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PERFORMANCE OF GENERALIZED NEYMAN SMOOTH
GOODNESS OF FIT TESTS

1. INTRODUCTION

A problem that has received much attention is that of testing

goodness of fit (GOF) of a distribution model. Such models may

either completely specify the distribution (simple hypothesis) or

specify a parametric family of distributions (composite hypothesis).

Models that are frequently used include the normal or lognormal,

Weibull or extreme value, negative exponential, and gamma distribu-

tions. The classical chi square GOF test, originated by K. Pearson

(1900), and the Kolmogorov-Smirnov GOF test appropriate for com-

posite hypotheses (Stephens, 1969, 1970, 1974; Green and Hegazy,

1967) are widely used.

Neyman (1937) proposed a GOF test for a completely specified

distribution with smooth alternatives. He adopted the word "smooth"

to indicate edgeless alternative pdf curves which are not much differ-

ent from the null distribution pdf curve. He considered the simple

hypothesis that a random variable Y has a pdf f(y) and cdf F(y)

against the class of smooth alternative pdf's,

g(y19) = C(0) exp 0.7r.(F(y))

i= 1

f(y),
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where 0 = (Or, Ok)' is a real vector belonging to an open set,

and Tr.( .) is the ith order Legendre orthogonal polynomial. Let

Y1' 'YN be a random sample from a family with hypothetical dis-

tribution function F(y). Then for the simple null hypothesis,

H0:01 = = 0
k

= 0,

k

2 u 2

i= 1

has a limiting X
2 distribution, where

N
1

u. = Tr [F (y.)], i = 1, . . k.

j =1
'47

He derived directly the asymptotic noncentral x2 distribution of
2

1c under local alternatives. He recommended that k generally

need not be greater than four.

Barton (1956) subsequently studied the limiting distribution of

the
2

form for

statistics for composite null hypotheses. He used the same
2

4jk'
only with F(y) replaced by F(y1t), where

is an estimator of a parameter vector, X . Barton's generalized

test statistic does not have a limiting x2 distribution. However, he

approximated the limiting distribution of the test statistic by a linear

combination of X2. He considered the power of 4;
k
2 for some local
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alternatives whose forms are expressed by

k

(g(y10,5):=- 1 0 .Tr.[F (y fi
1 i

i=1 1,

) c (0)i(y1)

h. twhere Tri(y) is the order Legendre polynomial in y.

Javitz (1975) applied Neyman's C(a) theory approach to obtain

a generalized Neyman smooth test for the composite case. For test-

ing normality, he also examined the noncentrality parameter(s) of
2 when the smooth alternatives are of various orders and used a

simulation study to compare the small sample powers of his tests

with these of the classical chi square test.

Thomas and Pierce (1977) used Fi( ) instead of Tr.[F( )]

and the large sample theory for score statistics with maximum likeli-

hood estimator (MLE) for X as discussed in Cox and Hinkley (1974,

Ch. 9.1-9.3). Their MLE of nuisance parameters is equivalent to

Javitz's generalization for MLE of X assuming 0 = O. The

Javitz (1975) and Thomas and Pierce (1977) generalized smooth tests

possess the property that their statistics have limiting x2 distributions

under the null hypothesis.

Kopecky (1977) investigated the asymptotic efficiency of gen-

eralized smooth tests (GST) and considered regularity conditions to

assure limiting chi square distributions.
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The main purpose of this thesis is to study the small sample

performance of the GST. A simulation study is discussed in Chapter

3 for comparing the power of the GST with several alternative test

statistics. First, the GST are constructed in Chapter 2 for univariate

distributions and linear models. Applications are illustrated by

numerical examples in Chapter 4.



2. CONSTRUCTION OF THE GENERALIZED SMOOTH TESTS

2.1. Univariate Models

2.1. 1. General Case

be a random sample from some distribu-Let yi, y2, ... , yN

tion. For a goodness-of-fit hypothesis,

Ho: Y F(Ylk), 2`.-= (x1' Xp

5

EA, (2.1)

the cumulative distribution function (cdf) F(y1X) is a member of

some specified parametric family. For the smooth alternatives,

Ha : Y G(y1X, 0), 0 = (01, ...,0k)r E 0,

let G(y1X. 0) denote the cdf whose density function is

where

g(Y I k,
ei=1 eiFir(Y12)-R(k)

f(Ylk)

( IX)

R(0) = Log
`ei=1

f(y1X)dy
_oo

is the normalizing constant. Consider the following hypotheses

(2. 2)



H
0

:0 = 0 (.=. 0
0

vs.

H :a "0"
0

6

(2. 3)

(2. 4)

Then testing hypotheses (2. 1) vs. (2. 2) is equivalent to testing (2. 3)

vs. (2.4).

The generalized Neyman smooth test (GST) is constructed by

employing the general large sample theory described in Cox and

Hinkley (1974, pp. 279-284). The log-likelihood function,

(e, X ), is

N

= Log[ g(Yi >, )1

j =1

N k

0.Fi(y.IX)-R(E))+Log f( .1
3 YJ

j=1 i=1

Define the score vectors U
0

and U
k

by

a .Q , al
u = ae A and U

x
= ax I

e ,e,.. ,x

with ith components,

/a
=ae. e x

N

j = 1

N
i, aR

o
(e)

=

i
=1

,
3

(2. 5)

Fi(y.11"s') - ,

(2. 6)
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since

and

a
eR(Q)

a
ae.

E. (
ae

i
0

0 eR(q)^"

Fi(ylx)eEk F
t(Y1X)

S
t=1 t

f(y1 X )dy
_cr

Ek etFt(Y11:-)
f(Y1 X)dY

_co

1 ZO u
uie

t
du

Ze ut
du

0
eo

1 for i = 1, , k,i+1

u(i) = I = 0 for i = 1 ..., p+1

where is MLE of X .

The elements of the partitioned information matrix of dimen-

sion (k+p+1) x (k+p+1) are denoted by



I(e
0'

1) =

(e)
o

) (o 10\

for 0 =
0

and evaluated as follows: For i, j = 1, , k,

a
21

I (i
'
j) = E(00 ae ae ) ej o

= N(
a
2Ra)

ae ae
j

eo

N[oo

..c Fl 3(z)f(z)dz
_co

oo co

- Fj(z)f(z)dz .51 Fi(z)f(z)dz))
_oo _oo

8

(2. 7)

ijN
(i+1)(j+1)(i+j+1) '

(2. 8)

which is independent of F(y X.). For i = 1, , k, j = 1, , p+1,

a2/
I (i

'
j) = E(- )

OX. ae.ax )e x.

J o

= E

t=1

aFi(yt
ax x.

,= -NE(iF (Y1,,) F(Y1x))Ax. (2. 9)



And for i, j = 1, , p+1,

2/
I x.X(i' j) = E(- ax ax )e

j

a
2

= -NE( Log(f(Y1X.)))

(
a

x f(ylk)
-N (2f(YI,)

._Joo ax.ax *12-)
J

From (2. 8) the matrix I
00 with K = 5 is

I00 = N

1 1 3 1 5

12 12 40 15 84

4 1 8 5

45 12 105 72

9 3 5

112 40 72

16 1

225 15

25
396

9

dy.

(2. 10)

(2. 11)

Denote the partitioned matrix in the inverse of the full information

matrix (2. 7) corresponding to I
00

by I
00

and

(2. 12)



In computing I00, depending on convenience, one of the following

two formulas can be used (Rao, 1973, p. 33):

-1 1I00 =I +I I (I-I
I00 I I00 00 Ok XX X0 00 OX XO 00

I00 = I-1
eelk

10

(2.13)

(2. 14)

00For any m when m < k, the matrix I (m) is obtained by

taking the inverse of the left upper corner square matrix (m x m)

of Ioelx.

The GST statistics, Wk, are then constructed as

W
k

= [U
0

-I
OX

I-1 U
X.
]l iee[u

0
-I

OX
I-1 U

X.
]

XX XX.

= UI I00
Ue (2.15)

From the large sample theory, under suitable regularity conditions

(Kopecky, 1977), Wk has a limiting 2
X distribution with k

degrees of freedom when H
0

is true. For some distributions, for

instance, the Logistic distribution, I
001 is a singular matrix.

In such cases certain score(s) can be omitted to obtain nonsingularity.

The procedure is that row(s) and column(s) of I IOC, and I00'

OX'

corresponding to the omitted score(s), are deleted. Then the statistic,

Wk in (2. 15) has a reduced degree of freedom (df), k - r rather

than k, where r is the number of the omitted score(s).



2.1.2. Scale-Location Parameter Families

For scale and location parameter families denote the cdf by

F(y1,Xj = FO( Y11 )

where F0( ) is some specified cdf and

Then the

X = (Xl, X
2

)' = (p., cr)'

.th component of the score vector U0, U
0

(i) is

N A

Ue(i) = Fi N
\ i-Fi

j = 1

Evaluation of equations (2.9) and (2. 10) for X
1

= µ and

gives respectively, for i = 1, , k,

X
2

= cr

oo
F11( y-11.

