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MicroRNAs are a highly conserved class of small endogenous RNA, about ~22nt in 

length, involved in post-transcriptional gene silencing and have prominent roles in 

disease and development.  Though the process of microRNA discovery was once an 

arduous task, the advent of high throughput sequencing technology has resulted in 

novel microRNAs being discovered at a rapid rate.  Several data-driven pipelines and 

machine learning-based methods have been devised so that the beginning stages of 

microRNA discovery can be performed in silico.  Despite these efforts, several 

challenges have persisted in the computational prediction of microRNAs. These 

challenges include the identification of microRNAs with low expression, proper 

determination of the precursor span, and the precise labeling of the cleavage sites 

involved in their biogenesis. This thesis addresses these challenges with two new 

machine learning-based approaches. MiRWoods improves precursor detection and 

uses stacked random forests for the sensitive detection of microRNAs. We report that 

miRWoods has a 10% higher recall of annotated microRNAs when compared with 

other software.  We applied this method to the genomes of human, mouse, Felis catus 

(cat) and Bos Taurus (cow) and identified hundreds of novel microRNAs in small RNA 

sequencing datasets.  Our novel predictions include a microRNA in an intron of 

tyrosine kinase 2 (TYK2), that is present in both cat and cow, as well as a family of 

mirtrons with two instances in the human genome.  Our predictions support a more 

expanded miR-2284 family in the bovine genome, a larger mir-548 family in the human 



 

 

genome, and a larger let-7 family in the feline genome.  DeepMirCut is a deep learning 

approach for identifying cleavage sites within microRNAs. This approach is inspired 

by site-labeling methods for natural language processing, and can accurately predict 

how the microRNA processing enzymes Dicer and Drosha cleave the microRNA 

precursor.  
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1 Introduction 
 

1.1 Biological Background 
 

MicroRNAs (miRs) are a conserved class of small endogenous RNA around 22nt in length.   

Mature microRNAs are able to modulate a variety of different processes through post-

transcriptional gene silencing, which result in either transcript degradation or translational 

inhibition [1]. MicroRNAs have a wide range of functions including cancer (both tumor-

suppressor and oncogenic) [2], development [3], stress response [4], aging [5], and circadian 

rhythms [6]. Nucleotide positions 2 through 8 on the mature microRNA are called the seed 

sequence and help direct the sequence-specific activity of the RNA-induced silencing complex 

(RISC), where it binds to a complementary strand on the 3′- UTR of an mRNA transcript.  

 

Biogenesis of these mature microRNAs typically begins with the transcription of a primary 

miRNA (pri-miRNA) transcript by RNA Polymerase II [7, 8], or in rare cases RNA Polymerase 

III [9]. A microprocessor complex associates with the hairpin, whereby the action of the 

component enzyme Drosha produces a double-stranded cleavage that results in the microRNA 

precursor (pre-miR) leaving a 2-nt overhang on the 3′ end [10, 11]. Exportin-5 associates with the 

3′ overhang and transports the precursor from the nucleolus to the cytoplasm [12].  Here an enzyme 

known as Dicer produces a second double-stranded cleavage to remove the hairpin loop. Taken 

together, the activity of these enzymes results in four distinct cleavages of the pri-miRNA 

transcript and therefore a double-stranded RNA duplex. Dicer passes this RNA duplex to 

Argonaut, a core enzyme of RISC, which binds with only one of the strands while the other one is 

degraded. The RISC-bound strand is called the miR, and is involved in the core regulatory function 

of the microRNA, by directing RISC to complementary target sites in mRNAs. The second 

degraded strand is called the miR*.  

 

1.2 Early microRNA discovery tools 
 

An early method of microRNA discovery used lower-throughput sequencing technology (e.g. 

Sanger sequencing) to detect novel microRNAs [13]. However, many other types of small RNA 
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would be detected in the same cloning library. For this reason, criteria such as sequence 

conservation, presence of the sequence on the stem of a hairpin fold, and the accumulation of the 

microRNA precursor in organisms with reduced Dicer function were used to determine if the 

sequence was a valid microRNA [14].  One of the major issues with low-throughput sequencing 

technologies was that highly expressed sequences would dominate the cloning library making it 

difficult to detect microRNAs with low abundance [15].  

 

Other  early software-based approaches would scan the genome for conserved hairpin 

forming sequences [17, 18].  miRSeeker employs this method by predicting based on features 

derived from patterns of stem-loop conservation within microRNAs [19]. miRScan is another 

conservation-based approach which slides a 21-nt window along hairpin precursors scoring them 

on sequence conservation and base-pairing potential [20].  However, due to the reliance of these 

programs on sequence conservation they would only identify homologous microRNAs [18] and 

may not be applicable to genomes for species with few other closely related species with sequenced 

genomes.  

 

1.3 Machine Learning and Feature-based Prediction 
 

The advent of high-throughput “deep” sequencing has provided a valuable source of feature 

information because these sequenced reads can be processed to provide evidence for or against 

Dicer and Drosha processing at a large scale. Deep sequencing technology has addressed the issue 

of detecting microRNAs with low expression, but is has also improved the detection of non-

microRNA transcripts making software based methods of detecting them more important [15, 16].  

This technique involves mapping sequenced reads to the genome, aggregating them into read 

stacks, and then folding the genomic sequence so their alignment to the fold can be analyzed.  

Boundaries of the read stacks can be used to identify cuts made by Dicer and Drosha and derived 

features can be used to separate microRNAs from other sequences.  Dicer and Drosha tend to make 

clean cuts along the stem so read stacks extending from the stem onto the loop or read stacks 

overlapping other read stacks can be taken as evidence that the precursor is not a microRNA.  Dicer 

and Drosha will usually cut the precursor in such a way that miR and miR* are offset by about 2 



 

 

3 

nucleotides.  Read stacks representing microRNAs also tend to have a low heterogeneity on their 

5′ ends because the seed sequence is important for targeting specific mRNAs. 

 

High-throughput sequencing has allowed for large-scale analysis of small RNA sequencing 

data and ushered a new era of microRNA analysis. Many of the subsequent computational 

microRNA discovery tools created, such as miRTRAP [21], miReNA [22], miRDeep [16], 

miRDeep2 [23], miReap [24], and miRAnalyzer [25], use feature-based selection, score-based 

selection, or machine learning approaches to classify loci as microRNAs, and therefore rely 

heavily on feature engineering.  Although these tools benefit from features which are easily 

interpretable, feature engineering can be laborious and relies heavily on expertise.   

 

1.4 Deep learning approaches to microRNA analysis 
 

Deep learning is a type of machine learning that uses multi-layered networks to learn relationships 

present in more basic input data. These approaches overcome the need for feature engineering by 

learning the features themselves.  Two commonly used forms of deep learning methods are 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs.)  Convolutional 

neural networks work by learning a set of filters which perform convolution operations on the 

input and pass it into the next layer.  RNNs are commonly used on applications such as natural 

language processing.  RNNs iterate over sequential data, calculate their next state from their 

previous state and the input token, and output values at each position.  In this way, output of the 

RNN is influenced by patterns appearing earlier in the sequence.  However, ordinary RNNs suffer 

from the vanishing gradient problem during training [26],  so variants such as Long-Short Term 

Memory (LSTM) and gated recurrent networks (GRU) are typically used in practice.   

 

Although deep learning is relatively new, both convolutional neural networks (CNNs) [27] 

and recurrent neural networks (RNNs) [28, 29]  have been used for microRNA classification. 

While these approaches have addressed the limitations of feature engineering, they only predict 

loci and don’t perform site-prediction.  They could potentially be used to predict other aspects of 

microRNA biogenesis.  For instance, RNNs have been used in natural language processing 
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applications such as named entity recognition [30] and part-of-speech tagging [31], which are 

similar tasks to cleavage site recognition. 

 

1.5 Remaining Challenges to microRNA Discovery 
 

There are still many challenges in microRNA discovery tool development. This thesis covers two 

software-based approaches designed to address these challenges: miRWoods and DeepMirCut. 

 

A persistent challenge to microRNA discovery is the correct identification of precursor 

span to fold after mapping reads to the genome.  In many cases it is possible to fold the precursor 

in the wrong direction relative to a microRNA.  Sometimes even minor adjustments to the start 

and stop position can influence the fold.  Detection of microRNAs with low read abundance is an 

additional challenge.  Mapping low abundant reads to the genome usually results in a huge number 

of unlikely candidates that need to be folded and analyzed.  Many programs avoid this problem by 

setting arbitrarily high cutoff and fail to detect microRNAs with very low expression.  

 

Chapter 2 presents miRWoods, a stacked random forest strategy to predict microRNAs, 

both novel and known.  It addresses the sequence folding problem using an approach which 

considers several possible folding patterns, including one that only considers RNA duplex 

formation without the loop, and uses the one with the highest score.  MiRWoods filters down the 

number of candidate loci using a random forest rather than by applying an abundance cut-off score.  

miRWoods applies a cut-off score after this point but it is adjusted based on the size of the set and 

in many of our sets it still allows for 1 read while other programs applied a more stringent cut-off 

threshold. 

 

Another remaining challenge for the computational analysis of microRNAs is to move 

beyond just prediction or classification of microRNA loci. For example, more work is needed in 

the characterization of positions involved in the biogenesis of microRNAs. More specifically, the 

accurate prediction of the positions along the fold where Dicer and Drosha make their cuts is an 

important remaining challenge.  Some SVM-based Dicer cut-site prediction tools been developed 
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[32, 33].  However, no attempts have been made to identify cut-sites made by Drosha using deep 

learning approaches such as recurrent neural networks. 

 

 Chapter 3 presents DeepMirCut, a LSTM-based deep learning approach to identifying 

Dicer and Drosha cleavage sites.  While other programs have use precursor sequences downloaded 

directly from the annotation, we’ve built our dataset using genomic coordinates found in miRBase 

to gather precursors along with a region of sequence flanking them on each side.  This additional 

sequence is necessary for training and testing on Drosha cut-sites.  We also apply random amounts 

of flanking region to improve training and to provide a more stringent test of our model’s 

performance.  
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2 miRWoods: Enhanced precursor detection and stacked random forests for the 
sensitive detection of microRNAs 

 

2.1 Abstract 
 

MicroRNAs are conserved, endogenous small RNAs with critical post-transcriptional regulatory 

functions throughout eukaryota, including prominent roles in development and disease. Despite 

much effort, microRNA annotations still contain errors and are incomplete due especially to 

challenges related to identifying valid miRs that have small numbers of reads, to properly locating 

hairpin precursors and to balancing precision and recall. Here, we present miRWoods, which 

solves these challenges using a duplex-focused precursor detection method and stacked random 

forests with specialized layers to detect mature and precursor microRNAs and has been tuned to 

optimize the harmonic mean of precision and recall. We trained and tuned our discovery pipeline 

on data sets from the well-annotated human genome and evaluated its performance on data from 

mouse. Compared to existing approaches, miRWoods better identifies precursor spans, and can 

balance sensitivity and specificity for an overall greater prediction accuracy, recalling an average 

of 10% more annotated microRNAs, and correctly predicts substantially more microRNAs with 

only one read. We apply this method to the under-annotated genomes of Felis catus (domestic cat) 

and Bos taurus (cow). We identified hundreds of novel microRNAs in small RNA sequencing data 

sets from muscle and skin from cat, from 10 tissues from cow and also from human and mouse 

cells. Our novel predictions include a microRNA in an intron of tyrosine kinase 2 (TYK2) that is 

present in both cat and cow, as well as a family of mirtrons with two instances in the human 

genome. Our predictions support a more expanded miR-2284 family in the bovine genome, a larger 

mir-548 family in the human genome, and a larger let-7 family in the feline genome.  

 

2.2 Introduction 
 

MicroRNAs (miRNAs, miRs) are a highly-conserved class of small endogenous RNA molecules 

that are involved in post-transcriptional gene silencing by acting as a guide RNA for the RNA-

induced silencing complex (RISC). The biogenesis of microRNAs begins with the generation of a 
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primary transcript (pre-miR), which folds into a structure containing one or more ~70-nt hairpins. 

