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The theory and numerical calculation of physical fields that are
governed by linear partial differential equations of the eliiptic,
parabolic and hyperbolic types is a topic of fundamental interest in
the qualitative theory of various resources. Often, field situations
require the solution of the basic equations for different types of
domains with commen boundaries, It will be shown that the introduc-
tion of fractional powers of the Laplacian can be a helpful davice in
such cases.

The general setting involves coupled systems of P.D.E.'s defined
over two regions with a common boundary segment, 3. These mixed
boundary value problems are then reduced to a single surface equation
on I with the dependency on one variable eliminated by the intro-
duction of an operator H in the original boundary condition. This
operater, which arises as a fractional power of the Laplacian
on £, is our main mathematical tool,

Several models of physical fields that are well suited to a



reformulation in terms of H have been investigated by G. Bodvars-
son. In this thesis we will consider the example of the linearized
equations for internal water waves. This involves modeling of waves
of infinitesimal amplitude of a surface interface, under the influ-
ence of gravity and surface tension, in a homogeneous incompressible
and inviscid fluid.

While the use of H is highly motivated through specific physical
examples the main analytical results of this work are obtained in
considering its use in a more general format. A reformulation of the
basic equations governing internal water waves leads to a new type of
wave' operator with the spacial part of the operator arising as a
fractional power of the Laplacian. In considering a mixed problem
for this wave equation, an existence and uniqueness theorem is
obtained within two settings. A class of generalized solutions is
defined, which is well suited for a formal eigenfunction expansion
solution technique, allowing existence and uniqueness in an 12
sense., Further, a result on eigenfunction expansions of distribu-
tions with compact support is given. This leads to existence., by the

same solution technique, to the generalized wave equation in a dis-

tributional sense.
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FRACTIONAL POWERS OF THE LAPLACIAN WITH APPLICATION
TO SMALL AMPLITUDE WATER WAVES

Introduction

The theory and numerical calculation of physical fields that are
governed by linear partial differential equations of the elliptic,
parabolic and hyperbolic types is a topic of fundamental interest in
the qualitative theory of various resources. For example, fluid

pressure fields in petroleum, natural gas, water and geothermal

reservoirs are governed by equations of the parabolic type. The |

propagation of seismic signals in subsurface formations involves
equations of the hyperbolic type. Finally, the fields of potential
type in exploration methods are governed by elliptic equations.
Often, field situations require the solution of the basic equa-
tions on domains consisting of different types of regions with common
boundaries. It will be shown that the introduction of fractional
powers of the Laplacian can be a helpful device in simplifying and
clarifying some aspects of the underlying theory in such cases. The
general setting involves mixed boundary and initial value problems
consisting of coupled systems of P.D.E.'s defined over two regions
with a common boundary segment, T. By the introduction of an opera-
tor H in the original boundary condition this type of problem is then
reduced to a single surface equation on % such that the dependency on

one variable is eliminated. This operator, that is referred to as a



cross-surface differential operator and is our main mathematic tool
arises as a fractional power of the Laplacian on g .

The main application to be considered in this paper involves
linearized equations for surface and internal water waves of infin-
itesimal amplitude 1in homogeneous or layered incompressible and
inviscid liquids. The case of gravity waves on deep water 1is con-
sidered as a simple special case that portrays the precise setting
which motivates the definition of our cross-surface differential
operator. Through the use of H, the basic equations governing such
water waves are reformulated resulting in a single scalar equation
for the amplitude of the wavelike motion off the horizontal sur-
face 1. |

The theories of gravity and internal water waves has been of
interest to mathematicians and physicists for a long time. Early
work on the subject can be traced back to Cauchy and Poisson at the
start of the nineteenth century and research in the field is still
very active. A few well known books in this area giving an account
of the classical theory as well as containing more recent results

are, J.J. Stoker, Water Waves (1957), 0.M. Phillips, The Dynamics of

the Upper Ocean (1966) and B. Kinsman, Wind Waves (1965). Although

it is clear that the theory is highly developed it is interesting to
note that, until recently, no single equation has been set forth that
could be referred to as the equation for gravity or internal water

waves of infitesimal amplitude. Other oscillatory scalar fields are



governed by well defined wave equations that provide the basis for
theoretical investigations. An example is the central role played by
d'Alembert's equation in the theory of sound . G. Bodvarsson has
derived such an equation for the case of gravity waves (1977, (1])
and has mére recently applied this technique to internal water waves
under the influence of both gravity and surface tension.

In the first two chapters of the present thesis, the setting for
the definition of the cross-surface differential operator H is devel-
oped along with an eigenfunction expansion representation. Subse-
quently, in Chapter III, we derive a new type of wave equation where
the spatial part of the systems operator arises as a cross-surface
operator that is a fractional power of the Laplacian. Several other
models of physical fields which are well suited to a reformulation in
terms of such operators have been investigated by Bodvarsson (1977
(2]) and this author leading to equations of the parabolic type.
Further work on these examples, following the scope of this'thesis,
will be forthcoming.

The usevbf H is highly motivated through specific physical exam-
ples and, while one concern of this thesis is to develope a rigorous
setting for its application to the water wave model, the main ana-
lytical results are obtained in a more general setting. A mixed ini-

2

tial and boundary value problem involving the wave operator 3,..+ cH

tt
is investigated where an existence and uniqueness theorem is obtained

within two settings. In Chapter IV we apply the classical method of



energy integrals to mixed typed problems governed by equations of the
hyperbolic type (Vladimirov, 1971). Upon defining an energy integral
associated with a suitably smooth solution to the mixed problem a key
result is obtained on the representation of this integral in terms of
the data. This leads to LZ-norm estimates of solutions and first
time derivatives in terms of the data which immediately yields
uniqueness and continuous dependence theorems for this class of solu-
tions. Existence, however, presents more difficulties. The main
solution technique is by a formal eigenfunction expansion. That is,
we assume an eigenfunction expansion for the solution and derive an
ordinary differential equation for the undetermined coefficients by
formally carrying the operations and initial conditions through the
summation. A class of generalized solutions is defined which is well
suited for this expansion technique. It is verified that the L2.
estimates obtained earlier also hold for fhis class of solutions
allowing for the main theorem on existence, uniqueness and continuous
dependence on the data to be proven.

The above results demonstrate that a formal eigenfunction expan-
sion solution technique yields existence in an L2_sense. The final
section of Chapter IV is devoted to showing further properties of a
generalized solution which will attest to the suitability of this
class of solutions not only for the solution method used but also for
the problem at hand. By making use of the distributional setting for

H developed in Chapter II, it is shown in Chapter V that the same



solution technique yields existence in a distributional sense. In
fact, far weaker restrictions can be imposed on the input data. This
leads to the formulation of a generalized wave equation where the
initial data and the causal source term are distributions of compact
support. An existence theorem for this problem is proven in the last

section of Chapter V.



I. THE CROSS-SURFACE DIFFERENTIAL OPERATOR H

1.1 Preliminary Considerations on a Symbolic Calculus for Funct1ons
of an (perator
The main goal of this chapter is to develop, through a construc-
tive procedure an operator H, which behaves like the square-root of

the negative 2-dimensional Laplacian that we denote by

As mentioned in the introduction, this operator plays a central role
in the reformulation of the equations for the water waves that are
derived in chapter III. On a more theoretical slant, we want to
emphasize the square-root nature of this operator and take up an
analysis of the resulting new type of wave equation. Here, a square-
root of an operator is with respect to the operation of composi-
tion.  Hence, provided the domains are properly defined, B is a

square-root of A if-and only if

This first section will be devoted to a brief account of a Sym-
bolic calculus for functions of operators. More specifically, we

will be concerned about the meaning of functions of an operator f(A),



for what class of functions such operators exist and what are proper
representations of these operators. This is a subject found in most
texts on functional analysis or operator theory with the spectral
theorems as one of the main results of interest. Here, the emphasis
lies in obtaining a representation of f(A) that resembles the
diagonalization of matrices in the finite dimensional case. Briefly,
these results go as follows.

Consider the case when A is a bounded, self-adjoint operator on
a Hilbert Space. Then a representation for A is obtained (Schecter,
1971) in terms of a family of orthogonal projection operators {E(N}
such that

o

A= [ xdE()) .

Since A is bounded and self-adjoint its spectrum o(A) is contained in
a closed interval [a,b] of the real line. Hence, the integral is
over a finite length and is to be understood as the limit under the
operator norm in the space of bounded linear operators of sums of the
form

n o,
kzl M [E(x) - E(xy )] as mzx (A=A ;)50 where

{\} partions [a,b] and e is bounded by Ml S €3 - The

family, {E(A)} , is called the Resolution of the Identity correspond-




ing to A. As a consequence of the spectral theorem we can define for

any continuous function f on [a,b]

f(A) = [ f(A) dE(A),
a
satisfying

_ max
These definitions can be generalized to the following two cases

(Rudin, 1973).

case i) Take A to be a normal operator. Then we obtain the

analogous representation

A= [ XxdE(A) , to be interpreted as; (Ax,y) = [ X d(E(A)x,y)
a(A) a(A)

for all x,yeH where (.,.) is the inner product. Also, the defini-

tions are generalized to include bounded Borel functions f on o(A)

and denoted by

f(A) = f(A;’(A) dE(x) , where ||f(A)|| < sup {|F(A)]:xe o(A)} ,
g

with equality holding for fe C(o(A)) .



case ii) A is a linear, normal not necessarily bounded operator with
a dense domain of definition. The above calculus now applies to all
measurable functions on o(A).

When A is assumed to have a more simple structure, these
spectral representations bear a simple relation to the eigenvalues of
A. Suppose A e B(H) is normal and has a countable spectrum
o(A) = {AI,AZ...} consisting of eigenvalues of A (in this case, the
isolated points of o(A) are necessarily eigenvalues) along with a
complete orthonormal system (C.0.S.) of eigenfunctions {Xi} to A,
i.e., Axi = A X for all i = 1,2,..., where any two eigenfunctions
corresponding to distinct eigenvalues are orthogonal and every xeH
has a unique expansion of the form, x = g @ X5 - From this expansion

we immediately obtain the representation,

Ax = g A o X s (1.1)
which can also be derived from a simplification of the spectral rep-
resentation under the above conditions. Notice, the formal calculus
now obeys the rule of carrying the function inside to the

eigenvalues, i.e.,

f(A)x = Z f(Ai) a Xy .
1



10

Another approach (Schecter, 1971) is via a Cauchy integral type
formula. Let Ae B(X), with X a complex Banach space. Then
(z-A)'1 is an analytic function of z on the resolvent of A,
o(A) (where Xe p(A) iff the null space N(A-1) = {o} and the range
R(A-A) = X, in which case (A-A)-ls B(X).). Then we obtain the

representation,

=L -l .

A = 5 fc z (z-A) dz ; (1.2)
where ¢ is any curve containing o(A) in its interior. Moreover, if
f(z) is analytic on an open set @ with o(A) ¢ @, then we can always
find an open set w with o(A) ¢ wc wc o, whose boundary 3w consists
of a finite number of non-intersecting simple closed curves. Then

1 -1
5= [ f(z) (z-A) "dz (1.3)

2wi S

defines an operator in B(X) and is independent of the choice of w .
In this setting the formal calculus defines f(A) as the integral in
(1.3).

The representation given in (1.2) can, in many cases, be shown
to reduce to an eigenfunction expansion such as in (1.1) presented
earlier, In fact, when A is a differential operator arising within
certain Sturm-Liouville problems, this approach is taken (Friedman,

1956). In such cases, the resolvent operator, which now plays the
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role of the integralkOperator induced by the Green's function for the
differential equation, can be determined and the integration is
explicitly carried out to obtain an eigenfunction expansion.

We will make frequent use of eigenfunction expansions for repre-
sentations of operators and as ‘@ solution technique. The repre-
sentation (1.1) therefore makes a good starting point for the
problems to be considered below. However, our setting will involve a
differential operator arising from a boundary value problem (BVP)
context. This adds several complications to the general setting out-
Tined above. In general, differential operators are unbounded and we
must restrict the setting considerably to obtain the simple structure
as above. Furthermore, within the context of a BVP, it is importaﬂt
to recognize the central role played by the domain of definition,
that is, the specified boundary conditions and underlying function
space. This point will be illustrated soon through an example,

In the next section, we will outline a setting, that is, a class
of differential operators 1including regions of definition and
boundary conditions, that allows the simple structure mentioned
above. These operators have an eigenfunction expansion and the
corresponding formal calculus will apply. In particular, the
operator T is included and consequently a square-root operator is
obtained by carrying the square-root inside to the eigenvalues.
However, some confusion can arise with the notion of a square-root.

In general, if an operator has a square-root it need not be unique.
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A well known result along these lines (Schecter, 1971) states that
every bounded, positive operator on a Hilbert space has a unique
bounded, positive square-root. This can be generalized to unbounded,
non-negative, self-adjoint operators (Weidman, 1980) and, in all
cases, the square-root is obtained via the spectral representation.
Within the setting to be developed, 1 will be a symmetricl, positive
operator of simple structure. To be precise, from now on a simple
operator will refer to an operator whose spectrum consists of a
countable set of eigenvalues of finite multiplicity (the multiplicity
is the dimension of the eigenspace) and having a C.0.S. of
eigenfunctions. We have in mind a preferred square-root of I that
also exhibits these same properties. Essentially, this square-root
is obtained from the formal calculus.

Consider the following example with the differential operator,
-Dz, where D = d/dx. This is an easy enough operation and we can
immediately recognize a square-root operation given by either #iD.

But, we haven't as yet completely defined the operator to be con-

(1) Some care is needed with this terminology. Many texts will
refer to a differential operator as self-adjoint or formally self-
adjoint when, on the domain specified, it is only symmetric. A is
symmetric on a Hilbert space iff (Au,v) = (u,Av) for all u,vedy, in
which case, the adjoint A* 1is an extension of A but is not neces-
sarily equal to A. It can be the case that by enlarging the domain
of the operator, by closing the operator, it is then self-adjoint.
Such an operator, whose <closure 1is self-adjoint, is called
essentially self-adjoint. Since, in most cases we are only inter-
ested in the symmetric nature of 1., the precise domain to obtain a
closed, self-adjoint operator won't be specified.
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sidered. A domain of definition has to be specified. Clearly, dif-
ferent choices of bouhdary conditions and underlying function spaces
result in operators with entirely different characteristics. We will
present an example where the expressions #iD have no relation to the
preferred notion of a square-root that is to be used.

In particular, lets take, m = -02 defined on the interval,

(0,1), with the domain

Do = AN{u(x): u(o) = u(l) = o} , where

A= {USLZ(O,I): u' is absolutely continuous on (0,1), u" st(O,l)}.

A is, in a classical sense, the largest class of functions we can
apply -02 on and stay within an Lz-setting. The set A was chosen
over a smooth class of functions such as C2[0,1] so that 1 defines a
closed, self-adjoint operator. In fact, if we define operators,

I; for i = 0,1,2 by

D, =C. (0,1) (infinitely differentiable functions with
0
compact support)
D, = {uec®(0,1) C[0,1] with u*el?(0,1) and u(0) = u(1) = 0}
1
D, =A
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where for all i = 0,1,2, Hi is induced by -DZ; (n0 and n2 are known
as the minimal and maximal operators, resp. induced by -DZ) then it
can be shown (Weidman, 1980) that

* * *k -
g = 0, 5 s0O M, = Ty = I (the closure of no) s

This shows that, although m, is a symmetric operator, neither

0

HO nor H2 are self-adjoint or essentially self-adjoint. Also, this
illustrates how, by enlarging the domain of Hl’ we obtain the closed
operator M. As to the domain of the adjoint, intuitively the situa-
tion is as follows. First, the adjoint is always closed and we must
have the minimal homogeneous boundary conditions necessary to elimi-
nate all boundary terms that arjse upon integration by parts of,

(niu,v), when transferring the differentiation to v. Since the

boundary terms are,
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it is only necessary to specify homogenous boundary conditions on the
functions themselves (not, also, their derivatives). Hence, 1
defines a self-adjoint operator (Weidman, 1980). For our purposes it
is sufficient to deal with the symmetric and essentially self-adjoint

operator, I The precise domain of its closure was given in this

1.
one dimensional case since it was relatively easy to come by.

In this setting, the normalized eigenfunctions and eigenvalues
for 1 are,

un(x) =/ 2 sin(nmx) , A, = n2n2 , forn=1,2,... .

So, we do indeed have a simple operator with the C.0.S. of eigen-

functions giving rise to Fourier Sine expansions,

with convergence in L2(0,1) for all usLZ(O,l) . Of course, in this
case quite a bit more can be said concerning convergence of Fourier
series. For example, a result which will hold in the more general
setting also, for every u;:D]I » we have regular convergence (uniform
convergence of the series of absolute values) on [0,1]. Also, the

following is the eigenfunction expansion for m,
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n2 42 LTnsin(mrx) ,

1

Tu(x) = § n°2° (u,u ) u(x) =y/2
=1 n

N
(N

p=

p=

i~ g

1
u = (u,u) =v2 [ u(x) sin(nmx) dx .
0

Now, according to our formal calculus developed earlier, a square-

root of I is given by,

yé- o

Tu(x) =v2 J nn LTn sin(nmx) . (1.4)
n=1 :

What of its domain? In general, when dealing with a square-root
of a differential operator the question of appropriate boundary con-
ditions and underlying function space would appear to be a major
problem. The above construction frees us of these considerations.
Notice, we are not attempting to view r}jz as induced by some differ-
ential expression (this may not be possible). Also, recall that one
purpose in this example was to show that + iD may have no bearing on
the construction of a square-root of -D2. In the setting chosen this
is certainly the case since a general expansion for +iu'(x) given by
(1.4) doesn't hold. In fact, if the main concern is in obtaining an
eigenfunction expansion representation for an operator that is to

behave as a square-root of m in an LZ-sense and maintains the same
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properties inherent to m; then, (1.4) is the starting point for the
1
definition of W@ . The only necessary stipulation is to stay within
1
an L2-setting, i.e., that W@leLz(O,l). Hence, if we impose this

restriction on its domain and set,

= ruel 2 v 2.2 o |2
Dy, = Wel™(0,1): Zln w0 < )

n
y%

and define m u(x) by (1.4); then we can show directly that this

gives a self-adjoint, simple operator where, as expected, its spec-

trum consists of the eigenvalues, nw, with the corresponding C.0.S.

of eigenfunctions, un(x)»= Y 2 sin(nmx), for n=1,2 ... . More-

over, by construction,

1/ 0o
(% )2 73 0%l 200,1) .

u(x) = v2 ¥ n“a“ 0 sin(nmx) = mu(x) , in L

To finish these preliminary considerations let's take a slight

variation on the domain of m . Set,

So, we now have periodic boundary conditions instead of the homo-

geneous Dirichlet condition of the last example. Again, it is known
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that mis a self-adjoint, simple operator. The eigenvalues and

eigenfunctions for 1 are,

2 +i2k Imx
A, = (2km) e

k ] for k = 0,1,2,000

> U (x) =

(we now have multiplicity 2). Fence, the eigenfunction representa-
72

tions for 1 and the square-root m are,

© 2 i2kwx
mix) = 5§ (2kw) u, e .
k==
Y ® _i2kmx
T u(x) = ¥ “(2kn) uy e (1.5)
k==o

with domain consisting of all L2(0,1) functions, u(x), such that

-

] (kn)? i )% < s,

k=-o
Next, define an operator T, induced by iD, with domain
2

DT = {ueL“(0,1):u is absolutely continuous on

(0,1), u'eL%(0,1), u(0) = u(1)} .

