

Bird and Bat Interaction Vision-Based Detection System for Wind Turbines

by

William Gage Maurer

A THESIS

submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Mechanical Engineering

(Honors Scholar)

Presented March 4, 2016

Commencement June 2016

AN ABSTRACT OF THE THESIS OF

William Gage Maurer for the degree of Honors Baccalaureate of Science in Mechanical

Engineering presented on March 4, 2016. Title: Bird and Bat Interaction Vision-Based

Detection System for Wind Turbines .

Abstract approved: __

Roberto Albertani

Bird and bat collisions with wind turbine blades are an occurrence which are extremely variable in

frequency. With the expansion of wind farms, determining the true quantity of collisions and the

species involved is imperative for preventing ecological damage. Explored in this thesis is a blade

mounted camera for wirelessly transmitting a video stream to provide an optimal viewing location

for capturing avian and bat strikes. An early version of computer vision software for detecting avian

flybys and collisions was developed, along with initial design and testing of a blade-tip tracking

program. Object recognition using a cascading classifier, and a backup tracking system provides a

potential method for determining bird presence and the likelihood of collision. The ability of the

program to remove repeating false-positive instances and strengthen the detection system in the

process, provides a strong platform for avian detection from a blade mounted camera. Hardware

validation was conducted to ensure the selected components will function as needed. A 3D printed

on-blade enclosure was designed as a housing for the camera, transmitter, and power supply.

Key Words: Bird, Bat, Detection, Tracking, Wind Turbine, Wind Farm

Corresponding e-mail address: maurerw@oregonstate.edu

©Copyright by William Gage Maurer

March 4, 2016

All Rights Reserved

Bird and Bat Interaction Vision-Based Detection System for Wind Turbines

by

William Gage Maurer

A THESIS

submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Mechanical Engineering

(Honors Scholar)

Presented March 4, 2016

Commencement June 2016

Honors Baccalaureate of Science in Mechanical Engineering project of William Maurer

presented on March 4, 2016.

APPROVED:

Roberto Albertani, Mentor, representing MIME

Nancy Squires, Committee Member, representing MIME

Sinisa Todorovic, Committee Member, representing EECS

Toni Doolen, Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon

State University, University Honors College. My signature below authorizes release of

my project to any reader upon request.

William Gage Maurer, Author

Acknowledgments

Thank you to my mentor, Dr. Roberto Albertani, who has provided me with meaningful research

opportunities. Your guidance has helped me grow both as a researcher and engineer. Every aspect

of working in the Applied Mechanics and Composites Technology Laboratory has been a fantastic

experience. I would also like to thank my committee members Dr. Nancy Squires and Dr. Sinisa

Todorovic; I truly appreciate your time and input on this project.

Thank you to my fellow lab members, who have offered their guidance and support through the

entire research process. Thank you to my friends and family, who have been patient and supportive.

Your encouragement has been immense in completing this project.

I must also thank my favorite local coffee source, Interzone, for providing the innumerable quantity

of lattes required for this milestone of my undergraduate degree. Finally I must show my gratitude

for MathWorks, whose products have been an integral component of my scholastic career.

Contents

Introduction .. 1

Background and Literature Review ... 4

Current Non-Automated Methods ... 4

Automated Monitoring for Birds and Bats in Wind Farms ... 6

Avian and Bat Vision-Based Detection and Tracking Methods .. 8

Blade Deflection .. 10

Proposed Solution and System Integration .. 12

Hardware and Validation ... 15

Camera Hardware .. 15

Transmitter and Receiver Systems ... 20

System Power .. 22

Hardware Validation .. 23

Camera Casing ... 26

Software Development: Avian Detection and Tracking .. 30

Overview .. 30

Overall Structure .. 32

Detection Options .. 35

Optical Flow... 35

Cascade Object Detection .. 38

Blade Face Thresholding ... 41

Tracking ... 43

Primary Tracking ... 43

Secondary Tracking ... 44

Trajectory Classification .. 46

Supporting Structure .. 47

Data Storage ... 47

Filtering .. 48

Collision Sensing ... 49

Data Presentation ... 50

Detection Improvement ... 51

GUI for Detection and Primary Tracking Tests ... 51

Operational Testing .. 53

Trial 1 ... 54

Trial 2 ... 56

Trial 3 ... 57

Discussion .. 58

Speed Testing ... 59

Conclusions .. 60

Blade Tracking ... 62

Introduction .. 62

Program Structure .. 63

Testing ... 64

Results .. 65

Discussion .. 67

Future Developments ... 69

Hardware .. 69

Sensor System Integration ... 69

Camera Casing ... 70

Avian Program ... 71

Blade Track .. 73

Conclusion ... 74

Work Cited ... 75

Appendix A: Turbine Size Estimation ... 83

MATLAB Code ... 83

Output .. 85

Source for Wind Turbine Data ... 87

Appendix B: Pixel Size Calculation Program .. 88

MATLAB Code ... 88

Output .. 90

Appendix C: Camera Case Dimension .. 93

Appendix D: Avian Program Logic Diagram .. 96

Appendix E: Avian Interaction Program ... 99

Primary Code ... 99

Satellite Functions (Supporting Architecture) ... 110

signalCheck .. 110

boundaries .. 111

blobCheck .. 111

bboxCombine ... 112

KLTpoints_revised .. 114

evalKalmanTracks ... 116

FinishTracking ... 116

reportAnalysis2 .. 118

RepeatCheck .. 121

RevisedCache ... 124

zoneCheck .. 124

NegativeSave ... 125

Appendix F: Collision Likelihood ... 127

Appendix G: GUI Code ... 129

Primary Code ... 129

GUI Figure ... 137

Appendix H: Blade Tracking Code .. 138

Primary Code ... 138

Satellite Functions .. 140

pointFinder ... 140

pointTracker ... 140

Appendix I: Blade Tracking Results .. 142

Figures

Figure 3-1 Diagram of the FOV on a wind turbine .. 13

Figure 4-1 Schematic Representation of Camera FOV.. 17

Figure 4-2 Pixel area versus position along length of turbine blade .. 19

Figure 4-3 A representation of pixilation ... 20

Figure 4-4 Micro-camera circuit design and breadboard implementation 23

Figure 4-5 Camera rotation rig .. 24

Figure 4-6 The effects of motion and lighting on image quality ... 24

Figure 4-7 Deinterlacing frames containing significant camera motion .. 25

Figure 4-8 Target area calculations. ... 26

Figure 4-9 Camera casing expanded view ... 28

Figure 4-10 3D printed camera casing ... 28

Figure 4-11 Warping of the camera casing base plate ... 29

Figure 5-1 Frame of Reference .. 32

Figure 5-2 General program architecture ... 33

Figure 5-3 Opening User Prompt ... 34

Figure 5-4 Example of input signal simulating vibrational sensors detecting a collision 34

Figure 5-5 Lucas-Kanade Optical Flow Method ... 37

Figure 5-6 A comparison of detection accuracy when rotating the input image. 40

Figure 5-7 Examples of cascade object detection applied to input bird images 41

Figure 5-8 Selection of the blade ROI ... 42

Figure 5-9 Thresholding and its results ... 42

Figure 5-10 Large displacement tracking via point tracking ... 46

Figure 5-11 Example of target motion and corresponding classification 47

Figure 5-12 Spatiotemporal filter principle ... 48

Figure 5-13 SSIM comparison between detections ... 49

Figure 5-14 Example false positive result in a window presenting the detection to the user. 50

