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In this work, flow through synthetic arrangements of contacting spheres is studied

as a model problem for porous media and packed bed type flows. Direct numeri-

cal simulations are performed for moderate pore Reynolds numbers in the range,

10 ≤ Re ≤ 600, where non-linear porescale flow features are known to contribute

significantly to macroscale properties of engineering interest.

To first choose and validate appropriate computational models for this problem,

the relative performance of two numerical approaches involving body conforming

and non-conforming grids for simulating porescale flows is examined. In the first

approach, an unstructured solver is used with tetrahedral meshes, which conform

to the boundaries of the porespace. In the second approach, a fictitious domain

formulation (Apte et al., 2009. J Comput Phys 228 (8), 2712-2738) is used, which

employs non-body conforming Cartesian grids and enforces the no-slip conditions

on the pore boundaries implicitly through a rigidity constraint force. Detailed

grid convergence studies of both steady and unsteady flow through prototypical

arrangements of spheres indicate that for a fixed level of uncertainty, significantly

lower grid densities may be used with the fictitious domain approach, which also

does not require complex grid generation techniques.



Next, flows through both random and structured arrangements of spheres are

simulated at pore Reynolds numbers in the steady inertial ( 10 . Re . 200)

and unsteady inertial (Re ≈ 600) regimes, and used to analyze the characteristics

of porescale vortical structures. Even at similar Reynolds numbers, the vortical

structures observed in structured and random packings are remarkably different.

The interior of the structured packings are dominated by multi-lobed vortex rings

structures that align with the principal axes of the packing, but perpendicular to

the mean flow. The random packing is dominated by helical vortices, elongated

parallel to the mean flow direction. The unsteady dynamics observed in random

and structured arrangements are also distinct, and are linked to the behavior of

the porescale vortices.

Finally, to investigate the existence and behavior of transport barriers in packed

beds, a numerical tool is developed to compute high resolution finite-time Lya-

punov exponent (FTLE) fields on-the-fly during DNS of unsteady flows. Ridges

in this field are known to correspond to Lagrangian Coherent Structures (LCS),

which are invariant barriers to transport and form the skeleton of time dependent

Lagrangian fluid motion. The algorithm and its implementation into a parallel

DNS solver are described in detail and used to explore several flows, including

unsteady inertial flow in a random sphere packing. The resulting FTLE fields

unambiguously define the boundaries of dynamically distinct porescale features

such as counter rotating helical vortices and jets, and capture time dependent

phenomena including vortex shedding at the pore level.
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A Numerical Study of Inertial Flow Features in Moderate Reynolds
Number Flow Through Packed Beds of Spheres

Chapter 1: Introduction

Though we may not always notice it, porous media are ubiquitous in the world

around us. On the most basic level, porous media can be thought of as any complex

matrix of solids with interconnected voids or “pores” through which a fluid may

flow. The space and timescales of fluid transport encountered in both natural and

engineered porous media flows vary widely, from atomic to geologic. However, at

the geometric scale of individual pores (the porescale), such systems often look

quite similar. This motivates fundamental studies of the hydrodynamics in simple,

prototypical porous geometries. In this work, synthetic arrangements of contacting

spheres are used as a simple model to understand the characteristics of porescale

flow in more complex systems.

Despite the important connection to both natural and engineered systems, flows

through packed beds of spheres are not, generally, well understood. This is par-

ticularly true at moderate to high Reynolds numbers where fluid inertia results

in non-linear porescale flow features such as jets, vortices and backflow regions.

Although these features are local porescale phenomena that occur at small scales,

they are of great importance for their ability to affect macroscale properties of

the flow. For example, non-uniform distribution of temperature and nutrients in

stream beds depends crucially on on “dead zones”, where closed streamlines cre-

ate hydrodynamic transport barriers [5, 12]. In fixed bed chemical and nuclear

reactors, relatively high flow rates are used to improve mixing, heat transfer and

reaction rates [1], but can result in non-uniform flow, which may not be predictable

a-priori during the reactor design process. To better understand these types of pro-

cesses and others, it is therefore important to develop an improved characterization
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of inertial flow features in porous media.

The inherent geometric complexity of porous media and packed beds has chal-

lenged theoretical, numerical, and experimental investigations alike. Relatively

modern non intrusive experimental techniques such as magnetic resonance imag-

ing [108, 57], ultrasonic profiling [51], and particle image velocimetry [81, 52] have

provided important datasets from which the porescale behavior of inertial flows

can be explored. At the same time, rapidly increasing computational power has

made high resolution simulation [50, 48, 102, 78, 67, 64] of porous media flows

increasingly feasible, and this work is an example of progress in that direction.

As a complement to existing experimental data, numerical simulations have the

advantage of being able to more easily capture continuous, time resolved, three di-

mensional data, which at present seems to challenge most experimental techniques.

Figure 1.1: Overview of the porescale flow regimes studied in this work. Top and
bottom rows correspond to DNS results from the present work and PIV results
from [82] respectively.

Dybbs and Edwards [21] used MRI techniques to classify porous media flows
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as a function of the pore Reynolds number, Rep =
ρUpD

µ
ǫ

1−ǫ
, where ρ and µ are the

fluid density and viscosity, Up is the pore velocity scale, D is the pore length scale,

and ǫ is the void fraction of the media. They determined four flow regimes based

on the hydrodynamic behavior at the porescale, which are still widely accepted: (i)

creeping flow (Rep . 10), (ii) steady inertial flow (10 . Rep . 150), (iii) unsteady

inertial flow (150 . Rep . 1000), and (iv) chaotic turbulent flow (Rep & 1000). As

noted by [96, 51], the Reynolds numbers at which these transitions occur is very

sensitive to the packing geometry, and values from one packing cannot necessarily

be extrapolated to another. Figure 1 provides an overview of the porescale flow

regimes covered by this work, and shows representative images of porescale flow

features observed by direct numerical simulations (this study, Chapter 3) as well

as in experiments by [82]. The figure emphasizes the development of pore scale

vortices with increasing Reynolds number and illustrates the contribution of fluid

inertia to porescale complexity. The attention of this thesis is focused on the

inertial regimes (ii) and (iii), where steady and unsteady non-linear flow features

are dominant in the porespace, but where the flow does not have all the symptoms

of turbulence [110] such as broad length and time scale separation, and an energy

cascade.

Even with powerful computational resources, porous media is challenging for

resolved simulation techniques because of the complexity of the solid-fluid inter-

face. In Chapter 2, the relative performance of two techniques capable of resolving

the porescale flow field is examined. In the first approach, an unstructured solver

is used with tetrahedral meshes that conform to the boundaries of the porespace.

This is the more frequently used approach [34, 4, 18], but requires complex un-

structured mesh generation techniques. In the second approach, a fictitious domain

formulation [2] is used that employs non-body conforming Cartesian grids and en-

forces the no-slip conditions on the pore boundaries implicitly through a rigidity

constraint force. Both approaches are found to be capable of capturing porescale

inertial flow features, but it is shown that the fictitious domain approach does so

with significantly less computational effort for similar levels of numerical uncer-
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tainty and without the meshing overhead required by body fitted meshes. This

chapter is in under review (after first revision) for publication in the International

Journal of Multiphase Flow.

Vortical flow features are of particular interest in porous media because of the

implications they have for mixing and dispersion in the porespace [55]. In Chap-

ter 3, the development and behavior of vortical features are examined using DNS

datasets of flow through both random and arranged packed beds of spheres. Even

with similar porosities and Reynolds numbers, a number of striking differences ex-

ist between the porescale flow fields in the different arrangements studied, in both

qualitative and statistical senses. This chapter is in preparation for submission to

the journal Physics of Fluids

Although it is clear that there is an organizing structure to flows in porous

media and packed beds, it is not obvious how to define the coherent porescale

regions that are important to mixing and dispersion properties. The recently

developed notion of Lagrangian coherent structures (LCS) [42, 38] as invariant

transport barriers in steady and unsteady fluid flows has evolved from dynamical

systems theory, and has proven its utility in understanding a number of mixing and

transport problems [83, 94]. In Chapter 4 a computational approach is developed

that allows the LCS theory to be applied to complex packed bed flows. The LCS

are most often defined from ridges in the finite-time Lyapunov exponent (FTLE)

field [98]. However, their practical use has been limited to this point because

computing the FTLE field typically involves expensive post-processing of large

fluid velocity datasets generated either from experiments or numerical simulations.

The integrated approach proposed in this work is to compute evolving, transient,

three dimensional FTLE fields on-the-fly during the direct numerical simulation.

By integrating the computations in this way, tedious post-processing of velocity

fields is no longer needed, and larger, more complex problems, such as flow through

packed beds become accessible to the application of LCS theory. This chapter is

in under final revisions for publication in the journal Chaos.
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Abstract

The relative performance of two numerical approaches involving body conforming

and non-conforming grids for simulating porescale flow in complex configurations of

fixed packed beds of spheres at moderate pore Reynolds numbers (12 ≤ Re ≤ 600)

is examined. In the first approach, an unstructured solver is used with tetrahedral

meshes that conform to the boundaries of the porespace. In the second approach,

a fictitious domain formulation (Apte et al., 2009. J Comput Phys 228 (8), 2712-

2738) is used that employs non-body conforming Cartesian grids and enforces the

no-slip conditions on the pore boundaries implicitly through a rigidity constraint

force. Sphere to sphere contact points, where the fluid gap between solid bound-

aries becomes infinitesimal, are not resolved by either approach, but this is shown

to have a negligible effect on the local flow field at the Reynolds numbers consid-

ered. Detailed grid convergence studies of both steady and unsteady flow through

simple cubic packings indicate that for a fixed level of uncertainty, significantly

lower grid densities may be used with the fictitious domain approach, which also

does not require complex grid generation techniques. This translates into large

savings for simulation of flow through realistic packed beds, which is shown by

both analytic estimates and actual CPU timings. The applicability of the ficti-

tious domain approach is demonstrated by simulating unsteady flow through a

randomly packed bed of 51 spheres at a pore Reynolds number of 600. The results

are used to examine the dominance of porescale helical vortices.

2.1 Introduction

Even at modest flow rates through porous media and packed beds, non-linear

porescale flow features such as jets and vortices can have strong effects on macroscale

properties of broader interest including pressure drop, heat transfer, and mass

transfer. Many processes in porous media occur at lower flow rates where these in-

ertial effects may be modeled or neglected (ie. many geologic processes). However,
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higher flow rates are also of importance to both natural and engineered porous

systems. For example, in river and stream beds, recirculating regions can result in

non-uniform nutrient and temperature distributions [12], while higher flow rates

are sometimes employed by design to increase heat transfer and reaction rates in

packed bed chemical and nuclear reactors [1].

Flow through packed beds of spheres can be broadly classified into four regimes [21]

based on the characteristics of the porescale flow: (i) Darcy flow, where viscous

forces are dominant and fluid streamlines conform to the porespace boundaries, (ii)

steady, inertial flow, where boundary layers and an “inertial core” develop in the

porespace, and non-linear flow features begin to emerge, (iii) unsteady inertial flow

where the flow becomes time dependent but remains laminar, and (iv) turbulent

flow, with chaotic velocity fluctuations and a full energy cascade. The transition

from one regime to another is Reynolds number dependent, but is also very sensi-

tive to the packing configuration and boundary conditions. This makes developing

a unified understanding of porescale flows challenging, and has motivated theoret-

ical, experimental and numerical investigations. Modern experimental techniques

such as magnetic resonance imaging (MRI) [108, 92], and particle image velocime-

try (PIV) [81, 52] that allow for non-invasive measurement of the porescale velocity

field have been applied to study these flows. At the same time, rapidly increasing

processing power has enabled highly resolved simulation (DNS/LES) techniques

as viable tools to investigate the porescale flow physics at play [48, 64]. In addi-

tion to providing physical insight into porescale flow behavior, DNS data sets are

valuable in the process of developing lower order models for practical engineering

calculations. Upscaling of the momentum equations for example, as done by [114]

to predict macroscale dispersion properties, requires closures that can be obtained

from three dimensional porescale velocity fields. Moving forward, it is important to

continue developing efficient and accurate predictive simulation techniques capable

of resolving porescale flow through packed beds.

Packed beds and porous media present unique challenges to resolved simulation

techniques, mostly due to the complexity of the solid-fluid interface. Nonetheless,
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successful simulations of these flows have been carried out for laboratory scale

packings containing hundreds of spheres, most often using a body fitted grid com-

bined with a finite volume approach [34, 4, 18]. While the body fitted approach

has the ability to directly resolve the solid-fluid interface, generating and working

with body conformal meshes for contacting sphere geometries can be extremely

cumbersome. Most of the difficulty is due to the sphere-to-sphere contact points,

which require careful treatment to avoid skewed, high aspect ratio control volumes.

In our experience, the time required to generate a quality unstructured mesh for

a large scale, complex geometry like a packed bed can often take longer than per-

forming the simulation itself. Importantly, the significant meshing overhead and

unstructured nature of the body fitted meshes for this problem makes systematic

uncertainty quantification more difficult.

These factors leave the door open for alternative simulation approaches. The

mesh related pitfalls encountered in body fitted simulations can be avoided with

immersed boundary or fictitious domain approaches that use regular Cartesian

grids over the entire fluid/solid domain, inclusive of the solid regions. In these

types of approaches, a synthetic force is applied in or around the solid regions to

satisfy the desired boundary condition (typically no-slip). The way in which this

force is computed and applied is a field of active research, and a number of for-

mulations have been proposed. A recent review on general techniques for resolved

simulation of particle laden flow covering body fitted, immersed boundary, and fic-

titious domain approaches is given by Haeri & Shrimpton [37], and the interested

reader is referred here for a more detailed discussion. In general, immersed bound-

ary techniques add a corrective term to the momentum equation corresponding to

a solid-fluid interaction that satisfies the no-slip condition. In the fictitious do-

main (or distributed Lagrange multiplier) approach, the entire domain is treated

as a single fluid (inclusive of solid regions), and the rigid motion of immersed solid

objects is projected in one or more steps onto the flow field using Lagrangian force

points located at the solid-fluid interface.

These non body-conformal methods have evolved over the last several decades
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from the original works of Peskin [85, 86], and have been used extensively in a num-

ber of fields including fluidized beds & suspensions [32, 111, 101], fluid structure

interaction [116], and swimming/flying [19, 112]. Not surprisingly, their broadest

application has been in problems where the motion of immersed solid boundaries

would require adaptive re-meshing during simulation using a body fitted approach,

and application to fixed bed type problems has been more limited. Some notable

exceptions are the recent study of transitional flow through arrays of fixed two

dimensional square cylinders by Malico & Ferriera de Sousa [67], and the study

by Smolarkiewiscz & Larabee Winter [102] of Darcy flow through reconstructed

porous media. Other alternatives to the body fitted approach exist that have been

successfully applied to simulation of flows through fixed beds and porous media,

including the Lattice-Boltzmann method [48] and methods based on smoothed

particle hydrodynamics [78].

In this paper, the performance of fictitious domain simulations of flow through

packed bed geometries based on the formulation of Apte et al. [2] is examined, rela-

tive to simulations using a well established body fitted unstructured grid approach

developed from the work of Mahesh et al. [65] with modifications to account for

mesh skewness proposed by Ham & Iaccarino [43]. The main goal is to demonstrate

the capability and advantages of using the former for porous media and packed

bed applications, especially at moderate Reynolds numbers when it is necessary

to capture complex steady and unsteady porescale flow features. In addition, it is

important to establish grid density requirements when simulating large scale, com-

plex flow problems, so that solutions can be reported with a high level of confidence

(or at least an understanding of their limitations). For example, in direct or large

eddy simulations of turbulent channel flows, placing the grid cells within Y + <= 1

(where + denotes wall units), of the wall should produce reasonable confidence that

boundary layers and small scale structures are resolved properly. This estimate

takes advantage of the existence of the log-law in wall bounded flows. Likewise,

for simulations of atmospheric turbulence or mixing layers, the grid spacing may

be chosen to resolve the Kolmogorov scale. For inertial, transitional, and fully
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turbulent flows through porous media, it is not completely clear on how to esti-

mate grid resolution requirements apriori so that all important porescale features

may be captured. It is possible to estimate the net average shear stress on the

porous bed by relating the net pressure drop across the bed (through for example

the Ergun [24] correlation) to the Reynolds number. Knowing the porosity, one

could then compute the average shear stress and in turn estimate a boundary layer

thickness. However, owing to complex bed geometries, these properties will vary

substantially across the bed, and it is not clear what the grid resolution require-

ments are for accurate predictive simulations. Conducting grid refinement studies

on very large scale simulations is also difficult due to the extensive computational

cost. For this reason, our goal is to understand and establish grid resolution re-

quirements DNS in the steady and unsteady inertial Reynolds number regimes

by performing systematic grid refinement studies of flow through porous media

on smaller domains with representative packings. While random packings require

careful treatment, such estimates could be a valuable starting point for estimating

the computational overhead of larger scale simulations.

The remainder of the paper is structured as follows. First the surface repre-

sentation, and numerical solution procedure used by both methods is discussed in

Section 2.2. Next we examine several test cases, which are designed to test the

ability of each approach for complex flows in packed beds in Section 2.3. Emphasis

is placed on estimating the uncertainty associated with the porescale flow fields

produced by each method, and determining required grid densities for acceptable

confidence levels. To this end, we employ the Grid Convergence Index (GCI), orig-

inally proposed by Roache [89]. In Section 2.4, expressions for the scalability of

both methods for more general, randomly packed bed simulations are developed.

Finally, in Section 2.5, the fictitious domain approach is used to simulate flow

through a random arrangement of 51 spheres at a pore Reynolds number of 600.

This case demonstrates the capability of the approach for more realistic packed

bed problems of general interest and allows us to explore the porescale structure

of unsteady inertial flow in a random arrangement of spheres.
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2.2 Computational methods

Consider the Navier-Stokes equations for constant density and viscosity, incom-

pressible fluid motion:

∇ · u = 0 (2.1)

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∇2u+ ρg + f (2.2)

where ρ is the density field, u the velocity vector, p the pressure, µ the fluid

viscosity, g the gravitational acceleration, and f is an additional body force that

is zero in the body fitted approach, and will be used to enforce rigidity within the

solid phase in the fictitious domain approach. The two approaches to the solution

of these equations are both implemented in a similar finite volume framework, and

share several of the same basic techniques including a fractional step method [71],

and an algebraic multigrid (AMG) solver for the pressure Poisson equation [25].

The codes are parallelized using Message Passing Interface (MPI), allowing for

larger scale simulations by distributing the required memory over many processors.

Regardless of the approach used, precise representation of the solid-fluid inter-

face is critical to obtain an accurate solution. Below, details are provided concern-

ing the numerical representation of the porespace boundaries during simulation.

For additional details regarding the numerical implementation, verification and

validation of each method, the reader is referred to Moin & Apte [71] and, Ham &

Iaccarino [43] for the body fitted approach, and to Apte et al. [2] for the fictitious

domain approach.

2.2.1 Body fitted approach

In the body fitted approach, the pore space is first discretized into unstructured

tetrahedral control volumes with a triangular surface mesh on the solid boundaries.

Although arbitrarily shaped control volumes can be utilized by the solver, we have
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found that it is easiest to generate quality meshes in packed beds with tetrahedral

cells, as opposed to other shapes (hexahedral for instance). Unstructured mesh

generation for complex geometries is a non-trivial procedure in general, and in

packed beds the process is complicated by sphere-to-sphere contact points, near

which elements can become unmanageably small, have high aspect ratio, and be

skewed. Several methods have been proposed to mitigate this problem. Most

commonly, the spheres are created at reduced diameter, typically 98 or 99 percent,

eliminating all contact points [4, 11, 75], and creating a small gap between spheres.

A related approach first pursued by Guardo et al. [34] is to create the spheres

slightly larger than they actually are, so that they overlap, creating a continuous

edge in the plane perpendicular to the contact line. Magnico [63, 64] has used

a structured grid approach where the surface representation is stair stepped due

to a voxelized treatment of the solid boundaries. While the meshing overhead

is low with this approach, an artificial surface roughness is imposed, even with

significantly refined grids. The approach that is pursued here takes advantage

of the fact that the fluid very close to the solid contact points tends to be more

or less stagnant even at moderate Reynolds numbers. In light of this, Kuroki et

al. [56] have proposed a bridge method, wherein they do not change the diameter of

the sphere, but rather unite two contacting spheres with a cylinder placed on the

contact line as shown in Figure 2.1. This technique has the potential to significantly

reduce overall mesh size because the regions where small element sizes are required

have been eliminated. Nelson [74] extended this technique, and created a smooth

fillet between the two contacting surfaces allowing for more continuity in the surface

mesh for the application of prismatic surface layers.

The bulk behavior of flows in porous media and packed beds is strongly affected

by porosity, so it is important that the bridges do not add significant solid volume

to the porespace. The overall increase in solid volume due to a single bridge can

be shown to be

Vb =
π

8
D2

b

(

D −
√

D2 −D2
b

)

−
π

12

(

D −
√

D2 −D2
b

)3

(2.3)
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In this work, the bridge diameter is chosen to be Db = 0.25D, so the volume of a

single cylinder bridge is Vb = 0.0015Vsp, where Vsp is the volume of a single sphere.

Thus, even for packings with moderate coordination numbers, we can expect the

total solid volume to increase by less than 1% (and only in the mostly stagnant

contact regions). By comparison, the more common technique of shrinking the

spheres to 99% of their original size will decrease the solid volume (everywhere)

by roughly 3%.

Figure 2.1: Schematic of the cylinder bridge created between two contacting
spheres.

It quickly becomes challenging and time consuming to generate this type of

geometry and mesh for more than a few spheres using the GUI of a typical mesh

generation package because of the large number of geometric entities and high

surface area to volume ratio. In light of this, a parameterized and automated

approach has been developed that takes advantage of the commercial meshing

package Pointwise’sr full TCL-TK programmability. All sphere-sphere or sphere-

boundary contact points are bridged, then trimmed and joined into a single wa-

tertight model. Once the solid geometry is assembled, a triangular surface mesh is

generated on all solid surfaces. Because of the complex arrangements encountered

in porous media, uniform mesh spacing, ∆ = V
1/3
cv , where Vcv is the cell volume

is used everywhere in the porespace. In geometries with entry/exit regions, mesh

coarsening is used to reduce the total mesh size. An example of the cylinder bridge

geometry and surface mesh is shown in the lower half of Figure 2.2 for a simple
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two sphere system. This meshing tool is robust and can handle arbitrary random

or arranged packings of spheres contained in box or tube geometries. It has been

used to generate meshes with over 80 million control volumes and for geometries

containing over 500 spheres. The interested reader is referred to [29] for examples.

