Ak IT;k12 (1

0z
e k )2

1 (same) + 1 (same)
k=1 k=1 k=N+1

co

k=N+1

2 <C.

41

-Ak

II
K

)Y1(21'1( (1 -ek )uk(S)11 =kI;i<12 (1 -
2z2

e ) 0 as z+0.

Let e>0 be given. By assumption, there exists N such that

- 2 e

xk 4)1( < 2
k=N+1



Hence, H0(S) = 11/20(S) e L2(E). It is an easy matter to show that

in this case, just as in the examples of Section 1.1, H (or ill/2) is

a square-root of H. If 0611, then A0EL2(z) which holds iff

in particular, 4 satisfies condition (A). So, the first part of this

Lemma shows that,

,

H
1A

0(S)=I A1,4 00k(S) which implies that Holso satisfies condition (A).
k"

Then,

H20(S) =
Ak2 (I70)k uk(S) = Ak ;k uk(S) = 110(S)

(all equalities are interpreted as in L2(E))

Lemma 1.4

If 0 satisfies,

X13(

102 <
condition (B)

42

then H0eC(1). Moreover, in this case the limit as z+0 can be

brought inside the series with,



Ho(S) = T
k uk

(S).kk

Proof First, we will show that

I Aj? uk(S) e C(), if satisfies condition (B).
k "

Here, using the estimate in (1.12) (B = al = aa = 0, z = 0, r = 3)

and (1.9)

m 3 21/ 4. 0 as n,m +m 1/2 (S)1 < M
14)101

2
I X Ak chc u k

kk=n =n

(where, M = supSe1 f
IN(S,R)I2dER'

which is finite due to the order of

N from property iii).

Hence, the partial sums of the above series forms a uniform

Cauchy sequence on and converges uniformly to a continuous func-

tion on 1. Now, using the same argument as in the proof of Lemma

1.3 we can show that

1/2

Ak zX2 e ok uk(S) k uk(S), uniformly on 1.
k " as z+0 k

Thus, Ho = 1/12 o E C(/). That is,

43



1/2

I 1/2

1/ -)tk z
0(S) - Ak2 e ok uk(S)1 =

Ak4

44

and by condition (B) and the same argument of Lemma 1.3 this

converges uniformly on 1 to zero as z+0 II

Notice that both condition (A) and (B) involve growth conditions

on the expansion coefficients of o. As more stringent growth condi-

tions are imposed more smoothness of Ho is obtained. In fact, if we

assume that

1 41 1'4;1(12 < , for all m

then we can show that Noe(E) (this is immediate from the estimate

in (1.12) and Lemma 2.5 to come in the next chapter).



II. A DISTRIBUTIONAL SETTING FOR H

2.1 Preliminary Results

The restrictions on (0) from Theorem 1.2 and conditions (A) and

(B) give possible domains for H. Condition (B) allows the limit as

z+0 in (1.15) to be brought inside the series with H. defining a con-

tinuous function over while, condition (A) also allows this sim-

plification of the representation in (1.15) but in an L2-sense. The

more stringent restrictions of Theorem 1.2 guarantees that H fits the

construction of Definition 1.1 which is designed for the application

to the water wave model. In this chapter, the definition of H is

extended to a class of distributions. In the applications we have

the occasion to apply H to a Dirac or delta distribution to obtain

impulse response solutions. The bilinear expansion of this distribu-

tion, used there, points the way to a more general theory. In Sec-

tion 2.3 a theorem, which is quite interesting on its own, demon-

strating an eigenfunction expansion representation for distributions

with compact support in E is given. This will allow an extension of

the definition of H to this class of distributions by using a formula

analogous to the expansion in (1.15). In this section some notation

and preliminary results will be given that are needed for the

remainder of the chapter.

Given a region 2 c Rn, D(R) will denote the space of test func-
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tions on a of class c(a) with compact support in 2. The topology

for D(a) yields convergence as follows;

4,11 (I) in D(0) iff Dc((i)n etc')

uniformly on a for all multi-indices a = where

1

a
3 an1

)

46

and there exists a compact set K such that supp(phc K for all n suffi-

ciently large. Often, the notation, lE(a), is used to denote the

space of functions of class c(c) where convergence is given by

uniform convergence on a for derivatives of all order. The dual

spaces of D(a) and E(a), consisting of all continuous linear

functionals, are denoted by D'O-0_ and El(a), resp.. The elements of

these dual spaces are called distributions and we will denote

evaluation with the symbol <.,.>, i.e., for TeD'(a), seD(a) the

evaluation of T at (I) is denoted by, <T,.>. The convergence used in

these spaces is known as weak* convergence and is defined by

Tn
T, weak* or in DI(o) (or in E'(n))

iff
<Tn,cp>

<T,4)> , in C for all 4) e D( Q) (or E(n)).



CO

1

/ fk(x) ' fk c LLOC(°
k=1

This converges in O(c2) iff

co

im < fk, s> = <f,,p f fk(x) d(x) dx
k=1 k=1 " k=1

converges in C, for all 4)0(0). It may be the case that this series

doesn't converge to a regular distribution but still converges in

D'(0).

47

A regular distribution will refer to a distribution induced by a

locally integrable function on Q, denoted by LiLOC(c1)* That is,

if fel"'1LOC(°'
then f defines a distribution on D (0) by

<f,(1)> f f(x) x)dx.

If f has compact support in o, then, this definition defines an ele-

ment of EI(o).

We will often refer to a sequence or series of locally inte-

grable functions as converging in a distributional sense. This will

refer to the corresponding sequence or series of regular distribu-

tions converging weak*. For example, given a series



Lemma 2.1

It is a well-known fact that the elements of the dual

space, P(Q), are exactly the distributions in DI(n) with compact

support.

Lemma 2.2

Define the norms,

11(1511 = sup IDafi(x)I
M,S2 'aka

XeS2

where, lal = al+...4-a is the order of a. Then, given TeDl(g),

for every compact set KCP, there exists a non-negative integer m

and constant c<m such that

'<Top' cI I +I im,o, for all e D(Q) with suppfi c K.

The smallest such m that works for all sets K is called the Order of

T. Also,

If T E EI(Q), then it has finite order.

For proofs of these results see Rudin (1973).
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Lemma 2.3

Within the setting outlined at the beginning of Section 1.2, the

eigenfunctions uk(S), for n,satisfy

uk c cw(E)/1 c1(1) (see Vladimivov (1971)).

Lemma 2.4

If 4) E D( E) then

1$02 < 0., for all real m 0

Hence, by the final remark of Section 1.3, pg.tti, H(/) c Cce(z).

Proof Since (1) has compact support in E and is infinitely differen-

tiable, for any multi-index a = (al,a2),a(I) e L2(z). In particu-

lar,n L2(z) for every non-negative integer n. But,

AngS) = 0 uk(S) e L2(E) iff
A

7

,2n11-)k
12 <

k
k

This shows the result we are after holds for all non-negative, even

integers. But since, xk as k it is easy to see that this

also holds for all real non-negative numbers II
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2.2 An Estimate on the Derivatives of the Eigenfunctions

In this section, we will prove a result which gives an asympto-

tic estimate on the derivatives of uk(S) in terms of a power of xk

which holds uniformly on compact subsets of z. Previous references

to this result have been made within the proof of Theorem 1.2, for

its use in connection with the estimate in (1.12), and in the remark

after Lemma 2.4. It will also play a major role in the next section

where an eigenfunction representation for distributions with compact

support is obtained.

Lemma 2.5

For every compact set K c z and multi-index a

IDauk(S)I 0(4a1+1) as lc+ m, uniformly w.r.t. SK.

That is, there exists constants C, N (depending on a and K) such that

sup
Ieu

I(s) 4 C xlical+1 for all k)N.
SeK k"

Proof The estimates on uk(S) and their first partials are straight-

forward. From (1.9) we know that

50

lu (S)I2

2

xk

, converges uniformly on



This implies that, luk(S)I 0(Ak) as k+m, uniformly for Sel (where

this is to be interpreted as given in the statement of Lemma 2.5).

Also, from (1.10), this eigenvalue problem is equivalent to the

integral equation,

uk(S) = xk f N(S,R) uk(R) dER.

Now, from property iii), we have

I
N(S,R)I

1 )

IS-RI) I N(S,R)
ax

1
. DX .

j
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1 ). (3)

IS-R12

Hence, the 1st partials of uk(S) can be obtained by bringing the dif-

ferentiation inside the integral sign, yielding

19)9c. uk(S)I (4) as k m, uniformly on 1.

However, th2 2nd partials, and higher order derivatives can't be

handled so easily as indicated by the order of the 2nd partial of

N(S,R).

(3) These orders on the Neumann function N(S,R) and its 1st and 2nd
partials are not as easy to obtain as when Dirichlet B.C. is im-
posed. Also, it is not immediate from the sketch of the general
setting in property iii) how they are derived. For a more in depth
account of this situation see Miranda, 1970.



We will demonstrate the technique to circumvent this problem and

obtain the appropriate estimates for higher order derivatives by

first considering the 2nd partial,

32
u (S).
k

j

Given any compact set K c z, let z' be a subregion of E with

9E' = yl a "parallel" boundary to y such that K c z' c E. Then, we

split up the integral equation for the eigenvalue problem as,

u (S)=Akff N(S,R)uk(R)dZ04.1
E\ E' z, S,R)uk(R)dzR+ 1 u (R)dziOfin 1s_R1 k-273;7

Denote the first two integrals by I and the last by 12. Since, N is

of class C(K x z\E') and n of class C(K X E'), further derivatives

of I, over K, can be carried inside the integral sign and yields

terms as k co, uniformly for SK.

The last term is written as,

uk(s) , s e 11
1 1

12 = in
*

uk, where ak(s)

0 , on R2\11

12 is of class of C1(R) and allows first order partial differenti-

ation to be brought inside the integral sign. Moreover,
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1311 k
(D)A,. 1 r

21T'" S-- f,1"ISR1 ax 21T j inis1R1 uk(R)cos(ri,xi)dyR

For some examples on the calculation of derivatives of functions with

discontinuities and convolutions see Vladimirov (1971).

This last expression, along with
a (II), define continuous
a ,

functions on R2, hence, since we can differentiate 12 on either con-

volute (this holds as distributions but both expressions are contin-

uous functions) we have,

,?. ut,(S) = Akf f a-517 N(S,R)uk(R)dzr, + f 9 n(S,R) uk(R) dER
°^1 " E 1

K El 3<j

1 1 a r 1 n 1 tOlr cfg'
27W IS-R1 x.

uk(R)d,- 2n fl" Is_411

This representation transfers the derivative from the singular part

of the Kernel, N(S,R), to uk(S) . Now, we are allowed to bring

another partial differentiation inside the integral sign in all

terms. Carrying this out, all terms but the 3rd integral are

asymptotically of order xi( (since they only contain uk) and the 3rd

a
integral, involving is of order xi(2 Therefore, including

the original coefficient xk,

,2
lax7ax. Uk(S)I 0(X) as k ., uniformly on K.



And since, K, i and j were arbitrary, we have shown that for every

compact set KcE

leuk(S)I 0(Alla(+1) as k op, uniformly on K for all a with lal < 2.

It is clear this process can be continued to obtain estimates on

ar

.3x.

ax.il

uk(S) , for all r
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by induction on r; where we will transfer all but the last partial

derivative from the singular part In Is_Rf , of N(S,R) to uk(S).

That is, in exactly the same manner, we can write

ar-1 a
Ii) +r-1(

. . . . x.
uk(S) = Akfax. x.

WC,1 1r-1 11 1r-1

-1+_ in
1 ar

WC. . . .ax
uk(R)dz +g(S)},

27T El IS-RI .

11 1r-1

Where II, as before, defines a function of class r(K) allowing all

differentiation to be carried inside the integral signs to the ker-

nels N and n. Hence, this term will always be asymptotically of

order AI Here, g(S), represents the sum of boundary integrals (we

pick up one more integral after each iteration) which only involves

differentiation of
uk

of order r-2 (in fact, there is an integral



111r
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containing a derivative of uk of order r', for r' = 0,1,2,..., r-

2). Thus, by the inductive hypothesis that

a

u(s)1 0(x1r1) as k .., uniformly on K
lax. . .

im

and holding for all m r-1, we see that the 2nd term is of the

highest order of xk, namely xk . Moreover, all terms allow another

partial differentiation to be taken inside the integrals to the

kernels keeping the same order of differentiation on uk. Therefore,

r+1uk(S)I 00,k ) as k co, uniformly on K.

This inductive step verifies that for every multi-index a and compact

set Kcr since,

alai
Da= with x1 x or x.3X, 1 . 1 2ii

'lag

Then in fact

iDaUk(S)I 0(x11(a/-1.1) as k -0- co, uniformly on K



(4)
A treatment of expansions for tempered distributions is given by

B. Simon, 1970. There, the results are somewhat more complete in
that they allow an iff statement in the types of theorems to come.
This is because the eigenfunctions considered there, called harmonic
oscillator wave-functions, are in the space of rapidly decreasing
test functions, hence, there is no need to restrict the domain of the
tempered distributions.
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2.3 Eigenfunction Expansions of Distributions with Compact Support
and an Extension of the Definition of H

The goal of this section is to obtain an eigenfunction represen-

tation for distributions, TeD1(z), with compact support. We restrict

ourselves to compactly supported distributions, since, by Lemma 2.1

these distributions in fact make up El(z) and can be extended to

functions of class r(z). In particular, by Lemma 2.3, we can define

the evaluation of T on the eigenfunctions of n. However, the expan-

sion that will be obtained will actually refer to the restriction of

T to D(z). This is necessary since we must have a class of functions

in L2(z) having eigenfunction expansions(4). In fact, it will be

shown that these expansions converge in E(z).