Figure 5-15 Examples of repeating or user input FP detections .. 51

Figure 5-16 Example of successful tracking in the GUI .. 52

Figure 5-17 Example of unsuccessful detection and tracking within the GUI. 53

Figure 5-18 Different detected objects incorrectly tracked by the primary tracking system 55

Figure 5-19 Results seen by the user after program operation... 56

Figure 5-20 False positive quantities, including total and filtered ... 58

file:///D:/Thesis/Maurerw_%20Thesis_%20V2_5.docx%23_Toc443160416

Figure 5-21 Largest processing time for the overall program .. 60

Figure 6-1 Point tracking on balsa wood beam. ... 64

Figure 6-2 Tip displacement in millimeters versus frame number .. 65

Figure 6-3 Measured Tip Displacement versus True Tip Displacement 67

Figure 6-4 Checkerboard pattern ... 68

file:///D:/Thesis/Maurerw_%20Thesis_%20V2_5.docx%23_Toc443160447

1

1. Introduction

The first quarter of 2015 has shown a large increase in the growth of wind energy projects, with

13,600 megawatts of capacity under construction [1]. The implications of this near-record growth

go beyond the spread of a renewable energy source. Effects of wind farms, or large groupings of

wind turbines, on local and migrating birds and bats is not well understood. Due to the complexity

and varying fragility of ecosystems across the globe, each new wind farm poses a different level of

risk for damaging protected avian and bat populations.

Current methods for examining the collision risk a wind farm poses are generally costly,

cumbersome, or inaccurate. While Chapter 2 goes into the detail of these methods, they may be

summarized as follows: carcass retrieval and mortality estimation [2], collision risk modelling [3],

and observation [4]. Some budding techniques automate this monitoring process, by using various

sensors to continuously check for bird or bat interactions and collisions [5-8]. Automated wind

farm monitoring will play an important role in understanding how oceanic wind farms affect

seabirds, as the classic technique of carcass retrieval is made impossible by the setting. As a solution

to this need for automation in detecting avian and bat collisions with wind turbines, Oregon State

University and the University of Washington have proposed a multi-sensor solution [9].

This thesis looks to design and investigate a blade-mounted vision-based camera system for the

monitoring of bird and bat interactions and collisions with the wind turbine blade. The proposed

mounting location for the camera is on the root of the blade, positioned in such a way that the field

of view (FOV) captures the entirety of a single face of the blade. By filming a blade face during

standard wind turbine operation, the opportunity arises for monitoring both avian and bat collisions,

as well as flap-wise tip deflection. A further description of integration with the sensor array may

be found in Chapter 3.

2

Deliverables for this thesis include early iterations of MATLAB code for the avian

detection/tracking and blade tracking software, and analysis and proof of concept testing for both.

Also investigated, is the feasibility of selected hardware, case design for the on-blade components,

and future additions for this unit.

There are numerous benefits to having a blade-mounted camera. Identification of species that

collide with the wind turbine is perhaps the most important. The blade-mounted camera position

provides an optimal view of the bird or bat flying near or colliding with the turbine blade, and could

yield information regarding the nature of any impacts which might occur. Research has been

conducted for determining ways blade deflection can be monitored during operation [10-12], as

discussed in Chapter 2. Extreme situations may cause deflection beyond what the manufacturer has

specified, and having awareness of such occurrences can allow operators to examine the blade early

on.

The primary components of the system include a wireless micro camera, receiver, power source,

and transmitter; the components are reviewed in detail in Chapter 4. The software used for video

analysis will be programmed in MATLAB, and will be developed to a functional level, to

demonstrate the capabilities of the selected computer vision techniques.

The development of software is covered in chapters 5 and 6, split into avian monitoring, and blade

tip tracking respectively. Large wind turbines tend to rotate between 15-20 revolutions per minute,

or 90-120 degrees per second [13]. The challenges associated with mounting a camera on a platform

rotating at this rate includes a highly dynamic background, and extreme changes in lighting

conditions- solutions presented for avian and bat interaction and collision tracking were created

with these factors in mind.

Finally, chapter 7 outlines future work and considerations for applying this sub-system to real-

world applications. Considerations such as power sources, on-blade mounting, and component

3

longevity are discussed. Also highlighted, is the further testing and design needed to bring this sub-

system to a fully operational level.

4

2. Background and Literature Review

Understanding the risk that wind turbines pose to local and migrating bird and bat populations is a

complex task with high variance between locations. There is both public and private interest in

procuring accurate data pertaining to the mortality rates of birds and bats caused by wind farms.

Some wind energy companies must work to remain within the bounds of their incidental take

permits (ITPs) which allow for the accidental fatalities of endangered or otherwise protected

species [14]. Public opinion can have a large effect on the expansion of wind energy, therefore it is

imperative that accurate collision data is made available so that the impact of wind farms on

ecosystems may be properly evaluated.

The values obtained from studies examining bird mortality rates at wind farms are highly site

dependent. Data collected in a study by J. Everaert showed yearly avian turbine collisions in three

wind turbine locations in Belgium ranging from around 0 to 125 per turbine, and for 2002, averages

ranging from 18 to 35 [15]. Generally less studied than the effects of wind farms on avian

populations, is the impact of wind farms on endangered and at-risk bat species. Studies have shown

that the weather and migration patterns both affect bat mortality rate [16]. A concern that has also

been raised with bats is barotrauma, where the pressure change from wind turbine blades can cause

organ damage, however this aspect has not been well documented [16].

Current Non-Automated Methods

A common method of determining the rate of avian and bat fatalities on wind farms is the periodic

collection of carcasses. To address some of the primary sources of inaccuracy for mortality

estimation and provide a better comparison among estimates, K. S. Smallwood used past report

data to analyze and model several factors including the mean time to removal and proportional

remaining carcasses post-search [2]. Errors with this method stem primarily from scavenger

removal, search accuracy, and mortality estimation equations [2]. Mortality estimation is an attempt

5

at removing the bias of ground search methods utilizing correction factors in a mathematical model

[2], an example may be seen below:

𝑀𝐴 Adjusted mortality rate

𝑐̅ Average number of carcasses observed per year

𝑡̅ Mean number of days until carcass removal

p Searcher efficiency rate

I Search interval in days

This equation is a revision, the predecessor of which tended to provide mortality rates that were

approximately 23% too low [2]. With the large number of factors which affect the accuracy of

mortality estimation, biases tend to form favoring either high or low estimates [2]. These biases

can stem from variance in searcher efficiency, which is dependent on factors such as ground

vegetation; a tilled field will allow for easier searching in comparison to tall grass [2]. Scavenger

removal of carcasses is also variant, and may be dependent on time of year and the species of the

carcass; during autumn an increase in removal may occur as scavengers work to store extra fat for

winter [2].

Collision risk modelling is a predictive version of mortality estimation. Geometric factors such as

wind farm width, airspace volume, rotor size, and bird wingspan are combined to determine the

likelihood of a bird species coming in contact with a wind turbine [3]. Assumptions must be made

for this type of risk assessment, and one of the most impactful is the incorporation or exclusion of

avoidance behavior [3]. A lack of avoidance behavior models bird flight within the wind farm as

Equation 2-1

6

though the bird does not detect any presence of turbine structures [3]. To correctly model avoidance

behavior, observation is required, and such information is species and site specific.

