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Nuclear fusion has the potential to meet the energy needs of our civilization for centuries to 

come and does not produce harmful greenhouse gasses or produce long-lasting radioactive 

waste. A fusion reaction can be readily demonstrated in a confinement scheme known as inertial 

electrostatic confinement (IEC) fusion. In this work, an IEC device is proposed that can perform 

a study of how the fusion rate in an IEC depends on cathode voltage. A 2D simulation code is 

written in python to model the device and predict the fusion response to grid voltage at low and 

high voltages. The simulation is based on the particle-in-cell (PIC) method for modeling 

plasmas. The fusion reaction was modeled in the simulation by applying the 5-parameter-fitting 

method for nuclear fusion cross sections. A formula for the probability of a fusion reaction 

occurring per simulated particle path length is proposed based on physical and numerical 

parameters. The simulation demonstrates that as the cathode grid voltage is increased, the fusion 

rate occurring in the device increases in the same manner as key IEC experiments. The seldom-

studied start-up behavior of the IEC was resolved in the simulation implemented here and 

presented for different cathode voltages.       
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Chapter 1 – Introduction 

 

1.1 Motivation and Objective  

 

Climate change and humanity’s ever-increasing demand for energy sets up nuclear fusion as an enticing 

source of clean energy. If it were to work at levels anticipated, it would be a more reliable source of 

energy than wind and solar, and a cleaner energy source than fossil fuels and nuclear fission. The leading 

method to attempt to harness a fusion reaction for energy is a tokamak: a large donut-shaped machine that 

utilizes magnetic fields to confine a hot plasma long enough for it to produce energy. The tokamak 

quickly becomes large, expensive, and complex. An alternative to the tokamak which can readily produce 

nuclear fusion is the inertial electrostatic confinement (IEC) device [1]. At present, IECs are not 

contenders for a fusion power device, but due to their comparative ease at accomplishing fusion they do 

allow for the study of fusion reactions. It is the purpose of this research to propose a design for an IEC 

fusion device to study the fusion reaction’s response to the IEC input voltage, and model the processes 

occurring within the device by utilizing computational methods. By developing a computational method 

that can model the small IEC device created here, the computations can be extended to simulate bigger 

IEC devices with variable geometries and power levels.   

 

1.2 Nuclear Fusion  

 

Nuclear fusion is the process by which small elements and isotopes can combine into heavier isotopes. 

The fusion reaction products will have a net mass that is lower than the reactants that entered the fusion 

reaction, called the mass defect. This mass defect ∆m is exactly the amount of kinetic energy gained by 

the products of the fusion reaction. This kinetic energy gain can be solved for using Einstein’s famous 

equation 

 

𝑄 =  ∆𝑚𝑐2 , (1.1) 

 

where 𝑄 is the kinetic energy gained by the products and c is the speed of light in vacuum. Fusion 

reactions occur between two positively charged nuclei only when the two reactants come close enough for 

the strong force to fuse the two reactants. The two reactant nuclei must overcome the powerful Coulomb 

repulsion between the two positive nuclei for the fusion reaction to occur. The energy to overcome this 

Coulomb barrier can be supplied by the temperature of the products. If the thermal motion of the reactants 
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is high enough, then the reactants will have enough kinetic energy to overcome the Coulomb barrier and 

initiate the fusion reaction. It is the high temperature requirements of fusion reactants that necessitate the 

merging of fusion science and plasma physics: most common fusion reactants, deuterium and tritium, 

exist in a plasma state at the temperatures required for fusion. The main challenge of fusion energy 

science is electromagnetically confining this hot plasma long enough for fusion to occur while producing 

electrical energy greater than the energy needed to confine the plasma. Such a confinement configuration 

still eludes humanity to this day.   

 

The fusion reaction occurring in the device proposed here is D-D (deuterium-deuterium) fusion. An 

extremely small amount of D-T (deuterium-tritium) fusion could occur as tritium is a product of the D-D 

reaction. However, D-T fusion is likely not occurring at appreciable rates due to the low amount of D-D 

fusion occurring in the device and the short operating times. The branching ratio, defined as the 

probability of a certain set of products emerging from the same fusion reaction, is 50% for D-D products 

[2]. The two D-D reactions and the D-T reaction are   

 

𝐷 + 𝐷 1
2  1

2 → 𝑇1
3 + 𝐻1

1 ,                   𝑄 = 4.03    MeV (1.2) 

𝐷 + 𝐷 1
2  1

2 → 𝐻𝑒2
3 + 𝑛,                   𝑄 = 3.27    MeV (1.3) 

𝑇 + 1
3 𝐷 1

2 → 𝐻𝑒2
4 + 𝑛,                      𝑄 = 17.58  MeV (1.4) 

 

where n is a neutron. The kinetic energy gain 𝑄 is shared between the products of the fusion reaction, 

with the lighter product particle receiving a larger proportion of the energy. The neutron produced by the 

D-D reaction has an energy of 2.45 MeV, and the proton produced by the D-D reaction has an energy of 

3.02 MeV [2]. These energy values are important for particle detection, which is discussed in Section 2.4.  

The neutron produced by the D-T reaction has an energy of 14.1 MeV. It is the 2.45 MeV neutron that 

can be measured to validate that fusion is occurring in the proposed device. The number of 2.45 MeV 

neutrons detected per second can be used to predict the total fusion rate occurring in the device, and can 

be used to validate the output of the computational model that was developed.  

 

1.2.1 Fusion Cross Sections  

 

Deuterium ions can interact with one another via scattering or by nuclear fusion. A scattering event is 

much more likely to occur than a fusion interaction. Figure 1.1 compares the fusion cross sections for 

various species of reactants.   

 



5 
 

 

Figure 1.1 Cross sections for fusion reactions versus laboratory frame energy. In this 

experiment, D-D reactions are the primary fusion event occurring in the device. The 

cross section for D-D is shown as the red curve. The laboratory energy can roughly be 

thought of as the required grid voltage to achieve a certain fusion cross section. 

 

Microscopic cross section σ has units of area and can be thought of classically as the planform area of a 

target particle. Thus, the larger this area, the higher the probability a projectile particle will collide with 

the target. This classical thinking breaks down in that the cross section is a quantum phenomenon. The 

cross section of a particle depends on what type of interaction is occurring, the energy of the interacting 

particles, and is purely statistical. This energy dependence of microscopic cross section is shown above in 

Figure 1.1 for fusion reactions of various reacting species. A more useful metric is the macroscopic cross 

section ∑, which is defined below in Equation 1.5 for the fusion reaction (denoted by the subscript 𝑓). 

 

∑𝑓 = 𝜎𝑓𝑛𝑖𝑜𝑛 (1.5) 

 

The macroscopic cross section has dimensions of per distance and can be thought of as the probability of 

an interaction occurring when multiplied by a particle path length. The microscopic fusion cross section 

for the D-D interaction, as shown by the red curve in Figure 1.1, is energy dependent. The macroscopic 

cross section also depends on the ion density 𝑛𝑖𝑜𝑛 , which in general is a function of position.  
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1.2.2 Inertial Electrostatic Confinement Fusion  

 

Inertial electrostatic confinement fusion does not rely on any magnetic field, and instead uses an electric 

field to perform the plasma confinement. The device is formed by arranging two spherical metal meshes 

concentrically and putting an extremely large voltage across them, typically 10 to 100 kV in vacuum 

(Figure 1.2). The meshes are supported by a high-voltage stalk (Figure 1.3). Fusion fuel, in this case 

deuterium, is then released into the chamber where the large voltage ionizes a portion of the gas. These 

positively charged ions are accelerated by the electric field toward the center of the device, where most 

will pass straight through the cathode at the center and out the other side due to the large gaps in the metal 

mesh. Once on the other side, the electric field slows the ions and eventually turns them back towards the 

center, setting up a recirculation. The ion density in the center increases, and eventually fusion occurs. 

This does not require nearly as large a machine as the tokamak: typical IEC devices comfortably sit on 

tabletops [1]. In this work, a hypothetical IEC device is proposed that could demonstrate fusion occurring, 

and a working computational model of the device’s performance is created.  

 

Figure 1.2 a) A general schematic of an idealized IEC fusion device. The red 

spherical cathode has a large negative voltage, while the larger blue sphere is a 

grounded anode. Deuterium is ionized near the anode, and these positive ions are 
accelerated by the radial electric field toward the center. The ions pass through the 

center and out the other side, where the electric field slows and turns them back. A 

high-density core sets up due to the presence of recirculating ions, and fusion occurs. 

b) A photo of an IEC device in operation at the University of Wisconsin-Madison [3]. 
The cathode grid glows orange from heat, while the anode (foreground) does not. 

Reproduced with permission.    
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1.3 Current and Future Application of Inertial Electrostatic Confinement  

 

Although IEC fusion is not yet seen as a viable source for fusion electric power reactors, they have been 

deemed useful in several other applications.  

 

Neutrons are used in neutron activation analysis, where materials are characterized to determine what 

elements make up the material sample [1]. This is accomplished by bombarding a material sample with 

neutrons and observing the type of radiation that is emitted from the material by isotopes formed in the 

bombardment. This emitted radiation will have characteristics unique to certain isotopes. Thus, the 

material can be characterized. A problem arises, however, in that most neutron sources are themselves 

simply decaying radioactive isotopes, which pose both health and proliferation risks because they cannot 

be shut down. An IEC device can produce a large amount of neutron radiation on demand and can be shut 

off simply by cutting power to the device when neutron radiation is no longer needed, making the IEC an 

attractive neutron source for neutron activation analysis. 

 

IEC devices have also been proposed as a space propulsion concept [1], where argon fuel is injected into 

an IEC device and guided out the back of the device to form plasma thrust. This device could have a 

higher specific impulse than other well-established plasma thrusters such as the Hall thruster [1].        