Before building up to this result, we will illustrate the situa-

tion with the Dirac delta distribution. Let
(3RE

DI(z), often denoted

by (S(S-R), be defined by

<611,0> = WO.



It is easy to show that OR has the bilinear expansion

OR= uk(R) uk
(2.1)

Where we regard uk as a regular distribution and convergence is

in DI(z) (i.e. weak*). In fact, for every D(z),

urn< uk(R) uk")> = 1 U(R)
< uk")>

k=1 k=1

CO

= T;k u (R) = (0).
k=1

So, the series in the R.H.S. of (2.1) does indeed converge weak*

defining a distribution in DI(z) and as seen above, equals OR.

If we were to formally treat OR as a regular distribution

induced by the symbolic function O(S-R) then

uk(R) = <6R,uk> = f 6(S-R) uk(S) dzs = (6(S-R), uk(S)).

So, we see that the terms uk(R) in (2.1) play the role of the expan-

sion coefficients in an eigenfunction expansion for the symbolic

function o(S-R). Given the expansion coefficients of a function, the

representation in (1.15), shows how to define the evaluation of H of

this function. This suggests we define H(oR) by

-)1,4?-z
1/- k

H(fsR) = lim ?it e uk(R) uk (2.2)

z+0 k
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where we have calculated the expansion coefficients C6,R)k, as uk(R).

It must be verified that the R.H.S. of (2.2) does indeed define

a distribution on D(z). Also, it will be shown that, as expected,

the limit as Z40 can be brought inside the series.

Lena 2.6

H(6R) defined by (2.2) is in 01(z) with

1/,

H(dR)
=

xk4 uk(R) u , and

<H( 6R),(0> = <600> = HO(R).

Proof Let (peD( E). Then

-1/2n Xkz
lim pm < xikz e uk(R) uk,
z+0 k=1

By, Lemma 1.4 and Lemma 2.4, the limit as Z40 of this last series

converges to

1c° ?k2i-k uk(R) = H(R)II
k=1

1/2

> lim
x112-eXk z

z+0 k=1 k srk-k"/
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The usual topology on E(z), which yields convergence as defined

earlier, is induced by the family of semi-norms

11(011m,N.= isaur4m 1Da0(S)1

seKN

where we decompose z =N011 KN. KNc z, compact. Clearly, an equivalent

family of semi-norms w.r.t. convergence is given by

11011a,K =
ssIg

ID(S)1
, for any multi-index a and compact, Kcz.

We also introduce a family of norms on the space of complex

sequences, 0 = (01(C1, by

Iklim=(/)Inic kki2)112
k=1

If 0e L2(z), we will identify 0 with its sequence of expansion coef-

ficients,
k=1

Theorem 2.7

If Oe D(z), then 1101Im< . for all real m>o, and



0(S) = -0', uk(S), with convergence in E(z).
k

Proof The first part of this is Lemma 2.4. For the 2nd part, we

will show that the partial sums, E 1; uk(S), form a Cauchy sequence
k=n

in E(E).Then, by completeness of E(E) the series converges in E(z) to

some function 0(S). But both 0(S) and 0(S) will have the same expan-

sion coefficients; which implies they agree in L2(E) and, hence, by

continuity, 0 = 0 on z. Here,

11 76, uk(s) Ila,K= M I
Dauk(S)]

k=n k=n

<,2,1/2( T. sup IDaukcs)12

110 SeK 2(1a1+2)
k=n k

Xk

m 1,
4 c i 72 1 1 4)1 1

k=n
21a1+4
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for some constant C and n,m sufficiently large by Lemma 2.5. By the

first part of this theorem, this last expression converges to zero

as n,m+. (recall, xk k as 1(4.) II

Remark: This shows that the norms, 11.1Ia,K, are weaker w.r.t. con-

vergence than the norms, 1111m That is, since Dais continuous

on E(z), for every (peE(E),



OD

114)11a,K = sup 1

"1"1( DaUk(S)1 M IM121a1+4
SeK k=1

(using the same steps as in the above proof). However, the other

direction, an estimate for 'Wm in terms of a finite combination of

the norms, ''11,K' doesn't hold on E(z). So, these two families of

norms aren't equivalent. Also, in our setting (see footnote (4) page

56), a converse to Theorem 2.7 isn't true. Given a sequence,

= (ak), such that 11(01Im <0.for all real mao; we can identify

(p with the function

(S) = ak uk(S)

where, this series converges in E(E). However, (0 isn't necessarily

in D(E).

Theorem 2.8

Let TeDl(E) with compact support and set 1; = <T,uk>. Then, T

has the eigenfunction expansion,

T = uk ,

k=1

where we treat
uk as a regular distribution. Moreover,
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IT'lc1
= O(x) for some positive integer r.



I<T,p1 4 C 11011m,K, for every compact Kcz, 0D(Z) with supp0cK.
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Note: This shows that distributions with compact support have finite

order w.r.t.k in their expansions. In other words, since

Ak
k as k+., we can say that the identification of 0 with its

sequence of expansion coefficients ik represents D(z) as sequences of

rapid decrease; while, the identification of T with the coeffi-

cients Tk represents El(z) as sequences of polynomial growth.

Proof The first part is immediate from Theorem 2.7. If 0(z), then

the expansion coefficients '1( are exactly the evaluation <uk,0> and

since,

1 71)i( uk(S) = U(S) <uk,0>

converges in E(z) to 0(S), by the continuity of T on E(z) we have,

<T,0> = / <T,uk> <uk,0> = / <Uk,4>

Thus, T = Iuk on D'(z).
k"

For the next part, by Lemma 2.2, there exists a constant C<co and

a positive integer m such that



This implies, that in fact,

sup IDa(p(S)I = C sue ID (p(S)1

la144 SeE
SeE

for some multi-index 0 with I014m and for all 0D(). Then, by the

remark after Theorem 2.7, this shows that

I<T,e1 4 r 11.11 101+4, for some constant .

In particular,

1;1 = I <T,uk> < Iluk1121,1+4= 4'1+2

Now, we can give the extension of H to distributions with com-

pact support. This extension should agree with the original repre-

sentation of H given in (1.15). The scheme is quite clear. Given

the expansion coefficients of a function (1.15) shows how to

define Hcp. Similarly, given Ts D'(z) with compact support, Theorem

2.8 shows that the coefficients Yk play the role of expansion coef-

ficients. So, we will take the definition of H(T) dictated by

(1.15), to be

1/2-x z

H(T) = lim '12
e

k
Ak T u

k k
z+0 k
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(2.3)
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1/.3
-1 z

Since the added features e-k and limit as z4o played no role

in the definition of H within an L2-setting and as illustrated by the

example with SR in Lemma 2.6; we can expect that the representation

in (2.3) can be simplified by bringing the limit as z40 inside the

series here, also.

Lemma 2.9

If Ts DI(E) with compact support, then

1/2

1/2 -Ak z
H(T) = lim X e Tk uk defines a distribution in D'(E).

z4.01 k

moreover,

H(T) = 2ikukk"
and we have the symmetric property that, for every 00(E),

<H(T),(0> = <T,H(o> .

Proof We will first show that the series in (ii) converges

in D(E). Here, for every (psD(z) with r specified by Theorem 2.8,

th
r Irk12 )1/ r al7 2 3

-k k <-u k' 4 L 2r-1-2) 2 L

1

k=n k=n xk k=n



showing that H(T) defined by (1) is in D'(z) and satisfies (ii). For

this, let 4)eD( E) , then

1/
x2r

uk'
- A112 ;Xk z

rk uk'k k k

1/2

-Ak z

= I / Xk2 (1 - e ) rk k'

From here, the argument that this last series as no is exactly

analogous to the argument used in the proof of Lemma 1.3. The tail

end of the above series can be made small, since, by the 1st part of

this proof it is dominated by the series

2k
k

1/2Ico= < Tk uk,q>> which converges.
k=1
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1 f/2
11(pfl2r+3 + 0 as n,m (by Thm 2.8 and Lemma 2.4).

k=n

Thus, the partial sums of the series in (i i ) evaluated at

any dieD(E), form a Cauchy sequence and converges weak*.

Now, we will show that,



Then, the front end of the series, of finite length, can be made

_k2z
small by letting z get close to zero, so that, 1 - e becomes

small. For the last part, recall that by Lemma 2.4, if seD(E),

then HseE(z) (i.e. of class e(z)). So, the R.H.S. of (iii) makes

sense. By part (ii),

<H(T),s> = x2
k

= 1-'k (14)k

= <uk,He = < kr, uk, Hs>
k k

= <T,Hs> (by Theorem 2.8)
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III. AN APPLICATION TO SMALL AMPLITUDE WATER WAVES

3.1 Derivation of the Basic Equations

The cross-surface differential operator H developed in chapter I

is motivated through several models of physical field situations that

contain a setting analogous to that used in the definition of H. In

fact, a model for gravity waves on deep water will be presented where

the setting is exactly the same as in Defn. 1.1 of H. This is a

simple case of the more general model involving the linearized equa-

tions for internal water waves which will be presented in this sec-

tion. The goal of this chapter is to demonstrate that, through the

use of H, a single scalar wave equation for these models can be

obtained by means of a classical linearized theory, i.e., by con-

sidering waves of an infinitesimal amplitude on a surface interface

contained in an ideal fluid.

Let z, whose boundary y is a sufficiently smooth line, be a

region in the plane satisfying the conditions outlined in section

1.2. Then take B to be the 3-dimensional domain, formed in a rec-

tangular coordinate system, as the cylindrical product of z, embedded

in the plane z=o, and the interval (-d,d) on the z-axis. The boun-

dary of B will be denoted by r which consists of the vertical side

walls and the two end faces in the planes z = ±d. Also, the two

halves to this cylindrical region will be denoted by,
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DT/

Dt
+ pg, on B

68

(3.1)

where D/Dt is the material derivative and g is the acceleration of

gravity. Here, we have condensed into equation (3.1) what should be

B1 = X -d,O) and B2 = E x (04)

with boundaries

a13. . , for i = 1,2,

SO, 1" F1U r2.

E is to be the static horizontal surface interface of a homo-

geneous, incompressible, inviscid non-rotating liquid contained in a

basin given by the domain B defined above. The fluid is of den-

sity pi in the regions Bi. We want to model the infinitesimal ampli-

tude wave motion of z under the influence of gravity and surface ten-

sion. We will consider motion of the fluid with velocity

vectors, -V-i(P,t) = (Ui,Vi,Wi) (P,t), and pressure, Ti(P,t) in Bi, for

i =1,2, where a general field point in B is given by P = (x,y,z) with

S = (x,y) representing a field point on z. Under motion the free

fluid surface is denoted by 0. Then the Eulerian equations of motion

for this fluid take the form,



two equations of the same form with indices i = 1,2, for the respec-

tive halves of B. For brevity, this format will be maintained until

the final form for the equations is derived. Assuming no fluid

sources these equations have to be adjoined with the condition of

incompressibility

v . 17, = 0, on B (3.2)

and, disregarding surface tension for the moment, the boundary condi-

tions are

S

with

- 0 = 0 , on
Dt p
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( 3 . 3 )

-. v = 0, on r (3.4)

where ; is the outward normal to r.

The linearization of these equations is by a standard process

where it is assumed that only "slow" wave motion of infinitesimal

amplitude is to be considered. Also, the effects of the undulating

surface Q on the flow field are ignored but a perturbational pressure

effect on E is incorporated. That is, if we assume that o deviates

from by a small vertical amplitude h(s,t) which is positive up,



then the pressure is of the form 1-i- = p where ph is the hydro-

static pressure and p(P,t) is a small perturbation pressure assumed

to satisfy 1p1<<lphl and can be approximated on z by ogh. Under

these assumptions, (3.1) is linearized as

p a -V- = - vp (3.5)

which, in conjunction with (3.2) and (3.4), yields

-v2p = 0, in B and -22- = 0 on r. (3.6)
an

Also, a linearization of the boundary condition (3.3) which is fur-

ther reduced and simplified by assuming the value of the vertical

velocity component W is the same on z as on Q, yields

ath + w = 0, on E. (3.7)

Then, inserting W from (3.7) into the vertical component of (3.8)

gives the final form of the relation between the two dependent vari-

ables h and p as

p a h=ap
'
on z.

tt z
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The pressure balance on z takes the form

p21z4= plIzto+ (P2- Pi)gh.

However, this can be generalized to include a surface tension term

and allow for an impressed surface pressure on z. The force density

due to a coefficient of surface tension T is given by, T V2h (5).

So, in summary, the linearized equations for the infinitesimal

amplitude wave motion of an internal surface interface are given by

Pi
atth = azpi Z

(3.8)

with

api
= 0, in Bi and ---- I = 0, for i=1,2

ri

(5)This is a linearization of the surface tension forces which arise
from the curvature of c, where we have kept only 2nd order
derivatives.
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(3.9)

and the pressure balance on E is now of the form

P2 1 z+0 = P1 I zi.0 4. (P2- Pl)gh T 2h f
(3.10)

where f(S,t) represents an impressed surface pressure.



