

AN ABSTRACT OF THE THESIS OF

Adam W. Browning for the degree of Master of Science in Electrical and Computer
Engineering presented on September 29, 2006.

Title: Instruction Fetching, Scheduling, and Forwarding in a Dynamic Multithreaded
Processor

Abstract approved: __
Ben Lee

Dynamic multithreaded processors attempt to increase the performance of a single

sequential program by dynamically extracting threads from sources such as loop

iterations. The scheduling of instructions in such a processor plays a vital role in the

amount of thread level parallelism that can be extracted and thus the overall system

performance. Three new systems are presented in this thesis to increase the

performance of instruction scheduling and value forwarding in a dynamic

multithreaded processor.

Conflicts within the instruction cache from multiple threads requesting the same

cache blocks reduces instruction fetch performance. A new instruction scheduling and

fetching method is presented that uses the unique nature of dynamically generated

threads to increase fetch performance while keeping the complexity of the instruction

cache low. Performance for this new fetching scheme is on par or better than the

current instruction fetching method used by the simulated processor.

The overall performance of a dynamic multithreaded processor is limited by inter-

thread dependencies that arise from generating threads that are not fully independent

or parallel. A new inter-thread forwarding system is presented that speeds up the

forwarding of values between threads, thus reducing the number of stalls from inter-

thread dependencies. To further reduce the number of stalls, a critical path system is

implemented that dynamically identifies and prioritizes instructions that produce inter-

thread dependency values.

©Copyright by Adam W. Browning
September 29, 2006
All Rights Reserved

Instruction Fetching, Scheduling, and Forwarding in a Dynamic Multithreaded
Processor

by
Adam W. Browning

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 29, 2006
Commencement June 2007

Master of Science thesis of Adam W. Browning presented on September 29, 2006

APPROVED

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Adam W. Browning, Author

ACKNOWLEDGEMENTS

The author expresses sincere appreciation to the following individuals: David

Zier for all his help on getting the simulator working. My family for all their support

and help through the difficult times, and letting me monopolize their computers for

simulations. Finally, my wonderful girlfriend Allison for keeping me sane and being

my oasis.

TABLE OF CONTENTS

Page

1 Introduction...1

2 Related Works...4

3 DSMT Background... 7

4 Fetch Block Grouping...11

5 Critical-Path-Based Instruction Scheduling..15

6 New Inter-Thread Forwarding System... 19

7 Simulation Results.. 22

7.1 Fetch Block Grouping Results.. 22

7.2 CIS and ITFS Results.. 28

8 Future Work.. 32

9 Conclusions...33

LIST OF FIGURES

Figure Page

1: DSMT microarchitecture.. 7

2: DSMT transition graph... 8

3: FBG block diagram...12

4: FBG instruction usage bit array.. 13

5: Critical path prediction using CIS...16

6: CIS in the DSMT architecture.. 17

7: Forwarded Table with forward pairs...20

8: Producer and consumer tracking tables in ITFS... 21

9: Misspeculations in ITFS... 21

10: Speedup for ICOUNT1.8 and FBG.. 23

11: Cycle breakdown for ICOUNT1.8 and FBG.. 24

12: Average groupings per cycle in DSMT mode.. 25

13: Fetch increase for ICOUNT1.8 and FBG... 26

14: Change in groupings per cycle when using a dual-ported instruction cache.......... 27

15: Speedup for the base system, ITFS, and CIS..28

16: Average number of stalls per cycle in DSMT mode...29

17: Cycle breakdown for base configuration, ITFS, and CIS.......................................30

LIST OF TABLES

Table Page

1: FBG Selection Algorithms..12

2: DSMT configuration...22

3: DSMT Functional units configuration.. 22

Instruction Fetching, Scheduling, and Forwarding in a Dynamic
Multithreaded Processor

1 Introduction

The high performance of modern superscalar processors is a direct result of

exploiting instruction level parallelism (ILP) in programs by executing multiple

instructions per cycle. However, the performance of superscalar processors has

become limited due in part to true dependencies and control flow dependencies. The

concept of multithreading, which uses thread level parallelism (TLP), has attracted

great interest in both academia and industry as a new source of exploitable parallelism.

A multithreaded processor makes use of multiple threads of execution to exploit both

ILP and TLP [1]. TLP compensates for a lack of ILP per thread and improves the

utilization of execution resources and thus performance.

Several multithreaded architectures have been proposed in the past, but most rely

on generating threads from multiple independent programs [2][3]. These

multithreaded processors, however, do no increase the performance of the individual

programs. Alternatively, threads can be generated from a single sequential program,

allowing its performance to be increased using multithreading techniques [4][5].

Static and Dynamic Multithreading are two methods for extracting this type of TLP.

Static methods include the use of compilers that parallelize source codes or binary

annotators [6] that modify already compiled programs. However, static methods

cannot exploit the dynamic behavior of programs, and thus can only produce

conservative levels of TLP. On the other hand, dynamic multithreading is performed

by identifying and spawning threads at run-time to take advantage of dynamic

behavior, such as loops and subroutine calls. Processors that use dynamic thread

generation techniques will be referred to as dynamic multithreaded processors

throughout the rest of this thesis.

There are several bottlenecks that prevent dynamic multithreaded processors from

reaching their maximum performance. One bottleneck, which is shared by both

superscalar and multithreaded processors, is the underutilization of the instruction

fetch bandwidth due to cache misses, branch misspeculations, and partial cache-line

2

fills [7]. Since multithreaded processors are dependent on TLP for performance,

reduced instruction fetch performance for the threads reduces both ILP and TLP. This

thesis proposes a new instruction scheduling and fetching method called Fetch Block

Grouping (FBG) to increase the instruction fetch bandwidth and performance of a

dynamic multithreaded processor. The idea behind FBG is to exploit threads that

share the same instructions and cache blocks within the instruction cache. FBG uses

this characteristic to allow multiple threads requesting the same cache block to be

serviced as a single request. This allows FBG to increase the number of instructions

fetched per cycle without increasing the number of ports on the instruction cache.

Another bottleneck inherent to dynamic multithreaded processors is the handling of

inter-thread dependencies in the form of register and memory values, which occur

when the threads are not fully independent (i.e., parallel). This thesis proposes two

new methods for managing inter-thread dependencies. The first is a new inter-thread

forwarding system (ITFS) which speeds up values forwarded between threads.

Careful tracking is needed when using ITFS in order for the system to recover from

branch and other misspeculations. The second method involves a scheme to decrease

the time threads must stall while waiting for values to be produced by other threads.

