
Software History Under the Lens: A Study on Why
and How Developers Examine It
Mihai Codoban∗, Sruti Srinivasa Ragavan∗, Danny Dig∗, Brian Bailey†

Oregon State University∗, University of Illinois at Urbana-Champaign†

{codobanm, srinivas, digd}@eecs.oregonstate.edu, bpbailey@illinois.edu

Abstract—Despite software history being indispensable for
developers, there is little empirical knowledge about how they
examine software history. Without such knowledge, researchers
and tool builders are in danger of making wrong assumptions
and building inadequate tools.

In this paper we present an in-depth empirical study about the
motivations developers have for examining software history, the
strategies they use, and the challenges they encounter. To learn
these, we interviewed 14 experienced developers from industry,
and then extended our findings by surveying 217 developers. We
found that history does not begin with the latest commit but with
uncommitted changes. Moreover, we found that developers had
different motivations for examining recent and old history. Based
on these findings we propose 3-LENS HISTORY, a novel unified
model for reasoning about software history.

I. INTRODUCTION

Software history is indispensable for developers. Of the 217
developers surveyed in this work, 85% find software history
important to their development activities and 61% need to
refer to history at least several times a day. However, there
exists little knowledge on why and how developers examine
software history. Without such knowledge, tool builders might
not address the needs of developers, and researchers working
on software history might make wrong assumptions about
developers’ true needs.

In this paper we report the reasons why developers examine
software history. We document the strategies developers use
to examine history and the challenges they encounter in doing
so. We then expose the inadequacies in current tool support for
software history, and uncover the workarounds and practices
that partially help developers in examining history.

To motivate our study, we build upon seminal research [1]–
[10] on developers’ informational needs. We found that there
exists a knowledge gap about why and how developers ex-
amine software history. In this paper, we address this critical
gap by conducting an in-depth study of developer’s usage of
software history.

We interviewed 14 software developers with an average
of 13 years of professional experience. We then deployed a
survey, with 217 respondents from the industry, to quantify
and extend the interview findings. We targeted the following
four research questions:

RQ1: Why do developers examine software history? We
found that history does not begin with the latest commit
but with uncommitted changes. Additionally, we found that

participants had different motivations for examining recent and
old history (Section III).

RQ2: How do developers use software history? Developers
search through history for three main items: particular com-
mits, recent commits (that may impact their work) and proper
commits to revert to. They use different strategies for finding
each item (Section IV).

RQ3: What challenges do developers face when examining
history? We found that despite fulfilling many needs, software
history tools remain incomplete. More critically, we found
that developers have history related needs from uncommitted
changes but today’s tools largely ignore them (Section V).

RQ4: What helps developers and what do they wish they
had? We found that developers combine several tools and
practices that partially help them overcome the challenges they
expressed in RQ3. However, developers still express a wide
variety of unsatisfied needs that current tools do not adequately
support, such as understanding the context of changes and
selective change notifications.

Based on the analysis of the data, we found that Version
Control Systems (VCSs) provide a single lens on history. They
only provide a temporal view of committed changes [11].
However, we found that developers have many needs which are
not covered by this single lens. For example, (i) uncommitted
changes are not represented, thus forcing developers to keep a
mental list of pending changes, (ii) the high volume of recent
changes results in information overload, thus causing bugs
to go unnoticed, (iii) past related changes are not grouped,
making it very tedious to trace them.

Thus, we propose 3-LENS HISTORY, a novel, developer-
centric, motivation-based model for software history. Each lens
focuses on a different aspect of history based on developers’
needs for that specific region: the IMMEDIATE lens manages
and structures uncommitted changes, the AWARENESS lens
focuses on keeping up with and understanding the latest
changes, and the ARCHAEOLOGY lens recovers knowledge
that is buried in software history.

Our results open new research and tool design avenues.
Tool builders can make each lens a first class entity and
provide explicit support for it while researchers can focus on
analyses and visualizations to better augment each lens. For
example, the (i) IMMEDIATE lens could automatically group
related uncommitted changes, (ii) the AWARENESS lens could
selectively notify developers about changes that can affect
them, and (iii) the ARCHAEOLOGY lens could present a past

version of a code snippet in the context of the broader change.
This paper makes the following contributions:

1) We provide an empirically justified set of developers’
motivations for examining software history.

2) We expose a gap between developers’ needs and existing
tools for software history.

3) We define 3-LENS HISTORY, a novel unified model for
reasoning about software history from the developers’
perspective.

4) We present actionable implications for each lens that
researchers and tool builders can build upon.

II. METHODOLOGY

In this study we aim to understand the motivations that
developers have for examining software history. To do this,
we employ established methodologies from prior research [4],
[12]–[15].

The primary research methodology that we use in this study
is interviews with software developers. We then supplement
the interview results with a survey. Interviews are a qualita-
tive method: they are used to elicit people’s knowledge and
experience but often draw from a limited sample size [15].
Surveys on the other hand are a quantitative method: they
summarize information over a larger sample and therefore
provide increased generality [15]. Thus, we used interviews to
elicit developers’ experiences with examining software history
and built a taxonomy of motivations, strategies, challenges,
enabling activities and unfulfilled needs. We then deployed a
survey to quantify and further refine the taxonomy.

Buse et al. [1] used a temporal categorization for develop-
ers’ information needs. We hypothesized that such differences
might also exist in developers’ usage of software history.
To verify this hypothesis, we asked interview and survey
participants about their motivations for examining recent and
old history. We defined recent history as commits that are
contemporaneous, i.e., current iteration or up to about 2 weeks
[16], and old history as commits that dated further back.

The interview script, survey template and raw data can be
found on this study’s companion website [17].