Figure 2.2: Comparison of discrete surface representations used by the body fitted
(bottom) and fictitious domain (top) approaches.

2.2.2 Fictitious domain approach

The computations carried out with the fictitious domain approach utilize a hybrid

Lagrangian-Eulerian (HLE) formulation for representation of arbitrarily shaped

immersed solid objects and is not limited to the spherical objects used here. Al-

though we consider only fixed beds, this fictitious domain approach also allows

accurate representation of either forced or freely moving boundaries embedded in
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the flow and is easily extensible to fluidized bed simulations. Let Γ be the the entire

computational domain, which includes both the fluid (ΓF ) and the solid particle

(ΓP ) domains shown in upper half of Figure 2.2. Let the fluid boundary not shared

with the solid be denoted by β and have a Dirichlet condition (generalization of

boundary conditions is possible). The basis of a fictitious domain approach is to

extend the Navier-Stokes equations for fluid motion over the entire domain Γ in-

clusive of immersed solids [32]. The natural choice for these fixed bed problems is

to assume that the immersed solid region, ΓP , is filled with the same Newtonian

fluid with density (ρ) and viscosity (µ) as ΓF . Both the real and fictitious fluid

regions will be assumed as incompressible and thus equations 2.1 and 2.2 apply

everywhere in the domain. In addition, as the immersed solids are assumed rigid,

the motion of the material inside ΓP is constrained to rigid body motion. Several

ways of obtaining the rigidity constraint have been proposed [32, 80, 100]. We

follow the formulation developed by Sharma & Patankar [100] and described in

detail by Apte et al [2]. A brief description is given here for completeness. The

solid fluid interface, β is located on the Cartesian grid with subgrid scale marker

points as shown in the top half of Figure. 2.2. These marker points carry a color

function indicating the relative location of the interface, and remain fixed during

the simulations.

In order to enforce that the material inside the immersed solid remains rigid, a

constraint is required that leads to a non-zero forcing function f . Inside the solid

region, the rigid body motion, uRBM implies vanishing deformation rate tensor:

1
2

(

∇u+ (∇u)T
)

= D[u] = 0,

⇒ u = uRBM = U+ Ω× r

}

in ΓP , (2.4)

where U and Ω are the translation and angular velocities of the object and r is

the position vector of a point inside the object from its centroid. For the fixed

bed problems considered here, uRBM is always zero. The vanishing deformation

rate tensor for rigidity constraint automatically ensures the divergence free, in-

compressibility constraint inside the solid region. The incompressibility constraint
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gives rise to the scalar field (the pressure, p) in a fluid. Similarly, the tensor con-

straint D[u] = 0 for rigid motion gives rise to a tensor field inside the solid region.

Distributed Lagrange multipliers based approaches have been proposed to solve

for the rigid body motion and impose the rigidity constraint, which requires an

iterative solution strategy. Sharma & Patankar [100] proposed an approach that

provides the rigidity constraint explicitly, thus reducing the computational cost

significantly. Noting that the tensorial rigidity constraint can be reformulated to

give:

∇ · (D [u]) = 0 in ΓP (2.5)

D [u] = 0 on solid/fluid interface, β (2.6)

A fractional-step algorithm can be devised to solve the fictitious domain prob-

lem [80, 100, 2]. Knowing the solution at time level tn the goal is to find u at time

tn+1.

1. In the first step, the rigidity constraint force f in equation 2.1 is set to zero and

the equation together with the incompressibility constraint (equation 2.4) is

solved by standard fractional-step schemes over the entire domain. Accord-

ingly, a pressure Poisson equation is derived and used to project the velocity

field onto an incompressible solution. The obtained velocity field is denoted

as un+1 inside the fluid domain and û inside the solid object.

2. To solve for un+1 inside the solid region we require f . The constraint on

the deformation rate tensor given by equation 2.4, along with the no-slip

specification at the solid-fluid interface can be reformulated to obtain:

∇ ·
(

D[un+1]
)

= ∇ ·

(

D

[

û+
f∆t

ρ

])

= 0; (2.7)

D[un+1] · n = D

[

û+
f∆t

ρ

]

· n = 0. (2.8)

The velocity field in the solid is zero for fixed beds. Thus û is split into a
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rigid body motion (uRBM = U + Ω × r = 0) and residual non-rigid motion

(u′). The above formulation can be easily generalized to solid bodies with

specified motion by directly setting uRBM to the specified velocity.

3. The rigidity constraint force is then simply obtained as f = ρ(uRBM−û)/∆t.

This sets un+1 = uRBM in the solid domain. Note that the rigidity constraint

is non-zero only inside the solid domain and zero everywhere else. This

constraint is then imposed in a third fractional step.

The utility of the Lagrangian marker points (see Figure 2.2) is in locating the

solid/fluid interface and enforcing the boundary condition on β with subgrid scale

resolution in the above steps. A quantity can be defined and calculated at the

marker points (for example f) and then be projected onto the Eulerian grid, or

vice-versa, using accurate interpolation kernels [93]. In practice, because the no-

slip condition at the boundary of the porespace is enforced indirectly, the precision

of the boundary location is directly linked to the grid resolution. This is especially

true near regions of sharp boundary curvature such as sphere to sphere contact

points. This is illustrated in the top half of Figure 2.2 where the solid line denotes

the fictitious domain solid-fluid interface. Even with subgrid marker points, the

high curvature contact region appears as a bridge similar to the one obtained

(intentionally) in the body fitted meshing procedure.

2.2.3 Uncertainty Estimation

In the absence of an analytic solution, it is important to be able to estimate and re-

port the uncertainty associated with a CFD calculation. Furthermore, uncertainty

should be computed in a consistent manner, which can be compared by future

workers using new or different simulation approaches. For this reason, we choose

the grid convergence index (GCI), originally proposed by Roache [89], to quantify

the uncertainty associated with some of our simulation results. The GCI is based

on the ideas of Richardson extrapolation and does not rely on the existence of an

exact solution or the assumption that a very fine grid solution may be taken as
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such. It is robust as a general post-processing tool for error estimation, and has

proven its utility for numerical solutions of a variety of different flows [10].

To compute an uncertainty band for the flow variable, φ, the solution is first

obtained on at least three grids with (not necessarily equal) refinement ratios

r21 = ∆2/∆1 and r32 = ∆3/∆2. For the purposes of comparing results that utilize

control volumes with various shapes, we define the grid spacing in this paper as

∆ = V
1/3
cv , where Vcv is the average cell volume. For nominally two dimensional

cases (such as Section 2.3.1), the analog to this definition is ∆ = A
1/2
cv , where

Acv is the cell area. The fine and medium grid solutions, φ1 and φ2, are then

interpolated to the coarse grid, where the variations, ǫ32(x) = φ3(x)− φ2(x), and

ǫ21(x) = φ2(x)− φ1(x), are computed. From ǫ32(x) and ǫ21(x), the local apparent

order of accuracy, P(x), may be calculated, using the following equation [13].

P(x) =
1

ln(r21)

∣

∣

∣

∣

∣

ln |ǫ32(x)/ǫ21(x)|+ ln

(

r
P(x)
21 − sign(ǫ32/ǫ21)

r
P(x)
32 − sign(ǫ32/ǫ21)

)
∣

∣

∣

∣

∣

(2.9)

In the event that r21 6= r32, a straightforward iteration of equation 2.9 can be used

to determine P(x). The global order of convergence, PG, is then computed by

averaging P(x) at nodes where monotone convergence is observed, indicated by

sign(ǫ32/ǫ21) > 0. The percentage of nodes exhibiting monotone convergence is

denoted %Mn and indicates the degree to which the results are in the asymptotic

regime. Non-monotone grid convergence of CFD solutions is an unfortunate reality,

and is not necessarily cause for excessive concern [22]. Using the global order of

convergence, the GCI of the fine grid solution is then computed as

GCI(x) = Fs

∣

∣

∣

∣

φ1(x)− φ2(x)

1− rPG
21

∣

∣

∣

∣

(2.10)

where Fs = 1.25 is a reasonably conservative factor of safety for a three grid refine-

ment study [91]. In this form, the GCI has the same units as φ, and may be taken

as a local uncertainty band. Alternatively, it may be multiplied by 100/φref , where

φref is some meaningful reference value, to obtain a dimensionless percent relative
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uncertainty. In this work we will report the global uncertainty, GCIG, as the

node averaged percent relative uncertainty with φref equal to the spatial average

of RMS(φ(x)). Boundary nodes, or nodes where φ is fixed (such as within rigid

bodies in fictitious domain computations), are excluded from the global averages.

Finally, the grid resolution required to obtain some target level of uncertainty,

denoted GCI∗, may be estimated as [90]

∆∗ = ∆1 ·

(

GCI∗

GCIG

)1/PG

(2.11)

This is useful for determining simulation size requirements as is done in Section 2.4.

2.3 Performance assessment

The test cases examined here are designed to provide a basis for quantifying the

performance of our two methods for fixed bed flow simulations. First, the influ-

ence of grid type and quality on solution error in the absence of solid boundaries

is demonstrated using the case of decaying Taylor vortices. Second, as a basic hy-

drodynamic validation for packed bed and porous media flows, we examine Stokes

flow through a dilute periodic array. Third, to test the effect of sphere to sphere

contact points on both the body fitted and fictitious domain approaches, flow past

a contacting pair of spheres is simulated. Finally flow through a simple cubic lat-

tice is considered at both steady and unsteady Reynolds numbers. This serves two

purposes. First, the predicted porescale velocity profiles can be compared to those

measured experimentally by [108]. Second, the geometry is simple enough to allow

a detailed grid refinement study from which we can generate error estimates, and

determine the scalability of each approach for larger packed bed simulations over

a broad range of pore Reynolds numbers.
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2.3.1 Baseline accuracy and mesh quality: Decaying Taylor vortices

Based on the numerical implementations, in the absence of immersed solids the

fictitious domain and body fitted approaches are identical. An important first

step in understanding the solution behavior in complex packed bed flows is to

assess the influence of grid type and quality on solution accuracy in the absence

of solid boundaries. To accomplish this, we examine the case of decaying Taylor

vortices [109]. This time dependent solution to the Navier-Stokes equations can

be written as:

ux = − cos(πx) sin(πy) exp− 2π2t
Re (2.12)

uy = sin(πx) cos(πy) exp− 2π2t
Re (2.13)

p = −
1

4
(cos(2πx) cos(2πy)) exp− 4π2t

Re (2.14)

(a) Uniform Cartesian (b) Uniform prism (c) Non-uniform prism

Figure 2.3: Three families of grids used in the Taylor vortex case.

We assign the initial condition at time t = 0 for Re = 10 in a periodic domain

with −1 < x < 1, −1 < y < 1 on the three families of grids shown in Figure 2.3: (a)

uniform, Cartesian grids with cubic control volumes, (b) prism grids with nearly

uniform element size and aspect ratio near 1, (c) prism grids with non-uniform

element size and aspect ratio. The vortex decay is simulated up to a time t = 0.2

on grids with average cell edge lengths of le = 0.1, 0.05, 0.025. This results in grid
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spacing, ∆ = A
1/2
cv = le for the Cartesian grids, and ∆ ≈ 0.66le for the prism grids.

At the end of the simulation, the error in the ux velocity component is computed

at each cell center using equation 2.12. A constant time step, ∆t = 2.5 × 10−3,

is used to isolate the spatial discretization errors, resulting in a maximum CFL

number of CFL = ||u||∆t/∆ = 0.15 for the initial condition on the finest prism

grid. Figure 2.4 shows the L1 and Lmax error norms as a function of grid spacing

for the three families of grids. As expected, the Cartesian grids show perfect

second order spatial accuracy. Second order accuracy in the L1 norm is retained

by the uniform prism grids, but the Lmax norm shows a significant increase in

local error, which underscores the sensitivity of the methods to local grid quality.

The convergence of error on the non-uniform prism grids is slightly better than

first order in both the L1 and Lmax norms, and the magnitude of solution error is

nearly 1 order of magnitude greater than the Cartesian grids. This demonstrates

that unstructured meshes with lower quality cells compared to Cartesian grids can

introduce significant local solution errors. This is important to consider for packed

beds, where irregular geometries make generating uniform triangular/tetrahedral

cells very difficult
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2.3.2 Basic hydrodynamic verification: Stokes flow drag on a single

sphere in a dilute array

To begin validating these approaches for packed bed type applications, we examine

the case of Stokes flow through a dilute periodic array of spheres. The geometry we

consider is a periodic box, with all sides of length L that contains a single sphere

with diameter, D, centered at x = L/2. The periodicity in all directions allows

us to represent an infinite simple cubic arrangement with a single sphere. The

ratio L/D is chosen to be 2.015 to allow for comparison with the integral equation

solutions of [117] for the relatively dilute solid volume fraction of (1− ǫ) = 0.064,

where ǫ is the fluid void fraction . Three Cartesian and tetrahedral grids are

created with D/∆ = 12, 24, 48, where ∆ = V
1/3
cv .

The flow is started from rest, and accelerated by applying a small, uniform

pressure gradient everywhere. When the flow reaches equilibrium, we confirm that

the pore Reynolds number is small enough that inertial effects are negligible, and

the total force exerted on the sphere is then computed. For this case, Rep =
UpD

ν
≈

1 × 10−3 where Up is the average velocity in the fluid region of the porespace, or

pore velocity. In the fictitious domain approach, the drag force, fd, is taken to be

the component of the rigid body force aligned with the applied pressure gradient.

In the body fitted approach, the drag force is obtained by integrating the surface

stress over the sphere boundary faces. The drag force is normalized by the Stokes

drag on a single sphere in unbounded flow to obtain the drag coefficient, Cd.

Cd =
fd

Nsp3πµDUpǫ
(2.15)

Here, Nsp is the number of spheres and is equal to 1 for this case. The computed

values are summarized in Table 2.1 for both approaches. The solutions converge

to within about 2% of the analytic value, Cd = 2.810 obtained by Zick & Homsy.

We also have computed the apparent convergence rate, P and the relative percent

uncertainty using the GCI approach. The body fitted approach, wherein the no-slip

condition is directly enforced at the sphere surface, has a very rapid apparent rate
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of convergence, P = 3.19, leading to very low uncertainty in Cd for the fine grid

solution. The fictitious domain approach, which less precisely defines the surface

via the sub-grid marker points, converges at a more modest rate of P = 1.65,

and achieves a relative uncertainty of 0.59% for D/∆ = 48. The roughly 4%

discrepancy between the converged body fitted and fictitious domain solutions

may be due to differences in grid quality (body fitted) and interface representation

(fictitious domain)

Table 2.1: Comparison of Stokes flow drag coefficient to analytic solution of [117]
for a simple cubic array with solid concentration, (1− ǫ) = 0.064

D/∆ Analytic Body Fitted Fictitious Domain
CD CD P GCI (%) CD P GCI (%)

12 2.810 2.784 - - 3.086 - -
24 2.810 2.857 - - 2.831 - -
48 2.810 2.865 3.19 0.016% 2.750 1.65 0.59%

2.3.3 Effect of the contact point: The contacting pair

Flow past a contacting pair of spheres in a confined channel is chosen as a way

to isolate the effect of sphere to sphere contact regions. The configuration of the

connected body and flow domain is shown in Figure 2.5a. The spheres are located

such that their contact point always lies at the origin, (X, Y, Z) = 0. Uniform flow

enters from a square cross section, 3.5D×3.5D at Z = −5D. A convective outflow

boundary is located downstream of the contact at Z = +5D. A no-slip condition

is enforced on the channel walls. The spheres are rotated around the Y axis by

the angle of incidence, θ, so that the leading and trailing sphere centers have the
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coordinates

(Xl, Yl, Zl) =

(

0, −
D

2
sin(θ), −

D

2
cos(θ)

)

(Xt, Yt, Zt) =

(

0,
D

2
sin(θ),

D

2
cos(θ)

)

The value of θ is varied from 0o to 90o in increments of 15o in order to fully

sample the range of orientations found in realistic packed beds. The uniform inflow

velocity is assigned so the Reynolds number, defined Re = UinD/ν is between 50

and 175, in intervals of 25. The flow is allowed to develop for tUin/D = 30 non-

dimensional time units. To accelerate the development of the flow, solutions from

consecutive Reynolds numbers are used as initial conditions (ie. the Re = 100

solution is used as an I.C. for the Re = 125 simulation). The total hydrodynamic

force on the connected body is monitored and plotted in Figure 2.6 for θ = 00 and

Re = 50, 175, along with similar results from Section 2.3.4, to confirm that 30 non

dimensional time units is sufficient to achieve a steady, developed flow condition.

Mean grid spacing on the surface and in the vicinity of the pair is D/∆ = 40 for

both approaches. Since the goal of this study is to determine the effect of near

sphere grid resolution, the grids are allowed to coarsen far away from the pair near

the inflow and outflow regions. At a distance of 1.5D away from the contact line,

the grid spacing is never greater than twice the surface spacing.

We first confirm that our flow is steady by monitoring the drag force signal

on the surface of the spheres and verifying that no oscillations are present for the

entire range of present conditions. For the confined cases studied here, we see

the development of complex, yet steady flow features as shown in Figure 2.5b-e.

Here, we show select stream-ribbons for θ = 0o, 30o, 60o,and θ = 90o along with

pressure contours in the X = 0 plane. At θ = 0o, the flow stagnates evenly on both

spheres and the contact point, generating a large symmetric recirculation bubble.

As the angle of incidence is increased to 30o and 60o, the recirculation bubble

bends away from the leading sphere and towards the trailing sphere and the flow

is no longer symmetric about the contact line. At θ = 60o there is a noticeable
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(a) Connected solid (b) θ = 0 (c) θ = 30 (d) θ = 60 (e) θ = 90

Figure 2.5: Configuration and flow visualization for the contacting pair case. (a)
Shows the configuration of the connected body. (b-e) are stream ribbon visualiza-
tion of flow around the pair of spheres at Re = 175 and select angles of incidence.
Pressure contours are shown in the X = 0 plane; red indicates high pressure, blue
indicates low pressure.

decrease in stagnation pressure on the trailing sphere, suggesting a drafting effect

is present. At θ = 900, symmetry is regained as the body becomes streamlined,

and the contact point is completely hidden from the oncoming flow by the leading

sphere.

Using the body fitted approach, we can isolate the force on the leading sphere,

F l
z, the trailing sphere, F t

z , and the bridge F b
z by computing directly the surface

integral of viscous and pressure forces on each of the solid boundary zones sep-

arately. In Figure 2.7 the ratio of drag force on the trailing and leading sphere

(F t
z/F

l
z), as well as the ratio of drag force on the bridge to the leading sphere

(F b
z /F

l
z) is plotted as a function of Re. The first ratio demonstrates the increased

drafting ability of the trailing sphere at increased θ or increased Re as would be

expected. The second ratio demonstrates that for all combinations of Re and θ,

the contribution of the bridge to the total drag of the pair is less than 1% of the

leading sphere’s contribution. This ratio is maximized at all Re for θ = 0o, and

decreases as the bridge surface is rotated out of the stagnation region. Roughly
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Figure 2.6: Semi-logarithmic plot of the time history of hydrodynamic force exerted
on the spherical bodies for steady flow conditions in the contacting pair and simple
cubic lattice test cases. The force in each case is normalized by the force at tU/D =
30. N contacting pair at θ = 0o, Re = 50, � contacting pair at θ = 0o, Re = 175,
• simple cubic lattice at Re = 12 , � simple cubic lattice at Re = 204 .

extrapolating, the cylinder bridge drag will be 1% of the leading sphere drag at

θ = 0o for Re ≈ 600, the largest Reynolds number considered in this study.

To verify that the fictitious domain representation of the surface is consistent

with the body fitted representation, especially near the contact points, the velocity

profile in the near wake behind the cylinder bridge is plotted in Figure 2.8 for

Re = 175, θ = 0. Despite the close proximity of the probes to the solid boundaries,

the wake profiles predicted by each approach are in very good agreement. These

results demonstrate that the inability of both methods to completely resolve the

contact point between two spheres should not significantly affect global or local

flow properties in packed beds.
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Figure 2.7: Drag force on portions of the connected body relative to the leading
sphere drag as a function of Re for all values of θ tested. (a) The trailing sphere
drag, F t

z/F
l
z. (b) The bridge drag, F b

z /F
l
z. � θ = 0o, N θ = 15o, H θ = 30o,◮ θ =

45o, � θ = 60o,• θ = 75o,◭ θ = 90o.
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Figure 2.8: Velocity profiles in the near wake behind the contacting pair at Re =
175, θ = 0o. (a) Probe locations. (b) Streamwise velocity profile (—)body fitted,
(- - -)fictitious domain.
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2.3.4 Performance in porous geometries: Flow through a simple

cubic lattice

In this test case, pore scale flow through square channels filled with a simple

cubic lattice of spheres is examined. The configurations are chosen to be similar

to the experiments of Suekane et al. [108] who used MRI techniques to make

detailed three dimensional measurements of the porescale velocity field. To our

knowledge, it is one of the only experimental measurements of its kind, and has

served as a validation for several other numerical studies including [35] and [78].

We consider two slightly different computational domains shown in Figure 2.9a.

The first configuration, intended to match the experiments of [108] as closely as

possible, consists of six layers of diameter D = 28mm quarter spheres located

in the corners of the channel, with no-slip boundaries enforced on the exterior

channel walls. This domain is used to simulate Reynolds numbers based on the

pore velocity, Up, of Re = UpD/ν = 12.17, 105.57, and 204.74, allowing for direct

comparison with the experiments. Flow in this configuration is driven by a constant

inflow boundary, located 5D upstream of the first sphere (not shown in the Figure),

where Uin = ǫUp, and the fluid fraction is ǫ = 0.476 for this arrangement. A

convective outlet is located 5D downstream of the last sphere. The flow is started

from rest and simulated for tUp/D = 10 non dimensional time units for each

Reynolds number, which is sufficient to obtain a fully developed steady flow field

as confirmed in Figure 2.6.