 

1.4 Plasma Physics  

 

A plasma is a collection of particles in which some or all the particles carry a net charge. These charged 

particles, or ions, are accompanied by a sea of free electrons. The net electron charge typically equals the 

net ion charge at large length scales. This charge equality is termed quasineutrality.  Plasma physics is the 

study of ionized gases which exhibit quasineutrality at length scales larger than a length known as the 

Debye length,  

 

𝜆𝐷 = √
𝜀𝑜𝑘𝐵𝑇𝑒

𝑛𝑜𝑞𝑒
2

 . (1.6)  

 

Here 𝜀𝑜 is the permittivity of free space, 𝑘𝐵  is Boltzmann’s constant, 𝑇𝑒 is the electron temperature, 𝑞𝑒 is 

the charge of an electron, and 𝑛𝑜  is the charge density (number of charges per unit volume) of either 

electrons or ions. Quasineutrality means that the ionized plasma will appear neutral at length scales larger 

than the Debye length. The Debye length can be thought of as the distance needed to shield an external 
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charge from the rest of the plasma. The electron’s parameters appear in Equation 1.6 due to the electron’s 

higher mobility within a plasma than the ions. This mobility can be readily explained by the fundamental 

Lorenz force law, which governs plasma behavior. The Lorenz force law states that  

 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 ⨯  𝐁). (1.7) 

 

Here m is the mass of the particle, v is the particle velocity, E is the electric field, q is the particle charge, 

and B is the magnetic field. The ion has a mass several orders of magnitude larger than an electron, so in 

an identical external E and B field, a particle will experience an acceleration proportional to its charge to 

mass ratio 
𝑞

𝑚
, which for an ion will be many orders of magnitude smaller than an electron. Therefore, 

when an external charge is introduced to a plasma, it is the electrons which accelerate to shield the 

external charge from the rest of the plasma. Hence, the Debye length is a function of electron parameters 

only.  

 

Plasmas share many of the same attributes as gasses, although what sets them apart is that longer range 

interparticle Coulomb forces cannot be ignored. Plasmas can exhibit collective behavior due to the 

Coulomb interactions between plasma particles, and between the plasma and external electromagnetic 

fields applied to the plasma. This behavior enables plasmas to be engineered and controlled by an applied 

electromagnetic field.  

 

1.4.1 Plasma Modeling  

 

Plasma modeling shares many similarities to fluid modeling. One of the main similarities is that both can 

utilize a numerical mesh grid to discretize the problem space. The advantage of this method to solving 

problems is that a complex system of differential equations can be broken down into a large system of 

linear difference equations that can be readily solved by a computer.   

 

The density of a plasma plays a crucial role in its behavior and how it can be analyzed. A low-density 

plasma can in some instances be modeled as a set of charged particles that do not interact with each other 

at all (collisionless, noninteracting), and instead only move due to an external electromagnetic field. As 

the plasma density increases, the electromagnetic field generated by the plasma particles themselves can 

no longer be ignored, and the complexity of the plasma behavior increases drastically because each 

particle is influenced by both the external electromagnetic field and the electromagnetic fields of all the 
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other plasma particles. When the plasma density is increased further, the behavior begins to have fluid 

characteristics due to particle collisions, and principles from statistical mechanics can be applied to the 

plasma. By taking moments of the Boltzmann Equation, both a two-fluid treatment and a single fluid 

treatment (magnetohydrodynamics) can be derived [4]. 

 

In this study, the plasma has too low a density for the Boltzmann Equation to apply and too high a density 

to ignore interparticle Coulomb interactions. A middle-of-the-road treatment was taken up, where a 

particle approach was utilized to analyze the plasma’s response to an external electric field with 

interparticle Coulomb interactions included. Although particle collisions were ignored in the kinetic 

behavior of the plasma, collisions cannot be ignored entirely in this study because they are required for 

nuclear fusion to occur in the plasma.     

 

A computational method which can model a self-interacting low-density plasma is the particle-in-cell 

(PIC) technique, explained in detail in Section 2.1.3. The PIC method does not, however, include particle 

collisions necessary to study fusion. To handle collisions, the PIC method was modified here by utilizing 

fusion cross sections (cross section implementation discussed in section 2.1.4).        

 

1.5 Construction Considerations  

 

There are several important design principles that go into creating an IEC fusion device. In an ideal IEC, 

the anode would be a completely transparent sphere with a potential of 0 V, and the cathode would be a 

smaller completely transparent sphere with a potential << -100 kV. This would set up a perfectly radial 

electric field pointing to the center of the device. These two spheres would be fixed in space in a large 

vacuum. The ions would circulate until they fuse, and the ions would ideally not be lost from the system 

by any other mechanism.   

 

This idealization is first degraded by the presence of physical metal grids (Figure 1.2 b). These grids are 

not completely transparent, so ions collide with them while the ions undergo their recirculation. The ions 

are lost to the plasma when such collisions with the grid occur. The grids are also not perfectly spherical 

shells, but are instead discrete wires of potential with large gaps of vacuum between wires. Thus, in 

general the goal of anode and cathode wire grid design is to maximize the uniformity of the potential 

distribution of the grid sphere, while at the same time maximizing the transparency of the grid. These two 

constraints are competing, and in general transparency takes the higher priority: large gaps in the 
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spherical surface are formed between a relatively small amount of wire to prevent ion collisions with the 

wires.  

 

The wire grids cannot be levitated without a support structure, and the grid potential cannot be set without 

a connecting wire. These two issues are remedied by a high voltage stalk, which is a cylindrical tube with 

wire running up the center, shown in Figure 1.3. The stalk is typically made from ceramic to withstand 

the high temperature of the plasma and the ion bombardment the stalk will endure. The presence of this 

high voltage stalk adds an asymmetry to the electric field due to both the high voltage wire running 

through it, and the loss channel the ceramic tube represents to the recirculating ions. When designing a 

high voltage stalk, it is desired to minimize the disturbance the stalk will cause to the electric field, and to 

reduce the diameter of the stalk to avoid disturbing ion recirculation paths.   

 

The IEC vacuum chamber is of finite size and thus will interact with ions and form another loss channel 

to the system. The vacuum chamber proposed for this study is made from aluminum and thus will interact 

with the electric field created by the grids. The vacuum chamber is grounded with the same potential as 

the anode wire grid. In an ideal situation, the vacuum chamber would be spherical as well, and concentric 

with the grids to minimize its influence on the electric field. Spherical vacuum chambers are expensive, 

however, so a cylindrical vacuum chamber was found to be a good compromise in this study.  

 

Lastly, the power supply to the cathode would be ideally able to supply an extremely large negative 

potential. This is because the ability of an IEC to perform D-D fusion is directly related to its maximum 

potential drop from the anode to the cathode. Figure 1.1 shows that as the ion energy in the laboratory 

frame increases, so does the fusion cross section. This energy in an IEC is supplied by the grid voltage; a 

higher grid voltage is required to achieve a higher ion kinetic energy. Thus, increasing the grid voltage 

increases the fusion cross section and results in a higher D-D fusion reaction yield. A typical IEC that can 

be physically constructed is shown below in Figure 1.3.     
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Figure 1.3 Realistic schematic of IEC device. The high voltage stalk supports the 

anode and cathode. The anode and cathode are far from being an ideal spherical 
surface, and are instead constructed from several wires. The stalk and wires are loss 

channels for ions recirculating within the device and inhibit ideal IEC operation.   
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Chapter 2 – Methods 

 

The study of nuclear fusion in IEC devices involves a variety of disciplines ranging from plasma physics, 

kinetics, statistical mechanics, electromagnetism, and nuclear physics. In this chapter, the methods used to 

combine these diverse disciplines will be outlined. The computational domain and its simplifications will 

be introduced first, followed by an explanation of the particle-in-cell (PIC) method. Parameters pertinent 

to fusion reactions in the model will be introduced.  This will be followed by an overview of the proposed 

physical system and will conclude with a discussion of neutron detection in the context of this 

experiment.  

 

Neutron count versus applied grid voltage is the main deliverable produced in this study. It can be used to 

demonstrate that fusion is being achieved within the proposed device. Neutron count versus applied grid 

voltage is additionally used as the initial validation for the computational methods being developed. The 

PIC model determines the ion density and fusion rate occurring within the device, and thus does not 

directly predict the neutron count that would be seen by the neutron sensor discussed in Section 2.4. 

Instead, the fusion rate found by the PIC model could be treated as an isotropic neutron source. This 

isotropic neutron source and the distance to the neutron detector can be used to back out a 

computationally determined neutron count rate given the inputted grid voltage. 

 

2.1 Computational Domain 

 

The computational model of the IEC device replaces the physical wire grids with two circular 

equipotentials of the same radii. The potential of these circles is equal to the grid voltage. The 

computational domain is two-dimensional and extends past the outer grid to the radius of the vacuum 

chamber, shown in Figure 2.1. A major source of error with this method is assuming the anode and 

cathodes are closed circles, when in reality they are physical spheres made of discrete wires with the 

majority of the surface area being empty space (Figure 1.3). This discrepancy between model and reality 

is remedied by assigning a geometric transparency to the anode and cathode circle models. The idea of 

geometric transparency is discussed further in section 2.1.3.5 and is effectively the probability that an ion 

will collide with the anode or cathode. Geometric transparency will fail to capture interesting grid effects 

such as the formation of ion beams and various well-known modes of IEC operation such as star mode 

and jet mode [1]. 
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2.1.1 Defining the Geometric Mesh 

 

The computational domain was meshed using a regular Euclidian mesh with equal cell dimensions in x 

and y, despite the spherical geometry of the device. The decision to use a Euclidian mesh as opposed to a 

spherical mesh is due to the vacuum chamber not respecting spherical symmetry. The domain’s outer-

most boundary is the cylindrical vacuum chamber. The stalk, discussed in Section 1.5, was ignored in this 

study, which likely adds a considerable source of error in the simulation due to the stalk playing a major 

role as an ion loss channel. The computational domain used in this model is visualized in Figure 2.1. 

 

 

Figure 2.1 Shown here is the physical domain’s representation as a computational 

grid. The light blue cells represent cells that are within the vacuum chamber, the red 
cells represent the cathode and the dark blue cells represent the anode.  

 

 

The regular Euclidian mesh making up the computational domain was extended over a region with Nx 

cells in x direction, and Ny cells in y direction. This domain can be translated into a set of NxNy equations, 

one for each cell corner by using the discretized Poisson’s Equation: 

 

𝛻2𝜙 = −
𝜌

𝜀𝑜

 . (2.1) 
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Here ρ is the net charge density, given by q(nion – ne), the number density of ions minus the number 

density of electrons times q, the charge of a proton. ϕ is the electric potential, and 𝜀𝑜 is the permittivity of 

free space. This equation can be discretized in a finite difference form in three dimensions:  

 

𝜙𝑖−1,𝑗,𝑘 − 2𝜙𝑖,𝑗,𝑘 +  𝜙𝑖+1,𝑗,𝑘

(∆𝑥)2
+

𝜙𝑖,𝑗−1,𝑘 − 2𝜙𝑖,𝑗,𝑘 +  𝜙𝑖,𝑗+1,𝑘

(∆𝑦)2
 +  

𝜙𝑖,𝑗,𝑘−1 − 2𝜙𝑖,𝑗,𝑘 +  𝜙𝑖,𝑗,𝑘+1

(∆𝑧)2
 = 𝑞

𝑛𝑒 − 𝑛𝑖

𝜀𝑜

 . (2.2) 

 

Equation 2.2 in two dimensions is the basis for the computational simulation carried out in this work.  