A. Interviews
We conducted semi-structured interviews [15] because this

method’s open-ended questions keep the discussion focused
while allowing interesting tangents to be followed. We inter-
viewed 14 software developers from 11 companies, with an
average experience of 13 years. They use diverse VCS (Git,
SVN, TFS, Bazaar) and clients (terminal, Github, Stash, etc.).
Each interview lasted between 40 and 90 minutes and the
participant was paid $50 at the end of the interview.

The interviews were based on the research questions pre-
sented in Section I. The following were some questions we
asked during the interviews:

• Describe an instance when you had to examine recent (or
old) history (how did you do it, difficulties faced, etc.)

• What is the most important reason for which you examine
software history?

• What is the biggest difficulty you encounter when work-
ing with software history?

• How do you gain awareness of the code changes happen-
ing on your project? (when you come in for work, when
you come back from a vacation, etc.)

We coded the transcripts using established guidelines in
literature [18] and referred to Campbell et al. [19] for handling
specific issues with coding open-ended interviews such as seg-
mentation, codebook evolution and achieving coder agreement.

For each interview, the first author segmented the transcript
based on the topics from our research questions. The first
and second authors then independently coded the transcripts
using the open coding methodology [20]. The isolated coding
sessions resulted in agreement levels (Jaccard coefficient) of
65%, levels which are consistent with coding open-ended
interviews [19]. The authors then used the negotiated agree-
ment technique to reach agreement [19]: resolving all coding
disagreements by refining the codes through the addition,
deletion, merger or better description of codes. Each following
interview was coded using the codebook from the previous
session. It took 10 interviews to stabilize the codes using this
process. The previously coded interviews were then re-coded
using the improved codes. After coding was complete, the
authors grouped the codes into larger emerging themes.

B. Surveys
We designed a survey with 16 questions to quantify our

findings from the interviews. The questions were directly
derived from the interview results. To ensure completeness,
we also included “other” fields for all questions in case survey
respondents had additional insights beyond what we derived
from the interviews.

We recruited 217 survey respondents by advertising our
survey on social media channels1 frequently accessed by
software developers. Of the respondents, 84% were from
industry. Also, 80% of all respondents had more than 5 years
of professional experience.

III. MOTIVATIONS FOR EXAMINING HISTORY

From our interviews we found that software history starts
with uncommitted changes. Hence, we define software history
as the set of all code changes performed for a project. It
consists of all the committed and uncommitted changes made
for a project.

We noticed that interview participants use recent and old
history with different motivations. Figure 1 shows that the
survey respondents confirm this hypothesis. For example, they
primarily used old history to reverse engineer requirements
and recent history to understand their work in progress. We
categorize the motivations based on the age of history.

A. Motivations for recent history
We found that the primary motivation for examining recent

history is to become aware of the changes that are happening

1reddit/r/programming and Twitter

Why is this
"this" way

Reverse engineer
requirements

Evolution of
project

Debugging

Other

Change impact
analysis

Selectively
compose changes

Understand work
in progress

Keep up with
changes

0 20 40 60

recent old

Fig. 1: Survey respondents’ motivations for examining history (%). The first
3 motivations are predominantly accomplished via recent history while the
last 3 are predominantly accomplished via old history.

to the project. There are two main categories of changes that
they need to keep up with.

1) What is going on that I need to know about:
Participants said they need to become aware of the recent code
changes that other people are making on the project to keep
up with how the code state evolves.

Figure 2 shows that survey participants did not want to be
aware of all changes. Instead, they were only interested in
specific changes. Some of them were especially interested in
breaking changes, changes that might overlap with or affect
their work in progress. P5 stated: “I inspect the current history
of the commits that are being made and see if any of them are
related to what I am changing.”

From the survey, we additionally found that respondents
examine recent history for code reviews and to summarize
commits. Summarization involves activities such as writing
public changelogs, reporting work at the end of the week or
squashing commits down to a single one for code review.

2) Where do I come from and where am I going:
When developers work on a task, they sometimes commit
their subtasks as intermediary commits. Some of our interview
participants said that they often need to read their own
commits for their current task in order to understand their work
in progress. Participant P5 said: “..helps to jog my memory as
to what are the things there and what were the things that
I needed to change.” We also found that sometimes work in
progress is split across multiple branches and our participants
had to compare branches to see what remained to be done.

Interview participants reported that they sometimes reach
a dead end in implementation when doing trial and error
programming, for example P2 said “... got about half way
down, and I realized it would not work.” When this happens,
they undo and revert their changes to a previous working state.
This behaviour is known in literature as backtracking [21].

All changes on
the project

Affecting
specific code

entity

Breaking
changes

Affecting my
current task

0 25 50 75 100

Very Important

Important

Moderately Important

Of little importance

Not important

Fig. 2: Which changes did survey respondents considered more important to
learn about (%).

B. Motivations for old history
We found that our participants generally examined old

history to regain lost knowledge that is buried deep inside
software history.

1) Why is this “this way”: Our participants reported that
they often needed to examine old history in order to recover
the rationale behind a snippet of code. They do this in order
to verify that their present changes won’t affect existing
functionality, to study how a bug came into existence, etc.
They also do this to reverse engineer requirements from code.

For each change that affected the code snippet, they also try
to understand the change rationale, what broader modification
that change was part of, and how the code snippet interacted
with the surrounding code at that point in time.

2) Understand the evolution of the project: Some of our
participants occasionally use software history to learn how the
project evolved. They look for who are the knowledgeable
peers on certain modules and patterns such as architectural
decisions, requirements decisions, frequent bugs, etc.

C. Age-independent motivations
From the interviews and survey, we found that in some

motivations developers make no distinction between old and
recent changes.