In order to test the performance of the solvers for unsteady flows with vortex

shedding, a second configuration is considered to simulate Re = 450 and 600 as

there is no experimental data in this flow regime. This configuration consists of

six layers of complete spheres stacked in the center of the channel. It has periodic

boundaries on all exterior channel walls that allows for faster symmetry breaking

and transition to unsteady flow. The flow is initialized with large wavelength

sinusoidal fluctuations and the flow is simulated for at least tUp/D = 60 time

units to allow the unsteady dynamics to reach a stationary state. During the

simulation, a body force is continuously adjusted so that the the target Reynolds
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numbers are achieved. At the end of all simulations, the flow is probed along the

line Y = 0, Z = 0, as shown in Figure 2.9a, which traverses the center of the fifth

pore in both configurations.

(a) Computational Domains (b) Surface Mesh

Figure 2.9: Setup of flow through a simple cubic lattice. (a) shows the two compu-
tational domains used. The orientation of the line probe used is indicated by the
vector velocity profiles. (b) shows the D/∆ = 64 surface mesh used in the body
fitted simulations.

For the body fitted approach, the domains are discretized using unstructured,

tetrahedral meshes as described earlier. Each full or quarter sphere was created

at its exact diameter inside the channel. Then a small cylindrical region of fluid,

with diameter Db = 0.25D, is removed from the near the contact points. The

entire connected solid is subtracted from the channel resulting in a watertight

solid boundary. Uniform size tetrahedral elements with ∆ ≈ V
1/3
cv are created

throughout the channel. A closeup view of the surface of the body fitted mesh
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Table 2.2: Grids used to simulate flow through the simple cubic lattice.
D/∆ = 128 D/∆ = 64 D/∆ = 32 D/∆ = 16
Tet. Cart. Tet. Cart. Tet. Cart. Tet. Cart.

Ncv In/Out 7.62M 17.9M 1.13M 2.245M 190k 281k 54k 35k
Ncv Periodic 6.33M 12.6M 867k 1.57M 119k 196k n/a n/a

with D/∆ = 64 is shown in Figure 2.9b. The tetrahedral grids are high quality;

the maximum cell aspect ratio is 4 or less for all meshes. Regular Cartesian grids

are used for the fictitious domain approach that include both the fluid and solid

portions of the channel. Four meshes were generated for each method with mean

spacing, D/∆ = 16, 32, 64, 128. The total cell count for each mesh is summarized

in table 2.2.

Fine, medium, and coarse grid results are used to estimate the uncertainty in

the fine grid solution obtained with each approach by applying the GCI method

outlined in Section 2.2.3. For Re = 12, grids with D/∆ = 64, 32, and 16 are

used, while the Re = 105, 204, 450, and 600 simulations use grids with D/∆ =

128, 64, and 32. Since grid independence of one flow property does not necessarily

imply grid independence of another, it is important to use multiple measures to

fully understand the convergence behavior. For the steady flow rates, the grid con-

vergence properties are computed for the streamwise velocity component, φ = uz,

as well as the non-dimensional macroscale pressure gradient, φ = Ψ = ∆P
L

D
ρU2

p

ǫ
1−ǫ

.

For φ = uz we are directly assessing the convergence of the porescale velocity

field, while for φ = Ψ, we are assessing the convergence of a macroscale integrated

property. For the unsteady flow rates, the analysis is done for the time averaged

streamwise velocity, φ = uz, as well as the time averaged turbulent kinetic energy,

TKE =
∑

u′2
i . These two measures capture the mean and fluctuating character

of the porescale flow respectively. Key results of the analysis are reported in ta-

ble 2.3. For all porescale properties the max and RMS value of φ predicted by the

two approaches are in reasonably good agreement, with the exceptions discussed

further below. The monotone convergence rate is significantly higher for the fic-

titious domain approach in all cases, indicating that the solutions on the three
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Cartesian grids are more fully in the asymptotic regime relative to the body fitted

tetrahedral grid results. The global apparent rate of convergence, PG, is bound

by the formal second order accuracy of the spatial discretization schemes (with a

few exceptions discussed below), and is observed to be between roughly 1.3 and 2.

In general, it is higher for the body fitted results. Even though the convergence

rate is higher, the difference between the fine and medium grid solutions (φ1 −φ2)

is in general much more significant with the body fitted approach, leading to a

much higher global uncertainty, GCIG, of the porescale quantities in most cases.

The convergence of the integral pressure drop at the steady flow rates behaves

differently and is discussed in more detail below. From the uncertainty estimates

associated with the fine grid solutions, the grid density required to achieve a 5%

uncertainty level, D/∆5% is estimated from equation 2.11. In many cases, the grid

requirements based on the porescale quantities are significantly stricter for the the

body fitted approach.

It is helpful to take stock of the results in the table in more detail while at the

same time examining the grid convergence behavior graphically. The fine, medium,

and coarse grid predictions of streamwise velocity along the Y = 0, Z = 0 line

are plotted in Figure 2.10a-c for the steady flow rates. In this Figure as well

as Figures 2.12 and 2.14, the body fitted solutions are shown in the left hand

column and the fictitious domain solutions are shown in the right hand column.

In the main portion of the sub-figures, only the fine grid result with error bars

corresponding to GCI(x) is plotted for clarity alongside the experimental data of

[108]. In the insets, the medium and coarse grid solutions are shown as well, for

the region near |X/D| . 0.15, to illustrate the convergence with grid refinement.

In both methods, refinement results in convergence of the solution towards the

experimental data. The maximum and RMS values of uz are similar for all cases

on the fine grids. In all cases there is good agreement between the experimental

data points, and the medium to fine grid solutions. It is evident that as Reynolds

number is increased, the significant flow inertia gives rise to a strong jet through

the center of the pore (|X/D| . 0.15), and symmetric backflow regions close to the
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walls (|X/D| ≈ 0.35) for Re = 105 and 204. For these steady results, the global

apparent rate of convergence, PG, is roughly 1.75 for the body fitted results and

varies from 1.35 to 1.65 for the fictitious domain results. This overall lower rate

of convergence may be due to the higher percentage of monotone nodes, %Mn,

obtained with the fictitious domain approach, 82% or more. Despite enjoying a

slightly better convergence rate, the global relative uncertainty of the fine grid

body fitted solution, GCIG, is roughly two to three times more than the fictitious

domain solution in each case. This indicates that local errors are introduced by the

unstructured meshes, similar to the observations made in the Taylor vortex case.

Using equation 2.11, the grid density required to obtain a (relatively arbitrary)

target global uncertainty level of 5% was computed and found to be roughly twice

as much for the body fitted approach. For this fixed level of uncertainty, these

steady Reynolds numbers will require between 53 and 77 cv/D with the body

fitted tetrahedral grids, but only 28 to 44 cv/D with a Cartesian grid and the

fictitious domain approach.

The non dimensional pressure drop for the steady flow rates predicted by both

methods using the fine grid is plotted in a Figure 2.11 alongside the correlation

of Ergun [24] for random packed beds. To produce the data points, the pressure

is spatially averaged in two planes located L = 2D apart in the streamwise di-

rection once the flow is fully developed. The figure and the results in table 2.3

show that the results from both types of simulations are in agreement in the fine

grid solutions. However, the GCI analysis indicates that there is significantly less

uncertainty in the body fitted result (especially for Re = 105 and 204), which is

surprising given the observations of the interstitial velocity profiles. Inspection

of the convergence trends shows that the body fitted pressure drop converges at

a rate higher than the formal second order of accuracy of the code. This raises

questions about the reliability of using such a result, and shows the danger of using

integral measurements alone to assess grid convergence of the pore scale flow field.

Deviation of the results from the Ergun correlation at increased Reynolds numbers

is most likely a result of the simple cubic arrangement, and has also been observed
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Figure 2.10: Comparison of interstitial velocity profiles with the data of [108] Along
the Y = 0, Z = 0 line probe shown in Figure 2.9a. (—) Fine Grid ∆1 shown with
error bars, (- - -) Medium Grid ∆2, (- · -) Coarse Grid ∆3, • Experiment. Left
column shows body fitted solution. Right column shows fictitious domain solution.



35

by [35]. This particular configuration allows a high inertia jet to develop in the

center of the channel that is not typically seen in the large random configurations

the correlation was developed from.

Re

Ψ

0 50 100 150 200 250

10
0

10
1

10
2

Body Fitted

Fictitious Domain
Ergun Correlation

Figure 2.11: Non-dimensional pressure drop as a function of Reynolds number for
steady flow through the simple cubic lattice.

We now consider results from the two unsteady Reynolds numbers in the peri-

odic domain. In Figure 2.12, the interstitial profiles of the time averaged stream-

wise velocity uz are shown along the Y = 0, Z = 0 line probe. The global relative

uncertainty for the fine grid solution is good for both methods, less than 5% in

each case. At Re = 600 the fine grid mean velocity profiles (Figure 2.12b) are

in good agreement. Examination of the interstitial velocity profiles at Re = 450

(Figure 2.12a), however, reveals a noticeable discrepancy between the body fitted

and fictitious domain predictions. In the fictitious domain solution, the average

velocity profile is flattened out somewhat in the pore center, while the body fitted

profile retains a larger maximum velocity and the parabolic character observed at

Re=105 and 204. This suggests that the porescale unsteady dynamics predicted by

the two approaches may be different. This suspicion is confirmed by Figure 2.13,

which is shows the time history and frequency spectra of the transverse (X) veloc-

ity component at the point X/D = −0.36, Y/D = 0, Z/D = 0 computed on the

fine grid using both approaches. At Re = 450, a single dominant frequency with

a Strouhal number of St = fD/Up ≈ 0.75 is evident in the body fitted solution,
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Figure 2.12: Time averaged streamwise velocity component along the line Y/D =
0, Z/D = 0 for unsteady flows in the periodic simple cubic lattice. Left column
shows body fitted solution. Right column shows fictitious domain solution. (—)
Fine Grid ∆1 shown with error bars, (- - -) Medium Grid ∆2, (- · -) Coarse Grid
∆3.
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while the fictitious domain solution shows energetic fluctuations over a broader

range of frequencies. Interestingly, the fluctuations observed by both methods at

Re = 600 seem to be in better agreement. The transition to unsteadiness and

turbulence in packed beds is a very sensitive process, and it is possible that the

dynamics of weakly unsteady flows could be altered by the type of grid being used.

Tetrahedral grids cells will, in general, be more susceptible to numerical diffusion

than uniform hexahedral cells. We believe that especially for flows in this transi-

tional (sub turbulent) regime, modest amounts of dissipation due to the grid type

could lead to noticeable changes in the dynamics of the mean flow.

A more appropriate level of confidence for these Reynolds numbers can be

obtained by examining the uncertainty in the TKE distribution, shown in Fig-

ure 2.14. The fictitious domain approach has relatively low global uncertainty of

around 4-5% and the main features seem to be captured along the interstitial pro-

files, even on coarse grids. The body fitted approach on the other hand has much

larger global uncertainty, 16% and 10% for Re = 450 and 600 respectively, and the

peaks in the interstitial profile change significantly on the coarse, medium and fine

grids. At Re = 450, both the mean and RMS values of TKE are significantly lower

in the body fitted solution relative to the fictitious domain solution, indicating

more dissipation may be occurring due to the unstructured meshes.

These unsteady flow results underscore a troubling aspect of uncertainty assess-

ment for CFD results in general. Quantities of interest in numerical solutions to

complex flow problems need not converge in the same way, and false positives may

indicate convergence in one variable when another is completely unresolved. In

our case we may very reasonably judge that when using the body fitted approach

the medium grid should provide a high quality solution for Re = 450 if we only

consider convergence of the mean flow, when in fact the unsteady velocity fluctu-

ations are completely unresolved and appear to degrade the accuracy of the time

averaged solution. This emphasizes the need for thorough and quantitative grid

convergence studies in CFD, especially for the complex configurations presented

by packed bed and porous media flows.
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Figure 2.13: Time history of the transverse velocity component, ux, and it’s non-
dimensional frequency spectra at a point in the main recirculation zone (X/D =
−0.36, Y/D = 0, Z/D = 0) for the two unsteady Reynolds numbers simulated.
(- - -) Body fitted approach, (—) fictitious domain approach.
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Figure 2.14: Time averaged turbulent kinetic energy along the line Y/D =
0, Z/D = 0 for unsteady flows through the simple cubic lattice. Left column
shows body fitted solution. Right column shows fictitious domain solution. (—)
Fine Grid ∆1 shown with error bars, (- - -) Medium Grid ∆2, (- · -) Coarse Grid
∆3.
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2.4 Scale up to realistic packed bed simulations

With the results presented up to this point in mind, it is possible to estimate

the computational expense required for simulation of more general packed bed

problems. Consider a rigid container that contains a matrix of randomly arranged

spheres. The volume of the computational domain that must be meshed can be

written in terms of the sphere diameter, D, as Vc = ǫmNcD
3, where Nc relates

the container volume to the sphere diameter ( ie. a 3D × 3D × 6D container has

Nc = 54), and ǫm is the effective meshing porosity. It is equal to 1 in the fictitious

domain approach, where the entire fluid/solid region is meshed, and equal to ǫ in

the body fitted approach where only the fluid domain must be discretized. For

∆ = V
1/3
cv , the total number of control volumes, Ncv, required to mesh the volume,

Vc, will be:

Ncv = ǫmNc

(

D

∆

)3

(2.16)

For the time accurate solutions obtained in this work, the time step, ∆t, is re-

stricted for temporal accuracy by the CFL number, which we define following [54]

for an arbitrary cell as,

CFL =
1

2

1

Vcv

∑

faces

|UfAf |∆t (2.17)

Where Af is the area of a single cell’s face. If we assume that the length Af/Vcv is

constant for all faces of a given cell (true for all regular polyhedra), and we assume

the face velocity to be proportional to the pore velocity, we can re-write the CFL

number as,

CFL =
Cs|Up|∆t

∆
(2.18)

Where cell shape factor, Cs =
Afa

V
2/3
cv

, has been introduced. This ratio of areas is equal

to 1 for cubic cells, and 1.81 for perfect (regular) tetrahedral cells. In practice, it is
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difficult to mesh a complex three dimensional domain with perfect tetrahedral cells

everywhere and Cs can be much higher. On average for our tetrahedral meshes, we

see that the time step must be 5 times lower when compared to the Cartesian mesh

of the same resolution to obtain the same CFL, implying that Cs ≈ 5. With this

in mind, we can express the total number of timesteps, Nt, required to simulate

one non-dimensional time unit, t = D
Up
, as

Nt =
t

∆t

=
Cs

CFL
·
D

∆
(2.19)

For perfect parallel scalability the computational expense (CPU-Hrs), of a time

accurate, finite volume simulation is proportional to Ncv times Nt, implying that,

CPU ∝ (ǫmNc) ·

(

Cs
CFL

)

·

(

D

∆

)4

(2.20)

The present finite volume solver shows good (nearly perfect) scalability for up

to 500 processors [44]. The constant of proportionality in equation 2.20 could in

general be dependent on Re, CFL, D/∆, as well as the hardware being used to run

the simulation, and is difficult to measure. Nonetheless, it is important to note that

the computational expense should scale like
(

D
∆

)4
. The speedup that is obtainable

by moving from a body fitted to fictitious domain simulation of flow through a

packed bed can be estimated from the GCI analysis presented in Section 2.3.4.

If we require a fixed level of uncertainty in our solution variable, φ, say 5%, we

can set the grid resolution, D/∆ in equation 2.20 to the required grid resolutions

from table 2.3. We find that the theoretical speedup factor, S = CPUBF/CPUFD,

listed in table 2.4 for each case is between 1.9 and 65.

These estimates may seem unreasonably large until looking at actual CPU

timings in as close of a 1:1 comparison as possible, for example, flow through the

periodic simple cubic lattice. For this case, the CPU times required to simulate

one non-dimensional time unit are summarized in table 2.5. This case was run

with both methods at Re = 450 and 600 using CFL ≈ 0.5. Simulations using the
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Table 2.4: Estimated simulation speedup for obtaining a solution with 5% uncer-
tainty. S = CPUBF/CPUFD computed using equation 2.20.

Re φ D/∆5% S
BF FD

12 uz 53 28 36
105 uz 74 33 63
204 uz 77 44 24
450 uz 125 76 19
450 TKE 249 111 65
600 uz 96 103 1.9
600 TKE 191 135 10

D/∆ = 64 and 128 grids were performed on the Lonestar supercomputer at the

Texas advanced supercomputing center. For the same Re and D/∆, the fictitious

domain simulation requires significantly less CPU time, between 63% and 84% as

much as the body fitted simulation. The GCI analysis of the results has shown that

if less than 5% uncertainty is required in the solution, the body fitted simulation

could require roughly double the grid density of the fictitious domain simulation.

Combining these two observations suggests that an actual speedup of about 5 times

is likely for solutions of equivalent uncertainty. In practice the desired uncertainty

level may be more or less strict than the 5% level used for the estimates here,

leading to higher or lower grid density requirements. However, these scalability

and speedup estimates should retain roughly the same character.

2.5 Flow through a randomly packed bed

We now examine the case of flow through a random sphere pack using the fictitious

domain approach. This is intended to demonstrate the capability of the fictitious

domain approach for the random sphere arrangements typical of engineering appli-

cations. The packing we consider is a relatively loose arrangement of 51 spheres in

a box with sides Lx = Ly = Lz = 4D, resulting in the void fraction ǫ = 0.58. It was
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Table 2.5: Observed computational expense using both approaches for simulating
the simple cubic lattice case in a periodic domain with CFL ≈ 0.5

CPU-Hr/(D/U)
D/∆ Re Body Fitted Fictitious Domain
64 450 111 80
128 450 340 284
64 600 118 87
128 600 470 298

generated using a ballistic deposition algorithm, similar to the method employed

by [4]. The flow is driven in the positive Z direction by a constant inflow velocity

boundary located 3D upstream of the packing so that the Reynolds number for

the flow is Re = Up∗D

ν
= 600, where Uin = Upǫ is the assigned inflow velocity. A

convective outlet condition is located 3D downstream of the packing. The flow is

started from rest and allowed to develop to a non-dimensional time tUp/D = 130.

The fictitious domain approach was chosen for this case because of the supe-

rior scalability demonstrated in the previous section as well as the guarantee of

good mesh quality, even for random packings. Three Cartesian grids with uniform

spacing ∆ = D/80, D/56, D/40 in the porespace are used to quantify the grid

convergence. The grids are stretched toward the inlet and outlet faces so that the

grids contain a total of 47 million, 16 million and 5 million control volumes, respec-

tively. These grids provide a roughly constant refinement ratio of r21 ≈ r32 = 1.4.

A qualitative visualization of the simulation domain and instantaneous flow

field is provided in Figure 2.15. For this Reynolds number and packing geome-

try, the porescale flow is unsteady, but not turbulent, and is dominated by helical

vortices, elongated in the mean flow direction. In their simulations of transitional

flows in close packed ordered arrays, [48] observed that regions of strong helicity

became more pronounced with increasing Reynolds number, up to the limit of un-

steadiness. Following their definition, we compute the cosine of the angle between
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(a) (b) (c)

(d)

Figure 2.15: Visualization of the instantaneous porescale flow through the ran-
domly packed bed of Nsp = 51 spheres. (a) shows the simulation domain and
sphere surfaces (transparent) along with instantaneous vortical structures corre-
sponding to isosurfaces of λci/λ

max
ci = 0.25. The isosurfaces are colored by cos(φ),

indicating relative helicity. (b) shows contours of cos(φ) on the Z/D = 2.5 cross
stream slice and the location of two pores, P1 and P2 used in convergence analy-
sis. (c) and (d) show the instantaneous, cross stream velocity vectors in the pores
labeled P1 and P2.
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the vorticity and the velocity vectors,

cos(φ) =
ω · u

‖ω‖‖u‖
. (2.21)

Regions with ‖cos(φ)‖ ≈ 1 indicate strong helical or corkscrew like trajectories.

Instantaneous vortex cores are detected using the swirling strength criteria, λci

[115], and are visualized as isosurfaces of λci/λ
max
ci = 0.25 in Figure 2.15a, where

λmax
ci is the maximum value of swirling strength in the domain. The surfaces

are colored by cos(φ), indicating the relative orientation and magnitude of helical

vortex motion. In Figure 2.15b, the contours of the cos(φ) field are shown in the

cross-stream, Z/D = 2.5 plane. Near the surface of the spheres, and at the exterior

wall boundaries, the flow is nearly two dimensional, and cos(φ) is small. In the

pores however, regions of cos(φ) ≈ ±1 are dominant. Assuming the velocity and

vorticity are directed nominally in the +Z direction (out of the page), blue regions

indicate clockwise helical trajectories (cos(φ) < 0) and counter-clockwise helical

trajectories are indicated by red regions (cos(φ) > 0). Instantaneous snapshots

of the cross-stream vector field in two pores, labeled P1 and P2 are shown in

Figures 2.15c and 2.15d. The length scale of these vortical structures appears to

be roughly D/10 to D/20, and the magnitude of the cross-stream velocity is on

the order of 1Up. In these vector plots, we also show the location of the line probes

used to assess grid convergence of the pore velocity.

The grid convergence of the solution is demonstrated in Figure 2.16. First,

the total hydrodynamic force on the spheres is non-dimensionalized according to

equation 2.15, and plotted as a function of time in Figure 2.16a for the three

different grid resolutions. Both the time average, CD, as well as the fluctuations

in CD are sensitive to the grid spacing. Performing a convergence analysis on CD,

using equations 2.9 and 2.10, we estimate the order of convergence to be P = 1.30,

and determine the uncertainty in the fine grid solution to be GCI = 8.24% or

CD = 245.1± 20.2.

The convergence of the time averaged streamwise velocity, uz, in the Z/D = 2.5
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slice is also examined. Averaging over all nodes with monotone convergence (44%

of all nodes in the post processing grid), the globally averaged observed convergence

rate for this quantity is PG = 3.3. This is above the formal order of accuracy of

the code, and could be due to the ∆ = D/40 solution being out of the asymptotic

convergence range in some regions. Using this convergence rate results in a globally

averaged uncertainty of GCIG = 5% of RMS(uz).

