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Instruction Fetching, Scheduling, and Forwarding in a Dynamic
Multithreaded Processor

1  Introduction

The high performance of modern superscalar processors is a direct result of 

exploiting  instruction level parallelism (ILP) in programs by executing multiple 

instructions per cycle.  However, the performance of superscalar processors has 

become limited due in part to true dependencies and control flow dependencies.   The 

concept of multithreading, which uses thread level parallelism (TLP), has attracted 

great interest in both academia and industry as a new source of exploitable parallelism. 

A multithreaded processor makes use of multiple threads of execution to exploit both 

ILP and TLP [1].  TLP compensates for a lack of ILP per thread and improves the 

utilization of execution resources and thus performance.

Several multithreaded architectures have been proposed in the past, but most rely 

on generating threads from multiple independent programs [2][3].  These 

multithreaded processors, however, do no increase the performance of the individual 

programs.  Alternatively, threads can be generated from a single sequential program, 

allowing its performance to be increased using multithreading techniques [4][5]. 

Static and Dynamic Multithreading are two methods for extracting this type of TLP. 

Static methods include the use of compilers that parallelize source codes or binary 

annotators [6] that modify already compiled programs.  However, static methods 

cannot exploit the dynamic behavior of programs, and thus can only produce 

conservative levels of TLP.  On the other hand, dynamic multithreading is performed 

by identifying and spawning threads at run-time to take advantage of dynamic 

behavior, such as loops and subroutine calls.  Processors that use dynamic thread 

generation techniques will be referred to as dynamic multithreaded processors 

throughout the rest of this thesis.

There are several bottlenecks that prevent dynamic multithreaded processors from 

reaching their maximum performance.  One bottleneck, which is shared by both 

superscalar and  multithreaded processors, is the underutilization of the instruction 

fetch bandwidth due to cache misses, branch misspeculations, and partial cache-line 
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fills [7].  Since multithreaded processors are dependent on TLP for performance, 

reduced instruction fetch performance for the threads reduces both ILP and TLP.  This 

thesis proposes a new instruction scheduling and fetching method called Fetch Block 

Grouping (FBG) to increase the instruction fetch bandwidth and performance of a 

dynamic multithreaded processor.  The idea behind FBG is to exploit threads that 

share the same instructions and cache blocks within the instruction cache.  FBG uses 

this characteristic to allow multiple threads requesting the same cache block to be 

serviced as a single request.  This allows FBG to increase the number of instructions 

fetched per cycle without increasing the number of ports on the instruction cache.

Another bottleneck inherent to dynamic multithreaded processors is the handling of 

inter-thread dependencies in the form of register and memory values, which occur 

when the threads are not fully independent (i.e., parallel).  This thesis proposes two 

new methods for managing inter-thread dependencies.  The first is a new inter-thread 

forwarding system (ITFS) which speeds up values forwarded between threads. 

Careful tracking is needed when using ITFS in order for the system to recover from 

branch and other misspeculations.  The second method involves a scheme to decrease 

the time threads must stall while waiting for values to be produced by other threads. 

The Critical-path-based Instruction Scheduler (CIS) uses critical path techniques to 

identify and prioritize instructions that belong to the inter-thread critical path and the 

intra-thread critical path.  Execution time for the threads and the program should be 

reduced by prioritizing instructions on the inter-thread and intra-thread critical paths.

To determine the performance benefits of the proposed solutions, the Dynamic 

Simultaneous Multithreading (DSMT) processor [8] is modified and simulated using a 

new object-oriented simulator.

The remainder of this thesis is organized as follows.  Section 2 will present related 

works on increasing instruction fetch performance, both in superscalar and 

multithreaded processors, and critical path instruction scheduling.  Section 3 will 

present background information on the DSMT architecture and its current inter-thread 

dependency resolution.  The new FBG technique will be presented in Section 4.  CIS 
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will be presented in Section 5, followed by the new inter-thread forwarding system in 

Section 6.  In Section 7, simulation study of FBG, CIS, and the new inter-thread 

forwarding system will be presented.  Future work will be suggested in Section 8, 

followed by conclusions in Section 9.
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2  Related Works

Instruction fetch performance is critical to the overall processor performance. 

Superscalar processors require sufficient instructions fetched per cycle to keep their 

execution units busy.  Multithreaded processors are more sensitive to fetch 

performance since they rely on TLP from multiple threads, which is limited by low 

fetch performance.  There have been many proposals over the years for increasing 

fetch performance, for both superscalar and multithreading processors.

One architecture proposed to increase the effective fetch bandwidth in superscalar 

processors is the decoupled front-end [9][10].  In such an architecture, the branch 

predictor is decoupled from the instruction fetch unit using a fetch target queue (FTQ). 

This allows both the branch predictor and the fetch unit to operate independently; i.e., 

a stall in one will not affect the other.  Reinman et al. [9] extended the decoupled 

front-end by adding a fetch target buffer (FTB).  The FTB extends the branch target  

buffer (BTB) to store variable length fetch blocks.  A fetch block begins at a branch 

target and ends in a strongly biased taken branch.  This allows several branches that 

are strongly biased as not taken to contain within the fetch block, effectively ignoring 

them and increasing the instruction fetch performance.

A very well known method for instruction fetch performance is through the use of a 

trace cache [11][12], which is implemented in the Pentium 4 processor [13].  The 

trace cache captures instruction segments in execution order instead of the program 

order stored in higher levels of memory.  Each segment is called a trace and can 

contain several blocks of instructions and branches, both taken and not taken, and is 

stored in a decoded format.  If the same segment of code is requested in the future, the 

trace cache can service the request in a single cycle without further processing or 

accessing other levels of memory, thereby increasing the instruction fetch 

performance.  For example, the Pentium 4 processor can provide three decoded micro-

ops per cycle using its L1 trace cache[13].  