Observation provides an alternative to carcass searches and estimation. This alternative can provide

more intimate details regarding avian and bat behavior in the presence of operational, non-

operational, and pre-construction wind farms. For example, Cindy L. Hull and Stuart C. Muir

performed a study which spanned across 875 days to examine the avoidance behavior of two eagle

species in Australian wind farms [4]. The detail learned from this type of monitoring is much

greater than the aforementioned estimation method. For instance, it was found that the Tasmanian

wedge-tailed eagle and white-bellied sea-eagle prefer to fly between 1.5 and 3 rotor diameters

through wind farms [4]. This type of information can lead to improved mortality estimation,

however it is costly in time and does not guarantee accuracy between differing species and wind

farm locations.

Automated Monitoring for Birds and Bats in Wind Farms

Non-automated monitoring methods generally are affected by uncertainty (mortality estimation) or

personnel hours required (observation). Automation of the observation and monitoring process for

wind farms provides an alternative which allows for both greater accuracy in collision statistics,

and lowered time and cost. Wind turbines on off-shore locations create the issue of difficult to

impossible carcass retrieval, and poor location for long term observation.

There are numerous methods for automating the monitoring process on wind farms. There are

several companies which have commercialized approaches to this issue, some examples including

the DeTect Merlin Avian Radar System [5], and DTBird [6]. Other systems include WT-Bird which

was developed by the Energy research Centre of the Netherlands (ECN) [7], and a system being

investigated by the California Energy Commission [8]. Each of these solutions will be summarized

in order to provide insight to current methods.

7

The Merlin Avian Radar System by DeTect is based off of technology developed for use by the

United States Air Force and NASA, in order to increase the safety of operations by ensuring

minimal avian activity near mission sites [5]. The equipment necessary for this radar technology

can be placed on-site and controlled remotely using a variety of techniques [5]. The number of

birds passing through the radar swept region may be used in order to improve collision risk

assessment, and provide an early warning system for operators for the approaching of flocks [5].

DTBird is a system of hardware and software dedicated to detecting birds in wind turbine airspace,

and optionally taking preventative measures to avoid collision [6]. Four to eight high definition

cameras create a 360 degree field of view for the detection system, which is setup to include the

rotor sweep [6]. Preventative measures includes two possibilities, the Collision Avoidance Module,

and the Stop Control Module [6]. The Collision Avoidance Module emits warning tones when birds

enter high risk flight paths near wind turbines, with the purpose of dissuading collision [6]. The

Stop Control Module brings the wind turbine to a complete stop between 20-40 seconds after the

system has been triggered, to allow safe passage for the bird setting off the module [6]. Finally a

secondary monitoring system, referred to as the Collision Control Module, provides vision and

auditory based monitoring around the rotor sweep to record any collisions which may occur [6].

The Energy Research Centre of the Netherlands has developed a wind turbine detection system

referred to as WT-Bird, which is comprised of video cameras and contact microphones [7]. Contact

microphones placed on the inside of the tower continuously check for vibrations which do not

follow the usual patterns caused by typical operations [7]. Cameras are placed in multiple locations:

one looking up from the mid-section of the tower towards the rotor sweep, and another looking

from the nacelle towards the rotor sweep [7]. Abnormal sounds cause analysis of video recorded

around a given time-span of the instance, which allows for bird recognition during interactions or

impacts with the wind turbine [7].

8

The Public Interest Energy Research Program, or PIER, is an organization under the management

of the California Energy Commission. In 2007, PIER released a report outlining an automated wind

farm bird and bat collision detection system [8]. The purpose of this particular study was to

investigate the feasibility of an array of sensors (to be retrofitted on current wind turbines or

incorporated into new turbines), including accelerometers, fiber-optic sensors, non-contact sensors,

radar and infrared, and acoustic emission sensors [8]. In terms of ease of implementation and

overall cost, acoustic emission sensors were found to be the optimal choice, since there is no need

for on blade installment of the microphones, and microphone cost tends to be low [8]. The use of

radar or vision based techniques was found to be less than ideal for collision detection when utilized

on their own, due to the difficulty of deciphering between a bird or bat fly-by versus collision [8].

Avian Vision-Based Detection and Tracking Methods

Vision based avian detection systems are created for a wide range of applications, including

ecological purposes and airport safety. There is more computer vision research pertaining to

ornithological applications, however many of the techniques may translate well to bats.

In Hierarchichal Incorporation of Shape and Shape Dynamics for Flying Bird Detection, Z. Jun, X.

Qunyu, C. Xianbin, Y. Pingkun, and L. Xuelong present the design and testing of a novel bird

detection system [17]. Detection is two-fold, first performing shape based confirmation of the bird,

followed by an analysis of bird movement [17]. Bird flight is categorized in four states, which

comprise the entire flapping process [17]. The hierarchical structure maintains computational

efficiency by removing obvious non-bird targets via shape analysis before moving on to more

process-heavy dynamic shape analysis [17]. This method demonstrated a high detection rate and

low false positive quantities, including when used with videos that incorporate noise and low

contrast [17].

9

Webcams are a technology that can be found in a myriad of locations. By adapting computer vision

techniques to be used with these affordable cameras, these devices can be used to collect data

pertaining to bird’s migration patterns [18]. W. W. Verstraeten et al performed experiments to

investigate the validity of using webcams for the detection and three dimensional tracking of birds

(for determining flight velocity and altitude) [18]. One of the experiments conducted involved the

use of a pendulum to test the detectability of varying sizes and contrasts between targets and the

background [18]. The results of this experiment showed that using background subtraction, as the

velocity of the target increased, it became harder for lighter targets to be detected (against a white

background) [18]. This relationship is key for more than background subtraction methods- as the

contrast between a target and the surrounding environment is lowered, many detection methods

may become faulty [18]. Accounting for lens distoration, managing multiple moving objects,

calculating distance, and analyzing error were also performed in this report to develop a bird

tracking system [18].

In “Automatic Bird Species Detection from Crowd Sourced Videos”, W. Li and D. Song designed

two algorithms, one to extract avian inter-wing tip distance across time, and another to determine

the wingbeat frequency and estimate the species of the avian target [19]. An important feature of

the work outlined in this paper is the use of optical flow to decipher between background and

foreground [19]; a large benefit of this method over background subtraction is the allowance of

camera motion from crowd sourced videos [19]. Fast Fourier Transform applied to the inter wing

tip distance time series provided the wingbeat frequency, which is used to estimate the species [19].

Experimentation showed successful extraction of inter-wing tip distance and wing beat frequency

[19]. Robustness to error caused by foreground extraction, species prediction accuracy, and

behavior when the most current inter-wing tip distance is not available was also tested [19].

A wind turbine blade mounted camera brings about challenges that are uncommon to many bird

detection and tracking computer vision applications. The rotational velocity of the wind turbine

10

blade can create large displacements between frames, which depending on the camera framerate

and other factors, may cause certain methods to not be a viable option. A limited number of frames

containing the target leaves little room for analyzing flight.

Blade Deflection

Mounting a camera on the root of a wind turbine blade has the potential for monitoring blade

deflection. From a recent report, the annual blade failures were estimated to be around 0.54% of

the current number of blades in operation (approximately 3,800 out of 700,000) [20]. There are a

number of sources which could contribute to the failure of a blade, such as operational failures

which lead to loading which exceeds the rated amount [21]. One way of monitoring the stresses

within the blade is to examine the deflection of the tip (the point of greatest deflection). To make

use of the on-blade camera for measuring blade tip deflection, the system serves an additional

purpose and bolsters its appeal for mass wind farm use.