These hairpin precursors (pre-miRs) are cut at the base by Drosha [10]. After export from the 

nucleus, the loop of the hairpin is cut by Dicer. The resultant double-stranded RNA duplex is 

unwound to produce two mature ~22-nt microRNAs (miRs), named 5′ and 3′ after the arm of the 

hairpin from which they derive. Typically, only one of the mature microRNAs is incorporated into 

RISC, and the other microRNA is degraded and designated miR-star or miR*. The seed sequence 

at positions 2-8 of RISC-bound mature microRNAs binds to complementary sequences in the 3′ 

untranslated regions (UTRs) of mRNAs. 

 

The advent of deep sequencing data has enabled the high-throughput discovery and 

annotation of novel microRNAs. Most microRNA prediction approaches begin by aligning size-

selected deep sequenced RNA (small RNA-seq) reads to the genome, and then the identification 

of overlapping aligned reads, “read stacks”. These read stacks correspond to mature microRNA 

products, as well as other sequenced fragments including microRNA offset RNAs (moRs) [34], 

hairpin loops, and spurious RNA fragments. The RNA secondary structures for the genomic 

sequences surrounding the read stacks are predicted and reads overlapping predicted hairpin 

structures are analyzed for arrangements consistent with microRNA processing. The prediction 

methods vary in the specifics of how the data are processed, and relevant features are quantified, 

as well as what classification techniques are used. Methods employing this strategy include 

miRTRAP [21], the software upon which miRWoods was built, along with miRDeep [16], the 

improved miRDeep2 [35] and other variants [36, 37], miReap [24], and miRAnalyzer [25].  

 

Several challenges remain in the computational prediction of microRNAs. Current 

approaches have strengths and weaknesses; while some approaches focus on higher precision at 

the expense of false negatives, others focus on higher recall at the expense of false positives. Most 

approaches require a minimum number of mapped reads at a given locus, meaning that many valid 

lowly expressed microRNAs are missed. Also, hairpin precursor detection is challenging because 

slight changes in the boundaries can shift the secondary structure prediction away from the hairpin. 

Our analysis of the predictions from available methods identifies many cases that partially overlap 

with or are shifted from annotated loci, and mistake 5′ for 3′ mature miRs.  
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These remaining challenges to microRNA discovery motivated us to create miRWoods, a 

microRNA discovery pipeline using stacked random forests with an improved method for 

determining hairpin precursor span (Figure 2.1). The miRWoods pipeline consists of a mature 

product random forest (MPRF) for mature product detection, and a hairpin precursor random forest 

(HPRF) for hairpin precursor identification. For balancing precision versus recall, we tuned 

miRWoods to optimize F-score, which is the harmonic mean of precision and recall. We trained 

and tuned miRWoods on well-annotated human data sets, evaluated cross-species performance 

using mouse data and used the pipeline to subsequently identify novel microRNAs in the feline 

and bovine genomes.  

 

2.3 Results 

2.3.1 Overview of strategy behind miRWoods  
 

Because current approaches impose a threshold for the read abundance for a locus to be evaluated 

as a putative microRNA, many low-abundant miRs are missed. To avoid this, we have added a 

machine learning classifier to identify read stacks that are plausible mature microRNA loci, 

thereby enabling miRWoods to detect microRNAs with a single read. This RF evaluates read 

abundance-related features in the context of other features to classify plausible mature products 

(Table 2.1). To avoid the sensitive-dependence on precursor span for secondary structure 

prediction, we examine several putative precursors for each read stack, including one derived from 

the boundaries of the optimal duplex between the read stack and surrounding genomic region 

(duplex-focused spans) and those derived from the boundaries with other products (product-

focused spans). Through extensive feature-engineering, we have added several novel features to 

help classify the microRNA precursors, which are listed in Table 2.2. Finally, we have tuned 

parameters of our model to optimize F-score, the harmonic mean of precision and recall, to result 

in improved performance that doesn’t sacrifice precision, and recalls 10% more annotated 

microRNAs on average. 
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2.3.2 Stacked random forest approach 
 

As with other microRNA discovery tools, miRWoods begins by analyzing genomic loci where 

small RNA reads mapped. A distinguishing feature of miRWoods is the use of an additional RF 

layer (the MRPF) to classify reads stacks as plausible mature microRNAs rather than rely only on 

the number of reads mapping to that genomic locus. The MPRF is trained on a balanced set of 

positive and negative examples, whereas the HPRF is trained with a much larger negative set.  This 

results in the MPRF being a more lenient predictor allowing the HPRF to make a more stringent 

prediction later on.  The features used in the MRPF are summarized in Table 2.1. The MRPF also 

leverages basic sequence features previously shown to be effective in detecting precursors such as 

GC-content and dinucleotide frequencies [22, 25, 38-40]. In addition, we introduce some novel 

features such as the duplex energy between the read stack’s most frequent read sequence and the 

surrounding genomic locus. This quantity is distinct from miR:miR* duplex energy because the 

input is a read stack, and miR/miR* designations have not been assigned at this point. Also 

included are the observed frequencies of 5′ read ends relative to the most abundant position.   

 

 The HRPF also uses several novel features, summarized in Table 2.2. Novel features 

include 11 “overlap” features, corresponding to the degree of overlap between different identified 

products (e.g. 5′ moR, 5′ miR, loop, 3′ miR). We also introduced several features describing 

destabilizing structures, such as bulges and loops, and several features describing the regions 

duplexed with the most abundant product. We also analyzed what features were most important 

for miRWoods, and summarized feature importance in Figure 2.2. We found that the frequency of 

reads in the start position of the read stack and the duplex energy to be highest in importance for 

the MPRF (Figure 2.2a). We found that the decision value from the MPRF, the reads per million 

in the sense and anti-sense strands, the product base pairing, and the duplex energy to be the most 

important features for the HPRF (Figure 2.2b). Because the value of some features showed 

correlation, we also examined feature importance for RFs trained with correlated features 

removed. We identified features with an R^2 greater than or equal to 0.5 and removed the feature 

with the highest importance for each correlated pair. We saw an increase in feature importance for 

some features in the HRPF, such as totalSenseRPM, dupLoopDistance, ARV, wARV, dupPBP, 

and afh (Figure 2.3). We also examined the change in importance when correlated features are 
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removed (Figure 2.4a-b). In some cases, features gained the importance after removal of their 

correlated partner. In other cases, such as “dupLoopDistance” and “dupPBP”, features showed a 

substantial increase in importance despite not having correlated features removed. We did not 

observe a significant decrease or consistent change in performance with the most correlated 

features removed (Figure 2.4c). 

 

 We examined the role of read-abundance on the performance of miRWoods. The 

histograms of true positive predictions from miRWoods, miRDeep2, and miRWoods demonstrate 

that miRWoods correctly identifies more single-read miRs (Figure 2.5a-f). We observed that 

consistently in both predictions trained and tested in human (same-species) and trained on human, 

tested on mouse (cross-species), miRWoods consistently makes more valid positive predictions 

for loci supported by only one read (Figure 2.5g ). While these predictions illustrate the power of 

miRWoods, in practice any single-read predictions are not proof and would require further 

validation. We analyzed the effect of removing read-abundance-related features and found that 

while performance does reduce with the removal of these features (Figure 2.5h), the overall greater 

performance on low-abundance loci demonstrates that these features do not impair performance.  

 

2.3.3 Accurate mapping of hairpin precursor span 
 

Proper identification of hairpin precursor span is critical for microRNA prediction, because 

methods typically rely on secondary structure prediction, which can significantly depend on the 

defined window. The labeling of 5′ vs 3′ products requires accurate identification of the hairpin 

precursor. We imposed stringent requirements for predictions for the hairpin span of a locus to be 

considered a true positive when compared to miRBase annotations. Predicted loci where the 

hairpin folded in the wrong direction and/or overlapped less than 50% of the annotation were 

counted as false predictions. To address these stringent criteria, we developed an approach that 

focuses on strong miR/miR* duplex energy, rather than secondary structure of the hairpin. While 

most approaches focus on the predicted structure in a region around the most abundant product 

(i.e. major product), our duplex-focused method selects the span of hairpin regions using the 

optimal duplex pairing with the most abundant product (Figure 2.6a). Alternatively, product-
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focused spans covering the major product and any product 4 nt or more away from the major 

product are also considered. Each of these options are considered as putative loci, and evaluated 

in subsequent steps. We found that miRWoods uses the duplex-focused span an average of 88.4% 

of the time in its final predictions for all human sets (Table 2.3). 

 

 The percentage of predictions that matched an annotation well enough to be considered a 

valid hairpin precursor was computed for miRWoods, miRDeep2 and miReap and summarized in  

Table 2.4. miRWoods predictions used the proper fold an average of 99.1% of the time for human 

samples and 99.9% of the time for mouse samples. miReap was able to predict the proper fold 

98.2% of the time for human and 97.8% of the time for mouse. miRDeep2 was able to predict the 

proper fold 98.9% of the time for Human and 97.7% of the time for mouse. In some examples, 

miRWoods corrects errors in the miRBase annotations. In Figure 2.6b we show the current 

annotation for hsa-mir-4721. While miRWoods predicts a hairpin precursor that directly matches 

with intron splice junctions (a mirtron), the miRBase annotation only overlaps one mature product. 

Similarly, Figure 2.7a shows hsa-mir-6860, which miRWoods predicts to be a half-mirtron and 

the current miRBase annotation does not. In both cases the miRWoods predicted hairpin span lines 

up with the intron splice site, even though miRWoods does not use splice junction locations in its 

predictions, thereby providing independent support to the predictions. In other examples, such as 

mmu-let-7c-2, the miRDeep2 hairpin span is offset, assigning the 5′ product as the 3′ product 

(Figure 2.6c). A similar scenario is observed for hsa-mir-431 (Figure 2.7b). 

2.3.4 Evaluation of prediction performance 
 

The repertoire of expressed microRNAs can vary considerably between tissue types in the same 

organism; therefore, we tested miRWoods against different cell types and conditions. We tested 

miRWoods on 9 samples from 4 small RNA sequencing experiments and provide performance 

metrics compared to other methods in Table 2.5. We compared the performance of miRWoods, 

miRDeep2, and miReap on several small RNA data sets from human and mouse downloaded from 

GEO [41]. In each evaluation, the same RF models trained on human data were tested on small 

RNA data collected from different tissues including human MCF-7 total cell content (GSE31069), 

MCF-7 cytoplasmic fractions (GSE31069), human cancer cell lines (GSE16579), human normal 
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liver (GSE21279), as well as cross-species tests on mouse brain, embryo, testes, ovary, and whole 

newborns (GSE20384). Because microRNA expression can vary from tissue to tissue, all programs 

were evaluated against the expressed miRs for that data set with at least one read aligned. 

miRWoods recalled on average 10% more annotated miRs, and obtained greater F-scores except 

in the case of mouse embryo where the F-sore was 0.624 for miRWoods compared to 0.626 for 

miRDeep2. Higher F-scores were obtained for all sets when miRWoods was compared with 

miREAP.  

 

 Remarkably, miRWoods performed better on cross-species tests on mouse data compared 

to tests on human data (Figure 2.8), providing justification for its application to other mammalian 

genomes when trained on human. Typically, miRWoods has a greater number of false positives 

and fewer false negatives than miRDeep2 when compared to miRBase annotations (Figure 2.9a).  

 

 We tuned thresholds for expression level, proportion of negative samples, and decision 

values threshold on a separate dataset from what RFs were trained on (see Methods, Figure 2.10). 

A summary of the data sets and values resulting from the tuning experiment is provided in Table 

2.6. 

 

 The decision value threshold that has been tuned to optimize the F-score for the 

identification of valid loci correlates well with decreased expression in Dicer knockdown MCF-7 

cells (Figure 2.9b, Figure 2.11a-b Fig). On average, the novel predictions of miRWoods show a 

greater decrease in the cytoplasm of Dicer knockdowns compared to novel predictions from 

miRDeep2 and miREAP (Figure 2.9c) and on par in total cell content (Figure 2.11b). We 

calculated p-values for each of these comparisons using two-sample t-tests and found that novel 

predictions in cytoplasm from miRWoods and miREAP had a significant reduction in Dicer-

knockdown expression compared to miRBase. Novel predictions in total cell content for all 

programs showed a significant reduction in Dicer-knockdown expression compared to miRBase 

(Table 2.7). Similarly, empirical cumulative distribution functions (ECDFs) of the fold change in 

Dicer knockdowns compared to wild type show a greater proportion of novel predictions highly 

depleted in Dicer knockdowns (Figure 2.11c,d). Examples of novel predictions found to be 
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reduced in expression in Dicer mutants include hsa-Novel35, hsa-Novel28, hsa-Novel23, hsa-

Novel65, has-Novel92, and hsa-Novel99 (Figure 2.12). 