Many different methods have been explored for increasing instruction fetch 
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performance in multithreaded processors.  Some have ranged from simple 

modifications to fetch units found in superscalar processors [14], to completely new 

font-end designs that use multiple fetch units [15][16].  Tullsen et al. [17] proposed a 

modification to the instruction cache and fetch units in a SMT processor that splits the 

instruction fetch bandwidth between two threads.  Due to the high occurrence of 

branch instructions and branch misalignments found in typical programs, it is hard for 

a single thread to fill a wide instruction fetch bandwidth.  By splitting the fetch 

bandwidth between two threads, it is more likely that each can fill its allotment.  For 

example, it is more likely for two threads to fetch four instructions than it is for a 

single thread to fetch eight instructions.  The proposed instruction scheduling policy 

selects the threads to fetch using a heuristic, such as the number of instructions for 

each thread in the ROB.  The ICOUNT2.8 algorithm provided the best performance by 

fetching for the two threads with the least number of instructions in the instruction 

queue and instruction decode/rename stages.  The 2.8 signifies a dual-port instruction 

cache was used, each port able to fetch eight instructions per cycle.

Moure et al. [15] proposed a new instruction cache and fetch structure for an SMT 

processor consisting of fetch clusters.  Each cluster is a self-contained instruction 

fetching system, with an instruction cache, branch predictor, fetch buffer, and 

instruction decoder.  During multithreaded execution, each thread is given its own 

fetch cluster.  However, the fetch clusters can be used in different ways during single 

thread execution.  This includes grouping them together to create a larger effective 

instruction cache, performing multi-path execution [18] on hard to predict branches, 

and increasing the effective issue width to the functional units.

Falcon et al. studied the application of fetch performance enhancements for 

superscalar processors on SMT processors [14].  Their studies included the use of the 

decoupled front-end previously described, and other modifications to increase branch 

prediction bandwidth and accuracy.  Their results showed how instruction fetch 

performance can be improved in SMT by fetching more instructions from a single 

thread each cycle, eschewing the common solution of fetching from multiple threads. 



6

This had the benefit of using simpler instruction caches and keeping the front-end of 

the processor simple.

While instruction fetching plays a significant role in the performance of a 

processor, deciding which instruction to issue also affects performance.  Several 

papers have been published in the past describing the critical path in a program and its 

affects on program performance.  The critical path is the longest path through a 

program or code segment made of chains of dependencies between the instructions. 

Execution time for the program or code segment is related directly to the execution 

time of the instructions on the critical path.

Identifying the critical path in a program can be done at compile time [19][20] or 

performed by the processor during run-time[21][22].   Tune et al. presented a method 

for identifying and utilizing instructions that belong to the critical path during 

execution of a program [21].  In their proposal, a heuristic is used to identify 

instructions that possibly belong to the critical path, which is used to increment or 

decrement saturating counters for the instructions.  Once the counter value for an 

instruction passes a threshold, it is considered critical and flagged during future 

instruction fetches.  Flagged instructions are given priority within the pipeline, such as 

access to branch and data predictors and issuing priority to the function units.  This 

was expanded upon by Fields et al. to include the affects of the microarchitecture on 

the instruction execution [22].  Instead of using a heuristic, a token system was 

implemented.  Instructions are randomly given a token, and if they produce a last-

arriving operand to another instruction, the token is also propagated to the new 

instruction.  If the token is still in the system after a specific number of instructions 

have been committed, the original instruction has its saturating counter incremented, 

similar to the system proposed by Tune et al.
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3  DSMT Background

The DSMT processor was proposed by Ortiz-Arroyo and Lee [8] as a way to 

increase individual program performance on an SMT processor using dynamic 

threading.  Threads are produced from loop iterations in a program and are used to fill 

the contexts in the SMT execution back-end.  The DSMT microarchitecture is shown 

in Figure 1 below.  Modifications to the base SMT architecture are shown in light 

gray, while new additions are in dark gray.

Each thread in DSMT is represented by a Context, which contains the register file 

and information for managing the thread.  An additional unit to the base SMT 

microarchitecture is the Loop Detection Unit (LDU), which is responsible for 

detecting and collecting information on loops.  The LDU supplies this information to 

the Thread Creation and Initialization Unit (TCIU).  As the name suggests, the TCIU 

is responsible for creating and initializing the individual threads in DSMT, and 

communicating with the ROB and Contexts.  Lastly, the Scheduler unit controls how 

the processor fetches instructions and is the focus of the changes for FBG.

During the execution of a program, DSMT operates in either non-DSMT, pre-

Figure 1: DSMT microarchitecture
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DSMT, or full-DSMT mode.  The system can transition between the three modes as 

indicated in Figure 2.  In the non-DSMT or Normal mode there is a single active 

thread and the processor behaves like a wide-issue superscalar processor.  Once a loop 

is detected by the LDU, the system enters the pre-DSMT mode in which information 

on the loop and possible threaded performance are computed.  If the system predicts 

that performance for the loop would increase if threaded, the system enters full-DSMT 

mode.  If the system performs well with the loop threaded, it is marked as Good in the 

LDU and the next time the system encounters the loop it will transition to full-DSMT 

mode immediately.  

During full-DSMT mode, the simultaneous execution of loop iterations is 

performed.  A single non-speculative thread, or head context, always exists while in 

full-DSMT mode, which is the only thread from which speculative threads are 

spawned.  The threads are connected in a ring fashion with a Head and Tail field in the 

TCIU to indicate the first and last threads, respectively.

DSMT adds several utility bits to the registers in the Contexts beyond the 

traditional Valid (V) bit and ROB tag field to help resolve inter-thread dependencies. 

The first is the Ready (R) bit, which indicates that the value in the register was 

produced by an instruction in the thread logically preceding the current instruction.  If 

the R-bit is cleared, then a speculative thread cannot use the value and must look to a 

predecessor thread for the correct value.  The second bit is the Dependency (D) bit. 