1) Debugging: As developers perform changes they often
commit errors: they introduce bugs, unexpectedly alter the
behaviour of the program or make bad merges. Therefore
developers periodically need to examine history in order to
find the problematic commits that introduce issues. They
use that specific commit to understand the change, learn
how the requirements changed and find the author of the
commit. While interview participants mentioned performing
this activity for recent history, the survey participants marked
it for both old and recent.

2) Change impact analysis: Interview participants perform
change impact analysis on commits to learn what high level
modules are affected. They use this information to gain a
better mental model of the changes introduced by a commit.
They also use this to define what regression tests to prioritize
or what modules to rebuild or to manage deployments. Our
interview participants mentioned performing this activity for

recent history, but the survey participants marked it for both
old and recent.

3) Selectively compose changes: Some of our participants
also use software history to revert specific commits or selec-
tively compose changes by applying commits from one branch
into another. For example, they cherry pick specific commits
from several branches into one branch.

The magnitude of this activity varies from recovering small
snippets of code (e.g., hash map initialization values) to entire
feature or bug fix commits and vary from recent branches to
commits that are several months old.

Observation 1: Developers have different use cases for
old and recent history. They use: (i) recent history to keep
up with other people’s changes and to manage their work
in progress, (ii) old history to recover program intent and
rationale, and (iii) both old and recent history to find
problematic commits and to selectively compose changes.

IV. STRATEGIES

To accomplish the motivations from Section III, participants
looked for certain information fragments. We grouped these
into three categories: (i) finding specific commits, (ii) change-
awareness information, and (iii) safe points for backtracking.

In this section we present the strategies that developers use
to gather these artifacts.

A. Finding specific commits
The motivations for old and age-independent history primar-

ily involve finding a specific commit. Participants used three
progressive strategies to find a commit.

1) Reducing the search space: Participants seeked to
reduce the number of commits they have to analyze before
searching for a specific commit.

In many cases participants searched from known code by
browsing through the history of a particular snippet of code.
P13 said: “we had to go back through each version [of a
file] and look it over to see when the caching was actually
implemented ... Really what we were looking for is a particular
line of code and exactly what point in time did it change.”

Participants reported that sometimes they remember the time
period in which a commit was made and thus retrieve only
the commits performed in a specific date range. P13 stated
that: “I find it much more useful to go by date. Because I
know when I was working with this on Monday it was fine
but now it’s Friday and it’s broken. Give me the changes that
occurred between these dates.” Participants also filter commits
that contain certain keywords or tagged commits.

The common pattern is that participants were only interested
in the commits that were related to their current task.

2) Traversing commits: Participants traversed history by
quickly skimming over commits in search for the ones with a
high probability of containing the information they need.

When identifying a problematic commit that caused a test
to fail, participants located the commit by reverting at specific
commits and ran the test to check the behaviour. They either

Surrounding
commits

Knowledgeable
colleagues

Code comments

Code snapshot
for commit

Commit author

Commit diff

Commit message

0 25 50 75 100

Almost Always

Often

Sometimes

Rarely

Almost never

Fig. 3: Survey respondents’ strategies for understanding commits (%)

reverted commits one by one or employed binary search. Some
VCS offer explicit support for binary search (e.g., git bisect).

3) Understanding commits: Interview participants iterated
through several strategies in order to learn the intent of a
commit. Figure 3 shows these strategies quantified by the
survey in terms of how frequently they are used.

From the interviews we found that commit messages and
commit diffs are used while skimming commits whereas the
commit author or other knowledgeable colleagues represent
the most successful strategy for understanding the deep ratio-
nale of a commit . The survey confirms these findings (Fig. 3).

Observation 2: Developers find a specific commit in three
steps: (i) reduce commit space based on current task, (ii)
skim to identify interesting commits and (iii) understand
commit intent. They use different strategies for each step.

B. Change awareness information
Interview participants employed different information

sources as a strategy for keeping up with changes. Table I
shows these sources, quantified by the percentage of survey
respondents who used them. Even though history and face-to-
face communication are the top sources, survey respondents
use multiple sources and there is no clear top choice.

Some participants report a tendency for communication
preference, i.e., they do not use history to gain awareness but
prefer to ask their peers. For example P2 said “I can’t think
of a time I ever had to look through the repository to just see
what happened. I would go talk to people.”

When using history participants used a similar strategy to
that of finding a specific commit (Sec. IV-A). However they
used different methods to reduce the search space: they only
look at recent commits or they view grouped related commits
from branch diffs, from commits between tags or from plat-
form specific representations (e.g., Github pull requests).

We also observed two particular behaviours. One participant
(P12) mentioned doing a periodic digest by reading change
emails only at certain moments during a day. Other participants
employed a selective change awareness strategy. They read
and received updates only about changes they express interest
in: when skimming commits, they only looked at “interesting
changes”, they created email filters for different repositories,

Sync with VCS and skim changes 68%
Face-to-face communication 67%
Code reviews 60%
Emails, documents, etc. 48%
Task log 48%
Automatic notifications and feeds 41%
Other 2%

Table I: Survey respondents’ strategies for keeping up with changes

and asked peers about changes on specific modules. P12
mentioned: “I have a couple of folders of email that if I get
any email I’ll look at it fairly quickly, within like 30 minutes
or so. They are different because those are changes that are
introduced to an important repo and I want to know fairly
quickly if something happened.”

Observation 3: Developers don’t have a top strategy for
keeping up with changes. They use multiple strategies and
face-to-face communication is among the top choices.

C. Safe points for backtracking
Developers use history to find good commits to revert to.

When doing trial and error development they need to partially
or completely undo their uncommitted changes. An important
concern that helps developers backtrack is ensuring a steady
stream of good commits where they can revert to. P2 gives a
detailed account of this strategy: “I had committed and pushed
something that I felt confident in. I finished a feature and I
was exploring how to start the next one. I knew when I started
that there was a possibility that this would end in disaster so
I started writing it thinking that that was a possibility and
it turned out that I was correct. So I rolled back to the point
where I made the decision that this could possibility go wrong
from here. I specifically committed at that point to give myself
a return spot so that I would be able to return to it.”