Because of the randomness of the bed, certain regions of the porespace are more

grid converged than others. This is demonstrated by the velocity profiles extracted

from pores P1 and P2, which are plotted in Figure 2.16b and Figure 2.16c. The

line probe through pore P1, along the line X/D = 0.16, Z/D = 2.5 demonstrates

good convergence and low uncertainty for ∆ = D/80. In fact, the only slight

differences in the solution on all three grids seems to be near the counter-rotating

helical features between Y/D = 2 and Y/D = 2.5. The probe in the P2 pore along

the line Y/D = 1.85, Z/D = 2.5 indicates larger uncertainties and worse overall

convergence. We believe that the randomness of the bed could be the cause of

this behavior. Slight shifts in mean flow upstream of this plane for example could

propagate non-linearly downstream. This was not an issue when examining the

results for structured packings (Section 2.3.4), but should certainly be a considera-

tion when performing resolved simulations of random arrangements. Nonetheless,

the major features of the velocity profile along the line, including a maximum near

X/D = 2.1 and minima near X/D = 1.7 and X/D = 2.6, are consistent across the

three grids.

The statistical nature of the porescale flow has been examined by plotting the

PDFs of the instantaneous velocity components as well as cos(φ) for one instant

in time in the porespace (0.5 < Z/D < 3.5). In Figure 2.17 the PDF of each

of the velocity components is shown. The PDFs have been normalized to have a

standard deviation of one, for comparison with the Gaussian distribution, plotted

as a solid line, and with the lattice Boltzmann simulations of [48] for structured

close-packings. Similar to their study, there is a peak in the PDF of each velocity

component for ui = 0, corresponding to the large amount of fluid influenced by the
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Figure 2.16: Grid convergence analysis for the randomly packed bed. (a) Time
history of the drag coefficient. (b) Time averaged streamwise velocity, uz non-
dimensionalized by UP in pore P1, along the line X/D = 0.16, Z/D = 2.5. (c)
Same as (b) but along the line Y/D = 1.85, Z/D = 2.5 in pore P2.

solid boundaries. The cross stream components have a nearly Gaussian spread,

but with wider tails at high velocity. In comparison, Hill and Koch observed tails

with less spread than the normal distribution. This difference is likely due the

high void fraction of the present sphere packing, which can accommodate larger

cross-stream fluid motion relative to the structured close packing. The PDF of

the streamwise component, uz indicates that a significant portion of fluid, roughly

7%, is directed upstream, also similar Hill and Koch’s observations. The PDF of

of cos(φ), shown in Figure 2.18, corresponds well with their results. The peak at 0

is due to the strong influence of the walls, near which the flow is two dimensional,

even at this relatively high Reynolds number. The symmetric tails of the PDF,

with peaks at ±1 show the high degree of strong helical motion in the porespace.
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Figure 2.17: Normalized probability distribution function of the velocity compo-
nents in the porespace for flow through the random packing. ♦ ux, � uy, ◦ uz, —
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Figure 2.18: Probability distribution function of the cosine of the angle between
the velocity and vorticity vectors in the porespace for flow through the random
packing.
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2.6 Conclusions

The performance of a fictitious domain approach relative to a body fitted approach

has been assessed for simulation of flow through packed beds of spheres. The

body-fitted approach utilizes a cylinder bridge model during mesh generation to

avoid troublesome sphere to sphere contact points. This strategy avoids major

modification of the solid geometry and removes areas where small elements are

required. The main advantage of the fictitious domain approach for fixed bed

and porous media problems is that it can use regular Cartesian grids, and avoids

unstructured mesh generation all together. In this case, the solid-fluid interface

is accurately represented using Lagrangian marker points with subgrid resolution,

and a rigidity constraint within the solid bodies is imposed to enforce the no-slip

boundary condition.

Several test cases have been examined to address particular concerns associated

with simulating flow in packed beds. It was first shown using decaying Taylor

vortices that local grid quality issues can result in a significant increase in solution

error, even for only mildly skewed cells. This is an important point to consider

for packed bed simulations because in large scale random packings, some skewed

elements are inevitable when creating a body fitted mesh. The case of Stokes

flow in a dilute periodic array was used as a basic hydrodynamic validation case

relative to packed beds, without having to consider sphere to sphere contact points.

Using the case of two contacting spheres, it was shown that for moderate Reynolds

numbers the region of fluid very close to the contact point has little effect on the

bulk flow, and may be safely removed as is deliberately done in the bridge meshing

technique. This is also reassuring for the fictitious domain technique, which can

only resolve sphere to sphere contact points at the scale of the Cartesian mesh. The

final test case considered, flow through a section of a simple cubic lattice, allowed

us to perform a detailed comparison of both methods in a prototypical sphere

packing. In this case, a systematic grid refinement study has been performed,

with the grid convergence index (GCI) used to assess uncertainty of the fine grid

solutions. Both methods perform well at steady flow rates (Re = 12, 105, 204)
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in the sense that they predict interstitial velocity profiles in agreement with the

experimental data of [108]. The difference is that fictitious domain approach is

able to obtain a solution with low uncertainty using a much lower grid density

than the body fitted approach. Similar trends are observed for the unsteady flow

rates (Re = 450, 600). In these cases, the body fitted approach is observed to have

large uncertainty associated with the TKE distribution, making it undesirable for

use at higher Reynolds numbers.

The scalability of both approaches for general, random packed bed flow sim-

ulations has been estimated. For a predetermined target level of uncertainty the

computational expense, estimated to be proportional to the number of control

volumes times the number of timesteps, is found to be between 1.9 and 65 times

more for the body fitted approach compared to the fictitious domain approach for

the cases considered. Actual CPU timings for the periodic SCP channel indicate

that speedup may be more modest, perhaps 5 times. Finally, the fictitious domain

approach has been applied to a more practical case of unsteady flow at Re = 600

through a random packing of 51 spheres. The results show grid convergence in

global and local time averaged quantities, although the randomness of the packing

results in significant variation in the local uncertainties. Nonetheless, results cap-

ture complex instantaneous porescale flow features and are used to further explore

helical motions in random arrangements. Good statistical agreement is obtained

with prior Lattice Boltzmann results of [48].
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Abstract

The characteristics of pore scale vortical structures observed in moderate Reynolds

number flow through mono-disperse packed beds of spheres are examined. Our re-

sults come from direct numerical simulations of flow through (i) a periodic, simple

cubic arrangement of 54 spheres, (ii) a wall bounded, close packed arrangement

of 216 spheres, and (iii) a realistic randomly packed tube containing 326 spheres

with a tube diameter to sphere diameter ratio of 5.96. Pore Reynolds numbers in

the steady inertial ( 10 . Re . 200) and unsteady inertial (Re ≈ 600) regimes are

considered. Even at similar Reynolds numbers, the vortical structures observed

in flows through these three packings are remarkably different. The interior of

the arranged packings are dominated by multi-lobed vortex ring structures, which

align with the principal axes of the packing. The random packing and the near

wall region of the close packed arrangement are dominated by helical vortices,

elongated in the mean flow direction. In the simple cubic packing, unsteady flow is

marked by periodic vortex shedding that occurs at a single frequency. Conversely,

at a similar Reynolds number, the vortical structures in unsteady flow through the

random packing oscillate with many characteristic frequencies.

3.1 Introduction

The flow of fluid through a packed bed of spheres is a fundamental problem, rich

in its applicability to a variety of disciplines. For example, groundwater hydrol-

ogists [114, 88], chemical engineers [17] and nuclear reactor designers [45] often

consider flow through strikingly similar arrangements of fixed, contacting spheres

as a prototypical problem for more complex systems. Despite such broad impor-

tance, the existing body of knowledge related to the flow physics of such problems

is limited, particularly at moderate to large flow rates. For Stokesian, creeping

flow, fluid streamlines conform naturally to the boundary of the porespace. In this

case, the general behavior of the flow may be adequately described using geometric



53

(a) macroscale

Lmqm

(- - -)Vm

A

B

C D

E

A

B

C
D

E

(b) porescale

Lp = f(Dsp, ǫp) (- - -)Vp

Ljet, Ujet

Lvx, Uvx

Figure 3.1: Illustration of the multiscale nature of porous media flows. (a) shows
a representative macroscale volume. (b) shows the porescale where complex hy-
drodynamic interactions occur.



54

or network models [8], and simple relationships are available for macroscale prop-

erties such as Darcy’s law for permeability. However, at larger flow rates, porous

media and packed bed flows become highly non-linear and multiscale in nature

due to the contribution of flow inertia. This makes a-priori determination of the

flow characteristics difficult or impossible even for simple, homogeneous sphere

packings.

This multiscale nature of inertial flows through porous media and packed beds

is illustrated in FIG. 3.1. The macroscale is often used to describe the largest

representative scale encountered in the field or laboratory. The macroscale flow

can be simply characterized with a length scale Lm, volume Vm, porosity, ǫm and

flux qm. Typically it is macroscale properties including permeability, dispersion

coefficients, or reaction rates that are of interest to practical engineering applica-

tions. Such properties derive from hydrodynamic interactions at the porescale or

Darcy scale, shown as a single pore subset of the macroscale volume in FIG. 3.1b.

At the porescale the length and volume scales are functions of the local pore ge-

ometry, Lp, Vp = f(Dsp, ǫp). These scales, along with the Reynolds number,

govern the hydrodynamic character of the flow. We define the Reynolds num-

ber, following Ergun [24] and Dybbs & Edwards [21], as Re = ρUpDsp

µ
· ǫ
1−ǫ

, where

Dsp is the sphere diameter, Up = qm/ǫm is the pore averaged flow velocity. As

Reynolds number is increased from creeping flow rates, it has been observed both

experimentally [21, 108], and computationally [50, 48] that the porespace becomes

increasingly dominated by inertial flow features such as steady or unsteady jets,

vortices, and stagnation regions.

Vortical flow features are of particular interest in porous media because of the

implications they have for mixing and dispersion in the porespace. Vortices can

enhance mixing by collecting streamlines from distant sources and ejecting them

along new trajectories after exchange of fluid. Helical vortices with corkscrew

trajectories are good examples of this, and are common features in inertial flows

through porous media [48]. At unsteady Reynolds numbers, flow oscillations pro-

vide an effective means for enhancing fluid transport, and vortical features are often
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the backbone of these oscillations. Alternatively, vortices can act as dead zones,

such as stationary recirculation bubbles in bluff body wakes, where entrained fluid

is bounded by closed streamlines and residence time is high.

The case for detailed and accurate simulation to investigate these types of fea-

tures is particularly compelling considering the challenges associated with making

detailed three dimensional flow measurements in the interior of a solid sphere ma-

trix, although new experimental techniques such as index of refraction matched

PIV, and MRI are helping [3, 52, 106, 51]. Broadly, resolved simulation methods

used for flow through porous media can be classified by the way in which they rep-

resent the fluid/solid interface. To obtain a detailed description of the pore-scale

flow field, appropriate boundary conditions (typically no-slip) need to be suitably

enforced on the solid boundaries of the porespace, and the porespace needs to be

sufficiently resolved by the computational grid. Body fitted grid methods, where

the Navier Stokes equations are solved on unstructured grids that conform to the

solid boundaries of the porespace, have probably been the most popular type of

approach [18, 4, 34, 74], and is the method that is pursued here. However, body

fitted grid generation is complicated for porous media and packed bed geome-

tries, and a care must be taken to avoid poor mesh quality, as described in the

next section. Alternatives to the body fitted approach exist, including the lattice-

Boltzmann method, immersed boundary methods and fictitious domain methods.

The Lattice-Boltzmann method solves the Boltzmann equation of particle mo-

tion on a regular grid or lattice, which approximates the statistical distribution of

fluid motion in space and time. This method has been used by Hill, Koch and

coworkers [50, 49, 48, 47] to investigate inertial flows in packed beds and by Pi-

lotti [87] in a synthetically generated porous medium. Immersed boundary and

fictitious domain methods, which have been applied widely to problems with com-

plex or moving boundaries, are also beginning to see application to porous media

flows [78, 30]. These methods use Cartesian, non body-conformal grids, and en-

force surface boundary conditions with the addition of a local forcing term in the

momentum equation. Recently Finn & Apte [30] have made comparisons of the
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traditional body fitted approach to a Cartesian grid fictitious-domain approach,

and shown the latter to be favorable in terms of computational overhead required

for accurate simulations of flow through packed beds.

The remainder of this paper will focus on the characterization of porescale

vortical features in packed beds of spheres. These features are investigated using a

parallel Navier-Stokes solver with unstructured, body fitted meshes. To understand

the effects of the both flow inertia and solid geometry on these flow features, three

different sphere packings are investigated at Reynolds numbers spanning the steady

inertial (10 . Re . 200), and unsteady inertial flow 200 . Re . 1000 regimes.

3.2 Computational Approach

Consider the incompressible Navier-Stokes equations for the entire fluid domain:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u (3.1)

∇ · u = 0 (3.2)

where ρ is the density, u the velocity vector, p the pressure, µ the fluid viscos-

ity. The equations are discretized on unstructured, tetrahedral meshes, and solved

using a parallel, second order accurate fractional step solver. The code is paral-

lelized using Message Passing Interface (MPI), allowing for larger scale simulations

by distributing the required memory over many processors. For additional details

regarding the numerical implementation, the reader is referred to [71].

Unstructured mesh generation for complex geometries is a non-trivial procedure

in general, and in packed beds the process is complicated by sphere-to-sphere

contact points, near which elements can become unmanageably small and have high

aspect ratios. We employ a cylinder bridge model [56], whereby every contact point

is bridged by a small cylinder, removing a small amount of typically stagnant fluid

as is illustrated in FIG. 3.2. This process has been parameterized and automated

using the commercial package Pointwiser. Details regarding the mesh generation
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Figure 3.2: Schematic of the fillet bridge created between two contacting spheres.

Table 3.1: Packed bed simulations
Packing Dimension Re Dsp/∆ Ncv total

Steady
SCP 3× 3× 3 10 < Re < 250 29 1.2m
HCP 6× 6× 6 10 < Re < 150 29 12.3m

Random Dtube/Dsp = 5.96,
326 sp. total

10 < Re < 150 29 16.8m

Unsteady
SCP 3× 3× 6 529 56 7.3m

Random Dtube/Dsp = 5.96,
326 sp. total

600 56 32m

procedure as well as detailed validation of the flow solver for packed bed type

problems can be found in [30].

3.3 Flow Through Packed Beds of Spheres

We now present results for flow through three different packed beds of spheres

at both steady and unsteady Reynolds numbers. The sphere packings considered

are shown in FIG. 3.3. Their characteristics, and the relevant parameters used

in the simulations of flow through each are summarized in TAB. 3.1. The three

packings were chosen to complement each other, as their porescale geometries vary

significantly. The simple cubic packing (SCP) shown in FIG. 3.3a is the loosest

possible packing arrangement with ǫSCP = 0.47. It contains periodic boundaries on
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(a) SCP(periodic)

(b) HCP
(wall bounded)

(c) Random
(wall bounded)

Figure 3.3: The three sphere packings considered. Flow is from bottom to top in
each case.
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Figure 3.4: Radial void fraction variation of the random packing. Comparison of
the present simulation to the experimentally measured void fraction of Mueller [72].

all sides, which allows for the generation of a flow field unaffected by the presence

of external walls. Also, the repeating nature of the packing provides a single

geometric length scale in the pore. A 3× 3× 3 arrangement is used for the steady

flows and a 3× 3× 6 arrangement for the unsteady flows. The second packing is a

6×6×6 hexagonal close packing containing (216 spheres) shown in FIG. 3.3b. It is

one of two arrangements (face centered cubic being the other) with lowest possible

void fraction of ǫ = 0.26. However, this is only in the interior of the packing, and

the solid, external boundaries result in a significantly higher mean void fraction,

ǫHCP = 0.40. This wall effect increases the Reynolds number near the wall and

can lead to significant flow channeling. Finally, the packing shown in FIG. 3.3c is

a tube packed randomly with 326 spheres. The tube diameter to sphere diameter

ratio is Dtube/Dsp = 5.96. The packing was generated following the parameterized,

sequential procedure of Mueller [73] and has a mean void fraction of ǫrandom = 0.47

and a total packing height of h/Dsp ≈ 12. Because of the exterior tube boundary,

there is a significant wall effect in the radial porosity variation, ǫ(r), which is shown

in FIG. 3.4 alongside the void fraction variation of a laboratory generated packed

column [72]. The trend of ǫ(r) obtained with the current packing do a good job of

matching the measured trend.
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The pore volume of each geometry is meshed using the parameterized method

described in [30]. All meshes used in the steady flow simulations have a grid

spacing of Dsp/δcv ≈ 29, which was shown to provide grid convergence and good

experimental agreement in prototypical test cases. The unsteady simulations use

a more refined mesh with Dsp/δcv ≈ 56. The ratio of fillet diameter to sphere

diameter is Df/Dsp = 0.2 for all simulations. The total number of tetrahedral

control volumes, Ncv used in the body fitted meshes of each geometry varies from

1.2m to 16.8m. The flow is forced in the positive Z direction by a constant pressure

gradient in the SCP cases, and by a constant flux inflow condition in the HCP and

random cases. Each simulation is started with the flow at rest, and the flow solution

is advanced in a time accurate manner until the solution has reached a stationary

state. In the steady flow cases, we use the total kinetic energy,
∑

cv uiui, in the

porespace as an indicator. When this quantity does not change significantly, the

inflow flux or pressure gradient is increased to the next target Reynolds number.

In the unsteady flow cases, the simulation is run for several non-dimensional flow

through times, T = tUp/Dsp, so that the velocity fluctuations in the porespace

reach a statistically stationary state.

3.3.1 Steady Flow

Steady Reynolds numbers were chose to thoroughly sample the inertial flow regime

range between creeping flow (Re . 10) and inertially dominated flow near the

threshold of unsteadiness (Re & 200) [21]. The non-dimensional pressure drop,

Ψ = −∆P
Lm

Dsp

ρU2
p

ǫm
1−ǫm

measures the relative resistance to flow through the packed

bed. Here, ∆P is the difference in pressure measured at the outlet and inlet of

the packing. This is plotted in FIG. 3.5 vs Reynolds number for each of the three

packings. Also plotted are the correlations of Ergun [24] for infinite, random porous

media, and Eisfeld & Schnitzlein’s [23] correlation for randomly packed tubes with

finite tube to sphere diameter ratios. The periodic SCP arrangement offers the

least flow resistance at all Re, followed by the HCP arrangement. This is due

in part to the preferential flow channeling between rows of spheres in the SCP
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arrangement and along the walls in the HCP arrangement. The random packing,

which lacks long open channels, shows the highest resistance for all Re, and agrees

reasonably well with the correlation from [23].

Next, the porescale vortical structures are examined in each arrangement. Due

to the large amounts of shear in the porespace, using vorticity alone for vortex

detection is generally noisy and unfruitful. Instead, the λ2 criteria of Jeong &

Hussain [53] is used. This criteria identifies vortices as regions with a local pressure

minima and can therefore be identified as regions where

λ2(S
2 +Ω2) < 0 (3.3)

Here, S and Ω are the symmetric and anti-symmetric components of the velocity

gradient tensor respectively, and the operator λ2 returns the intermediate (second)

eigenvalue of a symmetric matrix. In FIG.’s 3.6, 3.7 and 3.8, several visualizations

are provided of the characteristic vortical structures seen in SCP, HCP, and random

arrangements respectively. The SCP arrangement, shown in FIG. 3.6 is dominated

by two distinct regions that can be identified easily with a simple streamline vi-

sualization (FIG. 3.6a): (i) high velocity channels through which the flow passes

undisturbed, explaining the low values of Ψ, and (ii) large recirculation regions in

the gaps between rows of spheres. These recirculation regions are actually complex,

multi-lobed vortex ring structures, shown with an isosurface of λ2 in FIG. 3.6b.

These vortex rings are actually more like vortex cubes, with four distinct sides each

aligned along a cross-stream axis. This is further illustrated in FIG. 3.6c, where

the tangent vectors are plotted on a plane passing through the center of one of

these vortex cubes, perpendicular to the mean flow. The vectors show the com-

plex three-dimensionality of the flow feature, and the close relationship between

the pore geometry and the behavior of the vortical structure.

The characteristic vortical structures observed in the HCP arrangement are

shown in FIG. 3.7 as isosurfaces of λ2. Similar to the SCP arrangement, the domi-

nant porescale vortical feature in the interior of the packing is a multi-lobed vortex

ring (FIG. 3.7a-b). These rings are located upstream of the forward stagnation
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Figure 3.5: Non-dimensional pressure drop as a function of Reynolds number in the
steady flow regime for the three sphere packings. SCP (blue) HCP (red) Random
(green) The correlations of Ergun [24] and Eisfeld & Schnitzlein [23] are plotted
for comparison.

points on the spheres in the interior of the packing. Due to the geometric orien-

tation of the packing, the ring has 3 lobes that align with the principal axes of

the packing as well as the major flow directions away from the stagnation point.

Near the bounding walls, the flow is accelerated significantly due to the increased

porosity and less tortuous channels compared to the interior. These factors give

rise to elongated helical vortices shown in FIG. 3.7c. These helical structures are

regions where the velocity and vorticity vectors are roughly aligned, and the flow

spirals through the porespace with a roughly corkscrew motion.

This type of helical vortex is the dominant inertial feature everywhere in the

random packing. In FIG. 3.8a-d, one typical feature is visualized using stream

ribbons colored by λ2, (red colors indicating the strongest vortical region) for

Re = 10, 50, 100, and 150, showing its development from near creeping flow to

strongly inertial flow. The stream ribbons that enter the feature at all Re originate

from two sides of the bottom sphere and collect in a channel where the streamwise

flow is accelerated. As Re is increased from the creeping regime, flow inertia pushes
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the streamlines away from the right hand sphere, and the two streams entering the

feature begin to twist around one another as they travel upward in a corkscrew like

motion. This radial motion is non-existent at Re = 10 (FIG. 3.8a), first appears

at Re ≈ 50 (FIG. 3.8b), and strengthens with Re up to Re = 150 (FIG. 3.8c-d).

Despite the variety of pores that exist in the random packing, this single feature is

very representative of the majority of vortical structures seen for these steady flow

rates. There are few, if any, of the vortex-ring like structures that were observed in

the interior of the SCP and HCP arrangements, likely due to the lack of geometric

symmetry and organization.