The Critical-path-based Instruction Scheduler (CIS) uses critical path techniques to

identify and prioritize instructions that belong to the inter-thread critical path and the

intra-thread critical path. Execution time for the threads and the program should be

reduced by prioritizing instructions on the inter-thread and intra-thread critical paths.

To determine the performance benefits of the proposed solutions, the Dynamic

Simultaneous Multithreading (DSMT) processor [8] is modified and simulated using a

new object-oriented simulator.

The remainder of this thesis is organized as follows. Section 2 will present related

works on increasing instruction fetch performance, both in superscalar and

multithreaded processors, and critical path instruction scheduling. Section 3 will

present background information on the DSMT architecture and its current inter-thread

dependency resolution. The new FBG technique will be presented in Section 4. CIS

3

will be presented in Section 5, followed by the new inter-thread forwarding system in

Section 6. In Section 7, simulation study of FBG, CIS, and the new inter-thread

forwarding system will be presented. Future work will be suggested in Section 8,

followed by conclusions in Section 9.

4

2 Related Works

Instruction fetch performance is critical to the overall processor performance.

Superscalar processors require sufficient instructions fetched per cycle to keep their

execution units busy. Multithreaded processors are more sensitive to fetch

performance since they rely on TLP from multiple threads, which is limited by low

fetch performance. There have been many proposals over the years for increasing

fetch performance, for both superscalar and multithreading processors.

One architecture proposed to increase the effective fetch bandwidth in superscalar

processors is the decoupled front-end [9][10]. In such an architecture, the branch

predictor is decoupled from the instruction fetch unit using a fetch target queue (FTQ).

This allows both the branch predictor and the fetch unit to operate independently; i.e.,

a stall in one will not affect the other. Reinman et al. [9] extended the decoupled

front-end by adding a fetch target buffer (FTB). The FTB extends the branch target

buffer (BTB) to store variable length fetch blocks. A fetch block begins at a branch

target and ends in a strongly biased taken branch. This allows several branches that

are strongly biased as not taken to contain within the fetch block, effectively ignoring

them and increasing the instruction fetch performance.

A very well known method for instruction fetch performance is through the use of a

trace cache [11][12], which is implemented in the Pentium 4 processor [13]. The

trace cache captures instruction segments in execution order instead of the program

order stored in higher levels of memory. Each segment is called a trace and can

contain several blocks of instructions and branches, both taken and not taken, and is

stored in a decoded format. If the same segment of code is requested in the future, the

trace cache can service the request in a single cycle without further processing or

accessing other levels of memory, thereby increasing the instruction fetch

performance. For example, the Pentium 4 processor can provide three decoded micro-

ops per cycle using its L1 trace cache[13].

Many different methods have been explored for increasing instruction fetch

5

performance in multithreaded processors. Some have ranged from simple

modifications to fetch units found in superscalar processors [14], to completely new

font-end designs that use multiple fetch units [15][16]. Tullsen et al. [17] proposed a

modification to the instruction cache and fetch units in a SMT processor that splits the

instruction fetch bandwidth between two threads. Due to the high occurrence of

branch instructions and branch misalignments found in typical programs, it is hard for

a single thread to fill a wide instruction fetch bandwidth. By splitting the fetch

bandwidth between two threads, it is more likely that each can fill its allotment. For

example, it is more likely for two threads to fetch four instructions than it is for a

single thread to fetch eight instructions. The proposed instruction scheduling policy

selects the threads to fetch using a heuristic, such as the number of instructions for

each thread in the ROB. The ICOUNT2.8 algorithm provided the best performance by

fetching for the two threads with the least number of instructions in the instruction

queue and instruction decode/rename stages. The 2.8 signifies a dual-port instruction

cache was used, each port able to fetch eight instructions per cycle.

Moure et al. [15] proposed a new instruction cache and fetch structure for an SMT

processor consisting of fetch clusters. Each cluster is a self-contained instruction

fetching system, with an instruction cache, branch predictor, fetch buffer, and

instruction decoder. During multithreaded execution, each thread is given its own

fetch cluster. However, the fetch clusters can be used in different ways during single

thread execution. This includes grouping them together to create a larger effective

instruction cache, performing multi-path execution [18] on hard to predict branches,

and increasing the effective issue width to the functional units.

Falcon et al. studied the application of fetch performance enhancements for

superscalar processors on SMT processors [14]. Their studies included the use of the

decoupled front-end previously described, and other modifications to increase branch

prediction bandwidth and accuracy. Their results showed how instruction fetch

performance can be improved in SMT by fetching more instructions from a single

thread each cycle, eschewing the common solution of fetching from multiple threads.

6

This had the benefit of using simpler instruction caches and keeping the front-end of

the processor simple.

While instruction fetching plays a significant role in the performance of a

processor, deciding which instruction to issue also affects performance. Several

papers have been published in the past describing the critical path in a program and its

affects on program performance. The critical path is the longest path through a

program or code segment made of chains of dependencies between the instructions.

Execution time for the program or code segment is related directly to the execution

time of the instructions on the critical path.

Identifying the critical path in a program can be done at compile time [19][20] or

performed by the processor during run-time[21][22]. Tune et al. presented a method

for identifying and utilizing instructions that belong to the critical path during

execution of a program [21]. In their proposal, a heuristic is used to identify

instructions that possibly belong to the critical path, which is used to increment or

decrement saturating counters for the instructions. Once the counter value for an

instruction passes a threshold, it is considered critical and flagged during future

instruction fetches. Flagged instructions are given priority within the pipeline, such as

access to branch and data predictors and issuing priority to the function units. This

was expanded upon by Fields et al. to include the affects of the microarchitecture on

the instruction execution [22]. Instead of using a heuristic, a token system was

implemented. Instructions are randomly given a token, and if they produce a last-

arriving operand to another instruction, the token is also propagated to the new

instruction. If the token is still in the system after a specific number of instructions

have been committed, the original instruction has its saturating counter incremented,

similar to the system proposed by Tune et al.

7

3 DSMT Background

The DSMT processor was proposed by Ortiz-Arroyo and Lee [8] as a way to

increase individual program performance on an SMT processor using dynamic

threading. Threads are produced from loop iterations in a program and are used to fill

the contexts in the SMT execution back-end. The DSMT microarchitecture is shown

in Figure 1 below. Modifications to the base SMT architecture are shown in light

gray, while new additions are in dark gray.

Each thread in DSMT is represented by a Context, which contains the register file

and information for managing the thread. An additional unit to the base SMT

microarchitecture is the Loop Detection Unit (LDU), which is responsible for

detecting and collecting information on loops. The LDU supplies this information to

the Thread Creation and Initialization Unit (TCIU). As the name suggests, the TCIU

is responsible for creating and initializing the individual threads in DSMT, and

communicating with the ROB and Contexts. Lastly, the Scheduler unit controls how

the processor fetches instructions and is the focus of the changes for FBG.