 

 One advantage of miRWoods over the other methods is that it prints a score for each 

genomic locus evaluated, whether or not it is predicted to be a microRNA. Therefore, the output 

is amenable to creating precision-recall (PR) curves [42], such as Figure 2.9d and Figure 2.9f. The 

area under the PR curve (AURPC) evaluates the performance of the prediction, and has the 

advantage over Receiver Operator Characteristic (ROC) curves [43] of not being overwhelmed by 

the large number of true negatives associated with genome-wide microRNA prediction. We 

present PR curves for predictions in mouse, with an average AUPRC of 70.3. Comparisons with 

miRDeep2 show that miRWoods has greater false positives, but fewer false negatives (Table 2.5, 

Figure 2.9e-g, Figure 2.13). Comparisons with miREAP show that miRWoods has a lower false 

positive rate, and a higher F-score on average (Table 2.5, Figure 2.14). Overall, miRWoods shows 

equal or greater F-score than both miRDeep2 and miReap for all data sets (Table 2.5).  

 

 Many of the “false positive” microRNA predictions are actually novel predictions of valid 

miRs. Despite how complete the human microRNA annotation is, we were able to identify 682 

potential novel loci in the human data sets. We found that many of our novel predictions, despite 

being unannotated, had homology to known miRs in other species. In some cases, miRWoods 

identified more instances of known miR families. For example, there are 72 known precursors 

from the mir-548 family in the human genome annotated by miRBase. miRWoods was able to 

identify an additional 34 novel members of the mir-548 family (Figure 2.15), suggesting this 

family could be larger than previously thought. 

 

2.3.5 Novel microRNA predictions in the feline genome 
 

We next sought to predict microRNA loci in species with limited microRNA annotations, 

including the feline and bovine genomes. We ran miRWoods on small RNA samples isolated from 

muscle and skin tissue for 3 different cats. Currently, there are two studies of feline microRNAs 

that we are aware of. In one study, Sun et al. did an analysis with miREAP in the context of the 
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mink enteritis virus (MEV) [44]. In a more recent study, Laganà et al. identified feline microRNAs 

with miRDeep2 in a multi-tissue cohort [45]. miRWoods identified 495 microRNA loci, with 293 

of them having significant homology to microRNA precursors from miRBase. Among the 

miRWoods predictions, 198 overlapped with the microRNA found in Sun et al., and 213 

overlapped with microRNAs found in Laganà et al., and 215 were newly discovered (Figure 

2.16a). 

 

 Expression of three novel microRNAs in feline skin and muscle were examined by qPCR 

and normalized expression relative to 2 control miRs with low variability across our tissue 

samples, miR-25 and miR-191 (Figure 2.16b,d, Figure 2.17). These examples included a novel 

member of the miR-133 family, with enriched expression in muscle that was validated by qPCR 

(Figure 2.16b) and a predicted structure that strongly matches expectations for microRNAs (Figure 

2.16c). We also identified a novel miR with no homology to known miRs, with a statistically 

significant tissue-specific enrichment based on a voom analysis [46], including some more 

abundant in muscle (Figure 2.16b-e). In addition, we validated two predicted miRs previously 

described by Laganà et al that we determined to be significantly differentially expressed. As 

predicted, fca-mir-1-1 was more abundant in muscle whereas fca-mir-205 was abundant in skin 

(Figure 2.17). Overall, our analysis of the expression of our predicted microRNAs identified 71 

differentially expressed miRs using a voom FDR of 0.05, with 33 enriched in muscle, and 38 

enriched in skin tissue.  

 Several known and novel let-7 family precursors were found within clusters including 

multiple let-7 miRs. For example, we found a cluster on chromosome D4 containing fca-let-7f and 

two novel let-7 miRs denoted fca-let-7-Novel2 and fca-let-7-Novel3 (Figure 2.18a). The predicted 

novel miRs (Figure 2.18b-c) have predicted secondary structures with similar bulges and/or 

internal loops observed in other let-7 family members including fca-let7f (Figure 2.18d). A 

phylogenetic tree of known and novel let-7 miRs shows comparable sequence similarity, although 

not necessarily correlated with proximity of the genomic loci (Figure 2.18e). 

 Feline microRNAs were found within 51 clusters, 28 overlapped with the 31 previously 

described [45].  miRWoods identified a novel precursor (fca-Novel45) near chr-X-38640 and chr-

X-38642, which were two previously identified novel microRNA that may be associated with testis 

development and physiology [45].  Two additional feline-specific miRs (fca-Novel10 and fca-



 

 

16 

Novel13) where found on a cluster within the ARHGEF10L gene.  miRWoods also identified two 

mir-30 homologs near fca-mir-30c-1 within an intron on the NFYC gene. 

 

2.3.6 Novel microRNA predictions in the bovine genome 
 

For the bovine genome, there are 811 known microRNA precursors producing 881 mature 

microRNA annotations, compared to 1187 precursors for mouse and 1881 for human, which 

generate 2045 and 2813 mature products, respectively.  

 

 We used miRWoods to predict bovine microRNA loci using small RNA-seq samples from 

10 bovine tissues including corium from the hoof (corium feet), dental pulp, oral papillae, penis, 

retina, iris, optic nerve, brain stem, bone marrow, and submandibular lymph node. We selected 

tissues that were highly diverse and whose microRNA profiles had not been examined before. Our 

pipeline identified a set of 810 predicted microRNA loci. Among these, 409 were already in the 

miRBase R21 Bos taurus annotations, 91 had homology to microRNA annotations in cow and 

other species, and 310 were novel predictions with no known homology.  

 

 Overall, miRWoods identified 401 novel bovine microRNAs. In addition, clustering of 

microRNA loci revealed 76 clusters, including 63 known and 13 novel clusters. Two bovine-

specific half-mirtrons, (bta-Novel68 and bta-Novel71), were found within the PLD2 gene. A 

bovine specific mirtron (bta-Novel210) and another half-mirtron (bta-Novel212) were found 

within the MCAM gene. Another bovine specific half-mirtron (bta-Novel208) was found on a 

cluster with bta-mir-140 on the WWP2 gene.  

 

 Figure 2.19a shows an Euler diagram comparing miRBase annotations to miRWoods 

predictions for bovine samples. To test the validity of the novel predictions, we performed RT-

qPCR on available samples, and normalized expression relative to 5 control miRs with low 

variability across our tissue samples. After normalization, expression levels for control miR-7 are 

compared with RT-qPCR (Figure 2.19b). Strong correspondence between small RNA-seq and RT-

qPCR are observed for 2 of the tested microRNAs (Figure 2.19c,d), suggesting that the mature 
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product was detectable with both methods in the tissue it was expressed. Expression was observed 

for all tested novel bovine miRs using RT-qPCR, validating the expression of these predicted 

mature products (Figure 2.19e). 

2.3.7 Novel Predictions in the Bovine miR-2284 Precursor Family  
 

The miR-2284 family has previously been found to be expressed in tissues relevant to the immune 

system but gene targets are currently unknown [47]. Within the mir-2284 family, miRWoods 

predicted 29 known and 68 homologous precursors. Of the 68 homologous precursors, only 35 fit 

the criteria of having the same seed region as other miRs. Removing the seed requirement, 33 

additional mir-2284 family precursors were identified. Unique reads were found in 51.5% of 

homologous precursors and 37.00% of already annotated precursors. Hierarchical clustering was 

performed on mir-2284 family microRNAs based on their normalized expression profiles and a 

heat map was generated (Figure 2.20a). Despite having a shared homology, expression of the 

microRNAs in the mir-2284 family are highly diverse in the tissues assayed, but show greatest 

expression in submandibular lymph node (SLN). Interestingly, this is consistent with prior studies 

of this family that observe greatest expression in bovine immune cells [48] given recent studies of 

the immunosuppressive properties of SLNs [49]. A phylogenetic tree was created to show all 

annotated and newly predicted miRs in the mir-2284 family (Figure 2.20b). 

 

 Read abundances showed a tendency for mir-2284 and mir-2285 precursors to favor a 

single (opposite) side of the precursor. The abundance of each microRNA for the mir-2284 and 

mir-2285 precursors within the mir-2284 precursor family was examined (Figure 2.20c) For 

annotated microRNA precursors, 82.05% of mir-2284 loci had the most abundant read on the 5p-

side, and 89.36% of mir-2285 had the most abundant read on the 3p-side. Similarly, for our 

predicted microRNAs with homology to this family, 73.91% of mir-2284 examples had the most 

abundant read on the 5p-side, and 88.89% of mir-2285 examples had the most abundant read on 

the 3p-side.  
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2.3.8 Discovery of novel miR families 
 

We found that 11 novel predictions in human were within clusters of annotated microRNAs, and 

39 novel predictions in new clusters. Of the 9 potential miR families which matched the criteria 

found in the methods section one contained a snoRNA and was removed. Of the remaining 

candidate miR families two had miRs which were found across species. We identified a novel miR 

family with two instances in the human genome; one example was a mirtron in an intron of 

LAMA5, and the other a half-mirtron in an intron of CHD3 (Figure 2.21a-e). Both of the examples 

in human were observed to have no expression in Dicer knock-out cells (Figure 2.21a,b). We 

observed a strong level of similarity in predicted secondary structures of the two examples 

observed in human (Figure 2.21c,d). We compared these introns across several mammalian species 

and observed patterns of conservation that suggest an ancestral divergence of these two mirtrons 

rather than a more recent duplication (Figure 2.21e). We found another novel miR family with an 

example in both the bovine and feline genomes, but not observed in mouse or human (Figure 2.21f-

g). Strikingly, both of these miRs (bta-Novel5 and fca-Novel70) were found within the same intron 

of TYK2 in cow and cat genomes (Figure 2.21f,g), and both examples showed nearly identical 

hairpin precursor sequences (Figure 2.21h,i). We did not observe this miR in human or mouse data 

sets, and we also observed greater sequence divergence of this intron in human and mouse (Figure 

2.21j).  

 

2.4 Discussion 
 

Our study demonstrates that despite a long history of microRNA discovery tools and annotations, 

there is still room for improvement. Despite the maturity of microRNA annotations for the human 

genome, our approach was still able to find novel human miRs. We have identified several miRs 

with annotated positions shifted from the correct location, and that have been resolved with 

miRWoods.  

 

 The inclusion of the duplex-focused method in miRWoods improved hairpin precursor 

span identification over the other programs. Not only did miRWoods match the miRBase hairpin 

precursor annotation more often, in some instances miRWoods predictions corrected the miRBase 
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annotation. Splice junction boundaries for the mirtron and half-mirtron examples provide evidence 

for the validity of the miRWoods duplex method because the optimal precursor span closely 

corresponds to the splice junctions, as expected given mirtron biogenesis mechanisms [25] despite 

the fact that these hairpin boundaries were computed without the use of intron annotations. 

Similarly, Boruta feature-importance analysis showed that the duplex energy was more important 

than the minimum free energy of the hairpin. These observations support the idea that the 

thermodynamic stability of intermediate RNA duplex formed by miR and miR* may serve 

important roles in microRNA function, consistent with previous studies showing this affects 

efficient loading into Argonaut [50]. We also found that the distance between the miR* sequence 

and the loop have a greater importance than that of the major product and the loop. Future work is 

needed to determine the relative importance of stable mature miR:miR* duplex formation 

compared to stable stem-loop formation in microRNA biogenesis. 

 

 We demonstrated in this study that miRWoods is capable of correctly identifying 

microRNA loci with only one read more than other programs. Although this displays the strength 

the miRWoods approach, in practice users should seek further evidence to support the validity of 

any novel miRs only supported by one read. 

 

 Predictions from miRWoods consist of 215 potential novel microRNA annotations for cat 

and 417 novel candidates for cow. These findings support the expectation that these organisms 

have comparable number of microRNAs to human and mouse but are currently less-well annotated 

due to greater research focus on human and mouse. Future work could expand miR annotation in 

feline and bovine further by sequencing other tissues, as well as identifying regulatory targets for 

miRs in specific tissues.  