(a) (b) (c)

Figure 3.6: SCP flow at Re = 230. (a) Streamlines colored by streamwise velocity
(red = fast), (b) isosurfaces of λ2, (c) velocity field on a cross-stream plane.

3.3.2 Velocity, Vorticity & Helicity statistics

In this section, the porescale flow fields are examined in a statistical sense to quan-

tify the influence of pore geometry and Reynolds number on the development of the

various vortical flow features visualized in the previous section. The probability

distribution functions are computed for the streamwise (z) and cross-stream (x)

components of both velocity, u, and vorticity, ω = ∇×u, as well as the λ2 vortex

detection criteria, and the cosine of the angle between the velocity and vorticity
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(a) (b) (c)

Figure 3.7: HCP flow at Re = 150. Isosurfaces of λ2 showing the interior vortex
ring structures (a,b), and the elongated helical vortices in the wall region (c).

(a) Re = 10 (b) Re = 50 (c) Re = 100 (d) Re = 150

Figure 3.8: Development of a porescale helical vortex in the random arrangement.
Stream ribbons colored by λ2 (red indicates strong swirl).
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vectors,

cos(φ) =
ω · u

‖ω‖‖u‖
. (3.4)

Regions with ‖cos(φ)‖ ≈ 1 indicate strong helical or corkscrew like trajectories.

In their simulations of transitional flows in close packed ordered arrays, Hill &

Koch [48] observed that regions of strong helicity became more pronounced with

increasing Reynolds number, up to the limit of unsteadiness. To facilitate com-

parison with their study, all PDFs with the exception of cos(φ) are normalized so

that they both integrate to and have a standard deviation of unity. Where appro-

priate, the standard normal distribution or the double exponential distribution are

also plotted for comparison. The PDFs have been computed in the interior of the

porespace only, away from the influence of the inflow and outflow regions in the

random and HCP arrangements.

Figure 3.9 shows the PDFs of the cross stream (a-c) and streamwise (d-f)

components of velocity for the three different arrangements. The four sets of

symbols indicate the results for Re = 10, 50, 100, 150, which spans the range

of development of the inertial core in these flows. The standard normal curve is

shown for comparison to the cross stream PDFs. When normalized, the cross-

stream PDFs (Fig. 3.9a-c) obtained for each sphere arrangement collapse nicely

for all Reynolds numbers, similar to the observations of [48, 57]. The SCP and

random arrangements have PDFs of ux that agree well with the standard normal

distribution, but with slightly wider tails. The HCP arrangement shows a much

wider distribution of cross stream velocity, most likely due to the influence of high

porosity, high velocity wall region. In the streamwise velocity, a more noticeable

change occurs with increasing Reynolds number, especially in the SCP arrangement

(Fig. 3.9d). In this case, the Re = 10 PDF declines gradually with increasing

velocity, while higher Reynolds numbers have a high velocity “inertial knee” in

the PDF. This is due to the development of the inertial core, which is especially

prevalent in the channel-like SCP geometry. For all geometries, the amount of fluid

directed in the negative z (upstream) direction increases with Reynolds number,

indicating the increasing influence of vortical regions aligned perpendicular to the
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Figure 3.9: Normalized velocity PDFs for steady flow rates through the three dif-
ferent packed beds. Top row (a-c) shows the cross stream, ux component. Bottom
row (d-f) shows the streamwise, uz component. Different symbols correspond to
pore Reynolds numbers of roughly Re = 10 �, Re = 50 ▽, Re = 100 ♦, Re = 150
◦
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Figure 3.10: Normalized vorticity PDFs for steady flow rates through the three dif-
ferent packed beds. Top row (a-c) shows the cross stream, ux component. Bottom
row (d-f) shows the streamwise, uz component. Different symbols correspond to
pore Reynolds numbers of roughly Re = 10 �, Re = 50 ▽, Re = 100 ♦, Re = 150
◦

In Figure 3.10, similar PDFs are shown for the streamwise and cross stream

vorticity components. Here, the normalized distributions of vorticity collapse with

Reynolds number in the random arrangement but not the structured arrangements,

especially the SCP arrangement. This represents a major difference between flow in

the structured and random packings. It indicates the development of local regions

with disproportionately strong ωx and ωz in the structured arrangements, while

at the same time showing that the porescale vorticity components scale nearly the

same everywhere in the random packing. This can be seen from the qualitative
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visualizations presented earlier . In the arranged packings, the multi-lobed vortex

ring structures appear in very specific locations in the structured packings and are

the dominant vortical feature. On the other hand, in the random arrangement,

there is still significant vortical motion, but it is distributed to different types of

pores and strengthens more uniformly with Reynolds number.

Finally, Figure 3.11 shows the PDFs of two vortex detection criteria, cosφ (top

row) and λ2 (bottom row). These PDFs demonstrate the difference in the type

of vortical structures observed in the structured and arranged packings. The SCP

arrangement shows that as Reynolds number is increased, the amount of helicity

decreases. At the same time, the proportion of fluid with negative λ2, indicating

swirling motion, increases (Fig. 3.11d). This reinforces the fact that the vortical

structures in the SCP arrangement are vortex rings with vorticity aligned perpen-

dicular to the mean flow. The random PDFs show that the probability of strong

helicity increases significantly with Reynolds number, as does the probability of

negative λ2. This confirms that the main type of vortical structure emerging at

these Reynolds numbers in the random arrangement is the helical vortex. Simi-

lar trends are observed in the HCP arrangement, where there are strong helical

vortices near the high porosity solid walls.

3.3.3 Unsteady Flow

The random and SCP arrangements were chosen for unsteady flow simulations

because of their distinctly different geometries and vortical structures observed

in the steady flow regime. The simple cubic and random meshes used for these

unsteady flows are composed of 7 million and 32 million CV s respectively. As in

the steady flow cases, the mean flow is provided by a constant inflow condition

on the bottom boundary in the random packing, and a constant pressure gradient

in the triple periodic SCP arrangement. The resulting, time averaged Reynolds

numbers are Re = 600 and Re = 529 respectively.

At Re = 529, the flow in the SCP arrangement is dominated by spatially

and temporally periodic porescale vortex shedding. The characteristics of the
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Figure 3.11: PDFs of vortex detection criteria, cos(φ) (top row) and λ2 (bottom
row) for steady flow rates through the three different packed beds. Symbols cor-
respond to pore Reynolds numbers of roughly Re = 10 �, Re = 50 ▽, Re = 100
♦, Re = 150 ◦
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Figure 3.12: Unsteady porescale Kármán like vortex shedding observed in the
simple cubic packing. isosurface of λ2 shown, colored by pressure (blue indicates
low pressure region).

three dimensional vortical structures are shown in FIG. 3.12, where isosurfaces

of λ2 colored by local pressure are shown for a single snapshot in time. Several

orthogonal views of consecutive pores, with sphere boundaries denoted with solid

black lines, are provided to give three dimensional context to the vortical structure

relative to the sphere packing. The main vortical feature in every pore is a half

vortex ring that is bent upward in the direction of the mean flow. These half rings

have a larger lobe at each end. These lobes are similar to the lobes observed in the

steady flows through the SCP arrangement, in that they are aligned with the major

cross-stream axes of the sphere packing (X and Y in this case). The difference

however is that only two lobes exist at any given time in a single pore; the vortical

structure never forms a complete, four lobed vortex ring as was seen for steady

flow rates. These structures alternate spatially along the mean flow direction (Z),

such that the half ring is located in opposite sides of consecutive pores. This is

best seen in the X-Y views on the right hand side of FIG. 3.12. In the cross stream
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directions, these vortical features are in phase with one another. That is, across

pores in the same X-Y plane, they will be located in the same quadrant of every

pore (not shown).

The transient character of these structures strongly resembles the periodic

Kármán vortex shedding observed in the wake of a single cylinder or sphere. The

half vortex ring structures described above alternate between the (+X,+Y ) corner

of the pore shown in View ’B’ of FIG. 3.12 and the (−X,−Y ) corner shown in

View ’A’. This 180o phase shift occurs in every pore in the packing. In the middle

of this cycle, the half ring structures are flushed into the high velocity channels by

the mean flow, and are stretched into thinner tail-like regions. As a new half ring

forms, the old structure is being flushed through the center of channel. These tail

regions can be seen in the pore throats in the snapshot of FIG. 3.12.

Despite similar Reynolds numbers, the flow through the random packing con-

tains remarkably different vortical structures. Due the the variety of geometric

pore configurations that exist in this packing, the local value of Re can vary con-

siderably from the bed average value of Re = 600. This results in not just one, but

a variety of coherent porescale vortical structures. We will concentrate on the two

main types of feature types seen, which are shown in FIG. 3.13. To illustrate these

features, instantaneous stream-ribbons colored by the local pressure are shown in

three different pores. The most common feature is the helical vortex, which was

also seen at reduced flow rates in the steady flow simulations. In fact, the same

pore is shown in FIG. 3.13a, as in FIG. 3.6g-k, and a helical vortex can be seen

in a similar location as the one that develops over the range 50 < Re < 150. At

this higher, unsteady flow rate, the streamlines of the feature have much stronger

radial motion as they spiral through the pore compared to the steady flow fea-

ture, and the length of the vortex is stretched further in the streamwise direction.

These elongated helical vortices persist throughout the packing, often with mul-

tiple vortices in a single pore. Another of these features is shown in FIG. 3.13b,

located near the solid outer tube wall. This feature results from the high mo-

mentum streamlines in the high void fraction wall region (see FIG. 3.4) mixing as
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(a) (b)

Internal and external helical vortices

(c) Counter rotating vortex tubes

Figure 3.13: Unsteady porescale vortical features observed in the random pack-
ing. Stream ribbons colored by pressure are shown in three different pores (blue
indicates low pressure region)
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they enter the pore from below, and swirling around each other during their exit

upward. Because of the locally higher Re at the wall, and the other features that

exist in this pore, this vortical feature is more active in it’s unsteady motions than

the internal feature of FIG. 3.13a, although it remains in this pore at all times.

Future work will focus on quantifying the relationship between the vortical length

and time scales and Re over the entire steady and unsteady flow regime.

The other main type of feature that is observed in the random packing at

Re = 529 is a vortex tube whose axis is roughly aligned perpendicular to the

flow. A counter-rotating pair of these features are shown in FIG. 3.13c. The

instantaneous flow vectors in a perpendicular plane are shown in the background.

Such features tend to exist in the near wake behind a sphere, or in the gaps between

two spheres as shown. Despite the slow turnover time of these eddies exhibited

by the vector magnitudes in the circulating regions, they are not complete dead

zones. They expand and contract in tandem, meaning one grows while the other

shrinks in a periodic fashion, exchanging fluid amongst themselves and with the

mean flow.

None of the vortical features observed in the unsteady flow through the ran-

dom packing exhibit any vortex shedding and there does not appear to be vortex

destruction or creation at this Reynolds number. Rather, they tend to oscillate in

their position without much net change of shape. The helical vortex cores trans-

late periodically, mostly in the in the cross stream plane, but their size and mean

location remains nearly constant for the length of the simulation.

In order to quantify the timescales of these unsteady flows, the fluctuating

velocity field, u′(x, t), is computed via a Reynolds decomposition for a time series

of instantaneous velocity fields, u(x, t).

u(x, t)′ = u(x, t)− u(x) (3.5)

Here, u is the time averaged velocity field. With the fluctuating velocity field, the

time autocorrelation function is computed for the porespace region of the SCP and
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Figure 3.14: Time autocorrelation functions of streamwise velocity fluctuations,
ρxx. (−�−) scp & random wall region (outermost 0.5dsp), (•) random inner core
(innermost 0.5dsp).

random arrangements:

ρii(∆τ) =
∑

x

∑

τ

u′
i (x, τ) u

′
i (x, τ +∆τ)

u′
i(x, τ)

2
(3.6)

(3.7)

Here, ∆τ = tU
Dsp

is the non-dimensional time separation, between two velocity sam-

ples at position x in the porespace. The streamwise autocorrelation function, ρxx

is plotted for both arrangements in FIG. 3.14. The cross-stream correlation func-

tions, ρyy and ρzz, show similar trends in both arrangements and are omitted for

clarity. The SCP time correlation function is periodic with a single dominant

frequency. Recently, Horton & Pokrajac [51] have experimentally investigated

the flow structure in SCP arrangements of spheres driven by constant pressure

gradients with ultrasonic velocity profilers (UVP), and observed similar periodic

correlation functions at transitional Reynolds numbers. These resolved simulation

results, which show the shedding and motion of coherent vortical structures at the
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porescale, provide corroborating evidence that these periodic velocity fluctuations

are linked to porescale vortical motion and vortex shedding .

Because of the radial porosity variations present in the random packing (FIG. 3.4),

and the locally higher Re near the wall, the correlation function is computed sep-

arately for different annular regions of the flow to show the effect of the wall on

the unsteady timescales. In FIG. 3.14b we have plotted the function for the region

within 0.5Dsp of the tube wall and the region within 0.5Dsp of the tube center-

line. These two correlations both show time periodic behavior, and the existence

of several modes of velocity fluctuations in the porespace. The higher Reynolds

number wall region shows exhibits a more complex function with more modes than

does the inner region. Both correlation functions decay with long time separation,

similar to the results of [36] for converging/diverging channel flows, but shows a

strongly periodic behavior for the short time separations investigated here. This

shows that despite the randomness of the bed, there are very specific dominant

modes of velocity fluctuation. The increased number of modes compared to the

SCP arrangement signals that the flow through the random packing may be closer

to a turbulent chaotic breakdown.

By performing a Fourier transform on the autocorrelation functions, the veloc-

ity frequency spectra can be obtained. This is shown in FIG. 3.15 for both sphere

arrangements, where the frequency is non-dimensionality to give the Strouhal num-

ber, St = (∆τ)−1. The SCP arrangement contains a dominant Strouhal number

of nearly unity, showing the vortex shedding is strongly linked to the length scale

of the sphere packing. The random packing contains several different Strouhal

numbers between 0.29 and 1.57. In the inner region, the high frequency modes

(St > 1 have been eliminated. This shows that the larger Reynolds number wall

region contains a larger spectrum of energetic time (and most likely spatial) scales,
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Figure 3.15: Velocity frequency spectrum obtained from the Fourier transform of
ρxx. (−�−) scp & random wall region (innermost 0.5dsp), (•) random inner core
(innermost 0.5dsp)

3.4 Conclusions

Resolved and time accurate simulations of flows through three different types of

packed bed geometries have been performed to identify and characterize pore scale

vortical structures. These simulations considered the steady and unsteady inertial

regimes (10 < 600), where the effect of porescale flow features on macroscale

properties is not well understood. Vortical features are detected by regions of

swirl and pressure minima using the λ2 criteria. The results show that there

is a clear relationship between pore geometry and the types of pore-scale vortical

structures observed. In the SCP and HCP arrangements, a multi-lobed vortex ring

structure is present in the gaps between spheres at steady flow rates. The lobes

of these structures align with the principal geometric axes of the packing, and

are highly three dimensional. At steady flow rates through the random packing,

and in the wall region of the HCP arrangement, elongated helical vortices are

the dominant porescale flow feature. Such features appear to be located near

accelerating streamlines in regions of high curvature and low geometric symmetry.
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The emergence of these different types of vortical features are confirmed through

statistical analysis of velocity, vorticity and helicity in the porespace.

At higher flow rates near Re = 600, the unsteady dynamics of flow through

the SCP and random arrangements are significantly different. In the simple cubic

arrangement, spatially and temporally periodic Kármán like vortex shedding is ob-

served at a single Strouhal number near 1. Flow through the random arrangement

exhibits a wider range of time scales with Strouhal numbers between 0.29 and 1.57

but without any observed vortex shedding. The higher frequency modes seem to

be active mostly in the near wall region, where the Reynolds number is locally

higher due to the wall effect. At this Reynolds number, helical vortices are still

the dominant porescale feature, along with vortex tubes aligned perpendicular to

the mean flow.

Future work on this topic will focus on quantifying the length and time scales

of the porescale vortical features identified here, and linking their characteristics to

macroscale properties. Also, direct comparison with experimental measurements

in similar packed beds will be used as more detailed validation of the computational

methods.
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Abstract

The computation of Lagrangian coherent structures typically involves post-processing

of experimentally or numerically obtained fluid velocity fields to obtain the largest

finite-time Lyapunov exponent (FTLE) field. However, this procedure can be te-

dious for large-scale complex flows of general interest. In this work, an alternative

approach involving computation of the FTLE on-the-fly during direct numerical

simulation of the full three dimensional Navier-Stokes equations is developed. The

implementation relies on Lagrangian particle tracking to compose forward time

flow maps, and an Eulerian treatment of the backward time flow map [S. Leung,

Journal of Computational Physics 230, 2011] coupled with a semi-Lagrangian ad-

vection scheme. The flow maps are accurately constructed from a sequence of

smaller sub-steps stored on disk [S. Brunton and C. Rowley, Chaos 20, 2010], re-

sulting in low CPU and memory requirements to compute evolving FTLE fields.

Several examples are presented to demonstrate the capability and parallel scala-

bility of the approach for a variety of two and three dimensional flows.

The notion of Lagrangian coherent structures (LCS) as invariant

transport barriers in steady and unsteady fluid flows has evolved from

dynamical systems theory, and has proven its utility in understanding

a number of mixing and transport problems. These structures are most

often defined from ridges in the finite-time Lyapunov exponent field.

However, their practical use has been limited to this point because

computing the FTLE field typically involves expensive post-processing

of large fluid velocity datasets generated either from experiments or

numerical simulations. Using some recently developed tools [61, 9],

we have designed and implemented an integrated approach to com-

pute evolving, transient, three dimensional FTLE fields during a CFD

simulation. By integrating the computations in this way, tedious post-

processing of velocity fields is no longer needed, and larger, more com-

plex problems become accessible to the application of LCS theory.
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4.1 Introduction

That fluid flows are organized by an underlying structure is not a new idea; da

Vinci described the similarity of hair-like curls (eddies) generated by a narrow jet

issuing into a pool as early as the year 1500, and much of turbulence theory has

evolved from notions of organized scales of motion. Modern advances in exper-

imental techniques and the advent of direct numerical simulation (DNS) of the

Navier-Stokes equations have provided databases with incredible microscopic de-

tail for a variety of natural and engineered flows. However, a structural description

of the coherent motions exhibited by unsteady flows remains elusive in most cases.

As available databases continue to grow rapidly in size and complexity, a number

of tools have been developed to help extract coherence from chaotic fluid motions.

For example, variants of the Eulerian velocity gradient tensor have aided in the

detection of instantaneous vortical regions [14], and proper orthogonal decomposi-

tion has been helpful in extracting energetic modes of complex turbulent flows [6].

More recently, a class of methods to detect Lagrangian coherent structures (LCS)

has emerged from dynamical systems theory and the works of Haller [42, 38].

LCS are the codimension one manifolds1 that form the skeleton of tracer trajec-

tories [68] and separate time dependent flows into regions of dynamically distinct

behavior [98]. When properly defined, they act as the locally most attracting or

repelling material surfaces [39, 27] and therefore have important consequences for

mixing and transport. In addition, as boundaries of dynamically distinct regions

they provide an exceptional tool with which to visualize and understand coherent

fluid motion. The identification of LCS in experimentally measured or numeri-

cally simulated flows has most often relied on the relation of these special material

surfaces to ridges of the finite-time Lyapunov exponent (FTLE) field. Ridges in

the forward time FTLE field can be thought of as candidates for repelling LCS

about which there is large fluid stretching, while ridges in the backward time FTLE

field are candidates for attracting LCS about which folding occurs [42]. An im-

1This implies that LCS are curves in two dimensional flows and surfaces in three dimensional
flows.
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pressively broad range of flows have now been studied using the FTLE ridges as

a proxy for LCS (see [83, 94] for recent reviews). For example, new insight has

been provided in areas such as fundamental vortex dynamics [76, 97], aerodynam-

ics [33], biological feeding [84], ocean and atmospheric transport [7], and granular

flows [15]. Significant work has been undertaken to explore the link between LCS

and ridges of the FTLE field from a theoretical standpoint [38, 98, 60, 39, 27, 40].

Unfortunately, it appears that there is not necessarily a one to one mapping be-

tween FTLE ridges and LCS, and both false LCS positives and negatives can be

obtained without sufficient additional restrictions [39, 27] on the ridges. [42] pro-

vided the counter example of two-dimensional shear flow, u = −x, v = y, where

the line x = 0 is a positive time FTLE ridge, but is not an unstable material sur-

face. Recently, the problem of defining LCS has been revisited, and a variational

theory [39, 27] and geodesic theory [40] have been developed that more rigorously

distinguish Lagrangian transport barriers. Practical implementation of these more

general LCS theories, as done by [26] and [40], is presently limited to two dimen-

sional flows, but algorithmically the preliminary steps are similar to a standard

FTLE computation (requiring the computation of the Cauchy-Green deformation

tensor). In this sense computation of the FTLE, or similar field, seems to be an

important step to determining LCS candidates in general time dependent flows.

Typically, FTLE fields are computed in a post-processing procedure using ei-

ther experimentally or numerically obtained velocity fields. First a flow map over

the finite-time interval [t0, t1] is computed by numerical integration of a grid of

Lagrangian particles through snapshots of the time dependent velocity field. The

flow map Jacobian is then obtained by finite differencing on the initial tracer grid,

and used to build the right Cauchy-Green deformation tensor. Finally, the maxi-

mum eigenvalue of this tensor is used to compute the maximum FTLE field, which

corresponds to the rate of Lagrangian separation of initially adjacent trajectories.

As just described, this procedure can be resource intensive for a number of reasons.

Most significantly, to obtain sharp, well defined ridges in the FTLE field, the initial

grid of tracers must be refined relative to the smallest spatial scales of fluid motion,
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and the integration time must be long relative to the dominant time scales of the

flow. For non-trivial flow fields, especially in three dimensions, this can result in

an enormous number of tracer advections. Additionally, for every time the FTLE

is needed, for example to visualize its evolution, the tracer advections must be

re-computed in forward and backward time. Finally, for acceptable accuracy, the

spatial and temporal resolution of the flow field snapshots must be fine enough

for accurate interpolation of the velocity field to the Lagrangian tracers. For large

datasets, this implies careful memory management during post-processing.