V. CHALLENGES, SOLUTIONS, AND NEEDS

Along with motivations and strategies, our interview par-
ticipants reported difficulties in examining software history.
They also reported techniques for mitigating some of these
challenges, but also wished that tools provided more capa-
bilities. Some of these challenges and mitigation techniques
mentioned in this section are specific to certain VCS. We used
the survey to quantify both the challenges (Tab. IIa) and the
wishes (Tab. IIb).

We categorized the results into four themes: information
mess, knowledge fragmentation, understanding history, and
tool limitations. We define information mess as the chal-
lenges due to the structure and organization of information
and knowledge fragmentation as the challenges in retrieving
knowledge from multiple systems. In this section we present
each theme in detail.

A. Information mess
We found that many interview participants encountered

challenges related to the information in VCS and other related
systems. These challenges were found in managing both
committed and uncommitted changes.

1) Committed changes: Many projects have a large VCS
history and are still actively under development. This large
volume of information caused information overload: “The
density of the commits is too high. You have a lot of files
to go through.” About 47% of our survey respondents consid-
ered this a challenge. Our interview participants reported the
following consequences of information overload:

• hard to locate a particular commit among sometimes
noisy commits, e.g., actual change among several merge
commits

• difficult to keep up with code changes, emails and also
in remembering things

• undesirable changes go unnoticed, e.g., developers don’t
read every single commit that gets made

Such challenges were also reported with diffs. Participants
often reported that diffs are hard to read: it’s hard to get any
insights or intent of the change from a diff, and one has to go
through too many diffs to really understand a change. There
is also noise added that makes diffs hard to understand, e.g.,
white spaces, line-endings, etc.

Even though using diffs is the second most popular strategy
among our survey respondents to understand a commit (Fig.3),
31% of them reported that understanding diffs is difficult.

Participant P14 reported that diffs are overwhelming espe-
cially with large commits: “The amount of signal - noise ratio
you have to deal with sometimes. If there is a single file you
have to look at, it is usually easier.”

The issue becomes more prominent due to tangled changes:
having large commits with more than one unrelated changes.
54% of our survey respondents also reported tangled changes
as a problem.

Some ways that help developers currently overcome these
challenges include:

• Grouping related commits in version control history, e.g.,
pull requests, merge commits

• Filtering commits, primarily used to reduce their search
space, e.g., search for a word in commit messages

• Structured history, which includes small, frequent com-
mits without tangled changes.

However, in spite of the mitigation strategies developers
employ, they still face challenges in dealing with information
mess. Our survey participants reported that they wish they had

Non informative
commit messages 66%

Tangled Changes 54%
Information overload 47%
Traceability
to versions

31%
Interpreting diffs 31%
Traceability
to requirements 20%

Tool limitations 20%
Traceability
to architecture

17%

Other 17%

(a)

Traceability to versions 58%
Informative commit
messages 48%
Aggregate commits
into groups 46%

Ability to filter changes 40%
Support for managing
uncommitted changes 28%
Traceability
to architecture

26%
Selective change
notifications

20%

Other 3%

(b)

Table II: a) Top challenges survey respondents faced when examining history,
and b) Top tool capabilities survey respondents desired the most

better filtering and grouping capabilities (Tab.IIb). Some of our
findings from interviews and surveys include:

• Better grouping capabilities for commits, e.g., group
related changes across branches and repositories

• Better filtering of commits, e.g., only show non-merge
commits

• Providing filtering capabilities for diffs, e.g., filter white
space changes

• Querying, e.g., when was a line added
2) Uncommitted changes: With uncommitted changes, i.e.,

changes not yet included for versioning, participants reported
two major challenges:

• the changes were tangled and it was hard to separate
changes to good fine grained commits

• the changes were unorganized and it was hard to navigate
“the jungle” of changes (P2)

Currently there are not many tools that support this activity:
28% of our survey participants wished they had better support
for managing uncommitted changes. We found that developers
need some structure for viewing and grouping uncommitted
changes. This can help them pick changes for small, fine
grained commits and also in backtracking during their devel-
opment activities. Participant P2 said “If I had a list of all the
code changes ... in a way that I could identify the good parts
and throw away the bad ... it would have to be incredibly easy
for me to find what are the good parts that I want to keep.”

Observation 4: Developers have challenges with infor-
mation overload because history is cluttered and unstruc-
tured. Similar issues affect uncommitted changes as well.

B. Knowledge fragmentation

As developers navigate and examine history to find informa-
tion, they also ask high level questions regarding requirements,
architecture, related changes, etc. They need to understand not
just the change but also the context. Interview participants
reported challenges in retrieving high level information from
software history.

1) Traceability to versions: Participants wanted to see the
entire history of a code snippet of a file or a document.

Code snippet history is lost and fragmented when files get
moved, renamed or code gets moved within a file. Participant
P4 mentioned “this came into being here [version 721]
because it was moved from somewhere else...and the original
line came into being at version 507.” Even though Git has
options like ”git mv” or ”git log –follow” to handle file moves,
these are not popular nor the defaults and the UI clients for
VCS tools often do not support any of these.

They also reported that history got lost when VCS reposito-
ries got truncated during updates or files were moved between
repositories. P11 mentioned “I had to go find backups of files
to find the older versions of stuff.”