)
a F ( )dycrIex(i, 1) = -iN

0 a- 0 cr op. 0 CT
_ CO

co

= iN Fi-1(z) f02
0

(z)dz,
_co

co

OX
2) = -iN

0
Fi1( ) f

0
( 'Vcr P

Cr
_ oo

co

iN F10
0

1(z) f2(z)zdz,
_oo

a
a cr

F Y
0 Cr

)dy

11

(2. 16)



and

zI
XX

(1, 1) = -cr 0 o- o cr
( Y11 ) [ a f (- )]2

dy
-°° 011)2 f

0
(ILL-)

2
co

= (f"(z) -
[fOl(z)1 dz,

0 f (z)
_oo 0

2 4. ,Y-P- a , or-p. a

I =NG- 10' a p.10 0- j ao- io ' 0-
dy

2

a p.0a-
_co f ("1 )

0 o-

rco-N ul
0 0

[fl(z)]2

f(z)+2 f(z) -
(z) dz,

0

I
r

dy
co a2f Or0- +) [ ("1)12'2 0 aao-

fo cr
o-

XX
(2' 2) =

00 (80-)2 f
0 (VP)

cr

The matrix,

co

= -NS (2f
0

(z)+4z V0(z)+z
2

fou(z)
_co

(fo(z)+zfo (z))2)
dzf

0
(z)

12

(2. 17)

00
I is then computed by using either (2. 13) or (2. 14).

Theorem 1. The matrix I
00 is independent of the nuisance

parametersparameters p. and cr .



Proof. This result can be seen from relation (2. 12), since

00
is independent of p. and 0- and the relation

-1 ,
IAA IAA

I
X0

= [o-I
OX

][0-
2

Ixx] 1 icrix1

13

(2. 18)

where the matrices on the right hand side of the equation are shown

in (2. 14), (2. 16), and (2. 17) to be independent of p. and 0- .

2.1.3. Special Cases of Scale-Location Parameter Families

In this section we evaluate the I
00 matrices for normal,

extreme value, and logistic distributions.

a) Normal Distribution

Let F
0

(z) = -00 < z < 00 i denote the standard normal

cdf and let Z(m),n be the mth smallest order statistic in a random

sample of size n from the standard normal distribution. From

(2.16 ),

00

o-I OX(i' 1) = iN
_co

z ) (1)2 ( z )d z

oo

= [(i-1)1'1 -2(z)(1)2(z)-
i - 1

(z)(I)(z)z]Cz)dz
_oo

oo

= (1 -i)o-Iex(i, 1) + iN 5 ze(z)c1)(z)dz
_oo



= NE(Z1.1(Z))

N
(i+1) E(Z(i+1),

i+1),

6I0 (i 2) = iN (1)2(z)dz
_co

= N

i= 1, , k,

oo

(- + i(z) z2 (1)(z)dz)

-
i+1 [E(Z(1-E-1), i+1)- 11

21- )+{E(Z(i+1), ±1)j
N

±+1
{_i+Var(Z(i+i),

±+1 1-

From (2. 17),

= 1, ,k

oo 22
1

X
(1' 1) = [(I)"(z)- (P1(z))

4)(z)

N

_00

co

- 4(z)dz
_oo

oo 2
cr

2
I (1 2) = [z()"(z)+41(z)- [43i(z)1XX ' ci)(z)co

oo

= -N 3z4(z)dz
_co

=0

14



15

_co

Do

[43(z)-3z 2
(1)(z)]clz

_co

= 2 N

o-
2

I (2 2) = [2(1)(z)+4z(1)(z)+z(0"(z)- [(1)(z)+z(1)1(z)/
2

klz
(1)(z)

For K = 4, numerical values of the matrices IOC, I
XX.

, and

100 I X'
are

cr
2

I
XX

N

.2820947918 0.

.2820947918 .09188814923

.2573438433 .1378322239

.2325928947 .1600040872

[1

_1

100 Ix =100 - I
OX

I
XX

IXO

N
1000

0

2,

3.755861773 3.755861773 2.404642103 1.053422462

5.089701344 4.405401457 3.225992265

4.632428200 4.116790968

4.211002486,

The I
00 matrices, with K = 1,2,3,4, for testing goodness of fit

of normal, extreme value, logistic, and negative exponential distribu-

tions are in Tables 2.1-2.4, respectively.



Table 2.1. The I
0

matrices for testing normality with K < 4.

K = 1

K = 2

K = 3

K = 3

T4 [ 266. 2504801]

1
1015.965829 -749.7153493

749.7153493

'9072.727849 -14806.08280 9370.911645

1

N
25273.29688 -16349.12104

10899.41404

23058.99425 -66471.76917 84729.75129 -37679.41831\

1
216127.9875 -294726.9285 139188.8981

N
416937.3481 -203018.9588

101509.4753
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b) Logistic Distribution

The. cdf and pdf for the standard logistic distribution are

respectively,

and

F
0
(z) = ez/(1+ez)

f0(z) = ez /(1+ez )2, -00 < z < 00

Then for i=1,..., k evaluation of equations (2. 16) give

and

oo z
0-I

(1+1)
(i, 1) - iN e ]i+1 e dz

-00 1+ez (1+e z )2

iN
(1+1)(1+2)

00 z
eiN i+1 ze 1

(TIOX.(i'
2)

(1+1)

iN

z
-co 1+e (1+ez)2

1

l +e
]dz

1

(1+1)

iN

ui+1 Log( )du1-u
0

1+1

1 i+1

1+1

1(1+1)
)(-1)s[

(i+2) 2

s=
(s+1)2 i+1

From equation (2. 17), it is found that



and

oo

0-2I
XX

(1 1) = N 2e
2z /(1+ez)4dz

_oo

N
3

3zz+2ze2z
o- Ixx(1,2) = N e -e

dz
-00 (1+ez)4

= 0,

3z2
I

XX
(2,2) = N 2e2z-2zez+2ze dz-1]o-

z 4
_oo (1+e )

= N [2E(Q2)
[F(2)12 F(1) F(3)
r(4) - 2E(Q 1) r(4)

+ 2E(Q3)

= N[ 3 IP'(2)-
4
3 (4)(1)-03))-11

3+Tr
2

9

r(3) r(i)
r(4)

18

where Q., i = 1,2,3, denote the ith order statistics of an

independent sample of size 3 from the standard logistic distribution

and LIJ'( ) is the first derivative of the digamma function,

(Johnson and Kotz, 1970, Chap. 22.3-22.7).

For K = 5, numerical values of I I
OX' XX'

respectively,

)

and I are
eel X



o-
2

I
XX

= N

and

N_
'00IX 1000

/1
6

0

1 1

6 12

3 1

20 8

2 13
15 90

5 11

.42 72

'1
0

$

]1.429956045

0 0 0

.6991514243 1.048727137

1.930233562

Of course, I"IX

19

0 0

1.106042363 1.017227347

2.373349259 2.517904512

3.186981366 3.615045919

4.291392443

is a singular matrix. As mentioned above, omit

the first row and column of I60 and the first row of I
OX

. Let

I00 and I
OX

also denote the corresponding matrices after deletion.

The rank of Ieel x, evaluated from (2.12), is thus R = k- 1.



Table 2.2. The I00 matrices for testing the Logistic distribution with R < 4.

R = 1

R = 2

R = 3

R = 4

1N

1

171.

1

N

1

N

[1430.305318]

7730.305318

'239522.5025

724622.5025

-4200

2800

-331123.3367 163461.6684

463897.7823 -230548.8911

115274.4456/

-1624723.337 1618761.668

3913497.782 -4111348.891

4481174.446

-582120

1552320

-1746360

698544/

0
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c) Extreme Value Distribution

The cdf and pdf for the standard extreme value distribution are

respectively,

and

F
0

(z) = 1 - exp[-exp(z)]

f
0
(z) = exp[z-exp(z)], _co < z < co

Denote k = o)' and F( ) = 1 - F( ). Under the transformations,

Y = µ + crZ = Log(X), µ = e4, and

Weibull distribution (WD) with pdf

-
CT ,

1
=

1

then X has a

f(x1111,cr1) x 0, 41, cr1 > 0,
4 4

1 1

while Y has an extreme value distribution (EVD). Consequently,

the matrices I
00 in EVD and those in WD are identical. Therefore

testing EVD is the same as testing WD. Hereafter, the former is

considered. For convenience, without losing generality,

1-(ylk) = 1 - F(y-1X) is used in place of

equations (2. 16), give, for i = 1, , k

F (y 1 ) The evaluation of



and

o-I 1,1) = -N i e
oo

2z-(i+l)ez
dz

_oo

co
(i+l)u-= -iN ue- du

0

iN

(i+1)
2

CO

crI
eX(i, 2) = iz e2z-(i+l)e dz

_co

oo

u= -iN u (Log )e-(i+l)udu
0

-iN
grO

iN

(i+1)
2

[Log iw+1
w -w dw

j i+1 e i+1

22

00 co

(Log w)e-wdw Log(i+1),r we-wdw)
0 0

iN_
2

[1-y-Log(i+1)],
(i+1)

where the Euler 's constant,

oo

= ex Log x dx = .577215664... .