The National Renewable Energy Laboratory in Golden, Colorado developed and tested an optical

blade position tracking system, with the purpose of determining a low cost method for monitoring

the loads seen by the wind turbine blade [10]. A standard webcam with infrared LED lighting was

mounted at the blade root with a light filter on the lens, while reflective strips were placed along

the wind turbine blade, allowing the lighting from the webcam to bounce back to the lens [10]. A

bend test of a wind turbine blade provided a comparison between measurements using the optical

method and string potentiometers [10]. Testing provided a low mean error between the

measurement types, and demonstrated the viability of the system [10].

The work of X. Fu, L. He, and H. Qiu shows promise for the utilization of MEMS gyroscopic

sensors in combination with an articifical neural network for measuring blade deflection on wind

turbines [11]. For testing, each blade on a 100m diameter wind turbine was outfitted with a MEMS

gyroscopic sensor 20m from the blade root [11]. Data collected from these sensors during operation

11

was compared with data obtained from a laser measurement device attached at the tower (making

measurements for each blade once per rotation) [11]. The accuracy of the MEMS sensors came out

to +/-0.4m, when comparing the data to that of the laser measurement device, the accuracy of which

is approximately 1 centimeter [11].

P. Giri, and J. R. Lee explored a real-time deflection monitoring system for use with wind turbines

[12]. The proposed system projects and receives the reflection of a laser emanating from the tower

of the turbine [12]. With this laser displacement sensor (LDS), experiments including bolt

loosening, nacelle tilting, and blade mass removal were performed to examine the corresponding

blade deflection [12]. The experiments suggested that this method is an effective way to both

measure and infer the cause of blade tip displacement [12].

The use of an on-blade camera for blade tip deflection measurement provides a constant monitoring

scheme for providing real-time feedback. Preventing turbine failure is one of the foremost reasons

for implementing this software, however it also has the added value of examining blade deflection

across large periods of time. Understanding the deflection of large composite wind turbine blades

will provide key insight to the cyclical loading seen during operation for a range of conditions. This

information may ultimately reduce the number of wind turbine blade failures, thus cutting costs of

blade replacement, and most importantly increasing the safety of the system.

12

3. Proposed Solution and System Integration

The large size, and dynamic state of operational wind turbines makes them a particularly difficult

structure to monitor. A solution posed by Oregon State University, and the University of

Washington, aims to use an array of sensors to continuously monitor wind turbines for avian and

bat interactions and collisions [9]. The application of the sensor array is designed for use with off-

shore wind turbines, however the system has the potential to be used with land based turbines

without modification [9]. The array is comprised of vibrational sensors, vision based cameras, and

IR cameras, and bioacoustic microphones [9].

The sensor array utilizes wireless accelerometers and contact microphones, which may be placed

on the tower, nacelle, or blades of the turbine [9]. Using batteries and wireless transmitters, the

vibrational sensors require minimal support structure to operate [9]. The vibrations caused by an

impact on a wind turbine will vary based on the size and speed of the object colliding, as well as

the location of the sensors on the wind turbine; in order to decipher between operational and

collision caused vibrations, wavelet analysis is performed on the digitized signals [9]. An important

aspect of this method is its ability to be used in real-time. When a collision does occur, the

vibrational sensors can act as a trigger mechanism for vision based sensors, and for data storage

purposes [9].

Vision and infrared based cameras were explored for the purpose of taxonomic classification,

detection of flybys and collisions, and capturing bird or bat interactions with the wind turbine for

later review [9]. There were five camera locations suggested including [9]:

 Nacelle with a FOV intersecting the rotor plane

 Nacelle with a FOV above the rotor plane

 Tower with the FOV facing an upwards direction

13

 Adjacent tower with the FOV intersecting the rotor plane

 Root of the blade with a FOV that covers most of one face of the blade

The latter option, with the camera mounted on the root of the blade is what this thesis will develop.

The reasoning behind this mounting location lies mostly in its ability to capture the critical footage

of impacts, which provides the most solidifying evidence of bird or bad collisions with the wind

turbine. Another attractive feature of the on-blade camera location is its ability to track the blade

tip position, which when used with real-time processing, allows for an alert system when severe

deflection occurs.

Figure 3-1 Diagram of the FOV on a wind turbine.

All data will be relayed to a central computing unit inside the nacelle [9]. The purpose of this

computer is to apply algorithms and computational techniques to the raw incoming data from the

transducers and cameras [9]. A central computing unit allows for easy data storage and analysis at

a single location, which can then be relayed to external locations for evaluation [9]. A single camera

14

node (containing both visual and IR cameras) can output data at a rate near 1 Gbps [9]; applying

vision-based algorithms to such large quantities of data is a resource intensive process, and storage

for the videos becomes near-impossible with one hour of footage requiring around 3.6 Tb. A

possible solution for this problem is the use of ring buffering, where data is stored before and after

an event, creating a temporal “buffering” zone [9]. Infrared cameras are generally associated with

simpler computer vision techniques, and may be able to run in real-time as an additional triggering

mechanism for the ring buffering architecture [9]. Vision based data can be stored around the time

of an event detected by vibrational sensors, and analyzed sub-real-time [9].

The blade mounted camera will provide a constant transmission of video data to the central

computing unit. All video processing will be performed in the central computer, limiting the

amount of components and stored power needed within the camera housing. There are two possible

methods of processing for this on-blade camera, including sensor triggered ring buffering, or real-

time vision based triggering for event storage. The benefit of real-time processing is the ability of

the on-blade camera to check for flybys and impacts without input from the other sensors.

Automated taxonomic classification, which is a future addition for this system, will be performed

using vision-based data, and recordings from bioacoustic microphones [9]. As a possible future

addition, the use of two cameras at any of the camera mounting location can provide binocular

vision, which allows for determination of the size of the bird or bat. Size is generally measured by

wingspan or body length, and is a key factor in determining species. The importance of taxonomic

classification lies in its ability to further automate the turbine monitoring process, and alert wind

farm operators to the presence of collisions or interactions between turbines and endangered or at

risk species.

15

4. Hardware and Validation

In this chapter, hardware is selected and validated. Housing for the on-bade camera is designed and

manufactured.

Camera Hardware

The camera selected needs to have a number of requirements for on-blade installation. Automatic

adjustability of shutter speed for brightness changes, low power consumption, small profile, and

sufficient resolution are desirable. The Sentech STC-N632 is an NTSC board type CCD micro-

camera which provided the needed for this application (see table 4-1). Additionally, this camera

supports an assortment lenses for varying focal length and thus FOV. This camera is designed to

endure a range of humidity, temperatures, and a high level of vibrations- important factors for wind

turbine applications [22].

Table 4-1 Sentech STC-N632 Camera Specifications. Obtained from Sentech mfg. specifications [22].