A more simple case of this model, known as gravity waves on deep

water, is obtained by considering the top region Bl (it is typical to

orient the basins with the z-axis as positive down) as the atmosphere

and letting d go to infinity. That is, we set pl = o and consider

E as the static horizontal surface to a liquid contained in a basin

of infinite extent where the aim is to model the wave motion of

E under the influence of gravity alone. Then, dropping the index

i=2, the equations governing this wave motion, in the linearized

infinitesimal approximation, are easily obtained from (3.8) - (3.10)

as

V2p = 0, in B with -P-a

r
= 0

an'

with the pressure on z given by

z +0
pgh + pgho

P I =

72

(3.11)

(3.13)

where we have represented the impressed surface pressure in terms of

an impressed surface amplitude, ho(s,t).

P att = azp +0
(3.12)



3.2 Reformulation in terms of H

The form of the equations governing internal water waves in

(3.8) - (3.10) and for gravity waves in (3.11) - (3.13) is unsatis-

factory since they include two dependent variables h and p. However,

one reason for explicitly writing out the equations for the case of

gravity waves on deep water is because it is easily recognized that

this is precisely the setting presented in the definition of H in

section 1.2. From (3.11), we see that the perturbation pressure p is

harmonic on B with a homogeneous Neumann boundary condition on r.

Hence, from Defn. 1.1, its cross-surface derivative on E can be

eZpressed in terms of its values on E with the help of the surface

operator H. That is,

(P I z+0) = azP z+0
(3.14)

But, then, using (3.12) and (3.13), the dependency on p can be elim-

inated with the resulting equation

atth + gHh = f (3.15)

where the source term is

f = -gHho. (3.16)
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Equation (3.15) represents a reformulation of the equations for

gravity waves on deep water which was our goal. This gives a single

scalar equation which we can refer to as the basic gravity wave equa-

tion governing this example. The process is the same for the inter-

nal water waves, if we again consider the case where d goes to infin-

ity. It is only necessary to recognize that a change of sign is

needed in the definition of H if the domain is in the negative z

That from (3.9)half-space. is, we have

Hence, from the pressure balance equation in (3.10) and using (3.18)

above, we can eliminate the dependency on the pressure with the

resulting equation

(131+132) +3h (p2
pi)gHh T H -Hf. (3.19)

H(P2 I z+0)
azp2 z+0 and H(p.

I z4.0) = z4.0
(3.17)

Then, using (3.8) and (3.17) above we obtain

p2 atth = - H (p2 I z+0) and pl 3tth
= H(131 Z4)

(3.18)



Equations (3.15) and (3.19) illustrate how this reformulation

has led to a new type of wave operator. From Chapter I, we have seen

that, in the appropriate setting, H behaves as a square-root of the

Laplacian. So the equations (3.15) and (3.19) give rise to wave

operators where the spatial part of the operator involves fractional

powers of the Laplacian, given by

(Gravity Waves) = a +
G tt
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(3.20)

T 3
(Internal Water Waves) = + (P2-P1) gH +

p1+p2
H (3.21)

I
Pl+P2

where H =

3.3 A Representation of Solutions in terms of the Impulse Response
and Examples for Various Basins

The remainder of this chapter will be spent considering some

specific examples of the model for gravity waves where a formal

eigenfunction expansion technique will be employed to explicitly find

solutions. Also, a representation of solutions in terms of the

Green's function for the gravity wave operator in (3.20) will be

obtained illustrating a direct analogy with the classical wave oper-

ator.

To solve a mixed boundary value problem involving the wave equa-

tion in (3.15) some care is needed to interpret this equation cor-



rectly. In the first two chapters several settings were presented

where the operator H could be viewed as a surface operator indepen-

dent of the region B. However, within the context of the water wave

model, it is important to recognize that H maintains a dependency on

B. For the most part, no attempt will be made to justify the solu-

tion technique and say in what sense a solution is given, since the

subject of gravity waves on deep water is well developed and the

solutions that are presented are usually well known. A more in depth

analysis of this problem will be taken up in the last two chapters

where the formal treatment in this section will be justified within

two classes of solutions.

We will begin by obtaining an eigenfunction expansion for the

impulse responce h (S,t) of an unperturbed static fluid found by

assuming causal conditions and, that, at time t = o+, E is hit by a

delta-like pressure pulse centered at Re Z, viz., we take

1

h(S't) = (t) 6(S-R).

To obtain a solution to (3.15) with
ho

given in 3.22), we assume an

expansion for h of the form

h (S,t) = (t) u (S). (3.23)

Recall that (see (2.1)) 6(S-R) has the bilinear expansion
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So, tic, can be written as

1
ho(S,t) = -p-g- 8.4.(t) uk(R) uk(S).

Formally applying H by (1.15), equation 3.15) with h from 3.23)

and
ho

in (3.24) above becomes

Ia(t)uk(S)+1im
k " z40 k

At this point, the solution method is to obtain an equation for

the modes separately, by assuming the limit as z+o can be brought

inside the summation, yielding

with ak s o for to (by causality).

However, we retain the dependency of H on B (i.e. the method of

extending a function harmonically off z and then taking a limit back

to z as z+o) by inserting the solution to (3.25) back into h written

in the form

d(S-R) = ul,(R) uk(S).
k "

1/a" (t) + gx'4 a (t) = -
1

9-uk +
(R) 6

'
(t) for t>0

k k p k
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(3.24)

1.)2

z 1 "Xk z
e a (t)uk(S). -

6+(t)lim
xl,2e uk(R)uk(S).

z40 k

(3.25)



_xz
h (S,t) = lim e ak(t) uk(S).

z40 k

The solution for ak(t) in (3.25) is straightforward and yields

1 V-, V-ak(t) = - 7, (x/g) U (11) sin(g2 !./11t), for t>0.

Thus, plugging this into (3.26) we have our solution. Recapitulat-

ing, we have demonstrated the following result.

Lemma 3.1

The impulse response to

(att + gH) h(St) = - g H h0 ($,t), for SeZ, t>0

with h E. 0 for t<0, where

h0 pg
(S,t) = (t) 6(S-R)+

is an impressed surface amplitude, is given by

1/2
"Ak Z 1/ lb,

h (S,t) = _ - Urnxi4e
sin(g 2),k9t) uk(R) uk(S)' t>0 (3.27)

pg/2 z+0 k
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(3.26)
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where uk(S) is to be interpreted as a regular distribution with

(3.27) converging weak*.

Let 0.+ c2H. Then, the general mixed boundary value prob-
9tt

lem with this wave operator is

u(S,t) = f(S,t) , for SEE, t>0

(M.B.V.P.1)

with u(S,O) = cp(S)

and -1L1 =0.
atu(S,O) = Ip(s) airT Y

A representation for the solution u(S,t) is given in terms of a

Green's function G(S,R;t), for the operator 0. G(S,R;t) is a solu-

tion to the problem with homogeneous boundary conditions and

a 6-like non-homogeneous term. That is G(s,R;t) is the solution to

G(S,R;t) = 6+(t) 6(S-R), for SEE, t>0

(M.B.V.P.2)

GEO for t<0 and 9G = 0.

aKS

A solution to M.B.V.P.2 can be obtained in exactly the same

manner as the impulse responce h to (3.15). However, notice that

the only difference in the two problems is that for G, f(S,t) is pre-

cisely the 6-like term 64(t) 6(S-R) while for hp, we first

apply - lip H. This suggests that G can be obtained from the impulse

response already found in (3.27) by



80

G(S,R;t) = -p H-1 h(St) , (3.28)

where, it is clear that an eigenfunction representation

for H-1, obeying the formal calculus rule of bringing the exponent -1

inside to the eigenvalues plus retaining a dependency on B, is given

by

Applying (3.28) by (3.29) to h(St) given in (3.27), where

c2 replaces g, and the expansion coefficients for h are

1 1/

) k = - -E-p- Ak4 sin c 4t)
uk(R)

we obtain

1./2

-1/9-Xkz-
H-141,(S) = lim -e gbk uk(S) .

z4.0 k

1/2

k k k
lim 3,1 /41-eAk zG(S,R;t)= sin(c )1,41t)u (R)u (S), for t>0.
z+0 k

(3.29)

3.30)

Now, we want to demonstrate the following representation for the

solution to M.B.V.P.1.



Lemma 3.2

The solution to M.B.V.P.1 has the formal representation in terms

of the Green's function, G(S,R;t) the solution to M.B.V.P.2 given in

(3.30), by

u(s,t) = f f G(S,R; t-T) f(R,T) dERdT + f G(S,R; t) *(R) dER
0 E

+ I G(S,R; t) (p(R) dER .

r

Proof We will actually obtain the above representation by first

solving M.B.V.P.1 through an eigenfunction expansion method and then

rewrite the solution by making use of the expansion for G(S,R;t) in

(3.30).

Assume that u(S,t) and all data functions have eigenfunction

expansions, i.e., take

u(S,t) ak(t) uk(S)

with

81

f(S,t) = f6(t) uk(S) q(S) = ;1.4(S) and Ip(S) =
k " k " " k " "



Formally plugging these into M.B.V.P.1 we obtain, in the same manner

as for the impulse response, the equation for the modes separately as

1/0
a(t) + c2 xlt.ak(t) = f (t), for t>0

with

ak(0) = ;k and a(0) = 15k.

Then, (see Vladimorov (1971) pg. 147) ak(t) is given by

ak(t) = (Ek * f ) (t) + gk(t), for t>0 (3.31)

where gk(t) is the solution to

4(t) + c22 gk(t) = 0, for t<0 and gk(0) =
k'

= ik (3.32)

and Ek(0 is the fundamental solution to

2 1/0
E(t) + c

xk Ek()
t - (4(t),with EkE0 for t<0.

The solutions to (3.32) and (3.33) are straightforward yielding

9k(t) = ;i(cos(cxt) + Ipk1cAk1/4 sin(c xk t)
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(3.33)



and

Ek(t) =i sin(cxk'Pt)
for t>0.

Inserting these into (3.31) we obtain

k 1/4 1
ak(t)= :t1;k cos(cxklit) + --v sin(cxk t) +

1/4
sin[cAk (t-Tilfk(T)dr

cxI4 cx'4 0

(3.34)

Thus, the solution u(S,t) is found by plugging (3.34) above into

u(S,t) = lim e k ak(t) uk(S) , for t>0 .

z40 k

cz
(3.35)

Finally, if we write the expansion coefficients in integral form

as

becomes

^4;k= .1 4)(R) uk(R) dER, 1Tk = f 4)(R) uk(R) dzil and

fk(t) = f f(R,t) uk(R) dziz
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and formally bring the summation inside the integral, then 3.35)



1/2

u(S,t) = lim { f X xk

t
_1/4 -xkz

inCdi 4 t -0] f (R)uk(R )(S) d d
uk

e s k
z+0 0 E k

_Ak2z+fIe cos(cyt) 4)(R) uk(R) uk(S) dER
E k

)Y-2 z
1 k

I Ak e sin(cAk *(R) uk(R)uk(S)dzR 1 .
z k

Hence, bringing the limit as z+o inside the integrals and making use

of the expansion for G(S,R;t) in (3.30), we obtain the representation

given in the statement of the Lemmall

The solution given in Lemma 3.2 resembles the classical Green's

function representation to the initial and boundary value problem for

the wave equation with the operator att- c22

84

(see Duff and Naylor,

1966). We are missing a boundary integral over y since a homogeneous

Neumann condition on y is specified. It appears that a treatment of

boundary conditions on y must be omitted since there is no formula

for H analogous to Green's second formula which is used in the clas-

sical problem to handle non-homogeneous boundary conditions. This

goes back to the original discussion of a square-root of it and the

appropriate domain for a square-root. In the construction of H, in

Chapter I, the treatment of boundary conditions to be included in its

domain of definition is avoided. The presentation, there, was more
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analytic in nature with an emphasis on obtaining an eigenfunction

expansion for H giving a square-root of n, valid in 1.2(r). Hence, it

was only necessary to include a growth condition on the expansion

coefficients.

So, it seems, an important issue that will have to be avoided

concerns the appropriate construction of H within a boundary value

problem context. That is, is H suitable for the treatment of mixed

boundary value problems, such as M.B.V.P.1, but with non-homogeneous

boundary conditions on y?

Certainly, one way to avoid this difficulty, concerning the

model of gravity waves on deep water, is to consider basins

where E is unbounded. In fact, of special interest is the basin of

infinite extent where E is the whole plane.

We will finish this section by presenting, explicitly, the

impulse response for the basin where E = R2 and several other basins

of interest.