During the execution of a program, DSMT operates in either non-DSMT, pre-

Figure 1: DSMT microarchitecture

8

DSMT, or full-DSMT mode. The system can transition between the three modes as

indicated in Figure 2. In the non-DSMT or Normal mode there is a single active

thread and the processor behaves like a wide-issue superscalar processor. Once a loop

is detected by the LDU, the system enters the pre-DSMT mode in which information

on the loop and possible threaded performance are computed. If the system predicts

that performance for the loop would increase if threaded, the system enters full-DSMT

mode. If the system performs well with the loop threaded, it is marked as Good in the

LDU and the next time the system encounters the loop it will transition to full-DSMT

mode immediately.

During full-DSMT mode, the simultaneous execution of loop iterations is

performed. A single non-speculative thread, or head context, always exists while in

full-DSMT mode, which is the only thread from which speculative threads are

spawned. The threads are connected in a ring fashion with a Head and Tail field in the

TCIU to indicate the first and last threads, respectively.

DSMT adds several utility bits to the registers in the Contexts beyond the

traditional Valid (V) bit and ROB tag field to help resolve inter-thread dependencies.

The first is the Ready (R) bit, which indicates that the value in the register was

produced by an instruction in the thread logically preceding the current instruction. If

the R-bit is cleared, then a speculative thread cannot use the value and must look to a

predecessor thread for the correct value. The second bit is the Dependency (D) bit.

When the D-bit is set an inter-thread dependency exists for the register, and if the R-

Figure 2: DSMT transition graph.

9

bit is not set, the value must be read from a predecessor thread. The D-bits from

previous threads are used to set the D_Anchor register within the TCIU to help resolve

inter-thread dependencies in future threads. Finally, the last utility bit is the Load (L)

bit, which is set on a register whenever its value is read from another thread. When a

thread commits an instruction to its register file, a quick check is made of all the

successor threads to see if they have the L-bit set on the same register. If so, then an

inter-thread misspeculation has occurred and all successor threads are squashed and

their execution restarted at the beginning of the iterations.

Inter-thread dependency resolution occurs during the dispatching of instructions.

Each operand of the instruction is checked within the register file, checking the R-bit

to see if it is safe to read from its own Context. If the R-bits are set, the values are

read from within the Context and the instruction is dispatched. However, if an R-bit is

not set, first level speculation, called register dependence speculation, is performed.

The D_Anchor within the TCIU is checked to determine from where the register value

should be read. If the D_Anchor is set for the register, then an inter-thread

dependency occurred in previous executions and there is a good chance it will occur

again, so the immediate predecessor thread is checked. At this point, if the R-bit is set

on the register in the immediate predecessor and it is Valid, the register value is

forwarded. However, if the register is not ready, the consumer thread, or thread

attempting to read the value, is stalled for a set number of cycles to allow the producer

or predecessor thread time to execute an instruction which writes to the register. If the

register is still not ready after this time, or if the D_Anchor bit was not set, second

level speculation is performed in which a search is made for the last thread to write to

the register. Finally, if the value has not be produced by any thread, the value is read

from the head context and it is assumed that the value was produced outside of the

loop.

In DSMT, there are two levels in which values can be forwarded, (1) intra-thread,

and (2) inter-thread. Intra-thread forwarding occurs similarly to value forwarding in a

superscalar processor. Inter-thread forwarding occurs between threads, as previously

10

described, which is significantly slower than intra-thread forwarding. While values

can be passed within a thread from the common data bus and ROB entries, values

must first be committed to a register file before they can be forwarded to another

thread. This creates a performance bottleneck when handling inter-thread

dependencies, which is addressed by the new inter-thread forwarding system described

in Section 6.

11

4 Fetch Block Grouping

In multi-program multithreaded processors, such as SMT [3], instruction fetching

bandwidth is split between multiple threads. This allows for a better utilization of the

instruction fetch bandwidth and for multiple threads to be serviced each cycle.

However, implementing a dual-ported instruction cache is complex and requires

additional hardware. Multiple banks are needed to avoid, or at least reduce, conflicts

from multiple threads accessing the same cache line or bank. A popular method used

is interleaved banks [23]. Additional logic is required to prevent bank conflicts and to

make the cache non-blocking. All these additions increase the complexity of the

cache in terms of decoders, sense amplifiers, multiplexers, and memory cells. When

using a multi-ported instruction cache in a dynamic multithreading processor, such as

DSMT, bank conflicts significantly increase. Threads that share instructions, such as

those generated from loop iterations, will attempt to access the same instructions and

cache blocks in the shared instruction cache. Handling these conflicts requires either

stalling and servicing threads sequentially, thus removing the benefits to using a multi-

ported cache, or additional hardware must be added, further increasing the complexity

of the cache.

The FBG scheme does not require a dual or multi-ported instruction cache to

increase instruction fetch performance. Instead, FBG uses a simple, single-ported

cache and makes modifications to the instruction Scheduler and Fetch unit to manage

the cache block conflicts. Currently, DSMT uses a dual-ported instruction cache and a

modified version of the ICOUNT2.8 scheduling policy [3], called ICOUNT2.8-

modified [8]. Each cycle, the two threads with the fewest number of instructions in

their instruction queues are chosen and scheduled for fetching. During scheduling, the

cache block addresses that each thread will access are computed by taking the next PC

addresses for each thread and applying a block mask. For example, if each port on the

instruction cache is eight instructions wide, and each instruction is 64 bits wide, then

each cache block is 64-bytes and the block mask will clear the last six bits of the next

PCs to compute the block addresses.

12

The diagram shown in Figure 3 illustrates how FBG works. The block mask

produces the cache block addresses for the individual threads, similar to the current

Scheduler in DSMT. These block addresses are then fed into the selection unit. Since

a single-ported instruction cache is used, only a single cache block may be fetched per

cycle, thus a selection unit is needed to determine which cache block from the

available requests will be fetched. Several selection algorithms have been tested with

FBG, which are described in Table 1.

Table 1: FBG Selection Algorithms
Name Description

CtxOrder The head (i.e., non-speculative) thread is selected. If the head thread is not
ready for fetching, the first speculative thread is chosen and so on. By
prioritizing the head thread over the speculative threads, its instruction
queue will be kept filled and execution of the thread will not be stalled.

MemOrder The thread that requests the cache block with the address earliest in
program memory is selected. This prioritizes the speculative threads and
prevents them from being starved of instructions.