When the D-bit is set an inter-thread dependency exists for the register, and if the R-

Figure 2: DSMT transition graph.
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bit is not set, the value must be read from a predecessor thread.  The D-bits from 

previous threads are used to set the D_Anchor register within the TCIU to help resolve 

inter-thread dependencies in future threads.  Finally, the last utility bit is the Load (L) 

bit, which is set on a register whenever its value is read from another thread.  When a 

thread commits an instruction to its register file, a quick check is made of all the 

successor threads to see if they have the L-bit set on the same register.  If so, then an 

inter-thread misspeculation has occurred and all successor threads are squashed and 

their execution restarted at the beginning of the iterations.

Inter-thread dependency resolution occurs during the dispatching of instructions. 

Each operand of the instruction is checked within the register file, checking the R-bit 

to see if it is safe to read from its own Context.  If the R-bits are set, the values are 

read from within the Context and the instruction is dispatched.  However, if an R-bit is 

not set, first level speculation, called register dependence speculation, is performed. 

The D_Anchor within the TCIU is checked to determine from where the register value 

should be read.  If the D_Anchor is set for the register, then an inter-thread 

dependency occurred in previous executions and there is a good chance it will occur 

again, so the immediate predecessor thread is checked.  At this point, if the R-bit is set 

on the register in the immediate predecessor and it is Valid, the register value is 

forwarded.  However, if the register is not ready, the consumer thread, or thread 

attempting to read the value, is stalled for a set number of cycles to allow the producer 

or predecessor thread time to execute an instruction which writes to the register.  If the 

register is still not ready after this time, or if the D_Anchor bit was not set, second 

level speculation is performed in which a search is made for the last thread to write to 

the register.  Finally, if the value has not be produced by any thread, the value is read 

from the head context and it is assumed that the value was produced outside of the 

loop.

In DSMT, there are two levels in which values can be forwarded, (1) intra-thread, 

and (2) inter-thread.  Intra-thread forwarding occurs similarly to value forwarding in a 

superscalar processor.  Inter-thread forwarding occurs between threads, as previously 
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described, which is significantly slower than intra-thread forwarding.  While values 

can be passed within a thread from the common data bus and ROB entries, values 

must first be committed to a register file before they can be forwarded to another 

thread.  This creates a performance bottleneck when handling inter-thread 

dependencies, which is addressed by the new inter-thread forwarding system described 

in Section 6.
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4  Fetch Block Grouping

In multi-program multithreaded processors, such as SMT [3], instruction fetching 

bandwidth is split between multiple threads.  This allows for a better utilization of the 

instruction fetch bandwidth and for multiple threads to be serviced each cycle. 

However, implementing a dual-ported instruction cache is complex and requires 

additional hardware.  Multiple banks are needed to avoid, or at least reduce, conflicts 

from multiple threads accessing the same cache line or bank.  A popular method used 

is interleaved banks [23].  Additional logic is required to prevent bank conflicts and to 

make the cache non-blocking.  All these additions increase the complexity of the 

cache in terms of decoders, sense amplifiers, multiplexers, and memory cells.  When 

using a multi-ported instruction cache in a dynamic multithreading processor, such as 

DSMT, bank conflicts significantly increase.  Threads that share instructions, such as 

those generated from loop iterations, will attempt to access the same instructions and 

cache blocks in the shared instruction cache.  Handling these conflicts requires either 

stalling and servicing threads sequentially, thus removing the benefits to using a multi-

ported cache, or additional hardware must be added, further increasing the complexity 

of the cache.

The FBG scheme does not require a dual or multi-ported instruction cache to 

increase instruction fetch performance.  Instead, FBG uses a simple, single-ported 

cache and makes modifications to the instruction Scheduler and Fetch unit to manage 

the cache block conflicts.  Currently, DSMT uses a dual-ported instruction cache and a 

modified version of the ICOUNT2.8 scheduling policy [3], called ICOUNT2.8-

modified [8].  Each cycle, the two threads with the fewest number of instructions in 

their instruction queues are chosen and scheduled for fetching.  During scheduling, the 

cache block addresses that each thread will access are computed by taking the next PC 

addresses for each thread and applying a block mask.  For example, if each port on the 

instruction cache is eight instructions wide, and each instruction is 64 bits wide, then 

each cache block is 64-bytes and the block mask will clear the last six bits of the next 

PCs to compute the block addresses.
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The diagram shown in Figure 3 illustrates how FBG works.  The block mask 

produces the cache block addresses for the individual threads, similar to the current 

Scheduler in DSMT.  These block addresses are then fed into the selection unit.  Since 

a single-ported instruction cache is used, only a single cache block may be fetched per 

cycle, thus a selection unit is needed to determine which cache block from the 

available requests will be fetched.  Several selection algorithms have been tested with 

FBG, which are described in Table 1.

Table 1: FBG Selection Algorithms
Name Description

CtxOrder The head (i.e., non-speculative) thread is selected.  If the head thread is not 
ready for fetching, the first speculative thread is chosen and so on.  By 
prioritizing the head thread over the speculative threads, its instruction 
queue will be kept filled and execution of the thread will not be stalled.

MemOrder The thread that requests the cache block with the address earliest in 
program memory is selected. This prioritizes the speculative threads and 
prevents them from being starved of instructions.

ICOrder Similar to ICOUNT proposed by Tullsen et al [3].  The thread with the 
least number of instructions in its instruction queue is selected.  This thread 
will most likely provide the best throughput and therefore increase the TLP 
of the system.

Figure 3: FBG block diagram.
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Once the selection unit has chosen a cache block to fetch, the selected address and 

the cache block addresses from all the threads are fed into the grouper.  The grouper 

performs comparisons between the cache block addresses and the block address from 

the selection unit.  The output of the grouper indicates which threads are requesting 

the same cache block as the one selected by the selection algorithm.  Thus the threads 

included in the grouping should have scheduling performed.