Example 1: The Unbounded Half-Space Basin

In this case, E = R2 and B = E x(o,...). The eigenfunctions and

eigenvalues for n depend on the continuous index it = ((1, k2) and are

given by

-i(k x+kly)
u+(x,y) = 27'; e , with x = k2 + k2 = k2.it 1 2
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Hence, the impulse response is found by inserting these into (3.27)

and observing that the summation becomes an integration over It. This

yields

rk1 (x-x1)+k2 (y-y')]c° -kz 1/2 /2 -i-
1 1, lim fk,

1
e sin(g k t)e

47rpg/2 z+0 -

(the complex conjugate of uk( ) appears since the eigenfunctions were

not taken as real-valued). Here, S = (x,y) and the source point

is R = (x',y'). Placing the source at the origin and using polar

coordinates gives

1
003/2 -kz 1/2 1 ff-ikr cos(e-ea))h (x,y;t) = - 1 im f k e sin(g t)dk (T-1-T e

de
2ffpg'2z+0 0

where r is the distance between S and the origin and 0-o' is the

angle between It and S = (x,y). Now, the inner integral can be

written as the Bessel function Jo(kr) and by symmetry, since this

solution only depends on the distance between the source and field

points, the source can be restored to its original

position R = (xl,y1) yielding

1 . w 3/2 -kz 1/2h (r,t) - 17 lim f k e sin(g kt)Jo(kr)dk, for t>0 (3.36)
27rpg12 z+0 0



where r is now the distance between S and the source point R.

Example 2: The Spherical Basin

Here, we take B to be the open ball of radius a centered at the

origin and E = aB. As with the Half-space problem, this avoids the

treatment of boundary conditions. Now, the operator H is to be a

square-root of the sperical surface Laplacian

-As =
1 a

(7-7. (sine + 1 )- a2
sine de 96

sin20 42
)*

The eigenfunctions and eigenvalues for -As on are of the form

Pn
(cose) e , with x n(n+1)

involving the Legendre polynominals P11111(coso) and where we have multi-

plicity 2n + 1 as m runs from -n to n.

Any boundary value (1)(00) defined on E has the expansion (see

Duff and Naylor, 1966 pg. 345) for a treatment of eigenfunctions of a

spherical surface and expansions in terms of them)

$03.0 = 1 71; Pm(cose) 111*
n=0 nm n
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with expansion coefficients

(-1)m(n+1/2)
nm 2211.f (0( e 1-5111 (cose) dz

(eoP)

(here,
dE(0)=

sinededip). The harmonic extension to B is given by
,

n

u(r,e,*) =L (i)n F> (cose)
n=0 m=-n um

Hence, a representation for H, analogous to (1.15), can now be

given by

88

n
r n im m*

Hgeop) = lim 1 1 [n(n+1)Ji12(-ad
(1)nm Pn(cose) e .

rta n=0 m=-n
(3.37)

A source function for the operator 0 = + c2H is obtained by
att

solving

0 (0,)G(64;8141;t) = (4(t) 6(6/-o'jn:(") , for t>0

with G E o for to.

we assume an expansion for G by

(3.38)



G(6,11); 611,4)1;t) 1 g (t) Pm(cose) lm*
n=0 nm n

and expand the R.H.S. of (3.38) as

m
(cose) P14(t)

-m

Pn n(cose'
lin(11,-*1)

n=0 m=-n
21.

Formally plugging these into equation (3.38), a differential equation

for the modes separately is obtained as

gm(t) + c2En(n+1)1/2

The solution to this is given by

(-1)m("3/2)1, sin [c [n(n+1)] 14t], for t>0.g(t) =nm
27r c[n(n+1)4

Thus, the source function is given by

n

G(0,*01,*',t)=-1--lim 1 1 (-
27rcrta n=0 m=-n

(t) - (-1)m(n+
1/2

) Pm (cose') eim*Pc(t).
27r

-m

Pn
(cose)

Pn(cose')
lm("')
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)m(n+ 1/2 ) [n( n+1)]1/4 (Si) nsi n [c[n( n+1)]/4

(3.39)



Example 3: The Layered space or Basin of Finite Depth

In this case, we take z = R2 and B = zx(o,d). We now have an

extra boundary face and write, aB = E J r\J Eli, where Ed = zxfdl.

The development of H goes exactly as in Chapter I, except now, we

include the added boundary condition

=0
an Ed

in B.V.P.* of section 1.2. Hence, the harmonic extension of a func-

tion .(S) defined on z takes on a slightly different form than given

in (1.11). A reflection factor will be included. That is, as

before, assuming an eigenfunction expansion for u(P) and plugging

into the boundary value problem now yields for the modes ak(z) a dif-

ferential equation in the form

ak"(z) = xkak(z), for 0<z<d, with ak(0) = k and a(d) = 0.

The solution to this can be written in terms of hyperbolic trigono-

metric functions as

cosh (2(z-d))
ak(z) = 1(

1A,
cosh .(xit d)
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Hence, an expansion for H is given by

The model for gravity waves goes as before with (3.15) the gov-

erning equation. The impulse response is found by assuming expan-

sions for h (S,t) and ho(S,t) as given before in (3.22) and (3.23)

and obtaining the equation for the modes separately, by plugging

these into (3.15) with the aid of (3.40), as

sinh(Xi0 d)
a(t)+g

1/2 )1/41(4 ak(t)=cosh(xk d)

As before, we insert the solution to (3.41) back into h (S,t) written

in the form

H+(S) = lim
Z40 k

1/0
11 sinh(x=(d-z))
x2

cosh(x2d)
1(

cosh(q(z-d))
h (S,t) = lim1/0 ak(t) uk(S) .

z40 k cosh(X d)

The solution to (3.41) is given by

1 I/ 1/0. .0 1/4a (t) = -
2

a)A--IT tan h X
, A.. ,u

kK)
(,

k k
Si n[g0 tan chxk d) xk t], for t>0.

P9/

]1(

1
sinh(xad)

1/2
P cosh(xk d)

(3.40)

vuk(R) 8.1.(t). (3.41)

(3.42)
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Thus, the Impulse response has the expansion

1/, 11,

1 .

tanh xk4 d)
1/2h(St) = lin Alt4 1/ [cosh (z-d)] (3.43)

pg'2 z+0 k cosh( qd) "

1/2 1/2 12 14
sin g tanh (/Ak d)Ak t] uk(R) uk(S)

which is valid for t>0. Now, exactly as before, the eigenfunctions

and eigenvalues are

-i(k1x+k9y)u (X,y) = e2
27r

, with X
k k2+ k2
. 1 2

and these are inserted into (3.43) where the summation is replaced by

an integration over f().. Again, this is first simplified by placing the

source at the origin and then making use of radial symmetry in

f.-space to obtain the Impulse response for a basin of infinite

extend and finite depth as

1 4
h (r,t) = 1"m' cosh (kd)

r 63/2 tanh ikd)
cosh [k(z-d)]

27rpg Z.1.0 0

sin[g1/2tanh 1/2(kd ) 1 12t] jo(kr) dk,
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valid for t>o, where r = IS-RI.

(3.44)



Example 4: The Swimming Pool Basin

For this problem we take E to be the rectangular region given

by, o<x4a, ocy4b, embedded in the plane z = o, with B = Ex(o,d). We

can make use of all the work in the previous example, since there, we

first obtained the expansion for H in (3.40) and the Impulse response

hp(S,t), in (3.43) for a general region E with eigenfunc-

tions uk(S) and eigenvalues Ak. By a separation of variables, these

are easily shown to be

4 Ynm
cos=

ab
0M7X) cos -32)

unm(x,y). a

(3.45)

with

202 4. n2

a

)
Xnm = L2 ' b2)

where, n,m =

93

and yo = 1/4,
yn0

= yom = 1/2 wi th ynm = 1 for
.

both n>0 and m>0.

Now, the Impulse response for the swimming pool basin can easily

be obtained by inserting (3.45) into (3.43) yielding

co
tr,

1, tanh 6(7 1941=Tid )
4 72 7 17 4----I--

/ m L I nm nm
h (x,y; x' ,y1 ;t) = -

abpg9 z40 n,m=0 cosh (7 1-12d)
nm



x cosh(ir t(z-d) sin[(irg)
1/,-,
ztan (ffh 4

iy2 ,1/2 4.,
' nm nmJ

Itcos(11122S)cos(m)cos(1122)cos(12112-)
a a

(3.46)

2 2 A

where y' =' as above except, y' =0 and r -+ n - nmnm nm 00 nm
a2 b2 r2
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IV. A MIXED PROBLEM INVOLVING THE WAVE OPERATOR att + c2H

4.1 An Adaptation of the Classical Method of Energy Integrals

In this chapter we will take up an analysis of the operator

= att + c2H within a general initial and boundary value problem

given as

95

We have seen numerous examples of an eigenfunction expansion

technique applied to wave equations, such as W.E.1, to obtain solu-

tions. Here, the goal is to justify in what sense these expansions

converge and define solutions. This will be done from two points of

view. In one approach, it will be shown that the series expansions

converge in L2(E) uniformly w.r.t. time on bounded intervals. Then,

the series is a solution defining a function which is continuous

in L2(z) w.r.t. te[o.0.). Within this class of functions, an exis-

(6) We will now be considering eigenfunctions and eigenvalues for 11

with this boundary condition where a and a satisfy the conditions
originally spelled out in Section 1.2

W.E.1 with

h

Clh(S,t) = f(S,t), for

+
= h0 and at h

(S,t) e x

t=0+
= h1 and a hi-011

an9 =Iy (6)



tence, uniqueness and continuous dependence on the data theorem will

be presented. A second approach, taken up in Chapter V, will be to

consider a generalized wave equation where it will be proven, under

mild restrictions imposed on the data, that a formal eigenfunction

expansion yields a distributional solution.

In both of the above settings, H is treated as a surface oper-

ator independent of the region B. That is, within an L2 setting, the

definition of H is obtained from Lemma 1.3 (where DH = 14: condition

(A) holds 1) as

1/2

H(S) = / Xk (1)1( uk(S) '

and, as an operator on distributions with compact support, the defin-

ition of H is given by (ii) of Lemma 2.9 as

H(T) = 2
Tk uk' where Tk= <T'uk>x

96

44.1)

(4.2)

_ 2z

In either case, the factor eAk and limit as z+o are omitted since,

within these settings, it has been shown that it is permissable to

pass the limit through the summation. This justifies the earlier

solution technique used to obtain the equation governing the modes

separately. Moreover, in the final form of the solutions, the series
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expansions remain independent of B, with the exponential factor and

limit omitted there, also,

The first approach is analogous to the classical method of solv-

ing a mixed problem for an equation of hyperbolic type, with the

operatortt - c2A. It will be helpful to begin by first illustrat-

ing the techniques to be used on this classical wave equation. This

will also suggest how to adjust these techniques to apply to the new

problem in W.E.1.

The setting is generalized to include the operator L defined

earlier in section 1.2 as

L = -div(p grad) + q.

It is also possible to incorporate the constant c2 into a general

density function p(S), defined on E using the operator
patt+

L,

where the work is carried out in the space L2 (z;p). However, the

definition of H forces us to restrict to the case where p is con-

stant. To avoid changing the setting when L is replaced by H and

since there are previous examples involving
c2H'

the classicalate

problem will be illustrated using the operator att+ c2L.

The problem under consideration is



tt
u+c2Lu= F, on U

W.E.2

with u

t = 0+
=

vo

and au + 13 =0.
an

atu
t = 0+

= v1

(where U is the time cylinder E x

A classical solution to W.E.2 is defined as a solution of

-
class C2(U.)(1 C1 (U.). Notice, if u is a classical solution then,

necessarily, we have

avn

FEC(U.) , v0cC1(1), v eC(1) and a vo+ a I = o.
aiT 1 y

These conditions will always be adjoined to the problem when dealing

with classical solutions.

The approach to this problem makes use of the method of energy

integrals which represents the sum of the kinetic and potential

energy of an oscillating system at time t. Given a classical solu-

tion u to W.E.2, the magnitude
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J2(t)
=1/2 f E(1)2

c2p
Ivu12 + c2qu2] +1/2 f c2p u2, (4.3)

10

where yo is that portion of y such that a,po, is known as the Energy

Integral for u. A key result for this approach is to obtain a rela-

tionship between J2(t) and the data. This easily allows for

L2- estimates on u, au and vu in terms of the data which immedi-

ately yields uniqueness and continuous dependence on the data. These

results won't be presented now since analogous results, for the

adaptation to the surface operator H, will be given later (for

further details see Vladimirov, 1971).

Existence within the class of classical solutions Oesents some

difficulties. Since existence is sought via an eigenfunction expan-

sion fairly harsh conditions must be imposed on the data to obtain a

classical solution. Instead, the notion of a generalized solution,

which is well suited for these expansions and involves functions con-

tinuous in L2(E) w.r.t. time, is introduced.

Pertinent definitions and preliminary results that are also

needed for the adaptation of this approach to W.E.1 will be given now

along with a brief sketch of the results leading up to the main

theorem on existence for the classical problem in W.E.2.



Definition 4.1

For every tc[a,b] let the function u(S,t) belong to L2(E).

Then, u is said to be continuous in L2(E) w.r.t. te[a,b] iff for

every tc[a,b]

u(S,t') u(S,t), as t' t, in L2(E).

The following preliminary results are immediately obtained from

this definition.

Lemma 4.2

If u is continuous in L2(E) w.r.t. tc[a,b] then

11u112 is a continuous function of time for tc[a,b]

for every f c L2(0, the scalar product (u,f) is continuous

for tc[a,b]

u c L2(E x [a,b])

Proof (i) follows from the inequality

1 Ilu(SX)112 - Ilu(S,t)1121 4 II U(S,t1) - u(S,t)112 ,

100



Iluk(S,t) - u(S,t)II2 4. 0, as k ., uniformly for te[a,b].
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which is a consequence of the Minkowski inequality and where the

R.H.S. above goes to zero as t'A by assumption.