ICOrder Similar to ICOUNT proposed by Tullsen et al [3]. The thread with the
least number of instructions in its instruction queue is selected. This thread
will most likely provide the best throughput and therefore increase the TLP
of the system.

Figure 3: FBG block diagram.

13

Once the selection unit has chosen a cache block to fetch, the selected address and

the cache block addresses from all the threads are fed into the grouper. The grouper

performs comparisons between the cache block addresses and the block address from

the selection unit. The output of the grouper indicates which threads are requesting

the same cache block as the one selected by the selection algorithm. Thus the threads

included in the grouping should have scheduling performed.

The final stage of FBG, individual thread scheduler, takes the grouped requests

from the grouper and performs scheduling for the individual threads within the group.

For each thread, branch prediction is made and the offset into the cache block,

instruction count from the offset, and the next PC are computed. These are used to

create the instruction usage bit array, as shown in Figure 4. This bit array is used by

the Fetch unit to determine which thread or threads each instruction should be copied

to once the cache block has been fetched. The rows in the array correspond to the

individual instructions within the cache block, while the columns represent the

threads. For example, instruction 0 has a value of True (T) for all the threads in Figure

4, indicating that all threads will have the first instruction in the cache block copied to

their instruction queues. Instruction 1 has its value for thread 1 set to False (F),

meaning thread 1 will not receive a copy of the second instruction in the cache block.

While FBG was designed to leverage a single-ported instruction cache, it can also

be modified to make use of an instruction cache with multiple ports. Rather than

having the selection unit choose a single cache block from the available requests, it

chooses multiple cache blocks. In the event that all threads are requesting the same

cache block, there is no need to select additional block addresses. The grouper is

expanded to perform comparisons for all the selection block addresses provided to it

Figure 4: FBG instruction usage bit array.

14

by the selection algorithm. Similarly, multiple usage bit arrays and cache block

addresses are produced and given to the Fetch unit. This modified FBG scheme does

not require the instruction cache to manage bank contentions more complex than what

is currently seen in multiported instruction caches, giving FBG an advantage over the

ICOUNT2.8 fetching method. Performance for FBG when using a single-ported and

dual-ported instruction cache is presented in Section 7 and compared to the

performance of ICOUNT1.8 and ICOUNT2.8.

15

5 Critical-Path-Based Instruction Scheduling

CIS attempts to increase the performance of inter-thread dependency resolution by

prioritizing instructions that produce dependency values. In Figure 5 the diagram of

CIS is illustrated as well as how predictions for the two critical paths are made. Each

cycle, CIS uses a heuristic to search through the reservation stations within DSMT for

the oldest instruction or instructions that were not issued in the current cycle. This is a

modified version of the QOld algorithm proposed by Tune et al. [21] in predicting

instruction criticality in a superscalar processor. The QOld heuristic also searched for

the oldest instructions that did not issue, but it searched the instruction queue since the

system Tune et al. used was based on register renaming and issued instructions out-of-

order from the instruction queue. Instructions found by the heuristic have their entries

in the ROB marked. When instructions are committed, the ROB informs CIS if an

instruction is mark or unmarked. If an instruction is marked when it is committed, a

saturating counter is incremented, while unmarked instructions have their counters

decremented or removed if the value drops to zero. Once a counter passes a threshold

value, the instruction is considered critical and is flagged as being on the intra-thread

critical path.

Once flagged instructions are given priority within the system, there is a chance

they will no longer meet the requirements to be marked by the heuristic during future

executions. Tune et al. showed how using separate increment and decrement values

for the saturating counters allows the critical path predictor to continue predicting an

instruction as critical for several executions, even when the heuristic has stopped

marking the instruction. Using different increment and decrement values allows the

saturating counter to remain above the threshold for several executions of the

instruction before it drops below and is not longer considered critical.

While the QOld-modified heuristic is used to predict instructions on the intra-

thread critical path, a different method is needed to determine the inter-thread critical

path. Instructions on the inter-thread critical path can easily be identified as the

16

instructions that produce values forwarded to other threads. If a consumer thread is

forced to stall waiting for a specific instruction from another thread to produce a value,

the producer instruction is marked as belonging to the inter-thread critical path. On

the other hand, if the value can be immediately read from a register file from another

thread, no instruction is marked. The instruction producing the needed value in those

cases are already executing fast enough; therefore, further prioritizing is not needed.

However, if this situation changes, the producer instruction will be marked. When

instructions are committed that are marked for the inter-thread critical path, no

saturation counters are used. Instead, an entry is added to the inter-thread critical path

table and the instruction will always be flagged as on the inter-thread critical path.

When using CIS there are two different critical paths, one for the critical path

within a thread and the critical path between threads. A choice must be made about

which path is more important when multiple instructions are ready to issue that are

flagged for one or both of the critical paths. When only a single critical path is used,

as was done by Tune et al. [21], all instructions on the critical path are issued to the

functional units first, followed by non-flagged instructions. Instructions on the inter-

thread critical path produce values for inter-thread dependencies, which affect the

amount of TLP in the system. Therefore, issuing priority is always given to

instructions that are on the inter-thread critical path. Only after all instructions that are

flagged for the inter-thread critical path have been issued, are instruction on the intra-

Figure 5: Critical path prediction using CIS.

17

thread critical path issued. Finally, if there are any more available function units, non-

flagged instructions are issued.

In the original work by Tune et al. [21], instruction criticality was predicted when

the instructions were fetched. This was appropriate since their simulation

environment used a system based on register renaming and issued instructions from

the instruction queue. In DSMT, however, instructions are dispatched to reservation

stations, presenting a new stage in which criticality predictions could be made.

Instead of immediately predicting if a fetched instruction is on the intra-thread or

inter-thread critical path, the system could wait until the instructions are dispatched

from the instruction queue.

The final placement of CIS within the DSMT architecture is shown in Figure 6.

The Dispatch unit in DSMT can dispatch several instructions from each thread per

cycle. In configurations with a high number of threads, such as four and eight

contexts, the number of instructions dispatched can be very high. For example, if the

Dispatch unit can dispatch four instructions per thread and there are four active

threads, there could be up to 16 instructions dispatched that would require criticality

predictions. On the other hand, if criticality predictions were made when the

instructions are fetched, the number of predictions would be much less. For example,

in a configuration using a single-ported instruction cache that can fetch a cache block

eight instructions wide, only eight predictions would be needed per cycle. If FBG is

used in the example, then it is possible that those eight instructions could be copied to

Figure 6: CIS in the DSMT architecture.

18

the instruction queues of multiple threads, thus increasing the number of effective

predictions made.