0

From equation (2. 17), it is found that



and

co
z z-e

dz(r2I X
1, 1) = N e e

_oo

= N ue-udu
0

= N,

oo

o-
2

I XX(1, 2) = [(1+z)ez-1]ez-e dz
_oo

oo

= N u(Log u)e-udu
0

= N(1-y),

co

o-
2

I
XX

(2, 2) = [2z(ez-1)+z 2
e

z z-e dz
_oo

oo oo

= N 2S ue -u (Log u)du - 2 e-u(Log u)du
0 0

= 1\11(1-Y)
2
+1'(1)]

23

co

ue -u (Log u) 2 du-1)
..110

(2. 19)

where -y and 4JI( ) are defined above. For K = 4, numerical

values of Iex, Ixx, and Ieol are respectively,



a-I = N
OX

' 1

4

2

9

3

16

4
25

.06759071137

.1501839897

.1806581299

.1898647524

1 . 4227843351
= N

1.823680661

and

1801 x
= 100 - Ia I

X.X
I
X0

N
1000

24

2.578307813 2.059083644 .7424617186 -.4609215771

3.272247710 3.088625464 2.416067210

4.127085433 4.308617632

5.198593163

From a location parameter family (a- = 1) or scale parameter

family GI = 0), Iox is a column vector and Ix
X

is a scalar. For

example, the family of negative exponential distribution with probabil-

ity density function,

f(x 13) = Pe -Px 0 < x < co, 0 < p < 00

can be treated as a scale parameter family (p. = 0, a- = 1 /p) and by

the transformation,



Table 2. 3. The I
08

matrices for testing extreme value distribution with K < 4.

K = 1

K = 2

K = 3

K = 4

IN

1

171'

1

N

1

N

[387. 8512856]

779.6567427

10852.26625

19720.32418

-490.6041943

614.3162862

-16981.68805

27613.85861

-54593.34281

187134.3066

10756.42426

-17610.63946

11486.66220,

66758.06618

-255127.6289

365165.1221

-28208.45334

119639.1157

-178135.9251

89728.42152
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Y = Log X, µ =Logp

it can be considered as the extreme location parameter family with

o- = 1. Thus consider the single parameter negative exponential dis-

tribution, with K = 4, then

IOOIX = N

1 1 9 2

48 36 320 75

16 1 64

405 24 1575

81 9
1792 200

256
5625

Table 2.4. The I00 matrices for testing negative
exponentiality with K < 4.

K = 1

K = 2

K = 3

K = 4

[48]

1
768 -540

N

N

N

405

480 -8100 4480

14580 -8400

4977.7,

7168019200 -56700 -31500

178605 -235200 106312.5

318577.7 -147000

68906.25,
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2.2. Linear Models

Now we generalize smooth tests to the linear model. Consider

the following null hypothesis

Y (20H :Y F (
0 0 o-

(2.20)

with p.(x) = Po + P ix, + . . . + pp_ ixp and smooth alternatives,

H : Y G("Y" 10)
CT

(2.21)

In this generalized case the observations, y 1,
y2, yN, are

statistically independent, but not identically distributed. Further,

F and G are cdf's for the conditional distribution of

, given X. = x.. Let X. ( i;L), and F x) and
J J G-

G(y10,X. ,,$) denote the cdf's in (2. 20) and (2.21), respectively. Then

the pdf corresponding to G(y I 0, , x)

where

(Y1 .:;,1 x)-R(P)

f &

k
co E.

=1 1
0.F 1 (y14,4)

1
R(A) = Log [s e f (Y1X,k)dy]

_oo
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The log-likelihood

=

j=

N

j=1

th.Then the 1 components

function, f = Q (0, X), is

k

eiFi ,,30_R(A)+Log[f (yi12.,,),,)1)

i=1

of the scores U
0

(i) and U

(2.22)

(i) are,

for i = 1, , k,

U (i) =

=

F (Yi i+1

and, for i = 1, , p+1,

U x(i) = 0, respectively.

Let xo xp = 1. Then for i = 1, ... k,

l# (i, 1), j = 1, , p

I
1.,

GX(1' J)
- 1 OX

I0> (i, 2), j = p+1 .

And

(2. 23)

1Xj-lI XX(1,1), 1 1< j <p

IXX0, 1) =
XX

(1, j) = iix#01, 2), 1 < i < j = p+1

(2, 2), i = j = p+1 (2. 24)
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where x and X11 M denote means of x/ and xi xm, respec-

tively, and the superscripts # denote the matrices defined in (2. 16)

or (2. 17). The I
00 matrix is obtained from either (2. 13) or (2. 14)

with (2.8), (2.23), and (2.24). The results given in the following

theorems were also proved independently by Pierce and Kopecky

(1978).

Theorem 2. For a general linear model, the matrix I
00 is

independent of (A, and Cr .

Proof. The matrices crI
OX

and 62IXX
are independent of

0,, and Cr . This fact follows from equations (2. 16), (2. 17), (2.23),

and (2.24). Hence, from relations (2. 13) and (2. 18), the matrix I
00

is independent of 0, and cr .

Theorem 3. For any given p (> 1), the matrix I00 , cor-

responding to the GST of the general linear model (2.20) is independent

of x.

Proof. Let p be an arbitrary positive integer (>1), and

let the number of nuisance parameters be denoted by the argument

p+1 in matrices such as I
OX

(p+1) and I
XX

(p+1). Define

o-Iox(2) (C, D) and
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cr2IXX
(2) =

all a
12

a
12

a22]

where C = (c1, , ca)', D = (d1, ,dk)', and

1 1
T\T- I (2) = Iox(2) Ixx(2) Ix0(2).

i) P = 2 [X = 030, pl, r)']. From equations (2. 23) and (2. 24), we may

define crI
OX

(3) and u-
2

I
XX

(3) as

and

o-I
OX

(3) = (C,T1 C,D)

o-2I
XX

(3) =

all a
12

xia11

2

x1- a11 x1a11 x1- a12

a12 x1a12 a22

So let

1 1(3) = I
OX

(3) I
XX

(3)

= (C,TriC, D)

= (C,D,ViC)

- 1
I

XO
(3)

11all

x1a11

a12

all

a
12

xlal 1

a
12

l 12

a
22

7"-c1
all.'

7ra
1 12

-10.

C

-7-c CI
1

DI

C'

D

x1a11

11

x1a12

a
12

a 22

x1a11,
x1a12 )7; C

i



= (o-I
OX

(2),T1 C)
II IIB' xlall JCS

cr
2
Ixx(2) B

1
o-Ixe(2)

[621xx(2)]
-1+FE-1F, FE-1 crI

X0(2)= (o-Iex(2),7FiC)
-E-1F E

-1
1

1
= I (2) I (2) I (2) + [crI (2) C]E [XI (2)F-OX XX X0 OX 1

1 x-
1

=
1

I(2),

where B x1(a11 a12)', E = xi2
1all - BI[o- Ixx(2)] B and

F = [o-2Ixx(2)]1B. The last term in (2. 25) follows:

2 1_ [allo-I (2) F -71C = (C,D) [0- I
XX

(2)] x
1 a -71C

l2
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(2.25)

a
22

-a
12

-7(1.

= (C, D)
-a

12 all a
11

a
22-(a 12) a

12

1
x

___

1
x

1
= (C, D)( ) - C

0

= 0

ii) Show the theorem is true for p = Q +1 assuming it is true when

p = (> 2).
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N
1

Let

A(i, j)

(I+1) I
OX

(C ,7FiC

X

A = Grz I
XX

(f

in the determinant

-+1) I (1
XX.

, ,71

C'

.e - lc
ID

+1), Q

+1) I
X

,D )

= A
1

of

(1+1)

/a x.e11 lal 1

2a

= {q(i, j)},

A. Hence,

and

0 a
12

`.-11
-1

of

.5E
1

a
12

xixf Ian

xf -1a12x1-1 a11

a 22

A.
J
. = the cofactor

where

IA

1+1

(-1)s+1 A(s, 1) As,
1

s=1

f +1
s+1 a

12
5s,1+1

(1) all( all
s =1

N
1t. x. x =

j J-1 N
xi-1, sxj-1, s

s=1

for i, j = 1, ... ,1 +1
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and xo, =
s

= 1 for s = 1, , N. Since, for i, j = 1, , +1,
,

A
q(i,

) IA '

it follows that

and

q(1,1+1) = q(1+1, 1) = -
a

12
2a

11
a

22
-(a

12)

q(i, .R +1) = q(1 +1, i) = 0, i = 2, .

q(11-1,1 +1) -
all

2a
11

a
22

-(a
12)

Denote TH = Iex (e +1) I
XX

(1+1) 1

j = 1, , +1. Then

and H = the jth column of H,
,

q(1, 1)

H
. , 1

= [C(1,7C
1 -1

, ), D]
q(1 +1, 1)

= C(t t )1, 1
,

' 1, 1

(-1)1+1Ai,
1

+D (-1)1+2 A
1+1, 1 1A I

_

1

lAl



c
all

C C

-s+11) all ts,
1

Al,
1

f +2
+ (-1) a12t1 +1, 1

A
11+1,1

D A
Q+1, 1.e+2

a t A- (-1)
12 ,Q+1, 1 1 +1, 1 IAI

a
12

=

allall
11 a

11
a22 -(a

12)
2

a
11

a 22 -(a
12)

2

a
12

D

a 22C -a 12D

2'
a

11
a22 -(a 12)

For j = 2, , / ,

H . = [C(1, T ), D]
1

, . . . , 1-1, 3

1

= 0,

And

s=-1

(-1)j+1
A1,

j

(0+1+1 A /+1, j

j+s 1t
1

'1Als, i s, j 11

since j 1 1.