It can be shown (Rudin, 1973) that this operator is also self-adjoint

and simple. Moreover, the eigenvalues and eigenfun%tions for T are
i2kmx

precisely 2k and e for k = 0,t1,#2,..., as for m . Hence, T
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has the same representation given in (1.5) and, so, defines a satis-
factory square-root of nm. This example is enlightening in illustrat-
ing the domain of the preferred square-root of & when it is induced
by a differential expression. Essentially, the same boundary condi-
tions are carried over to the square-root operator (still periodic
B.C.'s but involving one less derivative, however, the eigenfunctions
for T are determined by the one condition, u(0) = u(1)). Implicit in

the formal calculus rule of construction is the use of the same

“boundary conditions. This is necessarily the case since we maintain

the same eigenfunctions.

These simple examples demonstrate the close connection between
the domain of definition of a differential operator and basic
properties of closure, symmetry and self-adjointness. Also, they
serve to illustrate a construction of a square-root of a differential
operator that will be tied in with the construction of the cross-

surface differential operator H to be developed in the next section.

1.2 Construction of H

The construction of H takes place through a process of embedding
the problem into a higher dimensional setting. We will be concerned
with the two dimensional Laplacian defined on a region g c R2, and we
construct H by embedding £ as a boundary face in a region B ¢ R3.
Then, we perform operations in B and take a limit back to . This is

a natural scheme for the applications of H, since they involve
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harmonic functions in a region such as B with specified boundary
values on the surface £. The square-root natdre of the operator
arises through the technique of factoring out the 2-dimensional
Laplacian from the equation for a harmonic function on B. That is,

if u(P) is harmonic for Pe B then,

2
au(P) = (3,, + 8,) u(P) = 0 implies that 23 (P) = mu(p) .
Z .

9

Hence H 1is constructed by extending a boundary value function
harmonically off g, performing one derivative w.r.t. z in B and then
taking a Timit as P approaches 7 . This will be explained in detail
later. First, we want to outline a general setting within which 1 is
a simple operator and allows eigenfunction expansion methods as
presented in the first section.

Let ¢ cR2 be a bounded region in the plane (in many cases this
setting can be generalized to include unbounded regions and, in fact,

several examples where this is the case will be presented). We will

consider the elliptic Sturm-Liouville type operator,
L = -div(p grad . ) + q

defined on I, where we associate to L the domain DL’ as all func-~

1

tions, u(x), of class Cz(z)nc (%) satisfying the boundary condition,
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ou + e-é% =0 , where y = 31,

an 'y

2

Plus the condition that aue L°(z). Also, the following restrictions

are imposed on all coefficients;
peCl(E), qeC(ZT) with p >0, q >0 on g
and for the boundary condition, we consider the cases where
€20 or ezl, aeC(y), a»0, aote > 0 On vy .
We wish to have a setting where L is a symmetric, simple oper-

ator. This will depend on the smoothness of the boundary y and coef-

ficients, p, q and a . We will call y a sufficiently smooth curve

if, for the above setting, we have the following properties;

property 1 All Green's formulas hold for functions

2

u,VeCZ(Z)/\ C(T ) with au,ave L°(z) and having a correct normal der-

ivative over vy.

By a correct normal derivative we mean that for every

ue Cl(z), with v a surface of class Cl, there exists a uniform limit

w.r.t. Sey of
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W_ (') as S'»S with S'e. - A

~ S
ans
where, ﬁg is the outward unit normal to vy at S. The value of this

Timit will be denoted in the usual fashion as the normal deriva-
tive, au/an (S), evaluated at Sey. Under these conditions this
defines a continuous function over y. In particular, Green's 2nd

formula, which is hypothesised, states that

[viu-ulv=[ u. v
z Y an an
With the above boundary conditions, this gives the symmetric nature

of L.

property ii L is a simple operator. That is, the eigenvalues of L
are countable, no finite limit points, with finite multiplicity and a
corresponding C.0.S. of eigenfunctions that can‘ be chosen real-
valued. Moreover, for every USDL, the eigenfunction expansion con-
verges regularly over 3 (uniform convergence of the series of abso-
Tute values) and allows term-by-term partial differentiation, once,

w.r.t. each variable with the result converging in L2(z).

On the basis of this property, we can order the eigenvalues by magni-

tude 0<A1< A2<... > A > as kK+wo, We have repeated the eigenvalues

according to multiplicity and such that each A corresponds to

k
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exactly one eigenfunction uk(s) satisfying Luk = AUy with U e DL‘

Also, we have that for every ue DL’

u(s) = ¥ ukuk(S) (converging regularly over T)
and (1.6)

grad u(S) =¥ Gk grad uk(S) (converging in Lz(z))
k=1

property iii There exists a Neumann function N(S,R) defined

on xz of the form,

1 1
N(S,R) = 5—1n IS-R] + n(S,R) , where

_ 1
Asn(S,R) = TET , for S,Re ¢

and satisfies the appropriate boundary condition such that

AN sR) =0, for all sey, Res .

ans
Moreover, N(S,R) is of class, CZ(Z\{R}(\ C(E\.{R}) w.r.t. S and uni-

formly of order,

N(S.R)| = 0 (1n 1221y, (where D = diam (3)). (1.7)
TsR|) » (
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The general approach in developing this theory is to seek the
Neumann function (some authors refer to all such kernels as Green's
functions or, in the case of non-uniqueness, as a Green's function in
the broad sense) via the method of potentials. This entails that the
potentials satisfy certain criterion and that we can solve a certain
type of Neumann boundary value problem. To meet these conditions,
the necessary restrictions and smoothness of y can be spotted.
Vliadimirov (1971) develops this setting with the Dirichlet boundary
condition for a class of sufficiently smooth Liapunov surfaces or
lines. A much more general setting including Neumann boundary condi-
tions is considered by Miranda (1970). Once the Neumann function is
obtained, the eigenvalue problem, Lu = Au, can be expressed as an
integral equation with this Neumann function as the kernel. Property
i is then obtained as a consequence of the FEedholm and Hilbert-
Schmidt theorems.

We will also note some consequences of this setting that will be
referred to below. From the order of N(S,R) in (1.7) and by Green's
2nd formula, we can show that N is a symmetric kernel, i.e.,

N(S,R) = N(R,S) for all S,Re T and has the bilinear expansion,

uk(S) uk(R)

1.8
o (1.8)

N(S,R) =
k
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where the sum is k=1,2,... since A0=0 and which converges, uniformly
for ReZ, in Lz(z) w.or.t. S. As a result of (1.8) and by Dini's

lemma, we have
u, (S) 2
z .

which shows that the series in the L.H.S. of (1.9) converges uni-

formly over T (since [ IN(S,R)IzdzR defines a continuous function
z

of Sez ). Next, we have the following representation theorem for

solutions to the Poisson equation,

-au = fon g
(problem vy )

_B_E': ¢ on vy

an

where fe C(z) N Lz(z), ¢eC(y) and satisfies the solvability condition
of

[gF =10 -

Then, if u(s) is a solutiion to (problem y ) with ue Cz(z)r\ C(%) and

having a correct normal derivative over y, we have that
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u(s) = IZN(S,R) f(R)dZR + IYN(S,R)¢(R)dYR+ u (1.10)

where u is an arbitrary constant equal to the average value of u
(Duff and Naylor, 1966). This assumes that solution to problem )
with the above properties exists (for weaker hypotheses see Miranda,
1970). For existence, the following result holds. By further

restricting fe Cl(z)r\ C(T) with average value f = 0 the unique solu-

tion to
-au = fon g

with is u(s) = Iz N(S,R)f(R)dzR .
an ¥

(if T#0 we can't have a solution but we can replace f with f -f) .

Equation (1.10) can be used to transform the eigenvalue problem
Lu = \u, au/aﬁ|Y = 0 into an equivalent integral equation.

Now, getting back to the problem of defining the operator, H,

let £ ¢ R2 be a bounded region whose boundary 8z = y is a suffi-

ciently smooth curve as outlined above. Then, a complete definition

of I is given by

u

~y

T=-p 0N g, withD = Cz(z) (\Cl('z) (\{u:AzueLz(z) -

= 0}



27

which certainly falls within the previous setting. So, there exists

a C.0.S. of eigenfunctions uk(S), with corresponding eigenvalues

Ak such that
. auk
il uk(S) = Akuk(S) for Se ¢ , zﬁle =0, u e DH
and with all the properties in i) - iii) and results in (1.8) -

(1.10) holding.
Now, form the cylindrical region BcR3 by B = 1x(0, «)

with 3B = TuT (so T represents the sides, y x [(0,«)).

Definition 1.1

Given a function ¢(S) defined for Sexr, solve the BVP

-au(P) = 0, PeB

(BVP*) with 2| =0 and ul, =6 .

an T - -

Then, we define the Cross-Surface Differential Operator H by

Ho(S) = - = u(P)|,

Provided the 1imit as z40 exists.
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Of course, a class of boundary values for ¢(S) allowing a solu-
tion to BVP*, in what sense it is a solution and ensuring that the
limiting process back to gz exists has to be specified. However,
given a suitable function ¢(S) defined on g, there will exist a
unique harmonic extension u to B with those boundary values and
satisfying the prescribed boundary condition on r. This definition
explains the wuse of the terminology that H 1is a cross-surface
differential operator since, we then perform a differentiation w.r.t.
z off ¢ and take a limit as z+0, back to .

Formally, it is easy to see that H will behave like a square-
root of M. To apply H twice to ¢(S) we need to extend the boundary
values H¢(S) to a harmonic function v(P) on B with these values
on . If ¢ is sufficienf]y smooth, this unique harmonic extension

will be given by,

So,

it
1]
J

H™¢(S) = H(He¢) (S)

3z v(P)Iuo = ¥ u(P)] z40

= -8,u(P)|, g = Ta(S) .
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This illustrates how we seek a square-root of 1§ by factoring it from
the 3-dimensional Laplacian. However, it must be stressed that these
manipulations are purely formal in nature and considerable work is
needed to make this rigorous. In particular, the necessary condi-
tions to justify the starred (*) steps above must be examined.
Since one of the main interests is to obtain a square-root of
I in an L2-sense, a good approach to this problem is through an
eigenfunction expansion method. Several results will come from this
approach. First, a result (see theorem 1.2) giving a class of func-
tions which allows a classical solution to B.V.P.* is given. This
gives a suitable setting for H for the application to the water wave
model in chapter III. Iﬁ must be emphasized, however, that this is a
formal definition for H in the sense that Definition (1.1) gives the
prescription for calculating H¢ when the limit as z+exists. Lemmas
1.3 and 1.4 in the next section give domains of definition for H
guaranteeing that this 1limit exists. Then, H is related back to the
formal calculus methods presented in section 1.1, where we ignore the
previous background with the boundary value problem BVP*, and begin
the definition of H by an eigenfunction expansion representation.
This yields an operator which is a square-root of I in an Lz-sense.
Finally, in chapter II, this eigenfunction expansion method is

extended to a distributional setting.
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By a classical solution to BVP* we will refer to a solution

u(p) satisfying, uaCZ(B)n c! (BN\T)NC(B) with su/sn =0on ras a
correct normal derivative. This entails the following compatibility
conditions on ¢ for a solution; namely, ¢e Cl(z)(\ c(T)
with 3¢/3n = 0 on y as a correct normal derivative.

A solution to BVP* is sought through a partial expansion in
terms of the eigenfunctions uk(S). That is, we try a solution of the

form,

u(P) = E 3 (z)u (s) , where a (z) = (u,u) = [ u(P)u,(S)dz, .
z

Then, formally plugging this into BVP*, a differential equation for

the undetermined coefficients ak(z) is obtained as
ak(z) = Akak(z) , for z > 0, and we want ak(z) bounded as z-+.

This implies that,

L
2
KkZ

ak(z) = ae

where the boundary condition u = ¢ on ¢ (for z = 0) is satisfied by

setting
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Hence, we have the following expansion for u(P),

u(P) = E $k e u, (s) (1.11)
(here, Ser and P = (S,z)eB) .

From here, an analysis of this expansion to determine the
smoothness of u in terms of various restrictions on ¢ involves the
repeated use of the Cauchy-Buniakowski inequality. This allows the
expansion to be factored into two series, one containing the eigen-
functions or their derivatives, scaled down by dividing by the appro-
priate power of the eigenvalues so it will converge. But, then, the
other series, which contains the expansion coefficients of ¢, must
pick up those powers of A » This allows the necessary restrictions
on ¢, to obtain a solution, to be spotted. This is illustrated
through the following estimate.

Let 8 be a non- negative integer and o = (01,02) a multi-index

with D% = '()ml/é)xOl2 %2

/ay (here, S = (x,y)ez) . Then, for any real

r we have
1 1 1
e -ﬁzz T regyo 2'2A£ 2 n 0%, (s 5)|% Y
| T & S5 (e " O0%Us)] < (I »BI5 | e )(z—-————)
k=n z k=n Ak

(1.12)
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In particular, forg = o = = 0, with r=2, by (1.9) there exists a

constant M such that

B g ) o)

¢, e u (s <M Wl T 0as nm » o,

o K k [k=n R

if we assume that A¢eL2(Z) (since then, ¥ Aﬁ |$k|2 = |lA¢||§ < w),
k=1

In this case, ueC(B). In fact, if we only assume ¢eL2(z), “we have
uniform convergence of these partial sums on any region of the form
T x[e,»), for any 0. This holds, since, by keeping the exponen-
tial terms, for k sufficiently large

Y,
2 -Zkk z

~ 2
3K ) X e <1 and g '¢k|2 = |l¢l|2 < w,

[t seems clear that for z>0, u(P) given by (1.11) should define
an in%inite]y continuously differentiable function due to the rapid
convergence of the exponential term. In fact, we will show that u(P)
defines a generalized harmonic function and hence (Vladimirov, 1971)
for A¢eL2(Z), when ueC(B), it is harmonic on B.

Let ¥ be a test function, i.e., of class C (B) with compact

support in B. Then,
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1/ ]./
0 - 2 W - 2
Ak Z Ak Z

$k { £ u, (S)dzg g e 3,,W(P)dz - é e /

=]
k
Here, by integration by parts

1 1
°°-A/22 V co-/zz

k -
g e azzw(P) dz = M [ e

£ uk(S)mp(P)sz = X £”k(s) w(p)dzs.
So, both terms cancel in the above series and (u,ay) = 0.

We can.show directly that (1.11) defines a C7(B) function and
allows term-by-term partial differentiation of all orders by making
use of an estimate on the partial derivatives of the eigenfunctions
in terms of a power of the eigenvalues. This result, which will be
given later in Section 2.2 (see lemma 2.5), where it is used to
extend the setting for H to include distributions, states that for k

sufficiently large,
|D“uk(S)| < C Aﬁ , for all S in a compact subset of g

(here, m depends on ’al).

Then, choosing r = m2+ 2, the 2nd series in (1.12) is dominated by
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It~ 3

—li >0 as n,m » » (since, in 2-dimensions, Ak~ k
A
k see Courant and Hilbert (1953))

k=n

and, no matter what r is, the 1st series converges if z is bounded

away from zero. In particular, this shows that

1
au 5 -Aﬁzz 3u,
By =7 oe s
anP k anS

where Sey, S'e-ﬁg and P = (S,z), P' = (S',z) with 2>0.  Then, since
u
ukecl(f) with —:#—= 0 on vy, given any 0 there exists a &0 such
an
that

uy
|$'-S| < 8, Sey, S'ex implies that |—% (S')| < e.

an¢
So, we obtain
3u
l, ¥ T.L(S')Iz
-\¢z an 1
3 . 2 'k 2, 2 S
2 ) < (Ta2e )3 7| —) 72

£ A¢eL2(z), then these last two series will converge which shows

t
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au

=0 as a correct normal derivative.
aﬁ' \y

Hence, we have seen that if ¢eDH, then (1.11) defines a harmonic
function u(P) on B with ueC™(B)aC(B). However, we only have a
correct normal derivative over T\y. The corner to the domain B, aty,

poses some problems for obtaining a classical solution. The sense

au/

in which an =0 on y is not as a correct normal derivative with

uniform convergence as we approach the boundary but with convergence
in LZ(Z). This follows from property ii where, if ¢eDH, then for
z=0
au
B (s') = 7§ —X(s') »0as s+, in L3(5).
k

ans ) S

Also, to obtain UeCI(E\F) or equivalently that the eigenfunction
expansion for ¢(S),

'¢k Uk(S) (1.13)

defines a function in Cl(z), a more stringent growth condition on the

expansion coefficients $k must be imposed. By assuming ¢eDH we

have A¢eL2(z) which is equivalent to § Ak'$k|2< ®, By imposing the
k

more stringent growth condition, namely,
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-, (1.14)

the series in (1.13) now allows term-by-term partial differentiation
once w.r.t. all variables with the partial sums converging uniformly
on any compact subset of r. Hence, ¢ given by (1.13) is of the
class Cl(z).

In this case, the argument used to show

u = 0 as a correct normal derivative,
SH N\Y
can be extended to include all of T since we no longer have to

require z to be greater than zero.

S0, in summary the"following theorem has been proven.

Theorem 1.2

If ¢eDH satisfies the growth condition of (1.14); then u(P)

given by (1.11) is a classical solution to BVP* (i.e. it is a solu-

1 ou/

tion with ueC™(B)AC (B T)NC(B) and ;N =00nT as a correct

normal derivative). However, by only assuming ¢eDH, u(P) is still a

(2) It is possible this can be weakened. Llemma 2.5 mentioned
earlier, gives the following estimate for a single partial differ-
entiation; E uk(s), <C 1§ for k sufficiently large and for

X s

all S in a compact subset of z. Then a similar argument as given on
page 31 using (1.12) where we now choose r=6 gives the condition in
(1.14).
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harmonic function on B with ueC(B), where u = ¢ on ¢ and

%U/an = 0 on Iy as a correct normal derivative.