 

 Finally, our approach is able to identify more examples of known families, suggesting that 

they are larger than previously thought. While these large families retain sequence similarity at the 

hairpin-level, they are often the result of seed shifting and mismatches, suggesting a wide range of 

potential gene targets. Predictions using miRWoods showed an expansion in the number of 

microRNAs within the mir-548 family in human, and the mir-2284 family in the bovine genome. 

These families are often defined in terms of homology to the hairpin sequence rather than the seed 
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[51]. We observed several mutations within the seed region of mir-2284 family miRs that result in 

the complex phylogeny, and which indicate that a much wider range of genes may be targeted by 

this family than currently accepted. The fact that we observed miR-2284 family members to be 

differentially expressed across diverse tissue types supports the idea that this family expanded and 

sub-functionalized in various tissues. As noted previously, the widespread genomic distribution of 

the primate-specific mir-548 family supports the hypothesis that it may have been evolutionarily 

derived from transposable elements [52]. Similarly, mir-2284 family may be more expansive than 

previously thought, and the observed diversity of sequence and expression supports the hypothesis 

that this family has shaped ruminant evolution [51].  

 

2.5 Methods 

2.5.1 Ethics Statement 
 

All bovine tissues were harvested from animals that were already scheduled to be slaughtered, and 

collected immediately after slaughter. All slaughter operations were performed under USDA-FSIS 

supervision in accordance with the Humane Slaughter Act (1978), the Federal Meat Inspection 

Act (1906), and using a percussive captive bolt stunner.  The feline tissue samples were obtained 

through the biobank at the Carlson College of Veterinary Medicine at Oregon State University. 

Tissues had been banked for research purposes with owner consent and approval of the 

institutional animal care and use committee. 

 

2.5.2 Tissue samples small RNA sequencing 
 

We examined small RNA samples collected from 10 bovine tissues including submandibular 

lymph node (SLN), bone marrow, brain stem, optic nerve, retina and iris of the eye, penis (corpus 

cavernosum), oral papillae (buccal mucosa), dental pulp, and hoof corium (corium feet) from three 

Angus steers collected just after slaughter at the Meat Science laboratory at Oregon State 

University. The feline tissue samples were obtained through the biobank at the Carlson College of 

Veterinary Medicine at Oregon State University and included normal haired skin and normal 

skeletal muscle from three male neutered domestic short hair cats aged 10–13 years. Tissues had 
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been banked for research purposes with owner consent and approval of the institutional animal 

care and use committee. RNA was isolated from tissue by chloroform-isopropanol extraction. 

RNA quality was analyzed on a Bioanalyzer 2100 Nano chip (Agilent Technologies, Santa Clara, 

CA), with a minimum acceptable RIN of 7. Small RNA sequencing was performed at the Center 

for Genome Research and Biocomputing (CGRB) at Oregon State University (OSU). Libraries 

were prepared using the Illumina TruSeq small RNA sample preparation kit (Illumina, San Diego, 

CA) for library preparation and size-separation by polyacrylamide gel electrophorese. Library size 

was determined with the Bioanalyzer 2100 HS-DNA chip and the KAPA biosystem’s library 

quantification kit, and libraries normalized to 2 nM. Multiplexed samples (6/lane) were sequenced 

with a 50 cycle v3 sequencing kit on an Illumina HiSeq 3000 sequencer.  

    

2.5.3 The miRWoods pipeline 
 

The miRWoods pipeline consists of two random forests with readily interpretable, biochemically-

motivated features. The pipeline’s two layers correspond to classifiers that recognize different 

components of the microRNA (Figure 2.1). The first random forest layer predicts likely mature 

miRNAs products. In this way, the first random forest acts to filter out a large number of loci 

before precursors are considered, thereby improving accuracy and reducing the overall runtime. 

The second random forest layer scores the precursors around the predicted mature miRNAs and is 

used to generate the final set of predictions. 

 

 The miRWoods pipeline is perl software largely derived from miRTRAP [21], but with 

significant improvements on speed and memory efficiency, as well as two random forest layers 

rather than user-defined thresholds. The pipeline now includes the integration of indexed bam files 

for faster read processing, and the RNAfold perl module for rapid secondary structure prediction. 

The processing of sequencing data begins with one or more small RNA-seq FASTQ files. We trim 

the reads using cutadapt, a software designed to remove the 3′ adapter sequences [53].  We set 

cutadapt’s options to remove sequence from the 3′ end with a PHRED score of 10 or less prior to 

trimming, allow for a 20% error in the adapter sequence during trimming, and remove sequences 

less than 17 in length after trimming.  After trimming we filter the reads further using a custom 
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script that removes reads with an average PHRED score of 30 or more.  Sequencing data is mapped 

to the genome using bowtie [54].  Bowtie’s option are set to return the best mappings that have 

one or fewer mismatches with a seed length of 18 nucleotides, an error of 50 after the seed length, 

and occur within 10 or fewer places in the genome.  Before sorting and indexing the bam files, we 

add additional tags according to samtools specifications describing the number of hits (NH-tags) 

to the genome for each read[55], which is used later in the pipeline to normalize expression.  

 

2.5.4 Mature product random forest 
 

The miRWoods pipeline consists of several data-processing steps. Next, after read alignment, we 

identify “read regions”, which consist of reads that map to overlapping positions in the genome. 

Each of these read regions are evaluated as putative mature microRNA products based on a number 

of features calculated from genomic loci and read distributions. Basic features for each read region 

are computed, such as GC-content, dinucleotide frequencies, Wootton-Federhen sequence 

complexity [56], and the median length of reads mapped to the locus. Because the function of 

microRNAs involves the position of seed sequences relative to the 5′ end, the 5′-heterogeneity is 

computed for each read region as previously described [57]. In addition, we compute the number 

of reads mapping to positions within a fixed offset from the most abundant product. We also 

computed the minimum duplex energy between the read stack’s most frequent read sequence and 

the surrounding 70bp region. These and other features are input into our first random forest, called 

the “mature product random forest” (MPRF), which classifies read regions as mature microRNA 

products or non-miR loci.  

 

2.5.5 Hairpin precursor span optimization 
 

We found that a major source of error in high-throughput microRNA discovery was the prediction 

of the span (start and end positions) of genomic location of the hairpin precursor, and therefore we 

developed a new method of precursor span prediction (Figure 2.6). While most other approaches 

predict secondary structure of the region surrounding a putative mature product, our approach 

computes the RNA:RNA duplex energy of the mature products (without the loop). Each putative 
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microRNA product identified by the MPRF is used to compute the optimal duplex energy between 

the most abundant product and the surrounding 70bp window using RNAduplex [25], as depicted 

in Figure 2.6a. The region spanning this most abundant read and the optimal duplex subsequence 

is then used as a putative hairpin precursor sequence. In addition, a second method folds between 

any two products that are separated by 5 nt or more. Both methods are used and create several 

secondary structure predictions, all of which are the basis of a putative hairpin precursor to be 

input to the next random forest. When the hairpins are subsequently evaluated in the next step, 

overlapping hairpins are dropped and only the predicted hairpin with the highest decision value 

from that random forest is retained. 

2.5.6 Hairpin precursor random forest 
 

The second random forest within miRWoods, called the “hairpin precursor random forest” (HPRF) 

is used to evaluate the putative hairpin precursors from 71 features, which provide scores based on 

its sequence, structure, and folding energy. Many of the features for the hairpin phase come from 

the original miRTRAP software [21].  

 

The features for the HPRF can be categorized as sequence features, structural features, and 

product-distribution features. Sequence features include dinucleotide frequencies, GC Content, 

and sequence complexity over the entire precursor sequence. Structural features include the 

minimum free energy returned by RNAfold [58], and the optimal duplex energy of the most 

abundant product and hairpin precursor region computed by RNAduplex [59]. The decision value 

from the MPRF for the most abundant product within putative hairpin precursors is also included 

as a feature. 

 

Expression levels for a locus 𝐿 are quantified with adjusted reads per million (ARPM), 

which are defined by 

𝐴𝑅𝑃𝑀(𝐿) 	= 	
10!∑ 1/𝑛""#$

∑ 1/𝑛""#%
 

 
Total read counts, separately computed for the sense and antisense strands of the precursor, 

are first adjusted, meaning when a read 𝑟 aligns to 𝑛" locations in the genome, the read contributes 
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a fractional count of 1/𝑛" to each location, essentially uniformly distributing the count to each 

locus [60]. These calculated values are then normalized for each sample 𝑆 to parts-per-million.  

The product-distribution features are computed by first naming read stacks as the products that 

would be expected in the event of Dicer and Drosha cuts by a previously defined algorithm [21]. 

A number of features describe the abundance and mapping of reads for each of these products. The 

unique read fraction describes the proportion of reads mapping only to the locus. Various features, 

such as the 5′ heterogeneity, and average hit count were evaluated for the most abundant mature 

product. For each of the mature products, several features describe the relative frequency of reads 

for miRs, moRs, loop products, and other products within the precursor. Several other features 

were created to describe the variance and weighted variance of reads associated with mature 

products relative to the most frequent cut variant and to the hairpin. 

 

Dicer and Drosha tend to make precise cuts to produce well-defined 5′ ends of the mature 

products for proper functionality. Because of this, several features describe the amount of overlap 

across all products and across each product relative to its surrounding products. In addition, reads 

within a product would not be expected to be significantly offset from the product on the opposite 

arm of the hairpin, or relative to any moR products on the same arm. Therefore, features measuring 

the amount of shift between miR products are included. 

 

A number of features were generated to describe the structure of the predicted hairpin. Two 

features, base pair density (fraction of paired nucleotides in predicted structure) within the major 

product, and base pair density within the optimal duplexed region. These features may be different 

due to bulges being present on one arm of the hairpin but not the other. Features for the part of the 

fold around the miR products include the sizes of the largest bulge, size of largest internal loop, 

size difference between the two halves of internal loops, and overhangs on the major miR product, 

which are defined as the maximum number of unpaired bases on either end of the miR. The 

dupLoopLength feature measures the largest region of unbound nucleotides on the duplex across 

from the most abundant miR Product. A dupSize feature is a measure of the size of the region 

predicted to duplex with the most abundant product. Since the duplex is expected to be around the 

same size as the miR product this feature may help exclude cases where there are large unpaired 

stretches on the duplex or most of the major product is unbound to the duplex. A feature called 
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innerLoopGapCount scores the number of occurrence of spans of 3 or more unpaired nucleotides 

in the loop region (i.e. more than one indicates a multi-branched loop). This feature may help in 

situations in which there is a multiloop or where the loop structure is uncommon to known miR 

precursors. Additionally, a feature measuring the size of the hairpin loop is included. We added 

new features quantifying the size of the largest bulge in the hairpin structure, which is known to 

affect Dicer specificity [61]. 

 

Because microRNA loci tend to cluster together, we incorporated a neighbor count feature, 

which is a score tallying the number of neighboring hairpins that occur within 1000 nucleotides of 

the precursor being analyzed. The neighbor count feature counted all small RNA loci, including 

both miR and non-miR loci, and reduced the number of observed false positives.  

 

2.5.7 Training, tuning and model selection 
 

The miRWoods pipeline requires models for both MPRF and HPRF layers that have been trained 

on positive examples, which are annotated microRNAs, and negative examples, which are loci 

containing read regions not overlapping annotated microRNAs. The training data for the MPRF is 

produced by a script that collects loci based on the overlap of the products with the mature 

microRNAs in miRBase annotations, with 𝑋-fold more negative examples than positives for some 

input 𝑋. The training data for HPRF is created by using hairpins with the best overlap of the known 

hairpin annotation. 

 

 Our strategy for tuning the thresholds of miRWoods focused on three parameters: the 

decision value 𝑦3&'() for the hairpin random forest output, the expression level threshold 𝐸*+ in 

units of ARPM, and the proportion 𝑋 of negative loci used in stratified sampling. To determine 

these thresholds, we trained and tested on different small RNA deep sequencing data sets. We 

selected four large data sets from sequencing read archives (SRA) from diverse tissues and 

developmental stages. We trained on one of the data sets, which produced optimal RFs. We then 

applied this to a second data set and computed F-scores for different 𝑦3&'(),	𝐸*+, and 𝑋 parameters, 

and chose the set of parameters that gave the highest F-score.  
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 Our strategy for training and tuning models was to train with one data set, tune on another, 

and ultimately select final models were chosen based on the highest F-Score when tested on a test 

set. Two sets of models were trained using either tonsillar B-cell populations from GSE23090 or 

human cerebellum, heart, kidney, and testis tissue from GSE40499 (Figure 2.10a). The frontal 

cortex data was excluded from the GSE40499 set to make read counts in tissues more balanced. 