Some suggestions for tools from our interviews are:
• Look at a code snippet change in the context of the entire

change it was a part of, “... I look at the rest of the

changes for that particular commit. Just to see the context
of why that particular line was changed”(P6)

• History should be grouped and overlapped on code:
“instead of being, like ‘this line is red and this line
is green because it got deleted’ there would be special
colors like ‘this one came first, this one came second ...’
so you can say ‘ok, these changes all came together and
these changes all came together’ ”(P9)

2) Traceability to requirements: Our participants reported
the need to know the requirements that drove a change. How-
ever, some of our interview participants and 20% of our survey
participants reported that it was hard. Some also reported that
it was not trivial to find all changes related to a requirement.
P2 said “finding all the bug fixes and applying them to the
other one [specific client] was tedious and horrendous.”

We found that some participants mitigate this by referencing
issue tracking system IDs in commit messages and using
knowledge aggregators (e.g., Atlassian Stash) that connect
code changes to requirements.Without such techniques, it was
tedious and difficult to use software history. For example, P2
reported “In retrospect if we would have had a good bug
tracking system, and if we could have tied the bug reports to
specific code patches, and then if we could cherry pick those
code patches and apply them to the other code base, then that
would have made the process trivial.”

3) Traceability to architecture: Our participants reported
that it is difficult to tell which components (module, sub-
system, etc.) are affected by a commit. While 30% of our
survey participants analyze the impact of change in recent code
(Fig. 1), 17% reported it as a challenge (Tab. IIa) and 26%
wished this was easier(Tab. IIb). This especially seemed useful
when one uses history for managing deployments, planning
regression testing, etc.

For example, P10 wished a UML-like diagram with mod-
ified components highlighted: “I can see a model [UML
model]...I could get a picture of my architecture, and it could
show me ‘here are the red components that have changed’.”

Participants stated that good software modularity [22] en-
abled assessing the architectural impact of a commit. This
in turn helps with understanding commits and selectively
composing past changes. P8 said that: “The project is very
modular. A change does not affect many things. So that helps.”

Observation 5: Developers face issues in finding the his-
tory of a code snippet, tracing that history to requirements
and assessing the architectural impact of changes.

C. Understanding history
1) Hard to understand: Participants also reported that old

history is hard to understand. P2 reports that: “We lost context
on the original code. Going back and understanding what you
had done 6 months ago was challenging.” This is because there
is a lot of context that is not obvious or documented, buried
only in old history. However, participants also reported that a
good knowledge of code made it easier to understand history,
e.g., P8 said “I know the system very well, know the hierarchy,

the control flow. It takes a quick visual inspection of what was
modified to know if it is related.”

2) Commit messages: Commit messages are the most
popular strategy to understand a commit among our survey
respondents (Fig. 3). Interestingly, over 66% of them reported
that commit messages are non-informative (Tab. IIa) and 48%
wished commit messages were more informative (Tab. IIb).
One participant said “some are very helpful, some useless.”
We also found that developers have different preferences for
the level of detail they need in commit messages.

A good commit message expresses the rationale of the
change and provides a link to requirements. Participant P9
said “Since our commit messages are so explicit, it has been
really nice to take a look at a line in the history where we
can’t figure out why it’s there, check when it was committed,
check the commit message and see what the intent was.”

3) Software engineering practices: Interview participants
noted that good software engineering practices such as contin-
uous integration, frequently syncing with VCS, unit tests and
code reviews facilitated working effectively with history.

Participants also stated that the challenges in examining
history were also due to a lack of rigor in practices:

• not following commit message guidelines
• avoiding code reviews
• not following some branching strategies
• missing tests
• no use of issue/bug tracking systems
• committing breaking changes

Observation 6: Developers encounter challenges even
with the most popular strategies for understanding com-
mits: commit messages and diffs.

D. Tool limitations
Interview participants explicitly reported limitations with

VCS tools and suggested several improvements.
1) Visualizing history: Participants reported challenges

when comparing multiple parts of history at once and wished
they were able to better compare branches or commits. More-
over, they wish they were able to track the movement of a
commit between branches or to better visualize the history of
a file, e.g., P10 wished ”.. a way for me to sort of move the
file back through time, just right there.”

2) Organization of history: Participants faced challenges
with the linear organization of history, some participants
mentioning challenges with not knowing where to start. P5
remarked “wrong assumptions lead to wrong searches.” They
wished there was a hierarchy to software history. For example,
they wanted to view Github pull requests inside history, or the
ability to group history by features or change similarity.

3) Usability: Participants also expressed challenges with
the usability of existing tools. For example, they expressed
having a hard time setting up binary search environments (e.g.,
for Git bisect), lack of support for detecting file moves and
renames and with selectively picking commits from one branch
to another. They also expressed challenges due the fact that

VCS tools have heterogenous vocabularies, making it hard to
map functionality across tools.

4) Change notifications: Both interview participants and
survey respondents expressed a wish for receiving selective
change notifications. Figure 2 shows that survey respondents
were only interested in keeping up with some specific changes
rather than all changes on the project while Table IIb shows
that 20% of survey respondents have a need to be notified
of some changes to the code repository. P8 wished that he
received automated notifications when a change affected either
his work in progress or a specific code entity: “Get a text
message whenever a change affects me. Have a predetermined
set of files and the VCS tell if any of these change.”

VI. 3-LENS HISTORY

Section III shows that developers have different needs for
history based on the age of the changes. We hence propose a 3-
LENS HISTORY model for version control systems. Each lens is
unique in its usages and nature of information. A developer can
use these lenses to focus on any part of history to accomplish
specific goals.

The IMMEDIATE lens. Software history does not begin with
commits, but with the uncommitted changes. Even though in
Section III we classified uncommitted changes as recent, they
deserve special treatment. Developers backtrack and do trial
and error programming, hence the changes at this level are
more fine grained than a commit. They also group related
uncommitted changes when splitting them in commits.

