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Abstract

In an earlier paper we developed an intermediate representation for languages based on

composition, and showed how the representation could facilitate generating code for functional

languages, such as FP. In this paper we follow the same philosophical approach, using instead

the applicative language APL. Further, we show how this intermediate representation simpli�es

the task of generating code for highly parallel machines, such as the Connection Machine.
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1 Introduction

In an earlier paper [Bud88b] we introduced an intermediate representation speci�cally designed for
use with languages based on composition. Examples of such languages include functional languages,
such as FP [Bac78], and applicative languages, such as APL [Ive80]. We then argued that it was not
only easy to convert from such languages into this representation, but also easy to generate actual
machine code from the representation. The earlier paper presented examples showing the utility of
the approach using the language FP and generating code for a conventional processor. In this paper
we will follow the same philosophical approach, but vary both the front end language and the type
of processor for which we are producing code.

Section 2 will review the internal representation we use in our code generation scheme, and
describes how the representation for APL di�ers slightly from that used in the FP example. Section
3 analyzes an example APL expression, showing how it is converted into this internal form. Section
4 then shows how this internal form can be used to produce code suitable for execution on vector
machines.
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2 Representation

Our internal representation for APL arrays is slightly more general than the representation described
in [Bud88b] for FP style lists. This is due to the necessity of recording not only the number of
elements in the list (the list length), but the rank and shape of the data as well. As in the FP
representation, our representation will consist of a pair, the second element of which is a function
(written in � notation), for producing an arbitrary value of the result. Values are indexed starting
at zero. The �rst element is also a pair, representing the rank (a scalar), and the shape (a vector).
In all cases these can be arbitrary expressions.

For example, a scalar constant, such as 200, is represented as follows:

((0, 1), � p . 200 )

Here the rank is zero (that is, a scalar). Since the shape is a vector of length zero, its value is really
of no importance in this case; we use the constant one merely as a convention. The value is given
by a function which will in all cases return 200.

As in the earlier paper we will use a dot-�eld notation for extracting the various parts. The
�rst �eld, the rank-shape pair, will be denoted by the �eld name size. The individual parts will
be denoted by the names rank and shape, respectively. The value �eld will be denoted by the �eld
name item.

Functions are represented by � expressions of the appropriate arity which take and return a
representation as above. We will use the APL iota function as an example. This function takes a
single scalar argument and returns a vector, the length of which is determined by the value of the
argument. The values of this vector range from 1 upwards. For example, {5 yields the vector 1 2 3
4 5. The iota function can be represented as follows:

{ � � a . ( (1, a.item 1), � p.p+1)

This function takes a single argument. It returns a scalar, as indicated by the constant 1 in the rank
�eld. The size of the scalar is given by the value in the �rst position of the argument. when the pth

value is requested, the value p+1 (re
ecting that values are indexed starting with zero) is returned.
As in the earlier paper we will simplify the initial discussion by ignoring the issue of argument

conformability checking; although there are no intrinsic problems involved in that issue. We will
also introduce some new notation as we go along.

3 Presentation of an Example

As was discussed in the introduction, we will in this paper only present a description of how we
would go about generating code for a single speci�c APL expression. Thus we will only describe
the code generation technique necessary for functions used in that one expression. A more complete
description of the internal representation of APL functions can be found in [Bud88c].

The APL expression to be analyzed is the classic idiom for producing a bit-vector of size N,
where the position of the 1 values correspond to the primes larger than two [PeR79].

2 = + =�0 = ({N ) �: j { N
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Thus the elements to be described are:

� The scalar variable N

� The constants 0 and 2. (The characterization of constants was given in section 2).

� The iota function (which we have also already seen in section 2).

� The dyadic scalar functions divides, plus and equals.

� the outer product operator.

� The reduction operator.

We will provide only a brief description of the meanings of the various APL functions. For a
more complete description of the language see, for example [PoP75].

3.1 Characterization of Variables

The code to be generated for variables di�ers depending upon whether it is known if a variable is
a scalar or not. Although APL does not require declarations of any sort, several implementations
permit optional declarations of variable rank in order to assist the compiler [Bud88a],[Syb80]. Even
where such declarations are not present, simple data
ow analysis can often be used to determine
this information [Bud88a],[Str77].

If a variable, say N, is known (either by declaration or inference) to be a scalar, then the internal
representation is as follows:

((0, 1), � p . (N.value 1))

If the rank is known to de�nitely not be a scalar, then the code is as follows:

(N.size, � p. (N.value p))

It will simplify the support of scalar extension (to be discussed in the next section), if when
nothing is known about the rank of N, we generate code which will test to see if the value is a scalar
on each access, and if so return the scalar value.