Now we obtain an eigenfunction representation for H. For z>0,
a,u (P) can be calculated by term-by-term differentiation of (1.11)

to yield

Ho(S) = 1im T n& e B U (S). (1.15)

Recall that, for ¢eDH, an eigenfunction representation for 1 is

given by
ne(s) = § A ¢kuk(S), with convergence in Lz(z).
K

Notice the similarity in the expansion given in (1.15) and that of a
square-root of T as dictated by the formal calculus. The exponential
factor and limit as z+0 reflects the scheme of embedding the surface
problem into a 3-dimensional region, performing a differentiation
there and then coming back down to the surface. If ¢ is smooth
enough, for example, satisfying the first set of conditions of
Theorem 1.2 .(q>eD]I and condition (1.14) holds), then as we will see

in the next section the 1limit as z+0 can be brought inside the
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series yielding an expansion which obeys the formal calculus rule of
bringing the square-root inside to the eigenvalues. In general, we
can't expect this to be the case. For example, if we take ¢eDII or
even ¢eL2(z), u(P) given in (1.11) still defines a harmonic funciton
on B so we can perform the differentiation w.r.t. z for 2z>0.
However, the behavior as z40 is unknown and so the limit and
exponential factor must remain in (1.15).

In the next section a weaker growth condition than (1.14) will
be given which allows the 1limit as z+0 to be brought inside the
series. Also, a domain for H will be specified which yields exactly
the same square-root’ operator as the symolic calculus methods out-

lined in the first section.

1.3 Domains of Definition

In considering an appropriate domain for H, just as was the case
when defining a square-root operator by thekforma1 calculus rule in
the l-dimensional example of Section 1.1, the previous background
involving BVP* can be ignored. If the concern is to obtain an
operator that behaves as a square-root of T in Lz(z); then the rep-
resentation in (1.15) can be used as a starting point for the defini-
tion of H. Later, in Chapter III, we will return to the full con-
struction of H, since by design, it fits the models we wish to apply

H to.
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If we define the square-root operator,
1 s~
2 g(s) = ) N2 5 u,(S) O (1.16)

defined on all functions, ¢(S), that satisfy

E M |$k|2 < »; condition (A)

then, it might seem that the exponential factor and limit as z0, in
(1.15), should give an extension of this operator, since these fea-
tures would seem to help the convergence of the series. Two classes
of functions will be considered as a domain of definition for H. In

one case, the series

y%
1, Nz
E X e g uls) (1.17)

will converge in Lz(z), uniformly w.r.t. ze[0,=). So, H¢eL2(z),
- 1

and, somewhat” surprisingly, %s precisely the operator E@ . In the

other case, H¢(S) , will define a continuous function on T with the

series in (1.17) converging uniformly on T x [0,).

Lemma 1.3

H¢eL2(z) iff ¢ satisfies condition (A), in which case H¢(S) in
given (1.15) equals I%% o(S) in Lz(z). Hence, taking
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D, = {6 : ¢ satisfies condition (A)} = D%@ ,

1
H = w@ and this notation is justified, since H is a square-root of

I in Lz(z).

Proof (=) This direction is easy. If H¢sL2(z), then we can cal-

culate its expansion coefficients, namely

L. y
2 2
1, “NZs VR IV VA
(Hp,u;) = 1im § A2 e o, (u, u;) = lim V2e 5. = N2 .
I 0k x S P L im0
Hence,

L~ 1 |
H9(s) = ] 25 u (s) = 24(s) , in L%(5) and
2 ~ 12
||H¢||2 = E A '¢k| <

(€&=) Next, suppose condition (A) is satisfied. It will be shown that

- ~ 1
Tim § X e b uk(S) converges in Lz(z) to I{é #(S).

For this it is sufficient to show that
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yé
r4 - z
) u 12 = 1A f72 @ - e 9220 as 20,

Let 0 be given. By assumption, there exists N such that

Set,

0<z<§, l-e

g ~ 12 €
A <5 .
k=%+1 k ,¢k, 2

N ~
M=) M |$k|2 and take, & = :l%7il:§l , where
k=1 N
. 1 .
€ = CzﬁY@ . |
Now, for every
Y, 1
- /2 z -A/z Z

N <t which implies that (1 - e )2<§ﬁvfor every k=1,2,...,N

Hence, we have that

w %@.z N
~ 12 % %y2 s
k_{ e “’k' (1 ~e ) = 7§ (same) + § (same)
=1 k=1 k=N+1
[~-] - 2
<-§ R '¢k| < e .



42

Hence, H¢(S) = %@ o(S) ¢ Lz(z). It is an easy matter to show that
in this case, just as in the examples of Section 1.1, H (or %@) is

a square-root of n. If ¢sDH, then A¢sL2(z) which holds iff
2 (~ 2
% Ak '¢k| < o,

in particular, ¢ satisfies condition (A). So, the first part of this

Lemma shows that,

Ho(S)=) ¥ ¢kuk(S) which implies that Halso satisfies condition (A).

ORI Y2 (We), u,(5) = 3 B uls) = 10(s)

2

(all equalities are interpreted as in L°(z)) B
Lemma 1.4

If ¢ satisfies,

E Ag l$k|2 <=, condition (B)
then H¢eC(T). Moreover, in this case the limit as z40 can be

brought inside the series with,
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Y, ~
He(S) = E x@ B u(S).

Proof First, we will show that

l, ~ - . . . g
) Akz 4 U (S) €C(3), if ¢ satisfies condition (B).
k

Here, using the estimate in (1.12) (8 = o = = 0, z=0,r =3)

and (1.9)
v Yoy T3~ 2
|1 A28 w S <M (T a7 |§| ¥2 50 as nm s
k=n k=n
_ sup 2 o
(where, M = &= | IN(S,R)| dgy, which is finite due to the order of
z

N from property iii).

Hence, the partial sums of the above series forms a uniform
Cauchy sequence on %, and converges uniformly to a continuous func-
tion on . Now, using the same argument as in the proof of Lemma

1.3 we can show that

1.
Al/zt;)‘kzz~ u,(S) ) A1/2~ u (S), uniformly on %
K % Yk k % Uglo/s y .

k as z+0 k

1 -
Thus, H¢ = nf2¢ e C(T). That is,
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and by condition (B) and the same argument of Lemma 1.3 this

converges uniformly on T to zero as z+0 B

Notice that both condition (A) and (B) involve growth conditions
on the expansion coefficients of ¢. As more stringent growth condi-
tions are imposed more smoothness of H¢ is obtained. In fact, if we

assume that
m g~ 2
E A |¢k| <o, for all m

then we can show that H¢eC(z) (this is immediate from the estimate

in (1.12) and Lemma 2.5 to come in the next chapter).
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II. A DISTRIBUTIONAL SETTING FOR H

2.1 Preliminary Results

The restrictions on ¢(S) from Theorem 1.2 and conditions (A) and
(B) give possible domains for H. Condition (B) allows the limit as

z40 in (1.15) to be brought inside the series with H¢ defining a con-

‘tinuous function over T; while, condition (A) also allows this sim-

plification of the representation in (1.15) but in an Lz-sense. The
more stringent restrictions of Theorem 1.2 guarantees that H fits the

construction of Definition 1.1 which is designed for the application

.to the water wave model. In this chapter, the definition of H is

extended to a class of distributions. In the applications we have
the occasion to apply H to a Dirac or delta distribution to obtain
impulse response solutions. The bilinear expansion of this distribu-
tion, used there, points the way to a more general theory. In Sec~-
tion 2.3 a theorem, which is quite interesting on its own, demon-
strating an eigenfunction expansion representation for distributions
with compact support in £ is given. This will allow an extension of
the definition of H to this class of distributions by using a formula
analogous to the expansion in (1.15). In this section some notation
and preliminary results will be given that are needed for the
remainder of the chapter.

Given a region @ c Rn, D(9) will denote the space of test func-
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tions on @ of class ¢ (@) with compact support 1in Q. The topology

for D(q) yields convergence as follows;
by > ¢ in D(@) iff D% D%

uniformly on @ for all multi-indices a = (al,...,ah), where

and there exists a compact set K such that supp¢.c K for all n suffi-
ciently large. O0ften, the notation, E(Q), is used to denote the
space of functions of class c (Q) where convergence is given by
uniform convergence on Q@ for derivatives of all order. The dual
spaces of D(@Q) and E(g), consisting of all continuous Tinear
functionals, are denoted by D'(@) and E'(Q), resp.. The elements of
these dual spaces are called distributions and we will denote
evaluation with the symbol <.,.>, i.e., for TeD'(Q), ¢eD(Q) thé
evaluation of T at ¢ is denoted by, <T,¢>. The convergence used in

these spaces is known as weak* convergence and is defined by

T, » T, weak* or in D'(g) (or in E'(g))

iff <T ,¢> > <T,¢> , in € for all ¢ ¢ D(Q) (or E(0)).
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A regular distribution will refer to a distribution induced by a
1

locally integrable function on @, denoted by L
1

LOC(sz). That s,

if feL LOC(Q)’ then f defines a distribution on D (@) by

<f,$> = [ f(x) o(x)dx.
Q

If f has compact support in @, then, this definition defines an ele-
ment of E'(Q).

We will often refer to a sequence or series of locally inte-
grable functions as converging in a distributional sense. This will
refer to the corresponding sequence or series of regular distribu-
tions converging weak*. For example, given a series

1

This converges in D'(q) iff

L

fo, ¢>= ) <f ,¢> =
k k=1 K k=1

He~D

him <

/ fk(x) d(x) dx
4 Q

1
converges in €, for all ¢eD(g). It may be the case that this series
doesn't converge to a regular distribution but still converges in

D' ().
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Lemma 2.1

It is a well-known fact that the elements of the dual
space, E'(Q), are exactly the distributions in D'(q) with compact
support.

Lemma 2.2

Define the norms,

p|D%(x)|

u
al| <n

I|4>|I,,,,Q=T|
XeQ

where, Ial = oyt...tq, s the order of a. Then, given Ted'(g),
for every compact set Kcgq, there exists a non-negative integer m

and constant c<e such that
a) |<T,¢>| <c ]|¢]|m o> for all ¢ e D(a) with supp¢ c K.

The smallest such m that works for all sets K is called the Order of

T. Also,
b) If T e E'(Q), then it has finite order.

For proofs of these results see Rudin (1973).



49

Lemma 2.3

Within the setting outlined at the beginning of Section 1.2, the

eigenfunctions uk(S), for m,satisfy
u ec(z)n c'(3) (see Viadimivov (1971)).

lenma 2.4

If ¢ € D{(g) then
~ 12
X |8 ]° < = forall real m>0
Lok %
Hence, by the final remark of Section 1.3, pg. iﬂJ Ho € C7(2).

Proof Since ¢ has compact support in g and is infinitely differen-
tiable, for any multi-index a= (aj,ap), D% e L%(z). In particu-
lar, An¢ € Lz(z) for every non-negative integer n. But,

~

a"4(s) = ! ae & u (s) e L2(D) i ] A% ]2 < e

This shows the result we are after holds for all non-negative, even
integers. But since, Ak +»®©3as k » o, it is easy to see that this

also holds for all real non-negative numbers |
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2.2 An Estimate on the Derivatives of the Eigenfunctions

In this section, we will prove a result which givés an asympto-
tic estimate on the derivatives of uk(S) in terms of a power of ¢
which holds uniformly on compact subsets of I. Previous references
to this result have been made within the proof of Theorem 1.2, for
its use in connection with the estimate in (1.12), and in the remark
after Lemma 2.4. It will also play a major role in the next section
whefe an eigenfunction representation for distributions with compact

support is obtained;

Lemma 2.5

For every compact set K ¢ £ and multi-index
|0%, (S)] ~ O(Aialﬂ) as k> =, uniformly w.r.t. SeK.

That is, there exists constants C, N (depending on « and K) such that

sup

sex 1D (S)] < ¢ Ai“"'l for all k>N,

Proof The estimates on uk(S) and their first partials are straight-
forward. From (1.9) we know that

| 2

| |uk(S)|

| ] —%— , converges uniformly on .
k Ak
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This implies that, luk(S)i ~0(x) as ks=, uniformly for Sef (where
this is to be interpreted as given in the statement of Lemma 2.5).
Also, from (1.10), this eigenvalue problem is equivalent to the

integral equation,

u (8) = a £ N(S,R) u,(R) dz,.

Now, from property iii), we have

d _ ) _ 1 (3)
| == N(S,R)| = 0 ¢ ) s | =% N(S,R)| = 0f )

X ]S-RI axiaxj iS-RIZ
Hence, the 1lst partials of uk(S) can be obtained by bringing the dif-
ferentiation inside the integral sign, yielding

3 2 . -
3;; uk(S)I ~(X) as k » =, uniformly on I.

However, the "2nd partials, and higher order derivatives can't be
handled so easily as indicated by the order of the 2nd partial of

N(S,.R).

(3) These orders on the Neumann function N(S,R) and its 1st and 2nd
partials are not as easy to obtain as when Dirichlet B.C. is im-
posed. Also, it is not immediate from the sketch of the general
setting in property iii) how they are derived. For a more in depth
account of this situation see Miranda, 1970.
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We will demonstrate the technique to circumvent this problem and
obtain the appropriate estimates for higher order derivatives by

first considering the 2nd partial,

32

BX_i BXJ.

uk(S).

Given any compact set Kc g, let ' be a subregion of g with
3z’ = y' a "parallel" boundary to vy such that K ¢ ' ¢ 1. Then, we
split up the integral equation for the eigenvalue problem as,
1 1
u (S)=x {/ N(S,R)u, (R)dz,+[ n(S,R)u, (R)d5 + 5= J In 1==zT u (R)dx, }
k k AL Kk R 5! Kk R 2n X |S R[ k R
Denote the first two integrals by I; and the Tlast by I,. Since, N is
of class Cw(K X I\Z') and n of class Cw(K x '), further derivatives
of Iy, over K, can be carried inside the integral sign and yields
terms ~ O(Ak) as k » =, uniformly for SeK.

The last term is written as,

1 1, o~ i (s) {uk(s),se'z'
I, =35> 1n * u , where u (S) = -
2”2 TS 7 k 0 . on RAT

I, is of class of Cl(RZ) and allows first order partial differenti-

ation to be brought inside the integral sign. Moreover,
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au
1. 1,930~ _1 1 k 1 1 ~

——4n1—14k——u =5 1nT———T-——— (R)dz,- 5= [ In u, (R)cos(n,x;)dy,
2'"' S 3X1- k 2'"' £] S-R 3X1- R 2'"' ,{l S-R k 1 R
For some examples on the calculation of derivatives of functions with
discontinuities and convolutions see Vladimirov (1971).

This Tlast expression, along with %;— (12), define continuous

i

functions on R2, hence, since we can differentiate I2 on either con-

volute (this holds as distributions but both expressions are contin-

uous functions) we have,

Y uk(S) = Ak{ / .ax N(S, R)uk(R)dzR + f ax n(S,R) uk( ) dz

1 3 1 1 o~
= 9 R)dz,- == [In u, (R)cos(n,x; )d
o £ T_Ta u (R)dzp- 7 { SRT Y jldw}

This representation transfers the derivative from the singular part
of the Kernel, N(S,R), to uk(S) . Now, we are allowed to bring
another partial differentiation inside the integral sign in all
terms. Carrying this out, all terms but the 3rd integral are
asymptotically of order A (since they only contain uk) and the 3rd
integral, involving %}T uk, is of order Akz. Therefore, including
the original coefficienl A s

3

52
e US|~ 0l

EFEY ) as k » =, uniformly on K.

INZ .
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And since, K, i and j were arbitrary, we have shown that for every

compact set Kcg
D%, (S)] ~ O(A,“l+1) as k » =, uniformly on K for all « with |af < 2.
K K

It is clear this process can be continued to obtain estimates on

uk(S) , for all r

by induction on r; where we will transfer all but the last partial

. . . 1 1
derivative from the singular part 5= In TSRT of N(S,R) to u,(S).

That is, in exactly the same manner, we can write

r-1 ar-l

— [
u (s) = ATy (1) +
1 r-1 1 r-1

)

axi . L] .aXi

1 1 .
Yo LR T a w(RAre(s) ),
z 11 1P-1

Where I;, as before, defines a function of class C(K) allowing all
differentiation to be carried inside the integral signs to the ker-
nels N and n. Hence, this term will always be asymptotically of
order Ay e Here, g(S), represents the sum of boundary integrals (we
pick up one more integral after each iteration) which only involves

differentiation of Uy of order < r-2 (in fact, there is an integral
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containing a derivative of U of order r', for r' = 0,1,2,..., r-

2). Thus, by the inductive hypothesis that

m

3 m+1 .
’axi . . oKy "k(s)l ~ O(Xk ) as k » w,.un1form1y on K

1 m

and holding for all m < r-1, we see that the 2nd term is of the
highest order of A namely AE . Moreover, all terms allow another

partial differentiation to be taken inside the integrals to the

~ kernels keeping the same order of differentiation on u - Therefore,

o
ax"..axl‘

uk(S)| ~ 0(Ar+1) as k » », uniformly on K.
i
1 r

k

This inductive step verifies that for every multi-index o and compact

set Kcz since,

, with Xj = X, or Xo

Then in fact

|D“uk(s)| ~ O(Ai“'+1) as k » =, uniformly on K
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2.3 Etigenfunction Expansions of Distributions with Compact Support

and an Extension of the Definition of H

The goal of this section is to obtain an eigenfunction represen-
tation for distributions, TeD'(g), with compact support. We restrict
ourselves to compactly supported distributions, since, by Lemma 2.1
these distributions in fact make up E'(z) and can be extended to
functions of class C”(z). In particular, by Lemma 2.3, we can define
the evaluation of T on the eigenfunctions of m. However, the expan-
sion that will be obtained will actually refer to the restriction of
T to D(z). This is necessary since we must have a class of functions
in Lz(z) having eigenfunction expansions(4). In fact, it will be
shown that these expansions converge in E(z).

Before building up to this result, we will illustrate the situa-
tion with the Dirac delta distribution. Let &,e D'(z), often denoted

R
by 8(S-R), be defined by

<8as9> = #(R).

(4) A treatment of expansions for tempered distributions is given by
B. Simon, 1970. There, the results are somewhat more complete in
that they allow an iff statement in the types of theorems to come.
This is because the eigenfunctions considered there, called harmonic
oscillator wave-functions, are in the space of rapidly decreasing
test functions, hence, there is no need to restrict the domain of the
tempered distributions.
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It is easy to show that GR has the bilinear expansion
8= g uk(R) Uy (2.1)

Where we regard u as a regular distribution and convergence is

in D'(z) (i.e. weak*). In fact, for every ¢ € D(z),

) uk(R) < U,

n
im< Y u(R)u,p> =
b2 k=l K K k=1

oo

=7 & u(R) = ¢(R).