1

IA
1

34
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3. MONTE CAR LO STUDY OF PERFORMANCE

A Monte Carlo study is used to compare the power performance

of the generalized Neyman smooth (G:ST) tests with several other tests

for the following scale and location parameter distributions:

(1) normal and (2) extreme-value. Maximum likelihood estimates

for the scale and location parameters are used in each case. All

tests described below are invariant under linear transforms of the

data. Samples of size n = 20 and 50 are employed.

3.1. Description of the Test Statistics

Two of the test statistics are developed in the next two sections.

A complete listing of all 12 tests statistics considered is given in the

third section.

3. 1. 1. Generalized Chi-Square (GX2)

It is well known (Chernoff and Lehmann, 1954) that the Pearson

chi-square goodness of fit statistic (see 3. 8) with unknown parameters

estimated by maximum likelihood from ungrouped data does not have a

limiting x
2-distribution but instead is asymptotically distributed as a

linear function of chi-square variables. Several authors have con-

sidered modifying the Pearson statistic so as to have a limiting x2

distribution. Nikulin (1973) considered scale and location parameter
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families, Rao and Robson (1974) studied members within the expo-

nential family, and Moore (1977) developed the modification in more

generality.

For scale and location parameter families a different derivation

from that of Nikulin is given here. The generalized chi-square

statistic (3.4) agrees with that of Nikulin (1973). Consider the follow-

ing family of density functions which include the hypothesized densities

with 0
1

= =
k

= 0:

wher e

Ige(Y14,0-) = exp 8icpi{F0( Yc-1.4 )} -R(9)
Cr.

1 f0( Y.
a-

V' )
0

i=1

1 if (i-1)/K < u < i/K

0 otherwise,

R(0) is the normalizing constant and K is the number of intervals.

The log-likelihood function, I / a-), is

N k

j=1 i=1

Y.; "I'

0
- N R(2) - N Log cr

o-

N

=

Y.-11
Log fo(-1---cr ) .

Random intervals [Ti-1, Ti ) are chosen such that the fitted null

distribution has equal probable classes for i = 1, ,K that is,

T
0

= -00, Ti =1/1 +1P-F-
1 (i/K), i = 1, ..., k-1, and TK =00. Let0
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P, i = 1, , K, be the estimated probability of an observation
thbelonging to the . interval [ Ti_ Ti). The generalized chi-

square statistic is based on the scores.

ae

a ,9,0I = , ,
i[ F ( +._ )1 a R )

10aei
5=1

a - N

where 0 = (Or, ...,0K)1 is the vector of observed class frequencies

in the corresponding intervals [T
i- 1, Ti), i = 1, , K. The scores

corresponding to the nuisance parameters y. and o- are equal to

zero when evaluated at the maximum likelihood estimates:

H 1 0 cr

4 1p.,=0,f1,ti- -41
j="1 (+-)

,

e.
Do- 0= , cr

i=1

The elements of the partitioned information matrix,



are evaluated as follows:

For i,j = 1, .

82iI (i, j) = E(-00 ae.ae. )e=9,

For i= 1, ,K,

= N

= N

N
1

K2

[cc°_co

cp.[F (z)]cp [F (zaf (z)dz10 j 0 0

- cp F ( z 0( z z Scp.[F (z)]f (z)dz)
0 0_co

01:fo(z)dz)

fP.(1-P.) if i = j
1 1

-P.P. if i i j
1 3

1
(1- 1

) if i = jK K

, a/ al
ex (i, 1) = EL 5-j p. -1e=o

\ j=1

if i l j

Y. -µ
N

(9.F
0- K

2

\
f0(
0 IT

=
Yi -11

1 f
0 Cr

39

(3. 1)



=

N N
_E

j=1 f =1

F (Z.)1- 1
K f

0
(Zf )

} f'°(Zi

[
fl (Z1

1 0
= -NE {cpi[Fo(Z)]- T.; } 7.,--z-- -N(N-1)E[v.[F (Z)]- 1

1 0 -K
.ts 10'

= -N ft (z)dz
1

K
ccf1

0
(z )dz

_co

0
{FOK1()} - f

0
{F0 1(L1)}1.

For i = 1, K,

8 ai
ae ao- e.oi no-

Y.-11

f' (Z)

f
o

(Z) I

N Y.-µ N ff )

= - 1E
cr

j= 1

(9.[F0 ( ) K) ( ( ) cr

f =1 f )
0 0-

_E
Vo(Z 1)

.[F
0

(Z
j

1
K

) (1+Z
0

[
f' (Z)

1= -NE {jF (Z)]- K}{1+Z '' }
0 f 0(Z)

1 i
(1C)

1= -N {f0(z) +z fl (z)}dz-
K0

{f
0

(z)+z f
0

(z gdz
1 i- 1

F 0 ( K )

40

(3. 2)



F0
-1(

K)

= -N {t
F

z f
0

(z) -1(i-1)
0 K

'11- {z f0(z)}700

-N[FOK
1( )fOOK1('L)

}-F-1(i-l)
f

0
{F0 K1(j-1)}

The matrix Ix). is the same as (2. 10). Denote the partitioned

41

(3. 3)

matrix in the inverse of the full information matrix corresponding to

I
00

by IAA. The matrix I
00

may be evaluated from the identity.

0 -1I0=I +I
10X

-I
100

I I00 00 OX XX X.0 00 ox XO 00

when a generalized inverse of the matrix IAA,00

K-1, is given by the diagonal matrix,

- K'00 = 17 I
K

which is of rank

Then the generalized x2 statistic may be evaluated as

Gx
2 p-E) iee(2-E) (3.4)

where E = (E1, , EK)' with E
1

= = EK = K are the expected

frequency vector under the null distribution in the corresponding

interval [Ti-1, Ti ), i = 1, , K. As Nikulin (1973) shows, under

certain regularity conditions which are satisfied by normal, logistic,

and extreme value distributions, Gx
2 has a limiting X

2
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distribution with K-1 df. Table 3.1 gives the evaluation of 100

for normal, extreme value, and logistic distributions with K = 5 and

10 equally probable intervals, respectively.

3. 1. 2. Locally Most Powerful (LMP) Test

Consider the transformed generalized gamma density functions

y-t-L

1
(01-1)(YP' ) -e 13-

ge(Y; cr) 1-(0+1)o- (3. 5)

which include the extreme value densities when 0 = 0. A test of

H
0

:0 = 0 vs. Ha : 0 0 based on the scores statistic is developed

below. Since

Y-1-1

0

F(Y-11 ) - e-e
U

equation (3. 5) can be written as

0 Log[-Log{T
0 o-
()H-Log[1-(0+1)]1-11-

ge(y; la, 0-) = e f )
0 0-

The loglikelihood function, I = i (0, cr) is



Table 3. 1 Numerical values for I00

a) Normal with K = 5

25. 3208 6.46276 - 1.08428 - 7.98856 - 17.7106

1
8. 19162 .633865 - 2.29960 - 7.98856

5. 90083 .633865 -1. 08428
N

8. 19162 6.46276
1 25. 3208

b) EV with K = 5

30. 3847 8. 62661 -1. 41474 - 10.8059 -21. 7898
8. 55649 . 168470 -3. 38135 - 8.97018

1
5. 75376 .904801 -. 412283

N
9. 73575 8.54678

27.6255 /
c) Logistic with K = 5

55. 0721 22. 8370 -1, 81810 -25. 1630 -45. 9279
17. 6528 1. 02046 -11. 3472 -25. 1630

6. 59529 1.02046 - 1.81810
17.6528 22. 8370

55. 0721

d) Normal with K = 10

93. 7395 45. 1892 27, 0248 13. 3771 1. 70158 -9. 10163 -19. 7619 -31. 0539 -44. 3794 -66. 7354
36.6767 17. 1894 9.71078 3.03903 - 3.39147 - 10.0149 - 17.3813 - 26.6381 - 44.3794

21. 6856 7.15176 2. 96156 -1. 20815 -5. 63888 -10. 7310 -17. 3813 -31. 0539
14.8478 2. 57891 .199727 - 2.45037 -5. 63888 - 10.0149 -19. 7619

1 11.9980 1.22241 .199727 - 1.20815 -3. 39147 -9. 10163
N 11.9980 2. 57891 2.96156 3. 0 3903 1. 70158

14. 8478 7. 15176 9. 7 1078 13. 3771
21. 6856 17. 1894 27. 0248

36. 6767 45. 1892
93.7 395 /



Table 3. 1 ( Continued)

e) EV with K = 10
'116.