(N.size, � p . if 0 = N.rank then (N.value 1) else (N.value p))

3.2 Characterization of Dyadic Scalar Functions

The language APL generalizes the standard dyadic functions, such as addition (+) and subtraction
(�) to apply pairwise to elements of arrays. For example:

1 2 3
4 5 6
7 8 9

+
1 4 7
2 5 8
3 6 9

=
2 6 10
6 10 14
10 14 18
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In addition, a feature known as scalar extension allows scalar quantities to be used in operations
with arrays. In situations where this occurs the scalar is treated as if it were an array of the
appropriate size, containing the scalar value repeated as often as necessary. For example

1 2 3
4 5 6
7 8 9

+ 2 =
3 4 5
6 7 8
9 10 11

The only scalar extension which occurs in our example concerns scalar constants. The represen-
tation for such constants was given in section 2, from which one can note that the index for the
particular element being requested is ignored. Thus in this case scalar extension costs (in terms of
code) almost nothing.

3.3 Characterization of Outer Product

Outer product in APL is a functional; that is a function which takes another function as argument
and yields a third function, which is �nally applied to data values. In the companion paper on FP we
presented several examples of such functions, such as the functional apply which took a function and
returned a function which when presented with a list applied the original function to each element
of a list. In contrast to FP, where the argument function given to a functional could be arbitrary,
the functions that can be used in an outer product are restricted to just the primitive dyadic scalar
functions (such as addition or subtraction). Thus in order to simplify the presentation we will merely
discuss the characterization of an outer product of a speci�c dyadic function, and not the general
case.

Outer product takes two array arguments, and returns the array produced by applying the dyadic
scalar argument given as part of the outer product to each possible pairing of values. In our example
expression the arguments are both vectors produced by the subexpression { N. The vertical bar is
the APL remainder function, which returns the result when the second argument is divided by the
�rst. Thus if N is 5, for example, the result of ({N ) �: j { N is the following two dimensional array:

0 0 0 0 0
1 0 1 0 1
1 2 0 1 2
1 2 3 0 1
1 2 3 4 0

The rank of the result of an outer product is the sum of the ranks of the arguments, and the
shape is the catenation of the shapes of the arguments. The computation of a speci�c element p of
the result can be given in terms of the size (number of elements) in the left argument (call it a). It is
the quantity produced by the scalar function on the element found in the left argument at position
p div sizeOf(a) and the right argument at position p mod sizeOf(a). Thus we can characterize the
outer product as follows:

� a,b ((a.rank + b.rank), concat(a.shape, b.shape)),
� p. (a.item (p div sizeOf(a))) op (b.item (p mod sizeOf(a))))
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where sizeOf() computes the size of the left argument (a quantity which may be known at compile
time) and op is the primitive dyadic scalar function.

There is one very important di�erence in approach that should be noted between the technique
described here and that used by the scalar APL compiler [Bud88a]. In the scalar compiler it was
noted that certain expressions, such as p div sizeOf(a), would repeatedly produce the same answer
for a succession of values. Thus explicit control 
ow constructs were introduced to avoid this
recomputation whenever possible. In the present case, the underlying assumption is that these values
may possibly be generated in parallel. The parallel evaluation of a large number of expressions which
will all result in the same value is of no consequence, and is in fact preferable to a single processor
producing the value and distributing it to all the others. We will make this point again in section 4
when we discuss the code generated for this expression.

3.4 Characterization of Reduction

The reduction operator in APL is used to reduce a sequence of values to a single result; for example
computing row or column sums of an array. As with the insertion functional of FP, this operator
involves an implicit loop. The loop is not explicitly given in our internal representation; rather, in
order to permit the code generator as much 
exibility as possible, we encode enough information to
permit the reconstruction of the loop. This permits us to more easily make manipulations of the
reduction form, and it also allows the code generator freedom to perform actions such as computing
multiple values of the loop in parallel.

In order to better understand exactly what information needs to be recorded in order to generate
code which will perform the reduction, let us consider a simple example. Consider computing the
column sums of a three by �ve array. Regardless of dimensionality, values in memory are stored in
sequential order (called ravel order in APL). Thus the index positions of this array are as follows:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14

The column sums will be a vector of �ve elements; the �rst of which is formed by summing the
values in the positions 0, 5 and 10, the second by summing values from positions 1, 6 and 11, and
so on.

In order to know exactly which elements need to be summed for any particular value, three
quantities are important. The �rst, the extent, is the length of the column which will be summed.
In our case the extent is 3. The second quantity, the delta, is the di�erence in index values between
successive elements of the column. If our example this di�erence is 5 (for example, position 2 is
added to position 2+5=7). The �nal value is the resultSize, which is the length of the resulting
value.