Sentech STC-N632 CCD Camera Specifications

Electronic Specifications

Imager

1/3” Interline NTSC CCD:

ICX638AK (Sony)

Active Picture Elements 768 (H) x 494 (V)

Chip Size 5.59 (H) x 4.68 (V) mm

Cell Size 6.35 (H) x 7.4 (V) µm

Scanning System 2:1 Interlace

Vertical Frequency (Frame Rate) 59.94 Hz

Horizontal Frequency 15.734 kHz

Resolution 480 TV lines

S/N Ratio More than 48 dB (Gain 0 dB)

Minimum Scene Illumination 0.53 lx at F1.2

16

Sync. System Internal

Video Output 1.0Vp-p with 75Ω

Shutter Speed

Electronic Iris/Fixed Shutter

(Software Selectable)

Gain

AGC/Fixed Gain (Software

Selectable)

Gamma 1/0.45 (Software Selectable)

Input Voltage DC +7V to +13V

Consumption Less than 1.0W

Mechanical Specifications

Dimensions 26 (W) x 26 (H) x ** (D) mm

Optical Filter IR cut filter

Weight 12g (without lens)

Environmental Conditions

Operational Temperature/Humidity

-10 to 45°C; 0 to 85%

(relative humidity with no

condensation)

Storage Temperature/Humidity

-30 to 65°C; 0 to 90%

(relative humidity with no

condensation)

RoHS RoHS Compliant

NTSC cameras, with a frequency of 59.94 Hz, display around 60 fields per second [23]. Fields are

horizontal lines that alternate between blank space and information from the frame, in such a way

that two consecutive fields combine to create a whole image [23]. Due to this alternating

characteristic, digitized NTSC footage translates to 30 frames per second (FPS) [23]. The advantage

of interlacing is a reduction in bandwidth [24], an important factor for wirelessly transmitted video.

17

A 25 mm focal length M12 lens was selected to apply to the CCD camera. Before making this

decision, the FOV needed to be calculated for the lens and camera combination, to verify that it

would be sufficient to capture most of the blade face. The FOV should encompass as much of the

blade face and its surroundings as possible, while not being so large as to severely degrade the

resolution of targets at a distance. The FOV is comprised of two angles, which will be referred to

as the horizontal and vertical FOV. The calculation for these angles requires values for the focal

length and sensor dimensions [25]. This FOV calculation may be seen below in equation 4-1 and

figure 4-1.

Figure 4-1 Schematic Representation of Camera FOV.

The vertical FOV is calculated in a similar method. The sensor width is determined using the pixel

size, along with the number of pixels in the corresponding direction. Pixel size is interchangeable

with cell size, so 6.35 (H) x 7.4 (V) µm is used. The cell is the light sensing diode which is used in

digital cameras. The horizontal and vertical FOV were found to be 11.14° and 8.36° respectively.

For taxonomic identification purposes, the bird or bat being observed must have a sufficient number

of pixels so that critical features may be visible. In order to ensure the selected hardware provides

enough resolution, an avian target and observation distance were selected, and the pixel density for

Equation 4-1

18

the target was determined. The chosen target was a marbled murrelet, a smaller endangered oceanic

bird species [9].

It is important to consider the largest possible blade length to obtain the most conservative pixel

density estimate. General Electric is looking to construct a 10 MW turbine testing facility,

indicating that in the near future, offshore wind turbines may have even larger blade lengths than

those currently used [26]. The blade length of the GE 10 MW turbine is unknown, so an estimation

was created based on current production turbines. The data and MATLAB code for this estimation

may be found in Appendix A.

The estimate of the GE 10 MW blade length provided a turbine blade length of 98.2 m. This blade

length was used as the observation distance for target pixel density calculations. The marbled

murellet was modelled as a 23 by 23 cm box for the sake of simplicity. A second MATLAB script

was written to calculate the pixel density of the target at a specified distance, and provide visuals

of the pixel size across the turbine blade. Figure 4-2 shows the outputs of the program, and

supporting code can be found in Appendix B. The program was designed to allow for vertical

camera tilt, as adjustments to this angle may ultimately be needed for optical FOV placement. For

the purposes of this initial analysis, the direction of projection (DOP) for the camera was offset

from the turbine blade face by 4°, and the camera was assumed to be at the root of the blade.

Calculations for pixel size were made by rotating the DOP, while holding the view plane at a

specified distance, and normal to the length axis of the blade.

19

The estimated number of pixels in the 23 by 23 cm region of the marbelled murrelet is 73. As

demonstrated in figure 4-3, the pixilation is severe enough to make identification difficult based on

discerning features, however the general shape and coloration are still present. A comparison of

pixel and target areas may be found in Appendix B. From this analysis, the Sentech STC-N632

CCD camera and 25mm focal length lens should be sufficient for this on-blade system.

Figure 4-2 Pixel area versus position along length of turbine blade.

20

Figure 4-3 A representation of pixilation, similar to a 23 by 23cm target at 100m from the Sentech STC-

N632 camera. The image on the right approximates the pixilation estimated by the pixel size calculations.

Transmitter and Receiver Systems

A wireless transmitter will stream video from the micro-camera to the central computer. The

transmitter will be connected with the camera and mounted on-blade, while the receiver will either

be mounted in the nacelle with the central computer, or in a line of sight (LOS) location from the

transmitter. The transmitter need a small profile and low power consumption. The SDX-26 2.4 GHz

audio/video transmitter, whose specifications from [27] may be found in table 4-2, provides the

qualities needed for this application.

Table 4-2 SDX-26 2.4 GHz audio/video transmitter specifications. Obtained from RF-Links specifications

[27].

SDX-26 2.4 GHz Audio/Video Transmitter Specifications

Smallest Size 0.5 x 0.5 x 0.12 in

Voltage Range 4.5 – 6.5 V

RF Power 25 mW/ 5.5 V

Current Consumption 60 mA/ 9 V

Picture quality Broadcast

TV Systems NTSC, PAL, or SECAM

21

Video Signal 1 V, 75 Ω

Frequency 2300 – 2500 MHz (Single Channel)

Channels 4 Channels

To communicate with this transmitter, the multi-channel VRX-24L Audio/Video Receiver was

chosen. The size and power consumption of the receiver are less important than those of the camera

and transmitter, due to its mounting location. Strong reception and low cost are the foremost reasons

for selecting this receiver. Table 4-3 outlines the specifications from [28] of the VRX-24L.

Table 4-3 VRX-24L Audio/Video Receiver Specifications. Table Obtained from RF-Links specifications

page for VRX-24L receiver [28].

VRX-24L Audio/Video Receiver Specifications

Operating Frequencies 2300-2500 MHz

Channel 1-8

DC Voltage 9-12 V

RF Power N/A

Minimum Required Voltage 9 V

Battery Power 12 V/ 300 mA

Video Distortion 3%

Sensitivity -92 dBm

Video Format PAL, NTSC

Current Consumption 280 mA/ 9 V

Antenna Recommended High Gain, Omni Directional Ant.

Antenna Connector SMA

Impedance 50 Ω

Video Output Connector RCA F

Video Impedance 75 Ω

22

Two Audio Outputs 300 mV per channel

Carrier Frequencies for Audio Channels 6 MHz and 6.5 MHz

Temperature Range -25 to 65° C

Dimensions 2.5 x 5.7 x 0.8 in

Weight 200 grams

Demodulation WFM

System Power

To power the micro-camera and wireless transmitter, a single 120 volt AC to 12 volt DC wall power

supply was initially used. When mobility was required during testing or otherwise, a 3 cell in-series

lithium polymer battery pack was used, providing 12 volts at nominal.