151

1

N

61. 3047 38. 4436 20, 2480 4.00210 -11. 4830 -27. 0162 - 43.4395 -62. 1240 -86. 0864
46. 2525 23. 2808 12, 8287 3. 38088 -5. 74689 -15. 0514 -25. 1020 -36. 9369 -54. 2103

25, 2956 8.77746 2.81063 -3. 03252 -9. 08279 -15. 7507 -23. 8463 -36. 8958
15. 3820 2. 19557 -1. 00548 -4. 41532 -8. 30559 -13. 2677 -22. 4376

11.5005 .683657 -. 323162 - 1.65628 - 3.67823 - 8.91579
12, 1660 3. 49788 4, 68385 5. 61507 4. 62146

17.2342 11.0462 15. 1227 18. 9880
27. 7768 25, 4410 35. 3063

47. 6802 55. 9942
103. 636f) Logistic with K = 10,

248. 74 183.71 135, 94 82. 735 29,094 -24, 906 -79. 265 - 134.06 -194. 29 - 247.26
150. 42 106. 17 65. 157 23. 603 -18. 397 -60. 843 -103. 83 -153. 58 -194. 29

84. 791 44. 615 14. 535 - 15.465 -45. 385 -75. 209 -103. 83 -134. 06
1

36. 293 8. 1463 -9. 8537 -27. 707 -45. 385 -60. 843 -79. 265
11. 970 -4. 0304 -9. 8537 -15. 465 -18. 397 -24. 906N

11.970 8. 1463 14.535 23. 603 29. 094
36. 293 44. 615 65. 157 82, 735

84.791 106. 17 135. 94
150.42 183.71

248. 74



=

i=1

Log[-Log{F0( )}]-N Log r(e+l)+

aeu ,= 1
e ae e=o

_A

_A
Cr -0-

N

i=1

N

i=1

Y-.41

o-
1 ) N LJ(1)

+ N y

N

i=1

45

yi
Log[f0( -0_ )]

(3. 6)

where Lli( ) is a digamma function and y is the Euler 's constant

and µ and cr denote the ML estimators for parameters of the

extreme value distribution. The elements of the partitioned informa-

tion matrix are evaluated as follows.

2
a

lee E(- 2- )(3=° N
4t(1)

t(1)ae

z." 1. 644934N

a2
I (1,1) = E(- )00ap. 0=0 a-

2
1 N

OX
(1,2) = E(- ) = E( )aeao- e=o 0- Cr

N
7.7

0-

From (2. 19)



N
1(

IAA =
cr (1-y)2+01)

-1 -1 -1
(I -I

IAA
)00 OX XX 0

= N 4J'(1)-N(1-y)
1

= N k
-1,

pl(1)- J

1+4,1(1) ,-1
q, (1)

1 L,'(1)

N [41(1)]2

The LMP test statistic is defined by

LMP (awe

ae' ay.' ao-'
I
00 IAA

T-1 a/
ae ieelx ae

ue=
2

3.1.3. List of All Test Statistics

AA

11--y 1

(1--y)
2

+kliI(1)

_1

46

(3. 7)

The next five tests are considered for normal and extreme value

distributions,



1) Generalized Neyman Smooth Tests (Wk)

W Uk
k k

00where Uk and I are defined in (2. 6) and (2. 13), respectively.

2) Barton's Smooth Tests (BSk)

-1BS UtI U
k k 00 k

where Uk and I
00 are defined in (2. 6) and (2. 8), respectively.

BSI and W1 are identical.

3) Classical X 2
(CX

2)

CX2 (Q.- V (g-A.)
E1

i=1

47

O. -N (3.8)

where 0, E, E1 are described in Section 3.1.1 and K is number
2

Xof intervals. As mentioned before, even for fixed intervals, the

statistics do not, in general, have limiting X
2 distributions, when

MLE formed from the raw data are used (Kendall and Stuart, 1973,

p. 443). Moreover, when fully efficient estimators are used the

limiting distribution of (3. 8) under Ho is known to be bounded
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between distributions of X
2(K-3)

and x2(K-1) variables.

4) Generalized x2(Gx2)

From (3.4),

Gx
2 =(Q-ErIee(0-E)

5) Kolmogorov-Smirnov

The power performance of Kolmogorov-Smirnov (KS) tests

for composite hypotheses have been investigated by several authors,

including Green and Hegazy (1976), Lilliefors (1967), Stephens (1970,

1974), Durbin (1975), Locke (1976), and Pettitt and Stephens (1977).

Durbin and Lilliefors apply KS statistics for testing exponentiality

and normality, respectively.

A

KS = max [IF (y.)-F ( )1, (y. )-F
N 0 0- N 1-1 0 Cr1 < i< N

In the KS statistic, and other statistics below, < v < < v
1 'N

denote the order statistics and FN(y) the sample distribution tune-

tion, i. e. , FN(yi) = for i = 1, 2, ... , N.

The next three statistics are used only for testing normality.

6) Shapiro-Wilk (SW)

Shapiro-Wilk (1965) proposed the following test statistic for

normality, which is obtained by dividing the square of an appropriate
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linear combination of order statistic by the usual symmetric estimate

of variance. This ratio is both scale and location invariant and hence

the statistic is appropriate for a test of the composite hypothesis of

normality.

(Z. a y ) 2

=1 i
SW

1

N 2
Z.1=1 (y.-y)

where the coefficients

(a , , a
1 N

)t
(m 'V

-1V-1 1 2

m'V -1

are such that Z a.y. is the minimum variance unbiased linear
1=1 1 1

combination order statistic estimator for 0" . The coefficients a.

are tabled by Shapiro-Wilk (1965) for N = 2(1)50. Here m and V

denote respectively the mean vector and variance-covariance matrix

of the standard normal order statistics. Shapiro and Francia (1972)

consider a large sample approximation of the coefficients a..

Several studies comparing the power of various tests for normality

have included the univariate Skewness (SK) and Kurtosis (KU) test

statistics. Such studies include Bowman (1973), D'Agostino and

Pearson (1973), and Kopecky (1977).



and

50

7) SK - 2 3/2
[EN. (y -y)

\IN EN
i=1

(y
i
-7)3

8) KU [EN
1
(y.-_y)2]2i=

N ZN
1

(y. -7)4

Malkovich and Afifi (1973) generalized the SK and KU to tests of

multivariate normality. Pearson (1965) gave tables for the 5 and 1%

points for the SK statistic with N > 25 and the KU statistic with

N > 50.

The final four statistics are used only for testing extreme-

value distributions. For the description of the next three statistics

denote:

Y. -11

Ev.= ( 1 )
o-

i
N+1 ).1vi 2; K. = Log[-Log(1-

9) Mann (MN)

Mann and Fertig (1975) proposed the following test statistic.

For even N, that is, N = 2R, R = 1,2, ...,

N A2
MN - (N-2)A1



where

N

=
1

Yi-Yi- 1
A

Y
i -Y. -1

and A2

i=R+1 E( 1

We use the approximation

E( ) z K.
N+1

Log[-Log(1- )1
Cr"

R
Yi-Yi- 1

Y. -Y.
1 1-1i=2 E( )
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10) Smith-Bain (SB)

Smith and Bain (1976) proposed a correlation type test

statistics of y. and the expectations v.. We use the modification

where vi is approximated by Ki as defined above

SB = 1 -

<1-7.)]2

,EN
1

(K. -K)2
1
(y. - y) 2

1.=

11) Cramer-von Mises

Green and Hegazy (1976) and Stephens (1970) discussed the

Cramerr-von Mises (CM) test for composite hypothesis.

N A

y-4 2i-1 2CM - + 1 [F0 ]
12N 0 v 2N

i=1



12) LMP
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From (3.7),

2LMP = I
001X U0

3. 2. Alternative Distributions

The following alternatives are considered for testing normality

1) Weibull ((3 ), p = . 5 and 2

f(x) cc xP
-1 exp(-xP) x > 0

2) Extreme value

f(x) cc exp(x-exp(x)) < x < 00

3) Gamma ((3), P = .5, 1, 2, and 5

1f(x) cc xr3 exp(-x)

4) Lognormal ((3), (3 = 1

x > 0

1f(x) cc x-1 exp(- (
Log x )2)

5) Uniform

f(x) = 1 0 < x < 1

6) Logistic

f(x) cc exp(x)

[1+exp(x)]2

x > 0

_ CO < x < Co
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7) Double X 2 (p), p = -.5 and 1

, 1f(x) oc expl-

8) Cauchy

f(x) a 1

1+x2

x12/('+'))

_co < x < c0

_CO < x < CO

The logistic, Weibull, and gamma distributions and the next

four distributions are considered as alternatives for goodness of fit

tests for an extreme value distribution.

9) Normal

f(x) cc exp[- x2] -00 < x < 00

10) Transformed gamma (0), 0 = 5

f(x) cc exp[Ox-exp(x)] _oo < x < co

11) Weibull mixture (a, p), (a, (3) = (1, 3)

f(x) o a exp(-x) + 3Px2 exp(-x 3) 0 < x < 00

12) Exponential mixture (a, (3), (a, (3) (1, 3)

f(x) cc a exp(-x) + 3P exp(-3x) 0 < x < 00
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3. 3. Random Number Generation

Random numbers were generated on the Cyber 70/73 computer

at Oregon State University from the IMSL Library 3 (1975) to produce

the independent sets of N pseudo-random numbers. The generators

were used as follows: GGNOF for an individual Normal (0, 1) pseudo-

random number, GGTMAJ for a N-vector of independent Gamma (A,B)

variables which are distributed as (r(A) BA )-1 xA -1 exp(-x/B)

where A, B, and x are all positive, and GGUB for a N-vector

of independent Uniform (0, 1) variates which are converted by the

probability transformation to extreme value; Weibull ((3), p = . 5 and 2;

Logistic; Cauchy; Double x2((3), p = 5, 1, 2, and 5; and mixtures

of Weibull (1, 3) or Exponential (1, 3) variates. The IMSL subroutine

MDNOR evaluates the cumulative standard normal distribution func-

tion and the subroutine VSORTA (A, N) rearranges a vector A of

size N, by ascending order. In generating samples of size 20 and

50 from a distribution, different seed numbers are used. The null

distributions of the statistics are obtained by empirical random

sampling.