 

2.1.2 Initial Conditions and Boundary Conditions 

 

At the radius of the cathode (red cells in Figure 2.1), an equipotential circle is defined with a Dirichlet 

boundary condition equal to the grid voltage imparted to the device. A similar condition is applied to the 

anode (dark blue cells), which is set to 0 V. These circles are given a geometric transparency discussed in 

section 2.1.3.5. The vacuum chamber walls are simulated as an open boundary: any particle that collides 

with this surface passes through and is lost from the computational domain. The domain is initiated with 

zero ions present, with a particle source near the anode that is discussed in further detail in Section 

2.1.3.5. Particles are assumed to have no net initial velocity beyond thermal motion sampled from a 

Maxwellian distribution of initial ion velocities.  

 

2.1.3 Particle-in-cell Technique 

 

At the low densities occurring in the IEC device studied here, the plasma behaves more like a collection 

of individual particles than a fluid. However, in addition to interacting with the external electric field 

supplied by the wire grids, the particles are also influenced by the electric field from the other particles in 

the system. The electric field from particle i on particle j for a point charge (ion or electron) is given as 

 

𝐄𝐢𝐣 =  
1

4𝜋𝜀𝑜

𝑞𝑖

𝑟2
𝐫𝒊𝒋 , (2.3) 

 

where rij is a unit vector pointing from particle i to particle j, r is the distance between particle j and 

particle i, and 𝑞𝑖 is the charge of particle i. In theory, determining the net electric field on particle j would 

involve summing the vector contributions over all i. This leads to an n2 problem: the electric field felt by 

one particle is determined by knowing the electric field contribution from every other particle in the 

system. This is computationally taxing for even a low number of particles. The concept of a Debye length, 
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defined in Equation 1.6, can be used to reduce this complexity by realizing that particles more than one 

Debye length from the particle of interest will not contribute to the electric field felt by the particle of 

interest due to Debye shielding.   

 

The PIC method starts by discretizing the geometry as mentioned in Section 2.1.1 into cells, which are 

surrounded by four nodes (corners of cells). Properties such as charge density, electric potential, and 

electric field exist only at the cell nodes. Individual particles during each iteration populate the cell, but 

their charge is averaged to the cell nodes during each iteration to get field properties such as potential and 

density.  

 

The side length of the cells are ∆𝑥 and ∆𝑦. By setting both ∆𝑥 and ∆𝑦 to at minimum the Debye length 

𝜆𝐷, the electric field felt by particles within a cell of interest is guaranteed to come from the electric field 

at the nodes immediately surrounding that cell only. This is because all other nodes are further than one 

Debye length away as shown in Figure 2.2, and thus these nodes are shielded from the perspective of 

particles within the cell of interest.   

 

Even when reducing the number of particles to only those within one Debye length cell, there are still too 

many individual ions to model with reasonable speed. To avoid simulating a vast number of individual 

ions, the PIC method utilizes many macroparticles [5]. A macroparticle simply represents the mass and 

charge of many thousands or millions of individual ions combined into one point. The ratio of physical 

ions per macroparticle is termed the specific weight, 𝑤𝑠. 

 

The PIC algorithm in this study utilizes the following steps in the main loop [5]: 

1. Determine the Charge Density 

2. Determine the Electric Potential 

3. Determine the Electric Field 

4. Move the Macroparticles and Check for Fusion  

5. Sample Sources and Determine Losses 

6. Repeat until Maximum Number of Time Steps is Reached 

 

Each of the above steps will be explained in detail in the following subsections. 
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2.1.3.1 Determine the Charge Density 

 

The charge density is determined only at the node points in the discretized problem domain (corners of 

cells). A macroparticle’s position is recorded and its charge is distributed to the corners of the cell it is in. 

The largest portion of its charge is given to the nearest node, as shown below in Figure 2.2. The 

proportion received by each node is determined by the area ratios shown in Figure 2.2. For example, the 

grey particle is closest to the green node, so this node will receive the largest proportion of the grey 

particle’s charge. If the grey particle has a charge q, then the green node will receive a charge equal to the 

green area’s portion of the entire cell area times q, given by 

 

𝑞𝐺 = 𝑞
(ℎ𝑦)(ℎ𝑥)

∆𝑥∆𝑦
 .  (2.4) 

 

Here 𝑞𝐺 is the charge contribution the green node receives from the grey macroparticle, hx is the grey 

macroparticle position from the left of the cell, and hy is the grey macroparticle position from the bottom 

of the cell.  

   

 

Figure 2.2 Visualizing the charge weighting to nearby numerical grid intersections. 

The grey macroparticle’s charge is distributed to the nodes of the cell it is in. The 
proportion of charge that is received by the nodes is found by the area ratio using the 

particle’s position in the cell as shown by Equation 2.4. This is visualized by the 

colored rectangles within the cell. The green node, for example, receives the green 
rectangle’s proportion of the grey macroparticle’s charge. Figure based on a 

discussion in [5].   
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Each cell in the problem space is looped over and the charges of all the macroparticles within the cell are 

averaged to the cell nodes, determining the ion charge density nion at the nodes. The macroparticle 

positions and velocities are stored.  

 

2.1.3.2 Determine the Electric Potential  

 

An important assumption that will be used in this study is that the electrons in the IEC plasma move 

instantly relative to the ions. The justification for this assumption was given in Section 1.4, which 

demonstrated that in an electromagnetic field a particle’s acceleration is proportional to the charge to 

mass ratio 
𝑞

𝑚
 . The deuterium mass is nearly 4,000 times larger than the electron mass, and hence to the 

ion the electron moves nearly instantly. The electrons are assumed to be a fluid with a temperature Te. 

The electron density is assumed to maintain a Boltzmann distribution given by  

 

𝑛𝑒 = 𝑛𝑜𝑒
𝑞(𝜙− 𝜙𝑜)

𝑘𝐵𝑇𝑒 , (2.5) 

 

where 𝜙𝑜  is the reference ground potential, 0 V. Equation 2.5 can be substituted into Equation 2.2 for the 

electron number density in two dimensions with the cell length in the x and y direction equaling the 

Debye length, yielding Equation 2.6:   

 

𝜙𝑖−1,𝑗 − 2𝜙𝑖,𝑗 +  𝜙𝑖+1,𝑗

(𝜆𝐷)2
+

𝜙𝑖,𝑗−1 − 2𝜙𝑖,𝑗 +  𝜙𝑖,𝑗+1

(𝜆𝐷)2
  =

𝑞

𝜀𝑜

[𝑛𝑜𝑒
𝑞(𝜙𝑖,𝑗− 𝜙𝑜)

𝑘𝐵𝑇𝑒 − 𝑛𝑖𝑜𝑛]  . (2.6) 

 

Equation 2.6 is no longer linear due to the exponential on the RHS containing the potential 𝜙𝑖,𝑗, so a 

simple matrix inversion by gaussian elimination cannot solve this system of equations. The potential 𝜙𝑖,𝑗  

is solved for by setting the domain boundary conditions: the vacuum chamber walls and the anode are set 

to a potential of 0 V. The cathode is set to the cathode voltage (between -10 and -200 kV).  

 

Next, the interior cells of the domain (excluding the vacuum chamber walls) are looped over and the 

potential at each cell is updated. The update formula is found by rearranging Equation 2.6: 

  

𝜙𝑖,𝑗
𝑘   =

𝜙𝑖−1,𝑗
𝑘 +  𝜙𝑖+1,𝑗

𝑘−1 + 𝜙𝑖,𝑗−1
𝑘−1 +  𝜙𝑖,𝑗+1

𝑘

4
−

𝜆𝐷
2𝑞

4𝜀𝑜

[𝑛𝑜𝑒
𝑞(𝜙𝑖,𝑗

𝑘−1− 𝜙𝑜)

𝑘𝐵𝑇𝑒 − 𝑛𝑖𝑜𝑛]  . (2.7) 
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Here the kth  iteration appears as a superscript in the above terms. The domain is looped through row by 

row as opposed to column by column, explaining why some of the terms in Equation 2.6 have k-1 

superscripts while others have k superscripts. Note Equation 2.7 shows that 𝜙𝑖,𝑗
𝑘  depends on the cells 

around it at the current and previous iterations, as well as 𝜙𝑖,𝑗
𝑘−1 : the potential at the cell whose potential is 

being solved for. This cell self-dependence comes from the non-linear term introduced by the electron 

density (Equation 2.5). 

 

To implement the interior anode and cathode potential boundary conditions, the potentials are re-set to 

their known values between every k-1 and the kth iteration. 

 

After M iterations, the iteration in k is stopped and the final domain potential 𝜙𝑖,𝑗
𝑀  is used as the system 

potential at that specific timestep, timestep s. Determining a good M to use can be done by stopping the 

iteration in k when the maximum error between  𝜙𝑖,𝑗
𝑘  and 𝜙𝑖,𝑗

𝑘−1 is below a certain error tolerance 𝜉 : 

 

𝜉 < max|𝜙𝑖,𝑗
𝑘 −  𝜙𝑖,𝑗

𝑘−1| . (2.8) 

 

In practice, M = 600 was found to guarantee good potential convergence without unreasonably long 

computational wait times.  