19

6 New Inter-Thread Forwarding System

When inter-thread dependency resolution is performed by the Dispatch unit in

DSMT, register values are forwarded between threads. As previously described, this

method is significantly slower than intra-thread value forwarding and has an adverse

affect on the overall performance. The proposed ITFS in this thesis expands the

current inter-thread forwarding system to allow forwarding from the forwarding bus

and ROB entries of other threads. Rather than stall threads when waiting on a register

in another thread to become Valid, the forwarding bus and ROB are checked for the

desired value. If the register value is not available, the system stalls for a cycle,

similar to the current inter-thread forwarding system. However, if the value is present,

ITFS can forward the value immediately and continue executing the consumer thread.

The biggest obstacle to forwarding values from the forwarding bus and ROB of

other threads is the managing of misspeculations, such as branch and inter-thread

misspeculations. These misspeculations can cause producer instructions, or the

instructions which have had their values forwarded from the ROB, to be squashed

before they have committed their values to the register file. When this occurs, the

consumer instruction, and possibly the entire consumer thread, must be flushed and

the execution restarted at the point of misspeculation.

In order to recover from misspeculations, both the consumer and producer

instructions must be tracked. Whenever a value is forwarded from the ROB or

forwarding bus, a forwarded pair is generated and placed in a Forwarded Table, as

illustrated in Figure 7. A forwarded pair consists of the ROB tags and context

numbers for both the consumer and producer instructions, along with the register

number of the forwarded value. Entries are kept in the table until either the consumer

instruction is squashed or the producer instruction is committed.

Extra bits are added to the entries in the ROB to help manage the forwarded values.

Whenever an entry in the ROB is read, a Forward (F) bit is set on the entry. Similarly,

the consumer instruction has a Read (R) bit set on its ROB entry whenever it is

20

involved in a forwarded pair. These additional bits on the ROB are used to ensure

program correctness and to prevent corrupting the register files. Entries in the ROB

with set R-bits are not allowed to commit until the inter-thread forwarding is resolved.

Two tables are needed in the new inter-thread forwarding system to track the

number of forwarded pairs in which each instruction is participating and is shown in

Figure 8. Since an instruction can be a producer instruction for multiple consumers, a

table, indexed by the context number and ROB tag of the producer instruction, tracks

the number of outstanding forwards for the instruction. Another table is used to track

the number of forwarded pairs in which each consumer instruction is participating.

When producer instructions are committed or consumer instructions are squashed, the

counters in the tables are decremented. If the values drop to 0, the entries are removed

and the appropriate bits on the ROB entries are cleared. This helps to ensure that a

consumer instruction that has multiple operands forwarded from other threads does not

have its R-bit cleared when the first forwarded pair is resolved.

There are several types of misspeculations that can cause either producer or

consumer instructions to be squashed. The first type of misspeculation, and most

simple to manage, is a branch misspeculation that squashes a consumer instruction.

To resolve this misspeculation, the producer instruction has its F-bit cleared, if it is not

part of any other forwarded pairs, and the forwarded pair entry in the Forwarded Table

is removed. If a producer instruction is squashed, on the other hand, the resolution is

more complicated. The consumer thread must be flushed beginning at the consumer

instruction and execution restarted at the PC of the consumer instruction. Figure 9(a)

Figure 7: Forwarded Table with forward pairs.

21

shows an example of a branch misspeculation in the head thread causing a speculative

thread to flush its pipeline beginning at a consumer instruction.

When there are multiple active speculative threads, a thread can be a consumer

thread for one forwarded pair and a producer thread for another forwarded pair. In

such a situation, a misspeculation in one thread can lead to multiple misspeculations in

other threads, which is referred to as a cascading misspeculation. Figure 9(b)

illustrates a simple branch misspeculation in the head thread can lead to a cascading

misspeculation that affects all other threads.

Figure 8: Producer and consumer tracking tables in new inter-thread forwarding
system.

(a) (b)

Figure 9: (a) Branch misspeculation causing a forwarding misspeculation and (b) a
more complex cascading misspeculation

22

7 Simulation Results

In order to test the performance of the proposed techniques, the DSMTSim

simulator, an object-oriented simulator created using the NetSim architectural

simulator suite [24], was modified and used to simulate benchmarks from SPEC2000

and MediaBench [25]. DSMTSim is a cycle-accurate, execution-based simulator of

the DSMT microarchitecture with extensive statistics tracking capabilities. Each

benchmark is run with two, four, and eight threads, along with a baseline simulation

using a single context. The baseline configuration is used to compare the relative

performance increase for each benchmark. Each benchmark is run from the start of

the program to the end, unless otherwise specified. The specific configuration settings

used in all simulations are listed in Table 2 and Table 3.

Table 2: DSMT configuration.
Fetch
Width

inst./cycle

Issue
Width

inst./cycle

Inst.
Queue
size/ctx

L/S
Queue
size/ctx

ROB
size/ctx

L1 Cache
Inst./Data

L2 Cache Shared
BTB

8 4 per ctx 32 256 64 32KB/32KB
4-way

1 port/4 ports
miss 8 cycles

Unified
128KB
8-way

miss 60 cycles

512
fully assoc.

2 bits

Table 3: DSMT Functional units configuration.
Int ALU Int Mult. Int Div. FP Add FP Mult. FP Div. Load/Store

of FU 3 3 3 2 2 2 4

of
Stages

1 4 8 4 7 16 1

7.1 Fetch Block Grouping Results

The first simulations was used to simulate FBG with the three selection algorithms

previously described and to compare the results against DSMT using ICOUNT1.8.

All simulations used a single-ported instruction cache capable of fetching eight

23

instructions per cycle. The overall increase in system performance when using

ICOUNT1.8 and FBG with two, four, and eight active threads is shown in Figure 10.

Overall, FBG performs on par or better than ICOUNT1.8, with many benchmarks

showing significant increases using FBG. The first trend the graph shows is how the

SPEC2000 benchmarks respond differently than the benchmarks from MediaBench.

While the average MediaBench program sees a speedup of just over 1.5 with eight

threads, the average SPEC2000 program increase a little over 1.02. This can be

attributed to the nature of the programs in the two benchmark suites. SPEC2000

benchmarks have more irregular data structures and control flow, thus reducing the

number of loops that DSMT can multithread. On the other hand, MediaBench

programs use algorithms that are heavily loop based, such as EPIC and MPEG2,

which are based on matrix operations.

Another trend highlighted by Figure 10 is how the benchmarks perform differently

depending on the selection algorithm used. While none of the selection algorithms

have a clear advantage over the other algorithms, some benchmarks respond better to

one algorithm over the others. For example, the RAW benchmark from MediaBench

performs better when the CtxOrder selection algorithm is used, increasing the overall

performance significantly beyond ICOUNT1.8 performance.