The final stage of FBG, individual thread scheduler, takes the grouped requests 

from the grouper and performs scheduling for the individual threads within the group. 

For each thread, branch prediction is made and the offset into the cache block, 

instruction count from the offset, and the next PC are computed.  These are used to 

create the instruction usage bit array, as shown in Figure 4.  This bit array is used by 

the Fetch unit to determine which thread or threads each instruction should be copied 

to once the cache block has been fetched.  The rows in the array correspond to the 

individual instructions within the cache block, while the columns represent the 

threads.  For example, instruction 0 has a value of True (T) for all the threads in Figure

4, indicating that all threads will have the first instruction in the cache block copied to 

their instruction queues.  Instruction 1 has its value for thread 1 set to False (F), 

meaning thread 1 will not receive a copy of the second instruction in the cache block.

While FBG was designed to leverage a single-ported instruction cache, it can also 

be modified to make use of an instruction cache with multiple ports.  Rather than 

having the selection unit choose a single cache block from the available requests, it 

chooses multiple cache blocks.  In the event that all threads are requesting the same 

cache block, there is no need to select additional block addresses.  The grouper is 

expanded to perform comparisons for all the selection block addresses provided to it 

Figure 4: FBG instruction usage bit array.
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by the selection algorithm.  Similarly, multiple usage bit arrays and cache block 

addresses are produced and given to the Fetch unit.  This modified FBG scheme does 

not require the instruction cache to manage bank contentions more complex than what 

is currently seen in multiported instruction caches, giving FBG an advantage over the 

ICOUNT2.8 fetching method.  Performance for FBG when using a single-ported and 

dual-ported instruction cache is presented in Section 7 and compared to the 

performance of ICOUNT1.8 and ICOUNT2.8.



15

5  Critical-Path-Based Instruction Scheduling

CIS attempts to increase the performance of inter-thread dependency resolution by 

prioritizing instructions that produce dependency values.  In Figure 5 the diagram of 

CIS is illustrated as well as how predictions for the two critical paths are made.  Each 

cycle, CIS uses a heuristic to search through the reservation stations within DSMT for 

the oldest instruction or instructions that were not issued in the current cycle.  This is a 

modified version of the QOld algorithm proposed by Tune et al. [21] in predicting 

instruction criticality in a superscalar processor.  The QOld heuristic also searched for 

the oldest instructions that did not issue, but it searched the instruction queue since the 

system Tune et al. used was based on register renaming and issued instructions out-of-

order from the instruction queue.  Instructions found by the heuristic have their entries 

in the ROB marked.  When instructions are committed, the ROB informs CIS if an 

instruction is mark or unmarked.  If an instruction is marked when it is committed, a 

saturating counter is incremented, while unmarked instructions have their counters 

decremented or removed if the value drops to zero.  Once a counter passes a threshold 

value, the instruction is considered critical and is flagged as being on the intra-thread 

critical path.

Once flagged instructions are given priority within the system, there is a chance 

they will no longer meet the requirements to be marked by the heuristic during future 

executions.  Tune et al. showed how using separate increment and decrement values 

for the saturating counters allows the critical path predictor to continue predicting an 

instruction as critical for several executions, even when the heuristic has stopped 

marking the instruction.  Using different increment and decrement values allows the 

saturating counter to remain above the threshold for several executions of the 

instruction before it drops below and is not longer considered critical.

While the QOld-modified heuristic is used to predict instructions on the intra-

thread critical path, a different method is needed to determine the inter-thread critical 

path.  Instructions on the inter-thread critical path can easily be identified as the 
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instructions that produce values forwarded to other threads.  If a consumer thread is 

forced to stall waiting for a specific instruction from another thread to produce a value, 

the producer instruction is marked as belonging to the inter-thread critical path.  On 

the other hand, if the value can be immediately read from a register file from another 

thread, no instruction is marked.  The instruction producing the needed value in those 

cases are already executing fast enough; therefore, further prioritizing is not needed. 

However, if this situation changes, the producer instruction will be marked.  When 

instructions are committed that are marked for the inter-thread critical path, no 

saturation counters are used.  Instead, an entry is added to the inter-thread critical path 

table and the instruction will always be flagged as on the inter-thread critical path.

When using CIS there are two different critical paths, one for the critical path 

within a thread and the critical path between threads.  A choice must be made about 

which path is more important when multiple instructions are ready to issue that are 

flagged for one or both of the critical paths.  When only a single critical path is used, 

as was done by Tune et al. [21], all instructions on the critical path are issued to the 

functional units first, followed by non-flagged instructions.  Instructions on the inter-

thread critical path produce values for inter-thread dependencies, which affect the 

amount of TLP in the system.  Therefore, issuing priority is always given to 

instructions that are on the inter-thread critical path.  Only after all instructions that are 

flagged for the inter-thread critical path have been issued, are instruction on the intra-

Figure 5: Critical path prediction using CIS.
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thread critical path issued.  Finally, if there are any more available function units, non-

flagged instructions are issued.

In the original work by Tune et al. [21], instruction criticality was predicted when 

the instructions were fetched.  This was appropriate since their simulation 

environment used a system based on register renaming and issued instructions from 

the instruction queue.  In DSMT, however, instructions are dispatched to reservation 

stations, presenting a new stage in which criticality predictions could be made. 

Instead of immediately predicting if a fetched instruction is on the intra-thread or 

inter-thread critical path, the system could wait until the instructions are dispatched 

from the instruction queue.  

The final placement of CIS within the DSMT architecture is shown in Figure 6. 