Each of the two resulting models were tuned using a grid-search for the 𝑦3&'(),	𝐸*+, and 𝑋 

parameters to optimize F-score when evaluated on either cancer cells from GSE18381 and 

GSE20592 or stem cells from GSE65706 and GSE62501; therefore, four tuning experiments were 

performed, corresponding to the four arrows in Figure 2.10a. Afterwards, models tuned using the 

cancer cell sets were validated using the stem cell sets and vice versa. The model resulting in the 

highest F-score from the test set was chosen for all remaining tests. Plots of the F-score as a 

function of each of the tuned parameters are presented in Figure 2.10b-d.  In each training 

experiment the stratified sampling for the product model was set such that the negative set would 

be equal in size to the positive set. This was to allow as many products as possible to enter the 

hairpin phase while still filtering out enough that the resulting folds could be generated in 

reasonable amount of time. 

 

 The model with the highest F-score resulted from training on the set of tonsillar B-cell 

populations (GSE23090) and tuning on human melanoma cells (GSE18381) and human normal 

and cancerous cervical cells (GSE20592) when validated against stem cell sets 

(GSE62501,GSE65706). Tuning through a grid search resulted in an optimum decision value of 

0.28, an ARPM of 0.11, and a 1:25 ratio of positive to negative training data used in stratified 

sampling.  

 

2.5.8 Comparisons with other tools 
 

miRWoods was compared with miRDeep2 and miReap in the prediction of microRNA loci from 

small RNA sequence data in well-annotated genomes. The data used were MCF-7 cell cytoplasmic 

and total-cell extract from GSE31069, human cancer cell lines from GSE16579, healthy human 
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liver samples from GSE21279, and mouse brain, embryo, newborn, testes, and ovary from 

GSE20384. For miRDeep2 the FASTQ files were combined and the program was run with the 

same settings as previously published [35].  

 

We ran miReap with default parameters. FASTQ files were combined into a FASTA file 

with its reads collapsed. Reads were aligned with bowtie using the same settings used for 

miRWoods. However, because miRWoods uses quality scores and miReap does not, the allowable 

error outside of the bowtie alignment seed was changed from 50 to 80 to allow for at least 2 

mismatches. Bowtie considers the default value of a mismatch without quality scores present to be 

40.  

 

In order to provide a comparison of the three pipelines, a separate set of scripts was used 

to determine accuracy. For each pipeline being tested a common set of functions was used to score 

each prediction as a true positive or false positive. We imposed more stringent requirements for 

true positives than most previous studies that require just overlap with annotated microRNAs. 

Predicted hairpins where the precursor folded in the wrong direction and only partially overlapped 

the annotation were named “overlaps” and scored as false positives. Additionally, precursors on 

the antisense strand of an annotation were named false positives because there is uncertainty 

whether they are really active as miR precursors.  

 

A set of custom-made scripts was also developed to find homology for novel predictions 

from each of the three pipelines. Mature products from precursors that did not overlap annotations 

were searched with BLAST to the database of mature microRNA found in miRBase [62]. Mature 

products were named homologous if they had the same seed region and an E-value less than 0.05 

when compared with a miRNA in the database. 

 

The sensitivity, specificity and F-scores were used to compare each of the three pipelines. 

The F-score was used to evaluate performance for two reasons. First, different mapping and 

filtering methods result in variable numbers of precursors being expressed. Because the F-score 

does not rely on a tally of the number of true negatives, it is better for comparisons. Second, the 
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type of data being analyzed will tend to be very unbalanced with far more non-miRs than miRs, 

which leads to an inflated accuracy.  

 

2.5.9 Dicer knockdown comparisons 
 

The differences in microRNA expression between wild-type cells and cells in which Dicer had 

been knocked down were compared across pipelines. Small RNA samples collected from total cell 

content and cytoplasmic fraction for this test came from the series GSE31069 downloaded from 

GEO. For each pipeline a set of predictions was generated for both wild-type samples. In each 

case, the log fold change was computed for each novel prediction comparing the expression of the 

wild-type cells versus cells in which Dicer had been knocked down. A pseudocount of 0.015 

ARPM was used to avoid taking the log of zero. 

 

2.5.10 Validation of bovine and feline microRNA predictions 
 

Novel microRNA predictions were evaluated with homology to known microRNAs from other 

species and validated by qPCR. We validated the expression of the novel miRs with the highest 

decision value using qPCR across the tissues we examined.  

 

Feline microRNAs. Feline RNA samples were reverse transcribed with the HiSpec Buffer system 

of the miScript II RT kit. We performed qPCR in 96 well plates with the ABI StepOnePlus using 

cDNA generated from 2.5 ng total RNA, miScript Primer assays, and miScript SYBR Green PCR 

mix combined in 25 µL reaction volumes. Cycling followed manufacturer’s instructions. Melt 

Curve analysis was performed to insure single product generation and the average of all primer 

efficiencies was 1.8. Of the four potential reference genes selected from feline sequencing data, 

two, miR-25 and miR-191, were found to be stable across tissues and the average of CT values 

was used to normalize expression.  

 

Bovine microRNAs. RT was performed using the miScript II RT Kit and qPCR was performed 

in a HT7900 ABI system in 384-well plate using the Custom miScript Primer Assay and miScript 
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SYBR Green PCR Kit, following the manufacturer-instructions with a 4-fold dilution of cDNA 

prior qPCR. We performed normalization using internal control genes (ICGs) or reference genes 

as indicated by the MIQE guideline [63]. It has been proposed and demonstrated that the use of 

ICGs for normalization for miRs qPCR provides a more accurate measure of expression than other 

methods, such as normalization with 5S RNA, U6 snRNA, or total RNA [64]. In order to identify 

the best ICGs to normalize the novel miRs, we selected predicted miRs with low-variability and 

similar levels in expression across various tissues, as previously performed [64]. The miRs selected 

for bovine were miR-7, bta-miR-32, bta-miR494, bta-miR-1388, bta-miR-2431, bta-miR-2483, 

and bta-miR-6520; Final qPCR data for bovine were analyzed using LinRegPCR to account for 

efficiency of amplification [65]. Bovine qPCR data from the tested internal control miRs were 

normalized using geNorm to determine the M- and V-values [66]. bta-miR-7 had a M-value >1.5 

and was therefore not used for normalization but rather as a positive control, while the most stable 

miR pair was miR-494 and miR-6520 (M=0.98). The most stable normalization was obtained by 

using the 6 most stable miRs with a final V-value of 0.245. The normalization factor was calculated 

by geNorm as the geometrical mean of the most stable miRs.  

 

2.5.11 Hierarchical clustering 
 

Hierarchical clustering was performed for the expression of known and novel mir-2284/mir-2285 

family miRs in bovine. Expression was normalized by computing z-scores, subtracting the mean 

and dividing by the standard deviation across tissues. 

 

2.5.12 Identification of clusters 
 

Clusters were identified by locating sets of precursors with genomic positions within 10 kbp of 

each other. Prior to detecting clusters using novel predictions, the set of annotated microRNAs 

were grouped into clusters. This was done first because if novel microRNAs fell within a cluster 

of annotated microRNAs it may count as further evidence that that microRNA is real. After the 

clusters of annotated miRs were identified, novel microRNAs were grouped into new clusters or 

incorporated into clusters of annotated microRNAs. 
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2.5.13 Identification of novel miR families 
 

In order to search for novel miR families, the sequences of each novel miR was blasted to a set 

containing a combination of the novel miRs found using miRWoods and the set of all known miRs 

from miRBase. Family membership requires a perfectly matching seed sequence, both products 

were on the same arm for each hairpin, and a BLAST E-value less than or equal to 0.5 for the 

mature product. In addition, we excluded examples with top hits that are antisense to itself and 

cases with identical mature sequences to prevent inclusion of loci originating from repetitive 

regions. 

 

2.6 Tables 
Table 2.1: Features used in the mature products random forest (MPRF).  
fivePrimeHet 5′-heterogeneity of product reads 
medianLength Median length of product reads 
gcContent GC content of product sequence 
aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg,tt (16 
features) product dinucleotide frequencies 
r7,r6,r5,r4,r3,r2,r1,s0,f1,f2,f3,f4,f5,f6,and f7 (15 
features) 

read abundance 7 nt downstrem to 7 nt upstream 
product start position 

WFC 
Wooten-Federhen Complexity of product 
sequence 

Duplex Energy 
Minimum free energy of product duplex with 
surrounding genomic region. 
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Table 2.2: Features used in the hairpin precursor random forest (HPRF).  
Name Description Reference 

Mfe minimum free energy of hairpin fold 

40, 38*, 
22*, 34, 
25, 10, 39 

Pbp frequency of paired bases of miR 38, 21*, 37 
Urf fraction of unique reads to total adjusted reads for locus 60, 37 
gcContent GC content of locus sequence 38, 25 
totalSenseRPM Adjusted reads per million (ARPM) in the sense strand 39*, 21* 
loopSize length of the loop in nucleotides. 25, 39 
maxBulge longest bulge appearing in the region of the hairpin spanning the miR and miR* 25*, 39 
Tapd total displacement of sense to anti-sense products 37 
Aapd average displacement of sense to anti-sense products 37 
Ahc average number of hits to the genome for the major product 37 
Afh average 5′-heterogeneity of major product reads 37 
sameShift Amount of offset between products on the same arm 37 
bothShift maximum amount two products are offset on opposite arms 37 
Dinucleotide frequencies (16 
features) precursor dinucleotide frequencies 39 
maxInteriorLoop Length of largest interior loop spanning the miR and miR* 39 
intLoopSideDiff Difference in length of of interior loop branches in miR/miR* 39 
OPA Frequency of the most abundant overlapping product  
Duplex Energy Duplex energy of major product and surrounding region.  
foldDupCmp Similarity between dot-bracket sequences from RNAduplex and RNAfold  
dupPBP base pairing density of region duplexing the major product  
dupLoopLength Length of biggest bulge or interior loop in region duplexing the major product  
APV The average variance of read counts for distinct reads for all products  
wAPV The average variance of read counts for distinct reads weighted across products  
ARV The average variance of start positions for reads on each product  
wARV The average variance of start positions for reads weighted by product size  
mpLoopDistance distance of the miR from the loop  
dupLoopDistance distance of the miR* from the loop  
totalOverlap The sum of the amounts of overlap between each pair of overlapping reads.  

totalRelativeOverlapAmount 
sum of each overlap multiplied by the abundance ratio of the smaller to larger 
product  

averageOverlapAmount 
sum of each overlapping product multiplied by the frequency of reads of the 
smaller product within the hairpin  

innerLoopGapCount number of times 3 or more unbound nucleotides appears in the loop region  
totalAntisenseRPM Adjusted reads per million (ARPM) in the anti-sense strand  
maxUnboundOverhang The largest length of unpaired nucleotides on either side of the miR  
numOffshoots number of additional hairpins formed on or across from the miR or miR*  
dupSize The size of the region duplexed by the miR product  

neighborCount 
The number of regions of contiguous read loci within 1000 nucleotides of the 
precursor  

RFProductAvg Decision value returned by the random forest in the product phase  
Product counts (8 features) The fraction of the product relative to the total for the hairpin  
Product overlaps (11 
features) 

Overlaping lengths for individual products within the locus (e.g. 
“miRmoR5pOverlap” the overlap between miR and moR on 5′ arm.  

*References with an asterisk use a variant of the described feature. 
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Table 2.3: Percentage of cases where duplex method produced span used in final prediction. 
 