While the camera operates at the voltages provided by the wall power supply and battery, the

transmitter needs a lower voltage. The solution was to wire the camera, transmitter and resistor,

and power source in parallel. The current consumption of the transmitter is known from the

manufacturer specifications (table 4-2), and the voltage drop before the transmitter needed to be

between 5.5 and 7.5 volts. For testing and early design, a simple resistor (100 Ω) in series was

utilized to drop the voltage. The current consumption of the transmitter is relatively constant, so

heat dissipation is the primary concern of using this voltage drop method. Figure 4-4 shows the

wiring diagram for the camera system and breadboard implementation used to verify the circuit

design.

23

Figure 4-4 Micro-camera circuit design and breadboard implementation. The yellow wire represents the

video signal distributed between the camera and transmitter.

Power distribution for the final system, discussed in Chapter 7, will require circuitry beyond what

is presented here.

Hardware Validation

Fast target-camera relative motion and large contrast changes can compromise video quality. The

electronic iris of the Sentech STC-N632 allows for a change in shutter speed, or exposure time,

based on lighting conditions in order to achieve the correct amount of contrast. If large changes in

lighting conditions between frames are present, the electronic iris may not be able to adjust fast

enough, causing the resulting frame to appear either too dark or light. The interlacing of NTSC

cameras does not perform well with fast motion, since each field is captured at different points in

time. Rapid displacements of an object can cause faulty interlacing, with motion artifacts. These

defects in the frames could generate issues for computer vision software, and thus should be

mitigated.

To explore the extent of these issues with the selected camera, a rotation rig was designed and built

(Figure 4-5). A high torque 12V 15 RPM motor is mounted on a Manfrotto video tripod. The battery

and camera/test casing are spaced so the moments generated about the motor shaft are balanced.

Using the built in spirit level, the rotating platform can be angled as desired.

24

Figure 4-5 Camera rotation rig. On the left is the overall rotation rig, which is balanced about the motor

shaft. On the right is the 3D printed tripod/motor-mount connector.

Using indoor fluorescent lighting, the Sentech camera was used with the rotation rig to qualitatively

observe the effects of rotational motion on video quality. The left image in Figure 4-6 displays a

resulting frame from the recorded video, and the right image shows what the target with the camera

motionless. The severe motion blur and poor interlacing can likely be attributed to the low lighting

conditions, which causes the electronic iris to set longer shutter speeds. The shutter speed can be

locked at a single rate, however the electronic iris will be required for outdoor applications where

lighting conditions are variable within each rotation.

Figure 4-6 The effects of motion and lighting on image quality.

In order to test the video quality in a more realistic lighting setting, the rotation rig and camera

components were taken to an outdoor setting. A light meter application was used to measure the

lighting conditions, which came out to 31500 lux, and 6650K. The sun overhead and tree foliage

25

provided changes in lighting within each rotation. The target was distorted during several passes

due to poor interlacing, however overall the video quality was significantly better than that from

the indoor test. The linear interpolation deinterlacing MATLAB function was applied to the video

(this method produced the best results with this footage), the results of which may be seen in Figure

4-7. The deinterlacing MATLAB function is an algorithm which uses a selected method to correctly

align the fields in a video to remove motion artifacts [29].

Figure 4-7 Deinterlacing frames containing significant camera motion. On the left is the original footage

with significant motion artifacts. On the right, it can be seen that by detinterlacing a frame the motion artifacts

can be significantly reduced.

To verify the pixel calculations made earlier, field testing the camera was set at a distance of one

blade length of a Vestas V90 wind turbine from a 23 by 23 centimeter target (see figure 4-8). The

composite to USB video capture device crops the video to 720 (H) by 480 (V) pixels, so the pixel

calculator was modified to account for this and the new distance. 345 pixels were estimated to be

within the 23 by 23 centimeter target. The perimeter surrounding the target on a single frame was

determined, and the area was calculated. The area was calculated to be 320 pixels, which provides

a percent difference of around 7%. This error may be attributed to incorrect positioning of the

target, and rounding between pixels.

26

Figure 4-8 Target area calculations. A 23 by 23 centimeter target was set at 45 meters (simulating a

Vestas V90 blade length) from the camera. The corresponding image was analyzed by calculating the

number of pixels within the target.

Camera Casing

The on-blade camera and corresponding components will require housing to protect the electronics

from the elements and provide secure mounting to the blade. As discussed in Chapter 3, the housing

may also contain vibrational sensors such as a contact microphone or accelerometer. For the

purposes of a test enclosure, and demonstration of early design, a rapid prototyped casing was

designed and printed. The casing had to be able to house a battery, micro-camera, and transmitter-

all while being as compact as possible. Future iterations of the design are discussed in Chapter 7.

The proposed mounting location for the camera is on the root of the blade, placed so that the FOV

encompasses the entirety of the face of the blade. Generally, for large wind turbines such as the GE

1.5MW, the turbine blade transitions from an airfoil style cross section from the tip and across the

27

face of the blade, to a circular cross section near the root. This circular cross section is large in

diameter, so a small camera mounted tangentially should have a nearly flat surface on which to be

placed. If placed correctly, the camera should be able to observe any avian or bat interactions and

collisions occurring near the face of the blade on which it is mounted.

Mounting of the casing may be tricky, requiring either a scissor lift or access from the nacelle

depending on the turbine. Adhesive strips along the bottom of the case, and pull tabs for easy

removal, should provide sufficient mounting of this lightweight design. Moisture, and the acidity

in rain water may degrade the adhesive bond over time. Vibrations, aerodynamic forces, and the

seemingly ever present pull of gravity comprise the three elements which will ultimately lead to

the failure of this joint.

3D printing is an excellent manufacturing choice for the on-blade camera casing. The quantity

needed would be relatively small, which fits the longer lead time of printing a large part. Printing

allows for easy manufacturing of complex shapes and contours, while requiring a minimal amount

of hands-on work. This manufacturing method also opens the door for on-site production of the on-

blade system, which could reduce the costs of implementation for wind farms. Another benefit is

the ease of modification of the casing, should a wind farm require a differing bolt pattern, shape,

or other change in features.

For testing, a three cell (11.1V nominal) lithium polymer battery was selected to support the camera

and transmitter. The battery chosen was high capacity to support multiple tests across a span of

several days, with the battery connection being unplugged between uses. The primary tradeoff of

this high capacity battery is the need for larger housing. Maintaining a low profile in the casing

design is imperative for a marketable unit, which will be sleek in appearance and create a negligible

drop in efficiency in the turbine blade.

28

Figure 4-9 Camera casing expanded view.

The camera casing was designed to be as compact as possible, while maintaining an aerodynamic

shape in the direction of airflow. Support structure for holding components in place was designed

to be robust but minimal to reduce the amount of material needed for printing. The final drawings

specifying key dimensions may be found in Appendix C. Bolt holes and hexagonal cut regions for

nuts were sized with additional space, to account for the tolerance of the 3D printer selected. On

the trailing side of the camera casing, a heat sink was added for a voltage drop unit before the

transmitter: maintaining a low temperature within the case is important for extruded materials.

Figure 4-10 3D printed camera casing.

29

The first iteration of the camera case (figure 4-10) was printed using PLA plastic, whose brittleness

and low melting temperature make it less than ideal for a final case. ABS plastic is a common 3D

printed (extruded) material, which should be easily used for this casing if the proper 3D printer is

utilized. A heated bed and closed printing area are especially important for larger and detailed print

jobs. Some warping of the base plate was noticed after the printing process, as seen in figure 4-11.