One trend shown in Figure 10 is the poor performance of the MemOrder selection

(a) (b)

Figure 10: Speedup for ICOUNT1.8 and FBG for (a) SPEC2000 and (b) MediaBench
benchmarks.

24

algorithm, especially for SPEC2000 benchmarks. While the performance of CtxOrder

and ICOrder are on par or better than ICOUNT1.8, MemOrder usually results in a

much lower increase in system performance. In the VPR, Equake, and MCF

benchmarks, MemOrder produces the lowest increase in system performance for the

FBG selection algorithms and performs worse than ICOUNT1.8. The reason for the

lack-luster performance can be explained by the threads that MemOrder chooses.

Since MemOrder selects the instruction fetch request that accesses the cache block

with the earliest address in program memory, the speculative threads will be serviced

more often than the non-speculative thread. Additionally, whenever a speculative

thread is squashed and restarted due to a misspeculation, it will monopolize the entire

fetch bandwidth until it has caught up with the other threads. This slows down the

entire system when in DSMT mode, making the loops less likely to be labeled Good

by the LDU. On average, more cycles are spent outside of DSMT mode when

MemOrder is used, due to its reduced performance over the other two selection

algorithms, which is illustrated in Figure 11(a) for benchmarks from SPEC2000 and

Figure 11(b) for MediaBench benchmarks.

The strength of FBG is in generating groupings. The average number of groupings

per cycle each selection algorithm makes while in DSMT mode is illustrated in Figure

12. The Figure shows an interesting phenomenon. While MemOrder produces less

(a) (b)

Figure 11: Cycle breakdown for ICOUNT1.8 and FBG for (a) SPEC2000 and (b)
MediaBench benchmarks.

25

overall increase in system performance, it does produce on average more groupings

per cycle than the two other selection algorithms. In the case of the RAW benchmark

using eight active threads, it produces almost double the number of groupings per

cycle than CtxOrder, even though CtxOrder has the best system performance for this

configuration. This increase in groupings per cycle can be explained by the low

number of cycles that are spent in DSMT mode by MemOrder during the program

execution. In the RAW benchmark with eight threads, the MemOrder simulation

spends roughly 68,000 cycles in DSMT mode, while CtxOrder and ICOrder spend

over 7,000,000 and 900,00 cycles, respectively. The more time spent in DSMT mode,

the more often single thread fetches will occur, driving down the average number of

groupings for CtxOrder and ICOrder. Also, the longer the system is operating in

DSMT mode, the longer FBG has to increase system performance. While MemOrder

has a higher average groupings per cycle, it does not spend enough time in DSMT

mode to significantly influence system performance, unlike CtxOrder.

The increase in fetch performance over the baseline configuration is graphed in

Figure 13. Both the SPEC2000 and MediaBench benchmark groups see increases in

fetch performance using FBG for all three selection algorithms, with MediaBench

having a higher average increase. Comparing the increase in the average number of

instructions fetched per cycle with ICOUNT1.8, FBG is the better performer in most

(a) (b)

Figure 12: Average groupings per cycle in DSMT mode for (a) SPEC2000 and (b)
MediaBench benchmarks.

26

of the configurations. Comparing the average groupings per cycle with the increase in

fetch performance, we can see there is no direct translation between high groupings

and high fetch performance. The RAW benchmark is a good example of this, as it has

the most average groupings per cycle when there are eight threads and using

MemOrder, but the fetch performance is highest when using CtxOrder for the same

configuration. Once again, the disparity in performance can be explained by taking

into consideration the amount of time spent in DSMT mode. Unless a significant

amount of execution time is spent in DSMT mode, FBG cannot perform groupings

and increase fetch performance. On average, the MediaBench benchmarks see more

increase due to the higher percentage of their execution time spent in DSMT mode

than the SPEC2000 benchmarks, seeing 1.25 to 2.25 times more instructions fetched

per cycle than the baseline simulations.

When the number of ports on the instruction cache are increased to two, FBG can

fetch two cache blocks per cycle as described in Section 4. The overall system

performance changes only slight though, from 0.93 to 1.13 times the performance

using a single-ported instruction cache for the three selection algorithms and

ICOUNT2.8. Instruction fetch performance increases similarly, with the CtxOrder2.8

and ICOrder2.8 algorithms increasing more than ICOUNT2.8 for SPEC2000

benchmarks. However, the fetch performance for FBG for MediaBench benchmarks

(a) (b)

Figure 13: Fetch increase for ICOUNT1.8 and FBG for (a) SPEC2000 and (b)
MediaBench benchmarks.

27

shows slightly less increase than ICOUNT2.8. The reason for this can be explained by

Figure 14, which shows the ratio of groupings per cycle for the dual-port instruction

cache over groupings per cycle for the single-port instruction cache. As the Figure

shows, most benchmarks forms less groupings per cycle in DSMT mode for all three

selection algorithms. Since the strength of FBG is in the number of groupings it can

make per cycle, the drop in groupings shown in Figure 14 explains the lack of overall

performance.

When FBG uses the additional port on the instruction cache to fetch an additional

cache block, the second request is more likely to service only a single thread. This can

reduce the average number of groupings per cycle and therefore fetch and overall

performance. For example, if there are three threads requesting instructions be fetched

during a cycle, and two of them are requesting the same cache block, FBG will form

one grouped request and one ungrouped request. However, if a single-ported

instruction cache was used, there is the chance that the ungrouped request would be

deferred to a later cycle. This allows it to be considered for groupings with other fetch

requests later, thus increasing the average number of groupings per cycle and

instruction fetch performance. Figure 14 supports this theory since there is a drop in

the groupings per cycle compared to single-ported instruction cache performance.

(a) (b)

Figure 14: Change in groupings per cycle when using a dual-ported instruction cache
for (a) SPEC2000 and (b) MediaBench benchmarks

28

7.2 CIS and ITFS Results

In this Section, the performance of ITFS and CIS will be presented and compared

to a baseline configuration. To remove any potential bottlenecks from the instruction

fetching stage, the number of ports on the instruction cache was increased to eight,

each able to fetch eight instructions per cycle. When eight ports are used, it does not

matter which selection algorithm is used for FBG. First, the benchmarks were run

using the current inter-thread forwarding system in DSMT to produce the baseline

configuration. Second, ITFS was simulated with the CIS system disabled. This

allowed the performance of the two systems to be isolated. Finally, both ITFS and

CIS were simulated together.

The overall increase in system performance for the three simulations is shown in

Figure 15. The first trend that appears is the relatively similar performance of the

three configurations for the majority of the SPEC2000 benchmarks. Both ITFS and

CIS do, however, produce slightly less overall increase in performance for some of the

benchmarks, such as VPR and Equake, when compared to the baseline configuration.