 

All Annotated Precursors Annotated Precursors with candidate 
spans > 1 

Sample Duplex-
Focused 
Span 
Matches 
Predicted 
(%) 

Duplex-
Focused 
Span 
Correct 
(%) 

Predicted 
Span 
Correct 
(%) 

Duplex-
Focused 
Span 
Matches 
Predicted 
(%) 
 

Duplex-
Focused 
Span 
Correct (%) 
 

Predicted 
Span 
Correct 
(%) 

MCF7 
(total) 

90.19 96.56 96.82 77.49 97.66 98.25 

MCF7 
(cytoplasm) 

88.55 95.97 96.10 75.41 97.57 97.84 

cell lines 85.99 95.25 96.18 78.90 95.91 97.31 
Liver 89.43 96.12 95.86 78.24 96.69 96.14 

 

 

 
Table 2.4: Percentage of predicted hairpin spans matching miRBase annotation. The method with 
the highest percent for a particular sample are presented in bold. 
 
 

miRWoods miRDeep2 miReap 

Library total percent (%) total percent (%) Total percent (%) 
human MCF-7 
(total cell) 

450 98.901 318 98.452 430 98.398 

human MCF-7  
(cytoplasm) 

452 98.69 314 99.054 428 97.717 

human liver 385 99.483 318 99.375 413 98.804 
human cell lines 736 99.325 532 98.519 228 97.854 
mouse brain 405 100 330 98.214 370 98.143 
mouse embryo 486 99.59 412 98.329 398 97.073 
mouse newborn 419 99.762 335 97.384 179 97.283 
mouse ovary 282 100 243 97.2 237 98.75 
mouse testes 293 100 269 97.464 260 97.744 
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Table 2.5: Performance of miRWoods compared to miRDeep2 and miReap. The method 
associated with the highest F-score for a particular sample are presented in bold. 

  miRWoods miRDeep2 miReap 

Library precision recall F-score precision recall F-score Precision recall F-score 
human MCF-7 
(total cell) 0.727 0.501 0.593 0.839 0.354 0.498 0.42 0.478 0.447 
human MCF-7 
(cytoplasm) 0.7 0.511 0.591 0.86 0.355 0.503 0.476 0.484 0.48 
human liver 0.871 0.447 0.591 0.898 0.369 0.523 0.446 0.48 0.462 
human cell lines 0.627 0.586 0.606 0.834 0.424 0.562 0.264 0.182 0.215 
mouse brain 0.849 0.569 0.681 0.951 0.463 0.623 0.397 0.52 0.45 
mouse embryo 0.694 0.567 0.624 0.898 0.481 0.626 0.205 0.464 0.285 
mouse newborn 0.836 0.559 0.67 0.931 0.447 0.604 0.312 0.239 0.271 
mouse ovary 0.953 0.603 0.738 0.96 0.519 0.674 0.798 0.506 0.62 
mouse testes 0.91 0.579 0.708 0.944 0.532 0.68 0.324 0.514 0.397 
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Table 2.6: Tuning Results.   
Train Set Tuning Set Validation 

Set 
Ratio of 
negatives 
in set 
(1:X) 

Decision 
Value 
Threshold 

ARPM 
Threshold 

F-Score 

GSE23090 
GSE65706, 
GSE62501 

GSE18381, 
GSE20592 25.361 0.25 0.13 0.669 

GSE23090 
GSE18381, 
GSE20592 

GSE65706, 
GSE62501 25 0.28 0.11 0.711 

GSE40499 
GSE65706, 
GSE62501 

GSE18381, 
GSE20592 27 0.37 0.08 0.644 

GSE40499 
GSE18381, 
GSE20592 

GSE65706, 
GSE62501 59.382 0.29 0.11 0.662 

 
 
Table 2.7: Dicer knockdown of novel predictions compared with known annotations.  P-values 
computed from comparing the log-fold change of Dicer knockdowns compared to wild-type using 
a t-test, for novel predictions from each software and known annotations from miRBase. 
MCF-7 Cytoplasmic Fraction 

 
miRWoods mirdeep miReap miRBase 

miRWoods - 0.56541159 0.29649206 0.00012122 

mirdeep 0.56541159 - 0.89559594 0.09242175 

miReap 0.29649206 0.89559594 - 0.00296758 

miRBase 0.00012122 0.09242175 0.00296758 - 

MCF-7 Total Cell Content 

 
miRWoods mirdeep miReap miRBase 

miRWoods - 0.2670974 0.7934435 1.3489E-14 

mirdeep 0.2670974 - 0.14420995 4.8891E-05 

miReap 0.7934435 0.14420995 - 1.9469E-28 

miRBase 1.3489E-14 4.8891E-05 1.9469E-28 - 
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2.7 Figures 

 
Figure 2.1: Outline of miRWoods Pipeline. After aligning to the genome, overlapping reads are 
grouped together to form read stacks. Read stacks are scored by the Mature Product Random Forest 
(MPRF), to predict a set of putative mature microRNAs. Products which meet the minimum 
threshold score for the MPRF are combined with the surrounding region to form hairpins and each 
hairpin is folded. Hairpins are scored by the Hairpin Random Forest (HPRF) and a set of final 
predictions are generated which meet the minimum threshold for the HPRF score. 
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Figure 2.2: Importance of features. a The importance of each feature based on the Boruta analysis 
for the mature product random forest (MPRF) b The importance of each feature based on the 
Boruta analysis for the Hairpin Random Forest (HPRF). 
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Figure 2.3: Further feature interpretation.  Removal of correlated features I. a Boruta analysis of 
feature importance for MRPF with correlated features removed. b Boruta analysis for HRPF with 
correlated features and the MRPF decision value removed. 
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Figure 2.4: Further feature interpretation.  Removal of correlated features II. a Boruta analysis of 
feature importance for MRPF with correlated features removed. b Boruta analysis for HRPF with 
correlated features and the MRPF decision value removed. 
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Figure 2.5: Abundance-related features. a Distribution of read abundance for correct miRWoods 
predictions on MCF7 total cell content. b distribution of read abundance for correct miRDeep2 
predictions on MCF7 total cell content. c distribution of read abundance for correct miReap 
predictions on MCF7 total cell content. d Distribution of read abundance for correct miRWoods 
predictions on mouse embryos. e distribution of read abundance for correct miRDeep2 predictions 
on mouse embryos. f distribution of read abundance for correct miReap predictions on mouse 
embryos. g bar plot of correct predictions where the most abundant mature product has one read 
for samples in human and mouse. h F1-score of predictions with size-related features compared to 
without. 
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Figure 2.6: Improved Hairpin Precursor Span Identification. a miRWoods generates several 
potential hairpin precursor spans from each product that passes through the MPRF. Duplex-
focused spans take the region between the product and the optimal duplex and product-focused 
spans take the region between the product and other products greater than 4 nt away. Hairpins are 
selected based on HPRF score. b The miRBase annotation for hsa-mir-4721 crosses over an intron 
boundary. miRWoods corrects the annotation by recognizing a second read stack and produce 
precursor span that perfectly matches an intron, suggesting mir-4721 is a mirtron. c The 
miRWoods prediction for mmu-let-7c-2 in mouse is consistent with the miRBase annotation, while 
the best miRDeep2 prediction only partially overlaps with the miRBase annotation. 
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Figure 2.7: Effectiveness of duplex method. a RNAseq for hsa-miR-6860 shows miRWoods 
prediction covering an additional read stack next to the splice junction, which indicates that hsa-
miR-6860 may be a half-mirtron. b RNAseq for hsa-mir-431 showing predicted folds for 
miRWoods and miRDeep. 
 

 
Figure 2.8: Cross-species performance. Comparison between cross-species F1-score and same-
species F1-score. All of miRWoods evaluations were tested on a single model trained and tuned 
on human datasets. The best performance is observed on mouse samples. 
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Figure 2.9: Evaluation of miRWoods performance. a Euler diagrams comparing predictions from 
miRWoods and miRDeep with annotations from miRBase for human MCF-7 cytoplasmic extract 
b A scatterplot comparing the miRWoods decision value to the log fold change in Dicer 
knockdown cells compared to wild-type cells. c Scatter-boxplot comparing the log fold change for 
Dicer knockout to wild type for unprocessed read regions, miRBase annotations, and predictions 
from miRWoods, miRDeep, and miReap for MCF-7 (cytoplasmic fraction). Black dots indicate 
predictions that are unique to this method.  d Precision-recall (PR) Curve and AUPRC of 
miRWoods predictions for human including MCF-7 (total cell content), MCF-7 (cytoplasmic 
fraction), cell lines, and liver. e Euler Diagrams comparing predictions from miRWoods and 
miRDeep with annotations from miRBase for human liver. f Precision Recall Curve and AUPRC 
of miRWoods predictions for mouse tissues including brain, embryo, newborn, testes, and ovaries 
sets. g Euler Diagrams comparing predictions from miRWoods and miRDeep2 with annotations 
from miRBase for mouse ovary. 
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Figure 2.10: Tuning miRWoods. a Analysis pipelines and corresponding data sets used for 
training, tuning, and evaluation correspond to the paths of the arrows. b Plot of F1-score versus 
decision value threshold used in tuning the decision value threshold. c Plot of F1-score versus 
ARPM threshold used in tuning the ARPM threshold. d Plot of f1-score versus X in 1:X stratified 
sampling used to tune the amount of negative (non-miR) loci used in training the HRPF. 
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Figure 2.11: Dicer Knockdown Data. a Scatter plot for hairpins in the MCF7 (total) set, plotting 
log fold change of Dicer knockdown vs wildtype against the miRWoods decision value for 
annotated (red) and novel (blue) hairpins. The vertical line in the plot represents the decision value 
cut-off with all miRWoods predicted precursors to the right of it. b Box plot showing the log fold 
change of Dicer knockdown vs wildtype of annotated precursors within miRBase and novel 
precursors is predicted by each software for the MCF7 (total) set. (c-d) CDF’s for c MCF7 (Total) 
and d MCF7 (cytoplasmic) log fold change of Dicer knockdown vs wildtype for novel precursors. 
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Figure 2.12: Individual Examples of Dicer Knockdown. Predicted secondary structures for a hsa-
Novel35, b hsa-Novel28, c hsa-Novel23, d hsa-Nove65, e hsa-Novel92, and f hsa-Novel99. (g-
k) RNAseq for g hsa-Novel35, hsa-Novel28, h hsa-Novel23, i hsa-Novel65, j hsa-Novel92, 
and k hsa-Novel99. 
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Figure 2.13: Additional Euler Plots comparing miRWoods, miRDeep, and miRBase. Euler plots 
for a Human MCF7 (total), b Human cell lines, c Mouse brain, d Mouse embryo, e Mouse 
newborn, and f Mouse testes sets. 
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Figure 2.14: Additional Euler Plots comparing miRWoods, miReap, and miRBase. Euler plots 
for a Human MCF7 (total), b Human MCF7 (cytoplasmic), c Human cell lines, d Human 
liver, e Mouse brain, f Mouse embryo, g Mouse newborn, h Mouse testes and, i Mouse ovaries 
sets. 
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Figure 2.15: mir-548 Phylogenetic tree. Phylogenetic tree showing expansion of the mir-548 
precursor family in human. Annotated mir-548 precursors are shown in blue and predicted novel 
precursors are shown in green. 
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Figure 2.16: miRWoods predictions in the feline genome. a Euler diagram of the predictions from 
miRWoods with predictions from Sun et al. (2014) and Lagana et al. (2017). b The expression in 
skin and muscle for miR-133-Novel-3p c Hairpin for mir-133-Novel precursor. d The expression 
in skin and muscle for Novel110-3p. e Hairpin for Novel110 precursor. f Scatterplot of average 
muscle expression vs average skin expression for each mature microRNA.  
 