 

2.1.3.3 Determine the Electric Field  

 

Once the electric potential at the nodes is determined using the method explained in Section 2.1.3.2, the 

electric field at the nodes can be found by finite differencing the electric potential. Along the boundaries, 

this takes the form of  

 

𝐸𝑥,𝑖𝑗 =  −
𝜙𝑖+1,𝑗 −  𝜙𝑖,𝑗

∆𝑥
 , (2.9) 

 

𝐸𝑦,𝑖𝑗 =  −
𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗

∆𝑦
 , (2.10) 

and in the interior as   

   𝐸𝑥,𝑖𝑗 =  −
𝜙𝑖+1,𝑗 −  𝜙𝑖−1,𝑗

2∆𝑥
 , (2.11) 

 



19 
 

   𝐸𝑦,𝑖𝑗 =  −
𝜙𝑖,𝑗+1 −  𝜙𝑖,𝑗−1

2∆𝑦
 . (2.12) 

 

 

2.1.3.4 Move the Macroparticles and Check for Fusion 

 

The macroparticles are moved using Newton’s Second Law according to Equation 2.13: 

 

𝐯s+0.5 =  𝐯s−0.5 +  
𝑞

𝑚𝑚

𝐄∆𝑡. (2.13) 

 

Here the superscript s refers to the sth timestep iteration. The particle position r at the next timestep is 

determined from the sth timestep iteration as 

 

𝐫s+1 =  𝐫s +  𝐯𝑠+0.5∆𝑡. (2.14) 

 

During each ion’s motion, the ion has a probability to undergo a fusion reaction. This probability can be 

expressed using the concept of nuclear fusion cross sections, which are discussed in more detail in 

Section 2.1.4. The probability P that a macroparticle moving from 𝐫s to 𝐫s+1 will undergo a fusion 

reaction is given by  

 

𝑃 =  𝑤𝑠|𝐯𝑠+0.5∆𝑡|𝜎𝑓(𝐯)𝑛𝑖𝑜𝑛  . (2.15)  

 

Here 𝜎𝑓(𝐯) is the D-D fusion microscopic cross section, which is a function of the particle velocity v. The 

specific weight 𝑤𝑠 is used here because the cross section is for a single ion, and there are 𝑤𝑠 ions per 

macroparticle, all of which could undergo fusion. Cross sections were introduced in Section 1.2.1 and 

their implementation is discussed in Section 2.1.4. To simulate P, a random number R between 0 and 1 is 

generated during every particle position update, and if R < P, the particle is deleted from the problem 

domain and the time and location of the fusion reaction is stored. If R > P, the particle simply remains at 

its position.   

 

2.1.3.5 Sample Sources and Determine Losses 

 

After the macroparticle positions are updated, the particle boundary conditions of the problem are applied 

to see if the macroparticles have left the problem space and need to be deleted from the domain. If the 
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particle position is outside of the vacuum chamber absorbing wall boundary, then the macroparticle is 

deleted.  

 

In the IEC, ions can also be lost by colliding with the metal wires that form the wire grid. In the 

computational model, this is simulated by applying a geometric transparency to the anode, Gt,a , and to the 

cathode, Gt,c  which are defined as 

 

𝐺𝑡,𝑎 =  
surface area of metal wires

surface area of ideal anode sphere
 , (2.16) 

 

𝐺𝑡,𝑐 =  
surface area of metal wires

surface area of ideal cathode sphere
 . (2.17) 

 

These transparencies can be approximated using the wire diameter dw, the number of great circle wire 

components Ns used in the construction of the anode or cathode, the cathode radius Rc , the anode radius 

Ra , the number of anode latitude wires NL, and the anode latitude circle radius RL as  

 

𝐺𝑡,𝑎 ≅  
𝑁𝑠2𝜋𝑅𝑎𝑑𝑤 + 𝑁𝐿2𝜋𝑅𝐿𝑑𝑤

4πRa
2

 , (2.18) 

 

𝐺𝑡,𝑐 ≅  
𝑁𝑠2𝜋𝑅𝑐𝑑𝑤

4πRc
2

 . (2.19) 

 

In the PIC simulation, when the macroparticle is found to have moved across the anode or cathode, a 

random number is generated between 0 and 1. If the macroparticle crossed the anode, the random number 

is assessed and if it is greater than 𝐺𝑡,𝑎, the particle is treated as if it collided with the anode grid, and the 

particle is deleted from the problem domain. If the random number is less than the geometric 

transparency, then the macroparticle is unchanged and is considered to have passed through the anode 

without a collision. This same logic is applied to crossing the cathode, with 𝐺𝑡,𝑐  replacing 𝐺𝑡,𝑎.    

 

The macroparticle source consists of a ring of thickness ds near the anode ring at a radius Rs from the 

center of the system shown in Figure 2.3.  
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Figure 2.3 The macroparticle generation region is taken to be a band of width ds near 

the anode. This region is where the radial electric field ionizes the background 

deuterium gas. The macroparticle ions are formed at a rate of I particles per timestep 
and are initialized randomly in the orange band. A Maxwellian distribution of particle 

velocities is sampled at room temperature to initialize the particle x and y velocities.   

   

  

This region, shown in orange in Figure 2.3, is the region in which ionization of the background deuterium 

gas occurs in the model.  The macroparticle ions are formed at a rate of I macroparticles per timestep, and 

they are initialized at a random position within the orange band in Figure 2.3. These particles are 

initialized with a thermal velocity generated randomly by sampling a Maxwellian distribution of x and y 

velocities at room temperature. The ion source flux, in ions/second, was assumed to be a simple linear 

function of the cathode voltage: 

 

𝐼 = 1.6 × 1021
|𝜙𝑐𝑎𝑡ℎ𝑜𝑑𝑒|

100,000
 (2.20) 

 

Here 𝜙𝑐𝑎𝑡ℎ𝑜𝑑𝑒 is the cathode voltage, and 1.6 × 1021  was used as an adequate ion source flux because 

when used in the PIC simulation it produced a stable ion density at 100,000 V that produced maximum 

ion densities on the same order of magnitude as experiment [1]. This is a rough approximation of true gas 

discharge physics, and will be modified in future research to more accurately model the discharge 

behavior of deuterium gas in an external electric field. 

 

2.1.4 Cross Section Implementation 

 

The macroscopic D-D fusion cross section ∑𝑓  was introduced in Section 1.2.1 and depends on the ion 

density 𝑛𝑖𝑜𝑛 , and the ion microscopic cross section, 𝜎𝑓(𝐯) according to Equation 1.5. 𝑛𝑖𝑜𝑛  is a function of 

position in the IEC device. This makes the macroscopic cross section ∑𝑓 dependent on both the position 

and velocity of the interacting ions. Thus, as the particles are moved through the computational domain, 
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they have a probability of undergoing a fusion reaction depending on the distance they travel, the local 

ion density, and the instantaneous velocity at which the ions are traveling given by Equation 2.15. A 

fusion event is considered an ion loss mechanism in the computational model, as discussed in Section 

2.1.3.4. 

 

In this study, the energy dependence of the microscopic fusion cross section for a single ion 𝜎𝑓(𝐸) is 

modeled using the NRL 5-parameter fitting formula [6] given by the following equation: 

 

𝜎(𝐸) =
1

𝐸 (𝑒
𝐴1

√𝐸 − 1)

[𝐴5 +
𝐴2

(𝐴4 − 𝐴3𝐸)2 + 1
] . (2.21)

 

 

Here A1, A2, A3, A4, and A5  are experimentally determined parameters that take on unique values for each 

nuclear reaction, and are listed below in Table 2.1. These values require an energy input in keV and will 

output a cross section in barns. Because D-D fusion can yield two different sets of products with a 50% 

branching ratio (Equations 1.2 and 1.3), there is a different set of five parameters characterizing these two 

reactions for a total of ten parameters. These are listed in Table 2.1. The total microscopic cross section 

for a fusion reaction to occur is simply the sum of these two cross sections given by  

 

𝜎𝑇𝑜𝑡𝑎𝑙(𝐸) = 𝜎1(𝐸) +  𝜎2(𝐸) . (2.22) 

 

Expressing Equation 2.21 in terms of the ten fitting parameters and writing in terms of velocity by 

replacing E with 
1

2
𝑚𝑣2 yields the desired form of the total deuterium fusion microscopic cross section in 

terms of velocity dependence in the laboratory frame:  

 

𝜎𝑇𝑜𝑡𝑎𝑙(𝑣) =

2 [𝐴5 +
𝐴2

(𝐴4 − 𝐴3
1
2

𝑚𝑣2)
2

+ 1

]

𝑚𝑣2 (𝑒

𝐴1

√
1
2

𝑚𝑣2

− 1)

+  

2 [𝐴10 +
𝐴7

(𝐴9 − 𝐴8
1
2

𝑚𝑣2)
2

+ 1

]

𝑚𝑣2 (𝑒

𝐴6

√
1
2

𝑚𝑣2

− 1)

. (2.23) 
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Table 2.1 

Parameter Value 

A1 46.097 

A2 372 

A3 4.36x10-4 

A4 1.220 

A5 0 

A6 47.88 

A7 482 

A8 3.08x10-4 

A9 1.177 

A10 0 

 

 

This function is plotted along with experimental data from the ENDF/B VII.0 dataset from [6] and is 

shown below in Figure 2.4. The 5-parameter fit closely matches the experimental data below energies of 

roughly 200 keV. The energies encountered in the device proposed in this study are expected to be on the 

order of 20 keV, well within the 5-parameter fit’s range of accuracy.   

 

 

Figure 2.4 Deuterium fusion microscopic cross section data from ENDF/B VII.0 
dataset (black circles) and the 5-parameter fit (dotted line). The 5-parameter fit models 

the data well for energies less then roughly 200 keV. Used with permission from Ref 

[6].     

 

It is assumed all 𝑤𝑠 ions within a macroparticle have identical energy and position, so their cross sections 

are the same.   
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2.2 System Overview 

 

The hypothetical physical system proposed in this study that is being modeled by the PIC computational 

model consists of a cylindrical aluminum vacuum chamber, three ceramic stalks used to support the anode 

and cathode wire grids, the anode and cathode wire spheres, and electrical and vacuum systems. Figure 

2.5 shows the assembled chamber support structure and a section cut view of the main chamber in a 

qualitative manner. Dimensions are shown in the supsiquent engineering drawings (Figure 2.6 a. and b.).  

 

a)                                                                                       b) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 a. Section cut view of vacuum chamber and IEC grid assembly with high 

voltage ceramic stalk support structure. Figure 2.5 b. Assembled vacuum chamber, 

IEC grid, and surrounding support structure. 
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    a)                                                                                    b)  

  

 

Figure 2.6 a. Engineering drawing for top flange and IEC anode and cathode wire 

meshes. Dimensions are in meters. The anode and cathode stalk lengths are shown, 
and the anode and cathode radii are also shown. Figure 2.6 b. Engineering drawing for 

the vacuum chamber, in meters.  

   

The wall voltage is stepped up to 20 kV DC and is applied to the cathode grid (the smaller of the two wire 

spheres). The anode (the larger sphere) is grounded. Ceramic tubes (shown in yellow in Figure 2.5 a.) are 

used as high voltage stalk to protect the incoming high voltage wires from plasma bombardment and 

provide structural support. The vacuum chamber should be brought down to a steady state pressure of 

roughly 7 Pa. The measurement of 2.45 MeV fusion neutrons should be carried out by a scintillation 

neutron detector surrounded by a Bonner sphere neutron moderator, which is discussed in detail in 

Section 2.4. A general diagram of the entire system is seen below in Figure 2.7.   
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Figure 2.7 Schematic of proposed system setup. The high voltage power supply 
enters the vacuum chamber and imparts a 15 – 30 kV potential onto the cathode. 