This follows from Schwarz's inequality

1(u(S,t1),f) - (u(S,t),01 = 1(u(SX) - u(S,t),f)I

11U(SX) - U(S,t)II2

here,

1I f lu(S,t)12 dEsdt = f flu(S,t)112 dt,
2

a E a

and this last integral is finite, since by (i), is continuous

on [a,b] II

Definition 4.3

The sequence of functions uk(S,t) is said to converge to u(S,t)

in L2(E) uniformly w.r.t. te[a,b] iff



Uniform convergence on a set Q will be denoted by

seQ
uk ==4 u as k .

Hence, the convergence in Defn. 4.3 will be denoted by

tc[a,b]
uk as k 4- .0, in 2(E) .

Definition 4.4

The sequence of functions uk(S,t) is said to converge in itself

in L2(E) uniformly w.r.t. ts[a,b] iff

tc[a,b]
(un - um) 0 as n,m 4- co, in L2(E) .

Lemma 4.5

If u tc[a,b]
k :=4 u as k co,

and
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in L2(0, then

uk u as k co, in L2 (z x [a,b]),

tc[a,b]
(ii) Iluk(S,t)112 Ilu(S,0112 as k .



Proof (ii) By Minkowski's inequality

I Iluk112 11111121 < Iluk(S,t) u(S,t)II2 +0 as k .

uniformly on [a,b] by assumption.

(i) f f k(S,t) u(S,t)I2
dzsdt

= f Ilu (S,t) - u(S,t)II2 dt
2

a z a

which converges to zero as k+co by assumption, since the integrand

converges to zero uniformly on [a,b] 11

Lemma 4.6

Let uk(S't)' k = 1,2,... be a sequence of functions continuous

in L2(z) w.r.t. te[a,b] with

uk itrlago]u as k ., n L2 (Z);

Then, u is continuous in L2(z) w.r.t. te[a,b].

Proof Let 00 be given. Then, there exists an integer m such that

Ilum(S,t) - u(S,0112 < , for every te[a,b].
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Since,
um

is continuous in L2(E) w.r.t. te[a,b], given

t0
e[a,b] there exists Po such that

Ilum(S,t1) - um(S,t0)112< -§ whenever It' - tol < .

Then, by Minkowskils inequality

Ilu(S,t1)-u(S,t0)112 Ilu(S,t1)-um SX)112+11um(S,t1)-um(S,t0)112

+ Ilum(s,t0) - u(s,t0)112 < + e,

whenever Its-tol<S. This shows that u(S,t1)4u(S,t0) as ti+to

in L2(E). Since to c[a,b] is arbitary, we have shown that u is con-

tinuous in L2(E) w.r.t. te[a,b] 11

Lemma 4.7 (A completeness result concerning uniform cauchy sequences

in L2(E) w.r.t. time)

If the sequence of functions uk(S,t), k = 1,2,..., converges, in

itself, in L2(E) uniformly w.r.t. te[a,b]; then, there exists a

function u(S,t) continuous in L2(E) w.r.t. te[a,b] such that

te[a,b]u as k co, in L2(E).uk =1.4
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.
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Proof By the Riesz-Fischer Theorem, for every te[a,b] there exists a

function u(S,t) in L2(z) with

uk
u as k in L2 (Z) .

Moreover, it is possible to choose a subsequence
uk.(S't)'

i =

1,2,... such that

Iluk
(S,t) - uk. (S,t)II2 < , for every te[a,b].

1) 1 2

Here,

u(S,t) = lim uk (S,t) =+ (uk. (S,t) - u6.(S,t))+ . . .

P4-c° P "1 1+1
Ki

which implies that

111.1 - .112 4 1111k. - uk.112 +
Iluki+2- uki+1112

Hence, the subsequence converges to u in L2(z) uniformly

w.r.t. te[a,b] and since

11u - ukli2 < Ilu-uk.112 Iluk. - uk112

1
<

21

1 + . 1

2i+1
. . =

2i-1



with

au
k

uk
t = 0

, at uk = v
4. 0

t = 0 y

where we have

te[O,T]
F as k+., in L2(z); 44- v0 as k co, in L2(0

Fk

grad
vo

grad
vo

and vk
v1 '

both as k co, in L2(E)
1
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by assumption, we in fact have
uk

converging to u in L2(0

uniformly w.r.t. te[a,b]li

Now, we can give the definition of a generalized solution to the

classical problem in W.E.2.

Definition 4.8

u(S,t) is a generalized solution to W.E.2 iff it is the limit

in L2(0, uniform w.r.t. tE[O,T], for every 1>0, of sequence of

classical solutions uk(S,t) to the problems

ttuk
+ c2 L uk = Fk' on U



(7) DI consists of functions u of classc2(E)fIC1() with AueL2(E)

and satisfying the boundary condition au+13 au 0.
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With this definition in hand, the next step is to show that the

L2-estimates for u, atu and grad u where u is a classical solution

also hold for generalized solutions. This imediately allows a

uniqueness and continuous dependence on the data theorem for

generalized solutions. Moreover, this notion of a solution is well

suited for a formal eigenfunction expansion solution technique where

it is verified, under the appropriate restrictions on the data, that

this expansion yields a generalized solution. This theorem will be

presented here so it can be compared with the analogous result for

W.E.1.

Theorem 4.9 (Existence)

If vo6L(7), v1eL2(E) and F is continuous in L2(E) w.r.t.

t[0,.), then, the solution to W.E.2. obtained, formally, by an

eigenfunction expansion is a generalized solution.

Moreover, the following properties of a generalized solution can

be established.



Lemma 4.10

If u(S,t) is a generalized solution to W.E.2, then the following

properties hold

u(S,t) is a distributional solution, i.e., given 0 E D(U)

2

<1.1,tt
0 + c L0> = <F,0>

The first (generalized or distributional) derivatives of

u, au/at and gradu, are continuous in 1.2(z) w.r.t. te[0,..), and

for every T>0

te[O,T] [O,T]
atuk =1.4 atu, grad ukte grad u, as k op, in L2(E).

Again, the proofs and details for some of these results have

been omitted since they are analogous to results that will be proven

when we consider the surface operator H in W.E.1.

Now, we want to adapt the previous theory to the problem in

W.E.1, as originally given at the beginning of this section. The

main step in this approach is to obtain a representation of the

energy integral J2(t) in terms of the data given by
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J2(t) = J2(0) + f f F(S,-c u(S,T)dE dT (4.4)

E



where,

2 i 1, . a
J2(0) =1/21 Ev + c2p iv v02 + c2 qvo2j + 1/2 c2 T3p v02 .

1

10

An immediate problem here is that this step makes use of Green's

second formula for the operator L and it is not clear how an anlogous

formula for H should go. However, the energy associated to a sym-

metric operator L is given by the expression

1/2 (Lu,u),

which is, in fact, used in the definition of the energy integral

since, by Green's first formula

a
1/2 (Lu,u) =1/2 f uLu =1/2 f [p ivu 12 + qu2] +1/2 p u2 .

YO

This suggests that we define an energy integral associated with the

operator H in terms of 1/2 (Hu,u). This will entail, some changes on

conditions specified in the definitions of classical and generalized

solutions. For example, we will now be interested in the behavior of

Hu as opposed to vu. This leads to slightly different results but

we will show that the previous theory, essentially, goes through the

same yielding a very nice setting for the treatment of eigenfunction

expansion solutions to W.E.1.
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Analogous to classical solutions to the wave equation, W.E.2,

"nice" solutions to W.E.1 are defined which are to be sufficiently

smooth so that all operations are obtained continuously. This will

also reflect the necessary changes as imposed on Hu.

Definition 4.11

A "nice" solution to W.E.1, to be referred to as an N-solution,

is a solution h(S,t) satisfying the following conditions;

h is twice continuously differentiable w.r.t. t on Z x (0,c0),

Hh is continuous on E x

he C1(1 x [0,m)), and

for every t>o, Hh(S,t) e L2 (E) where lim Hh(S,t) exists in

L2(E), to be denoted as (Hh)0(S).
t4o

Note: If h is an N-solution to W.E.1 then, necessarily, we have

F c C(U), ho c C1(1), h1 e C() with aho +f3 aho/ari = 0 on y.

These assumptions will always be adjoined to the problem

14.E.1 when considering N-solutions.

The following result is immediate from this definition.



Lemma 4.12

If h(S,t) is an N-solution to W.E.1 then h and ath are contin-

uous in L2(z) w.r.t. t[0,..) and Hh is continuous in L2(z) w.r.t.

te(0,03).

Now, we will define the energy integral for N-solutions to W.E.1

analogous to the definition in (4.3).

Definition 4.13

Given an N-solution h(S,t) to W.E.1, the magnitude

12(

't) =1/21 (t
h)2 c2

(Hh,h), for t>0

with

2 c2
J2(0) =1/2 I h + 2 ho)

defines the Energy Integral, J(t), for h.

Definitions 4.11 and 4.13 illustrate the adaptation of the clas-

sical method of energy integrals that will be applied to the problem

in W.E.1. The remainder of this chapter will be concerned with

developing results, analogous to the previous theory applied to the

problem in W.E.2, culminating in the main theorems of existence (via

a formal eigenfunction expansion), uniqueness and continuous depend-

ence on the data for this class of generalized solutions.
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u(S,t) 17k(t) uk(S)
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4.2 L2-Estimates on Solutions and Uniqueness and Continuous Depen-
dence on the Data

A key result within the method of energy integrals is to obtain

a representation for J2(0 analogous to (4.4). Once this has been

proven then the rest of the material leading up to and including

uniquenss and continuous dependence on the data for N-solutions is

fairly straightforward. Due to the inner product that appears in the

definition of Lgt), in Defn. 4.13, the following result is needed

before giving this key result.

Lemma 4.14

Let u and v be continuous in L2(E) w.r.t. te[a,b]. Then the

following hold;

(1) The scalar product (u,v) is a continuous function of t on

[a,b] where the bilinear expansion

(u,v) L7,(t) 7k(t)

k"

converges uniformly for te[a,b].

(ii) The eigenfunction expansion



converges, uniformly for tc[a, , in L2(E).

Proof The first part of (i) is just like Part (ii) of Lemma 4.2.

Denote u(S,t) by ut(S), then

kut., Vt.) - ,v01 < - ut, vt,)1 + , vt,- v01

4-11uv ut112 Ilvtill2 Ilvti- vt112 Ilutil2

and, by assumption, this converges to zero as 'CA.

Before finishing part (i) we will verify part (ii). Certainly,

for each fixed tE[a,b], since u(S,t)eL2(E), it has the eigenfunction

expansion

u(s,t) = 17,(t) uk(s)
k

converging in L2(E). We must demonstrate the convergence

in L2(0, uniformly w.r.t. te[a,b], or, equivalently (by Lemma 4.7),

that
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II 4i1 aim) uk(s)11 lai((t)I
k=n

It is known that, pointwise, on [a,b]

CO

k1
1171((t)(2 converges to IfuH.=

2 te[a,b]0,
as m,n



By (i) of Lemma 4.2, is continuous on [a,b] and by (ii)

of Lemma 4.2

.1i7k(t)12 icu,uk

defines a positive continuous function on [a,b]. Hence, by Dini's

Lemma (see Vladimivov [1971] pg. 5), we in fact have

c(t)I2 converges uniformly to II2 on [a,b].
L k 1 2 'k=1

So, the sequence of partial sums forms a uniform cauchy sequence on

[a,b] which verifies (ii).

Now, for the second part of (1), we will show that the sequence

of partial sums of the bilinear expansion for (u,v) converges in

itself uniformly w.r.t. tc[a,b]. But, here

t7k(t) qi,(t)1
11.7k(t)12)2 (k(t) 12f/2 tc[a,b] 0,

k=n k=n k=n

as n,m -0- ., by part (ii)
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Lemma 4.15 (Key Result)

J2(t) given in Defn. 4.13 is continuous for t)0 and if we

assume F e C(.) then



J2(t) = J2(0) + f f F(S,T) a h(S,T) dE dT , for every t>0. (4.5)
OE

Proof Since, h and Hh are continuous in 2(E) w.r.t. tE (00.), by

(i) of Lemma 4.14, J2(t) is continuous for t>0. Also, by (iv) of

Defn. 4.11,

lim (Hh,h) = ((Hh)0, 110) which implies that lim J2(t) = J2(0).
t+0 t+0

Now, assume FEC(0.) and multiply the equation h = f, in W.E.1,

by 8th and integrate over E x (E,T) for 00, 14 to obtain

f F(S,t)
ath(S,t)dzSdt = 11 atth(S,t) ath(S,t) dt dEs

Ex(e,T) E e

+ c2 f f ath(S,t) Hh(S,t) dzsdt.
E

Here, the first integral on the R.H.S. which we denote as I, is

simplified

I= 1/2 f
(84h(S,t)2 II dES =1/2 f (9th)2E ' E

while, for the second integral, we have

T T (8)
II= c2 f (Hh, 8th) = c2 f 1 (Hh,uk) (ath,uk)

E e k

- 3/2 f (Lh)2

(8)
We stay within a real setting, to omit the complex conjugate, by

considering only real-valued solutions and we know the eigenfunctions
for this problem can be chosen real-valued.
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c2 1 f (Hh,uk) (ath,uk),
k c

Since, by (i) of Lemma 4.14 the bilinear expansion for (Hh, ath) con-

verges uniformly on [E,T].