A number of strategies have been employed to address these difficulties. [62]

noted that the LCS are themselves Lagrangian objects that are advected with the

flow and devised an efficient ridge tracking algorithm so that the FTLE field need

only be computed in the vicinity of the LCS. A few authors have enlisted unstruc-

tured meshes and automated mesh refinement (AMR) schemes to enhance the

resolution of FTLE field near the LCS [59, 70] while reducing the number of tracer

advections far from the LCS. In a similar spirit, [26] used a staggered auxiliary

grid of tracers to increase the accuracy of the flow map gradient while maintain-

ing a relatively coarse tracer background grid. Recent developments in computer

hardware have also been leveraged to speedup the computation. Due to their

streaming capabilities, graphical processing units (GPUs) are naturally suited for

the problem of particle advection that is the bottleneck of the FTLE computation

and impressive speedups have been obtained relative to standard CPU computa-

tions [31, 16]. From a theoretical perspective, a recent observation that the largest

FTLE in forward time is related to the smallest FTLE in backward time (and

vice-versa) [41] could allow for the computation of both attracting and repelling

LCS candidates with only a single set of tracer integrations. However, practical

implementation issues arise for long integration times and three dimensional flows

due to the need to interpolate from a highly deformed grid of particles. Moving

forward, it is important to continue to develop efficient computational strategies

so that LCS theory can be applied to more complex problems of general interest.

In this paper, we describe an integrated procedure for computing both forward
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and backward time FTLE fields on-the-fly during DNS of the Navier-Stokes equa-

tions. Two recent observations have provided the necessary building blocks for our

current implementation. The first, by [61], is that the backward time flow map

may be treated as a collection of Eulerian scalar fields that can be evolved forward

in time by solving three level set equations on a fixed grid. This provides a natural

way to compute the backward time flow map during a simulation that evolves only

in forward time. The second important observation, made by [9], exploits the

property [77] that a time T flow map, where T = |t1 − t0|, may be constructed

from a sequence of N smaller time h flow maps, where h = T/N . This removes

the need to do redundant tracer integrations when many concurrently evolving

FTLE fields must be computed, for example to animate their evolution, meaning

the simulation only needs the resources to evolve one forward and one backward

flow map at a time.

Integrating the FTLE computations into a CFD simulation has several potential

advantages over the post-processing approach. Perhaps the most compelling is

that the full temporal and spatial resolution of the simulation become available

when computing the flow maps. This is not generally true in the post-processing

approach, where the temporal and spatial resolution of the velocity field, and by

consequence the flow map uncertainty, could be limited by available hard disk or

memory resources. This makes applying LCS theory to study flows with broad

length and timescale separations, such as multiphase and turbulent flows, as well

as flow in complex geometries, such as packed beds and porous media, much more

feasible. Second, by performing the computations during the simulation, we can

harness the parallelism of the simulation code as well as tools already built into

many flow solvers such as accurate gradient calculations, interpolations, particle

tracking schemes, and passive scalar solvers for the advection-diffusion equation.

Finally, integration of the FTLE computations directly into a CFD simulation

framework makes it possible to extend LCS theory to study a number of new

applications. For example, new explorations of active feedback control could be

pursued based on characteristics of the LCS, or measurement of Lagrangian length
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scales could be made using the FTLE field in evolving three dimensional turbulent

flows. Some of these benefits have been suggested previously (for example by [61]),

but to our knowledge, this work represents the first fully integrated computation.

Our main objective is to describe a relatively simple algorithm that can be

used to compute evolving forward and backward time FTLE fields during a com-

putational fluid dynamics (CFD) simulation, with minimal additional overhead.

The remainder of the paper is organized as follows. We first give a brief mathe-

matical background for the computation of FTLE fields in Section 4.2. Next, we

present numerical details related to the integration of the computations in a direct

numerical simulation framework in Section 4.3.3. In Section 4.4, we demonstrate

the performance of the implementation and discuss the computational overhead

for several two and three dimensional flows. Finally, in Section 4.5 we make some

general conclusions and proposals for future work.

4.2 The Finite Time Lyapunov Exponent

We now briefly develop the theory and notation related to the FTLE calculation.

More thorough expositions describing the FTLE and its relation to LCS are avail-

able [98, 60]. Assume that some velocity field, u(x, t), is defined on the three

dimensional domain, x ⊆ R
3, over the time interval, t ∈ (t0, t1). The flow map,

Φt1
t0(x0, t0) integrates passive tracers from their initial position, x0, at time t0 along

pathlines to their “advected” position, x, at time t1,

Φt1
t0(x0, t0) = x0 +

∫ t1

t0

u(x(τ), τ)dτ. (4.1)

The flow map may be computed in forward time (t1 > t0), or backward time

(t1 < t0). Two tracers initially displaced by a small perturbation, δx0, will find

themselves separated by distance δx at time t1. To a leading order, this separation
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can be written in terms of the flow map as [77]

δx(t1) = Φt1
t0(x0 + δx0, t0)−Φt1

t0(x0, t0) (4.2)

= DΦt1
t0(x0, t0)δx0 +H.O.T.. (4.3)

Where DΦt1
t0(x0, t0) is the Jacobian of the flow map evaluated at the initial tracer

coordinate, x0. The magnitude of the separation, ||δx(t1)||, is found from the L2

matrix norm,

||δx(t1)|| =
√

〈

δx0,
[

DΦt1
t0(x0, t0)

]∗ [

DΦt1
t0(x0, t0)

]

δx0

〉

, (4.4)

where, 〈·, ·〉 denotes the Euclidean inner product, and ∗ denotes transposition. We

introduce the right Cauchy-Green deformation tensor,

Ct1
t0(x0, t0) =

[

DΦt1
t0(x0, t0)

]∗ [

DΦt1
t0(x0, t0)

]

. (4.5)

From equation 4.4, the maximum stretching over the interval (t0, t1) occurs when

δx0 aligns with the eigenvector associated with the maximum eigenvalue, λmax,

of Ct1
t0(x0, t0). This leads to the definition of the finite-time Lyapunov exponent,

which characterizes the maximal rate of stretching over the finite-time interval

(t0, t1).

σt1
t0 (x0, t0) =

1

|t1 − t0|
log
√

λmax(C
t1
t0(x0, t0)) (4.6)

For simplicity, the standard convention is to notationally drop the dependence of

the flow map, deformation tensor, and FTLE fields on x0 and t0, and to intro-

duce the integration time, T = |t1 − t0|. This way for example, the forward and

backward time T flow maps can be written in shorthand as Φt0+T
t0 , and Φt0−T

t0

respectively.

Under sufficient restrictions [39, 27], ridges in the FTLE field can mark attract-

ing (t1 < t0) or repelling (t1 > t0) LCS. However, as mentioned earlier, it is possible

to identify false positive and negative LCS using primitive ridge definitions alone.
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At the present, we choose to use FTLE ridges as indicators of LCS candidates,

knowing that more rigorous analysis is needed to truly confirm them as having all

the properties of LCS.

4.3 Numerical implementation

In this section, we discuss the tools needed to integrate the FTLE computations

within the framework of a CFD solver. We will discuss the details relevant to

our present implementation, however, it is intended that the general algorithm

that is presented could be followed by anyone wishing to add a similar capability

to their own CFD code. The present solver was originally developed to perform

large-eddy and direct numerical simulations of flows in complex geometries on

potentially very large grids [71]. The code solves the Navier-Stokes equations on

arbitrary shaped, unstructured grids using a co-located finite volume discretization,

a fractional step method for time advancement, and an algebraic multigrid (AMG)

solver for the pressure Poisson equation [25]. The code is parallelized using Message

Passing Interface (MPI), allowing for larger scale simulations by distributing the

required memory over many processors. The flow solver has a number of extended

capabilities particularly relevant to multiphase flow simulations including Euler-

Lagrange models for a subgrid scale dispersed phase [99], and a fictitious domain

approach for fully resolved simulation of immersed rigid bodies [2].

4.3.1 Lagrangian and Eulerian flow map computations

In the post-processing approach to computing the FTLE fields, the forward and

backward time flow maps are typically composed by seeding the flow with La-

grangian tracers at time t = t0 and advecting them in positive and negative time

over the intervals [t0 + T ] or [t0 − T ] respectively. This is the methodology that

we employ for the calculation of the forward time flow maps. The three impor-

tant steps of this process are illustrated schematically in Figure 4.1a. First, at

time t0, we launch a Lagrangian tracer from each cell, by setting the initial tracer
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coordinates, x0 = xcv, where the subscript cv denotes the cell center coordinates

of each control volume. The tracers are then advected passively with the flow by

integrating the equation,
dx

dt
= u(x, t) (4.7)

To do this, the position of the Lagrangian tracers is updated after each time step of

the flow solver using a simple, explicit, trapezoidal approximation of equation 4.7.

xn+1 = xn + u(xn, tn+1/2)∆t (4.8)

Where the time step, ∆t, is the time step used by the flow solver. The fluid velocity

used for the tracer position update, un+1/2, is staggered in time with respect to the

fluid velocity known on the fixed grid. Since we perform the tracer update after the

fluid solve, this is approximated as simply, un+1/2 = 0.5 (un + un+1). Higher order

tracer integrations such as RK4 are possible. However, since our time step is small

to assure good accuracy of the flow solver, we have found that time advancement

according to equation 4.8 performs well and is computationally efficient. During

the integration, the tracers will cross over cell and processor boundaries. To handle

this in our unstructured solver we use a particle in cell approach and known vicinity

search algorithms [99] to efficiently locate the tracers as they evolve with the flow

field. At time t0+T , all processors gather the Lagrangian tracers currently located

on their own grid partition. Each tracer carries two integer tags corresponding to

the processor and cv index that it was launched from. Each processor sorts the

tracers currently belonging to it by these tags and communicates their current

position, equal to the forward time flow map Φt0+T
t0 , back to its launch processor

and cv.

During the simulation, if a tracer crosses over a solid boundary at any point

during the integration, it is relocated to the cell center of the last control vol-

ume that contained it. In practice, this is a rare occurrence because the no-slip

condition at solid boundaries and low simulation timesteps prevent these types

of erroneous tracer trajectories. If a tracer crosses over an outlet boundary, its
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position is fixed at the boundary for the remainder of the simulation. This condi-

tion is somewhat unphysical, but is not an issue if the simulation outlet is placed

significantly downstream of the region of FTLE interest.

Unfortunately, there is not a natural way to compose the backward time flow

map during the CFD simulation with the Lagrangian approach as just described.

Doing so would involve saving several snapshots of the velocity field between t0

and t0 + T , either in memory or hard disk, then subsequently using them to inte-

grate tracers backward in time once the simulation reached t0 + T . This is both

cumbersome and resource intensive. A clever alternative, proposed by [61], which

integrates almost seamlessly with a forward evolving CFD simulation is to treat

each component (x, y, and z) of the backward time flow map as a scalar field.

These scalar fields represent the “takeoff coordinates” of tracers located on the

fixed Eulerian grid, and are evolved forward in time by solving three level set

equations at each timestep:

∂Φt0−T
t0,i

∂t
+ (u · ∇)Φt0−T

t0,i
= 0 (4.9)

This equation states that the ith component of Φt0−T
t0 remains constant along tracer

trajectories, just as it would in the Lagrangian approach if we integrated backward

in time. To embed the takeoff coordinates at time t0 − T in the Eulerian represen-

tation, we simply initialize the backward flow map at the cell centers to the grid

coordinates, Φt0−T
t0 (x0, t0−T ) = xcv. The three scalars are then evolved according

to equation 4.9 up to time t0, at which point their value on the fixed grid is equiv-

alent to the ith component of the backward flow map for integration time T . This

process is shown for the y component of the backward flow map being evolved by

a simple flow field in Figure 4.1b.

Equation 4.9 can be solved in a number of ways, and [61] chose a higher order

weighted essentially non-oscillatory (WENO) scheme. In our present implementa-

tion, we have chosen a semi-Lagrangian approach. Compared to many Eulerian

solvers, these schemes are simple, have relatively low overhead, and are easy to
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(1) Launch tracers
from cell centers,
x(t = t0) = xcv

(2) Tracer advection
to time t = t0 + T

(3) Communicate
Φt0+T

t0
= x(t = t0 + T )

to launch cell

(a) Forward time

At time t = t0 − T , set
Φt0−T

t0
= xcv everywhere

Evolve each
scalar up to
t = t0 by solv-
ing level set
equation.

At time t = t0, Φ
t0−T
t0

is the
backward, time T flow map.

(b) Backward time

Figure 4.1: Lagrangian and Eulerian computations of the flow maps for time t = t0.
(a) The Lagrangian computation of the forward time flow map, Φt0+T

t0 . (b) The

Eulerian computation of the backward time flow map, Φt0−T
t0 . The scalar field

shows the evolution of the y component of the backward time flow map in a simple
velocity field.
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implement. They have gained popularity in atmospheric and multiphase flow sim-

ulations for their efficiency and stability with large timesteps [107]. The idea of

semi-Lagrangian advection is to approximately integrate equation 4.9 along tracer

trajectories:
Φt0−T

t0,i
(x, tn+1)− Φt0−T

t0,i
(x− 2m, tn)

∆t
= 0 (4.10)

Here, the vector m is the distance traveled by a tracer in the time ∆t/2, ie. the

midpoint of the trajectory between its takeoff point at tn and the fixed grid point

x. In order to solve this equation, we use the second order, two time level scheme

described by [105].

1. The vector m may be approximated to the second order through the implicit

relation, m = u(x −m, tn+1/2)∆t
2
, which can be solved iteratively, provided

some initial guess, m0

mk+1 = u(x−mk, t
n+1/2)

∆t

2
, (4.11)

where subscript k denotes the iteration index. On the first time step, we

initialize m0 to zero everywhere. On subsequent timesteps, we simply use

the m from the previous time step. Because major temporal changes to the

flow field occur on much longer timescales than the simulation time step, we

observe that typically very few iterations are required after the initial time

step.

2. Evaluate Φt0−T
t0,i

(x − 2m, tn). This value is then projected forward in time

along the trajectory according to equation 4.10.

At the boundaries of the simulation domain, we enforce the boundary conditions for

Φt0−T
t0 suggested by [61]. At inflow, and no-slip boundaries, we enforce Φt0−T

t0 =

x|boundary. At all other boundaries, we enforce n · ∇Φt0−T
t0,i

= 0, where n is the

outward normal vector associated with the boundary.

Our use of a semi-Lagrangian scheme to solve the level set equation is some-

what different from most multiphase flow problems where tracking of an interface
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is required. In such applications, particle level set methods [46] that employ tracer

particles that carry a marker function, can be used to accurately capture the evo-

lution of a deforming interface. As the interface deforms, so does the distribution

of its marker particles, and in practice the tracer grid must be re-meshed or reini-

tialized to obtain a high quality representation of the evolving interface. Similar

issues arise in our problem, where the goal is to track all values of the scalar fields

(backward flow map), everywhere on our grid. As the scalar fields evolve from their

initial states (eg. Figure 4.1b), stretching and folding over long times will result in

large gradients that could lead to loss of accuracy or instability. One way to handle

this would be to employ the forward time Lagrangian tracers in a way similar to

the particle level set approach; Every few timesteps, the tracer takeoff coordinates

could be interpolated fixed grid to correct the backward flow map representation.

However, in many of our cases the initial tracers distribution is non-uniform (be-

cause it is associated with the fixed grid, see for example section 4.4.2), meaning

such an interpolation could be of dubious quality. The approach we pursue in-

stead, is to only compute the flow maps for short integration times over which the

scalar field does not distort significantly. The long integration time flow maps are

then composed approximately using the method of [9], explained in more detail in

section 4.3.2.

The discrete equations for evolving both the forward and backward time flow

maps involve variables that may be located at non-mesh locations in space. In

general, this requires an interpolation of some variable, φ, known at the cell centers

of the fixed grid to these points. In an orthogonal, structured computational grid,

some form of trilinear interpolation [58, 69] can be applied to interpolate the values

to the non-mesh points. Since our flow solver is more general and designed to

handle complex geometries and unstructured grids, we use an interpolation, based

on a two term Taylor series about the cell center that contains the non-mesh point.

Let the non-mesh point, xp be contained in the control volume with cell center

coordinate, xcv of p, where φ|cv of p and ∇φ|cv of p are known. The interpolant, Iφ
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provides an estimate for φ|
xp .

φ|
xp = Iφ = φ|

xcv of p
+∇φ|

xcv of p
(xp − xcv of p) (4.12)

To compute∇φ|
xcv of p

, a least squares gradient estimation for unstructured meshes [65,

79] is used that is robust in the presence of skewed mesh elements, and reduces to

second order central differencing for regular Cartesian grids.

4.3.2 Efficient composition of flow maps

In practice, the desired temporal resolution of the FTLE fields is typically much

finer than the integration time, T , over which the flow maps are computed. If

this is the case, then several sets of tracer particles and scalar fields need to be

evolved concurrently in the simulation in order to compute the exact forward and

backward time flow maps. This problem has been addressed by [9], who used the

property [77] that a time T flow map can be decomposed into a sequence of N

sub-steps of length, h = T/N . Adopting their notation, we can write

Φt0+T
t0 = Φt0+Nh

t0+(N−1)h ◦ · · · ◦Φ
t0+2h
t0+h ◦Φt0+h

t0 (4.13)

Because the flow maps are obtained discretely, the flow map from one sub-step

will not necessarily point to the fixed grid points of the next sub-step, and imple-

menting this reconstruction involves interpolation between sub-steps. Using the

interpolation operator, I, we have

Φt0+T
t0 = IΦt0+Nh

t0+(N−1)h ◦ · · · ◦ IΦ
t0+2h
t0+h ◦Φt0+h

t0 (4.14)

If the sub-step, h, corresponds to the frequency that FTLE fields are to be com-

puted, then redundant tracer integrations and scalar evolutions can be eliminated.

This means only one set of Lagrangian tracers and one set of Eulerian scalars,

corresponding to the forward and backward time h flow maps, need to be evolved

at any time during the simulation to compute the time T flow maps at all times
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of interest. The integer N was referred to as the “speedup factor” by [9] because

it represented the potential speedup of their post-processing approach relative to

computing the “exact” time T flow map every time the FTLE field is needed.

Simulation Time (t)

t0 t0+h t0+2h . . . . . . t0+T-h t0+T t0+h+T t0+2h+T

Exact Φt0
t0+T (t0 + T )

Approximate construction of Φt0
t0+T (t0 + T )

Approximate construction of Φt0+h
t0+h+T (t0 + h + T )

Approximate construction of Φt0+2h
t0+2h+T (t0 + 2h + T )

Exact Φt0+T
t0 (t0)

Approximate construction of Φt0+T
t0 (t0)

Approximate construction of Φt0+h+T
t0+h (t0 + h)

Approximate construction of Φt0+2h+T
t0+2h (t0 + 2h)

Fwd. time
constructions

Bkwd. time
constructions

Figure 4.2: Integration of the flow map composition scheme with the flow solver
forward time advancement. At any simulation time t that is a multiple of h, the
forward time flow map, Φt

t−T (t − T ), and the backward time flow map, Φt−T
t (t),

are constructed from the N time h sub-steps.

A schematic of this flow map composition scheme, which corresponds to the

“single-tiered unidirectional” approach of [9], and the way that it fits into the

CFD simulation is shown in Figure 4.2. The simulation begins at t = t0 and always

advances in forward time. To compute the first time T flow maps, Φt0+T
t0 andΦt0

t0+T ,

exactly we could evolve a single set of Lagrangian tracers and Eulerian scalars over

the entire interval [t0, t0 + T ], but this becomes computationally inefficient if we

need to compute the FTLE field at intervals smaller than T . Instead the total
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integration time, T is broken up into the N equal sub-steps of length h = T/N

shown in Figure 4.2. As the simulation proceeds, time h flow maps are recorded

at these regular intervals and then re-initialized. Rather than storing all time h

flow maps in memory, we write them to structured binary files on the hard disk. If

sufficient memory is available to the computation, it is possible to avoid this step.

However, we have found that performing parallel binary read/write operations

accounts for a very small amount of the total simulation time (see section 4.4.6),

and hard disk space is more readily available than memory on most computing

platforms. Once the simulation reaches time t0+T , the time T flow maps, Φt0+T
t0 (t0)

and Φt0
t0+T (t0 + T ), are constructed using equation 4.14 and the time h flow maps

that have been stored on disk. Because the flow solver uses unstructured grids and

distributed memory, efficient interpolation of one flow map to the next requires

careful memory and parallel task management. Details on the parallelization of

this step are given in the Appendix. At subsequent simulation times, t, that are

multiples of the flow map sub-step, h, the approximate reconstruction procedure is

repeated to construct the forward time flow map, Φt
t−T (t− T ), and the backward

time flow map, Φt−T
t (t). For example, when the simulation time reaches t =

t0+2h+T , the time h flow maps, Φt0+2h+T
t0+h+T (t0+h+T ) and Φt0+h+T

t0+2h+T (t0+2h+T )

are first written to disk. Then, the forward time T flow map, Φt0+2h+T
t0+2h (t0 + 2h),

and the backward time T flow map,Φt0+2h
t0+2h+T (t0+2h+T ), are constructed as shown

in Figure 4.2.

4.3.3 Integrated Algorithm

Before discussing how the complete algorithm has been integrated into the flow

solver, it is beneficial to review the relevant temporal scales, summarized in ta-

ble 4.1, and how they are chosen in our integrated approach. In each problem

considered in section 4.4, we can identify a reference time, tref , which character-

izes the dominant hydrodynamic timescale of the flow. This could be an eddy

turnover time, oscillation period, or any other meaningful reference time. To re-

tain good accuracy of our flow solver, the simulation time, t, is advanced using
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the timestep, ∆t. The latter is set so that the maximum Courant-Friedrich-Lewy

number is roughly CFL = ucv∆t/∆x = 0.3, where ucv is the velocity in a control

volume with characteristic dimension ∆x. In general, this results in a simulation

timestep several orders of magnitude smaller than tref . The FTLE integration

time, T , should be chosen to be long enough that all LCS candidates are detected.