ST
So, the series in the R.H.S. of (2.1) does indeed converge weak*
defining a distribution in D'(£) and as seen above, equals &

If we were to formally treat &, as a regular distribution

R
induced by the symbolic function &(S-R) then

u (R) = <&p,u> = £ §(S-R) u (S) dzg = (8(S-R), u,(S)).

So, we see that the terms uk(R) in (2.1) play the role of the expan-
sion coefficients in an eigenfunction expansion for the symbolic
function §(S-R). Given the expansion coefficients of a function, the
representation in (1.15), shows how to define the evaluation of H of

this function. This suggests we define H(GR) by

U
1. ~N2z
2 e K uk(R) Uy (2.2)



58

| where we have calculated the expansion coefficients (gR)k’ as uk(R).
It must be verified that the R.H.S. of (2.2) does indeed define
| a distribution on D(z). Also, it will be shown that, as expected,

the limit as z+w can be brought inside the series.
Lemma 2.6

H(s,) defined by (2.2) is in D'(z) with

R)
H(6)=2A1/2u(R)u and
R i k "k k? ,

<H&), 9> = <& ,He> = Ho(R).

Proof Let ¢eD(z). Then
1 1
Ny —Aﬁzz = 1 —Aﬁzz 5
lim Jim < § xZe u (R) u,, & =1im | xle BUi(R) «

z+0 k=1 z40 k=1

By, Lemma 1.4 and Lemma 2.4, the limit as z+ of this last series

converges to

kfl Y25 uR) = HeR)
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The usual topology on E(z), which yields convergence as defined

earlier, is induced by the family of semi-norms

¢ = sup  [D%(S)] ,
|| llm,N o] [0%(s) |
sekK

where we decompose 3 Nﬁi KN’ KyC I, compact. Clearly, an equivalent

family of semi-norms w.r.t. convergence is given by

||¢]|a ¢ = :iﬁ |D%(S)| , for any multi-index « and compact, Kcg.

We also introduce a family of norms on the space of complex

sequences, ¢ = (¢k) , by

ol I

(kzl x: ,¢kl

If ¢¢ Lz(z), we will identify ¢ with its sequence of expansion coef-

ficients, (E;k)°° .
. k=1

Theorem 2.7

If ¢¢ D(Z), then ‘|¢||m< » for all real m>o0, and
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$(S) = E $k u (S), with convergence in E(z).

Proof The first part of this is Lemma 2.4. For the 2nd part, we
m

will show that the partial sums, = $k uk(S), form a Cauchy sequence
k=n

in E(z).Then, by completeness of E(z) the series converges in E(z) to

some function ¢(S). But both ¢(S) and ¢(S) will have the same expan-

sion coefficients; which implies they agree in Lz(z) and, hence, by

continuity, v - $ on T, Here,
m m
~ _ Sup ~
”an B W] 4 k= ek ‘kzn B DUy ()]

D%, (s)|?
< (E Ai(la'+2) ~ ‘2)1/2(%' sup I k )| }/2

$
Ken k K=n SeK AZ( la'+25

k

‘ m 1 1 /
C — )72 s
) (an Ai ) ||¢||2'“|+4

for some constant C and n,m sufficiently large by Lemma 2.5. By the
first part of this theorem, this last expression converges to zero

as n,m>» (recall, A ~k as k+») R

3

Remark: This shows that the norms, ]l.[la > are weaker w.r.t. con-

vergence than the norms, ||.||m. That is, since D% is continuous

on E(z), for every ¢eE(z),
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Hq)”a,K = ;‘::E lkZI gk D“uk(S)I <M H¢HZ|'al+4

(using the same steps as in the above proof). However, the other
direction, an estimate for ||¢]|m in terms of a finite combination of
the norms, "¢"a,K’ doesn't hold on E(z). So, these two families of
norms aren‘t equivalent. Also, in our setting (see footnote (4) page
56), a converse to Theorem 2.7 isn't true. Given a sequence,

b = (ak), such that ||q>||m <= for all real m>0; we can identify

¢ with the function

where, this series converges in E(I). However, ¢ isn't necessarily

in D(Z).

Theorem 2.8

Let TeD'(z) with compact support and set T = <T,u>. Then, T

has the eigenfunction expansion,
T=% T u ,
kel K K
where we treat u as a regular distribution. Moreover,

r
K

|T 0(x, ) for some positive integer r.
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Note: This shows that distributions with compact support have finite
order w.r.t. A in their expansions. In other words, since

A ™ k as k»o, we can say that the identification of ¢ with its
sequence of expansion coefficients $k represents D( %) as sequences of
rapid decrease; while, the identification of T with the coeffi-

cients Tk represents E'(x) as sequences of polynomial growth.

Proof The first part is immediate from Theorem 2.7. If ¢eD(z), then

the expansidn coefficients $k are exactly the evaluation W ¢ and

since,

z $k Uk(S) = 2 Uk(s) <uk’¢>

k k
converges in E(z) to ¢(S), by the continuity of T on E(:) we have,

<T,9> = T <Tu> <u,e =] T <u,e .

14 k
Thus, T =7 Tk u, on D'(1).
k

For the next part, by Lemma 2.2, there exists a constant C<« and

a positive integer m such that

|<T.e>| < C ||¢]]m ¢» for every compact Kcz, ¢eD(x) with suppgcK.
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This implies, that in fact,

[<T.e>| <C sup |D%(S)| = C sup |D 4(S)]
al <M Sek

Ser

for some multi-index g with |g|<m and for all ¢eD(z). Then, by the

remark after Theorem 2.7, this shows that
[<T,¢>| < € |,¢||2|B|+4’ for some constant € .
In particular,

Tl = 1Tl < € Ly g € A2

Now, we can give the extension of H to distributions with com-
pact support. This extension should agree with the original repre-
sentation of H given in (1.15). The scheme is quite clear. Given
the expansion coefficients of a function ¢ (1.15) shows how to
define H¢. Similarly, given Te D'(z) with compact support, Theorem
2.8 shows that the coefficients Tk play the role of expansion coef-

ficients. So, we will take the definition of H(T) dictated by

(1.15), to be

1 ~
H(T) = lim ) A{z e L' (2.3)
k
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yé
“\éz
Since the added features e and limit as z+ played no role

in the definition of H within an L2

-setting and as illustrated by the
example with 6R in Lemma 2.6; we can expect that the representation
in (2.3) can be simplified by bringing the Timit as z inside the

series here, also.

Lemma 2.9

If Te D'(x) with compact support, then

l
: ) Y, “NEz . e
(i)  H(T) = tim ) MF e Tk Uy defines a distribution in D'(3).
z¥0 k
moreover,
Yy~
.. = 2
(i1) H(T) E AET U

and we have the symmetric property that, for every 4eD(z),
(ii1) <H(T),¢> = <T,H¢> .

Proof We will first show that the series in (ii) converges

in D'(z). Here, for every ¢eD(x) with r specified by Theorem 2.8,

2
moy oo TR
| I T < @] < (1 —5r)?

k=n k=n Ak

m
2r+3 ~ 2V
(kzn A | ¢k' )2
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/,

<C -;%}2 ||¢||2r+3 >0 as n,m > » (by Thm 2.8 and Lemma 2.4).
k

I~ 3

k=n

Thus, the partial sums of the series in (ii) evaluated at
any ¢eD(z), form a Cauchy sequence and converges weak*,

Now, we will show that,

1y
y Al/z ;AkZZTN 2)1/2 T u,, in D'(x), as z40;
K Kk 7 g A% Tk e > 4 ;
showing that H(T) defined by (i) is in D'(z) and satisfies (ii). For

this, let ¢eD(z), then

Y, Y, 'ﬁ?z
«'<E AT U - ‘E el Tousel

From here, the argument that this last series -»0 as zJ0 is exactly
analogous to the argument used in the proof of Lemma 1.3. The tail
end of the above series can be made small, since, by the 1lst part of

this proof it is dominated by the series

s ~ 1, ~
y ){2 Ty & =< ) Aﬁz Ty Uyt which converges.
k=1 k
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Then, the front end of the series, of finite length, can be made
¥,

small by letting z get close to zero, so that, 1 - e becomes

small. For the last part, recall that by Lemma 2.4, if ¢eD(1),

then He¢eE(z) (i.e. of class C7(z)). So, the R.H.S. of (iii) makes

sense. By part (ii),

<HT), o = ] Vr g - RACON

E T’k <uy He> = < E T’k u > He>

<T,H¢$> (by Theorem 2.8) Wi}
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III. AN APPLICATION TO SMALL AMPLITUDE WATER WAVES

3.1 Derivation of the Basic Equations

The cross-surface differential operator H developed in chapter I
is motivated through several models of physical field situations that
contain a setting analogous to that used in the definition of H. In
fact, a model for gravity waves on deep water will be presented where
the setting is exactly the same as in Defn. 1.1 of H. This is a
simple case of the more general model involving the linearized equa-
tions for internal water waves which will be presented in this sec-
tion. The goal of this chapter is to demonstrate that, through the
use of H, a single scalar wave equation for these models can be
obtained by means of a classical linearized theory, i.e., by con-
sidering waves of an infinitesimal amplitude on a surface interface
contained in an ideal fluid.

Let I, whose boundary y is a sufficiently smooth 1line, be a
region in the plane satisfying the conditions outlined in section
1.2. Then take B to be the 3-dimensional domain, formed in a rec-
tangular coordinate system, as the cylindrical product of 3, embedded
in the plane z=o0, and the interval (-d,d) on the z-axis. The boun-

dary of B will be denoted by I which consists of the vertical side

walls and the two end faces in the planes z = +d. Also, the two

halves to this cylindrical region will be denoted by,
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B1 =1x (-d,0) and B2 = g x (0,d)

with boundaries

aBi = 8uI} , for i = 1,2,

s0, T = I‘1U 1‘2.

£ is to be the static horizontal surface interface of a homo-
geneous, incompressible, inviscid non-rotating liquid contained in a
basin given by the domain B defined above. The fluid is of den-
sity 0 in the regions Bi' We want to model the infinitesimal ampli-
tude wave motion of I under the influence of gravity and surface ten-
sion. We will consider motion of the fluid with velocity
vectors, V}(P,t) = (U;,V5.W;) (P,t), and pressure, 5}(P,t) in Bj, for
i =1,2, where a general field point in B is given by P = (x,y,z) with
S = (x,y) representing a field point on £. Under motion the free
fluid surface is denoted by Q. Then the Eulerian equations of motion

for this fluid take the form,

Dv

oot = - p + pg, on B (3.1)

ct

where D/Dt is the material derivative and g is the acceleration of

gravity. Here, we have condensed into equation (3.1) what should be



69

two equations of the same form with indices i = 1,2, for the respec-
tive halves of B. For brevity, this format will be maintained until
the final form for the equations is derived. Assuming no fluid
sources these equations have to be adjoined with the condition of

incompressibility

v.v=0, onB (3.2)

and, disregarding surface tension for the moment, the boundary condi-

tions are

Dp | _ -

Dt |[p=0=0»0n2 (3.3)
with

n.v=0,o0nrT (3.4)

where 7 is the outward normal to r.

The linearization of these equations is by a standard process
where it 1is assumed that only “slow" wave motion of infinitesimal
amplitude is to be considered. Also, the effects of the undulating
surface @ on the flow field are ignored but a perturbational pressure
effect on £ is incorporated. That is, if we assume that @ deviates

from £ by a small vertical amplitude h(s,t) which is positive up,
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then the pressure is of the formp = Pyt P where Ph is the hydro-
static pressure and p(P,t) is a small perturbation pressure assumed
to satisfy lp|<<|ph| and can be approximated on § by pegh.  Under

these assumptions, (3.1) is linearized as
pav=-Vp (3.5)
which, in conjunction with (3.2) and (3.4), yields

~¥p=0,inB and 2=0onr. (3.6)

~

an

Also, a linearization of the boundary condition (3.3) which is fur-
ther reduced and simplified by assuming the value of the vertical

velocity component W is the same on £ as on g, yields
ath +w=0, on g. (3.7)
Then, inserting W from (3.7) into the vertical component of (3.8)

gives the final form of the relation between the two dependent vari-

ables h and p as

P atth = azp , ONn %,
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The pressure balance on g takes the form

Pol = py

= + (p,- p7)gh.
240 2 1

z40

However, this can be generalized to include a surface tension term
and allow for an impressed surface pressure on . The force density
due to a coefficient of surface tension t is given by, t vzh (5).

So, in summary, the linearized equations for the infinitesimal

amplitude wave motion of an internal surface interface are given by

P dgh = 3P40 5 (3.8)
with
ap_i ’ .
vzpi = 0, in B; and — = 0, for i=1,2 (3.9)
an T,
i
and the pressure balance on I is now of the form
P2 | 240 = P | 240 * (o= op)oh + < Vh+ f (3.10)

where f(S,t) represents an impressed surface pressure.

(S)This is a linearization of the surface tension forces which arise
from the curvature of g, where we have kept only 2nd order
derivatives.
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A more simple case of this model, known as gravity waves on deep
water, is obtained by considering the top region B1 (it is typical to
orient the basins with the z-axis as positive down) as the atmosphere
and letting d go to infinity. That is, we set pp =0 and consider
£ as the static horizontal surface to a liquid contained in a basin
of infinite extent where the aim is to model the wave motion of

L under the influence of gravity alone. Then, dropping the index
i=2, the equations governing this wave motion, in the linearized
infinitesimal approximation, are easily obtained from (3.8) - (3.10)

as

¥p =0, in B with £ ' =0 (3.11)
~ T
an

o dh=3p 1,4 (3.12)

with the pressure on 1 given by

Pl ,u0° ogh + pgh0 (3.13)

where we have represented the impressed surface pressure in terms of

an impressed surface amplitude, ho(s,t).
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3.2 Reformulation in terms of H

The form of the equations governing internal water waves in
(3.8) - (3.10) and for gravity waves in (3.11) - (3.13) is unsatis-
factory since they include two dependent variables h and p. However,
one reason for explicitly writing out the equations for the case of
gravity waves on deep water is because it is easily recognized that
this is precisely the setting presented in the definition of H in
section 1.2. From (3.11), we see that the perturbation pressure p is
harmonic on B with a homogeneous Neumann boundary condition on T.
Hence, from Defn. 1.1, its cross-surface derivative on £ can be
expressed in terms of its values on £ with the help of the surface

operator H. That is,

H{P | ,00) = - 3P | ;.0 - (3.14)

But, then, using (3.12) and (3.13), the dependency on p can be elim-

inated with the resulting equation
atth + ghh = f (3.15)
where the source term is

f = -gHh (3.16)

0°
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Equation (3.15) represents a reformulation of the equations for
gravity waves on deep water which was our goal. This gives a single
scalar equation which we can refer to as the basic gravity wave equa-
tion governing this example. The process is the same for the inter-
nal water waves, if we again consider the case where d goes to infin-
ity. It is only necessary to recognize that a change of sign is
needed in the definition of H if the domain is in the negative z
half-space. That is, from (3.9) we have

P2 | 240) = = %P2 | 240 @ B(Py | 240) = %P1 | 290 - (3.17)

Then, using (3.8) and (3.17) above we obtain
Py atth = - H (p2 z+0) and Py atth = H(p1 z+0)' (3.18)

Hence, from the pressure balance equation in (3.10) and using (3.18)
above, we can eliminate the dependency on the pressure with the

resulting equation

(b*p,) 3,ch + (b, = py)gHh + T H ¥h = -Hf. (3.19)
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Equations (3.15) and (3.19) illustrate how this reformulation
has led to a new type of wave operator. From Chapter I, we have seen
that, in the appropriate setting, H‘behaves as a square-root of the
Laplacian. So the equations (3.15) and (3.19) give rise to wave
operators where the spatia] part of the operator involves fractional

powers of the Laplacian, given by

(Gravity Waves) (:l 6= %t * gH (3.20)
(Internal Water Waves) Y:} = 3 (p2 pl) I H3 (3.21)
Lo7tt Topte oty '

where H = %@ .

3.3 A Representation of Solutions in terms of the Impulse Response

and Examples for Various Basins

The remainder of this chapter will be spent considering some
specific examples of the model for gravity waves where a formal
eigenfunction expansion technique will be employed to explicitly find
solutions. Also, a representation of solutions in terms of the
Green's function for the gravity wave operator in (3.20) will be
obtained illustrating a direct analogy with the classical wave oper-
ator.

To solve a mixed boundary value problem involving the wave equa-

tion in (3.15) some care is needed to interpret this equation cor-
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rectly. 1In the first two chapters several settings were presented
where the operator H could be viewed as a surface operator indepen-
dent of the region B. However, within the context of the water wave
model, it is important to recognize that H maintains a dependency on
B. For the most part, no attempt will be made to justify the solu-
tion technique and say in what sense a solution is given, since the
subject of gravity waves on deep water is well developed and the
solutions that are presented are usually well known. A more in depth
analysis of this problem will be taken up in the last two chapters
where the formal treatment in this section will be justified within
two classes of solutions.

We will begin by obtaining an eigenfunction expansion for the

“impulse responce hp(S,t) of an unperturbed static fluid found by

assuming causal conditions and, that, at time t = o+, t is hit by a

delta-like pressure pulse centered at Re &, viz., we take

h(Sst) = =¢ &, (t) &(S-R). (3.22)

L
o9

To obtain a solution to (3.15) with ho given in (3.22), we assume an

expansion for hp of the form
h (S,t) =) ak(t) uk(S). (3.23)

Recall that (see (2.1)) &(S-R) has the bilinear expansion
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5(S-R) =.z uk(R) u

So, ho can be written as

1
hO(S,t) e 8, (t) E uk(R) u (s). (3.24)
Formally applying H by (1.15), equation (3.15) with hp from (3.23)
and ho in (3.24) above becomes

y-%z 1 y—%z
Ea;(t)uk(S)Hzig E Ak2e a (t)u (s)= - < 5,(t)Tim Akze

uk(R)uk(S).

At this point, the solution method is to obtain an equation for
the modes separately, by assuming the limit as z+o can be brought
inside the summation, yielding

L

1
/2 Zu (R) 8,.(t), for t>0 (3.25)

; 1

with 3, =0 for t<o (by causality).
However, we retain the dependency of H on B (i.e. the method of
extending a function harmonically off % and then taking a limit back
to £ as z4y0) by inserting the solution to (3.25) back into hp written

in the form
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i,

, Kk
hp(S,t) = llg E e ak(t) uk(S). (3.26)

The solution for ak(t) in (3.25) is straightforward and yields

ak(t) = %(A/Z/Q)/Zu (R) s1n(]’/ 4t), for t>0.