Deuterium is fed into the system through the needle valve, and the vacuum is 

maintained by a rotary vane vacuum pump.    

 

 

2.3 Neutron Radiation Safety Risk  

 

Neutron radiation has harmful effects on biologic tissue if proper safety issues are not considered [7]. 

Because this study requires neutron radiation counts to verify the occurrence of nuclear fusion, safety 

precautions were used when designing the IEC to ensure safe operations. 

 

In order to design safe experimental practices, it is necessary to predict the magnitude of neutron flux 𝜑 at 

a distance D from the center of the IEC felt by experimenters near the device. To estimate the expected 

total neutron rate of production in the D-D (deuterium-deuterium) IEC device, measurements made of the 

neutron production rate versus the grid voltage and metered current for D-D fusion are shown in Figures 

2.8 and 2.9 [8]. These figures illustrate that the neutron production rate inside the IEC is strongly 

dependent on the applied grid voltage and weakly dependent on the metered current to the system. 

 

In this thesis, the proposed IEC device operates at a maximum of 30 kV and 30 mA (the simulation will 

be taken up to 200 kV, however). These levels are treated as ceiling limits to supplied voltage and current.  
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Figure 2.8 Total neutron production rate vs voltage for a D-D 10 cm diameter cathode 

IEC [8]. The neutron production rate is a strong function of grid voltage. Figure 

adapted from Ref [8]. Reproduced with permission.    

 

 

 

 

Figure 2.9 Total neutron production rate vs current for a D-D 10 cm diameter cathode 

IEC [8]. The neutron production rate is a weak function of current. Figure adapted 
from Ref [8]. Reproduced with permission. 

 

At these maximum values, the neutron production rate from Figure 2.8 is on the order of 8.00x105 

neutrons per second.  The 8.00x105 production rate at 30 kV and 30 mA can be treated as a worst-case 

scenario for the proposed IEC in this project.  
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Treating this maximum rate as a point source at the center of the cathode, the maximum neutron flux that 

could be felt by a researcher would be at 10 cm if one were to place a hand on the outside of the vacuum 

vessel. The flux at this distance is given by Equation 2.24 assuming no attenuation (worst case): 

 

𝜑 =
𝑆

4𝜋𝐷2
  

(2.24) 

 

 Here 𝜑 is the neutron flux in neutrons per cm2 per second, D is the radial distance from the center of the 

cathode wire grid, and S is the source strength, which at worst is 8.00x105 n/s. The felt flux at 10 cm is: 

 

𝜑𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 = 636.62
𝑛

𝑐𝑚2𝑠
 . 

 

For safety, no person will ever be this close. The operator will be at a minimum safe distance of 5 meters 

from the machine, which yields: 

 

𝜑𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑎𝑡 𝑠𝑎𝑓𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.255
𝑛

𝑐𝑚2𝑠
 . 

 

 

This value is well within acceptable radiation limits [7] for the expected total operation time of roughly 

16 minutes.  

   

2.4 Bonner Sphere High Energy Neutron Detection 

  

The 2.45 MeV neutrons produced by D-D fusion have too high an energy to be detected by available 

neutron detectors. This can be changed by slowing down the neutrons to more modest (and detectable) 

energies by using a neutron moderator, which is a material that exchanges energy with neutrons through 

collisions. The neutron detection method used is a LiI(Eu) scintillation detector surrounded by a Bonner 

sphere [9] made from a polyethylene spherical shell shown in Figure 2.7. Polyethylene is a neutron 

moderator and can reduce the neutron energy enough for detection. Bonner Spheres are reportedly able to 

detect neutrons with energies as high as 20 MeV as shown in Figure 2.10, well-equipped to handle the 

2.45 MeV neutrons from D-D fusion occurring in the IEC.  
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Figure 2.10 Detector response as a function of neutron energy [9]. Roman 

numerals correspond to Bonner Spheres with increasing diameter: 2, 3, 5, 8, 

10, and 12-inch diameter. The 2.45 MeV neutrons produced from D-D fusion 

in this study are best suited for the 5-inch diameter Bonner sphere. Figure 

reproduced with permission from [9]. 
 

 

2.5 High Voltage Power Supply  

 

High voltage is supplied by the wall outlet and will be stepped up and converted to DC at a maximum of -

-30 kV (Figure 2.11). The current will be on the order of 10 mA. 

 

Safety precautions to mitigate risk from the high voltage power supply to the central grid include a kill 

switch and fuse to cut power, and a standard operating procedure (SOP) regarding discharging the device.  
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Figure 2.11 The general schematic of the proposed electrical system, which includes 

an emergency power off (EPO) switch and a fuse. The Variac and NST step up the 
wall voltage. The high voltage rectifier converts AC to DC [10].   

 

The Variac and the NST step up the wall voltage from low voltage, high current AC to high voltage, low 

current AC. The high voltage rectifier is constructed using two high voltage diodes. This component 

provides the final conversion from high voltage, low current AC to high voltage, low current DC.  

 

2.6 High Voltage Feedthrough  

 

The high voltage feedthrough is constructed using a tube of non-porous high alumina ceramic. Its purpose 

is to provide structural support to the cathode grid as well as serve as the electrical connection between 

the cathode central grid and the high voltage power supply. It must be built from a material that is rigid, 

insolating, and has a high melting point [1]. Thus, ceramics offer the optimum choice to serve these 

purposes.   

 

2.7 Vacuum Chamber  

 

The vacuum chamber used in the proposed experiment is shown in Figure 2.6 b. It is made from 

aluminum which is grounded during operation of the device. The vacuum chamber was purchased used 

and initially had only one flange and was filled with an undesirable black paint finish on the interior. This 

finish was removed to avoid sputtering paint into the plasma. Two new flanges were purchased. One was 

a blank, which was machined to include the input ports for the feedthrough and vacuum pump. A hole 

was bored through the second flange and a viewport was tack-welded to it to monitor the plasma behavior 

with a camera. This viewport aims away from the device operators during operation due to possible X-ray 

leakage.      

Rectifier 
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2.8 Anode and Cathode Construction  

 

The cathode grid for the proposed device was constructed out of tungsten 20-gauge wire. This material 

was chosen due to its high melting point: the cathode grid is exposed to much higher heat fluxes then the 

anode grid, which is built from stainless steel 20-gauge wire. The fabrication process involves wrapping 

wire around Styrofoam balls of the correct radius in the desired geometry and spot-welded at 

intersections. The Styrofoam is then dissolved away using acetone, leaving the wire grid behind.  
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Chapter 3 – Results and Discussion   

 

Tunable parameters such as the electron temperature, electron density, and ion source flux needed to be 

determined before the simulations were run. An electron temperature of 600 eV and an electron 

background density (no in Equation 2.5) of 1x1016 electrons/m3 were found to be appropriate values for 

these two tunable simulation variables. These values were selected from [11], who studied the electron 

temperature and density profiles for IECs. The values used corresponded to lower grid potentials than the 

ones used in this study, however, and could be a source of error. The ion source flux was implemented 

using Equation 2.20, which assumes the ion source strength is linearly related to the cathode voltage. The 

slope of the linear ion source flux was chosen to yield 1.6×1021 ions/s at a cathode voltage of -100 kV, 

which yielded stable ion densities that were on the same order of magnitude as experiment [1].    

 

The extremely fine timestep of 0.1 ns lead to long simulation times while waiting for fusion reactions to 

occur. Figure 2.8 suggests that at a grid voltage of 50 kV, the expected fusion rate should be on the order 

of 1x107 fusions/s, which when multiplied by the timestep of 0.1 ns yields 0.001 fusion reactions per 

timestep. This means that on average 1000 time steps will occur between each fusion reaction. It took the 

computer on which the simulations were run approximately 30 seconds to finish one timestep, so it took 

roughly 8.3 hours to see one fusion reaction occur in the simulation. To combat this long wait time, the 

probability of fusion was artificially enhanced by a factor of 1×104 in order to see more frequent fusions 

in a shorter amount of real time. This factor brings the average real time between fusions to ~3 seconds. 

This artificial factor was then divided out of the resulting average fusion rate over the 80 ns simulation 

time to yield the number of fusions per 80 ns. These rates were used as the average fusion rate at a given 

cathode voltage, in fusions per second. The cathode grid voltage was varied, and the average fusion rate at 

that cathode voltage was recorded. A geometric transparency (Equations 2.18, 2.19) of 0.95 was used for 

both the cathode and anode. A specific weight 𝑤𝑠 of 6×108
 ions per macroparticle was used.      

 

3.1 Ion Densities and Fusion Rates  

 

To visualize the potential field on the computational domain, the PIC algorithm was run with no particles 

present. This was used as a base case to ensure that the potential solver was working properly, as the 

solution can be readily confirmed by an analytical calculation. The results of the no-particle base case 

potential solution can be seen below in Figure 3.1. As expected, the potential is constant within the central 

cathode, and tapers off linearly in the radial direction toward the anode ring.  A cell size of dx = dy = 4 
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mm was used instead of the system Debye length 𝜆𝐷 = 1.821 mm. This compromise was made to avoid 

extremely long simulation times. Physically, using a grid spacing larger than 𝜆𝐷 is acceptable because a 

plasma exhibits quasineutrality at all lengths above 𝜆𝐷. Thus, the larger grid spacing ensures that particles 

within any particular cell will experience an electric field only from the corners of the cell it currently 

occupies.  

 

Figure 3.1 Contour plot of system potential outputted by the PIC algorithm with no 

particles present at a cathode voltage of -20 kV. This builds confidence in the 

potential solver because this solution can be readily verified by an analytical treatment 
of concentric equipotential rings. Note the individual cells can be seen at this scale.      

 

After the no-plasma base case, a series of simulations were run while varying the cathode grid potential, 

keeping all other parameters held constant (except for the ion source flux, Equation 2.20). The time step 

was set to 1x10-10 s in order to capture the extremely high velocities seen in this device, and 800 time 

steps were simulated resulting in a total simulation time of 80 ns. The cathode potential was varied in 10 

kV increments from 10 kV to 200 kV, which is higher than what is expected in the proposed physical 

device (maximum of 20 kV), but similar to other IEC experiments [1]. Density profiles, potential profiles, 

and fusion rates along with the time and position of each fusion reaction were recorded in csv files. Below 

in Figure 3.2, the ion density and potential distribution within the simulated IEC be seen for a cathode 

grid voltage of -70 kV.     