In practice, T is typically chosen to be larger than the longest hydrodynamic time

scale of the flow. The final timescale, h, is the flow map sub-step. This is cho-

sen to match the desired temporal resolution of FTLE fields. Typically, to create

an animation of an FTLE field’s evolution, one would desire h to be significantly

smaller than tref , and therefore significantly smaller than T . Our experience with

the several different flows presented in section 4.4 suggests that high quality ani-

mations with sharp FTLE features, and good temporal resolution between frames

can be obtained with h between T/20 and T/10.

Table 4.1: Timescales involved in the integrated computations

Timescale Meaning
tref Hydrodynamic reference time
t Current simulation time
∆t Simulation timestep
T FTLE integration time
h Flow map sub-step

Figure 4.3 is a block diagram that shows how the combined simulation and

FTLE computation proceeds. After the flow solver advances the velocity field

per the usual procedure from tn to tn+1, the intermediate velocity field, un+1/2 =

0.5 (un + un+1) is used to update the forward and backward time h flow maps.

The explicit trapezoidal scheme (equation 4.8) is used to update the Lagrangian

tracer positions, and the two time level semi-Lagrangian scheme is used to update

the value of the current time h backward flow maps on the fixed grid (according to

equation 4.10). If Lagrangian tracers cross boundaries during the integration step,

they are relocated back into the in-bounds cell, except in the case of an outflow, to
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which they remain fixed for the duration of their integration. The backward time

flow map boundary conditions suggested by [61] and described earlier are imposed

at the boundary cells of the fixed grid.

Main Flow Solver

• tn+1 = tn + dt

• Advance un to un+1

Update time h flow maps

• Advance time h Lagrangian tracers (fwd)

• Advance time h Eulerian fields (bkwd)

• Handle flow map B.C.

FTLE Computation

•Map current tracer positions to launch
cells to obtain time h forward flow map

•Write time h flow maps to disk

• Construct time T flow maps from se-
quence of N time h flow maps

• Compute FTLE fields

• Re-initialize time h flow maps.

RETURN

un+1/2
mod (tn+1, h) 6= 0

mod (tn+1, h) = 0

Figure 4.3: Block diagram showing the flow of the CFD simulation with integrated
FTLE computations.

At this point, if the current simulation time is not a multiple of the flow

map sub-step ( mod (tn+1, h) 6= 0), we return to the main flow solver loop. If

mod (tn+1, h) = 0 is satisfied, then the following steps are initiated to compose the

time T flow maps and compute the FTLE fields. First, the current position of all

Lagrangian tracers is communicated back to the processor and cell that launched

them time h ago, giving the time forward time h flow map, Φt
t−h(t − h), on the

fixed grid. The backward time h flow map, Φt−h
t (t), is known because it has been

evolved up to time t in forward time on the fixed grid. Next, these time h forward

and backward flow maps are written to binary files on the hard disk. Then, the

time T flow maps are constructed according to equation 4.14 from the sequence of

time h flow maps stored on the hard disk. The Jacobian of each time T flow map

is computed at the cell centers of the fixed grid using the least squares gradient
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operator, and the right Cauchy-Green deformation tensors are computed according

to equation 4.5. Finally, the largest eigenvalue of the forward and backward time

tensors are determined, and the corresponding FTLE fields are computed using

equation 4.6. As a last step before returning to the flow solver, the time h flow

maps are re-initialized on the fixed grid. This amounts to positioning a Lagrangian

tracer at each cell center, and setting value of the backward time flow map to the

cell center coordinates.

4.4 Numerical Test Cases

We now present several examples designed to show the performance and capability

of the integrated computations.

4.4.1 Time Dependent Double Gyre

As the first test, we examine the analytic model of time periodic Raleigh-Bénard

convection of [103]. This two dimensional stream-function model, sometimes re-

ferred to as “double gyre flow,” consists of two counter rotating vortices that

expand and contract in tandem. The time dependent velocity in the xy plane is

described by

ux = −πA sin(πf(x, t)) cos(πy)

uy = πA cos(πf(x, t)) sin(πy)
∂f

∂y
. (4.15)

where,

f(x, t) = a(t)x2 + b(t)x (4.16)

a(t) = ǫ sin(ωt) (4.17)

b(t) = 1− 2ǫ sin(ωt) (4.18)
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To facilitate comparison with other previous studies of the FTLE field in this

system [62, 61], we choose parameter values of A = 0.1, ǫ = 0.1, ω = 2π/10.

The domain is discretized with a uniform, 512× 256 Cartesian mesh in the region

[0, 2] × [0, 1]. The “simulation” is started at at time t = 0, and at advanced

to t = 1.5tref , where the reference time is tref = 2π/ω. A constant time step of

∆t = 2.5×10−4 is used. The computational pipeline shown in Figure 4.3 is followed

exactly, with the exception that in the main flow solver we force the velocity field

to obey system (4.15) at every time step.

(a) t/tref = 0 (b) t/tref = 0.125 (c) t/tref = 0.25

(d) t/tref = 0.5 (e) t/tref = 1.0 (f) t/tref = 1.5

Figure 4.4: Evolution of the Eulerian representation of the backward time flow
map on the fixed grid during simulation of the double gyre flow. The scalar field,
Φ0

t,y, represents the y coordinate of the Lagrangian particle at time, t = 0, that
arrives at the fixed grid points at each later time.

To illustrate the Eulerian treatment of the backward time flow map, we plot

the evolution of its y component, Φ0
t,y, at several times in Figure 4.4. The Eulerian

field is initialized to Φ0
t,y = ycv at t = 0. These takeoff coordinates are evolved

in with flow in forward time using the semi-Lagrangian scheme. The flow maps

are reinitialized at regular intervals, h = 1.25tref , and the longer time flow maps

are constructed using the composition scheme described in section 4.3.2. For short
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times (t/tref . 0.5), it is evident that the flow transports the high Φ0
t,y values in

the negative y direction in the center of the cell, and transports the low Φ0
t,y in the

positive y directions along the left and right edges. At later times, the x direction

oscillation results in stretching and folding of fluid transported between the two

gyres, and a significantly more complex flow map. Despite the Eulerian treatment

of Φ0
t,y, its sharp gradients are well preserved by the semi-Lagrangian advection

scheme.

We can also use this flow to show that the Lagrangian treatment of the forward

time flow map is equivalent to the Eulerian treatment of the backward time flow

map. Because the system is symmetric in time about t = 0, forward trajectories

in system (4.15) are equivalent to backward trajectories in the negative of sys-

tem (4.15). This allows us to make direct comparisons of FTLE fields computed us-

ing the Lagrangian and Eulerian representations. To do this, we first apply the flow

field of system (4.15) and simulate the flow for an integration time of T = 1.5tref .

We then simulate the negative of system (4.15) up to the same time. In Figure 4.5a-

d the forward and backward time FTLE fields are shown. It is nearly impossible

to distinguish any differences by eye in the FTLE obtained by the Lagrangian and

Eulerian representations of the flow map. To obtain a quantitative measure of the

difference, we also plot the normalized relative error between the Lagrangian and

Eulerian results, Relative Error = |FTLEL−FTLEE|/max(FTLEL) for forward

and backward time in Figure 4.5e-f. Because this metric is very sensitive to slight

shifts in ridges of the FTLE field, we are generally satisfied that for most of the do-

main, the difference between the Lagrangian and Eulerian FTLE field is less than

10% of the max FTLE. Qualitatively, the FTLE fields for the model parameters

chosen are in good agreement with prior studies [62, 61] with the same parame-

ters. This gives us confidence that our forward and backward time computations

are consistent and accurate.
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(a) σ0
T Lagrangian (b) σT

0 Lagrangian

(c) σ0
T Eulerian (d) σT

0 Eulerian

(e) σ0
T relative error (f) σT

0 relative error

Figure 4.5: Comparison of the Lagrangian and Eulerian approaches to calculating
the FTLE field. (a) through (d) show the FTLE fields computed in (a) backward
time with the Lagrangian approach, (b) forward time with the Lagrangian ap-
proach, (c) backward time with the Eulerian approach (d) forward time with the
Eulerian approach. (e) and (f) show the relative error between the Lagrangian and
Eulerian approaches for backward and forward time respectively.
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4.4.2 Flow Over a Fixed Cylinder at Re = 300

We now turn to flow over a fixed cylinder, a typical test case for an unsteady flow

solver. A body fitted C-grid containing a total of 1.3 million hexahedral control

volumes is used to discretize the computational domain, shown in Figure 4.6. At

the no-slip cylinder boundary, the grid spacing is D/100, where D is the cylin-

der diameter. In the wake region the grid spacing is coarsened to D/40. A slip

condition is imposed on the top and bottom boundaries in the y direction, and a

convective outlet condition (∂u/∂n = 0) is set 25D downstream of the cylinder.

The grid is two cells thick in the z direction, where periodicity is imposed. At

the C boundary 20D upstream of the cylinder, a uniform inflow velocity, U , is

specified so that the Reynolds number, Re = UD/ν, is equal to 300 where ν is the

kinematic viscosity.

X/D

Y
/D

-20 -10 0 10 20

-20

-15

-10

-5

0
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10

15

20

Uniform Inflow
Re = U D/ν = 300

Near Cylinder Mesh

Slip Walls Top & Bottom: du/dy = 0

Convective 
     Outflow:
     du/dn =0

Figure 4.6: Domain and mesh used for simulating flow over a fixed cylinder.

The flow is started from rest and simulated for t = 200tref , where tref = D/U ,

using a constant timestep ∆t = 1.7× 10−3tref . The FTLE fields are computed for
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an integration time of T = 7.8tref , and with a flow map sub-step, h = T/13 =

0.6tref . When updating the backward time flow map, the boundary conditions

discussed earlier are used. That is, on the solid cylinder boundary and at the

inflow we impose Φt−T
t,i = xi , while at the slip boundaries and outflow, we impose

n·∇Φt−T
t,i = 0. The influence of the non-physical fixing of Lagrangian particles that

encounter the outflow does not travel upstream far enough to affect the forward

time FTLE fields in the near wake. At this Reynolds number, the cylinder wake

becomes unsteady, and develops into an unsteady Kármán vortex street. This

phenomena is nicely captured by the FTLE fields shown for several instants in

time in Figure 4.7. For t . 50D/U , the boundaries of the symmetric recirculation

bubble are clearly marked as LCS candidates by the FTLE ridges. The bubble

becomes unstable and the FTLE ridges begin to wander from the line of symmetry

at t = 60D/U . By t = 75D/U , alternating vortex shedding has set in, and the

FTLE ridges show the skeleton of the periodic vortex chain in the wake of the

cylinder.

4.4.3 In-Line Oscillation of a Circular Cylinder

In this example, we show that our integrated approach to computing FTLE fields

can be easily applied to simulations of flows with moving boundaries, which are

encountered in multiphase flows, and fluid-structure interaction problems. Our

flow solver has the extended capability to simulate resolved rigid particle-flow

interactions on non-body conformal Cartesian grids using a fictitious domain ap-

proach [2], and we demonstrate the simultaneous FTLE computations here with

a simple test case. For our example, we consider the flow generated by a circular

cylinder performing linear oscillations. This problem can be described in terms

of the maximum cylinder Reynolds number and the Keulegan-Carpenter number,
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(a) t = 40.2D/U

(b) t = 60.6D/U

(c) t = 69.0D/U

(d) t = 75.6D/U

(e) t = 168.0D/U

Figure 4.7: Snapshot of FTLE fields for flow over a cylinder at Re = 300 for T =
7.8D/U . Left column shows backward time FTLE, right column shows forward
time FTLE.
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which characterizes the oscillation frequency of the cylinder:

Re =
UmD

ν
(4.19)

KC =
Um

fD
=

2πA

D
(4.20)

where, Um is the maximum cylinder velocity, D is the cylinder diameter, ν is the

kinematic viscosity of the fluid, f is the frequency of cylinder oscillations, and A

is the oscillation amplitude. The cylinder and fluid both start at rest. At t > 0,

the cylinder position and velocity are described by the sinusoidal functions:

xc(t) = −A sin(2πft) (4.21)

Uc(t) = −2πAf cos(2πft) (4.22)

The cylinder diameter, viscosity, maximum velocity, and oscillation amplitude

and are chosen so that Re = 100, and KC = 5, corresponding with the experimen-

tal study of [20]. A block-type Cartesian grid is used, with a uniform patch in the

region of cylinder motion, and periodicity assumed in the spanwise direction. The

domain size is 50D × 50D in the x and y directions. Near the cylinder, a uniform

grid spacing of D/100 is used. The grid uses 750× 600× 2 (9× 105 total) cells in

the x, y, and z directions.

The flow is allowed to develop for 9 complete oscillations before computing any

FTLE fields. The integration time, T = 1.5tref , where tref = 1/f is the oscillation

period. The FTLE fields are constructed at a flow map sub-step, h = T/30.

Figure 4.8 shows the forward and backward FTLE field at four different phase

angles, θ = 2πft, of the oscillation. At this Reynolds number and KC number, the

flow is characterized by a pair of counter rotating vortices being shed from the top

and bottom of the cylinder every half cycle. Upon reversing direction at θ = 90o

and 180o, the cylinder destroys the previously formed pair while creating a new pair

in its wake. The attracting LCS candidates compare very well with experimental

dye visualizations of the same flow (see FIG 5 of [20]). For this relatively long
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(a) θ = 0o

(b) θ = 54o

(c) θ = 108o

(d) θ = 162o

Figure 4.8: FTLE fields for selected phase angles in one half cycle of the oscillating
cylinder flow. The arrow denotes the direction of cylinder motion. Left column
shows backward time FTLE, right column shows forward time FTLE.
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integration time the LCS candidates, which can be visually identified as ridges of

the FTLE field, show how the cylinder entrains fluid into its wake, then stretches

and folds the fluid as it oscillates.

During this simulation, the fluid inside the cylinder, and as a result the flow

map, are constrained to the rigid body motion specified by equations 4.21 and 4.22

at all times. This results in a sharp FTLE ridge along the solid-fluid interface as

would be expected. Despite the immersed representation of the moving rigid body

on the fixed grid, the FTLE fields obtained contain sharp well defined features,

which provides confidence that the integrated computations are easily extensible

to problems with moving boundaries.

4.4.4 Three Dimensional Turbulent Vortex Ring

To show the capability of the proposed approach for three dimensional flows, we

now examine the case of a traveling vortex ring. LCS theory has previously been

applied to vortex ring flows as a way to to understand the lobe dynamics of entrain-

ment, detrainment, and transport within the ring [97], as well as the identification

of vortex pinch-off during formation of the flow structure [76]. This vortex ring

is generated by a quick pulse of fluid from a circular inlet located at the x = 0

wall of an initially stagnant rectangular domain. The domain geometry, shown in

Figure 4.9a, is 30cm × 30cm in the y and z directions, and extends 80cm in the

x direction. The velocity of the inflow jet as a function of time is similar to the

studies of bubble vortex interaction by [104] and [28], but is scaled so that the

initial circulation is equal to 79.5cm2/s. The shear layer of the jet rolls up into a

vortex ring and travels downstream at a speed of roughly 14% of the maximum

jet velocity. Also in Figure 4.9a, we visualize the three dimensional ring structure

by showing an isosurface of swirling strength, λci. This Eulerian vortex detection

criteria corresponds to the imaginary part of the complex eigenvalue of the instan-

taneous velocity gradient tensor [115]. The isosurface shows the turbulent nature

of the ring structure, particularly in its wake as it travels downstream. The domain

is meshed with a 640× 241× 241 (37× 106 total points) Cartesian grid. The cells
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are coarsened in the corners of the tank, away from the evolution of the vortex

ring.

The forward and backward time FTLE fields are computed during the simula-

tion for T = 1.5s, about the time it takes the ring to travel 10cm downstream. A

flow map sub-step of h = T/15 = 0.1s is used to compose the time T flow maps.

Two dimensional slices in the z = 0 plane of the three dimensional FTLE fields

are shown in Figure 4.9b and c for t = 2s, t = 7s, and t = 12s. Despite the

three dimensionality of the flow, FTLE ridges can be clearly seen in the xy plane,

particularly at t = 2s when the candidate LCS surfaces lie perpendicular to the

z = 0 plane. At later times, as the ring travels downstream and begins to break

down, the strong FTLE ridges are less evident in this plane, implying the LCS

candidate surfaces are no longer perpendicular to this slice. Three dimensional

ridge extraction for cases such as this is an important but difficult task (see [31]

and [68] for some unique approaches relevant to LCS) and is reserved for a future

work.

4.4.5 Flow through a random sphere pack

The final case studied, unsteady flow through a random sphere pack, is designed

to showcase the benefits of integrating the FTLE computations with the CFD

simulation. At moderate Reynolds numbers, flow through packed beds of spheres

can develop a variety of coherent porescale flow features including jets and helical

vortices, which operate over a wide range of characteristic space and times scales.

For packed bed reactors and other complex flow configurations, LCS theory could

provide crucial new understanding of how geometric and hydrodynamic features

affect transport and mixing, and how slight geometric changes can produce desir-

able or undesirable to be valuable design tools. However, the geometric scale and

complexity of these types of configurations precludes computing the FTLE using

the typical post-processing approach.

The geometry that we consider is a channel packed with 51 spheres with con-

stant diameter D, shown in Figure 4.10a. A ballistic deposition algorithm, similar
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(a) Eulerian swirling strength

(b) Backward time FLTE

(c) Forward time FTLE

Figure 4.9: Snapshots of the three dimensional vortex ring at t = 2s 7s, 12s. (a)
Isosurface of swirling strength, λci/λ

max
ci = 0.12. (b-c) FTLE fields for the z = 0

cross sectional slice through the center of the 3D vortex ring
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to the method employed by [4], was used to pack the spheres into a 4D× 4D× 4D

box resulting in a mean void fraction, ǫ = 0.58. The channel was then formed by

extending the box boundaries 3D upstream and downstream of the spheres. The

flow is driven in the positive z direction by a constant inflow velocity at the up-

stream boundary so that the pore Reynolds number for the flow is Re = UD
ǫν

= 600,

where U is the assigned inflow velocity and ν is the viscosity. A convective outlet

condition is located 3D downstream of the packing.

The same fictitious domain approach used for the oscillating cylinder case is

used to represent both the fixed solid and fluid region on a non body confor-

mal Cartesian grid. This grid has a uniform spacing of D/80 everywhere in the

porespace, and is stretched toward the inflow and outflow boundaries. In total, it

contains 47 × 106 control volumes. Validation of the fictitious domain approach

for flow through packed beds of spheres , including justification for the chosen grid

spacing in this case may be found elsewhere [30]. The flow was started from rest

and allowed to develop to for t = 60tref where tref = D/U . The flow becomes

unsteady right away, and contains a number of interesting porescale features. The

most notable of which is helical vortices, elongated in the mean flow direction.

These are shown in Figure 4.10a by plotting isosurfaces of the Eulerian swirling

strength field, λci/λ
max
ci = 0.25.

The FTLE fields are computed for an integration time of T = tref using a flow

map sub-step of h = T/7. Because of the complex geometry, the flow is multiscale

in nature. After some experimentation, these values of T and h were determined

to provide sharp FTLE features (long enough T ) and good temporal resolution of

all timescales (small enough h). The fields are visualized in Figure 4.10b and c

on the two dimensional z/D = 2.5 slice. This slice is oriented perpendicular to

the mean flow, at roughly two thirds of the way through the packed bed. The

fine grid resolution used for the simulation provides excellent resolution in the

FTLE field, and a number of porescale LCS candidates can be easily located with

the eye. We will discuss a few of the features in the plane here. (A) is a thin

region sandwiched between a sphere and the x = 0 wall occupied by a pair of
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(a) 3D domain and vortex isosur-
faces

(b) Backward time FTLE

(c) Forward time FTLE

Figure 4.10: Flow through the random sphere pack. (a) Shows the simulation
domain and instantaneous isosurfaces of λci/λ

max
ci = 0.25, and the z/D = 2.5

plane used for visualization of the FTLE fields. (b) and (c) show a snapshot of the
FTLE fields for at the z/D = 2.5 cross stream slice. The LCS candidates in pores
A, B, and C demonstrate distinct, time dependent behavior.
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counter-rotating helical (vorticity aligned with the z axis, in and out of the page)

vortices. The boundaries of the two vortex cores are well defined by the forward and

backward FTLE fields. In time, these features wander slightly along the wall, but

remain distinct throughout the simulation. (B) is a large open pore in the center of

the packing, where several streams of fluid converge. The LCS candidates, which

seem to distinguish the heads of jets as well as the boundaries of vortex cores, are

highly transient and move throughout the pore as the simulation proceeds. Pore

(C) is a large open region near the wall of the packing that is also highly transient.

There is evidence of vortex shedding as the tail of the ridge feature inside the

boxed region flaps periodically into the open area of the pore. These results give

us confidence that the integrated approach can capture FTLE features in large

scale complex configurations.

4.4.6 Computational Expense

By incorporating the FTLE calculation into our flow solver we have removed the

need to post-process a sequence of velocity fields. However, in many ways, we have

just shifted the computational overhead to the simulation, and it is important to

quantify how much this will cost in terms of additional simulation time. If the cost

of the FTLE computation were to become significantly large relative to the stan-

dard flow solver, the appeal of the integration we have described would diminish. In

Figure 4.11 the expense of FTLE computations is plotted in terms of the percent-

age of the total simulation time that they consume for each case presented in this

section. The expense for each case is further broken into contributions from (i) the

Lagrangian update of the forward time flow map tracers, (ii) the semi-Lagrangian

update of the backward time flow map scalar fields, (iii) the reconstruction of time

T flow maps from the time h sub-steps including reading back the sub-steps from

hard disk, and (iv) all other FTLE related computations including writing to the

hard disk, composing the strain rate tensor, computing its max eigenvalue and

enforcement of flow map boundary conditions. The double gyre case has been

omitted, since the velocity field in that case is enforced artificially and the flow
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solver itself does very little work. To make the comparison as equal as possible

for all cases, the time step, ∆t was chosen so that the maximum CFL number was

0.3, the integration time was set to T = 2400∆t, and the flow map sub-step was

set to h = T/12 = 200∆t. All cases were run on the Lonestar super computer

at the Texas Advanced Computing Center (TACC), which consists of 1888 nodes

of 3.33GHz Intel 2 Hex-core (12 processing cores/node) Xeon 5680r processors

connected with a 40Gbit/s Inifiniband Mellanox Switch. Each node of 12 cores

shares 24GB of memory. The grids for each case were partitioned with between

38k and 56k control volumes per partition, resulting in parallel simulations using

between 24 and 1200 processors.