Thus, plugging this into (3.26) we have our solution. Recapitulat-

ing, we have demonstrated the following result.

Lemma 3.1

The impulse response to

(Stt + gH) hp(S,t) =-gH hO(S,t), for Sez, t>0

with hp = 0 for t<0, where

1

ng(s,t) = Lo 6.(t) s(s-R)

is an impressed surface amplitude, is given by

i,
h (S.t) = —1}—1 P Ae ¥ sin(d2a%t) u (R) u(s), 0 (3.27)
| P pg2 Zy k
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where uk(S) is to be interpreted as a regular distribution with

(3.27) converging weak*.

Let 0= %y * c2H. Then, the general mixed boundary value prob-

Tem with this wave operator is

O u(s,t) = f(S,t) , for Sex, t>0
(M.B.V.P.1)
with u(S,0) = ¢(S)

atu(S,O) = ¥(S) an l Y

A representation for the solution u(S,t) is given in terms of a
Green's function G(S,R;t), for the operator {J. G(S,R;t) is a solu-
tion to the problem with homogeneous boundary conditions and

a §-like non-homogeneous term. That is G(s,R;t) is the solution to

U 6(s.R;t) = 5,(t) s(s-R), for Sez, t>0
(M.B.V.P.2)

G=0 for t<0 and 3%7 = 0.

o |
A solution to M.B.V.P.2 can be obtained in exactly the same
manner as the impulse responce hp to (3.15). However, notice that
the only difference in the two problems is that for G, f(S,t) is pre-
cisely the &-1ike term §+(t) §(S-R) while for hp’ we first
apply - 1/p H. This suggests that G can be obtained from the impulse
response already found in (3.27) by
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G(S,R;t) = -p WL n(S,t) (3.28)

where, it is clear that an eigenfunction representation

1

for H™ ", obeying the formal calculus rule of bringing the exponent -1

inside to the eigenvalues plus retaining a dependency on B, is given
by
Y.
-1 . Wz
Hog(S) = Tim T X 2e B u (s) . (3.29)
zy0 k

Applying (3.28) by (3.29) to hp(S,t) given in (3.27), where
c2 replaces g, and the expansion coefficients for h_ are

. P

~ 1
(hp)k - £4sin (c A1|/<4t) uk(R) ,

we obtain

1 RV Y
G(S,R;t)= E-lig g A 4e " sin(c A;‘t)uk(R)uk(s), for t>0. (3.30)
4

Now, we want to demonstrate the following representation for the

solution to M.B,V.P.1.
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Lemma 3.2

The solution to M.B.V.P.1 has the formal representation in terms
of the Green's function, G(S,R;t) the solution to M.B.V.P.2 given in

(3.30), b

t
u(sS,t) = g J G(S,R; t-1) f(R,1) dZRdT + [ G(S,R; t) w(R) dZR
z z

Proof  We will actually obtain the above representétion by first
solving M.B.V.P.1 through an eigenfunction expansion method and then
rewrite the solution by making use of the expansion for G(S,R;t) in
(3.30).

Assume that u(S,t) and all data functions have eigenfunction

expansions, i.e., take
= Z a (t) Uy (S)
with

FS.E) = LAD) 0(S) 4 6(S) = T Gu(s) and o(s) -
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Formally plugging these into M.B.V.P.l we obtain, in the same manner
as for the impulse response, the equation for the modes separately as

1
2 Aﬁga

q(t) + ¢ Neay

(t) = fk(t), for t>0

with

Then, (see Vladimorov (1971) pg. 147) ak(t) is given by
ak(t) = (Ek * fk) (t) + gk(t), for t>0 (3.31)

where gk(t) is the solution to

1 ~ ~
g;(t) + CZA? gk(t) = 0, for t<0 and gk(O) = ds g|'<(0) = (3.32)

and Ek(t) is the fundamental solution to

1 2 1/2
E Ak

k(t) +cC

Ek(t) = 6+(t),with Ekzo for t<0. (3.33)

The solutions to (3.32) and (3.33) are straightforward yielding

1 ~ 1 1
gk(t) = ¢kcos(cxé4 t) + xpk/cxﬁ“ sin(c Aé“ t)
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and

1
Ek(t) = —1%r sin(cxﬁ4 ), for t>0.

CAk

Inserting these into (3.31) we obtain

~

~ 1 v 1 t
a (t)= §, cos(cxﬁ”ft) + —1—/k4— sin(cxﬁ”ft) + —1%0:- Ji S'in[CA1|/<4(t-r)]fk(r)dr

CA cxnt 0
k k (3.34)

Thus, the solution u(S,t) is found by plugging (3.34) above into
u(s,t) = lim j e ak(t) uk(S) , for t>0 . (3.35)
k

Finally, if we write the expansion coefficients in integral form

as

9= £ #(R) u (R) dzp, g = [ w(R) u (R) dx and
z

f (t) = £ f(R,t) u (R) dz,

and formally bring the summation inside the integral, then (3.35)

becomes



84

1
u(S,t) = lim { J IR 4e s1n[ch(t—r)]f(R,r)uk(R)uk(S)dszr
zW0 0 I "k
Az
+[Je cos(cA4t) o(R) u (R) v, (S) dxy
z

Yy
VARV
+ £ E ¢ /4e k sin( cA1|/<4t ) ¥(R) uk(R uk dzR } .

Hence, bringing the limit as z+o inside the integrals and making use
of the expansion for G(S,R;t) in (3.30), we obtain the representation

given in the statement of the Lemmal}

The solution given in Lemma 3.2 resembles the classical Green's
function representation to the initial and boundary value problem for
the wave equation with the operator at 2\72 (see Duff and Naylor,
1966). We are missing a boundary integral over y since a homogeneous
Neumann condition on y is specified. It appears that a treatment of
boundary conditions on vy must be omitted since there is no formula
for H analogous to Green's second formula which is used in the clas-
sical problem to handle non-homogeneous boundary conditions. This
goes back to the original discussion of a square-root of I and the
appropriate domain for a square-root. In the construction of H, in
Chapter I, the treatment of boundary conditions to be included in its

domain of definition is avoided. The presentation, there, was more
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analytic in nature with an emphasis on obtaining an eigenfunction
expansion for H giving a square-root of m, valid in Lz(z). Hence, it
was only necessary to include a growth condition on the expansion
coefficients.

So, it seems, an important issue that will have to be avoided
concerns the appropriate construction of H within a boundary value
problem context. That is, is H suitable for the treatment of mixed
boundary value problems, such as M.B.V.P.l, but with non-homogeneous
boundary conditions on y?

Certainly, one way to avoid this difficulty, concerning the
Todel of gravity waves on' deep water, 1is to consider basins
where £ is unbounded. In fact, of special interest is the basin of
infinite extent where g is the whole plane.

We will finish this section by presenting, explicitly, the
impuise response for the basin where g = R2 and several other basins

of interest.

Example 1: The Unbounded Half-Space Basin

In this case, I = R2 and B = ¢ x(o,»). The eigenfunctions and

eigenvalues for T depend on the continuous index K = (kl’ k2) and are
given by
-1(k1x+k2y)

. 2
uz(x,y) = ?% e , With XEF k% + k2 = k2.
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Hence, the impulse response is found by inserting these into (3.27)
and observing that the summation becomes an integration over K. This

yields

1 . % 1/ -kz . 1/ 1/ -i[kl(x-x')+k2(y-y')]
h (x,y;t)=e——17 lim k'2e " “sin(g’2k'2t)e dk
P 41rpg2 z+0 {wf

(the complex conjugate of uk(R) appears since the eigenfunctions were
not taken as real-valued). Here, S = (x,y) and the source point
is R = (x',y'). Placing the source at the origin and using polar

coordinates gives

hy(x,y5t) = - ——lx/— lim |

co _ 1 1 'n’_. _a!
3724 kzsin(g/z k/zt)dk(zl i aikr cos(ede ))’
2 ™ 8
21pg'4z40 0 -7

where r is the distance between S and the origin and ©-0@' is the
angle between K and S = (x,y). Now, the inner integral can be
written as the Bessel function Jo(kr) and by symmetry, since this
solution only depends on the distance between the source and field
points, the source can be | restored to its original
position R = (x',y') yielding

39 _ 1
no(rst) = - =21 vim [ kM2 @%sin(g2ke)g (kr)dk, for 0 (3.36)

2mp9 2 2,00
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where r is now the distance between S and the source point R.

Example 2: The Spherical Basin

Here, we take B to be the open ball of radius a centered at the
origin and £ = 3B. As with the Half-space problem, this avoids the
treatment of boundary conditions. Now, the operator H is to be a

square-root of the sperical surface Laplacian

The eigenfunctions and eigenvalues for -Ag on L are of the form

P: (cose) e]mw’ with Ay = n(n+l) ,
involving the Legendre polynominals Pz(cose) and where we have multi-
plicity 2n + 1 as m runs from -n to n.

Any boundary value ¢(8,y) defined on £ has the expansion (see
Duff and Naylor, 1966 pg. 345) for a treatment of eigenfunctions of a

spherical surface and expansions in terms of them)

o n

ole,9) =F 7 § P (cose) ) &y
S0 mhon " n
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with expansion coefficients

~ ()"t V) s ~imy
- o £ ¢(8,9) P (cose) e 96 )
(here, d:z = sinededy). The harmonic extension to B is given by
CRY
oo n .
u(r,8,9) = 7 7§ (5" P" (cose) &MY,
n=0 ms-n M @ n

Hence, a representation for H, analogous to (1.15), can now be

given by

L] n .
Ho(e,) = 1im T T Ca(men)T2(D)" §  P"(cose) &MY, (3.37)
r4a n=0 m=-n

A source function for the operator a- ¥t * c2H is obtained by
solving
gt g t) = 8(6-0') 8(y-v')
| (e’w)G(e,w,e ¥ 5t) = 8 (t) T , for t>0

(3.38)

with G = o for t<o.

we assume an expansion for G by
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o0 . n .
nzo mz_ngnm(t) P':(Cose) dmy

G(o,y; 'e',w';t)

and expand the R.H.S. of (3.38) as

s(t) [ § L) o (coch) f(cosery MY,
n=0 m=-n

Formally plugging these into equation (3.38), a differential equation

for the modes separately is obtained as

gin(t) + Cin(ne) T2 g (6) = LLTU0EY2) g0 ooy g (r)

The solution to this is given by

(t) = (1) %o+ Yy )I/ sin [c [n(n+1)]1/4t], for t>0.
27 c[n(n+1)174

Inm
Thus, the source function is given by

6(6,¥;0' 3" ,t) =5l im . (-1)"'(n+1/2)[n(n+1)]1/4(§)"sin CeLn(ne1) T4 ¢]
r+a n=0 m=-n
(3.39)

Pﬂ (cose) ﬁﬂ(cose‘) ;m(w'w').
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Example 3: The Layered space or Basin of Finite Depth

In this case, we take % = R2 and B = x(o,d). We now have an

extra boundary face and write, 3B = 1wV I\, where 5, = x{d}.
The development of H goes exactly as in Chapter I, except now, we

include the added boundary condition

XLl =0

an Zd
in B.V.P.* of section 1.2. Hence, the harmonic extension of a func-
tion ¢(S) defined on 1 takes on a slightly different form than given
in (1.11). A reflection factor will be included. That is, as
before, assuming an eigenfunction expansion for u(P) and plugging
into the boundary value problem now yields for the modes ak(z) a dif-
ferential equation in the form

~

ak"(z) = Akak(z), for 0<z<d, with ak(O) = 9 and ak(d) = 0.

The solution to this can be written in terms of hyperbolic trigono-

metric functions as

cosh (ﬁ?(z-d)]

I .
cosh (A{z d)

ak(z) = $k
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Hence, an expansion for H is given by

. L
y s1nh(A£(d-z)) .
He(S) = 1im [ A2 1 u (S) . (3.40)
z¥0 k K cosh(Alﬁzd) B

The model for gravity waves goes as before with (3.15) the gov-
erning equation. The impulse response is found by assuming expan-
sions for hp(S,t) and ho(S,t) as given before in (3.22) and (3.23)
and obtaining the equation for the modes separately, by plugging

these into (3.15) with the aid of (3.40), as

. ) N
a"(t)+g—51]—h(—§';—d)—xlﬁ2ak(t)= - lw V2u (R) s(t).  (3.41)
cosh(Ak2 d) e cosh(Akzd)

As before, we insert the solution to (3.41) back into hp(S,t) written

in the form
1
h (S,t) = 1im § cosn(i¢ (z-d)) (t) u, () (3.42)
’ = 11m a u N o
P z40 k cosh(Al'/2 d) k k

k

The solution to (3.41) is given by

1

1 1
a (t) = - ;%tanh/a(xﬁzd)xﬁ"uk

1 1,1 1
(R) sin[g/ztanh/Z(Aﬁzd) Aﬁ‘*t], for t>0.
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Thus, the Impulse response has the expansion

y tanh/q A/Zd 1/

1.
h.(S,t) = - = lim § A4“—————T————— [cosh x2(z-d)] (3.43)
P 00’2 240 K K cosh( ﬁZd) k

1 1 1
sin [g/ztanh/2(>}|/<2d)A£4t] u (R) u (s) ,

which is valid for t>0. Now, exactly as before, the eigenfunctions
and eigenvalues are
=ik, x+k

1XHKoy)
UK(X,y) =5;e

. L2 _ 2, .2
, With A+ = k= = k1+ k2

k -

and these are inserted into (3.43) where the summation is replaced by

an integration over K. Again, this is first simplified by placing the

source at the origin and then making use of radial symmetry in
E—space to obtain the Impulse response for a basin of infinite

extend and finite depth as

hp(r,t) = - -—l—gg Tim f 3/2 Egggiitgl-cosh [k(z-d)]
2npg’c z40 O

1
sin[92 tanh’2 (kd) W2+t] Jolkr) dk,

(3.44)

valid for t>o, where r = |S-R|.
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Example 4: The Swimming Pool Basin

For this problem we take £ to be the rectangular region given
by, 0<x<a, o<y<b, embedded in the plane z = o, with B = x(o,d). We
can make use of all the work in the previous example, since there, we
first obtained the expansion for H in (3.40) and the Impulse response

h (S,t), in (3.43) for a general region I with eigenfunc-

o
tions uk(S) and eigenvalues A . By a separation of variables, these

are easily shown to be

Y
unm(x,y)‘= /-i——gmvcos (Eﬂé) cos (ﬂgl)
(3.45)

with

= =1 = =1 i =
where, n,m = 0,1,2,... and Y00 /b Yoo = Yom /o> with Yom 1 for
both n>0 and m>0.
Now, the Impulse response for the swimming pool basin can easily

be obtained by inserting (3.45) into (3.43) yielding

1 1
. p, tann?x 724)
hp(Xsys xt,ytit) = - === lim I Yo r{,‘,‘“ 7 X
abpg’é z40 n,m=0 cosh ( A%d)




1
where Yom

Y

nm
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x cosh(w rl'r/%(z-d) sin[(vrg)l/2 tanhl/z(w Il{%'d) Il{,%,t] x

X cos(m—:)(-)cos(m%L)cos(ﬂ%rx)cos(ﬂ%—)

(3.46)

2 2

m n
—_ — =
a2 b2

as above except =0 and

> Y00 nm 2
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2

IV. A MIXED PROBLEM INVOLVING THE WAVE OPERATOR ¥ tC H

4.1 An Adaptation of the Classical Method of Energy Integrals

In this chapter we will take up an analysis of the operator
\j=att

given as

+ c2H within a general initial and boundary value problem

CAn(s,t) = f(s,t), for (S,t) e £ x (0, =)

W.E.1 with

n| L hgand ah | L, =h and ameg | =0 (6)
t=0 t=0 an Y

We have seen numerous examples of an eigenfunction expansion
technique applied to wave equations; such as W.E.l1, to obtain solu-
tions. Here, the goal is to justify in what sense these expansions
converge and define solutions. This will be done from two points of
view. In one approach, it will be shown that the series expansions
converge in Lz(z) uniformly w.r.t. time on bounded intervals. Then,
the series is a solution defining a function which is continuous
%

in L°(z) w.r.t. tefo.»). Within this class of functions, an exis-

(6) We will now be considering eigenfunctions and eigenvalues for I
with this boundary condition where a and g satisfy the conditions
originally spelled out in Section 1.2
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tence, uniqueness and continuous dependence on the data theorem will
be presented. A second approach, taken up in Chapter V, will be to
consider a generalized wave equation where it will be proven, under
mild restrictions imposed on the data, that a formal eigenfunction
expansion yields a distributional solution.

In both of the above settings, H is treated as a surface oper-
ator independent of the region B. That is, within an L2 setting, the
definition of H is obtained from Lemma 1.3 (where Dy = [¢: condition

(A) holds }) as
He(S) = E A 8 u (S) s {4.1)

and, as an operator on distributions with compact support, the defin-

ition of H is given by (ii) of Lemma 2.9 as

1 ~ ~e
H(T) = E 4? Tk Uy s where Tk= <T,uk>. (4.2)
1y
1/2
2

In either case, the factor e and limit as z+0 are omitted since,
within these settings, it has been shown that it is permissable to
pass the limit through the summation. This justifies the earlier
solution technique used to obtain the equation governing the modes

separately. Moreover, in the final form of the solutions, the series
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expansions remain independent of B, with the exponential factor and
limit omitted there, also,
The first approach is analogous to the classical method of solv-

ing a mixed problem for an equation of hyperbolic type, with the

2

operator 3., - ¢ A. It will be helpful to begin by first illustrat-

tt
ing the techniques to be used on this classical wave equation. This

will also suggest how to adjust these techniques to apply to the new
problem in W.E.l.
The setting is generalized to include the operator L defined

earlier in section 1.2 as

L = -div(p grad) + q.

2

It is also possible to incorporate the constant ¢~ into a general

density function p(S), defined on g using the operator CE L,

where the work is carried out in the space LZ(Z;p). However, the

definition of H forces us to restrict to the case where p is con-

stant. To avoid changing the setting when L is replaced by H and

since there are previous examples involving B¢t c2H, the classical

problem will be illustrated using the operator B¢t CZL.

The problem under consideration is
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2 -

att u+c Lu=F, on U,
W.E.2
with u . 0+ = v0
and au + B-g% = 0.
n | v

9, u = v
tle=0+ !

(where U_ is the time cylinder £ x (0,%)).