 
Figure 2.17: Differential Expression analysis of miRs.  Expression of fca-mir-1-1 using a RNAseq 
and b qPCR validation of differential expression in muscle. (c-d) Expression of fca-mir-205 
using c RNAseq and d qPCR validation of differential expression in skin. 
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Figure 2.18: Novel let-7 microRNAs in the feline genome. a RNA-seq of cluster containing fca-
let7-Novel2, fca-let7f, and fca-let7-Novel3 for each skin and muscle sample from Felis catus. b 
Hairpin structures for fca-let7-Novel2, c fca-let7-Novel3, and d fca-let7f. e Phylogenetic tree of 
let-7 miRs including those previously found by Lagana et al. (2017). 
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Figure 2.19: Novel microRNA predictions in the bovine genome. a Euler diagram comparing 
miRWoods predictions in the cow genome with miRBase annotations. b Scatterplot and best fit 
line comparing the normalized RT-qPCR expression and RNA-seq for the control miR bta-miR-
7. c Scatterplot and best fit line comparing the normalized RT-qPCR expression and RNA-seq for 
a novel predicted miR with enriched expression in brain stem. d Scatterplot and best fit line 
comparing the normalized RT-qPCR expression and RNA-seq for a novel predicted miR with 
enriched expression in corium feet. e Heat map of RT-qPCR expression values over tissues 
examined. 
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Figure 2.20: mir-2284/mir-2285 family miRs in Bos taurus. a A heat map for the expression of 
annotated and novel mir-2284/mir-2285 family miRs. b A phylogenetic tree for the bta-2284/bta-
2285 family. Variants of bta-mir-2284 appear in red and variants of bta-mir-2285 appear in blue. 
Colors for novel predictions appear lighter than those for annotated predictions. c Abundance of 
miRs for the 5′ and 3′ sides of the mir-2284/mir-2285 family. The 5′ product tends to show greater 
expression in the mir-2284 family while the 3′ product shows greater expression in the mir-2285 
family. 
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Figure 2.21: Novel microRNA families identified by miRWoods. a hsa-novel-8 is a mirtron 
predicted for both MCF-7 sets where expression was decreased in the Dicer knockdown sets. b 
hsa-Novel-185 is a mirtron predicted within the human cell lines set and the MCF-7 (cytoplasmic 
fraction) set. It also shows reduced expression in the Dicer knockdown version of the MCF-7 set. 
c The structure of hsa-novel-8. d The structure of hsa-Novel-185. e Phylogeny comparing the 
LAMA5 intron and CHD3 intron for several mammals. f Novel miR predicted in bovine genome 
in an intron of TYK2. g novel predicted miR in the feline genome in the same intron of TYK2 h 
structure of novel feline miR. i structure of novel bovine miR. Eight nucleotides were removed 
from the 5′ end, and two were added to the 3′ end to match the feline hairpin precursor boundaries. 
j A phylogeny comparing the TYK2 intron in several mammals.  
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3 Predicting Dicer and Drosha cleavage sites through deep learning. 
 

3.1 Abstract 
 

MicroRNAs are a highly conserved class of small endogenous RNA involved in post-

transcriptional gene silencing and have prominent roles in disease and development.  Since their 

discovery, many tools have been developed to identify Novel microRNA.  However, few attempts 

have been made to predict on the individual processes of microRNA biogenesis.  So far SVM 

based methods to predict Dicer cleavage sites have been developed but there’s been no attempts 

to predict cleavage sites for Drosha or to identify cleavage sites using deep learning.  Here, we 

present DeepMirCut, an LSTM based software designed to predict both Dicer and Drosha cleavage 

sites.  We compare models trained on sequence data, sequence and fold data, and sequence and 

fold data with the labeled loops.  Our results show that it still performs reasonably well on just 

sequence data but achieves the biggest gains when fold data is added.  Labeling the loop resulted 

in the best performance.  Experiments on our best model show that DeepMirCut is able predict 

cuts within closer average proximity than results reported for other methods.  Point mutation plots 

for the sequence showed that A GU pair across the cleavage site on Dicers 3′ arm has a positive 

effect on DeepMirCut’s prediction, while a UG pair has a detrimental effect.  Point mutation plots 

created for the fold and labeled loops were also used to identify several positions where bulges 

had either positive or negative effects on the score. 

 

3.2 Introduction 
 

MicroRNAs (miRs) are a highly conserved class of small endogenous RNA around 22nt in length.  

Mature microRNAs modulate a variety of different processes through post-transcriptional gene 

silencing, which result in either transcript degradation or translational inhibition [1].  MicroRNAs 

have a wide range of functions including cancer (both tumor-suppressor and oncogenic) [2], 

development [3], stress response [4], aging [5], and circadian rhythms [6]. Nucleotide positions 2 

through 8 on the mature microRNA are called the seed sequence and help direct the sequence-

specific activity of the RNA-induced silencing complex (RISC), where it binds to a 

complementary strand on the 3′- UTR of an mRNA transcript.  
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Biogenesis of mature microRNAs begins with the transcription of a primary miRNA (pri-

miRNA) transcript by RNA Polymerase II [7, 8], or in rare cases RNA Polymerase III [9].  A 

microprocessor complex associates with the hairpin, whereby the action of the component enzyme 

Drosha produces a double-stranded cleavage that results in the microRNA precursor (pre-miR) 

leaving a 2-nt overhang on the 3′ end  [10, 11]..  Exportin-5 associates with the 3′ overhang and 

transports the precursor from the nucleolus to the cytoplasm [12].  Here an enzyme known as Dicer 

removes the loop through an additional double-stranded cleavage. Taken together, the activity of 

these enzymes result in four distinct cleavage sites (here also called “cut-sites”) of the pri-miRNA 

transcript and therefore result in a double-stranded miR:miR* duplex. Dicer passes the miR:miR* 

duplex to Argonaut, a core enzyme of RISC, which binds with only one of the strands while the 

other one is degraded.  

 

 While most microRNA tools have been developed for homologous and novel microRNA 

discovery, some have been developed to learn more about individual processes involved in 

microRNA biogenesis.  PHDCleave is an SVM designed to identify Dicer cut-sites on a microRNA 

precursor [32].  While PHDCleave has decent sensitivity and specificity on their test set, when the 

SVM is applied in a sliding window across the entire precursor, the cut-site predictions are on 

average 3.1 nucleotides offset from the annotation [32].  LBSizeCleave is similar but adds features 

describing the length of loop and bulge structures [33].  LBSizeCleave performs with greater 

accuracy than PHDCleave at finding cleavage sites that were within 1nt of the annotated site, but 

has lower accuracy when more of an offset was allowed [33]. 

 

Deep learning approaches overcome the need for feature engineering by learning the features 

themselves.  Several deep learning approaches such as convolutional neural networks (CNNs) [27] 

and recurrent neural networks (RNNs) [28, 29] have been used for microRNA classification. While 

these approaches have addressed the limitations of feature engineering, they only predict loci and 

don’t perform cleavage site prediction.  RNNs, such as Long Short-Term Memory (LSTM) 

networks, have been used in natural language processing applications such as named entity 

recognition [30] and part-of-speech tagging [31], which are similar tasks to cleavage site 

recognition. Motivated by the challenges of microRNA analysis and the success of deep learning 

applications for NLP, we present DeepMirCut, an LSTM-based algorithm that predicts Dicer and 
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Drosha cleavage sites within microRNAs.  DeepMirCut predicts the locations of the four cut-sites 

of Drosha and Dicer from an input RNA sequence.  

 

3.3 Results 
 

For our analysis, we processed microRNA annotations from miRBase and genomic sequences to 

extract microRNA precursor sequences as well as 300-nt flanking genomic sequence. We refer to 

the precursor and flanking sequence as an “extended sequence”. Our data processing resulted in a 

collection of 34,714 extended sequences to be further refined to create datasets for training and 

testing.  

 

For the current study, we focused on precursors from metazoan species having both mature 

microRNAs (5′ and 3′) annotated in miRBase, which consists of 11,296 records. Precursor 

sequences that were within a sequence identity threshold of 0.8 of other sequences were excluded 

from the set using CD-Hit [67] in order to ensure low similarity between the training, validation, 

and testing sets. A standard 80:10:10 split was used to produce a training set with 3,923 examples, 

validation set with 490 examples, and test set with 491 examples. To increase our training 

examples, we added back sequences that CD-Hit had identified as similar to those in the training 

set but were below the sequence identity threshold of the validation and testing sets, which 

increased the training set to 8,491 examples. We compared each sequence of the training set with 

sequences of the validation and testing sets to verify that an identity threshold of 0.8 was 

maintained for sequences between sets as demonstrated in Figure 3.1.  Random amounts of buffer 

sequence between 30-nt and 50-nt were added to each of the precursors for the training, validation, 

and testing sets.  An augmented training set with 84,910 examples and an augmented validation 

set with 4,900 examples was generated by randomly selecting buffer sequences 9 more times for 

each example (Figure 3.2a).  

 

We trained three different sets of models defined by the type of input data that were used. 

First, model 1 was trained on only the extended RNA sequence. Second, model 2 was trained on 

sequence and fold.  RNAfold [59] was used to predict the secondary structure of the extend RNA 

sequence, to provide the dot-bracket [68] sequence for each RNA within each of the train, test, and 
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validation sets. Finally, for model 3, we further annotated the sequence using a modified bpRNA 

structure array [69] to provide context such as whether each nucleotide was on a bulge, internal 

loop, or hairpin loop.  

 

DeepMirCut has the option of predicting cut-sites based on inputs with sequences only, 

sequences and folds, or sequences and labels indicating the context of the fold produced by 

bpRNA.  The architecture includes an embedding dimension, a dropout layer, two bidirectional 

LSTM layers, and a time distributed dense layer.  The time distributed layer outputs a set of 5 

values for each nucleotide which represent weights for a Drosha cut on the 5′ arm (DR5), a Drosha 

cut on the 3′ arm (DR3), a Dicer cut on the 5′ arm (DC5), a Dicer cut on the 3′ arm (DC3), or no 

cut-site present (O).  By default,  DeepMirCut labels the position with the maximum weight for 

DR3, DR5, DC3, and DC5 as a cleavage site, but the O-sites are not labeled (Figure 3.2b.) Labeling 

is done in this way so that each cut-site will only be labeled once whereas labeling using that 

maximum weight at each position could result in cut-sites being labeled more than once or not at 

all.  See Figure 3.3 for an example of DeepMirCut predicting cleavage sites for hsa-mir125a.  

 

Hyper-parameters were tuned to identify the best parameter combinations for models 

trained using each of DeepMirCut’s three input options.  The top 10 architectures identified 

through tuning were evaluated with 20 replicates each to identify parameters resulting in the best 

median F-score (Figure 3.4,Figure 3.5, and Figure 3.6).  All models were evaluated using the 

augmented validation set. The parameter combinations that showed the best performance during 

tuning are shown in Table 3.1. 

   

Models trained on sequence only, sequence and fold, and sequence and bpRNA data were 

tested using the optimum parameter combinations for each type of input. Training with sequence 

and bpRNA-context resulted in the highest median F-score (F-score = 0.348), followed by models 

trained using the sequence and fold (F-score = 0.345). Surprisingly, DeepMirCut was still able to 

identify several cleavage sites using only the sequence as input (F-score = 0.183) (Figure 3.7a) We 

note that while the F-score was used to select models, it can be an unforgiving metric for this kind 

of task because predictions offset by 1 nt will be counted as a false prediction. Therefore, we 

further evaluated the mean distance between the predicted and annotated cut-sites for each 
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replicate. Training with sequence and bpRNA-context resulted in the best median average distance 

(dist = 2.611), followed by models trained using the sequence and fold (dist=2.623), followed by 

models trained with just the sequence (dist = 4.943) (Figure 3.7b) 

 

The best performing model based on the validation set was re-evaluated against the test set 

(F-score = 0.358; dist = 2.579). The model identified Dicer cleavage sites better on the 3′ arm (F-

score = 0.43; dist = 2.214) than 5′ arm (F-score = 0.30; dist = 2.802) and identified Drosha cleavage 

sites better on the 5′ arm (F-score = 0.36; dist = 2.902) than the 3′ arm (F-score = 0.34; dist = 

2.397).  Most of DeepMirCut’s predictions fell within one nucleotide of the annotated cleavage 

sites. Predictions of Dicer’s cut along the 3′ arm result in both higher decision values and 

predictions within a closer proximity than all of the other cleavage sites. (Figure 3.7c-e.)  These 

results indicate that DeepMirCut is better at finding cleavage sites at the 5′ ends of mature 

microRNA compared to the 3′ sites.  A possible reason for this may be that isomirs are more likely 

occur at the 3′ end of microRNAs [70] making training and testing more difficult.   

 

We performed a point-mutation analysis on the nucleotides surrounding each cut-site in 

order to assess what DeepMirCut is learning (Figure 3.8)  The effect on scores from Dicers 3′ arm 

was the most pronounced.  A GU pair across the cleavage site on Dicers 3′ arm has a positive effect 

on DeepMirCuts prediction while a UG pair appears to have the opposite effect. Uracil is the top 

logo character appearing 1 nt downstream from the cleavage site so DeepMirCut is likely to 

identify the presence of Uracil as an important feature to base its predictions on. (Figure 3.8b.) 