In other benchmarks, such as GCC, ITFS is on par with the baseline, but CIS produces

less performance. In fact, CIS has slightly less average performance than the baseline

(a) (b)

Figure 15: System speedup for the base system, new inter-thread forwarding system,
and CIS for (a) SPEC2000 and (b) MediaBench benchmarks.

29

and ITFS configurations. This shows that there is a weakness in the CIS system.

While CIS may not perform well in the SPEC2000 benchmarks, it does produce

increased overall performance in some MediaBench programs as illustrated in Figure

15(b). Benchmarks such as EPIC and RAW have increased performance when using

both ITFS and CIS when two and four threads are active. However, the performance

of ITFS and CIS for RAW with eight threads is less than the baseline configuration.

Both ITFS and CIS attempt to reduce thread stalls by speeding up the forwarding of

inter-thread dependencies. One way to measure this effect is to compute the average

number of stalls from inter-thread dependencies that occur per cycle while in DSMT

mode. This is shown in Figure 16. As the Figure shows, both CIS and ITFS have less

stalls per cycle than the current inter-thread forwarding system in the baseline

configuration. However, when the time spent in Normal, PreDSMT, and DSMT

modes in Figure 17 is considered, the reason the performance for ITFS and CIS is not

better becomes apparent. In the case of the RAW benchmark in Figure 17(b), at eight

threads ITFS and CIS execute the majority of the instructions in Normal mode. This

reduces the number of cycles CIS and ITFS have available to improve the overall

performance of the system.

While this explanation works for the RAW benchmark, it does not explain the

reduced performance of MPEG2 when using ITFS and CIS, which spends slightly

(a) (b)

Figure 16: Average number of stalls per cycle in DSMT mode for (a) SPEC2000 and
(b) MediaBench benchmarks.

30

more time in DSMT mode than the baseline configuration. However, comparing the

number of thread squashes due to misspeculated inter-thread dependencies presents a

explanation. The number of thread squashes from misspeculated inter-thread

dependencies for the current inter-thread forwarding system is roughly 300K and

800K for four and eight threads, respectively, in the RAW benchmark. For ITFS and

CIS, these numbers rise to over 2 million. Thread squashes are expensive as one or

more speculative thread must be flushed, re-initialized, and have execution restarted

from the beginning of the loop.

The increase in misspeculated inter-thread dependency related thread squashes can

be directly attributed to ITFS and CIS. Both systems cause inter-thread dependencies

to be read earlier than the current inter-thread forwarding system in the baseline

configuration. Increasing the speed values can be forwarded between threads

increases the execution of the speculative threads, thus increasing the occurrence of

inter-thread forwards per cycle. As the number of forwards increases, the chance of

values being read from the incorrect thread or at the incorrect time also increases,

leading to the increase in inter-thread dependency related thread squashes.

For the SPEC2000 benchmarks, the amount of time spent in DSMT does not vary a

great deal across the current inter-thread forwarding system, ITFS, and CIS as shown

in Figure 17(a). However, on average the number of thread squashes from inter-thread

(a) (b)

Figure 17: Cycle breakdown for base configuration, new inter-thread forwarding
system, and CIS for (a) SPEC2000 and (b) MediaBench benchmarks.

31

dependency misspeculations does increase from 1% to just over 15% for ITFS and

CIS over the baseline configuration. This increase in thread squashes accounts for the

slight drop in overall system performance for the SPEC2000 benchmarks.

32

8 Future Work

While several selection algorithms were tested for FBG in this thesis, all possible

algorithms were not explored. There may be other selection algorithms that can

increase system performance beyond those that were tested. Similarly, the

performance of FBG when using a dual-ported instruction cache could be increased

with alternative selection algorithms. Future work on FBG should focus on testing

new selection algorithms and determining which algorithm would provide the best

performance when the instruction cache uses more than one port.

Future work on CIS should focus on determining the best values for the intra-thread

critical path prediction, as this thesis simply used the settings presented in the paper by

Tune et al. [21]. Since the number of thread squashes due to misspeculated inter-

thread dependencies increases when using ITFS and CIS, future work should also

focus on methods for either increasing the accuracy of the forwarding system or

decreasing the costs of a thread squash, or both. If the accuracy of the forwarding

system can be increased, CIS and ITFS should show higher performance than what

they currently generate.

33

9 Conclusions

In this thesis three new ideas were explored for increasing the performance of a

dynamic multithreaded processor that generates threads from loop iterations. The new

instruction scheduling and fetching method FBG was simulated with three different

selection algorithms, both single- and dual-ported instruction caches, and compared

with ICOUNT1.8 and ICOUNT2.8. A new inter-thread forwarding system was

explored which allows values to be forwarded from the ROB and common data bus to

decrease stall time on inter-thread dependencies. Finally, the critical path CIS system

further attempts to decrease inter-thread dependency stall time by prioritizing

instructions on the intra-thread and inter-thread critical paths.

From the simulation results presented in Section 7, the FBG technique produces

performance equal to and better than the current ICOUNT instruction fetching policy

for both single-ported and dual-ported instruction caches. Several aspects of

instruction fetching in a dynamic multithreaded processor became apparent during the

simulation study. First, there is the interplay between which threads are selected for

instruction fetching and how often the system operates in DSMT mode. The CtxOrder

and ICOrder selection algorithms give priority to the non-speculative thread and

threads with highest instruction throughput, respectively, which greatly increases the

performance of the system. This feeds back into the evaluation of the performance of

loops when multithreaded, causing the system to spend more time in DSMT mode and

allowing FBG to further increase fetch performance. The converse is also true as

MemOrder demonstrated. By prioritizing the speculative threads during instruction

fetching, the non-speculative thread becomes starved for instructions. Some loops that

performed well with the other selection algorithms do not perform well using

MemOrder, causing the loops to be viewed as bad thread sources and thus causing the

system to spend more time in Normal mode. For example, there is a single loop in the

RAW benchmark from MediaBench that produces positive results when threaded in

DSMT. Using MemOrder the loop has poor threaded performance, and thus the

system remains in Normal mode for the majority of the execution time of the

34

benchmark.

The overall performance of the selection algorithms when using a dual-ported

instruction cache was only slightly different than their performance when using a

single-ported instruction cache. Since two cache blocks can be fetched per cycle, the

number of groupings should have increased for FBG. However, the number of fetch

requests servicing only a single thread increased, thus reducing the average number of

groupings made per cycle in DSMT mode. Allowing more single thread requests to be

serviced via the second port on the instruction cache reduced the grouping

performance of FBG. If future work on FBG can identify new selection algorithms or

make other modifications to reduce these occurrences, the performance of FBG can be

pushed higher. However, using the current FBG selection algorithms with a dual-

ported instruction cache has the advantage of keeping the cache simpler than using

ICOUNT2.8. The cache bank conflicts when using FBG is lower than using

ICOUNT2.8 and does not require additional hardware in the instruction cache to

manage cache block conflicts.