The Dispatch unit in DSMT can dispatch several instructions from each thread per 

cycle.  In configurations with a high number of threads, such as four and eight 

contexts, the number of instructions dispatched can be very high.  For example, if the 

Dispatch unit can dispatch four instructions per thread and there are four active 

threads, there could be up to 16 instructions dispatched that would require criticality 

predictions.  On the other hand, if criticality predictions were made when the 

instructions are fetched, the number of predictions would be much less.  For example, 

in a configuration using a single-ported instruction cache that can fetch a cache block 

eight instructions wide, only eight predictions would be needed per cycle.  If FBG is 

used in the example, then it is possible that those eight instructions could be copied to 

Figure 6: CIS in the DSMT architecture.
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the instruction queues of multiple threads, thus increasing the number of effective 

predictions made.
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6  New Inter-Thread Forwarding System

When inter-thread dependency resolution is performed by the Dispatch unit in 

DSMT, register values are forwarded between threads.  As previously described, this 

method is significantly slower than intra-thread value forwarding and has an adverse 

affect on the overall performance.  The proposed ITFS in this thesis expands the 

current inter-thread forwarding system to allow forwarding from the forwarding bus 

and ROB entries of other threads.  Rather than stall threads when waiting on a register 

in another thread to become Valid, the forwarding bus and ROB are checked for the 

desired value.  If the register value is not available, the system stalls for a cycle, 

similar to the current inter-thread forwarding system.  However, if the value is present, 

ITFS can forward the value immediately and continue executing the consumer thread.

The biggest obstacle to forwarding values from the forwarding bus and ROB of 

other threads is the managing of misspeculations, such as branch and inter-thread 

misspeculations.  These misspeculations can cause producer instructions, or the 

instructions which have had their values forwarded from the ROB, to be squashed 

before they have committed their values to the register file.  When this occurs, the 

consumer instruction, and possibly the entire consumer thread, must be flushed and 

the execution restarted at the point of misspeculation.  

In order to recover from misspeculations, both the consumer and producer 

instructions must be tracked.  Whenever a value is forwarded from the ROB or 

forwarding bus, a forwarded pair is generated and placed in a Forwarded Table, as 

illustrated in Figure 7.  A forwarded pair consists of the ROB tags and context 

numbers for both the consumer and producer instructions, along with the register 

number of the forwarded value.  Entries are kept in the table until either the consumer 

instruction is squashed or the producer instruction is committed.

Extra bits are added to the entries in the ROB to help manage the forwarded values. 

Whenever an entry in the ROB is read, a Forward (F) bit is set on the entry.  Similarly, 

the consumer instruction has a Read (R) bit set on its ROB entry whenever it is 
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involved in a forwarded pair.  These additional bits on the ROB are used to ensure 

program correctness and to prevent corrupting the register files.  Entries in the ROB 

with set R-bits are not allowed to commit until the inter-thread forwarding is resolved. 

Two tables are needed in the new inter-thread forwarding system to track the 

number of forwarded pairs in which each instruction is participating and is shown in 

Figure 8.  Since an instruction can be a producer instruction for multiple consumers, a 

table, indexed by the context number and ROB tag of the producer instruction, tracks 

the number of outstanding forwards for the instruction.  Another table is used to track 

the number of forwarded pairs in which each consumer instruction is participating. 

When producer instructions are committed or consumer instructions are squashed, the 

counters in the tables are decremented.  If the values drop to 0, the entries are removed 

and the appropriate bits on the ROB entries are cleared.  This helps to ensure that a 

consumer instruction that has multiple operands forwarded from other threads does not 

have its R-bit cleared when the first forwarded pair is resolved.

There are several types of misspeculations that can cause either producer or 

consumer instructions to be squashed.  The first type of misspeculation, and most 

simple to manage, is a branch misspeculation that squashes a consumer instruction. 

To resolve this misspeculation, the producer instruction has its F-bit cleared, if it is not 

part of any other forwarded pairs, and the forwarded pair entry in the Forwarded Table 

is removed.  If a producer instruction is squashed, on the other hand, the resolution is 

more complicated.  The consumer thread must be flushed beginning at the consumer 

instruction and execution restarted at the PC of the consumer instruction.  Figure 9(a) 

Figure 7: Forwarded Table with forward pairs.
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shows an example of a branch misspeculation in the head thread causing a speculative 

thread to flush its pipeline beginning at a consumer instruction.

When there are multiple active speculative threads, a thread can be a consumer 

thread for one forwarded pair and a producer thread for another forwarded pair.  In 

such a situation, a misspeculation in one thread can lead to multiple misspeculations in 

other threads, which is referred to as a cascading misspeculation.  Figure 9(b) 

illustrates a simple branch misspeculation in the head thread can lead to a cascading 

misspeculation that affects all other threads.

Figure 8: Producer and consumer tracking tables in new inter-thread forwarding 
system.

(a) (b)

Figure 9: (a) Branch misspeculation causing a forwarding misspeculation and (b) a 
more complex cascading misspeculation
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7  Simulation Results

In order to test the performance of the proposed techniques, the DSMTSim 

simulator, an object-oriented simulator created using the NetSim architectural 

simulator suite [24], was modified and used to simulate benchmarks from SPEC2000 

and MediaBench [25].  DSMTSim is a cycle-accurate, execution-based simulator of 

the DSMT microarchitecture with extensive statistics tracking capabilities.  Each 

benchmark is run with two, four, and eight threads, along with a baseline simulation 

using a single context.  The baseline configuration is used to compare the relative 

performance increase for each benchmark.  Each benchmark is run from the start of 

the program to the end, unless otherwise specified.  The specific configuration settings 

used in all simulations are listed in Table 2 and Table 3.

Table 2: DSMT configuration.
Fetch 
Width

inst./cycle

Issue 
Width

inst./cycle

Inst. 
Queue
size/ctx

L/S 
Queue
size/ctx

ROB
size/ctx

L1 Cache
Inst./Data

L2 Cache Shared 
BTB

8 4 per ctx 32 256 64 32KB/32KB
4-way

1 port/4 ports
miss 8 cycles

Unified
128KB
8-way

miss 60 cycles

512
fully assoc.