The bolt holes and hexagonal sunk regions were correctly sized, and the dimensions provided

adequate spacing while not being loose. Assembly time was low, requiring around a half hour for

bolting the casing together, applying an aluminum heat sink, and sanding the outside of the case.

Figure 4-11 Warping of the camera casing base plate.

30

5. Software Development: Avian Detection and Tracking

In this chapter, program architecture for avian detection and tracking is determined. A preliminary

version of vision-based avian interaction and collision sensing program is developed in MATLAB

and tested. The performance of the program is examined, which dictates whether this program will

run continuously during the day, or be triggered by other sensors.

Overview

For the purposes of this program, daylight is assumed for operation. Additionally, although bat

flybys and collisions could occur during the day, only birds will be evaluated in this version of the

program. Any daytime monitoring techniques investigated here should apply similarly to bats.

There are two types of interactions this program is concerned with: a flyby, where the subject enters

the blade-mounted camera FOV, but does not collide with the blade, or a collision, where the

subject has direct impact with the turbine blade. Collisions are of primary concern for wind farm

operators, so being able to rate the likelihood of a collision versus a flyby is imperative.

In future versions of the program, images of avian interactions and the likelihood of collision will

be coordinated with data from the other vision-based, vibrational, and bioacoustic sensors. The

program developed in this chapter outputs graphics for user review and evaluation of program

performance.

Having a camera mounted on a wind turbine blade poses challenges for vision-based algorithms

including a dynamic background and vastly varying lighting conditions. Shadows, cars, light

blooms, and other wind turbines are just a few of the factors which may present themselves within

the FOV during operation. Cameras mounted on offshore wind turbines will see waves, whose

constantly changing structure creates textures that may generate a large number of FP instances.

31

Despite these detracting factors, there are a number of aspects owed to the nature of this camera

placement which can be taken advantage of in the program. Assuming constant blade pitch and

turbine yaw:

 Objects which are stationary, or nearly stationary, such as buildings, clouds, and hills,

appear to move in the same direction from the perspective of the rotating camera. (Figure

5-1)

 Stationary objects will follow the same path across the image plane during each rotation,

while moving objects may deviate or disappear depending on their trajectory. (Figure 5-1)

 The face of the blade for large wind turbines is generally white and free of markings, which

provides an excellent background for thresholding.

In actuality the turbine may change pitch or yaw based on wind conditions, however adapting to

these changing conditions is a feature to be addressed in later versions of the program.

As data from [15] suggests, even regions containing high bird mortality rates present a low quantity

of collisions when considering the amount of time captured on camera versus the quantity of events.

Due to this low frequency, it is key that the program have a true positive (TP) rate approaching

100%. A TP refers to the correct labeling of a target by the program. It is far more important to

capture a bird flyby or collision and have a high FP rate, than to have zero FP instances and not

record a collision. Filtering and the use of data from other sensors may provide a means for

eliminating FPs. Birds may also appear in flocks instead of a single target, requiring the ability of

the program to handle several targets in the FOV at any given time.

32

Figure 5-1 Frame of Reference. The upper image represents the 3D world coordinate system. The middle

image shows the perspective of the blade mounted camera when the turbine is stationary. The bottom image

shows the apparent motion of all objects in the view plane during turbine rotation.

Overall Structure

The overall structure of the program is designed to take an input video (.mp4, .avi, etc.), and using

a for-loop, obtain one frame at a time for analysis. At the conclusion of the video, the data obtained

is analyzed and presented to the user. Avian detection is the forefront of the program after video

33

input, and the chosen method has a large effect on the overall performance of the program for

successfully classifying instances. Figure 5-2 outlines the general program architecture that is be

used.

Figure 5-2 General program architecture. The input video is loaded into the program. Detections and event

data are extracted for each frame. Event data refers to any additional information pertaining to the detection

or otherwise which is used for later analysis. At the conclusion of the video analysis, the final two sections

occur: filtering, classification, data presentation, and updating the detection system. This format does not

reflect a real-time format.

The structure used for this version of the program is conducive to a saved video input, however it

will need modification to be paired with a live video stream. The speed of operation provides insight

to determine the feasibility of real-time avian and bat interaction detection. To demonstrate the

operation of the program when operating as triggered by other sensors, an option is incorporated

into the MATLAB program allowing for an input signal to trigger video analysis.

34

Figure 5-3 Opening User Prompt. To facilitate the use of this program, the user is asked for their input

pertaining to various settings pertaining to operation.

Instead of analyzing the entire video, the triggering setting analyzes a frame buffer surrounding the

time of the event as determined by a peak in the signal. The units of time for the input signal must

be converted to frames, which correspond to frames within the video (figure 5-4).

Figure 5-4 Example of input signal simulating vibrational sensor data including a collision. This signal

would have a frame buffer surrounding the spike in acceleration around the 10th frame. That frame buffer

would then be analyzed by the program, as opposed to the entire video.

Filtering, classification, data presentation, and updating the detection system have a post-

processing format, where they operate after the video is done being analyzed. In a real-time setting

these items would need to be reconfigured to support frame-by-frame analysis. The overall program

architecture may be seen in detail in Appendix D, and the MATLAB code along with all supporting

functions may be found in Appendix E.

35

Detection Options

As a starting point for the program, a detection method was selected. The purpose of detection in

this program is to determine the presence of birds in the frame. Two methods of avian detection

were examined, including optical flow and cascade classification. Both of these methods are

supported by MATLAB Computer Vision System Toolbox, which is a collection of image and

video processing algorithms. A commonly used technique for determining the presence of a bird,

or other moving target, is frame differencing. Frame differencing compares two video frames, and

looks for changes between the two in order to differentiate between the background and foreground

[30]. A binary image represents the difference between the frames, by highlighting foreground with

high intensity pixels. Background subtraction uses a learned “background” image, which is

removed from the current frame, yielding the foreground [30]. The basic differencing techniques

lose their viability with camera motion and changing lighting conditions.

Optical Flow

As explained earlier, a bird flying through the FOV will likely not follow the motion flow field

induced by the rotating camera. In order to take advantage of this potential deviation in motion,

optical flow was investigated as a detection method. Two methods provided with Computer Vision

System Toolbox includes Horn-Schunck and Lucas-Kanade. These optical flow methods originate

from the constraint of brightness consistency. Brightness consistency dictates that the intensity of

a point on an image should remain the same after a small change in time and position [31]. With

an image coordinate system x and y, the following equation is derived [31]:

Expanding the right side via Taylor series, and truncating to the first order terms [31]:

Equation 5-1

Equation 5-2

36

Combining equations 5-1 and 5-2 produces the following [31]:

Or, by dividing by the partial derivative with respect to time [31]:

The movement of pixels across the image can now be obtained using equation 5-4. With the two

unknowns, u and v, additional constraining equations are needed. Horn-Schunck utilizes a global

technique, meaning that the entirety of the image is analyzed at once [32]. The error of the optical

flow and deviation from global smoothness is combined, and the resulting equation is minimized

by setting the derivative (with respect to u and v separately) to zero [32]. Iterative solving then

allows for u and v to be determined [32].

Lucas-Kanade developed a local method for optical flow, which uses small pixel neighborhoods

[33]. For example, considering a 3x3 pixel cluster, applying the brightness consistency equation

(equation 2) to each pixel would yield 9 linear equations [33]. The motion (u,v) is then assumed to

be constant within this neighborhood [33]. By putting these equations into matrix form, Least

Squares may be used to find a single approximate solution to this over-constrained system [33].