A classical solution to W.E.2 is defined as a solution of

class CZ(Uw)(\ Cl(Uw). Notice, if u is a classical solution then,
necessarily, we have
1,- - ¥
FeC(U ) , vaeC (Z), v,eC(Z) and a v+ B — = 0.
w 0 1 0 ~
an Y
These conditions will always be adjoined to the problem when dealing
with classical solutions.
The approach to this problem makes use of the method of energy
integrals which represents the sum of the kinetic and potential
energy of an oscillating system at time t. Given a classical solu-

tion u to W.E.2, the magnitude
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) =¥y [ Law? + Pp [w|? + Fall+Yy [ B Sy, (8.3)
Z Yo

where vy, is that portion of y such that «,p>0, is known as the Energy
Integral for u. A key result for this approach is to obtain a rela-
tionship between Jz(t) and the data. This easily allows for
L2- estimates on u, 3 U and vu in terms of the data which immedi-
ately yields uniqueness and continuous dependence on the data. These
results won't be presented now since analogous results, for the
adaptation to the surface operator H, will be given later (for
further details see V]adimirbv, 1971).

Existence within the class of classical solutions presents some
difficulties. Since existence is sought via an eigenfunction expan-
sion fairly harsh conditions must be imposed on the data to obtain a
classical solution. Instead, the notion of a generalized solution,
which is well suited for these expansions and involves functions con-
tinuous in Lz(z) w.r.t. time, is introduced.

Pertinent definitions and preliminary results that are also
needed for the adaptation of this approach to W.E.1 will be given now

along with a brief sketch of the results leading up to the main

theorem on existence for the classical problem in W.E.2.
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Definition 4.1

For every te[a,b] let the function u(S,t) belong to Lz(z).

Then, u is said to be continuous in L2(z) w.r.t. tefa,b] iff for

every te[a,b]
u(S,t') » u(s,t), as t' > t, in Lz(z).

The following preliminary results are immediately obtained from

this definition.

lemma 4.2

If u is continuous in Lz(z) w.r.t. tefa,b] then
(i) ||u||2 is a continuous function of time for telfa,b]

(ii) for every f ¢ Lz(z), the scalar product (u,f) is continuous

for tefa,b]
. 2
(i11) u e L°(z x [a,b])
Proof (i) follows from the inequality

| HutsstD ], - [uts,0)]],] < [} u(sset) - uis,n)],
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which is a- consequence of the Minkowski inequality and where the

R.H.S. above goes to zero as t'st by assumption.

(ii) This follows from Schwarz's inequality
[(u(s,t'),f) - (u(S,t),f)| = [(u(S,t') - u(s,t),f)| <
[uts,t") - u(s.e)|], [[F]],

(ii1) here,
2 " 2
g [ |u(s,t) [ dzdt = g [{u(s,t) ][5 dt,

and this last integral is finite, since by (i), ||u|l§ is continuous

on [a,b] B

Definition 4.3

The sequence of functions uk(S,t) is said to converge to u(S,t)

in Lz(z) uniformly w.r.t. tefa,b] iff

||uk(S,t) - u(S,t)||2 >0, as k » w, uniformly for tefa,b].
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Uniform convergence on a set @ will be denoted by

U i;g Uask » =,

Hence, the convergence in Defn. 4.3 will be denoted by
tela,b]

U == uas k + o, in Lz(z) .

Definition 4.4

The sequence of functions uk(S,t) is said to converge in itself
2
(

in L7(z) uniformly w.r.t. tefa,b] iff

(un - um) tggg;b]o as n,m > o, in Lz(z) .

Lemma 4.5
If u

te[a,b] uas k » o, 'in Lz(z)’ then

k
(i) u, > U as K » o, in L2 (z x [a,b]),
and

() u (5,0]],5E20 T (ju(s,0) ]|, as & » =
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Proof (ii) By Minkowski's inequality

| ol = 1ull] < 15,00 - u(s,0]], ~0as & » o

uniformly on [a,b] by assumption.
2 b 2
(i) g £ |u (S,t) = u(s,t)|* dzgdt = g [lu (s,t) - u(s,t)|]5 dt

which converges to zero as k+w by assumption, since the integrand

converges to zero uniformly on [a,b] |

Lenma 4.6

Let uk(S,t), k =1,2,... be a sequence of functions continuous

in L%(z) w.r.t. tefa,b] with

‘ tela,b .
Uy 2£=: ]u as k » =, in Lz(z);

Then, u is continuous in Lz(z) w.r.t. tefa,b].

Proof Let >0 be given. Then, there exists an integer m such that

||um(s,t) - u(S,t)H2 <-§ , for every te[a,b].
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Since, u is continuous in Lz(z) w.r.t. tefa,b], given

toe[a,b] there exists &0 such that
| Jug(Sst") = up(S,tg) || < 5 whenever [t' - t4] < &
Then, by Minkowski's inequality
||u(s,t')-u(s,t0)||2< ||u(s,t')-um(s,t')||2+||um(s,t')-um(s,t0)||2
*{lulSitg) - ulSstg)[[ < g g5 e

whenever |t'-t0|<6. This shows that u(S,t')-u(S,t,) as t'ot

0 0

in L2(z). Since ty efa,b] is arbitary, we have shown that u is con-

tinuous in Lz(z) w.r.t. tefa,b] |

Lemma 4.7 (A completeness result concerning uniform cauchy sequences
in L2(z) w.r.t. time)

I[f the sequence of functions uk(S,t), k=1,2,..., COnverges, in
itself, in Lz(z) uniformly w.r.t. tefa,b]; then, there exists a
function u(S,t) continuous in L2(z) w.r.t. tefa,b] such that

u t;ggsblu as k » =, in L2(g).
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Proof By the Riesz-Fischer Theorem, for every te[a,b] there exists a

function wu(S,t) in L2(z) with
. 2
U > uas K e, in L° (z) .

Moreover, it 1is possible to choose a subsequence U (S,t), i =
i

1,2,... such that

lluk (S,t) - u, (S,t)H2 <-—% , for every te[a,b].
(i+1) i 2

Here,

S,t) = 1i (S,t) = S,t S,t) - S,t))+ . . .,
(S, = Ty (S,8) =y (S.6) ¢ (ye (50 -y (5,0)

which implies that

U -u < u -u + {{u -u + ...
L [ [ [P [P

1 1 _ 1
STt ot s T ET

2! 2 2

Hence, the subsequence converges to u in Lz(z) uniformly

w.r.t. tefa,b] and since

|fu - “kllz < ’l“‘“killz + lluki - “kllz J
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by assumption, we in fact have u _ converging to u in Lz(z)

uniformly w.r.t. tefa,b]W

Now, we can give the definition of a generalized solution to the

classical problem in W.E.2.

Definition 4.8

u(S,t) is a generalized solution to W.E.2 iff it is the limit

in Lz(z), uniform w.r.t. te[0,T], for every T>0, of a sequence of

classical solutions uk(S,t) to the problems

2 -
attuk +c¢c” L U = Fk’ on Uw
with
ou
k k k
u = v, , 9, U =v>r and a u, + B ~— =0,
k t = 0+ 0 t “k t = 0+ 1 k oA y

where we have

te[OET] F as kaw, in L2(z); vKs Vo as k » =, in L2(x)

F 0

k

grad vg > grad v, and v? > vy , both as k » =, in Lz(z)
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With this definition in hand, the next step is to show that the

2

L"-estimates for u, 3 u and grad u where u is a classical solution

t
also hold for generalized solutions. This imediately allows a
uniqueness and continuous dependence on the data theorem for
generalized solutions. Moreover, this notion of a solution is well
suited for a formal eigenfunction expansion solution technique where
it is verified, under the appropriate restrictions on the data, that
this expansion yields a generalized solution. This theorem will be

presented here so it can be compared with the analogous result for

W.E.1l.

Theorem 4.9 (Existence)

If V0€DL(7)’ vlst(z) and F is continuous in Lz(z) w.r.t.
te[0,»), then, the solution to W.E.2. obtained, formally, by an

eigenfunction expansion is a generalized solution.

Moreover, the following properties of a generalized solution can

be established.

and satisfying the boundary condition AU+ 8 [u = 0.

(7) D% consists of functions u of c]asscz(z)(\cl(i) with AueLz(Z)
i u
aﬁl

-
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Lemma 4.10

If u(S,t) is a generalized solution to W.E.2, then the following

properties hold
(i)  u(S,t) is a distributional solution, i.e., given ¢ e D(U )
U, 9., ¢ + c2L¢> = <F,¢>
>ttt ’

(ii) The first (generalized or distributional) derivatives of
u, su/ot and gradu, are continuous in Lz(z) w.r.t. tef0,»), and

for every T>0

.

t O,T t 0,T i 2
3 Uy i£=# ]atu, grad u, f£== ]grad u, as k » =, in L7(z).

Again, the proofs and details for some of these results have
been omitted since they are analogous to results that will be proven
when we consider the surface operator H in W.E.1l.

Now, we want to adapt the previous theory to the problem in
W.E.1, as originally given at the beginning of this section. The
main step in this approach is to obtain a representation of the

energy integral Jz(t) in terms of the data given by

0%(t) = 9%(0) + [ [ F(S,7) a_ u(s,r)drgdr (4.4)
z
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where,

3% (0) =1 | [v2 + %p |vv |2 + c2qv 2] +15 | czpi’v 2,
7 1 0 0 g 0
Yo
An immediate problem here is that this step makes use of Green's
second formula for the operator L and it is not clear how an anlogous
formula for H should go. However, the energy associated to a sym-

metric operator L is given by the expression
Y5 (Lu,u),

which is, in fact, used in the definition of the energy integral
since, by Green's first formula

Yo (Luyu) =Y futu =Y, [[p |w|?+ qul]+Yyg p—guz.
I I

0
This suggests that we define an energy integral associated with the
operator H in terms of Y, (Hu,u). This will entail, some changes on
conditions specified in the definitions of classical and generalized
solutions. For example, we will now be interested in the behavior of
Hu as opposed to wu. This lTeads to slightly different results but
we will show that the previous theory, essentially, goes through the
same yielding a very nice setting for the treatment of eigenfunction

expansion solutions to W.E.l.
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Analogous to classical solutions to the wave equation, W.E.2,
"nice" solutions to W.E.1 are defined which are to be sufficiently
smooth so that all operations are obtained continuously. This will
also reflect the necessary changes as imposed on Hu.

Definition 4.11

A "nice" solution to W.E.l, to be referred to as an N-solution,

is a solution h(S,t) satisfying the following conditions;

(1) h is twice continuously differentiable w.r.t. t on ¢ x (0,=),

(ii)  Hh is continuous on £ x (0,=),

(i11) he c}(Z x [0,%)), and

(iv)  for every t>o, Hh(S,t) ¢ L2 (£) where 1im Hh(S,t) exists in
Lz(z), to be denoted as (Hh)o(s). He

Note: If h is an N-solution to W.E.l then, necessarily, we have

FeCU), hy e CH(3), hy e C(3) with chy + g 3hy/aF = 0 on .

0 1
These assumptions will always be adjoined to the problem

W.E.1 when considering N-solutions.

The following result is immediate from this definition.
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Lemma 4.12

If h(S,t) is an N-solution to W.E.1 then h and ath are contin-
uous in Lz(z) w.r.t. te[0,=) and Hh is continuous in Lz(z) w.r.t,
te(0,x).

Now, we will define the energy integral for N-solutions to W.E.l

analogous to the definition in (4.3).

Definition 4.13

Given an N-solution h(S,t) to W.E.l1, the magnitude

2
9B(t) =¥ [ (3M? + & (Hn,h), for t>0
with

2 .
920) =¥, [ 02 + & ((Hh),, hy)
z

defines the Energy Integral, J(t), for h.

Definitions 4.11 and 4.13 illustrate the adaptation of the clas-
sical method of energy integrals that will be applied to the probliem
in W.E.1. The remainder of this chapter will be concerned with
developing results, analogous to the previous theory applied to the
problem in W.E.2, culminating in the main theorems of existence (via
a formal eigenfunction expansion), uniqueness and continuous depend-

ence on the data for this class of generalized solutions.
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4.2 LZ-Estimates on Solutions and Uniqueness and Continuous Depen-
dence on the Data

A key result within the method of energy integrals is to obtain
a representation for Jz(t) analogous to (4.4). Once this has been
proven then the rest of the material leading up to and including
uniquenss and continuous dependence on the data for N-solutions is
fairiy straightforward. Due to the inner product that appears in the
definition of J(t), in Defn. 4.13, the following result is needed

before giving this key result.

Lemma 4.14 *

Let u and v be continuous in Lz(z) w.r.t. tefa,b]. Then the
following hold;
(i) The scalar product (u,v) is a continuous function of t on

[a,b] where the bilinear expansion

(u,v) = E Gk(t) Vk(t)

converges uniformly for tefa,b].

(ii)  The eigenfunction expansion

u(s,t) = E Gk(t) u, (S)
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converges, uniformly for tefa,b], in L2(z).

Proof The first part of (i) is just like Part (ii) of Lemma 4.2.

Denote u(S,t) by ut(S), then
[(uges ve) = (upave)| < Jlugeuy, v | + [Cups vii- vy)|

‘-’I“t' - “tllz llvt'llz + I’Vt" thlz ll“t’lz
and, by assumption, this converges to zero as t'st.
Before finishing part (i) we will verify part (ii). Certainly,
for each fixed tefa,b], since u(S,t)eLZ(Z), it has the eigenfunction

expansion

~

u(s,t) = E uk(t) uk(S)

. .2
converging in L

(). We must demonstrate the ~ convergence
in Lz(z), uniformly w.r.t. tefa,b], or, equivalently (by Lemma 4.7),
that

m
LG us)]7= [ [5(0)]2 *LPlo, a5 mn s w, -
=n

7<-
IN~13
=)

It is known that, pointwise, on [a,b]

X~ 2 2
u (t)|“ converges to [[u .
kzl | K | || ||2
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By (i) of Lemma 4.2, llullg is continuous on [a,b] and by (ii)

of Lemma 4.2
~ 2 2
JT ] = [u,up) ]

defines a positive continuous function on [a,b]. Hence, by Dini's

Lemma (see Viadimivov [1971] pg. 5), we in fact have

kzl Iﬁ'k(t)l2 converges uniformly to ||u||§ , on [a,b].
So, the sequence of partial sums forms a uniform cauchy sequence on
La,b] which verifies (ii).

Now, for the second part of (i), we will show that the sequence
of partial sums of the bilinear expansion for (u,v) converges in

itself uniformly w.r.t. tefa,b]. But, here

m - m N .
(B < (L ;uk(t)|2}/2 (L |vk(t)|2j‘/z tela,b] ¢

?

<

|k"n

as n,m » =, by part (ii) R

Lemma 4.15 (Key Result)

Jz(t) given in Defn. 4.13 1is continuous for t3) and if we

assume F e C(J_) then
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t
J2(t) = JZ(O) + [ [F(S,t) 3. h(S,t) dzS dt , for every t>0. (4.5)
0

Proof Since, h and Hh are continuous in Lz(z) w.r.t. te (0,»), by
(i) of Lemma 4.14, Jz(t) is continuous for t>0. Also, by (iv) of
Defn. 4.11,
1im (Hn,h) = ((Hh),, hy) which implies that 1im 9%(t) = 4%(0).
t+0 . t40
Now, assume FeC(J_) and multiply the equation h=f, in W.E.1,

by ath and integrate over £ x (e,T) for &0, T>0 to obtain

T
/ F(S,t) 3,h(s,t)dzdt = | i 34 N(s,t) 3,h(S,t) dt dg

S

x(e,T) g 5

.
+c? £ 3.1(S,t) Hn(s,t) drgdt.
€

Here, the first integral on the R.H.S. which we denote as I, is

simplified

= Ve [ psin)® | dng =Y [am® | -Y [ (pn)? |

while, for the second integral, we have

) T 5 T (8)
II= c® [ (Hnh, ath) =c” f % (Hh,uk) (ath,uk)
€ €

(8) We stay within a real setting, to omit the complex conjugate, by
considering only real-valued solutions and we know the eigenfunctions
for this problem can be chosen real-valued.



116

T

= CZ E f(Hh,uk) (ath,uk),
€

Since, by (i) of Lemma 4.14 the bilinear expansion for (Hh, 3 _h) con-

t
verges uniformly on [e,T].

This can be further simplified to

y T N T
= o E X2 [ R (t) a.f (t) dt = c? E AI(Z W (R (e) P | )
C ]/ C2 y@ 2
= —ng ( T)) 7E>‘k (Hk(e)) .

Now, letting ey and replacing T by t, by the continuity of F,

3;h and (Hnh,h) at t=o (recall, %1@ (Hh,h) = ((Hh)o,ho)) where

CRIED x (R (t))%  (by (1) of Lenma 4.1)

2 1
- (Y f0f s St T X2 (R (o) )P
(Y [ 1]+ S 1im 132 ()

= 3%(t) - 3%(0) »

Note: This shows Jz(t) is continuously differentiable for tso.
Using Lemma 4.15 it 1is now an easy matter to obtain
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Lz-estmates on h and ath in terms of the data to W.E.l.

Lemma 4.16

If h(S,t) is an N-solution to W.E.l, then the following esti-

mates hold
. t
(1) ||ath||2 </ 23(0) + | HF(S,T)HZdT , for every t>0
0

t
(1) [[n[[y< [[ngl],+/2 3(0) ¢ + g (t-1) [[F(s,7)|[,d7, for every t>0

where

(1599000 < =L (lImyl1, + el |mlg]1, + cllng]],)

Proof
2 2 2
[[3:0]]5 = £ (3, < 20°(t)
2 2 1
. 2
since, 52— (Hh,h) = —C—z-g ;42 (A (t))" 0.
Hence,

[[2.h]], < /2 a(t) .

Differentiating equation (4.5) of Lemma (4.15) and using the Cauchy-




118

Schwarz inequality, we obtain

299" < |[F[], Hanh|], <729 ||F]],
Which implies that

3 (t) <= |[F||, » for every t > 0.
v 2

Upon integration this yields

t
a(t) <a(0) + L= [ |]F(s,D)], de
7Z 0

substituting this back into the estimate for ]|3th||2 gives (i).

For (ii), differentiation of

||h||§ = £ hZ(S,t)sz implies that 2||h||2 ||h||2 < 2||h||2 ||ath||2

or

.
||h||2 < "3th||2 </24(0) + é ||F||2°

Then, integration of this yields
. t tl
[0l < [10]Ig] i + 72 300) t % [ [ ][F]], duat”

By (i) of Lemma 4.2, lim "h’|2 = ||h0||2. Hence, interchanging the
t40
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order of integration in the above gives the result (ii).