Performance of the new inter-thread forwarding system and CIS are more mixed

than the performance of FBG. While there are several benchmarks that show

increased overall system performance when using either CIS or ITFS, the average

performance of the two systems is slightly less than the current inter-thread

forwarding system used in DSMT.

While exploring the cause for the decreased system performance, the amount of

time the system spends in DSMT mode and the increase in thread squashes from

misspeculated inter-thread dependencies were identified as the sources. Increasing the

speed of inter-thread forwards leads to more inter-thread dependencies being read

incorrectly, either from the incorrect source or at the incorrect time, thus increasing the

occurrence of expensive thread squashes. However, even with the increase in thread

squashes, CIS and ITFS succeed in reducing the occurrence of threads stall on inter-

thread dependencies.

Both ITFS and CIS produced fewer stalls per cycle for the SPEC2000 and

35

MediaBench benchmarks, with CIS reducing the number of stalls for MediaBench

programs more than ITFS. This is due to the nature of the threads produced from the

loops found in MediaBench programs. Whereas SPEC2000 loops are shorter and

generate more inter-thread dependencies when threaded, loops from MediaBench

programs are more independent and thus respond better to decreasing the stall time on

the fewer inter-thread dependencies they produce.

36

Bibliography
[1] J. Lo et al., "Converting Thread-Level Parallelism into Instruction-Level

Parallelism via Simultaneous Multithreading", pp. 322-254, Aug. 1997.
[2] Intel, " Hyper-Threading Technology on the Intel Xeon Processor Family for

Servers",Techn. documentation, Intel Corp., 2002.
[3] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, "Exploiting Choice:

Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor," 23rd Annual International Symposium on Computer Architecture,
May 1996.

[4] H. Akkary and M. Driscoll, "A Dynamic Multithreading Processor," 31st
International Symposium on Microarchitecture, December 1998.

[5] P. Marcuello, A. Gonzalez, "Speculative Multithreaded Processors," Proc. 12th
International Conference on Supercomputing, pp. 365-372, 1999.

[6] V. Krishnan and J. Torrelas, "Sequential Binaries on a Clustered Multithreaded
Architecture with Speculation Support," International Conference on
Supercomputers, 1998.

[7] T.M. Conte, K.N. Menezes, P.M. Mills, and B.A. Patel, "Optimization of
Instruction Fetch Mechanisms for High Issue Rates," 22nd Annual International
Symposium on Computer Architectures, June 1995.

[8] D. Ortiz-Arroyo and B. Lee, "Dynamic Simultaneous Multithreading
Architecture," 16th International Conference on Parallel and Distributed
Computing Systems, August 2003.

[9] G. Reinman et al., "Optimizations Enabled by a Decoupled Front-End
Architecture," IEEE Transactions on Computers, 50(4):338-355, April 2001.

[10] G. Reinman et al., "A Scalable Front-End Architecture for Fast Instruction
Delivery," Proc. 26th International Symposium on Computer Architecture, May
1999.

[11] E. Rotenberg, S. Bennette, and J. Smith, "Tace Cache: a Low Latency Approach
to High Bandwidth Instruction Fetching," Proc. 29th Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 24-34, December 1996.

[12] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, "Trace Processors," Proc.
of the 30th International Symposium on Microarchitectures, December 1997.

[13] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P.
Roussel, "The Microarchitecture of the Pentium 4 Processor," Intel Technology
Journal, Q1 2001.

[14] A. Falcon, A. Ramirez, and M. Valero, "A Low-Complexity, High-Performance
Fetch Unit for Simultaneous Multithreading Processors," Proc. of the 10th
International Symposium on High Performance Computer Architecture (HPCA),
February 2004.

[15] J. Moure, R. Garcia, and E. Luque, "Improving Single-Thread Fetch
Performance on a Multithreaded Processor," Euromicro Symposium on Digital
Systems Design, 2001.

37

[16] M. Mudawar, "Scalable Cache Memory Design for Large-Scale SMT
Architectures," Proc. of the 3rd Workshop on Memory Performance Issues: In
Conjunction With the 31st International Symposium on Computer Architectur,
2004.

[17] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, "Exploiting Choice:
Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor," Proc. of the 23rd Annual International Symposium on Computer
Architecture, May 1996.

[18] S. Wallace, B. Calder, and D.M. Tullsen, "Threaded Multiple Path Execution,"
Proc. of the 25th International Symposium on Computer Architecture, pp. 238-
249, 1998.

[19] D. Tullsen and B. Calder, " Computing Along the Critical Path",Techn.
documentation, University of California, October 1998.

[20] A. Zhai, C. Colohan, J. Steffan, and T. Mowry, "Compiler Optimization of
Scalar Value Communication Between Speculative Threads," Proc. of the
Conference on Architectural Support for Programming Languages and
Operating Systems, October 2002.

[21] E. Tune, D. Liang, D.M. Tullsen, and B. Calder, "Dynamic Prediction of Critical
Path Instructions," Proc. of the 7th International Symposium on High
Performance Computer Architecture, January 2001.

[22] B. Fields, S. Rubin, and R. Bodik, "Focusing Processor Policies via Critical-Path
Prediction," Proc. of the 28th International Symposium on Computer
Architecture, 2001.

[23] G. Sohi and M. Franklin, "High-Bandwidth Data Memory Systems for
Superscalar Processors," Procs. of the 34th International Symposium on
Microarchitecture, pp. 318-327, April 1991.

[24] David A. Zier, Jarrod A. Nelsen, and Ben Lee, "NetSim: An Object-Oriented
Architectural Simulator Suite," The 2005 Int'l Conference on Computer Design,
June 2005.

[25] C. Lee, M. Potkonjak, and W. Mangione-Smith, " MediaBench: A tool for
Evaluating and Synthesizing Multimedia and Communications Systems," Proc.
of the 30th International Symposium on Microarchitecture, pp. 330-335,
December 1997.

	1 Introduction
	2 Related Works
	3 DSMT Background
	4 Fetch Block Grouping
	5 Critical-Path-Based Instruction Scheduling
	6 New Inter-Thread Forwarding System
	7 Simulation Results
	7.1 Fetch Block Grouping Results
	7.2 CIS and ITFS Results

	8 Future Work
	9 Conclusions