2 bits

Table 3: DSMT Functional units configuration.
Int ALU Int Mult. Int Div. FP Add FP Mult. FP Div. Load/Store

# of FU 3 3 3 2 2 2 4

# of 
Stages

1 4 8 4 7 16 1

7.1  Fetch Block Grouping Results

The first simulations was used to simulate FBG with the three selection algorithms 

previously described and to compare the results against DSMT using ICOUNT1.8. 

All simulations used a single-ported instruction cache capable of fetching eight 
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instructions per cycle.  The overall increase in system performance when using 

ICOUNT1.8 and FBG with two, four, and eight active threads is shown in Figure 10. 

Overall, FBG performs on par or better than ICOUNT1.8, with many benchmarks 

showing significant increases using FBG.  The first trend the graph shows is how the 

SPEC2000 benchmarks respond differently than the benchmarks from MediaBench. 

While the average MediaBench program sees a speedup of just over 1.5 with eight 

threads, the average SPEC2000 program increase a little over 1.02.  This can be 

attributed to the nature of the programs in the two benchmark suites.  SPEC2000 

benchmarks have more irregular data structures and control flow, thus reducing the 

number of loops that DSMT can multithread.  On the other hand, MediaBench 

programs use algorithms that are heavily loop based, such as EPIC and MPEG2, 

which are based on matrix operations.

Another trend highlighted by Figure 10 is how the benchmarks perform differently 

depending on the selection algorithm used.  While none of the selection algorithms 

have a clear advantage over the other algorithms, some benchmarks respond better to 

one algorithm over the others.  For example, the RAW benchmark from MediaBench 

performs better when the CtxOrder selection algorithm is used, increasing the overall 

performance significantly beyond ICOUNT1.8 performance.

One trend shown in Figure 10 is the poor performance of the MemOrder selection 

(a) (b)

Figure 10: Speedup for ICOUNT1.8 and FBG for (a) SPEC2000 and (b) MediaBench 
benchmarks.
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algorithm, especially for SPEC2000 benchmarks.  While the performance of CtxOrder 

and ICOrder are on par or better than ICOUNT1.8, MemOrder usually results in a 

much lower increase in system performance.  In the VPR, Equake, and MCF 

benchmarks, MemOrder produces the lowest increase in system performance for the 

FBG selection algorithms and performs worse than ICOUNT1.8.  The reason for the 

lack-luster performance can be explained by the threads that MemOrder chooses. 

Since MemOrder selects the instruction fetch request that accesses the cache block 

with the earliest address in program memory, the speculative threads will be serviced 

more often than the non-speculative thread.  Additionally, whenever a speculative 

thread is squashed and restarted due to a misspeculation, it will monopolize the entire 

fetch bandwidth until it has caught up with the other threads.  This slows down the 

entire system when in DSMT mode, making the loops less likely to be labeled Good 

by the LDU.  On average, more cycles are spent outside of DSMT mode when 

MemOrder is used, due to its reduced performance over the other two selection 

algorithms, which is illustrated in Figure 11(a) for benchmarks from SPEC2000 and 

Figure 11(b) for MediaBench benchmarks.

The strength of FBG is in generating groupings.  The average number of groupings 

per cycle each selection algorithm makes while in DSMT mode is illustrated in Figure

12.  The Figure shows an interesting phenomenon.  While MemOrder produces less 

(a) (b)

Figure 11: Cycle breakdown for ICOUNT1.8 and FBG for (a) SPEC2000 and (b) 
MediaBench benchmarks.
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overall increase in system performance, it does produce on average more groupings 

per cycle than the two other selection algorithms.  In the case of the RAW benchmark 

using eight active threads, it produces almost double the number of groupings per 

cycle than CtxOrder, even though CtxOrder has the best system performance for this 

configuration.  This increase in groupings per cycle can be explained by the low 

number of cycles that are spent in DSMT mode by MemOrder during the program 

execution.  In the RAW benchmark with eight threads, the MemOrder simulation 

spends roughly 68,000 cycles in DSMT mode, while CtxOrder and ICOrder spend 

over 7,000,000 and 900,00 cycles, respectively.  The more time spent in DSMT mode, 

the more often single thread fetches will occur, driving down the average number of 

groupings for CtxOrder and ICOrder.  Also, the longer the system is operating in 

DSMT mode, the longer FBG has to increase system performance.  While MemOrder 

has a higher average groupings per cycle, it does not spend enough time in DSMT 

mode to significantly influence system performance, unlike CtxOrder.

The increase in fetch performance over the baseline configuration is graphed in 

Figure 13.  Both the SPEC2000 and MediaBench benchmark groups see increases in 

fetch performance using FBG for all three selection algorithms, with MediaBench 

having a higher average increase.  Comparing the increase in the average number of 

instructions fetched per cycle with ICOUNT1.8, FBG is the better performer in most 

(a) (b)

Figure 12: Average groupings per cycle in DSMT mode for (a) SPEC2000 and (b) 
MediaBench benchmarks.
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of the configurations.  Comparing the average groupings per cycle with the increase in 

fetch performance, we can see there is no direct translation between high groupings 

and high fetch performance.  The RAW benchmark is a good example of this, as it has 

the most average groupings per cycle when there are eight threads and using 

MemOrder, but the fetch performance is highest when using CtxOrder for the same 

configuration.  Once again, the disparity in performance can be explained by taking 

into consideration the amount of time spent in DSMT mode.  Unless a significant 

amount of execution time is spent in DSMT mode, FBG cannot perform groupings 

and increase fetch performance.  On average, the MediaBench benchmarks see more 

increase due to the higher percentage of their execution time spent in DSMT mode 

than the SPEC2000 benchmarks, seeing 1.25 to 2.25 times more instructions fetched 

per cycle than the baseline simulations.