For (iii), we have

2 92(0) = [ n% + cZ ((Hn)y.h,)
T
2

< ||h1||§ tc ||(Hh)o’|2 llho“z
2

< (gl + < 1ol 2 11ngl1P

< (1l + e JHmgll, + < fingll, Y

(where we have used the facts that a2+b2< (a+b)2 and

ab<a2+b2 for a,b30). Taking square-roots gives result (iii) W

At this point, we can immediately obtain a theorem on uniqueness

and continuous dependence on the data for N-solutions to W.E.l.

Theorem 4.17 (Uniqueness and Continuous Dependence on the Data for

N-solutions)

The N-solution to W.E.l. is unique and it and its first time
derivative depend continuously on the data hO, hy, and F in the sense

that if for any >0 F, F ¢ C (J.) with

)
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|lF-?|l2 < ¢ for every 0<t«<T, Ilho'ﬁbllz < g ||h1 - h1||2< g
and

Then, for the corresponding solutions, h and R

Hh H“Z < C ((14T) e+ Te, + Te! + Tze),

0 1 0 for all 0<t<T (4.6)

and for some constant akw, not depending on hO’hl’ F, t or T. While,

for 3,.h and 3 _h, the following estimate holds;

t t

+ gt + Te

1 0 ), for all O<t<T. (4.7)

Hath - atEHz <C~(eo + e

Proof For uniqueness, it suffices to show that if h is an N-solution

to W.E.1 with all homogeneous data, then h = o (in Lz(z)). But, in
this case, ||h ||, = 0, J(o) = o and ||F||, = o, which implies by
(i1) of Lemma 4.16 that ||h||, = o, for all t>o.

For continuous dependence on the data, let n = h-A and J(t) be

the energy integral associated with n. Then, by (iii) of Lemma 4.16

3(0 "—“— ('Ih ﬁi||2+ Cllho‘ ﬁb||2+ ClI(Hh)o“ (ﬁh)ollz) (4.8)
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and for every T > 0, by (ii) of Lemma 4.16, for all O<t<T
- t
||n||2 = ||h-ﬁ]|2 < Hho‘ﬁoﬂz + /2T 3(0) + é (t-1) ]|F-F’||2dr

using (4.8) above and the estimate

t T2
é (t-1) ]lF-F||2dr <=5 e, for all 0<t«T,

yields,

2
+C€‘)+l§€

Hh-ﬁ’”zce0+T(e1+Ce 0

0

+ Tel + Tze), for all O<t<T

<C ((1+T) ¢ 1 0

0+Te

(where € = max {1,c}).

Also, by (i) of Lemma 4.16

— t
agnll,= |1 2n-3,R]],< 72 30) + / |[F-F]1,

< (el tCey t Ceb) + Te

<C (g *+ & * g + Te), for all 0<t<T W

4.3 The Main Results of Existence, Uniqueness and Continuous
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Dependence on the Data in a Class of Generalized Solutions

As was mentioned in section 4.1, the notion of a generalized
solution analogous to Defn. 4.8 will be given that is well suited for
obtaining existence through a formal eigenfunction expansion solution
technique. Less stringent conditions need be imposed on the data for
the series expansion to converge yielding a generalized solution as
opposed to an N-so]ution‘to W.E.1. Moreover, the properties of a
generalized solution, that will be given in the main theorems of this
sectiqn and in the last section, illustrate its appropriateness for

this problem.

Definition 4.18

If we have a sequence of N-solutions fk(S,t) to the problems

2 -
attfk +cC ka = Fk’ on Uw
with
of
k k k
f = fo, 3.fF =frand of + g— =0
k t=0+ 0 t'k t=0+ 1 k a7 |y
where, for all T>0
tel0,T] . 2 k k . 2
Fk = F as ks, in L%(1), f0+h0, f1+h,1nL(Z)

and



Proof Since, for each k, f
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{(Hf converges in Lz(z) s

k)O}
satisfying;

tel0,T]

fk ___.:hask+eo,inL2

(z)

then, h(S,t) is called a Generalized Solution to W.E.1l. We will

denote
lim (ka)0 = (Hh)0 .
->00
Lemma 4.19

If h(s,t) is a generalized solution to W.E.l then, the estimates

in (ii) and (iii) of Lemma 4.16 are also valid for h.

k(S,t) is an N-solution to W.E.1, the

estimates of Lemma 4.16 hold for it. Hence, making use of the con-

vergence

tel0,T]

Fr =3

F, in L2(z) which implies ||F, ||,X LT [F|],
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and
‘ e ], 2% n]],, holding for all T>0
| k2 — 2°
along with
fk + h fk > h (Hf ) > (Hh) all in LZ(Z)
0 0’ '1 1° k’0 0°? s

we merely need to pass to the limit in k, on the estimates for fk’ to
obtain these estimates for h. For example, if we first define J(o),

for h, by

2
32(0) =Y, / n2 + S ((Hn)y, hy)

Then, for each k

2

3E(0) =Y / (F) 2+ &5 ((H g, TE) > 32(0) .

Thus, from the estimate for fk

t
[f ], < l|f5||2 +/29,(0) t + g (t-1) ||F (Ss)|],dr
letting k+o, we obtain

t
||h||2 < ||h0||2 +/24d(0) t+ g (t-t) ||F(s,r)||2 dr ,
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which verifies that (ii) holds for h. Result (iii) is obtained in

exactly the same fashion, by letting ko in

1 k k
J, (0) iy I I PR I LT PR ICLIN PV |

Theorem 4.20 (Uniqueness and Continuous Dependence on the Data for
Generalized Solutions)

The generalized solution to W.E.1 is unique and depends contin-
uously on the data, ho’ hl’ and F in exactly the same sense as for an

N-solution to W.E.1l as given in theorem 4.17.

Proof Since Lemma 4.19 verifies that parts (ii) and (iii) of Lemma
4.16 (estimates on ||h||2 and Jz(o) in terms of the data) hold, in
the exact same form, for a generalized solution as for an N-solution;
the very same proof in theorem 4.17, for uniqueness and continuous

dependence on the data for h, applies here @

Before presenting the other main result within this theory, that
of existence to W.E.1, it will be shown that to obtain a generalized
solution it is only necessary to have the sequence of N-solutions
satisfying the appropriate conditions given in Defn, 4.18. That is,
if there exists a sequence of N-solutions fk(S,t) to W.E.1 with

k ¢k

data fo’ f. and F

1 K (as in the defn.) satisfying



126

e te[0,T] k s h fk

. 2
g F, f0 o0 f1 h1 , all in L°(3)

along with, {(ka)o} converging in Lz(z)
where T>0 is arbitrary; then the following result holds.

Lemma 4.21

Given the above situation, there exists a function h(S,t) con-

tinuous in Lz(z) w.r.t. te[0,=) such that for every T>0

f te[o’g] h as k»e , in L2(1) .

Proof Given T>0, by applying (4.6) of theorem 4.17 to the differ-

ence fn- fm’ yields for every 0<t<T
[1f0- full, < € (||f8 - fg||2(1+r) + T ||fT - 711,
+ T |[(RE )y = (HE D)ol + T2 [[F =Ful )

By the assumptions on the data, this shows that the sequence of N-
solutions converges in itself, in Lz(z), uniformly w.r.t.
te[0,T], for all T>0. Hence, by Llemma 4.7 there exists a function

h(S,t) satisfying the requirements of this Lemma W
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Now, we will explicity solve W.E.1 by a formal eigenfunction

expansion method. Here, we try a solution of the form

h(S,t) = ) ak(t) uk(S) s (4.9)
where it is assumed we have expansions for the data as

F(S9t) = E FNk(t) Uk(S), ho(s) = E (ﬁo)kuk(s)’ hl(S) '-'E (ﬁl)kuk(s)o

(4.10)
Then, by a method that is quite familiar by now, fdrma]ly plugging
(4.9) and (4.10) into W.E.1, gives for the modes separately, the

equation
a.“(t) + 2 Al/za (t) = F, (t) , for t>0, with
k k "k k ’ ’
3,(0) = (ﬁb)k and a,(0) = (ﬁi)k . (4.11)

The solution to this (see (3.31) - (3.34) of Lemma 3.2) is given by

N (h7)
g (1) = (Fcos(cxft ) +c—x1,7t‘_‘£ sin(erte) +
1 .Y >
+—1 fsm[cxk‘{t-r)] Fe (1) do,
Ay 40

(4.12)
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holding for t>0. Inserting (4.12) back into (4.9) gives the formal
solution.

The idea of a generalized solution fits well with the eigenfunc-
tion expansion for a solution in (4.9), since, it is clear that the
partial sums of this series are to play the role of the sequence of
N-solutions. Moreover, the tools are already at hand to guarantee
the data for these partial sums converges appropriately under analo-

gous restrictions imposed as in the classical problem in theorem 4.9.

Theorem 4.22 (Existence of a Generalized Solution)

If hy € DH (9), h1 £ Lz(z) and F is continuous in Lz(z)

w.r.t. te[0,=); then, the formal eigenfunction expansion of h(S,t)
given in (4.9) (with the modes ak(t) given in (4.12)) defines a
generalized solution to the wave equation, W.E.l.

n n
Proof Take, fn(S,t) =kzl ak(t) uk(S), Fn(S,t) =kzl Fk(t) uk(S)

and

(9) H is defined by equation (1.15) and its domain is given in Lemma
1.13 by condition (A).
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Then, clearly fn(S,t) solves the problem

n n
with
of

f = f, af =fland of + 85— =0,

"lt=0t 07 Tt "W |y
where fn satisfies (i) - (iii) of Defn. 4.11 for an N-solution.
Also, for every t>0

n 1/ 2
= ¥ 22
an(S,t) kzl X ak(t) uk(S) e L7(2)

where

. n L. . 2
lim Hf _(S,t) = (Hf ). = M2 (R.), u, (S), exists in L°(g).
oo i nlo = L A¢ (ol v

Hence, each fn is an N-solution to the above problem.
From the assumption on F and by (ii) of Lemma 4.14, the eigen-

function expansion for F converges in Lz(z), uniformly w.r.t.

te[0,T], to F, for every T>0. That is,

tel0,T] .2
Fi = F as n>e, in L°(1).
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h,e Lz(z) we have that

Also, since, ho, 1

> h fn

0 1 * h1 , @S Nawo, 1n Lz(z) .

Finally, hoe D,, by Lemma 1.3, implies that

H’

(S) , with convergence in Lz(z) .

w
g
#

U, .
E "ﬁz (ol Uy

Hence,

(HF,), X2 (Fg)y u(s) > Hng(S) , as nse, in L2(3).

k=1
(we see that in this case, (Hh)0 is given by Hho).

Thus, the data converges in the proper manner given in the defi-
nition of a generalized solution, hence, by Lemma 4.21, the sequence,
f,(S,t) (and consequently the formal series (4.9)) converges
in Lz(z), uniformly w.r.t. te[0,T], for every T>0, to the generalized

solution h(S,t) B
4.4 Further Properties of Generalized Solutions

lemma 4.23

Let h(S,t) be a generalized solution to W.E.1. Then the follow-

ing properties can be verified;
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(i) The (generalized) derivative ath is continuous in Lz(z)
w.r.t. te[0,») and for every T>0

tefO,T . 2
3% T 82::#]ath as k»w, in L°(I)

(where {fk} is the sequence of N-solutions given in the definition of
a generalized solution).

(ii) The derivative ath depends continuously on the data
hO’h and F in the same sense given in (4.7) of theorem 4.17 for N-

1
solutions.

(ii1) h is a distributional solutdon to w.E.l(lo), i.e.,

for every ¢eD(U_),

<h,0¢> = <,

Proof (i) Applying (4.7) to the difference fn-fm for any T>0 we

have
Ilatfn' 3 fml,z <& (||f3 - fgllz + ||f? - leIz

(Hf ), - (Hf ) + T max F -F )
16,0 - el + T _nanIFyll,

(10) Later, a different meaning to the notion of a distributional
solution to W.E.1 which includes the intial conditions will be given.
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which, by the assumptions on the data given in Defn. 4.18, implies
that the sequence {atfn} converges in itself, in Lz(z), uniformly
w.r.t. tefo,T], for all T>0. Then, by Lemma 4.7, there exists a
function R(S,t) continuous in Lz(z) w.r.t. tel0, =)

such that for all T>0

3. tigg&;] A as nsw, in Lz(z) .

On the other hand; by definition,

£ te_[:g]h as nsw, in L2(z) which implies that f_ > h, in D'(U )

- -

(fe. [ [f -6 >] [he¢ forall ¢eD(U ).
0 = 0 =

By the continuity of 3 on D'(U_) we also have

t

Thus, the distributional or generalized derivative, ath, agrees
with h which is our result.

(i) Now that we have the convergence of the derivatives of the
sequence of N-solutions to ath, given by (i), we can verify that part

(i) of Lemma 4.16 (an estimate on ||ath||2 in terms of the data)
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holds for generalized solutions as well as for N-solutions. This is
done in the same manner that it was shown that part (ii) of Lemma
(4.16) holds for generalized solutions in the proof of Lemma 4.19.

That is, by (i) of Lemma 4.16, for all n
_ t
Ilatfnllz <v2 Jn(o) + é I'Fnliz * |

Then, by (i) above and the assumptions on the data, passing to the

limit as ns» yields
t
[laehlly < 72 900 = []lFl], -

Now, the proof of continuous dependence on the data for N-solutions
given in (4.7) of theorem 4.17 carriés over, exactly, for ath.

(iii) Let h(S,t) be the solution to W.E.1 given by the eigenfunction
expansion in (4.9) with the mode ak(t) in (4.12) satisfying the

differential equation in (4.11). Then for every ¢ ¢ D(Uw)

<, Qe> lfj (E a (t) u (s))0e(s,t) = E 5 a (t) u (s)0e(s,t).

Since ¢ is zero in a neighborhood of the boundary of Uw, in partic-

ular, near t=0 integration by parts yields
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1
=T [ (ap(e) + AR2 a (1) u(S) els,t)

<F 0>

But, by uniqueness in theorem 4.20, for any generalized solution

h(S,t) to W.E.1,
||n-A]], = 0, for all t50

which implies that

lfJ h(s,t)de(s,t) = lfj R(s,t) Te(s,t)

- -

which is our result §

, for every ¢ (U) ,
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Left Blank Intentionally
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We will finish up this chapter by considering a direct analysis
of the convergence of the eigenfunction expansion for a solution,
given in (4.9), along with two results that show when H¢(S,t) defines
a function continuous in Lz(z) w.r.t. te[0,«) and when it is of
class C(z X [0,=)).

From the explicit form of the modes ak(t) given in (4.12), a
direct analysis of the series expansion for h(S,t) given in (4.9)
will show that certain properties of h can be obtained under weaker
hypotheses than given in the existence theorem. For example, conver-
%

gence of this series can be obtained by assuming h_ e L°(%)

0

(satisfying the growth condition, g '$k|2<”’ which is weaker than
K

condition (A) for hoe DH) along with the same conditions on h;, and

F, as in theorem 4.22., This follows from the estimate on ak(t), in

4.12), given by

2
I k I I 0 kl + Klzﬁ Al/gtel:o,T] I K )
Kk K

for some constant M and for any T>0, holding for all o<t<T. But, this

implies that

2 m
[f- falls = ||k§n a, (t) u (5)]]5

m
= 7 lak(t)|2 te[0,T] 0, as n,mw
k=n
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(by the assumptions on ho’ h. and F). This shows that the partial

1
sums of h(S,t) converge, in themselves, in Lz(z), uniformly w.r.t.
tel0,T] y T>0. Hence, h(S,t) given in 4.9 defines a function
continuous in hz(z) w.r.t. te[0,=) and, the proof of (iii) of Lemma
4.23 holds, so it also gives a distributional solution to W.E.1l.
Similarly, a direct analysis of the derivatives of the modes
yields
iy (2 Yooy (2 2, 12 max 2
'ak(t)] < M(x l(ho)kl + ‘(ﬁi)k| + T ts[O,T]|ﬁk(t)' )s
which holds for some constant M uniformly on[o,T] for any T>o. Then,

using
m| 2_m |
IER R AT ||k2nak(t) ()13 = 1 2L (02,

we see that to show 3.h is continuous in Lz(z) w.r.t. te[0,=) with

tel0,T] .2 .
3. fy ==~ N as nsw, in L (z), for all ™0 ;

we need to impose the, even stronger, growth condition on the expan-

sion coefficients of h (than required for hoeLz(z)) of

A (R [2 < =
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This is also weaker than condition (A) for hos D However, the

W
data for the partial sums will not necessarily converge in the appro-
priate manner so that h defines a generalized solution and allow for
uniqueness and continuous dependence on the data for either h
or ath.

Conditions (ii) and (iv) in definition 4.11 for an N-solution to
W.E.1 involves the operation of H on functions depending on time.
This posed no problem in the existence theorem, since H was only
applied to finite series where the time dependency was factored
out. In general, we want to know when H¢ (S,t) defines a function
continuous in Lz(z) w.r.t. time and when it is continuous
on ¥ x [0,«).

It is easy to see how to adapt conditions (A) and (B) with
Ho € Lz(z) or He € C(I), respectively, to conditions for functions

depending on time. Condition (A) required
~ 12
z Akltbk‘  ®,

and condition (B) required

E XE |$k|2 < o

Similarly, the following result holds.
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lLemma 4.24

If ¢(S,t) satisfies

(@) T |$k(t)|2converges uniformly on [0,T], for all T>0
k
or

]2 converges uniformly on [0,T], for all T>0,

OV AO

then,

- Az 8 (t) u (S) , (4.13)

with convergence in Lz(z), uniform w.r.t. te[0,T] for all T>0 when
condition (a) holds (hence, H¢ is cont. in Lz(z) w.r.t. tef0,=)) and
uniform convergence on T X [0,T] for all T>0 when condition (b) holds

(hence, H¢ ¢ C(T x [0,%))).

Proof Assume (a) holds. Then,

I, . m N
18 2 W2 (8 u ()2 - L A5 (0)[2 T Tdo, as n,mae
=n

for all T>0. So, by Lemma 4.7, the R.H.S. of (4.13) converges in

Lz(z), uniformly w.r.t. t ¢ [o,T] for all T>0, to a function which is
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continuous in LZ(Z) w.r.t. t ¢ [0,o). However, condition (a) and
Lemma 1.3 implies that this function is H4(S,t).