This can be further simplified to

2
II= cIqf hk(t) atlik(t) dt = c2 1'1/(2 ti/2 (h-k(t) )2 I )

k E

21/ ,2
c v -12 (fi- (T)2 ) )2

2 xk k ) 2 L Ak L k`ti)

Now, letting c4o and replacing T by t, by the continuity of F,

ath and (Hh,h) at t=o (recall, 11T (Hh,h) = (000,h0)) where

(Hh,h) = x4 (hk(t))2 (by (i) of Lemma 4.14)
k

we obtain

2
c 42f F(S,r)a h(S,T)dz dT =1/2 5 (ath)2 + ((t) )2

0 E k

2 c2
- (1/2 f h1 + --2- (ffk( e) )2

e+0 k

= J2(t) - J2(0) s
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Note: This shows J2(t) is continuously differentiable for to.
Using Lemma 4.15 it is now an easy matter to obtain



L2-estmates on h and 9th in terms of the data to W.E.1.

Lemma 4.16

If h(S,t) is an N-solution to W.E.1, then the following esti-

mates hold

Ilath112 < 1/ 2 J(0) + f IlF(S,T)112dT , for every t)0
0

Ilhil < Ilh II2 0 2+i
2 J(0) t + f (t-r) liF(S,T)112dT, for every t>0

where

J(0) < (11h1112 + cil(Hh)01(2 + c11h0112)
I 2

Proof

2
Il9th112 f (ath)2 4 2J2(t)

2 2 1

c
since' "1!- (Hh,h) -IF xe (iik(t))2 O.

Hence,
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IIthII2< 2 J(t)

Differentiating equation (4.5) of Lemma (4.15) and using the Cauchy-



Schwarz inequality, we obtain

23 J, 11F112 Ilath112 < J I1F112

Which implies that

JI(t) 11F112 , for every t 0.

/2

Upon integration this yields

J(t) < 3(0) + ft 11F(S,T)112 di.

o '

substituting this back into the estimate for Ilath112 gives (i).

For (ii), differentiation of

HhII= f h2(S,t)dEs implies that 21Ih112 11h112 < 211 112 IR 112

or

11h112 < Ila hll2 < J(0) f 11F112*t
0

Then, integration of this yields

t t'

11h112 < 11h1121 t+0 j(°)
t + f f 11F112 dIdt' .

00
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By (i) of Lemma 4.2, lim 11h112 = 11h0112. Hence, interchanging the
t+0



order of integration in the above gives the result (ii).

For (iii), we have

2
2 J2(0) = f hi + c2 ((Hh)0,h0)

lIhlI 4- C2 II(Hh)0112 Ilh0ll2

4 (11h1112 C II(Hh)ota Ilhoqi1)2

(11h1112 li(Hh)0112 iih0ll2)2

(where we have used the facts that a2+b2< (a+b)2 and

aba2+b2 for a,b)0). Taking square-roots gives result (iii) II

At this point, we can immediately obtain a theorem on uniqueness

and continuous dependence on the data for N-solutions to W.E.1.

Theorem 4.17 (Uniqueness and Continuous Dependence on the Data for
N-solutions)

The N-solution to W.E.1. is unique and it and its first time

derivative depend continuously on the data hO, hl, and F in the sense

that if for any T>0 F, r e C (gT) with
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(IF-ril2 4 c for every 0<t<T, Ilh0-K0112 4 93, Ilhi - h111

and

I I (Hh) -(HIT) I
12<

Then, for the corresponding solutions, h and K

ilh_1912 ((1.11-) eo+ Tel + Te6 + 2e), for all 0<t<T (4.6)

and for some constant C-<., not depending on ho,hi, F, t or T. While,

for ath and
atfi%

the following estimate holds;

I I 3th t1112 2 4 "C (ea + + + T.), for all 0<t<T. (4.7)

Proof For uniqueness, it suffices to show that if h is an N-solution

to W.E.1 with all homogeneous data, then h = o (in L2(z)). But, in

this case, 11h0112 o, J(o) = o and 11F112 = o, which implies by

(ii) of Lemma 4.16 that 11h112 = o, for all t)o.

For continuous dependence on the data, let n h-R' and X(t) be

the energy integral associated with n. Then, by (iii) of Lemma 4.16
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a(0) 4 1 d1t11- 1II2
Cilho- R0112+ CII(Hh)o- (Rh)0112) (4.8)



and for every T > 0, by (ii) of Lemma 4.16, for all 044T

1 Inl 12 = 11

using (4.8) above and the estimate

yields,

1 T2th-R112 < eo + T ( + Ceo + c s)O + e

4 E ((1+1) Co + TE1 + TE6 + 12c), for all 0<tT

(where t' = max 11,c1).

Also, by (i) of Lemma 4.16

RII2 11110-K0112 + TT 3(o) + f (t-T) IIF-112dT
0

f (t-)
0

, for all 04t1,

11 90112= I 1 ath- atfil 124 rz 3'(3) f 1 1F-r1 12
0

< (e +
ce0

+ cc) + Te
1 0

4 (co + + + Te), for all 0<t<T
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4.3 The Main Results of Existence, Uniqueness and Continuous



Dependence on the Data in a Class of Generalized Solutions

As was mentioned in section 4.1, the notion of a generalized

solution analogous to Defn. 4.8 will be given that is well suited for

obtaining existence through a formal eigenfunction expansion solution

technique. Less stringent conditions need be imposed on the data for

the series expansion to converge yielding a generalized solution as

opposed to an N-solution to W.E.1. Moreover, the properties of a

generalized solution, that will be given in the main theorems of this

section and in the last section, illustrate its appropriateness for

this problem.

Definition 4.18

If we have a sequence of N-solutions fk(S,t) to the problems

attfk + c2Hfk = Fk' on U

with

and

where, for all T>0

1(
F tEc_92.111 F as k+., in L2 .F(E), ,0 h0,0,
k 1===?

. 2, ,

, in L kz)
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af

fk
=fk

t=0+
0

a f
' t k

=fk and af
t=0+

1
+ 0 k =0

an



I(Hfk)01 converges in L2(E)

satisfying;

te[0,1]
fk h as k co, in L2(E)

then, h(S,t) is called a Generalized Solution to W.E.1. We will

denote

lim (Hfk)0 = (Hh)0 .

k+03

Lemma 4.19

If h(s,t) is a generalized solution to W.E.1 then, the estimates

in (ii) and (i i) of Lemma 4.16 are also valid for h.

Proof Since, for each k, fk(S,t) is an N-solution to W.E.1, the

estimates of Lemma 4.16 hold for it. Hence, making use of the con-

vergence

te[O,T]11F112
te[O,T]

F, in L2(E) which implies 11F012 ==.111
Fk
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and

lifklI2 tc1[O;T]iihil
holding for all 1>0

II 2'

along with

fk h0' fk
h1

,

(Hfk )0 -0- (Hh)0 ' all in L2(Z)
0 1

we merely need to pass to the limit in k, on the estimates for fk, to

obtain these estimates for h. For example, if we first define J(o),

for h, by

2 c2
J2(0) =1/2 1 h + 2 ((Hh)0, ho)

Then, for each k

J2(0) =1/2 f (fk)2 +c2 ((Hfk )O ,
f) + J2(0) .

1 2 u
as 6-0.

Thus, from the estimate for fk

'Ik2f II < Il2fkII + 2 Jk(0) t + f (t-T) IIFk(S,T)112dT
0

0

letting k+., we obtain

11h112 11h0112 + I-7 J(0) t + f (t-T) IIF(S,T)112 dT ,

0
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which verifies that (ii) holds for h. Result (iii) is obtained in

exactly the same fashion, by letting k+.0 in

Jk(0\ 4 1 flifkil C/ i_f 1112 + c II(Hfk)0112) 11

125

Theorem 4.20 (Uniqueness and Continuous Dependence on the Data for
Generalized Solutions)

The generalized solution to W.E.1 is unique and depends contin-

uously on the data,
ho' hl'

and F in exactly the same sense as for an

N-solution to W.E.1 as given in theorem 4.17.

Proof Since Lemma 4.19 verifies that parts (ii) and (iii) of Lemma

4.16 (estimates on Ilh112 and J2(o) in terms of the data) hold, in

the exact same form, for a generalized solution as for an N-solution;

the very same proof in theorem 4.17, for uniqueness and continuous

dependence on the data for h, applies here 11

Before presenting the other main result within this theory, that

of existence to W.E.1, it will be shown that to obtain a generalized

solution it is only necessary to have the sequence of N-solutions

satisfying the appropriate conditions given in Defn. 4.18. That is,

if there exists a sequence of N-solutions fk(S,t) to W.E.1 with

data f, fk and
Fk

(as in the defn.) satisfying
o 1



F
teCO,T]c f

k0

k fk
h , all in L2(E)

k :=4 F 10 " 1

along with, {(1-1fk)0} converging in L2(E)

where 1>0 is arbitrary; then the following result holds.

Lemma 4.21

Given the above situation, there exists a function h(S,t) con-

tinuous in L2(E) w.r.t. te[0,03) such that for every T>0

t[0T] h as k+. , in L2(E)
fk =v.*

Proof Given 1>0, by applying (4.6) of theorem 4.17 to the differ-

ence fn- fin, yields for every 0<t4T

lifn- fm112 - f1101112(1+T)

+ T 11(Hfn)0 - (Hfm)0(12 + i2 11Fn-Fm112).

By the assumptions on the data, this shows that the sequence of N-

solutions converges in itself, in L2(z), uniformly w.r.t.

tE[O,T], for all 1>0. Hence, by Lemma 4.7 there exists a function

h(S,t) satisfying the requirements of this Lemma 11
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Now, we will explicity solve W.E.1 by a formal eigenfunction

expansion method. Here, we try a solution of the form

h(S,t) = a6(t) uk(S) (4.9)
k "

where it is assumed we have expansions for the data as

F(S,t) = F(t) uk(s), ho(s) (Rn)ku (s), (s) () u (S).
k " k k

(4.10)

Then, by a method that is quite familiar by now, formally plugging

(4.9) and (4.10). into W.E.1, gives for the modes separately, the

equation

lb
ak"(t)

c2
IC-ak(t)

= P(t) , for t>0, with

ak(0) = (170)kand all((0) = (Ri)k (4.11)

The solution to this (see (3.31) - 3.34) of Lemma 3.2) is given by

ak(t) = (Ko)kcos(cxlk/4 t) + sin(cxkLit) +

CAk4

+ f sinkxkit-T)] rk(T) d1,
cx 4 0

(4.12)



holding for t>0. Inserting (4.12) back into (4.9) gives the formal

solution.

The idea of a generalized solution fits well with the eigenfunc-

tion expansion for a solution in (4.9), since, it is clear that the

partial sums of this series are to play the role of the sequence of

N-solutions. Moreover, the tools are already at hand to guarantee

the data for these partial sums converges appropriately under analo-

gous restrictions imposed as in the classical problem in theorem 4.9.

Theorem 4.22 (Existence of a Generalized Solution)

If
h0 DH (9)' h1

E L2(E) and F is continuous in L2(z)

w.r.t. te[0,..); then, the formal eigenfunction expansion of h(S,t)

given in (4.9) (with the modes ak(t) given in (4.12)) defines a

generalized solution to the wave equation, W.E.1.

Proof Take, fn(St) = I al,(t) uk(S), F(St) = r,(t) uk(S)
k=1 " k=1

and

OS) = k1 ( 0)kuk(S)' f(S) = k1 (6-1)k uk(S)
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(9) H is defined by equation (1.15) and its domain is given in Lemma
1.13 by condition (A).



Then, clearly f(St) solves the problem

fn = Fn, on U.0

with

fn t=0+
= fg

Dtfnlt=0
el and afn +

afn

=0,

where fn satisfies (i) - (iii) of Defn. 4.11 for an N-solution.

Also, for every t>0

11 1/

Hfn(S,t) =
k

xj2a(t) u (S) c L2(E)
=1

where

urn Hf.,(S,t) = (Hf)o = X112 ) u (s) exists n L2 ( E).
t+0 -k 0 k k '

i

Hence, each fn is an N-solution to the above problem.

From the assumption on F and by (ii) of Lemma 4.14, the eigen-

function expansion for F converges in L2(E), uniformly w.r.t.

tc[O,T], to F, for every T>0. That is,

te[O,T] 2

Fn
==.4 F as n+ im, n L (E).
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Also, since, 110, h e L2(z) we have that

fn +h0
'

fn +h1
'

as n+m, in L2(z) .

0 1

Finally, hoc DH, by Lemma 1.3, implies that

11/
Hh (S) = X A

(R0)k uk(S)
, with convergence in L2(E) .

Hence,

n 1/.

(Hfn)0
= X q (ho)k u (

k=1

(we see that in this case, (Hh)0 is given by Hho).

Thus, the data converges in the proper manner given in the defi-

nition of a generalized solution, hence, by Lemma 4.21, the sequence,

fn(S,t) (and consequently the formal series (4.9)) converges

in L2(E), uniformly w.r.t. te[O,T], for every T>0, to the generalized

solution h(S,t)

4.4 Further Properties of Generalized Solutions

Lemma 4.23

) + Hho(S) , as n+w, in L2(z).
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Let h(S,t) be a generalized solution to W.E.1. Then the follow-

ing properties can be verified;
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(i) The (generalized) derivative ath is continuous in L2 (E)

w.r.t. t[0,..) and for every T>0

at
fkteCO'11th as k+w, in L2(E)

(where Ifk1 is the sequence of N-solutions given in the definition of

a generalized solution).