When the number of ports on the instruction cache are increased to two, FBG can 

fetch two cache blocks per cycle as described in Section 4.  The overall system 

performance changes only slight though, from 0.93 to 1.13 times the performance 

using a single-ported instruction cache for the three selection algorithms and 

ICOUNT2.8.  Instruction fetch performance increases similarly, with the CtxOrder2.8 

and ICOrder2.8 algorithms increasing more than ICOUNT2.8 for SPEC2000 

benchmarks.  However, the fetch performance for FBG for MediaBench benchmarks 

(a) (b)

Figure 13: Fetch increase for ICOUNT1.8 and FBG for (a) SPEC2000 and (b) 
MediaBench benchmarks.
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shows slightly less increase than ICOUNT2.8.  The reason for this can be explained by 

Figure 14, which shows the ratio of groupings per cycle for the dual-port instruction 

cache over groupings per cycle for the single-port instruction cache.  As the Figure 

shows, most benchmarks forms less groupings per cycle in DSMT mode for all three 

selection algorithms.  Since the strength of FBG is in the number of groupings it can 

make per cycle, the drop in groupings shown in Figure 14 explains the lack of overall 

performance.

When FBG uses the additional port on the instruction cache to fetch an additional 

cache block, the second request is more likely to service only a single thread.  This can 

reduce the average number of groupings per cycle and therefore fetch and overall 

performance.  For example, if there are three threads requesting instructions be fetched 

during a cycle, and two of them are requesting the same cache block, FBG will form 

one grouped request and one ungrouped request.  However, if a single-ported 

instruction cache was used, there is the chance that the ungrouped request would be 

deferred to a later cycle.  This allows it to be considered for groupings with other fetch 

requests later, thus increasing the average number of groupings per cycle and 

instruction fetch performance.  Figure 14 supports this theory since there is a drop in 

the groupings per cycle compared to single-ported instruction cache performance.

(a) (b)

Figure 14: Change in groupings per cycle when using a dual-ported instruction cache 
for (a) SPEC2000 and (b) MediaBench benchmarks
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7.2  CIS and ITFS Results

In this Section, the performance of ITFS and CIS will be presented and compared 

to a baseline configuration.  To remove any potential bottlenecks from the instruction 

fetching stage, the number of ports on the instruction cache was increased to eight, 

each able to fetch eight instructions per cycle.  When eight ports are used, it does not 

matter which selection algorithm is used for FBG.  First, the benchmarks were run 

using the current inter-thread forwarding system in DSMT to produce the baseline 

configuration.  Second, ITFS was simulated with the CIS system disabled.  This 

allowed the performance of the two systems to be isolated.  Finally, both ITFS and 

CIS were simulated together.

The overall increase in system performance for the three simulations is shown in 

Figure 15.  The first trend that appears is the relatively similar performance of the 

three configurations for the majority of the SPEC2000 benchmarks.  Both ITFS and 

CIS do, however, produce slightly less overall increase in performance for some of the 

benchmarks, such as VPR and Equake, when compared to the baseline configuration. 

In other benchmarks, such as GCC, ITFS is on par with the baseline, but CIS produces 

less performance.  In fact, CIS has slightly less average performance than the baseline 

(a) (b)

Figure 15: System speedup for the base system, new inter-thread forwarding system, 
and CIS for (a) SPEC2000 and (b) MediaBench benchmarks.
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and ITFS configurations.  This shows that there is a weakness in the CIS system. 

While CIS may not perform well in the SPEC2000 benchmarks, it does produce 

increased overall performance in some MediaBench programs as illustrated in Figure

15(b).  Benchmarks such as EPIC and RAW have increased performance when using 

both ITFS and CIS when two and four threads are active.  However, the performance 

of ITFS and CIS for RAW with eight threads is less than the baseline configuration.

Both ITFS and CIS attempt to reduce thread stalls by speeding up the forwarding of 

inter-thread dependencies.  One way to measure this effect is to compute the average 

number of stalls from inter-thread dependencies that occur per cycle while in DSMT 

mode.  This is shown in Figure 16.  As the Figure shows, both CIS and ITFS have less 

stalls per cycle than the current inter-thread forwarding system in the baseline 

configuration.  However, when the time spent in Normal, PreDSMT, and DSMT 

modes in Figure 17 is considered, the reason the performance for ITFS and CIS is not 

better becomes apparent.  In the case of the RAW benchmark in Figure 17(b), at eight 

threads ITFS and CIS execute the majority of the instructions in Normal mode.  This 

reduces the number of cycles CIS and ITFS have available to improve the overall 

performance of the system.  

While this explanation works for the RAW benchmark, it does not explain the 

reduced performance of MPEG2 when using ITFS and CIS, which spends slightly 

(a) (b)

Figure 16: Average number of stalls per cycle in DSMT mode for (a) SPEC2000 and 
(b) MediaBench benchmarks.
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more time in DSMT mode than the baseline configuration.  However, comparing the 

number of thread squashes due to misspeculated inter-thread dependencies presents a 

explanation.  The number of thread squashes from misspeculated inter-thread 

dependencies for the current inter-thread forwarding system is roughly 300K and 

800K for four and eight threads, respectively, in the RAW benchmark.  For ITFS and 

CIS, these numbers rise to over 2 million.  Thread squashes are expensive as one or 

more speculative thread must be flushed, re-initialized, and have execution restarted 

from the beginning of the loop.  

The increase in misspeculated inter-thread dependency related thread squashes can 

be directly attributed to ITFS and CIS.  Both systems cause inter-thread dependencies 

to be read earlier than the current inter-thread forwarding system in the baseline 

configuration.  Increasing the speed values can be forwarded between threads 

increases the execution of the speculative threads, thus increasing the occurrence of 

inter-thread forwards per cycle.  As the number of forwards increases, the chance of 

values being read from the incorrect thread or at the incorrect time also increases, 

leading to the increase in inter-thread dependency related thread squashes.