Now, assume (b) holds. Then,

2
m m iu (S)|
k
PR AACTRCIRY O ACIS LI e
k\EYg k L 2
k"n Ak
where the R.H.S.converges uniformly on [0,TIxI to 0asn,m » = .
This shows the sequence of partial sum form a uniform Cauchy sequence
on ¥ X [0,T], for all T>0 which by Lemma 1.4 establishes the second

result §§
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Y. A GENERALIZED MIXED PROBLEM FOR THE WAVE EQUATION

5.1 Two Examples of a Formal Eigenfunction Expansion Method

The Tast chapter built up an Lz-theory for W.E.1 and involved an
analysis of the convergence of a formal eigenfunction expansion solu-
tion to W.E.1 within this L2-setting. This chapter will be devoted
to an investigation of this eigenfunction expansion as a solution to
W.E.1 and to a generalized wave equation from a distributional point
of view.

We will begin the treatment of distributional solutions to the
wave equation with the operator[] = att + c2H, by obtaining the
Green's function solution for [] through an eigenfunction expan-
sion. By now, the expansion method is quite familiar not yielding
anything new. However, here, we will verify that this expansion does
give a distributional solution (in a sense to be specified
shortly). Also, this will demonstrate that in the several examples
given in Chapter III, if the impulse response or Green's function

solutions are viewed from a distributional point of view, then the

exponential factor and limit as z+0 can be omitted.

Lemma 5.1

The solution to the problem

U h(s,t) = 6,(t) &(s), on u_
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is given by

(.0 = £ 13 sinte YAty u R) u(s), for 0 (5.1)

where uk(S) is to represent a regular distribution with (5.1) con-
verging weak*.

Before giving a proof of this, we need to be more explicit on
how the equation h = 6+(t) GR(S) is to be interpreted. The use
of 6+(t) signifies the assumption of causal conditions which entails
the condition that h=0 for t<0. That is, if ¢ e D(Z X (-, «))
with supp ¢ contained in £ x (-»,0], then <h,y>=0. We will denote

D(z x (-=, =)) as D_and distributions in D! satisfying causal con-

ditions by D; . Then, a distributional solution to the problem in

Lemma 5.1 will refer to a distribution h ¢ D; such that
<h,Qyp> = <6+(t) Ss W = w(R,0+), for all y eD_.

Proof From the above note, the claim that h(S,t) given in 5.1 is a
solution toDh = 6+(t) GR means that if we extend h to be zero
for t<0, then h 1is a distributional solution in the sense given

above.
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(5.1) is obtained, in the usual manner, by assuming

h(S,t) = § ak(t) uk(S).

Formally plugging this into the equation in Lemma 5.1 yields for the

modes seperately

1
a(t) +c® ¥2a (t) = u (R) ,(t). (5.2)

The solution to this is given by

0, t<0
)

a (t) = u (R) z, (t) o(t) (6(t) is the heavyside function = {1’ £50

where Zk(t) satisfies

n 2 1/2 -
zk(t) + et X zk(t) = 0, for t>0,
and
zk(O) =0, zk(O) = 1.
Hence,
1 . -Yg s Y
a (t) =< A 4sin (cxk4t) u (R), for t>0
ak = 0, for t<0 ,

and inserting this into h(S,t) gives (5.1).
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Before showing that h(S,t) is a distributional solution, it must
be verified that the series in (5.1) converges weak* hence defining a

distribution in D;. For this, it is sufficient to show
m
| <1 a (t) u (s), v> | »0asnm > for all y eD_.
k=n ®

To obtain this we will make use of a result, similar to Lemma 2.4,
stating that
rog~ ' 2 .
E A RO (5.3)
converges uniformly on [-T,T], for every T>0 and positive integer

r. This holds since, for all integers m>0 if ¢ ¢ Dm then

" veD implying that

- m~
ﬂu&w-gkau>%w>,
with convergence in Lz(z), uniformly w.r.t. te[-T,T], for all T>0

(by Lemma 4.14). Hence,
||| |3 = ) XM 502,

with uniform convergence on [-T,T], for all T>0. This verifies the
result for all even integers and since, eventually,

A

k>1, the result holds for any positive integer r.
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Now, we can obtain the estimate

(by compact support of ¢)

T m N V2 s la (t |2
<£ |k§nak(t) B (t)] dt <£ ( Z xk |9, (t)[%) Z—AE]Z_-dt

Where we have used the estimate Iak(t)l <—71- .
c

T m m o |u (R)|“q
Hence the above is <%— é (kzn Aa/z lwk(t)lz% (kzn “’k""")/zdt

MT  max mo 32 2V,
< ¢ telo, T]( z A / lwk l }2->0 as n,msw ,

by the result in (5.3), where

m |u (R
M = max (f |N(S,R)| dzg }@ > (}: s %@
Rel L k=n
Finally, we will show that (5.1), extended to be identically
zero for t<0, 1is a distributional solution to the problem in Lemma
5.1.

For this, let ¢ ¢ D Then,

.0 = 3, (£) u(S) (3w + ¢ H ¥)

e~ g
—

k
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gzk(t) A LA I

Hence, letting 40 and using zk(o) =0, z (0) = 1, we obtain

Tim [z, (t) 8., = ¢
g0 e 0Tt t=0t 9

Also,

[ u(S) Hy= (Hu, u) = (v Hu) = X2 [u(s) w
z z

Inserting these back in yields,

<h, 0w = E {fv gtk R) U (8) dagr u(R) [ (z + czgﬁzzk) u, (S)v}
Z = Z

: oy 23 Y
and since, z, *tc Ak z, = 0, we have

<, Up = 7 5,07 u R) = 4r,0") B
k

It is an interesting problem to generalize Lemma 5.1 by allowing

for an arbitrary distribution TeD'(z), with compact support, in place
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of GR. This will give an application of the eigenfunction expansion

for T (see Theorem 2.8) as

T = E Tk u, > where Tk= <Tou> s (5.4)

and Uy is to be a regular distribution with the series converging
weak* to T.
Lemma 5.2

The distributional solution to

Uhn(s,t) = s,(t) T

+

is given by h(S,t) = e(t) h(S,t), where R is obtained through a for-

mal eigenfunction expansion as

~ NV
h(S,t) =—i— E A @Tk sin(c)}|/<4t) uk(S).

Proof Assuming an eigenfunction expansion for h(S,t) as

St = § 8 (1) us),

by the expansion in (5.4) for T, the modes ak(t) are governed by



ag(t) + c2>}|/(2 3 (t) = Tk 5, (t).

The solution to this is given by
a (t) = e(t) ?k z (t), where

1
n +C2 A/2 z

zy E 2 = 0, with zk(O) =0 and z;

H0) = 1,

which yields
1Y, (e
3 (t) == % ’f’k s1n(cxk4 t) o(t),

giving the required expansion for h(S,t).
Next, to show h ¢ D;, it is sufficient to show
every ¢ € Dw,
m

) a,(t) u (S), v>| >0, as n,m >
k=n
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(5.5)

(5.6)

that for

This follows using the same steps as in the proof of weak* con-

vergence of (5.1) in Lemma 5.1. From (5.6),

7|
|ak(t)| <-Z;1ZF , for all t .

k
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Hence, from the finite order of lTkl w.r.t. Ak in theorem 2.8 along

with the result in (5.3) of the last proof, we obtain

2
m T m m la (t)|
< a (t) u,(s) , v Nk (t) 2 Yo K /, "
| (L) U | < JCL X |9 (t)] ) (L . i
2
T m lTkI max m P 9 /
) c (k=n )‘kr+ /2 tefO,T] (kzn Ak H’k(t)l }2 +0, as n,m » =,

Finally, for all y ¢ D_, we have

<h,Qw = [ R v
U

L ade) uls) (agv c? Hy)

(by 5.5)= ) lim [
kK €40

o~ —

u ($) fm%kzk(t)attw + c? fa}k z (t) [ u(S) Hy ]
€ € z

1
[ (zp + AN2z) u(s) v ]

t=0 t=0

g Tk“‘k"”l 2 =<0 ﬂ" 2 = <Ta<s (b)), 9> = <5 (1)T,p B

5.2 Formulation and Existence to the Generalized Wave Equation

For easy reference the general wave equation problem in W.E.1

will be repeated here.
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O hs.t) = (ayy + W) n(s,) = F(5,8), on U,

N.E.1 with
h h, , 3.h = h
| t=0+ 0 t ' t-0+ 1
and
(xh“'s-a'r% "0.
an Y

The goal is to demonstrate that under very mild restrictions on
the data hO’ h1 and F, a formal eigenfunction expansion method
yields a distributional solution -to W.E.l. But first, we musf
specify what is meant by a distributional solution to W.E.1. Unlike

part (iii) of Lemma 4.23, the initial conditions are to play a role.

Definition 5.3

By a distributional solution to W.E.l, we will refer to a dis-

tributional solution h ¢ Di to the equation

Llh = F+ngei(t) + hys,(t), onu_, (5.7)

where F = 8(t) F. That is, as was defined after the statement of

Lemma 5.1, for every ¢ ¢ D_
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<h, Qv = <F + hy sp(t) + hys (t), v

with h =0 for t <0 .

We will continue to denote problems in the format of W.E.1 even
if a distributional solution is sought in which case the equation in
(5.7) with the initial data injected into the new source term is to
be the interpretation. It is often the case that an explicit repre-
sentation for h(S,t), valid for t > 0, is given to be a distribu-
tional solution. This will always refer to the extension of h as
being identically zero for t <0 .

The motivation for equation (5.7) is seen in the following

Lemma.

Lemma 5.4

If nh(s,t) is an N-solution to W.E.l1 with F eC(U),

hy < cl(3) and h. e C(z); then,

1

L R(s.t) = B(s,t) + ng(s) &(t) + hy(s) 6,(t), in D , (5.8)

where F = ¢(t) F and R = o(t) h.
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Proof

First, by assumption, both sides of (5.8) define distributions

in D;. Let y e D_. Then,

w

DA, = .0 = [ [ h(s,t) (a, v+ cPHy)

= 1im [ [ (ho, v - a_hy) + [ [ (3,h +c
e¥0 I t t t=e € tt

by the smoothness properties of an N-solution and the symmetric
nature of H. Then, since h(S,t) is an N-solution to W.E.1l,

letting e+0 yields

<QR, v = [ F(S,t) u(s,t) digdt - [ hg(S) 8, w(S,t)| . dig
z

U t=0

[- -

+ [ h,(S) ¥(S,t) dg
g L t=0* S

<+ hys(t) + hys(t), v B

At this point it is easy to strengthen the result in part (iii)
of Lemma 4.23, where it was shown that the generalized solution
(Defn. 4.18) to W.E.1 is a solution to [] h =F in D'(Um), to obtain

|
|
|
that the generalized solution gives a distributional solution in the
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sense of Defn. 5.3. This result will incorporate the initial condi-
tions unlike part (iii) of Lemma 4.23 which avoids a treatment of
initial and boundary conditions due to the compact support of the

test functions contained in £ x (0,«).

Lemma 5.5

The generalized solution to W.E.1 with the data satisfying the
hypotheses of Theorem 4.22 (Existence), represented by the eigenfunc-
tion expansion in (4.9) with the modes given in (4.11) and (4.12), is

a distributional solution to W.E.1 in the sense of Definition 5.3.
Proof Set i = s(t) h. We must verify that for every y € D_

<f,{w> = <+ nysi(t) +hp s (t), » .
The technique is exactly as given in the earlier two examples in Sec~
tion 5.1, except here, the limit as e+0 is not needed since ak(t) is

smooth for t>0. Giving only the main steps, we have

&~ ) t=e ® u 2 1/
<,Jw = E [ g u (S) (3 3.y - apv) teo + g g (ag+ c Aézak) u (S)v ]
= z[g £Fk(t)uk(5)w - g(ﬁb)katw't=o+uk(5) + é(ﬁi)kw pogtik ()]
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o

F(S,t) ¥(S,t) - [ h (S + [ h(S)
é £ (S,t) w(S,t) £ o(S)a v ot £ 1SV v

< + hy &(t) + hs (t), v,

where we have made use of the known expansions for the data along
with the compact support of y to interchange the order of summation
and integration.

Now, of course, it is also required that the series expansion
for h(S,t) in (4.9) converges weak*, showing that h(S,t) defines a

distribution in D;. For this, let ¢ ¢ D_, then
m T m 1. m 1
<1 a (t)u(s), ») <[ (T |5()]D72(7 |a(t)]|272 dt.
k K Lo ¥ k
k=n 0 k=n k=n
Using the estimate

lak(t)] < l(ﬁb)kl + l(ﬁi)kl + 7 ts?ng] lfk(t)l, for all 0<t<T

for any T>0 (from (4.12), eventually holding for k sufficiently

large), where

) |(Ry), |2, ) |(R)), 1% are finite (hyeDy, hyet?(z))

and
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y ‘Fk(t)[z converges uniformly on [0,T] for any T>0
k
(F is continuous in Lz(z) w.r.t. t € [0,o)) along with the result in

(5.3) in the proof of Lemma 5.1 which states that

~

y ]wk(t)l2 converges uniformly on {0,T], for any T>0;
gl

we see that this last integral converges to zero as n,m+», Hence,

the series

h(S,t) = § ak(t) u, (S) converges weak* |
ok

Now, we want to extend the setting for W.E.1. Notice, from
(5.7) in Definition 5.3, if we wish to consider distributional solu-
tions to W.E.1 then there is no need to require the data to be clas-

sical functions. This suggests the following definition.

Definition 5.6

The Generalized Wave Equation (or G.W.E.1l) will refer to the

problem in W.E.1 where equation (5.7) is to be the interpretation and

ho, hleD () with F ¢ D, -
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In the above proof of weak* convergence of the generalized solu-
tion given in the series expansion of {(4.9), we did not make use of
the full strength of y ¢ D_. That is, the result in (5.3) states
X Aglﬁk(t)]z converges uniformly on [0,T] for any T>0 and for any
gositive integer r. This allows for far less stringent growth
conditions on the expansion coefficients of the data ahd suggests
that the eigenfunction expansion should yield a distributional solu-
tion to G.W.E.1 as long as the distributional data allows eigenfunc-
tion expansions with a finite growth condition on their expansion
coefficients w.r.t. A e
Using Theorem 2.8, such a result will, in fact, be given under

the following conditions. Let

T, ho, hle D'(z) with compact support and fe LtOC(R) with f=0 for t<0.

(5‘9)
Then, by Theorem 2.8, the following expansions'hold

hi= 1 (R}, u, for i=0,1 and F'= f(t) T = f(t) J T, u
k
(5.10)
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where F defines a distribution in D; and all series converge weak*.
Also, by the second part of Theorem 2.8, there exists a positive

integer r and constant ¢ (both independent of k) such that

Ry

T < €a", for all k and for i = 0,1. (5.11)
Theorem 5.7 (Existence to the Generalized W.E.1)
By a formal eigenfunction expansion, h(S,t) given by

h(s,t) = ] a,(t) u(S) with
K

where (5.12)

W, 2y _
Ex +¢C >\k2 E, = 6,.(t) ,

yields a distributional solution to G.W.E.1 with the data ho,hl

and F given in (5.9).

Proof If we assume h(s,t) is of the form
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and formally plug this into G.W.E.1, the equation governing the modes

is given by
u 2 1/2 - .
a(t) +c A (t) = Tk f(t) , for t>0, with
1 + - ~
ak(O ) = (ﬁb)k and ak(O ) = (hl)k.
The solution tb this can be written in terms of the fundamental solu-

tion Ek(t) as given in (5.12) (see Vladimirov (1971) pg. 171). For

t>0, this can be further simplified to

(R
ak(t)=(ﬁo)kcos(c>}/ t)+———1/—sm(cxk4t)+——1- f s1nECA4(t- ) If()dr,
X O‘k

(5.13)

where

1
E (t) = _e%)_ sin(cxﬁ“t).

CAk

As it has been demonstrated many times, if the series expansion
for h(s,t) converges weak* then, for any y e D_, with h = e(t) h,
we have

h Dw ( ) - f f ( 2 Ju (S)v]
<h, > = S v -a, v + a"+c a )
E [ £ u(S) (a3 A t=0 0 KFCAE Ay
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+ (ﬁi)k U, v > ]

t=0

[ T <y <Fop> + () <ups <8, >

1]
xe~)

+ (ﬁi)k U, <8, > 1.
Here, since <f,y>, <&, ¥ = -3, #(s,0") and <, P = ¥($,07)
are all test functions in D(g), using the expansions of the data in

(5.10), yields

<ﬁ,[]¢>

<T, <f,p> + <h0, <6L,¢>> + <h1, <5, P>

< + hoai +his., v .
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For weak* convergence of the series expansion for h(S,t), fol-
lowing the same steps as in the proofs of weak* convergence in the
previous Lemmas (Lemma 5.1, Lemma 5.2 or Lemma 5.5), we arrive at the

inequality

m T m 1 m fa (t)
| <1 a () uls), w| < [ (T 2 [5(0[372 (] LK—"EL}/Z dt ,
k=n 0 k=n k=n Ak

valid for any positive integer p. Now from (5.13),

.
a (t)] < [(A), ] + —— [(F).] + == |T.| [ If(0)] d
la ()] < |(Ry), ] :Alﬁjgllkl :Arﬁgglklglflf

which implies, using (5.11) that
|ak(t)| < ClA; , for some constant ¢' and for all te[0,T].

(here, c¢' can be any constant > 3 max {8,-%}-5 g }f(r)l dt}). Then,

taking p > 2r + 2, implies that

m |a (t)|2
(] o—Fece
k=n Ak k

1
A_lf)/2+ 0, as n,m > o,
n “k

W13

Therefore, by the result in (5.3),
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m
| <y ak(t) uk(S) R ¢>| +0,asn,m > B
k=n

One final comment is in order concerning the development of the
theories for an analysis of W.E.l within its various settings. In
the previous chapter an adaptation of the method of energy integrals
for the classical wave equation was presented. This gave a nice
theory within an L2-setting. However, even in the classical problem,
no mention was given for the sense in which a generalized solution
satisfies the boundary condition. It can easily be shown that the
generalized solution satisfies the initial conditions in Lz(z) (this
also holds in the new problem involving the operator H) but the
question of boundary conditions is far more complicated requiring a
more precise definition. At this time, a treatment of the boundary
conditions for the new wave equation, W.E.l, within the class of
generalized solutions, must be avoided since it is not clear how to
adapt the treatment in the <classical case to this setting.
Similarly, concerning the development of a distributional theory to
W.E.1, in this chapter, a treatment of the boundary conditions is
avoided. Here, the theory is based on the test function space,

D@' By restricting the test functions to have their support con-
tained in I x (-=,»), it is guaranteed that they are zero on a
neighborhood of «.

An appropriate treatment of the boundary conditions for this

problem poses some interesting problems for future research. This,
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perhaps has its roots at the very beginning of this paper with the
question of a suitable definition of a square-root of the Laplacian

within a boundary value problem context.
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