 

A point mutation-analysis was also performed on the fold and contextual information as 

well (Figure 3.9)  A bulge occurring 3 nt upstream has a positive influence on DeepMirCuts ability 

to identify Dicers cleavage site on the 3′ arm (Figure 3.9d). On the 5′ arm prediction performance 

improved when a bulge was present 1 nt downstream but not 1nt-2nt upstream from Dicers 

cleavage site (Figure 3.9b).  

 

We tested the performance of DeepMirCut on precursors with only one annotated 

microRNA by generating sets with the annotated microRNA either on the 3′ arm or the 5′ arm.  

Cleavage sites on the arm opposite to the annotated microRNAs were assumed based on read 
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stacks from small RNA Sequencing data (see Methods) and were used to assess DeepMirCut’s 

performance.  DeepMirCut identified unannotated Dicer cleavage sites on the 3′ arm (F-score = 

0.53; dist = 1.316) than on the  5′ arm (F-score = 0.36; dist = 3.273) and identified unannotated 

Drosha cleavage sites on the 5′ arm (F-score = 0.32;  dist = 5.00) better than the 3′ arm (F-score = 

0.11: dist = 2.105) 

 

 

3.4 Discussion 
 

We report on the training, testing and evaluation of DeepMirCut for the site-labeling of Dicer and 

Drosha cleavage sites. While other similar prediction programs only predict Dicer cleavage sites 

on the folded precursor sequences, DeepMirCut predicts both Dicer and Drosha cleavage sites on 

full-length extended precursor sequences that include flanking sequence of randomly-sampled 

length. Our experiments with annotations from miRBase show that DeepMirCut predicts cleavage 

sites with close average proximity, and more closely predicts Dicer sites than results reported for 

other methods.  

 

 Central to microRNA function is the seed sequence, which is necessary for RISC to target 

specific mRNAs and is defined relative to the 5′ end of the mature microRNA. Consistent with 

these functional requirements, we observed that DeepMirCut performed better at the identification 

of cleavage sites that correspond to the 5′ ends of mature microRNAs compared to their 3′ ends. 

These data support the idea that sequence and structural information are sufficient to locate these 

cleavage sites. 

 

 We trained and evaluated different versions of DeepMirCut that incorporate varying levels 

of input information, including sequence, sequence and structure, and sequence, structure, and 

loop information. We found that DeepMirCut can predict moderately well based on sequence 

alone, suggesting it is not completely relying on structural information about the loop for its 

predictions. This is consistent with the fact that point-mutation analysis reveals strong changes in 

score due to perturbations to sequence alone. We further added structural information in the form 

of predicted secondary structure dot-bracket sequences and bpRNA-computed loop-type labels, 
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which significantly improved the performance. We observed the greatest improvement in 

prediction performance with the addition of the dot-bracket sequence, which provides information 

regarding the presence and absence of base pairs. It has been shown biochemically that the hairpin 

loop position [71] and the locations of bulges and other unpaired nucleotides [72] may help direct 

the function of Dicer. This fact may explain the modest improvement we observed with the 

addition of loop-type labels, such as distinguishing bulges from internal loops.  

 

3.5 Methods 
 

3.5.1 Data Preprocessing 
 

All microRNA GFF annotations files were downloaded for miRBase v22.1, and then used to locate 

precursor sequences within the genomic context for each species. Genome FASTA files were 

downloaded from various sources including NCBI Assembly and organism-specific genome 

resources when needed. Precursor sequences were extracted from each genome along with a buffer 

sequence extending 300nt upstream to 300nt downstream. Cleavage-sites were determined by 

folding the original precursor sequences found on miRBase and determining which arm each 

mature microRNA was on. Examples where microRNA overlap the loop were removed to avoid 

ambiguity in cleavage-sites corresponding to each microRNA. In several cases either the name or 

location of the miR was inconsistent between the miRBase GFFs and the miRBase FASTA files 

and in a few cases defunct miRs were present in the miRBase GFFs. In order to improve testability, 

microRNAs were dropped whenever there was a naming inconsistency between GFF and FASTA 

files or an inconsistency between the annotation and genomic sequence (70 loci in total). 

Sequences from Brassica napus, Schistosoma japonicum, Schmidtea mediterranea, and Triticum 

aestivum were excluded from the set because of difficulties in finding versions of the genome that 

corresponded to locations of each sequence within the miRBase GFF files. 
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3.5.2 Hyperparameter Tuning 
 

Hyperparameters for three different models were tuned using a training set composed of either 

training data, sequence and fold data, or sequence an bpRNA data. Hyperopt  [73] was used to 

search for a model producing an optimal F-score with an embedding dropout between 0 and 0.5, 

an embedding dimension of 32, 64, 96, 128, or 160 units, a first bidirectional LSTM layer with 64, 

128, 192, 256, or 320 units, a second bidirectional LSTM layer with 0, 64, 128, 192, 256, or 320 

units, a learning rate for the adam optimizer between 0.00001 and 0.1, and an epsilon between 10-

10 and 10-4.  The top 10 models identified by hyperopt were retrained 20 times and a model for 

each of the three training sets was chosen based on F-score and consistency. 

 

3.5.3 Point Mutation Analysis 
 

 In order to determine what DeepMirCut is learning about nucleotide sequences, every 

possible mutation from -10 nt upstream to -10nt downstream was generated for cleavage sites 

within the test set.  DeepMirCut was run on the mutated and unmutated datasets and decision 

values were converted into scores using the logit function.  The mean difference between scores 

for mutated nucleotides vs scores for nucleotides in the unmuted set was used to evaluate the 

effects that mutations would have on the model’s ability to predict cleavage sites.  

 

3.5.4 Identification of Unannotated mature microRNAs 
 

In order to test DeepMirCuts performance on microRNAs with only one annotated mature 

microRNA,  wildtype MCF-7 total cell content (GSE31069) and MCF-7 cell fractions (GSE31069) 

were downloaded from GEO [41]  A script called miRPreprocess from miRWoods [74] was run 

in order to group read stacks and identify unannotated microRNAs which would be used to assume 

positions of unknown cleavage sites.   

 

Test sets were grouped into those with annotated mature microRNAs occurring on either the 

5′ arm or the 3′ arm.  Cases where multiple hairpin precursors had identical sequences were filtered 
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down to one example prior to test time.  DeepMirCut predicted cleavage sites on each set and 

positions identified from read stacks were used to evaluate performance. 

 

3.6 Tables 
 

Table 3.1: Tuned Parameters 
Input Type Sequence 

Only 
Sequence 
& Fold 

Sequence 
& Context 

Embedding 
layer 

96 units 32 units 32 units 

Dropout 0.315 0.213 0.247 

Bi-LSTM 
layer 1 

320 units 64 units 64 units 

Bi-LSTM 
layer 2 

192 units 256 units 320 units 

Learning 
rate 

3.2 * 10-3 1.91 * 10-3 2.64 * 10-3 

Epsilon 
(10x) 

-7.56 -6.79 -6.66 
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3.7 Figures 

 
Figure 3.1: Verification of maximum identity threshold between sets.  Histograms of maximum 
global identity comparing sequences of a validation set vs train set b validation set vs train set with 
similar sequences c test set vs train set d test set vs train set with similar sequences. 
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Figure 3.2: Data Processing and Architecture.  a Flowchart describing the generation of the train, 
validation, and test sets.  b  Diagram showing DeepMirCut’s architecture.  
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Figure 3.3: Example cleavage site identification for hsa-mir-125a.  a Dicer and Drosha cleavage 
sites surrounding the two mature microRNA sequences highlighted in red.  b An unfolded version 
of the precursor sequence. c Three-dimensional line plot showing decision values for each Dicer 
and Drosha cleavage site in hsa-mir-125a.  
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Figure 3.4: Top ten models for models trained with sequence data.  Box plot shows F-Score and 
for each replicate and parameters used in training.  
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Figure 3.5: Top ten models for models trained with sequence and fold data.  Box plot shows F-
Score and for each replicate and parameters used in training.  
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Figure 3.6: Top ten models for models trained with sequence and bpRNA provided contextual 
information.  Box plot shows F-Score and for each replicate and parameters used in training.  
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Figure 3.7: Performance with different inputs and test results for chosen model.  a Boxplots 
comparing F-scores and b average distance of predicted cleavage sites from annotated positions 
for models generated using optimum parameters for each type of input. c Boxplot showing the 
difference in cleavage site decision values for a model chosen from the set of models trained to 
use sequence and bpRNA fold context.  d Differences in position between predicted and annotated 
cleavage sites for Dicers cut on the 3′ arm and e a Boxplot showing differences between all 
predicted and annotated cleavage sites for the chosen model.  
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Figure 3.8: Point mutation analysis for nucleotides.  Heatmaps showing point mutations for 
nucleotides surrounding cleavage sites of a Dicer on the 5′ arm, b Dicer on the 3′ arm, c Drosha 
on the 5′ arm, and d Drosha on the 3′ arm.  
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Figure 3.9: Point mutation analysis for folds. Heatmaps showing point mutations for folds and 
their bpRNA provided loop context surrounding cleavage sites of a Dicer on the 5′ arm, b Dicer 
on the 3′ arm, c Drosha on the 5′ arm, and d Drosha on the 3′ arm.  
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4 Conclusion 
 

In conclusion, we have presented two software approaches to address several current challenges 

in microRNA discovery and analysis. First, miRWoods provides a new approach to the detection 

of valid precursor spans using a duplex-focused method. We also demonstrated that miRWoods 

was capable of finding microRNA loci with a single read. Second, DeepMirCut provides a deep 

learning-based method for the prediction of Dicer and Drosha cleavage sites. 

 

One of the core assumptions of molecular biology is that sequence determines structure, 

which determines function. microRNA biogenesis depends on the proper integration of biological 

sequence information by the enzymes involved. Our two methods highlight the importance of 

RNA sequence and secondary structure information in the prediction and characterization of 

microRNAs. miRWoods uses engineered features based on deep sequencing read abundance and 

distribution, RNA sequence, and predicted secondary structure, to predict loci. The fact that it 

predicts loci with only one read, suggests that sequence and structure information can take 

precedence over read abundance in some cases. DeepMirCut demonstrates that deep learning can 

infer patterns in input sequence and structural information without any engineered features. Taken 

together, these observations support the idea that the RNA sequence information that directs 

microRNA biogenesis is encapsulated by our computational methods. 

 

miRWoods uses dinucleotides as a feature, but without considering context or position. 

Therefore, one might speculate whether this sequence information is a remnant of evolutionary 

ancestry or part of purposeful patterns directing their processing and biogenesis. Our deep 

learning-based method DeepMirCut integrates sequence information in a context-specific way, 

suggesting that proper context of sequence information is necessary for microRNA function. It is 

possible that miRWoods learned dinucleotide patterns similar to what DeepMirCut learned, albeit 

out of context in some situations.  

 

This work has focused primarily on microRNAs from Metazoa.  Future work could 

investigate whether our approaches would be applicable to plant microRNAs.  While plant 

microRNAs have many similarities there are some key differences.  For instance, plants have an 
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enzyme called Dicer-like1 (DL1), which performs both of the actions of Dicer and Drosha [75].   

Analyzing the effects of point mutations may also provide insight into differences in structural 

features that DL1 might recognize along either cut.   

 

DeepMirCut and miRWoods were both trained differently and applied to different tasks.  

DeepMirCut learns patterns in sequential data while miRWoods bases its prediction on features 

related to dinucleotide content, read distribution, and folding structure. It is possible that future 

work could combine these two approaches for synergistic effect. For example, the output of 

DeepMirCut could be used as additional features to miRWoods. The output of DeepMirCut when 

applied to non-miRs could provide a “signature” that could be detected to improve microRNA the 

microRNA prediction of miRWoods.  

 

Overall, we have made substantial improvements to the analysis of microRNAs. Our work 

has already identified errors in current microRNA annotations, and it would be used in the future 

to further refine our microRNA annotations, ultimately leading to a greater understanding of their 

biogenesis and processing.  
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