 

 

[V] 
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Figure 3.2 a) The plasma ion density is shown above after 80 ns of motion through 

the potential created by a cathode at -70 kV. A central dense region can be seen which 

builds confidence that the simulation is capturing key aspects of IEC behavior. b) 

Potential distribution, demonstrating the effect of the positive ions on the potential.   
 

 

The ion number density field from the initial PIC run shows promising results. The central core of the 

IEC in Figure 3.2 a. shows a density spike, matching the expected behavior of the IEC device (Figure 1.2 

b). The peak density can be seen to taper off from the core region, and then increase in magnitude slightly 

as the source radius is reached. This behavior is expected: the slow-moving particles near the source 

radius build up density there, but as they pick up velocity and fall through the core, they converge on the 

center of the device and build up much higher ion densities. The potential distribution (Figure 3.2 b.) 

demonstrates that as the positively charged deuterium ions build up in the core, they shield the negative 

cathode potential. Thus, a bump of increased potential can be seen at the center of the device where the 

largest ion density occurs. The effect can be easily seen when comparing Figure 3.1 with Figure 3.2 b. For 

the complete set of 20 simulation density and potential plots, see Appendix A.   

 

A radial cut of the ion density through the core was performed to visualize the ion density as it varies in 

the radial direction. Radial density distributions along the short axis of the device are shown for every 

simulated grid voltage below in Figure 3.3 a.  
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Figure 3.3 a. The ion density along a line through the center of the IEC shows how 

the ion density varies with radial distance in the device. This density profile is plotted 
for different cathode grid voltages, demonstrating the density build up in the core as 

the grid voltage is increased. Figure 3.3 b. demonstrates the fusion rate’s dependence 

on grid voltage. These plots were taken from simulations run over an 80 ns duration of 

simulated time. Each timestep was 0.1 ns, for a total of 800 timesteps. The fusion rate 
reported is the average fusion rate seen over the 80 ns.    
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Figure 3.3 b. shows the corresponding fusion rate for each simulated cathode potential. The fusion 

response to cathode grid voltage increases nearly linearly from -10 kV to -180 kV, and then begins to 

drop off as the cathode voltage is further increased. This drop-off behavior is likely due to the constant 

electron temperature and density that was used throughout the simulations, along with the assumption that 

the ion source flux due to the electric field strength varies linearly with the cathode-to-anode potential 

difference. The electron parameters used from [11] were for low-voltage (~4 kV) voltage differences, so 

considerable error may come from pushing the magnitude of the cathode voltage up in the simulations 

undertaken here past where the assumed background electron density is reasonable.  

 

For the lower voltages which were simulated here, the background electron density used from [11] is a 

better approximation for the true electron background density in a devise at the given cathode voltage. By 

comparing the simulated fusion rates at the lower voltages with experimental neutron production rates 

made by [12] in a deuterium-deuterium IEC, the simulation can be seen to be capturing a similar order of 

magnitude as [12], along with a correct increasing fusion rate with cathode voltage. However, the 

concavity of the simulated results does not match the concavity of either of the measured results in Figure 

3.4 a. This again is likely due to the constant background electron density, which is only strictly valid at 

low cathode voltages.      

 

  

Figure 3.4 a. Total neutron production rate from measurements on an IEC device of 

comparable size to the device modeled in this thesis, adapted with permission from 

[12]. Note that both datasets seen in a. are for D-D fusion, but operating at different 
pressures. b. Sample of fusion rates from Figure 3.3 b. in a similar voltage range to 3.4 

a. Note that fusion rate and neutron production rate are not strictly comparable owing 

to the branching ratio for the D-D fusion reaction (Equations 1.2, 1.3). The 50% 

branching ratio means 3.4 b. is scaled up by a factor of 2 over the neutron production 
rate in the IEC simulated in this thesis.    
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An assumed electron background density that is too low would not adequately shield the buildup of 

positive space charge in the center of the IEC device, the net effect being a stronger repulsion to ions 

seeking to coalesce at the core of the device. This ion density drop seen in the higher voltage regime due 

to the low electron density would limit the amount of fusion that could occur. Figure 3.3 a. shows that for 

the highest magnitude of cathode voltages simulated (-180, -190, and -200 kV), the peak densities are 

lower than for cathode voltages of -160 and -170 kV, indicating that the ion repulsion resulting from the 

low electron density is effecting the simulation’s validity at high cathode voltages.  This is confirmed by 

the drop seen in the fusion rate in Figure 3.3 b at -180, -190, and -200 kV.  

 

3.2 IEC Fusion Rate Startup Behavior  

 

The time behavior of IEC devices is not extensively covered in the literature due to the small timescales 

involved in ion cloud formation and fast transition to steady-state fusion operation. Due to the PIC 

simulation’s small timestep of 0.1 ns, the fusion reaction’s response to time at steady cathode voltages 

could be seen in detail. In order to present the fusion counts seen in the simulation as a fusion rate, the 80 

ns computational time was divided into 12 bins of size 6.667 ns. The number of fusion events which 

occurred in each bin were counted, and the fusion rate was calculated by dividing the number of counts 

seen in each bin by the bin size, and the factor of 1×104 used to enhance the probability of fusion. The 

resulting fusion rate versus time behavior can be seen below in Figure 3.5.  

 

 

Figure 3.5. Start-up response of an IEC as a function of cathode grid voltage. The 

fusion rate was calculated from fusion counts recorded in the simulations by 
collecting fusion events into 12 bins discretized in time. Each bin counted the total 

number of fusions occurring within 6.667 ns ranges of time.  The number of fusions 

within each bin was divided by the bin time range, 6.667 ns, to yield the average 
fusion rate over that bin.   
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The fusion rates for all but the -10 kV case can be seen to increase with time as the density in the IEC 

builds up. The fusion rates are on average higher at nearly all times for higher cathode voltages, with the 

exception of high magnitude cathode voltages. This drop in the fusion rate at high magnitude cathode 

voltages is likely explained by the ion repulsion caused by the low background electron density used in 

the simulations.  
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Chapter 4 – Conclusion  

 

Inertial electrostatic confinement (IEC) fusion offers a low-cost and practical means to study nuclear 

fusion without needing large and expensive magnetic confinement devices. Researchers can use findings 

from fusion studies on IEC’s to supplement and guide larger fusion devices such as the next generation of 

tokamaks. In addition to energy, fusion also offers an on-demand way to produce high neutron fluxes for 

neutron activation analysis. Studying the rate at which fusion occurs in an IEC can help match IEC grid 

voltages to required neutron flux for neutron activation analysis studies.  

 

The primary objective in this thesis was to create a particle-in-cell plasma simulation to study how the 

fusion rate and ion density distribution in an IEC is affected by the cathode grid voltage. A simple 

numerical fusion collision model based on the 5-parameter fit [6] for fusion cross sections was proposed 

(Equation 2.15) and implemented as an addition to the traditional particle-in-cell computational plasma 

model, which usually excludes any particle collisions [5]. This enables the study of fusion reactions with 

the particle-in-cell method.  

 

It was found that the IEC ion density peak raises with increasing cathode voltage (Figure 3.3 a.), along 

with a wider region of heightened density surrounding the core. Densities seen in the simulation were on 

the order of 6×1016 deuterium ions per m3, similar to those published in Ref [1]. The fusion rate increased 

nearly linearly with increasing grid voltage. The highest fusion rate seen (Figure 3.3 b.) was 4.54×106 

fusions per second for the -180 kV cathode voltage. The densities and fusion rates in the high magnitude 

cathode voltage regime were lower than expected, likely due to the low background electron density used 

in the simulations.  

 

Due to the small simulation timestep, the time response of the fusion reaction rate at different cathode 

voltages could be studied. IEC start-up behavior is seldom found in the literature; thus Figure 3.4 offers 

insight into a seldom-studied aspect of IEC behavior.  

 

4.1 Future Research  

 

This study was conducted using an ion source flux that scaled linearly with cathode grid voltage. Future 

researchers applying the particle-in-cell IEC code developed here should seek out a better expression for 

deuterium ionization in an external electric field. In addition, the Maxwellian treatment of electrons 
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should be treated with caution, as the IEC device is generally a non-equilibrium device [1]. The electron 

temperature and density used was for a much smaller cathode voltage than those simulated here. Along 

with the ion source, future researchers should implement a more physically realistic expression for the 

background electron density. The PIC code developed here could also be extended from 2D to 3D to 

simulate the IEC plasma dynamics more realistically.  

 

The hardware purchased for constructing the 20 kV IEC proposed here is currently housed in the 

Radiation Center at Oregon State University. All materials and equipment are present, with the exception 

of neutron detection equipment, which are available from the Nuclear Engineering Department. When the 

restrictions on lab work due to COVID-19 are lifted, the completion and testing of the physical IEC 

device modeled in the simulations will be conducted to compare the computational fusion rate to that 

measured on the physical machine.  
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Appendix A: Density and Potential Profiles 
 

Shown here are the deuterium ion number density and system voltage plots for each of the 20 simulations 

that were run to produce Figures 3.2, 3.3 a and b, 3.4 b, and 3.5. The voltage in the upper right of each 

figure is the cathode voltage used for the respective density and system voltage plots. The cathode voltage 

magnitude is increased with each figure. 
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Appendix B: Particle-in-Cell Python Code 

 
######################################################################################## 

#     PIC Code for IEC Fusion Modeling                                                 # 

#     Written by: Jacob van de Lindt                                                   # 

#     Heavily modified from Lubos Brieda's solar wind on a plate MATLAB example from:  # 

#     https://www.particleincell.com/2010/es-pic-method/                               # 

#                                                                                      # 

#    Date: 5/10/2020                                                                   # 

######################################################################################## 

 

 

import numpy as np 

import matplotlib.pyplot as plt 

#setup constants 

EPS0 = 8.854e-12       #permittivity of free space 

QE = 1.602e-19         #elementary charge 

kb = 1                 #boltzmann constant 

AMU = 1.661e-27        #atomic mass unit 

m_ion = 2*AMU          #ion mass (deuterium) 

 

# Physical Grid Dimensions 

R1 = 0.05            # Cathode [m] 

GEO_C = .95          # Geometric transparency cathode (manual for now) 

R2 = .085            # Anode [m] 

GEO_A = .95          # Geometric transparency anode   (manual for now) 

#Physical Chamber Dimensions 

R_Chamber = .1       # [m] 