The AWARENESS lens. Developers use recent history to
keep track of what changes are happening, to understand their
own work in progress and to integrate their work with other
people (Sec. III-A). Active collaboration with the others in the
team happens in this zone and changes are being integrated
with others’. The strategies developers use with recent history
are described in Section IV-B.

The ARCHAEOLOGY lens. Old history is primarily used to
retrieve lost knowledge (Section III-B). This part of history is
passive and often only serves as a historical reference. With old
history, developers understand the rationale behind a change,
reverse engineer requirements or understand the project evo-
lution. Often, this involves gathering more information like
requirements, related changes, etc (Section V-B).

VII. IMPLICATIONS

As the previous section shows, developers use each history
lens for different activities. Therefore, we postulate that devel-
opment tools should make each lens a first class citizen and
provide specialized support for each one.

The IMMEDIATE lens. Participants had challenges with
managing uncommitted changes due to tangled changes and
information overload (Sec. V-A). Table IIb shows that 28% of
survey respondents wish they had better support for managing
uncommitted changes such as grouping related changes and
choosing which groups to commit.

We conjecture that keeping track of uncommitted changes
could be the tool’s responsibility: they could automatically

group related changes and allow the developer to further
refine the groupings. Tools could also aid the developer in
transforming uncommitted changes into commits by providing
a bread-crumb trail of transient commits that the developer
could later toggle into real commits.

The AWARENESS lens. Table I shows that there is no single
dominant change awareness source. This could mean that no
single source is good enough by itself in keeping the developer
up to date with recent changes. Interview participants had a
hard time keeping up with all the changes due to information
overload (Sec. V-A) and 20% of survey respondents wish they
had the ability to receive notifications when a piece of code
of interest is changed (Tab. IIb). We foresee two main venues
for recent history tool support.

First, tools could aid developers in keeping track of the
latest changes. They could give personalized updates based
on the developer’s current task and focus in the code, and
allow him to resolve conflicts before conflicts get committed.
Survey participants preferred to be notified only of changes
that affect their current tasks or a specific code region, or
fault introducing changes (Fig. 2). Second, tools could help
the developer maintain a mental model of the changes for his
work in progress. Current VCS mix the developer’s commits
with those of others thus obfuscating his own progress.

The ARCHAEOLOGY lens. 58% of survey respondents
considered that understanding the evolution of a code snippet
was a top reason for referring to old history while interview
participants wished they could be able to understand how
a previous version of the code snippet integrated with the
surrounding code (Section V-B). However, participants face
challenges when trying to do so, with the code snippet moving
inside files, between files or even between repositories. More-
over, participants faced challenges in recovering requirement
or architectural intents.

This suggests that IDEs should be able to show all the
past changes that a snippet of code went through and the
changes should be placed in context of: (i) the rationale of
the broader change it is part of and (ii) the surrounding code
at that moment in time.

Visually representing history. The work done in this study
represents the domain characterization phase in Munzner’s
nested model [23] for visualization design. Therefore tool
builders who want to design visualizations for software history
can use this study to learn about the domain of software
developers’ needs for history.

Interview participants mentioned that old history is hard to
understand (Section V-C). We hypothesize this is due to the
information overload caused by current VCS that represent
history as a reverse chronological list of commits and to the
fact that all the commits from all developers, from all tasks,
and from all requirements, are amalgamated together.

On the other hand, developers need recent software history
to understand how the latest commits affect their work in
progress and how they affect the program logic.

We therefore conjecture that software history should have
different representations, based on the age of commits. Recent

software changes could be represented in detail, showing
granular changes in program logic. Old history on the other
hand could be represented in an abstracted way: instead of a
list of low level commits, old history could be narrated as a
list of high level changes such as features, bugfixes, etc.

VIII. RELATED WORK

We group the related work in two parts: (i) prior studies on
software history and (ii) research tools that enable developers
when accessing software history.

A. Prior studies on software history

While previous work analyzed isolated needs for software
history, we take a holistic approach. In this section we position
prior studies under our unified 3-LENS HISTORY model.

Yoon et al. [21] studied developers’ backtracking strategies
and found several actions that developers have to perform with
uncommitted changes, such as selectively undoing changes.
Thus, we place their research in the IMMEDIATE lens. We
found that developers accumulate large quantities of uncom-
mitted changes. This leads to the concern of picking which
changes to commit and which changes to abandon.

De Souza et al. [24] explore two change awareness activ-
ities: in forward impact management developers notify their
peers about changes while in backward impact management
developers seek to find the changes that affect them. Binkley
et al [25] studied the effectiveness of automatic summarization
of commits. We place their research in the AWARENESS lens.

Tao et al. [13] explored how developers understand code
changes (i.e. understand a commit). They found that under-
standing changes is a frequent but difficult activity. In our
study, understanding a commit is catalogued as a strategy used
by developers in the AWARENESS and ARCHAEOLOGY lens.

Previous work in end user programming [26], [27] explored
how end users used Yahoo! Pipes versioning. They found that
end users use history to learn about an artifact’s logic which is
similar to the ARCHAEOLOGY lens or to revert changes which
is similar to the IMMEDIATE lens.

B. Software history research tools

While researchers have been partially addressing needs for
each lens in the 3-LENS HISTORY model, we are the first to
propose a unified model for examining history. In this section
we position each tool under one of our lenses.

The IMMEDIATE lens. Azurite [28] is a visualization for
uncommitted changes that supports selective undo. Our study
suggests that IMMEDIATE lens tools should also mitigate
information overload by providing support for grouping un-
committed changes and transforming them into commits.

The AWARENESS lens. ARENA [29] automatically sum-
marizes commits into release notes. Several research tools
[30]–[35], display changes and detect conflicts as they happen
while Mylyn [36] helps developers understand their work
in progress. We found that developers would benefit from
selective change notifications to avoid information overload.