The derivative ath depends continuously on the data

h0, h1 and F in the same sense given in (4.7) of theorem 4.17 for N-

solutions.

h is a distributional solut4on to W.E.1(10, i.e.,

for every (1)6(0.),

= <F,e

Proof (i) Applying (4.7) to the difference fn-fm for any 1>0 we

have

Ilatfn- at fMII2 4 (11frIO 1112 4- Ilfrl! f11112

11(Hfn)0 - (Hfm)0112 + T max 11Fn-Fm 112)
te[O,T]

(10) Later, a different meaning to the notion of a distributional
solution to W.E.1 which includes the intial conditions will be given.
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which, by the assumptions on the data given in Defn. 4.18, implies

2
that the sequence latfnl converges in itself, in L (z), uniformly

w.r.t. te[o,T], for all T>0. Then, by Lemma 4.7, there exists a

function E(S,t) continuous in L2(E) w.r.t. te[0,..0)

such that for all T>0

tc[°:r] Fi as n+ce, in L2(Z)
'tfn ==4

On the other hand: by definition,

te[0
f as n+0., in L2(E) which implies that fn h, in DI(U.)

(ie. f ff....4)+f f h 4) for all (peD(U.)).

0 E " 0 Z

By the continuity of at on DI (U) we also have

at fn at h , in D' (U) .

Thus, the distributional or generalized derivative, ath, agrees

with ri which is our result.

(ii) Now that we have the convergence of the derivatives of the

sequence of N-solutions to ath, given by (i), we can verify that part

(i) of Lemma 4.16 (an estimate on 'lath' 12 in terms of the data)
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holds for generalized solutions as well as for N-solutions. This is

done in the same manner that it was shown that part (ii) of Lemma

(4.16) holds for generalized solutions in the proof of Lemma 4.19.

That is, by (i) of Lemma 4.16, for all n

113tft1112 4 I-7 J11(0) (1:11112

Then, by (i) above and the assumptions on the data, passing to the

limit as n+. yields

Ilathil2 4 I-2- j(°) = liF112
0

Now, the proof of continuous dependence on the data for N-solutions

given in (4.7) of theorem 4.17 carries over, exactly, for ath.

(iii) Let R(S,t) be the solution to W.E.1 given by the eigenfunction

expansion in (4.9) with the mode ak(t) in (4.12) satisfying the

differential equation in (4.11). Then for every cp e D(U)

07,13e f a ak(t) uk(S))04(S,t) = f ak(t) uk(S)0c0(S,t).
U k k U

Since (I) is zero in a neighborhood of the boundary of Uw, in partic-

ular, near t=o integration by parts yields



f [3(ak(t) uk(S)) (1)(S,t)
k U

OD

= 5 (a.(t) +c2 1/2

k U k

xk ak(t)) u (S) (/)(S,t)

CO

= f Fk(t) uk(S) (S,t) = < F6(t) uk(s), >
k U k "

OD

= <Fop .

But, by uniqueness in theorem 4.20, for any generalized solution

h(S,t) to W.E.1,

Ilh-1i112 = 0, for all t)0

which implies that

f h(S,t)a(S,t) = f F(S,t)Elp(S,t) , for every 01 (u)
03 CO

which is our result II
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Left Blank Intentionally
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. I

k=n

(012 te[O,T]
u as n,m+.
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We will finish up this chapter by considering a direct analysis

of the convergence of the eigenfunction expansion for a solution,

given in (4.9), along with two results that show when Hcp(S,t) defines

a function continuous in L2(E) w.r.t. te[0,.) and when it is of

class C(E X [0,..)).

From the explicit form of the modes ak(t) given in (4.12), a

direct analysis of the series expansion for h(S,t) given in (4.9)

will show that certain properties of h can be obtained under weaker

hypotheses than given in the existence theorem. For example, conver-

gence of this series can be obtained by assuming ho c L2(z)

(satisfying the growth condition, z Icikl2<., which is weaker than

condition (A) for hoe DH) along with the same conditions on hl, and

F, as in theorem 4.22. This follows from the estimate on ak(t), in

4.12), given by

) 12

T
2

1 1 k max 2
lak(t)I2 4 M (I(K0412 + -172tE[0,1] I 10'0 J.

AI( 2
k

for some constant M and for any T>o, holding for all od4T. But, this

implies that

2

lifn- fm1122 = 11 X
ak(t) uk(S)II2

k=n



(by the assumptions on
ho' h1

and F). This shows that the partial

sums of h(S,t) converge, in themselves, in L2(z), uniformly w.r.t.

tc[O,T] 1>0. Hence, h(S,t) given in 4.9 defines a function

continuous in h2(z) w.r.t. te[0,.) and, the proof of (iii) of Lemma

4.23 holds, so it also gives a distributional solution to W.E.1.

Similarly, a direct analysis of the derivatives of the modes

yields

-
1e(t)12 M(421(ho)k12

11 k(K
) 12+ T2 max

tc[O,T] irk (t)(2)

which holds for some constant M uniformly on[o,T] for any 1>0. Then,

using

2- a(t) uk(S)II = lalic(t)12 ,H-a tfm112
IIk=n k=n

we see that to show ath is continuous in (z) w.r.t. te[0,.) with

te[O,T]atfn 1=4 ath as n-*., in L2(z), for all T>0

we need to impose the, even stronger, growth condition on the expan-

sion coefficients of
ho

(than required for h0el.2(E)) of

112
1(fj)

- 12 <
AI( 0 k
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This is also weaker than condition (A) for hoe DH. However, the

data for the partial sums will not necessarily converge in the appro-

priate manner so that h defines a generalized solution and allow for

uniqueness and continuous dependence on the data for either h

or ath.

Conditions (ii) and (iv) in definition 4.11 for an N-solution to

W.E.1 involves the operation of H on functions depending on time.

This posed no problem in the existence theorem, since H was only

applied to finite series where the time dependency was factored

out. In general, we want to know when H(j) (S,t) defines a function

continuous in L2(E) w.r.t. time and when it is continuous

on E x

It is easy to see how to adapt conditions (A) and (B) with

H(I) E L2(E) or H(1) E C(1), respectively, to conditions for functions

depending on time. Condition (A) required

and condition (B) required

xt3( Rkl2 °3*

Similarly, the following result holds.

138



Lemma 4.24

If o(S,t) satisfies

1 X uniformly on [0,1], for all 1>0

or

4 r&(t)12 converges uniformly on [0,1], for all DO,

then,

1/2
(t) utigs,t) = Xk k(S)

139

(4.13)

with convergence in L(0, uniform w.r.t. tE[O,T] for all 1>0 when

condition (a) holds (hence, H(1) is cont. in L2(E) w.r.t. tc[0,03)) and

uniform convergence on X [0,1] for all 1>0 when condition (b) holds

(hence, Hco E C(/ X [0,02))).

Proof Assume (a) holds. Then,

T x 1,(r). (t)12 te[0,flo
asXX((2ok(t) uk(S)m V 112 =

n,m+co

k=n
2 k!ri kl k I

for all TA. So, by Lemma 4.7, the R.H.S. of (4.13) converges in

L2(E), uniformly w.r.t. t c [o,T] for all 1>0, to a function which is



continuous in L2(E) w.r.t. t e [O, o). However, condition (a) and

Lemma 1.3 implies that this function is H(1)(S,t).

Now, assume (b) holds. Then,

2
m Iuk(S)

I m7 11/2Z ) (S)I k km (3 ri 012)2 2I -k Tk(tuk A
k=n k=n k=n Xk

where the R.H.S.converges uniformly on [0;71x1 to Ocun,m 9.
This shows the sequence of partial sum form a uniform Cauchy sequence

on 1 X [0,T], for all 1>0 which by Lemma 1.4 establishes the second

result 11
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V. A GENERALIZED MIXED PROBLEM FOR THE WAVE EQUATION

5.1 Two Examples of a Formal Eigenfunction Expansion Method

The last chapter built up an L2-theory for W.E.1 and involved an

analysis of the convergence of a formal eigenfunction expansion solu-

tion to W.E.1 within this L2-setting. This chapter will be devoted

to an investigation of this eigenfunction expansion as a solution to

W.E.l and to a generalized wave equation from a distributional point

of view.

We will begin the treatment of distributional solutions to the

wave equation with the operatorp =c2H' by obtaining the
att

Green's function solution for 0 through an eigenfunction expan-

sion. By now, the expansion method is quite familiar not yielding

anything new. However, here, we will verify that this expansion does

give a distributional solution (in a sense to be specified

shortly). Also, this will demonstrate that in the several examples

given in Chapter III, if the impulse response or Green's function

solutions are viewed from a distributional point of view, then the

exponential factor and limit as z40 can be omitted.

Lemma 5.1

The solution to the problem

h(S,t) = d+(t) SR(S), on U.
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is given by

h(S,t) = 1 111(114 sin(c uk(R) uk(S), for t>0 (5.1)

where u (S) is to represent a regular distribution with (5.1) con-

verging weak*.

Before giving a proof of this, we need to be more explicit on

how the equation h = 6,f(t) 6R(S) is to be interpreted. The use

of S+(t) signifies the assumption of causal conditions which entails

the condition that hE0 for t<0. That is, if * e D(E x co))

with supp * contained in E x (-c0,0], then <h,*>=0. We will denote

D(E x co)) as D and distributions in D' satisfying causal con-
.

ditions by DI+ . Then, a distributional solution to the problem in

Lemma 5.1 will refer to a distribution h e DI such that

<h,[24 = <6.1.(t) oR, *> = *(R,04), for all *e D..

Proof From the above note, the claim that h(S,t) given in 5.1 is a

solution toph = Of(t)
SR

means that if we extend h to be zero

for t40, then h is a distributional solution in the sense given

above.
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and

(5.1) is obtained, in the usual manner, by assuming

h(S,t) =" uk(S).
k

Formally plugging this into the equation in Lemma 5.1 yields for the

modes seperately

a(t) + c Xk2
1/2

ak(t) = u (R) (4W. (5.2)

The solution to this is given by

,

ak(t) = uk(R) zk(t) e(t) (e(t) is the heavyside function = IC)
t40

)
1, t>0

where zk(t) satisfies

e(t) + c
xk2

1/2
zk(t) = 0, for t>0,

zk(0) = 0, z11((0) = 1.

Hence,

a,.K(t)
= x- 1/4 sin (c xl/k4 t) uk(R) , for t>0

C k

ak
E

0'
for t(0

and inserting this into h(S,t) gives (5.1).
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stating that

/ Ar ITO)12,
k

converges uniformly on [-1,1], for every T>0 and positive integer

r. This holds since, for all integers m>0 if * e D. then

e *c D. implying that

11131 *(S,t) =I Ain: IT6(t) uk(S)
k "

with convergence in L2(E), uniformly w.r.t. tc[-T,T], for all 1>0

(by Lemma 4.14). Hence,

= X12(111 P;k(t)12

with uniform convergence on [-T,T], for all T>0. This verifies the

result for all even integers and since, eventually,

Ak>1, the result holds for any positive integer r.

(5.3)
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Before showing that h(S,t) is a distributional solution, it must

be verified that the series in (5.1) converges weak* hence defining a

distribution in 0. For this, it is sufficient to show
+

<

in

ak(t) uk(S), * > I 0 as n,m ., for all * E

k=n

To obtain this we will make use of a result, similar to Lemma 2.4,



Now, we can obtain the estimate

m m
I < 1 ak(t) uk(S), *>I = I f 1 a(t) uk(S) *(s,t)I

k=n Ex(0,T) k=n

(by compact support of (p)

T m T m , 1/ m lak(t) 12
< f 1 1 ai,(t) 3;/((t)1 dt < f ( 1 4/2 ri;k(t) IL ) 2( 1

0 k=n " 0 k=n k=n x,/, dt.r(L

I uk(R) I

Where we have used the estimate lak(t)1 4 .

c
AIC4

T m 110 11/ m luk(R) 21
Hence the above is < 7 f ( x'

1*k
2 ( )2dt

2
- 0 k=n k=n

Xk

MT max
te[0,11L

( x3/2 Rk(t)12f/2+ 0 as n,m+.
c k.Ln

by the result in 5.3), where

12

M = max (f 1N(S,R) I dEs
2 f/2 (nf lukon)i 1/2

Rel
k=n

xk

Finally, we will show that (5.1), extended to be identically

zero for, t<0, is a distributional solution to the problem in Lemma

5.1.

For this, let * E D. Then,

<hap> = f
"uk(S) (at* c2 H

k=1 U

CO
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= "in If uk(s) ruk(R) zk(t) tt* c2ru.i((R) z.(t)
f u.(S) Hip}

e+0 E e
k E k

Here,

f Z(t) ate= zk
+ f z (t) * .

Hence, letting e+0 and using zk(0) = 0, zi1( (0) = 1, we obtain

lim f zk(t) 310 . + f z(t) *
z+0 e t=0 0

Also,

f uk(S) H* = (H*, uk) = (*, Hui() = f uk(s) *.