H_Chamber = 0.5     # [m] 

r_wire = .80*1e-3 / 2 # Radius of 20 guage wire in m  

#Sourse Dimension and Distrobution  

R_Sourse_min = .08  # smallest radius a sourse particle can appear at 

sourse_spread = .0025 # largest radius a sourse particle can appear minus the minimum 

 

#input settings 

# n0 = 4.6e13 

n0 = 1e16                 #electron background density in #/m^3 
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phi_Cathode = -210000        #cathode potential 

phi0 = 0     

# Te = np.abs(phi_Cathode)#reference potential  

Te = 600    #electron temperature in eV 

Ti = 0.1                    #ion velocity in eV (not used yet) 

vth = np.sqrt(2*QE*Ti/m_ion)   #thermal velocity with Ti in eV 

Operating_Pressure = 7      # Pa (Not used yet) 

#calculate plasma parameters 

#lD = np.sqrt(EPS0*Te/(n0*QE))      #Debye length (not used yet) 

vth = np.sqrt(2*QE*Ti/m_ion)        #Thermal velocity with Ti in eV (not used yet) 

lD = 0.004   # MANUAL SETTING FOR TESTING 

dx = lD               #x cell size 

dy = lD               #y cell size 

#set simulation domain in the x dimension   

nx = np.floor((2*R_Chamber)/dx).astype(int) #number of nodes in x direction, with a physical  

                                            #domain +/- R_Chamber 

#set simulation domain in the y dimension   

ny = np.floor((H_Chamber)/dy).astype(int)   #number of nodes in y direction, with a physical  

                                            #domain +/- H_Chamber / 2 

ts = 800                                    #number of time steps 

 

#calculate maximum expected velocity and timestep 

E_av = (np.abs(phi_Cathode) - 0) / (R2 - R1) 

a_av = E_av*QE / m_ion 

v_max = np.sqrt(2*a_av*R2) 

dt = 1e-10     #time step size, at vmax move 0.10dx 

 

# Domain length in the x direction 

Lx = (nx-1)*dx 

# Domain length in the y direction  

Ly = (ny-1)*dy 

# SET UP THE POINTS REPRESENTING THE GRIDS 

def get_discrete_Value(y, dy): 

    # Takes in an array y and a grid spacing dy and returns an array  

    # with the same physical dimensions as y but with a spacing of dy. 

    actual = y / dy 

    index = np.round(actual) 

    return index*dy 
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# CATHODE SETUP 

Thetav = np.arange(0, 2*np.pi, np.pi/1000) 

x_cathode = R1*np.cos(Thetav) 

y_cathode = R1*np.sin(Thetav) 

X_cathode = get_discrete_Value(x_cathode, dx) 

Y_cathode = get_discrete_Value(y_cathode, dy) 

 

INDEX_X_Cathode = (X_cathode/dx).astype(int) 

INDEX_Y_Cathode = (Y_cathode/dx).astype(int) 

 

# ANODE SETUP 

x_anode = R2*np.cos(Thetav) 

y_anode = R2*np.sin(Thetav) 

X_anode = get_discrete_Value(x_anode, dx) 

Y_anode = get_discrete_Value(y_anode, dy) 

 

INDEX_X_Anode = (X_anode/dx).astype(int) 

INDEX_Y_Anode = (Y_anode/dy).astype(int) 

 

# LEFT WALL SETUP 

y_left_wall = np.arange(-H_Chamber/2, H_Chamber/2, dy) 

x_left_wall = np.ones(y_left_wall.shape[0]) * (-R_Chamber) 

INDEX_X_left_wall = (x_left_wall/dx).astype(int) 

INDEX_Y_left_wall = (y_left_wall/dy).astype(int) 

# RIGHT WALL SETUP 

y_right_wall = np.arange(-H_Chamber/2, H_Chamber/2, dy) 

x_right_wall = np.ones(y_right_wall.shape[0]) * (R_Chamber - dx) 

INDEX_X_right_wall = (x_right_wall/dx).astype(int) 

INDEX_Y_right_wall = (y_right_wall/dy).astype(int) 

# BOTTOM WALL SETUP 

x_bottom_wall = np.arange(-R_Chamber, R_Chamber, dx) 

y_bottom_wall = np.ones(x_bottom_wall.shape[0]) * (-H_Chamber/2) 

INDEX_X_bottom_wall = (x_bottom_wall/dx).astype(int) 

INDEX_Y_bottom_wall = (y_bottom_wall/dy).astype(int) 

# TOP WALL SETUP 

x_top_wall = np.arange(-R_Chamber, R_Chamber, dx) 

y_top_wall = np.ones(x_bottom_wall.shape[0]) * (H_Chamber/2 - dy) 
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INDEX_X_top_wall = (x_top_wall/dx).astype(int) 

INDEX_Y_top_wall = (y_top_wall/dy).astype(int) 

 

# Deleate repeate XY Pairs 

Cathode_Id1 = np.zeros([2, INDEX_X_Cathode.shape[0]]) 

Cathode_Id1[0, :] = INDEX_X_Cathode 

Cathode_Id1[1, :] = INDEX_Y_Cathode 

Cathode_Id2 = np.unique(Cathode_Id1, axis=1) 

INDEX_X_Cathode = Cathode_Id2[0, :].astype(int) 

INDEX_Y_Cathode = Cathode_Id2[1, :].astype(int) 

 

# Calculate specific weight and prepair to insert particles 

np_insert = 400                      #insert 2 particles per anode cell. 

#flux = 4.6e22 

flux = 1.6e21*np.abs(phi_Cathode)/100000    #Flux of entering ions [ions per second] 

npt = flux*dt 

spwt = npt/np_insert                    #specific weight, real particles per macroparticle 

mp_q = 1                                #macroparticle charge 

max_part = 200000                       #buffer size 

#allocate particle array 

part_x = np.zeros([max_part,2]) #particle positions 

part_v = np.zeros([max_part,2]) #particle velocities 

sourse_storage = np.zeros([max_part,2]) #particle sourses 

# Define the potential solver function 

 

PHI_B = np.zeros([nx, ny]) 

idx = np.round(nx/2).astype(int) 

idy = np.round(ny/2).astype(int) 

 

#Potential Solver 

 

def get_Potential(PHI_B, den, nx, ny, iters): 

    for k in range(iters): 

        PHI_OLD = PHI_B 

        for i in range(1,nx-2): 

            for j in range(1, ny-2): 

                ni = den[i,j] 

                rho = QE*(ni - n0*np.exp((PHI_OLD[i,j] - phi0)/(kb*Te))) / EPS0 
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                chrg = -rho*dx**2 

                PHI_B[i,j] = (chrg - PHI_B[i+1, j] - PHI_B[i-1, j] - PHI_B[i, j+1] - PHI_B[i, j-

1])/(-4) 

        PHI_B[INDEX_X_Cathode + idx, INDEX_Y_Cathode + idy] = phi_Cathode 

        PHI_B[INDEX_X_Anode + idx, INDEX_Y_Anode + idy] = phi0 

    return PHI_B 

 

# Ion Source 

def sample_Source(nump, R_S1, r_spread): 

    # Updated to generate particles randomly in theta and in R.  

    xv = np.zeros([nump]) 

    yv = np.zeros([nump]) 

    for i in range(nump): 

        R_S = R_S1 + np.random.rand()*r_spread 

        theta = np.random.rand(1)*2*np.pi   # Generate random polar angle 

        x = R_S*np.cos(theta)                # Get x position 

        y = R_S*np.sin(theta)                # Get y position 

        xv[i] = x 

        yv[i] = y 

    return np.array([xv, yv]) 

 

# D-D Cross Section from 5 parameter fit 

def fusion_Cross_Section(vx, vy): 

    # Takes in velocity componants in m/s and returns a cross section in barns 

    E = .5*m_ion*(vx**2 + vy**2) 

    E = E*6.242e15  # convert J to KeV  

    A1 = 46.097 

    A2 = 372 

    A3 = 4.36e-4 

    A4 = 1.22 

    A5 = 0 

    AA1 = 47.88 

    AA2 = 482 

    AA3 = 3.08e-4 

    AA4 = 1.177 

    AA5 = 0 

    term1 = A5 + A2/((A4 - A3*E)**2 + 1) 

    term2 = E*(np.exp(A1/np.sqrt(E)) - 1) 



55 
 

    term3 = AA5 + AA2/((AA4 - AA3*E)**2 + 1) 

    term4 = E*(np.exp(AA1/np.sqrt(E)) - 1) 

    sig1 = term1/term2 

    sig2 = term3/term4 

    return sig1 + sig2 

 

 

############# 

# MAIN LOOP 

############ 

 

#INITIALIZE 

PHI_M = np.zeros([nx, ny]) 

idx = np.round(nx/2).astype(int) 

idy = np.round(ny/2).astype(int) 

PHI_M[INDEX_X_Cathode + idx, INDEX_Y_Cathode + idy] = phi_Cathode 

PHI_M[INDEX_X_Anode + idx, INDEX_Y_Anode + idy] = phi0 

fuse_pos_x = np.array([]) 

fuse_pos_y = np.array([])  

fuse_time = np.array([]) 

col_counter = 0 

top_counter = 0 

bot_counter = 0 

left_counter = 0 

right_counter = 0 

anode_counter = 0 

cathode_counter = 0 

fuse_counter = 0 

num_p = 0                         #Clear number of particles 

iters = 600                       #Number of iterations used in the potential solver 

P_FUS = 0 # set a checker to report max fusion probability  

print('Beginning Main Loop. This could take a while. \n') 

 

for it in range(ts): 

    P_FUS = 0 

    print('Time Step ', it, 'Particles ', num_p) 

    #reset field quantities 

    den = np.zeros([nx,ny])              #number density 
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    efx = np.zeros([nx,ny])              #electric field, x-component 

    efy = np.zeros([nx,ny])              #electric field, y-component 

    chg = np.zeros([nx,ny])              #charge distribution 

    col_counter = 0 

 

    # *** 1. Calculate Charge Density *** 

    # deposit charge to nodes 

    for p in range(num_p):                       #loop over particles 

        fi = (part_x[p, 0] + R_Chamber-dx)/dx    #real i index of particle's cell 

        i = np.floor(fi).astype(int)             #integral part 

        hx = fi - i                              #the remainder 

        fj = (part_x[p,1] + (H_Chamber/2)-dx)/dx #real i index of particle's cell 

        j = np.floor(fj).astype(int)             #integral part 

        hy = fj - j                              #the remainder 

        #interpolate charge to nodes 

        chg[i, j] = chg[i, j] + (1-hx)*(1-hy) 

        chg[i+1, j] = chg[i+1, j] + hx*(1-hy) 

        chg[i, j+1] = chg[i, j+1] + (1-hx)*hy 

        chg[i+1, j+1] = chg[i+1, j+1] + hx*hy 

         

    # Calculate the Density 

    den = spwt*mp_q*chg / (dx**2) 

    den[0,:] = 2*den[0,:]              # Double density since only half volume contributing 

    den[nx-1,:] = 2*den[nx-1,:]     

    den[:,0] = 2*den[:,0] 

    den[:,ny-1] = 2*den[:,ny-1] 

    den = den + 1e3                    # Add density floor to help the solver 

     

    # *** 2. Calculate the Potential 

    PHI_M = get_Potential(PHI_M, den, nx, ny, iters) 

    print('Potential Solution Complete.') 