If we were computing row sums instead of column sums the values for extent, delta and resultSize

would have been 5, 1 and 3, respectively.
We record the information necessary to reproduce this computation by introducing a new symbol,

�, which is followed by the name of the function with which the reduction is to be performed, the
three �elds just described, and a � expression representing the argument to the reduction. For
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example, if the three by �ve array described above were contained in the variable x, the code for the
reduction which computed the column sums would be as follows:

� +, 3, 5, 5, � p . (x.item p)

3.5 Continuation of Example

Having presented the characterization of each of the constituent parts, we now return to the question
of characterizing our example expression:

2 = + =�0 = ({N ) �: j { N

We will form each of the compositions from the inside out. Assume �rst that we know from
elsewhere (declarations or data
ow analysis), that the variable N is a scalar. Thus N can be char-
acterized as:

(N.size, � p . (N.value 1))

From the de�nition of { (section 2), we can compute { N as follows:

(� a . ((1, a.item 1), � p . p+1))) (N.size, � q . (N.value 1))

� ((1, (� q . (N.value 1)) 1), � p . p+1)

� ((1, (N.value 1)), � p . p+1)

Thus the outer product ({N ) �: j { N is characterized as follows:

((1+1, concat((1, (N.value 1)), (1, (N.value 1)))),
� p . ((p mod (N.value 1))+1) mod ((p div (N.value 1))+1))

Leaving out some of the intermediate steps, the constant 0 and the equality test merely become
part of the innermost � expression:

((2, concat((1, (N.value 1)), (1, (N.value 1)))),
� p . 0 = (((p mod (N.value 1))+1) mod ((p div (N.value 1))+1)))

The reduction converts this two dimensional array back into a vector, introducing a � expression
in the process. Again leaving out some of the intermediate steps, this becomes:

((1, (N.value 1)),
� p . � +, (N.value 1), (N.value 1), (N.value 1),

� q . 0 = (((q mod (N.value 1))+1) mod ((q div (N.value 1))+1)))

Finally the constant 2 and the equality test, after some manipulations, merely slip in under the
outermost �, yielding our �nal characterization of the expression.

((1, (N.value 1)),
� p . 2 =

� +, (N.value 1), (N.value 1), (N.value 1),
� q . 0 = (((q mod (N.value 1))+1) mod ((q div (N.value 1))+1)))
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Notice that as we saw with the representation of FP expressions [Bud88b], the size (in terms of
the number of characters), of the compositions grows very slowly as more and more terms are added.
The size of the resulting expression is far less than the sum of the sizes of the individual elements.
However the most important characteristic of this representation is the ease with which it permits
the generation of code for a vector processor, which is the topic of the next section.

4 Code Generation for a Vector Machine

In [Bud88b] we showed how to generate code for a conventional scalar processor from a representation
very similar to the one used here. In this section we will consider the slightly di�erent question of
generating code for machines which possess the ability to act on entire vectors of values in one
operation. Examples of such machines are the Crays, the CDC-205, or the Connection Machine
[Hil85].

In the algorithms presented in [Bud88b] for generating code for a scalar processor, both � and �
expressions became loops, which computed their values one by one. The code generated for vector
machines will be quite di�erent, as a goal will be to compute as many quantities in parallel as
possible. Our notation will be similar to that of Hillis and Steele [HiS86]. We will assume the
existence of an instruction

for all k to n in parallel do s od

which will execute the statement s in parallel n times, each instance of s having access to a unique
value k. The total time for this computation will be assumed to be the same as the time necessary
for a single execution of s. Our notation di�ers from Hillis and Steele not only in giving explicitly
the upper bound n, but also we will assume the values of k run from 0 to n � 1, instead of from 1
to n.

Given this framework, code generation for � expressions becomes straightforward. A � expression
can compute all of its elements in parallel in a single step. For example, the innermost � computation
in the example presented in section 3 is as follows:

� q . 0 = ((q mod (N.value 1))+1) mod ((q div (N.value 1))+1)

If we assume the common subexpression (N.value 1) has been placed into the scalar variable n, then
from this we will generate the following code, which places the result into the temporary variable x.

for all q to n � n in parallel do
x[q] := (0 = (((q mod n) + 1) mod ((q div n) + 1)))

od

In no more time than it takes to do two additions, three divisions and an equality test, all n � n
values are produced.