Inserting these back in yields,

<h,[311)> lt.euk(R) uk(S) dEs+ uk(R) (j). (zi1( + c2t2zk) uk(S)114

2 1/0
and since, z" + c

xk
a zk = 0, we have

<h,04 = ii,(0+) uk(R) = *(R,04.) 11
k "
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It is an interesting problem to generalize Lemma 5.1 by allowing

for an arbitrary distribution Te01(E), with compact support, in place
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of SR. This will give an application of the eigenfunction expansion

for T (see Theorem 2.8) as

T = r , where rk= <T,uk> (5.4)

and
uk

is to be a regular distribution with the series converging

weak* to T.

Lemma 5.2

The distributional solution to

Oh(S,t) = T

is given by h(S,t) = e(t) K(s,t), where is obtained through a for-

mal eigenfunction expansion as

K(s,t) =

Proof Assuming an eigenfunction expansion for h(S,t) as

h(S,t) = (t) uk(S),

(cY4t) u61 A k Tk sin (S).k

by the expansion in (5.4) for T, the modes ak(t) are governed by



a(t) + c2 1/2

Ak ak(t)
= fk+(t)

The solution to this is given by

ak(t) = e(t) Ti( zk(t), where

2 lb
z" + c zk = 0, with zk(0) = 0 and e(0) = 1,

which yields

-1/4
tit) e(t),T sinkc kak(t) = -k k

(5.5)

(5.6)
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giving the required expansion for h(S,t).

Next, to show h c D, it is sufficient to show that for

every * e Dw,

l< 1 ak(t) u (S), *>I + 0, as n,m
k=n

This follows using the same steps as in the proof of weak* con-

vergence of (5.1) in Lemma 5.1. From (5.6),

I rk
1

Iak(t)1 41 , for all t .

cxk14



i2
T lio max v Ar

L

(

( 112) te[0,11 L
k kk=n =n

Finally, for all * e D., we have

<h,[1>
UK

* = f a(t) uk(S) (p c2 ")
U

(by 5.5)= lim [ f tos) f 76z6(t)attip + c2 f
K

1%

z6(t) f LOS) H*
k e+0 E

K E K

=
k

k(t)I f/2 +0, as n,m

CO

149

Hence, from the finite order of ITkI w.r.t. xk in theorem 2.8 along

with the result in (5.3) of the last proof, we obtain

m , ( m 2
l< ak(t) uk(S) , *>1 < f

T

( Rk(t) 142
(kln

xkr

lak(t)14/
)2 dt

k=n 0 k=n

= rk<uk,*1 = *1 = <T,<S4.(t),4» = <64.(t)T,*> II
t=0 t=0

5.2 Formulation and Existence to the Generalized Wave Equation

For easy reference the general wave equation problem in W.E.1

will be repeated here.

f frk +
uk(S) + f 2 1/2

+ c xk zk) uk(S) * ]
E t=0 u



The goal is to demonstrate that under very mild restrictions on

the data
h0' h1

and F, a formal eigenfunction expansion method

yields a distributional solution to W.E.1. But first, we must

specify what is meant by a distributional solution to W.E.1. Unlike

part (iii) of Lemma 4.23, the initial conditions are to play a role.

Definition 5.3

By a distributional solution to W.E.1, we will refer to a dis-

tributional solution h E D' to the equation

h = r h0(t) hic(t), on U. , (5.7)

where r = e(t) F. That is, as was defined after the statement of

Lemma 5.1, for every * e D.

2
h(S,t) = ( + c H) h(S,t) = F(S,t), on U.

3tt
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W.E.1 with

h

t=0+=
h0 ' ath

t=0+
= h1

and

oth ah

an

0

y



<11,01p = <r + ho (S.:.(t) + hic(t),

with h 0 for t < 0 .

We will continue to denote problems in the format of W.E.1 even

if a distributional solution is sought in which case the equation in

(5.7) with the initial data injected into the new source term is to

be the interpretation. It is often the case that an explicit repre-

sentation for h(S,t), valid for t > 0, is given to be a distribu-

tional solution. This will always refer to the extension of h as

being identically zero for t 0 .

The motitation for equation (5.7) is seen in the following

Lemma.

Lemma 5.4

If h(S,t) is an N-solution to W.E.1 with F e C(U),
-

ho
E C1 (E) and

h1
C(E); then,

= r(s,t) + ho(S) (s(t) + hi(s) si.(t), in 0.14. , (5.8)

where r = e(t) F and F. e(t) h.
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Proof

First, by assumption, both sides of (5.8) define distributions

in D. * e 0. Then,

CO

<DRop = 4%0y> = f f h(S,t) ( * + c2H*)
OE

t=.
= lim [ f (hat* - athip)1 + If (at h + c2Hh)* ]

6+0 z t=c c z

by the smoothness properties of an N-solution and the symmetric

nature of H. Then, since h(S,t) is an N-solution to W.E.1,

letting e+0 yields

+ f hl(S)
*(S,t)1t=e dzsz

= + h(t) + his+(t), *>

At this point it is easy to strengthen the result in part (iii)

of Lemma 4.23, where it was shown that the generalized solution

(Defn. 4.18) to W.E.1 is a solution to El h = F in D'(Uw), to obtain

that the generalized solution gives a distributional solution in the
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<OK, *> f F(S,t) *(s,t) dzsdt - f ho(S) at*(S,t)
t=0+

ES
CO



sense of Defn. 5.3. This result will incorporate the initial condi-

tions unlike part (iii) of Lemma 4.23 which avoids a treatment of

initial and boundary conditions due to the compact support of the

test functions contained in z x

Lemma 5.5

The generalized solution to W.E.1 with the data satisfying the

hypotheses of Theorem 4.22 (Existence), represented by the eigenfunc-

tion expansion in (4.9) with the modes given in (4.11) and (4.12), is

a distributional solution to W.E.1 in the sense of Definition 5.3.

Proof Set R e(t) h. We must verify that for every * e D.

<K,[1p> = + ho c(t) + h1 t(t) ,
11i> .

The technique is exactly as given in the earlier two examples in Sec-

tion 5.1, except here, the limit as e+0 is not needed since ak(t) is

smooth for t>0. Giving only the main steps, we have

CO

= l[f frk(t)uk(S)* - gykat*
k E

+uk(S) + f(yklp
t=0

153

<K,[31p> = y [ f uk(S) (ak ao -
k r

tco

t=0

+ f f (arc+ cqe-ak) uk(S)* ]
OE



and

CO

= f f F(S,t) *(S,t) - f ho(S)al +f h

(S)t=o+0 Z E t=0

. ha (s..,(t) his+(t), ,

where we have made use of the known expansions for the data along

with the compact support of * to interchange the order of summation

and integration.

Now, of course, it is also required that the series expansion

for h(S,t) in (4.9) converges weak*, showing that R(S,t) defines a

distribution in D. For this, let * e D, then

T m
l< 1 a (t) uk(S), *>1 < f ( 1k(t)1

k=n 0 k=n

( 1ak(t)12)2 dt.

k=n
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Using the estimate

lak(01 < I(R)ki + I( ) I
T ten:T] IP-kw', for all 04tT

for any T>0 (from (4.12), eventually holding for k sufficiently

large), where

1 1()I2 ' I(R)kI2 are finite (hoeDH, h1eL2(E))



ir.1((t)12 converges uniformly on [0,1] for any 1>0

(F is continuous in L2(E) w.r.t. t e CO,..)) along with the result in

(5.3) in the proof of Lemma 5.1 which states that

1 IT (t)I2 converges uniformly on CO,T , for any T>0;

we see that this last integral converges to zero as n,m+.. Hence,

the series

h(S,t) =
al,"(t)

uk(S) converges weak* 11
k

Now, we want to extend the setting for W.E.1. Notice, from

(5.7) in Definition 5.3, if we wish to consider distributional solu-

tions to W.E.1 then there is no need to require the data to be clas-

sical functions. This suggests the following definition.

Definition 5.6

The Generalized Wave Equation (or G.W.E.1) will refer to the

problem in W.E.1 where equation (5.7) is to be the interpretation and

h0'
h1 0'(z) with r e DI .
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In the above proof of weak* convergence of the generalized solu-

tion given in the series expansion of (4.9), we did not make use of

the full strength of * E D.. That is, the result in (5.3) states

z XDTk(t)I2 converges uniformly on [0,T] for any 1>0 and for any

positive integer r. This allows for far less stringent growth

conditions on the expansion coefficients of the data and suggests

that the eigenfunction expansion should yield a distributional solu-

tion to G.W.E.1 as long as the distributional data allows eigenfunc-

tion expansions with a finite growth condition on their expansion

coefficients w.r.t. Ak.

Using Theorem 2.8, such a result will, in fact, be given under

the following conditions. Let

T, 110, hie W(z) with compact support and fe q0c(R) with fE0 for t40.

(5.9)

Then, by Theorem 2.8, the following expansions hold

hi= (K4)k uk, for 1=0,1 and r = f(t) T = f(t) r
k

(5.10)



where r defines a distribution in and all series converge weak*.

Also, by the second part of Theorem 2.8, there exists a positive

integer r and constant E (both independent of k) such that

10'01,1. I 4 E Akr, for all k and for i = 0,1. (5.11)

Theorem 5.7 (Existence to the Generalized W.E.1)

By a formal eigenfunction expansion, h(S,t) given by

h(S,t) = X ak(t) uk(S) with

ak(t) = f * Ek + (170)kE + (yk Ek

where (5.12)

2 1/9
Eia( + c E = c(t)

yields a distributional solution to G.W.E.1 with the data h0,h1

and r given in (5.9).

Proof If we assume h(s,t) is of the form

h(S,t) = X a,(t) uk(S)
k
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and formally plug this into G.W.E.1, the equation governing the modes

is given by

a(t) + c2 V2
xk a (t) ='1( f(t) , for t>0, with

a (0+) = (%)k and a(04.) = (yk.

The solution to this can be written in terms of the fundamental solu-

tion Ek(t) as
given in (5.12) (see Vladimirov (1971) pg. 171). For

t>0, this can be further simplified to

V (Ri)kt(Ko)kcos(cXk4 t)+--17 f sin[cxk4 ( t- T) ]f( t)thr,
cx cxk/4 0

(5.13)

where

.

Ek(t) -
0(1,4:

sin(cxk4t).

cXk

As it has been demonstrated many times, if the series expansion

for h(S,t) converges weak* then, for any * c D., with e(t) h,

we have

t=0.

[ f ul,(S) (aka* - ak 01 + f f
(e+c22ak )uk (SW

k k
k z " t=0 0 E

a (



OD

= [ f ri,f(t) uk(s) i(s,t) - f (%)k at
k Oz

uk(S)
t=0
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f (R'l)k *
t=04. uk(s)

00

= [ r < uk ,f f(t) ip(s,t)> - (6b)k
<uk,t=0+>

(Yk <uk'
lt.e> ]

= y [ + (Kok <U k, <6.04"

)
1<uk' <8+ ' 4,» .

Here, since <fop>, = -at I(s,o+) and <64., = *(S,0+)

are all test functions in D(E), using the expansions of the data in

(5.10), yields

[34)> = <T, <f ,p>> + <h0, < 6+' , ip» + <h1, <6+ , ip»

= <r h0 + h s .
0 + 1 +'



valid for any positive integer p. Now from (5.13),

Tlak(t)1 < 1(%)kl + I(Ri)kl + 1;1 f
cAk4 cAk4 0

which implies, using (5.11) that

lak(01 < clArt , for some constant c' and for all te[O,T].

T
c T(here, c' can be any constant > 3 max lc, 7, f If(T)1 dr1). Then,

0
taking p 2r + 2, implies that

m lak(t)I21/ m 1/I 2<cl ( i./2+ 0, as n,m +..
k=n AP k=nk2

Therefore, by the result in (5.3),
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For weak* convergence of the series expansion for h(S,t), fol-

lowing the same steps as in the proofs of weak* convergence in the

previous Lemmas (Lemma 5.1, Lemma 5.2 or Lemma 5.5), we arrive at the

inequality

T m
2 1/ m 21

I < ak(t) u (S), < f ( Arc 130t)I ) 2 ( n
lak(t)I

)/2- dt
k=n 0 k=n k=nk



1 < 1 a (t) uk(S) , 4>1 0, as n,m
k=n

One final comment is in order concerning the development of the

theories for an analysis of W.E.1 within its various settings. In

the previous chapter an adaptation of the method of energy integrals

for the classical wave equation was presented. This gave a nice

theory within an L2-setting. However, even in the classical problem,

no mention was given for the sense in which a generalized solution

satisfies the boundary condition. It can easily be shown that the

generalized solution satisfies the initial conditions in L2(z) (this

also holds in the new problem involving the operator H) but the

question of boundary conditions is far more complicated requiring a

more precise definition. At this time, a treatment of the boundary

conditions for the new wave equation, W.E.1, within the class of

generalized solutions, must be avoided since it is not clear how to

adapt the treatment in the classical case to this setting.

Similarly, concerning the development of a distributional theory to

W.E.1, in this chapter, a treatment of the boundary conditions is

avoided. Here, the theory is based on the test function space,

0. By restricting the test functions to have their support con-.

tained in z x (-.,m), it is guaranteed that they are zero on a

neighborhood of y.

An appropriate treatment of the boundary conditions for this

problem poses some interesting problems for future research. This,

oz.
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perhaps has its roots at the very beginning of this paper with the

question of a suitable definition of a square-root of the Laplacian

within a boundary value problem context.
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