The ARCHAEOLOGY lens. Chronos [37] and LHDiff [38]
provide the entire history for a code snippet while DeepIn-
tellisense [39] and Rationalizer [40] extract past requirement
changes for a commit. Coxr [41] also mitigates some of
the knowlegde fragmentation challenges. From our study we
conjecture that developers would benefit if these two func-
tionalities were combined. In addition, our participants also
wished that the context of the entire change along with the
surrounding code at that point in time was available for each
past version of a code snippet.

Several tools provide various kinds of visualizations for
the evolution of source code [42], [43]. LSDiff [44] provides
a high level narration of a commit together with possible
inconsistencies. These approaches may aid activities in both
the AWARENESS and ARCHAEOLOGY lens.

C. Other research on software history
Researchers have mined software repositories to understand

project evolution [45]–[52]. Other uses of history in mining
repositories are listed in the seminal survey by Kagdi et al.
[53]. Additionally, researchers are proposing new ways of
representing software history, such as making software change
a first class citizen and recording history at a fine-grained detail
[54]–[56]. In this study we focus on developers and explore
their usage of history.

IX. THREATS TO VALIDITY

Construct. Are we asking the right questions? We per-
formed an extensive literature review [1]–[10] to learn the
gaps in understanding how developers access history. From
this review we created the research questions in Section I.

We defined the threshold between old and recent history
based on the Agile Manifesto [16]. A different threshold might
lead to more precise results: the age independent motivations
(Sec. III-C) might have an affinity for either old or recent
history, but that affinity may not have appeared in the survey
because of the time threshold we used.

Internal. Is there something inherent to how we collect
and analyze information that could skew the accuracy of our
results? Interviews and surveys risk biases and inaccurate
responses. To mitigate these issues, we used guidelines in
literature for designing and deploying our studies. [15], [24],
[57]. For example, we ran pilots to iteratively evaluate and
improve both studies.

Interview participants described strategies for examining
history. These are conscious strategies they remember and they
might be doing other things as well. Further research is needed
with a complementary methodology (direct observation) to
confirm and further clarify the findings of this study.

Interview and survey participants used different VCS tools.
While we expect motivations, strategies and challenges to be
largely tool independent, some mitigation techniques are VCS
specific or the participants were unaware of existing solutions.

External. Are our results generalizable for the general
software history usage practice? The responses that our
interview participants gave might not be representative of

the entire developer population. We mitigated this issue by
interviewing at 11 companies working in different domains
(e.g., graphics, entertainment, navigation, devops tools, etc.).
We then validated the interview results with a survey taken
by 217 respondents. Since the survey was advertised online,
it may suffer from non-response and self-selection bias.

Reliability. Can others replicate our results? The interview
script, survey template and raw data can be found on our
website [17] so that others can replicate our research.

X. CONCLUSIONS

Examining software history is an important activity in
software development. Developers frequently refer to history
to gain knowledge and make choices while writing code. Up
to 61% of our survey respondents need to examine history up
to a few times a day.

However, this is an under evaluated area by the research
community. In this study we shed light onto how developers
examine history. We found distinct motivations for which
developers examine history. We found that they use different
strategies to examine different parts of history for different
intents.

Unfortunately, we also found that software history tools are
ill suited and do not provide explicit support for the needs
that developers have from history. Furthermore, we found
that developers have history related needs from uncommitted
changes but today’s tools largely ignore this fact.

We defined 3-LENS HISTORY, a unified software history
model that provides a foundation for future work to give
identity to history. Tool builders and researchers can use this
model to make each lens a first class citizen in software
development. They can focus and improve either each lens
individually or the transition and interaction between lenses.

We hope that this study inspires others to improve how
developers examine history, via education and tool support.

REFERENCES

[1] R. P. Buse and T. Zimmermann, “Information needs for software
development analytics,” in ICSE. IEEE Press, 2012, pp. 987–996.

[2] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in PLATEAU. ACM, 2010, p. 8.

[3] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE. IEEE Computer Society, 2007,
pp. 344–353.

[4] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in ICSE. ACM, 2006, pp. 492–501.

[5] T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in ICSE. ACM, 2010, pp. 175–184.

[6] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in FSE. ACM, 2006, pp. 23–34.

[7] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz, “A quantitative
analysis of developer information needs in software ecosystems,” in
ECSAW. ACM, 2014, p. 12.

[8] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in WCRE. IEEE, 2013, pp. 142–151.

[9] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in FSE, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 7–18. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635905

[10] A. Guzzi, A. Bacchelli, Y. Riche, and A. van Deursen, “Supporting
developers’ coordination in the ide,” in Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Com-
puting. ACM, 2015, pp. 518–532.

[11] M. Biazzini, M. Monperrus, and B. Baudry, “On analyzing the topology
of commit histories in decentralized version control systems,” in ICSME.
IEEE, 2014, pp. 261–270.

[12] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka, “Transition from
centralized to decentralized version control systems: a case study on
reasons, barriers, and outcomes,” in ICSE. ACM, 2014, pp. 334–344.

[13] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in FSE. ACM, 2012, p. 51.

[14] S. Phillips, T. Zimmermann, and C. Bird, “Understanding and improving
software build teams,” in ICSE. ACM, 2014, pp. 735–744.

[15] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical
software engineering. Springer, 2008, vol. 93.

[16] “Agile manifesto,” http://agilemanifesto.org/principles.html.
[17] “Study website companion,” http://cope.eecs.oregonstate.edu/HistoryStudy/.
[18] J. Saldaña, The coding manual for qualitative researchers. Sage, 2012,

no. 14.
[19] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding

in-depth semistructured interviews problems of unitization and inter-
coder reliability and agreement,” Sociological Methods & Research, p.
0049124113500475, 2013.