It is encouraging to see that the computational time dedicated all FTLE related

computations varies between a low of 14% (the vortex ring), and a high of 26.5%

(the fixed cylinder) of the total simulation time. Variations between the cases have

to do with differences in the load balancing of the parallel partition and the amount

of iterations required by the flow solver for convergence, among other factors. It is

evident that the implementation scales effectively to the larger, three dimensional

simulations distributed in parallel on over 1,000 processors. It is important to

note that the time required to construct the time T flow maps from the time h

sub-steps scales almost linearly with the speedup factor, N . In this study we have

chosen N = 12, as we have found it to be sufficient to resolve most FTLE features

of interest in these flows.

Memory and hard disk usage is also of concern when performing either dis-

tributed memory or shared memory flow simulations. In our current implementa-

tion, the simulation memory increase is small because all flow map sub-steps are

stored in temporary files on the hard disk. To do this requires

Ncv ×
T

h
×

6 doubles

cv
×

8 bytes/double

10243 bytes/GB
(4.23)

of temporary hard disk space. Thus, a 1 million cv simulation with N = 12

will require 0.54GB. Our largest simulation, the 46 million cv simulation of flow
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26.5%Fixed Cylinder (36 proc.)Total FTLE Cost

8.3%Lagrangian tracer update
Simlation Wall Clock = 13 min/T

6.9%semi-Lagrangian scalar update

8.7%Construct time T flow maps

2.6%Other

22.8%Oscillating Cylinder (24 proc.)Total FTLE Cost

2.8%Lagrangian tracer update
Simlation Wall Clock = 43 min/T

6.0%semi-Lagrangian scalar update

12.8%Construct time T flow maps

1.2%Other

14.2%Vortex Ring (660 proc)Total FTLE Cost

3.9%Lagrangian tracer update
Simlation Wall Clock = 70 min/T

3.8%semi-Lagrangian scalar update

4.4%Construct time T flow maps

2.1%Other

16.1%Packed Bed (1200 proc.)Total FTLE Cost

4.1%Lagrangian tracer update
Simlation Wall Clock = 58 min/T

3.9%semi-Lagrangian scalar update

6.4%Construct time T flow maps

1.7%Other

0% 5% 10% 15% 20% 25% 30%

Figure 4.11: Computational cost of embedding the FTLE computations into the
direct numeric simulation. Bars indicate percentage of the total simulation time
dedicated to certain parts of the FTLE computations for each case studied.
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through the packed bed with T/h = 7 required 22GB of temporary disk space, an

amount readily available on most modern computing platforms.

To compare the computational overhead of our integrated approach with the

post processing approach, 48 equally spaced velocity fields were output from the

fixed cylinder simulation over an interval corresponding to the FTLE integra-

tion time, T = 2400∆t. The velocity fields were then interpolated to a uniform

1750 × 750 grid (1.3 × 106 total points) covering a subset of the total domain

near the cylinder and its wake (−10 ≤ x/D ≤ 25, −7.5 ≤ y/D ≤ 7.5). Using a

Lagrangian tracer grid of the same size, a single, backward time FTLE field was

computed for integration time T using the freely available LCS Matlab Toolkit [84]2.

The computation took 17 minutes using a single core of a 2.83GHz Intel Core 2

Quadr processor, and consumed 0.47GB of memory. In comparison, a total of 24

FTLE fields (12 forward and 12 backward) were computed for the same number

of cells during the simulation using the integrated approach. This required 13min

of simulation time and 0.7GB of hard disk space to store the intermediate flow

maps. The FTLE related computations accounted for 26.5% of the simulation

time, meaning each FTLE field took about 9 seconds to compute. This represents

a roughly 2 order of magnitude speedup over the post processing approach, and is

due to both the parallelism of the integrated approach as well as the efficient flow

map composition technique.

4.5 Conclusions

In this paper, we have demonstrated that both the forward and backward time

FTLE fields may be computed, on-the-fly, during direct numerical simulation of the

Navier-Stokes equations. Our implementation into a parallel, distributed memory,

unstructured grid flow solver utilizes Lagrangian particle tracking to compose the

forward time flow maps, and an Eulerian treatment of the backward time flow

map along with a simple semi-Lagrangian advection scheme. To avoid redundant

2LCS MATLAB Kit Version 2.3 available from www.dabiri.caltech.edu/software.html
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tracer integrations and scalar advections, time T flow maps are composed from

a sequence of time h sub-steps, corresponding to the unidirectional single-tiered

method of [9]. This enables us to visualize the evolution of the FTLE fields with

high temporal resolution, without burdening the simulation excessively.

The implementation has been tested for several canonical and new flows where

LCS theory has not yet been applied. We first showed that the Lagrangian and

Eulerian treatments of the forward and backward time flow maps produce high

quality and similar results using the analytic double gyre test case. We next showed

the applicability to unstructured grids and bluff body flows (the fixed cylinder),

rigid body motion and multiphase flow problems (the oscillating cylinder), three

dimensional flows (the traveling vortex ring), and large scale simulations with

complex boundaries (the packed bed). In all of these cases, the overhead related

to the FTLE computations is small relative to the total simulation time. The

implementation also scales well for simulations utilizing over 1000 processors.

The integration of these computations directly in the simulation eliminates

the need for expensive post-processing of large data sets, but also has a number

of additional benefits. Because the velocity field is available at the native space

and time resolution of the simulation, integration errors in the flow maps are

minimized. Having the FTLE fields available to the simulation makes exploring

active control of the FTLE fields and their associated LCS much more accessible,

and could prove important to a number of applications. Our future work will

pursue the possibility of this. We also plan to integrate the extraction of the LCS

based on new, more rigorous LCS theory [39, 27, 26, 40] as it continues to evolve.

Additional exploration of LCS-like flow features such as inertial LCS, which are

the attracting and repelling structures for inertial particles [84, 95], and burning

invariant manifolds (BIMs), which are invariant barriers to reaction fronts [66] are

also possible within a similar framework.
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Chapter 5: Conclusion

This work investigated the porescale structure of inertial flows in porous media

using direct numerical simulation data. The flow regime investigated was in the

range of 10 ≤ Re ≤ 600, covering the emergence of both steady and unsteady

inertial flow features.

A major challenge associated with accurate porescale simulations of porous

media and packed bed flows is how to accurately represent the complex solid-fluid

interface while retaining computational efficiency. With this in mind, the relative

performance of two simulation approaches were compared in Chapter 2. In the

first and historical more utilized approach, an unstructured tetrahedral mesh is

created that conforms to the solid boundaries of the porespace, and the no-slip

boundary condition is enforced directly. In the second approach, a fictitious do-

main formulation is used wherein the entire domain, inclusive of the solid regions

is treated as a single incompressible fluid. The solid fluid interface is represented

on a regular, Cartesian grid by Lagrangian marker points with subgrid resolution.

A synthetic force is then applied within the solid regions in order to satisfy the

rigidity and no-slip constraints associated with the fixed, solid spheres. A number

of systematic tests were performed to compare the two approaches performance

for packed bed type applications. Both proved capable of capturing steady and

unsteady porescale flow features. However, the fictitious domain approach demon-

strated far superior performance in terms of the computational effort to obtain a

fixed level of uncertainty. This is due to the regularity of the Cartesian grids, which

also do not require expensive pre-processing (mesh generation). Moving forward,

fictitious domain approaches should be the weapon of choice, when performing

resolved simulation of porescale flow in packed beds.

A detailed characterization of vortical flow structures in porous media was made

in Chapter 3. High resolution, time accurate simulations were used to capture both
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steady and unsteady vortex dynamics at the pore scale. Using both qualitative

visualization techniques along with and statistical comparisons of the porescale flow

fields allowed for several key differences to be identified between vortical structures

in randomly and arranged packings. There is a clear relationship between pore

geometry and the types of pore-scale vortical structures observed. In arranged

packings, the dominant flow features are multi-lobed vortex rings, with the vorticity

aligned perpendicular to the mean flow. Conversely, the dominant flow feature for

the Reynolds numbers studied in the random arrangement are helical vortices,

elongated in the mean flow direction. The emergence of these different types of

vortical features are confirmed through statistical analysis of velocity, vorticity

and helicity in the porespace. Unsteady dynamics are also strongly linked to

pore geometry. For Reynolds numbers near 600, spatially and temporally periodic

Kármán like vortex shedding is observed at a single Strouhal number near 1 in a

simple cubic arrangement. Flow through the random arrangement exhibits a wider

range of time scales with Strouhal numbers between 0.29 and 1.57 but without any

observed vortex shedding.

In order to study the effects of pore scale flow features on mixing and transport

in complex porous media, a computational tool was developed in Chapter 4 to

compute the finite-time Lyapunov exponent field. Rather than do this during a

post processing procedure, the relevant computations were integrated into the DNS

code, allowing for significantly reduced overhead and higher quality results. The

approach was validated for a variety of flows including unsteady flow through a

randomly packed bed of spheres at Re = 600. The results unambiguously define

the boundaries of dynamically distinct porescale features including counter rotating

helical vortices and jets, and capture time dependent phenomena such as vortex

shedding at the pore level.
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Appendix A: Pointwise & Glyph Used to Automate Mesh

Generation for Porous Media Flow

This brief article appeared in The Connector, a quarterly publication

for Pointwiser users. March/April 2011. By Justin Finn.

At Oregon State University, researchers in the Computational Flow Physics Lab

(CFPL) are using large scale, high resolution simulations to better understand flow

through complex porous media. Both arranged and random sphere packs, such as

the one shown in Figure A.1a, are being studied.

(a) (b)

Figure A.1: A typical simulation domain consisting of a cylindrical tube packed
randomly with contacting spheres. (a) The surface mesh on the spheres is shown.
(b) Closeup of the contacting region. A smooth surface mesh transition provided
by bridging two contacting spheres with a fillet.



121

Porous materials are building blocks for many of the natural and man-made

systems that influence our daily lives, such as subsurface groundwater networks

and packed bed reactors. Despite their importance, we know very little about

flow dynamics in porous media, particularly at Reynolds numbers much greater

than one. At these higher flow rates, the effects of fluid inertia may result in com-

plex, unsteady, three dimensional flow features, including helical vortices, jets, and

backflow regions. These pore scale features can dramatically effect properties of

broader interest, such as pressure gradient, mixing, and dispersion in the medium.

Creating quality meshes for these types of geometries notoriously can be tricky

and time consuming. The crux of the process is dealing with the sphere-to-sphere

contact points, in which elements can become unmanageably small and have high

aspect ratios. One way to mitigate this problem is to bridge the contact point

with a small fillet or cylinder [56]. By removing the small regions of fluid near

the contact points, a smooth, non-skewed surface mesh can be obtained, as shown

in A.1b.

It quickly becomes challenging to generate this type of mesh for more than a

few spheres by eye using a graphical user interface because of the large number of

geometric entities and high surface area-to-volume ratio. The CFPL researchers

realized that their problem was ripe for automation using the Pointwise/Glyph

scripting capabilities. The geometry creation and mesh generation processes were

parameterized easily, and a generalized algorithm was developed to handle arbi-

trary sphere positions and boundary types. Glyph, which provides the full func-

tionality of Pointwise as an extension to the TCL scripting language, made the

transition to automation surprisingly straightforward. In addition, a TK user

interface, shown in Figure A.2, was designed to minimize the required user inter-

action. The CFPL group is now generating quality meshes for large scale sphere

packs and has decreased their interaction time from days to minutes.

The flow simulations are performed using parallel research codes. Simulations

utilizing up to 350 processors have been run on the NSF’s TeraGrid supercomputers

over a large range of Reynolds numbers. The high resolution meshes are able
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Figure A.2: The TK user interface for the Glyph scripts used for mesh automation.

to capture the important unsteady dynamics and vortex shedding at the pore

scale. This is shown in Figure A, where the Lambda-2 vortex detection criteria

is visualized as an isosurface for a Reynolds number of 529. Contour colors show

regions of high and low pressure for a single instant in time.

Figure A.3: Flow from left to right through a simple cubic packing of spheres at
a Reynolds number of 529. A single isosurface of the Lambda-2 vortex detection
criteria is shown. Color contours show the local pressure variation.
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Appendix B: Parallelization of the flow map construction scheme

The “single tiered unidirectional” reconstruction procedure proposed by [9] is used

to compose the time T flow maps from the sequence N time h flow map sub-

steps. Here, we describe the parallelization of this step in our distributed memory,

unstructured grid flow solver. Let t be the current simulation time which is a

multiple of the flow map sub-step, h ( mod (t, h) = 0), and assume that we

are interested in constructing the time T forward flow map, Φt
t−T from the sub-

steps which have already been written to the hard disk. Let tC be the current

construction time. We initialize tC = t − T , so that our construction begins at

the beginning of our forward time interval, [t − T, t], and initialize a temporary

construction of the flow map, ΦtC
t−T = xcv everywhere. We then perform the

following steps in a loop from n = 1 to n = N :

• Each processor reads its own time h flow map, ΦtC+h
tC

= Φt−T+nh
t−T+(n−1)h into

memory from the binary file located on the hard disk.

• The goal is to update the flow map construction, ΦtC
t−T , to account for the

current sub-step. This involves interpolating the values of ΦtC+h
tC

which is

known at the grid points, to the non-mesh points of the current flow map

construction, ΦtC
t−T

ΦtC+h
t−T = IΦtC+h

tC
◦ΦtC

t−T (B.1)

It is likely that the non-mesh points of the current construction will lie across

processor boundaries, meaning a coordinated search and retrieve operation is

required by all processors to perform this update. To do this, each processor

sends a query to all processors which could potentially contain each non-

mesh point, ΦtC
t−T . This is determined simply by comparing each non-mesh

point to the minimum bounding box of the grid partition belonging to all

other processors.
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• Each processor receives a list of non-mesh points, which may lie within

its grid partition, to search for. These are the points where the value of

the current flow map sub-step is needed by another processor. A bounding

box Oct-Tree search algorithm is used to efficiently determine the cell (if

any) which contains each of these points. If found, the value of ΦtC+h
tC

is

interpolated to the non-mesh point using the interpolation kernel described

in section 4.3.1. These values of are sorted and sent back to the processor

which requested each search.

• Each processor receives values of the updated flow map ΦtC+h
t−T from poten-

tially all other processors.

• The construction time is advanced to tC = tC + h.

At the end of this loop, ΦtC
t−T is an approximation of time T flow map Φt

t−T .

The procedure can be repeated to compute the backward time flow map, Φt−T
t ,

by starting at tC = t and advancing the construction time in the negative time

direction.

As the number of sub-steps, N , increases this portion of the algorithm can

become computationally expensive due to the relatively naive search procedure for

non-mesh points in our unstructured grids. In the case of a shared memory struc-

tured grid flow solver, these steps could be simplified significantly. Nonetheless,

we find that the total expense of this step remains small (see section 4.4.6) relative

to the simulation time for moderate values of N .



125

Appendix C: Turbulent Flow in a FCC Unit Cell

In this section, preliminary results are presented for turbulent flow through a face

centered cubic (FCC) unit cell. This configuration is shown in figure C.1 and is

one of two (HCP being the other) possible homogeneous sphere packings with the

lowest possible porosity, ǫ = 0.26. It consists of 6 half spheres located on each

face, and 8 quarter spheres located at the corners. As the flow travels through the

unit cell in the X direction, it experiences dramatic accelerations and decelerations

due to expansions and contractions in the pore cross sections. A decade ago, Hill

and Koch [48] studied this configuration in detail for moderate Reynolds numbers1

in the unsteady and weakly turbulent regimes (81 < Re < 286) using a Lattice

Boltzmann approach. They observed a very early transition to unsteady flow at

Re = 81, and a transition to weakly turbulent flow at Re ≈ 220. At the time,

their study pushed the envelope of available computational power, and they were

unable to perform systematic grid convergence studies, or study flows in the fully

turbulent regime. This study aims to pick up where they left off, by demonstrating

grid convergence requirements, and explore the characteristics of three dimensional

turbulent flow in the FCC configuration.

The fictitious domain approach outlined in Chapter 2 is used to compute the

flow field. Accordingly, a uniform Cartesian grid is generated, as well as marker

points that are used to locate the solid surface. The flow is then started from

rest, and driven in the positive X direction by a constant pressure gradient. This

pressure gradient is defined for a specific Reynolds number from the observations

of Hill & Koch. They developed the following correlation for drag force on the

1Note the Reynolds number definition used by Hill & Koch in their series of papers on porous
media is different from the one used in this dissertation. Specifically, they define Re = UD/ν,
where U is the superficial velocity. For the sake of consistency, their values have been converted
for this discussion to pore Reynolds number definition of Dybbs & Edwards.
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(a) Solid boundaries (b) Pore cross sections

Figure C.1: The face centered cubic (FCC) unit cell configuration.

spheres:

F = 462 + 3.65Re (C.1)

This can be related to the pressure gradient as:

∇P = 18µ(1− ǫ)FU/D2 (C.2)

Where U is the time averaged superficial velocity, q/A. Three Reynolds numbers,

Re = 288, 530, 950 have been chosen based on prior work and available computa-

tional resources: The highest Reynolds number Hill and Koch were able to simulate

was Re = 288, and present computational resources will likely restrict our study

to Re . 1000.

C.1 Grid Requirements

In order to estimate grid resolution requirements for this case, an analogy is made

to turbulent channel flow. Standard practice for DNS studies of channel flow is to

place the first grid cell within δ+ = 1 of the solid boundary, so that the viscous

sublayer is resolved by the simulation. In channel flow there is no form drag, and

δ+ can be estimated directly if the applied pressure gradient is known. In random

sphere packings, there is significant form drag, flow separation occurs, and the

local boundary layer thickness is difficult (if not impossible) to predict a-priori.
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The estimates made here can be viewed as a starting point to understand grid

requirements for DNS in packed beds.

The pressure drop per unit length, ∆P
L
, through an arrangement of spheres with

porosity ǫ and specific surface S = 6
D

is balanced by the total stress on the sphere

surface, 〈τ〉.

〈τ〉 =
∆P

L

ǫ

S (1− ǫ)
(C.3)

Dividing both sides of equation C.3 by ρU2
p , and introducing the modified friction

factor, f = ∆P
ρU2

p

D
L

ǫ
1−ǫ

[21], we obtain

〈τ〉 = f
ρU2

p

6
(C.4)

For DNS, we want the wall coordinate, δ+ = δuτ/ν = 1, where uτ =
√

〈τws〉 /ρ.

In this relationship 〈τws〉 = α 〈τ〉 is the area averaged wall shear stress, and δ is

dimensional distance from boundary. The parameter α relates the area average

wall shear stress to the area averaged surface stress, 〈τ〉, and may be conserva-

tively estimated as α = 0.15 [113, 35] for random and arranged packed beds. The

normalized grid spacing for δ+ = 1 can then be expressed in terms of Reynolds

number, porosity, and the friction factor.

D

δ
= Re ·

√

α

6
f ·

1− ǫ

ǫ
(C.5)

Where, Dybbs & Edward’s‘[21] definition of the pore Reynolds number has been

used.

Re =

(

ρβUpDsp

µβ

)(

ǫ

1− ǫ

)

(C.6)

Ergun’s correlation [24], f = 150
Re

+ 1.75, can be used to determine an estimate

for the friction factor in porous media, allowing an estimate of the required grid

spacing to be made with equation C.5. In Figure C.1, the required resolution for

the FCC unit cell has been plotted as a function of Reynolds number for a grid

resolution corresponding to δ+ = 1 and δ+ = 3. This estimate shows that a grid
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spacing of D/δ = 200 will provide “near DNS” resolution for Reynolds numbers

between 200 and 1000.

C.2 Preliminary Results

As a first step, grid convergence studies were performed at each Reynolds number

to determine the grid resolution required to capture all space and time scales of

the turbulence. Both integrated quantities such as the bulk flow rate, and local

quantities such as time average velocity and turbulent kinetic energy (TKE) distri-

butions in the porespace are being monitored to determine the grid requirements

for DNS at each Reynolds number. A sample measurement of the time averaged

TKE distribution made at different grid resolutions is shown in figure C.2 for

Re = 950. As can be seen here, the major features of the TKE distribution are

captured at all grid refinement levels but the magnitude of TKE is not consistent

between any grids, suggesting that all turbulent scales are not yet resolved. Based

on the present available results, rough estimates for grid requirements are sum-

marized in table C.1 for each Reynolds number to be considered. These will be
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Figure C.2: Convergence of Mean streamwise velocity and turbulent kinetic energy
with increased grid resolution

Table C.1: Grid size estimates for DNS of turbulent flow through the FCC unit
cell
Re Maximum Current D/∆ Estimated Required D/∆ Estimated Grid Size
288 176 176 15M
530 144 250 44M
950 176 250+ 44M+

adjusted as needed based on future quantitative comparison of the results on grids

with resolution up to D/∆ = 250.

The preliminary results available do allow for a qualitative comparison of the

porescale structure of turbulence at the three different Reynolds numbers consid-

ered. Figure C.3 shows instantaneous isosurfaces of the swirling strength vortex

detection criteria, λci [115, 14] for each of the three Reynolds numbers. In each case,

the isovalue is chosen to be roughly 25% of the maximum values in the domain.

Qualitatively, one can see a larger scale separation at higher Reynolds number.

Also, the vortical structures are less isotropic at the lower Reynolds numbers. At

these flow rates, there seems to be a preference for the alignment of the vortex

tubes in the mean flow direction, meaning that there is significant helicity in the

system (vorticity alignment with the mean flow). This is not as evident at the

highest Reynolds number (950). Further quantitative analysis of the relationship

between helicity and Reynolds number is warranted. The scale separation of the

porescale flow features is also shown in figure C.4, where an instantaneous vector

field in shown in a cross-stream slice on top of the λci contours for each Reynolds

number.
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(a) Re = 288 (b) Re = 550 (c) Re = 950

Figure C.3: Isosurfaces of λci

(a) Re = 288 (b) Re = 550 (c) Re = 950

Figure C.4: Midplane slice showing instantaneous vector field. Greyscale contours
show swirling strength.
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