    # *** 3. Calculate the Electric Field *** 

    efx[1:nx-2,:] = PHI_M[0:nx-3,:] - PHI_M[2:nx-1,:]   #central difference on internal nodes 

    efy[:,1:ny-2] = PHI_M[:,0:ny-3] - PHI_M[:,2:ny-1]   #central difference on internal nodes 

    efx[0,:] = 2*(PHI_M[0,:] - PHI_M[1,:])             #forward difference on x=0 

    efx[nx-1,:] = 2*(PHI_M[nx-2,:] - PHI_M[nx-1,:])     #backward difference on x=Lx 

    efy[:,0] = 2*(PHI_M[:,0] - PHI_M[:,1])              #forward difference on y=0 

    efy[:,ny-1] = 2*(PHI_M[:,ny-2] - PHI_M[:,ny-1])     #forward difference on y=Ly 
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    efx = efx / (dx**2)                                 #divide by denominator 

    efy = efy / (dx**2) 

     

    # *** 4. Generate New Particles 

    print('Generating Particles') 

    #insert particles randomly distributed and within the sourse region 

    Posv = sample_Source(np_insert, R_Sourse_min, sourse_spread) 

    part_x[num_p:num_p+np_insert, 0] = Posv[0,:]   #x position 

    part_x[num_p:num_p+np_insert, 1] = Posv[1,:]   #y position 

    #sourse_storage[num_p:num_p+np_insert, 0] = Posv[0,:] 

    #sourse_storage[num_p:num_p+np_insert, 1] = Posv[1,:] 

    #sample maxwellian in x and y 

    pt1 = np.random.rand(np_insert) 

    pt2 = np.random.rand(np_insert) 

    pt3 = np.random.rand(np_insert) 

    pt11 = np.random.rand(np_insert) 

    pt12 = np.random.rand(np_insert) 

    pt13 = np.random.rand(np_insert) 

    part_v[num_p:num_p+np_insert,0] = (-1.5 + pt1 + pt2 + pt3)*vth     # x velocity 

    part_v[num_p:num_p+np_insert,1] = (-1.5 + pt11 + pt12 + pt13)*vth  # y velcoity 

    num_p = num_p + np_insert                                         #increment particle counter 

    # *** Move Particles *** 

    print('Moving Particles...   DO NOT INTERRUPT') 

    p=0 

    while p < num_p:        # Loop over particles 

        fi = (part_x[p, 0] + R_Chamber-dx)/dx   # i index of particle's cell. Taking into account 

        i = np.floor(fi).astype(int)         # that the physical domain is centered at (0,0) 

        hx = fi - i 

        fj = (part_x[p,1] + (H_Chamber/2)-dx)/dx 

        j = np.floor(fj).astype(int) 

        hy = fj-j 

        #print('Fi: ', fi, 'Fj: ', fj) 

        # gather electric field 

        E = np.array([0,0]) 

        E = np.array([efx[i,j], efy[i,j]])*(1-hx)*(1-hy)      #contribution from (i,j) 

        E = E + np.array([efx[i+1,j], efy[i+1,j]])*hx*(1-hy)            #(i+1,j) 

        E = E + np.array([efx[i,j+1], efy[i,j+1]])*(1-hx)*hy            #(i,j+1) 

        E = E + np.array([efx[i+1,j+1], efy[i+1,j+1]])*hx*hy            #(i+1,j+1) 
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        #print('E:', E) 

        # Update Velocity and Position 

        F = QE*E      # Lorenz force F = qE 

        a = F/m_ion   # Acceleration  

        part_v[p,:] = part_v[p,:] + a*dt 

        part_x[p,:] = part_x[p,:] + part_v[p,:]*dt 

        #print(part_v[p,:]) 

        #print(part_x[p,:]) 

        # Get Fusion probability 

        vx = part_v[p, 0] 

        vy = part_v[p, 1] 

        delx = vx * dt * 1e4 

        dely = vy * dt * 1e4 

        path_len = np.sqrt(delx**2 + dely**2) 

        sigma = fusion_Cross_Section(vx, vy)*1e-28 # microscopic cross section [m^2] 

         

        # gather density at particle position 

        Rho = den[i,j]*(1-hx)*(1-hy)      #contribution from (i,j) 

        Rho = Rho + den[i+1,j]*hx*(1-hy)            #(i+1,j) 

        Rho = Rho + den[i,j+1]*(1-hx)*hy            #(i,j+1) 

        Rho = Rho + den[i+1,j+1]*hx*hy            #(i+1,j+1) 

         

        # Calculate macroscopic cross section  

        SIGMA = Rho * sigma 

        Prob_fusion = SIGMA * path_len * spwt  

        # Store  

        if Prob_fusion > P_FUS: 

            P_FUS = Prob_fusion 

        # Prepare to check for fusion 

        random = np.random.rand(1) 

         

        # Process Boundries and Sinks 

        R = np.sqrt(part_x[p,0]**2 + part_x[p,1]**2) 

        #print('Finished Position and Velocity Update') 

        #print('Checking Top Wall') 

        # Top Wall 

        if part_x[p,1] > H_Chamber/2: 

            part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 
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            part_v[p,:] = part_v[num_p-1,:] 

            part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

            part_v[num_p-1,:] = np.array([0,0]) 

            num_p = num_p - 1              # Reduce particle count 

            p = p - 1                      # Reduce particle index  

            col_counter = col_counter + 1 

            top_counter = top_counter + 1 

         

        # Bottom Wall 

        elif part_x[p,1] < -H_Chamber/2: 

            #print('Checking Bottom Wall') 

            part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

            part_v[p,:] = part_v[num_p-1,:] 

            part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

            part_v[num_p-1,:] = np.array([0,0]) 

            num_p = num_p - 1              # Reduce particle count 

            p = p - 1                      # Reduce particle index   

            col_counter = col_counter + 1 

            bot_counter = bot_counter + 1 

         

        # Right Wall 

        elif part_x[p,0] > R_Chamber: 

            #print('Checking Right Wall') 

            part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

            part_v[p,:] = part_v[num_p-1,:] 

            part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

            part_v[num_p-1,:] = np.array([0,0]) 

            num_p = num_p - 1              # Reduce particle count 

            p = p - 1                      # Reduce particle index 

            col_counter = col_counter + 1 

            right_counter = right_counter + 1 

         

        # Left Wall 

        elif part_x[p,0] < -R_Chamber: 

            #print('Checking Left Wall') 

            part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

            part_v[p,:] = part_v[num_p-1,:] 

            part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 
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            part_v[num_p-1,:] = np.array([0,0]) 

            num_p = num_p - 1              # Reduce particle count 

            p = p - 1                      # Reduce particle index 

            col_counter = col_counter + 1 

            left_counter = left_counter + 1 

             

        # Process grids 

 

        # Anode 

        elif (R < R2 + r_wire) and (R > R2 - r_wire): 

            #print('Check Anode') 

            prob = np.random.rand(1) 

            if prob > GEO_A: 

                # Delete particle if it collides with the grid 

                part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

                part_v[p,:] = part_v[num_p-1,:] 

                part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

                part_v[num_p-1,:] = np.array([0,0]) 

                num_p = num_p - 1              # Reduce particle count 

                p = p - 1                      # Reduce particle index 

                col_counter = col_counter + 1 

                anode_counter = anode_counter + 1 

         

        # Cathode 

        elif (R < R1 + r_wire) and (R > R1 - r_wire): 

            #print('Check Cathode') 

            prob = np.random.rand(1) 

            if prob > GEO_A: 

                # Delete particle if it collides with the grid 

                part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

                part_v[p,:] = part_v[num_p-1,:] 

                part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

                part_v[num_p-1,:] = np.array([0,0]) 

                num_p = num_p - 1              # Reduce particle count 

                p = p - 1                      # Reduce particle index 

                col_counter = col_counter + 1 

                cathode_counter = cathode_counter + 1 
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        elif random <= Prob_fusion: 

            print('FUSION!\n') 

            fuse_pos_x = np.append(fuse_pos_x, part_x[p, 0]) 

            fuse_pos_y = np.append(fuse_pos_y, part_x[p, 1]) 

            fuse_time = np.append(fuse_time, dt*it) 

            fuse_counter = fuse_counter + 1 

            # Delete particle if it fused 

            part_x[p,:] = part_x[num_p-1,:]  # Kill particle by replacing with last particle 

            part_v[p,:] = part_v[num_p-1,:] 

            part_x[num_p-1,:] = np.array([0,0]) # Reset last particle to 0 

            part_v[num_p-1,:] = np.array([0,0]) 

            num_p = num_p - 1              # Reduce particle count 

            p = p - 1                      # Reduce particle index 

             

        p = p + 1                              # Move to the next particle 

    print('Finished Moving Particles.') 

    print('Net Change in Ion Population: ', np_insert - col_counter) 

    print(col_counter, ' particles lost.') 

    print('Max probability of fusion: ', P_FUS, '\n') 

 

# Replace voltage with Phi_Cathode  

np.savetxt('Density_210kV_1.csv', den, delimiter=',') 

np.savetxt('Potential_210kV_1.csv', PHI_M, delimiter=',') 

np.savetxt('fus_time_210kV_1.csv', fuse_time, delimiter=',') 

np.savetxt('fus_pos_x_210kv_1.csv', fuse_pos_x, delimiter=',') 

np.savetxt('fus_pos_y_210kV_1.csv', fuse_pos_y, delimiter=',') 

np.savetxt('part_x_210kV_1.csv', part_x, delimiter=',') 

np.savetxt('part_v_210kV_1.csv', part_v, delimiter=',') 

 

av_fusion_rate = (fuse_counter / (dt*ts)) / 1e4 

print('Field Properties and Fusion Data Saved to File.\n') 

print('Average Fusion Rate: %.6f Fusions per Second\n' % av_fusion_rate) 
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