[20] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study
the experience of software development,” ESE, vol. 16, no. 4, pp. 487–
513, 2011.

[21] Y. Yoon and B. A. Myers, “An exploratory study of backtracking
strategies used by developers,” in CHASE. IEEE Press, 2012, pp. 138–
144.

[22] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[23] T. Munzner, “A nested model for visualization design and validation,”
TVCG, vol. 15, no. 6, pp. 921–928, 2009.

[24] C. R. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in ICSE. ACM,
2008, pp. 241–250.

[25] D. Binkley, D. Lawrie, E. Hill, J. Burge, I. Harris, R. Hebig,
O. Keszocze, K. Reed, and J. Slankas, “Task-driven software summariza-
tion,” in Software Maintenance (ICSM), 2013 29th IEEE International
Conference on. IEEE, 2013, pp. 432–435.

[26] S. K. Kuttal, A. Sarma, and G. Rothermel, “On the benefits of providing
versioning support for end users: an empirical study,” TOCHI, vol. 21,
no. 2, p. 9, 2014.

[27] K. T. Stolee, S. Elbaum, and A. Sarma, “Discovering how end-user
programmers and their communities use public repositories: A study on
yahoo! pipes,” IST, vol. 55, no. 7, pp. 1289–1303, 2013.

[28] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of fine-grained code
change history,” in VL/HCC. IEEE, 2013, pp. 119–126.

[29] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 484–495.

[30] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code changes,”
TSE, vol. 38, no. 4, pp. 889–908, 2012.

[31] F. Servant, J. A. Jones, and A. Van Der Hoek, “Casi: preventing indirect
conflicts through a live visualization,” in CHASE. ACM, 2010, pp. 39–
46.

[32] L. Hattori and M. Lanza, “Syde: a tool for collaborative software
development,” in ICSE. ACM, 2010, pp. 235–238.

[33] I. A. Da Silva, P. H. Chen, C. Van der Westhuizen, R. M. Ripley, and
A. Van Der Hoek, “Lighthouse: coordination through emerging design,”
in OOPSLA. ACM, 2006, pp. 11–15.

[34] C. Treude and M. Storey, “Awareness 2.0: staying aware of projects,
developers and tasks using dashboards and feeds,” in ICSE, vol. 1.
IEEE, 2010, pp. 365–374.

[35] A. Bacchelli, F. Rigotti, L. Hattori, and M. Lanza, “Manhattan3d city
visualizations in eclipse,” ECLIPSE IT 2011, p. 307, 2011.

[36] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in AOSD. ACM, 2005, pp. 159–168.

[37] F. Servant and J. A. Jones, “History slicing: assisting code-evolution
tasks,” in FSE. ACM, 2012, p. 43.

[38] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “Lhdiff:
a language-independent hybrid approach for tracking source code lines,”
in ICSM. IEEE, 2013, pp. 230–239.

[39] R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating
evaporated information,” in MSR. ACM, 2008, pp. 23–26.

[40] A. W. Bradley and G. C. Murphy, “Supporting software history explo-
ration,” in MSR. ACM, 2011, pp. 193–202.

[41] M. Matsushita, K. Sasaki, and K. Inoue, “Coxr: Open source develop-
ment history search system,” in Software Engineering Conference, 2005.
APSEC’05. 12th Asia-Pacific. IEEE, 2005, pp. 6–pp.

[42] Q. Tu and M. W. Godfrey, “An integrated approach for studying
architectural evolution,” in Program Comprehension, 2002. Proceedings.
10th International Workshop on. IEEE, 2002, pp. 127–136.

[43] M. Burch, S. Diehl, and P. Weißgerber, “Visual data mining in software
archives,” in Proceedings of the 2005 ACM symposium on Software
visualization. ACM, 2005, pp. 37–46.

[44] M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in ICSE. IEEE Computer Society, 2009, pp. 309–319.

[45] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s weather: Guiding early
reverse engineering efforts by summarizing the evolution of changes,”
in ICSM. IEEE, 2004, pp. 40–49.

[46] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi, “An empirical inves-
tigation into a large-scale java open source code repository,” in ESEM.
ACM, 2010, p. 11.

[47] M. Regedor, D. da Cruz, and P. Henriques, “The role of best practices
to appraise open source software,” EASST, vol. 48, 2013.

[48] G. Scanniello, “Source code survival with the kaplan meier,” in ICSM.
IEEE, 2011, pp. 524–527.

[49] A. Serebrenik, W. Poncin, and M. van den Brand, “Process mining
software repositories: Do developers work as expected?.” ERCIM News,
vol. 2012, no. 88, 2012.

[50] E. Tempero, H. Y. Yang, and J. Noble, “What programmers do with
inheritance in java,” in ECOOP. Springer, 2013, pp. 577–601.

[51] A. Gonzalez-Torres, R. Theron, F. J. Garcia-Penalvo, M. Wermelinger,
and Y. Yu, “Maleku: An evolutionary visual software analysis tool for
providing insights into software evolution,” in Software Maintenance
(ICSM), 2011 27th IEEE International Conference on. IEEE, 2011,
pp. 594–597.

[52] S. Wang, D. Lo, and X. Jiang, “Understanding widespread changes: A
taxonomic study,” in Software Maintenance and Reengineering (CSMR),
2013 17th European Conference on. IEEE, 2013, pp. 5–14.

[53] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, no. 2, pp. 77–131, 2007.

[54] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software evolu-
tion,” SME, vol. 18, no. 3, pp. 207–236, 2006.

[55] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in ECOOP.
Springer, 2013, pp. 552–576.

[56] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Electronic Notes in Theoretical Computer Science, vol. 166,
pp. 93–109, 2007.

[57] I. Seidman, Interviewing as qualitative research: A guide for researchers
in education and the social sciences. Teachers college press, 2012.