Code generation for reduction expressions (� expressions) is slightly more complicated. Recall
that each element of the reduction is formed by processing a column from an underlying expression.
In order to compute the index of the elements of this column the � expression maintains, in addition
to the function with which the reduction will be computed, three additional values. These values
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are the delta, the distance (in the underlying expression) between adjacent elements of the same
column, the extent (length) of a column, and the resultSize, which is the number of elements that
will eventually be generated by the reduction. Using these three values we �rst generate a loop
which assigns a number, the column position number, to each element in the underlying expression.

for all q to resultSize � extent in parallel do
cp[q] := (q div delta) mod extent

od

There are two optimizations that should be noted. When reduction is along the �rst dimension, as
in this example, delta is equal to extent and thus the mod can be eliminated. When reduction is
along the last dimension, delta is equal to one and the div statement can be eliminated.

For each element in the argument to reduction, the value cp indicates the o�set of the element
in its associated column. To actually perform the reduction, the algorithm is a variation of Hillis'
and Steels' log N array summing algorithm[HiS86]1:

for j := 1 to ceil(log
2
extent) do

for all k to resultSize � extent in parallel do
if cp[k] mod 2j = 0 then
if cp[k] + 2j�1 < extent then

x[k] := x[k] op x[k+ (2j�1 � delta)]
�

�
od

od

Note that the execution time of this code is proportional to the ceiling of the log base two of
the size of the column being summed. When reduction is not along the �rst dimension (as it is in
the present case), the results of this computation are not, however, in their proper place. Instead,
they are scattered throughout the variable x. In those cases it is necessary to generate one further
statement in order to move the values to their correct location at the beginning of the array.

for all k in resultsize � extent in parallel do
if cp[k] = 0 then

x[(k div (extent � delta)) � delta+ k mod delta] := x[k]
�

od

On the Connection Machine [HiS86], there is a special instruction which makes this loop somewhat
simplier. The pseudo-variable enumerate returns one less than the number of processors which are
active and have index values less than the current processor. Therefore this loop can be written as:

1We note that Hillis' and Steels' algorithm is only correct if the function being used for the reduction is associative.

The language APL actually allows reductions with nonassociative operators, such as division. For these cases slightly

more complex, and less e�cient, code must be generated. On the other hand this code does work even for functions

which do not have an identity, such as maximum.
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for all k in resultsize � extent in parallel do
if cp[k] = 0 then

x[ enumerate ] := x[k]
�

od

In situations where we have � and � expressions nested within each other, as in our example,
the code generation strategy will be to compute the inner expressions �rst, placing the results into
temporary variables. Thus the completed code which is generated for the example of section 3 is as
follows:

for all q to n � n in parallel do
x[q] := (0 = (((q mod n) + 1) mod ((q div n) + 1)))

od
for all q to n � n in parallel do

cp[q] := q div n
od
for j := 1 to ceil(log

2
n) do

for all k to n � n in parallel do
if cp[k] mod 2j = 0 then
if cp[k] + 2j�1 < n then

x[k] := x[k] + x[k+ (2j�1 � n)]
�

�
od

od
for all k to n in parallel do

x[k] := (2 = x[k])
od

The vector result in the variable x will contain a one value in each position corresponding to a
prime. Despite the length of this code, it is quite e�cient. The only statement which does not have
a constant execution time is the loop which starts in line 7, which has running time proportional
to log

2
n. Thus whereas a na��ve scalar implementation of this APL expression would take O(N2)

operations, we have generated code to produce the result in O(log
2
N ) vector instructions. If N is

100, ceil(log
2
N ) is 7 and N2 is 10,000, which is a di�erence of three orders of magnitude.

We have done this, however, by trading time for space. It is common for APL expressions to
produce large values as intermediate expressions, which are then reduced or compressed to produce
a small �nal result. Because of this, intelligent scalar APL compilers attempt to save space as much
as possible during intermediate calculations [Bud88a]. Here our approach has been just the opposite;
we freely allow ourselves temporary arrays of size n2, such as the variable cp, if doing so will allow
us to compute results in fewer vector steps. Even on a 65,536 processor Connection Machine, where
each processor maintains a single value of each array, one can reach a point where this becomes
impractical. It remains to be seen whether algorithms can be developed which are both space and
vector-time e�cient.
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5 Conclusions

It is certainly dangerous to reason from examples, and thus we avoid any claim for the universality of
the approach presented here. Nevertheless, we have shown that at least for the one speci�c expression
analyzed in this paper that our intermediate representation not only facilitates the composition of
complex expressions, but also simpli�es the task generating code for vector machines. Given the
complexities of making e�ective use of vector instructions in processors for languages which are
basically scalar [PaW86], this approach would seem to deserve further investigation. Further work to
do includes developing the internal representation characterization of the remaining APL functions,
and attempting to generate code for actual vector machines.
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