3.4. Size of Tests

Estimates for the true test sizes (significance levels) correspond-

ing to nominal sizes . 05 and .10 are given in Table 3.2 for the three
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Table 3.2. Empirical size (%) of the generalized Neyman smooth (Wk),
2classical chi square (CX ), and generalized chi square

(Gx
2) tests based on 2000 simulations. The number of

class intervals (NC) used for the Cx2 and GX2 tests are:
NC = 5, 10, 10 corresponding to sample sizes

N = 20, 50, 100, respectively. Critical values correspond-
ing to 1-a quantiles of chi square distributions with k,
NC-3, and NC-1 degrees of freedom are used for the Wk,
Cx

2,
and GX

2 tests, respectively.

N W1 W2 W3 W4 CX
2

GX2
2

a = . 05

Normal 20 4.40 3.40* 3.80* 3.55* 7.85* 4.50
50 4.65 4.45 4.35 4.30 5.05 5.25

Extreme value 20 4.65 3.30* 4. 00* 3.70* 7. 30* 4. 95
50 4.95 4.25 4.25 4.25 5. 10 4.20

100 4.95 4.75 5.35 4.65 5.05 4.55

Logistic 20 4.00* 4.90 4.70 4.10 7.40* 4.65

a = . 10

50 4.75 4.40 5.15 5.15 5.10 4.85

Normal 20 9.85 6.85* 7.20* 7. 15* 13.90* 8. 15*

50 9.70 9.40 8.95 8.00* 10.10 9.75

Extreme value 20 9.40 7.40* 7. 80* 6. 65* 14. 40* 10. 15
50 9.40 9.25 8.75 7. 65* 10.40 9.15

100 9. 65 9. 50 9. 50 9.15 10.55 10.20

Logistic 20 8.75 9.60 9.15 8.45* 11.50* 10.20
50 9.45 9.55 8.95 9.55 11.00 9.40

The estimates are not within +2 standard errors of the nominal
values.
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are based on 2000 simulations. The estimates which are not within

+2 standard errors of the nominal values are indicated in Table 3.2.

The nominal level of W1 is quite accurate. The accuracy of the

nominal levels for Wk tends to decrease as k increases. The

nominal levels of GX2 are accurate, too. For a = .05, all

estimates are within ±2 standard errors of the nominal values for

the samples of size N > 50.

3.5. Power of Tests

We estimate the power of several goodness of fit tests for

normal and extreme value distributions. Over several alternative

distributions, the empirical critical values listed in Table 3.3 are

used. The alternative distributions for testing normality are divided

into two groups: those which are symmetrically distributed and those

which are asymmetrically distributed. For symmetric distribution,

heavy or light tailedl pdf relatives to the normal are separately con-

sidered. Empirical powers are given in Tables 3.4 and 3.5 for test-

ing normality against symmetrically and asymmetrically distributed

1 For any symmetric pdf's, h(x) and g(x), h(x) is said to
have a heavier tail than g(x) if there exists a constant c > 0 such
that h(d) > g(d) for any d E (c, 00).



Table 3. 3. Empirical critical* value based on 2000 simulations from normal and extreme value
distributions.

N =
a =

Normal Extreme Value
20 50 N 20 50

.05 . 10 .05 . 10 a = . 0 5 . 10 .05 . 10

W
1

3.668 2.683 3.643 2.560 W
1

3.727 2.612 3.824 2.610
W2 5. 160 4.091 5.601 4.234 W2 5.291 4.086 5.764 4.435
W3 7.122 5.683 7.588 5.820 W3 7.255 5.610 7.489 5.976
W4 8.632 6.853 9.331 7.268 W4 8.839 6.963 9.246 7.222
BS

1
. 165 . 121 . 164 . 115 BSI. . 115 .081 . 118 .081

BS
2

.868 .625 .946 . 685 BS
2

1.025 .753 1.140 .851
BS

3
4.207 3.188 4.153 2.976 BS

3
4.589 3.217 4.333 2.929

BS
4

6.408 4.873 6. 125 4. 729 BS
4

6. 393 5. 144 6.215 4. 602

GX
2

9.325325 7.174174 17.0 0 14.62 62 GX
2 9.475 7.818 16.53 14.30

2** 2**
CX 6.5 5.5 14.4 12.4 CX 6.5 5.5 14.4 12.4

(.3876) (.6364) (.95) (.8571) (.3514) (.6415) (.8333) (.7097)
KS . 193 . 177 . 124 . 115 KS . 192 . 176 . 123 . 112

SK L -.968 -.802 -.650 -.536 MN L .432 .516 .608 .662
U .926 .759 .621 .532 U 2.303 2.075 1.704 1.552

KU L 1.745 1.836 2.050 2.135 SB . 130 .100 .079 .059
U 4. 666 4. 141 4.419 3. 951 LMP 3. 193 2.256 3. 689 2. 513

SW .906 .920 .948 .956 CM . 127 . 103 . 120 . 101
*For two sided tests, lower (L) and upper (U) critical values are included.
**Rejection with certainty if Cx2 is greater than critical value and rejection with probability ( )

if CX2 is equal to critical value.
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alternatives, respectively, and in Table 3. 6 testing extreme value

distribution. Overall the GST's W1 and W2 are found to perform

well in comparison with the other various tests.

3. 5. 1. Normal Case

a) Symmetrically distributed alternatives.

In Table 3.4 the W2 test tends to have the highest power in

heavier tailed alternatives (Logistic, Laplace, Double X2(2), and

Cauchy). The KU and BS
2

tests tend to have the highest power

among the various tests in lighter tailed distributed alternatives.

Overall the powers for BS2 and W2 are similar. The W2

test has the highest power among the W1-W4 tests over all cases.

b) Asymmetrically distributed alternatives.

In Table 3.5 either W1 or SW has the highest power of

various tests among all asymmetrically distributed alternative cases.

Moreover, the powers of W1 and SW are similar. The W1

test has a higher power than SW for the extreme value, Weibull (2),

and gamma ((3), p = 2 and 5, distribution alternatives. The W1

test has a higher power for lognormal (0, 1/2) distribution at the 10%

level, and SW has the higher power in all the remaining alterna-

tives.



Table 3.4 Empirical power * (%) of several tests of normality for symmetrically distributed alternatives. Empirical critical values based on 2000
simulations are used for each test.

sample
size

1
W2 W3 W4 GX

2
SW SK KU KS CX

2
BS

2
BS

3
BS

4

a = . 05

Uniform (0, 1)

2
Double X ( -.

Logistic

Laplace

Double X2 (2)

Cauchy

5)

20

50

20

50

20

50

20

50

20

SO

20

2. 2

4.3

2.0

2.9

12.1

13.2

21.2

22.0

33.8

41.5

70. 1

16. 3

70.5

6.5

20.9

15.1

23.6

32.5

60. 1

58.2

91.6

89.7

11.4

53.8

5.5

13.4

14.2

23. 6

30.6

57. 1

56.5

89.9

88. 8

11.0

40.7

5.6

10.0

14.0

22.2

28.9

54. 8

56.5

90.2

89. 3

12. 3

35.4

8.5

10.2

10.0

12. 1

20.4

38.7

45.4

83.8

47.9

19.5

87.3

6.7

24.5

10.2

14.4

27.7

40.6

52.8

81.9

88. 1

0. 0

0.2

0.7

0.9

14.9

19.5

26.0

35. 8

40.6

61.8

77. 3

33. 1

86.9

12.7

32.9

11.8

19. 3

24. 3

47. 1

45.0

82.4

83. 8

10. 2

31.3

7.2

12.6

9.3

12.2

21. 3

42.2

46.4

85.6

84. 5

8.2

19.8

6.9

9.1

7.7

8.0

15. 1

27. 1

40.1

75.1

80. 6

28. 8

80.7

11.8

31.6

11.6

22.7

28.2

61.9

54.6

92.8

88.9

8. 6

21.0

6.9

8.1

8.4

9.9

17. 1

30. 5

36.0

73.8

79.2

18.4

48.8

10.2

18.8

7.8

10.8

18. 9

46. 6

47. 8

87.9

85. 6



Table 3. 4 ( Continued)

sample
size

W
1

W2 W3 W4
2

GX. SW SK KU KS
2

CX BS
2

BS
3

BS
4

a.----- . 10

Uniform (0, 1) 20 5.8 30. 6 22. 3 20. 1 25.0 34. 8 1.7 47.0 17.8 16. 9 48, 6 16. 2 30. 1