For the SPEC2000 benchmarks, the amount of time spent in DSMT does not vary a 

great deal across the current inter-thread forwarding system, ITFS, and CIS as shown 

in Figure 17(a).  However, on average the number of thread squashes from inter-thread 

(a) (b)

Figure 17: Cycle breakdown for base configuration, new inter-thread forwarding 
system, and CIS for (a) SPEC2000 and (b) MediaBench benchmarks.
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dependency misspeculations does increase from 1% to just over 15% for ITFS and 

CIS over the baseline configuration.  This increase in thread squashes accounts for the 

slight drop in overall system performance for the SPEC2000 benchmarks.
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8  Future Work

While several selection algorithms were tested for FBG in this thesis, all possible 

algorithms were not explored.  There may be other selection algorithms that can 

increase system performance beyond those that were tested.  Similarly, the 

performance of FBG when using a dual-ported instruction cache could be increased 

with alternative selection algorithms.  Future work on FBG should focus on testing 

new selection algorithms and determining which algorithm would provide the best 

performance when the instruction cache uses more than one port.

Future work on CIS should focus on determining the best values for the intra-thread 

critical path prediction, as this thesis simply used the settings presented in the paper by 

Tune et al. [21].  Since the number of thread squashes due to misspeculated inter-

thread dependencies increases when using ITFS and CIS, future work should also 

focus on methods for either increasing the accuracy of the forwarding system or 

decreasing the costs of a thread squash, or both.  If the accuracy of the forwarding 

system can be increased, CIS and ITFS should show higher performance than what 

they currently generate.
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9  Conclusions

In this thesis three new ideas were explored for increasing the performance of a 

dynamic multithreaded processor that generates threads from loop iterations.  The new 

instruction scheduling and fetching method FBG was simulated with three different 

selection algorithms, both single- and dual-ported instruction caches, and compared 

with ICOUNT1.8 and ICOUNT2.8.  A new inter-thread forwarding system was 

explored which allows values to be forwarded from the ROB and common data bus to 

decrease stall time on inter-thread dependencies.  Finally, the critical path CIS system 

further attempts to decrease inter-thread dependency stall time by prioritizing 

instructions on the intra-thread and inter-thread critical paths.

From the simulation results presented in Section 7, the FBG technique produces 

performance equal to and better than the current ICOUNT instruction fetching policy 

for both single-ported and dual-ported instruction caches.  Several aspects of 

instruction fetching in a dynamic multithreaded processor became apparent during the 

simulation study.  First, there is the interplay between which threads are selected for 

instruction fetching and how often the system operates in DSMT mode.  The CtxOrder 

and ICOrder selection algorithms give priority to the non-speculative thread and 

threads with highest instruction throughput, respectively, which greatly increases the 

performance of the system.  This feeds back into the evaluation of the performance of 

loops when multithreaded, causing the system to spend more time in DSMT mode and 

allowing FBG to further increase fetch performance.  The converse is also true as 

MemOrder demonstrated.  By prioritizing the speculative threads during instruction 

fetching, the non-speculative thread becomes starved for instructions.  Some loops that 

performed well with the other selection algorithms do not perform well using 

MemOrder, causing the loops to be viewed as bad thread sources and thus causing the 

system to spend more time in Normal mode.  For example, there is a single loop in the 

RAW benchmark from MediaBench that produces positive results when threaded in 

DSMT.  Using MemOrder the loop has poor threaded performance, and thus the 

system remains in Normal mode for the majority of the execution time of the 
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benchmark.

The overall performance of the selection algorithms when using a dual-ported 

instruction cache was only slightly different than their performance when using a 

single-ported instruction cache.  Since two cache blocks can be fetched per cycle, the 

number of groupings should have increased for FBG.  However, the number of fetch 

requests servicing only a single thread increased, thus reducing the average number of 

groupings made per cycle in DSMT mode.  Allowing more single thread requests to be 

serviced via the second port on the instruction cache reduced the grouping 

performance of FBG.  If future work on FBG can identify new selection algorithms or 

make other modifications to reduce these occurrences, the performance of FBG can be 

pushed higher.  However, using the current FBG selection algorithms with a dual-

ported instruction cache has the advantage of keeping the cache simpler than using 

ICOUNT2.8.  The cache bank conflicts when using FBG is lower than using 

ICOUNT2.8 and does not require additional hardware in the instruction cache to 

manage cache block conflicts.

Performance of the new inter-thread forwarding system and CIS are more mixed 

than the performance of FBG.  While there are several benchmarks that show 

increased overall system performance when using either CIS or ITFS, the average 

performance of the two systems is slightly less than the current inter-thread 

forwarding system used in DSMT.  

While exploring the cause for the decreased system performance, the amount of 

time the system spends in DSMT mode and the increase in thread squashes from 

misspeculated inter-thread dependencies were identified as the sources.  Increasing the 

speed of inter-thread forwards leads to more inter-thread dependencies being read 

incorrectly, either from the incorrect source or at the incorrect time, thus increasing the 

occurrence of expensive thread squashes.  However, even with the increase in thread 

squashes, CIS and ITFS succeed in reducing the occurrence of threads stall on inter-

thread dependencies.  

Both ITFS and CIS produced fewer stalls per cycle for the SPEC2000 and 
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MediaBench benchmarks, with CIS reducing the number of stalls for MediaBench 

programs more than ITFS.  This is due to the nature of the threads produced from the 

loops found in MediaBench programs.  Whereas SPEC2000 loops are shorter and 

generate more inter-thread dependencies when threaded, loops from MediaBench 

programs are more independent and thus respond better to decreasing the stall time on 

the fewer inter-thread dependencies they produce.
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