50 8.5 85.5 75, 3 62.4 53.0 96. 3 0.7 91.9 44.4 29.8 89.5 37.9 61.5

DoubleX
2

(-. 5) 20 5. 8 14.9 12.6 12.3 16.2 14.7 2.0 21.0 14. 8 13.0 24.5 12.1 18. 6

50 6.6 38.3 27.8 20.8 18.7 40.2 1.7 46.0 22.4 15.6 49.2 18.0 31.0

Logistic 20 18.4 20.8 20.2 20.8 16.2 16.0 21.0 18.4 15.2 13.2 19.7 13.1 13. 6

50 19.7 32.4 32.3 32.0 20. 1 21.7 27. 3 33. 2 20. 3 14.4 31.3 18.2 19. 5

Laplace 20 28.7 39.2 37.8 38.8 29.8 35.1 33. 8 34.6 30.9 25.2 36.2 25.4 29.4

50 30.9 68.7 66.1 66.5 50.0 50.1 43.2 61.2 53, 9 38.1 69.7 44.6 57.8

Double X2 (2) 20 42.2 67.7 64. 1 67.7 57.5 60.7 50. 3 56.4 58.4 51. 1 62. 1 46.0 59.4

50 50. 3 95-. 1 93. 8 94, 4 88. 3 87.9 67.0 90.0 90.4 81.2 95. 2 86.0 93.5

Cauchy 20 74.0 92.0 91.2 92.0 61. 3 90. 1 80.5 88.2 89.2 85. 3 91.0 83.8 89. 2

2
*2000 simulations are used for samples from the double X ( -. 5) and Laplace distributions and 1000 simulations are used for the other cases.



Table 3. 5 Empirical power* ( %) of several tests of normality for asymmetrically distributed alternatives. Empirical critical values based on 2000
simulations are used for each test.

2sample W1 W2 W3 W4 GX SW SK KU KS CX
2

BS
2

BS
3

BS
4size

a = . 05

Extreme value (. 5) 20 33. 8 30.4 27. 1 25.0 16. 2 32. 1 31. 3 19. 1 20. 6 11. 5 16.4 25. 8 19. 5

50 72. 7 63. 9 56. 0 56. 6 37. 9 67. 5 68. 9 31. 8 43. 2 25. 9 30. 9 55. 1 46. 1

Weibull (2) 20 16.0 13. 1 11. 1 11. 3 10. 1 16. 0 15.2 8. 8 10. 2 6. 5 7. 7 13.5 10. 0

50 43. 1 35. 9 26.7 26. 9 16. 7 43. 8 40. 6 12. 5 23. 6 13. 1 11. 5 30. 1 25.9

Weibull ( 5) 20 98. 9 98. 8 98. 3 98. 9 97. 6 99. 8 97. 9 77. 7 98. 4 95. 9 84. 8 98. 9 99. 1

Lognormal ( 0, 5) 20 77. 1 72, 7 65. 8 68. 5 50.7 79. 2 73, 5 44. 5 57. 6 39. 7 43, 8 70. 6 60. 9

50 99.5 98.7 97. 8 97. 5 94. 0 99. 6 98. 7 75. 3 92. 8 91. 6 80. 9 97. 0 96. 9

Lognormal ( 0, 1) 20 92.0 90. 1 85. 9 87. 5 74. 8 94. 1 87. 1 57. 9 78. 7 65. 3 61. 3 87. 8 84. 3

Gamma (13), p=.5 20 95.0 93. 3 89. 2 93.4 83. 6 98. 8 89. 7 55. 5 87. 3 72. 8 60. 1 92. 3 91. 5

P = 1 20 76.8 71.8 65. 3 70.6 50.8 83.7 69.5 34.4 56.7 36. 6 35.7 69. 9 64.2

p- 2 20 54.9 47. 1 40. 6 42. 6 28. 3 53. 6 48. 5 25. 6 42. 4 18. 7 24. 4 45. 7 35. 6

p = 5 20 26.0 22.4 20.5 21.2 14.9 25.5 25.8 14.2 16.0 10.0 12.4 20.4 14.9



Table 3. 5 ( Continued)

2sample W1 W2 W3 W4 GX SW SK KU KS CX
2

BS
2

BS
3

BS
4size

a= . 10

Extreme value (. 5) 20 44. 8 40. 2 35. 7 37. 5 26. 3 41. 4 42. 6 26. 2 30. 9 22. 8 23. 9 36. 2 30. 3

50 82. 6 75. 8 68. 9 68. 5 48. 2 77. 5 81.0 41.7 55. 2 34. 6 41. 2 67. 1 58. 7

Weibull (2) 20 25.6 22.3 17.9 19.5 17.5 25.4 23.8 15.1 18.4 11.9 15.2 20.8 19. 0

50 58. 2 51.6 42. 2 40.5 26.8 58. 2 51.8 21. 3 34. 1 23. 2 21.7 41.4 37. 7

Weibull (. 5) 20 99. 7 99. 5 99. 2 99. 4 98. 4 100. 0 98. 5 84. 5 99. 3 96.4 90. 1 99. 4 99. 3

Lognormal (0, . 5) 20 84. 9 80.4 75. 6 76. 9 63. 3 84. 8 81. 6 52. 0 68. 9 47. 7 53. 1 79. 0 72. 3

50 99. 9 99. 4 99. 1 98. 7 96. 5 99. 8 99. 5 82. 8 96. 1 95. 2 88. 2 98. 5 97. 6

Lognormal ( 0, 1) 20 95.0 93. 1 90. 6 92. 1 83. 3 96.2 92.5 65.2 85.9 70. 9 68.0 91.8 90. 7

Gamma ((3 ), 13 = . 5 20 97.1 97.3 93.3 95.7 89.8 99.4 94.6 65.5 93.2 76.4 69.2 96.2 96. 0

P= 1 20 84.1 81.6 75.3 80.3 65.8 89.6 80.0 42.8 69.4 43.9 46.9 78.9 76. 2

p= 2 20 65.8 60.7 51.3 53.7 41.3 65.2 61.2 34.7 53.8 27.7 33.0 56.5 50.2

P= 5 20 37.6 31.6 29.0 29.9 22. 8 35. 5 37. 1 22.4 26.0 17. 1 20.0 30.2 25. 3

*2000 simulations are used for sample from the Weibull (2) distribution and 1000 simulations are used for the other cases.



Table 3. 6

a= .05

Normal

Logistic

Gamma ((3 ),

13 .

13 ..-_ 2

p = 5

Weibull

Weibull
mixture

Exponential
mixture

Transf.
Gamma (5)

Empirical powers* ( %) of several tests of the Extreme value distribution for several alternative distributions. Empirical critical values
based on 2000 simulations are used for each test.

sample
size

W1 W2 W3 W4 QC
2

SB MN LMP CM KS
2

CX BS
2

BS
3

BS
4

20 13. 5 20.7 18.4 16. 3 13.5 11.0 19.8 24. 1 20. 3 16.5 14.4 21.8 23.2 16.6

50 51. 4 56.8 49.6 49. 6 34.7 24. 8 54. 1 64. 5 53. 2 38. 5 27. 5 47.6 57. 2 49. 3

20 21.0 28.0 24.7 23.6 19.5 16.5 21.4 29.7 27.9 22.5 17.9 30.7 25.9 22.6

50 50. 2 71.7 65. 6 65. 6 38.4 36.5 60.2 76.9 65. 6 51. 6 40. 1 70. 5 69. 1 61.4

20 10.8 9. 1 8. 6 7. 6 5.4 8. 0 9. 2 10.5 5. 7 5. 6 5. 2 5. 3 6 4 6. 4

5 50 17. 6 14.6 14.0 12.0 9.5 12.3 13.4 17. 3 11.8 10.9 6. 1 7. 1 11.7 9.7

20 3.8 5.4 4.8 4.5 4.7 3.8 6.0 5.6 6.1 5.4 6.6 7.3 5.8 5.1

50 6.1 8.7 8.4 7.3 7.5 2.9 8.4 9.0 10.6 9.1 6.7 9.7 9.2 9.1

20 5.2 7.9 7.3 6.8 6.7 3.6 7.8 9.0 8.4 6.9 7.3 10.3 9.2 7.2

50 16.7 17.0 15.5 14.9 11.8 3.9 19.6 23.7 18.0 13.8 10.1 17.0 19.6 14. 8

20 3. 2 3.7 3. 3 4. 2 7. 1 1. 5 5. 8 3. 8 5. 1 5.2 7. 1 7.7 5. 1 6. 5

50 9. 3 9.6 6.4 7.7 7. 8 1. 3 12.2 12.2 10.4 9.4 7.8 9.8 10.0 9.6

20 14 6 24. 8 23. 8 23.9 14.5 19.0 11.9 20. 1 18.6 15.4 12. 3 20.9 13.4 17.9

50 28. 2 53.4 53.4 51.2 32. 9 30. 6 33. 3 33.4 47.0 36.4 22.9 48.5 26.5 39. 8

20 3.2 4.5 4.8 5.0 5.3 4.2 4.4 4.9 4.9 5.1 5.2 6.3 4.3 4.8

50 7.3 5.8 6.4 6.3 6.0 4.3 7.1 7.9 8.8 7.3 7.4 7.3 9.4 7.5

100 40. 6 39. 5 30.8 35. 2 21.6 5. 1 37. 5 51. 3 33. 3 25. 1 16. 2 28.9 37. 2 30. 5



Table 3.6 ( Continued )

2 2sample W1 W2 W3 W4 G X SB MN LMP CM KS CX BS
2

BS BS
4size 3

a = . 10

Norm al 20 31.7 30.9 28, 6 27.0 22.2 22.9 33.9 36.7 31.5 25.2 22.4 28.9 36.5 26.7
50 69. 5 69. 1 61.6 62. 3 47. 6 44. 8 66. 8 76. 3 63. 0 53.0 39.2 54. 8 70. 5 63. 5

Logistic 20 38. 4 36.9 35. 3 31. 1 26.0 28. 6 33. 8 39.4 37. 8 32.4 28.4 36. 1 39. 5 29.7
50 62.9 79.6 74.8 75.3 60.6 53.5 71.4 85.2 72.9 65.9 50.5 76.0 79.6 72.4

Gamma I (3), 20 18. 3 15. 3 14. 8 13.6 11.2 15. 1 15.7 18.2 12.2 11.5 10.5 11.2 13. 3 11.4
R = . 5

p = 2

50

20

25.9

8. 5

23.2

10.5

21.9

1Q. 3

19.3

9. 1

15.8

9.4

18.9

8.6

22.9

11.9

25.6

9.9

18.5

10. 6

17.4

10. 3

11.3

11.9

12.4

12. 1

20.1

11.0

18. 6

9.7
50 15. 0 14.2 14._0 16.2 14. 3 6. 6 14.8 17.6 17.0 15.6 12.6 15.0 18. 1 16. 8

(3 = 5 20 15.0 13.7 13.7 12.7 11.8 10. 1 16.6 15.5 14.3 12.9 13.5 15.8 17.7 13.2
50 32.4 27.8 22.4 23.7 20.3 11.3 30.0 36.8 26.7 24.1 17.4 23.6 33.0 25.2

Weibull 20 9.4 10.5 8.7 9.0 12.6 5.2 12. 1 9.4 11.6 11.2 13.9 13. 8 12. 1 10.6

50 22.9 19.4 14.2 14.6 14.7 4.8 21.8 20. 1 16.9 17. 1 13.4 15.0 21.4 20.4
Weibull
mixture

20 24. 0 34. 9 32. 7 33. 1 22.7 32.9 18.0 29.9 28.8 25. 1 23.0 28. 8 23. 8 26.4

50 43. 7 62.7 62.2 62.6 46. 3 44.6 44. 3 50.9 57.4 49. 1 33.3 55.4 46.2 53. 6

Exponential
mixture

20

50

9.0

15. 7

9.4

13.7

8.5

11. 2

8.7

11.9

9.7

13.1

7.9

7, 9

9.3

13.9

9.7

15.5

9.6

14. 3

10.1

13.2

11.2

12.0

11.8

12.0

10.0

17.4

8.0

14. 8

Transf. 100 57. 0 53. 1 44.4 44 9 30. 8 19. 2 50. 8 64.5 43. 4 37.4 25. 8 37. 8 50.4 43.0
Gamma (5)

*2000 simulations are used for samples from the Gamma ( (3), p = . 5, 2, and 5 of size 20 and normal distributions and 1000 simulations are used for
the other cases.

141,
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3. 5.2. Extreme Value Case

in Table 3. 6 either W
1,

W2, LMP, or BS
3

tends to have

the highest power among the various tests. The W1, W2, and LMP

tests have the highest powers, respectively for gamma (1 /2), Weibull

mixture, and normal distributions. Moreover, the W2, LMP, and

BS
3

tests have similar powers except for the Weibull mixture dis-

tribution where W2 has substantially higher power.



4. APPLICATIONS

Evaluation of the generalized smooth tests, Wk, ar e
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illustrated in the following six examples.

a) Scale parameter family

Ex. 1. Negative exponential distribution

b) Scale-location parameter family

Ex. 2. Extreme value distribution

Ex. 5. Normal distribution

c) Linear regression model

Ex. 3. Negative exponential distribution

(Extreme value distribution with o- = 1)

Ex. 4. Extreme value distribution

Ex. 6. Normal distribution

The common procedure consists of three steps: evaluate the

MLE f,L compute the test statistic Wk, and compare Wk with the

X2 table. The MLE., forapproximate critical value from a

negative exponential and normal distributions are easily evaluated.

For the extreme value distribution the MLE A, can be found by

sequential approximation (Thomas, 1977). Data A and B are employed

for examples 1-3 and 4-6, respectively.

Data A: The comparative susceptibility of the Dojo fish to the

poison EI-43064 was determined by immersing each individual fish
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in 2 liters of an emulsion of the poison and measuring its survival

time in minutes, where

x
1

= Log-concentration of EI-43064 in parts /million,

x2 = Log-grams weight of the fish, and

y = Log(1000/minutes survival). N = 45 (Bliss, 1967,

p. 352).

Data B: Effect of age of oat plants in days (x) upon their

N./Fe ratio (y). N = 30 (Bliss, 1967, p. 31).

Ex. 1. Consider the negative exponential cdf,

F y >, ) = F ( ) = 1 -e
-y /cr

where k = Cr . Then the MLE

N

X = y. = 1. 288608.

i=1

From (2.6) and (2. 15) with the le 0 matrix in Table 2. 4, the test

statistics, Wk, k = 1, , 4, are evaluated as

W' = (35.4, 43.71, 84.88, 35.41).

2Since Wk > x. 995(k)
for k = 1, 2, 3, 4, the null hypothesis in

(2. 3) is rejected at the significant level a = . 005 for any of the

GST's with k < 4.



68

Ex. 2. Consider the extreme value cdf,

F(yl X) = 1 - exp[-exp( Yo_P )]

where X. = (po' = ( 0-).. The MLE k is the solution of the fol-

lowing equations:

and

No =

N =

i=1

N

i=1

The solution to these equations is found by iteration (Thomas, 1977),

to give

51 = Cr) = (1. 353053, . 1508056)

Using (2. 6) and (2. 15) with the I" matrix in Table 2. 3 the test

statistics, Wk, k = 1, 2, 3, 4, are

W' = (5. 75, 10.01, 10.01, 10. 18)

The null hypothesis in (2.3) is rejected at a = . 05 for k = 1, 2, 3, 4.
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Ex. 3. Consider the extreme value distribution cdf,

F(ylx, X) = 1 exp[-exp(y-P0- - -13mxm)],

where _ = = (f30,131, , 13m )I. The equations,

and

yield

and

N

exp[yi-f30- -15\mxmi] = N

i=1

/*\
x..[exp(y.-13 - -(3 x )-1] = 0, j = 1, ,M,

31 0 M Mi
i=1

X' = (.4606657, . 3746265) for M = 1,

X' = (.7153553, .374289, -.3988452) for M = 2.

The test statistics Wk, k = 1, 2, 3, 4, and

W' = (36. 03, 44. 38, 87.39, 88. 35) for M = 1

and

W' = (36.47, 44. 92, 90.21, 90. 63) for M = 2.

The null hypothesis in (2.20) is rejected at a = . 005 when

k = 1, 2, 3, 4 for both M = 1 and 2.

Ex. 4. Consider the extreme value regression model with



F(yl x, X.) = 1 - exp[ -exp(
y- -13MM

where X = (
o-

and x = x
1

for q = 1, , M. The equations,
q

i=1

and

i=1

yield

and

Yir\0 4MxMi)-1)
= 0(Yi40- -klxMi) [exP(

xmi [exp(

= (.3463413,

= (.723785,

The test statistics Wk,

and

)-1 = 0, j = 1, ... , M
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.4513125, .1152703) for M = 1

.3859209, 3771623, . 1017292) for M = 2.

k = 1, 2, 3, 4, are

W' (2. 13, 2.20, 2.42, 2.91) for M = 1

W' (2. 92, 3.38, 3.41, 3.45) for M = 2.

Therefore, when M = 1, the null hypothesis in (2. 20) is not rejected

at a = . 10 for k = 1, 2, 3, 4, and when M = 2, the null hypothe-

sis in (2. 20) is not rejected at a = . 10 for k = 2, 3, 4, and for

k = 1, the null hypothesis in (2.20) is not rejected at a . 05, however,



it is rejected at a = .10.

Ex. 5. For the normal distribution model with \ = ( ),

A
X =

. -7)2 /1\T

i =1

[1. 2347

.396154291

The test statistics Wk, k = 1, 2, 3, 4, are

W' = (.41, .52, .73, .99).

The null hypothesis in (2. 3) is not rejected at a = . 10 for

k = 1, 2, 3, 4.

Ex. 6. For the normal regression model with X = ( °"),
o-

5.° = (1.0147, .0050757, .3855634) for M = 1

and

71

/11,.° = (- .047414, -. 073549, .00086627, .2355027) for M = 2.

And the test statistics Wk, k = 1, 2, 3, 4, are

W' = (.08, 2. 68, 3. 15, 3. 64) for M = 1

W° = (1. 11, 1.89, 1.98, 2. 44) for M = 2
and

For both M = 1 and 2, the null hypothesis in (2. 20) is not

rejected at a = . 10.
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