Both of the aforementioned methods have their benefits and drawbacks. The global smoothness

constraint of the Horn and Schunck method limits extreme deviation from the motion field [34].

Lucas-Kanade has difficulty determining optical flow in regions of similarity, or when the gradient

is completely random [33], such as speckle. Due possible large deviations from the motion field

during blade rotation, and lack of large homogeneous surfaces (barring the blade face, which does

not need to be tracked), Lucas-Kanade was determined as the primary method to be tested.

Equation 5-3

Equation 5-4

37

The footage obtain in Chapter 4 during field testing with the Sentech camera and rotation rig is

suitable for testing the reliability of Lucas-Kanade optical flow for estimating motion flow fields

with on-blade applications. Brightness changes seen during rotation are similar to that obtained

from an on-blade camera. By applying the Lucas-Kanade method to this footage, observations can

be made about the ability of the algorithm to determine the motion flow field during fast camera

rotation.

Figure 5-5 Lucas-Kanade Optical Flow Method. An example of optical flow applied to rotating camera

footage, with low and high level noise filtered. The lines are motion vectors between frames, and are scaled

to represent the actual distance travelled by a pixel.

The fast rotation rate of the camera (15 rpm) in combination with varying lighting conditions caused

significant noise with optical flow. A low and high pass filter were applied in order to reduce noise,

however the results were not significant enough to mitigate the severe noise present in regions

containing large shifts in illumination (figure 5-5). Additionally, if a bird flies within the blade

sweep plane, it may not deviate enough from the motion flow field to stand out. Due to the apparent

limitations of the basic optical flow algorithms offered on MATLAB, the solution of optical flow

was dropped in favor of another technique.

38

Cascade Object Detection

The use of objection recognition is a wide area of research within computer vision. The MATLAB

Computer Vision System Toolbox offers a trainable cascade object detector, for the recognition of

objects which do not vary greatly in terms of aspect ratio [35]. This decision tree detector is trained

using supplied negative and positive image datasets, the latter of which may be labelled using a

built in image labeler [35]. There are three choices of feature types integrated into the MATLAB

cascade classifier, including Haar, local binary patterns (LBP), and histogram of oriented gradients

(HOG) [35].

HOG features are found by examining the distribution of intensity in a small, generally square,

region in an image in order to approximate the direction of the gradient using a histogram [36].

Each pixel in the region represents a data point in a histogram to find the best fit orientation [36].

This feature type is often used in human and vehicle detection, where the shape of the object is

generally invariant. Haar features are comprised of rectangular regions where the intensities of one

region are differenced from another [37]. The value obtained from the aforementioned differencing

provides a data point which may be compared to a threshold to determine if the criteria of the

desired feature is met. Local binary patterns (LBP) is a method that is robust to changes in

illumination, as it focuses on texture [38]. For a grayscale image, the LBP is created by comparing

the intensity value of a pixel to its neighboring pixels [38]. Neighboring pixels are assigned a 1 or

0, the latter of which is assigned if the intensity value is less than the center pixel [38]. The values

found in this manner are entered into a histogram, which is normalized to obtain the LBP [38].

Testing performed in “A Comparison of Image Processing Techniques for Bird Detection” by Elsa

Reyes demonstrated much higher accuracy using Haar than HOG features, and generally higher

accuracy using Haar as opposed to LBP features for bird detection [39]. The tuned accuracy using

Haar features was determined to be 87% [39]. Also confirming the use of Haar-like features for

avian detection applications, is a publication by R. Yoshihashi, R. Kawakami, M. Iiada, and T.

39

Naemura, who compared HOG and Haar-like features using a collected image dataset of over

32,000 TP bird images, and over 4,900 negative images [40]. It was found that Haar-like features

outperformed HOG features for lower resolution avian detection [40]. Through both of these

articles, large data sets were examined, and the use of a cascade classifier using Haar-like features

has been shown to be a potentially reliable choice for avian detection.

The cascade object detector is based on the Viola-Jones algorithm, where detection involves stages

to decrease processing time [37]. A sliding window is moved across the image, and the contents

within the window are tested in stages. Failing to pass a stage leads to labeling as a non-target, and

the window moves to the next section of the image [37]. The advantage of this method is saved

time, by moving past non-targets faster than checking each stage before moving to the next region.

The cascade classifier in the MATLAB environment trains each stage individually via a process

called supervised learning, where labelled images and negative images are provided [35]. Each

stage is comprised of an ensemble of weak learners [35]. The weak learners may be comprised of

the features mentioned earlier, or some other feature type depending on the application. Generally,

the number of possible weak learners is much greater than what is needed to detect an object, so

some method of selecting the best weak learners is required [37]. Adaboosting is used to weight

weak learners and ultimately determine which will be used in each stage [37].

The effectiveness of cascade object detection is entirely dependent on how the detector is trained.

Tuning of the positive image sets, negative image sets, number of stages, and false positive rate,

and false alarm rate are a few of the variables which must be managed to create a reliable detector.

The initial cascade classifier training set involved the use of around 80 labeled bird images that

varied in perspective and point in the flapping cycle, and utilized HOG features (the default setting

for detection training). For nearly every orientation and point in the flapping cycle, the beak or

wingtips are generally visible on the view plane, which helps in maintaining consistent features for

detection.

40

The detection system was comprised of around 90% albatross images, along with approximately

10% murrelet images. Albatross species tend to have distinct sharp wings and beaks, which are

exaggerated in comparison to other avian species. Additionally, variants such as the Short-tailed

Albatross, or Phoebastria albatrus, are listed as endangered by the U.S. Fish & Wildlife Service

[41]. The false alarm rate and number of cascade stages were varied until detection was consistent.

HOG feature based detection was used during testing and program development, however [39] and

[40] demonstrated that Haar features provide improved results over HOG features for bird

detection.

Figure 5-6 A comparison of detection accuracy when rotating the input image. By rotating the input image,

it can be seen that certain targets are no long detected. The dashed line demonstrates a loss of detection

between the upright and rotated image. The same detector and merge threshold settings were used for

detection in these images.

41

Figure 5-7 Examples of cascade object detection applied to input bird images. Using the HOG feature based

albatross detector, other species were able to be detected. Note the FP instance indicated by the red arrow,

the causation of which was likely the truss structure within the barn.

As may be seen from figures 5-6 and 5-7, the albatross based detection system is able to

successfully detect numerous other species. Ground truth testing was not performed on the

detection system; larger positive image datasets should be utilized before creating and testing the

next iteration of cascade detection for this program. The detection system provided satisfactory

results for testing the program operation and framework performed here, however before testing

the operational capabilities of the program in a true wind farm setting, a more robust cascade object

detector should be trained.

Blade Face Thresholding

The wind turbine blade provides a white backdrop which creates a potential platform for

thresholding. For a grayscale image, thresholding is the creation of a binary image by setting an

intensity value which when exceeded yields white (255 with 8-bit depth), and otherwise creates

black (0 with 8-bit depth). Due to the high intensity of the wind turbine blade, and generally darker

42

colors of avian and bat species, the thresholded image is inversed. A bird or bat flying into the face

of the wind turbine blade should provide a contrasting region, or blob, assuming their coloration is

dark enough to trigger the threshold (figure 5-9). When starting the program, a pop-up window

prompts the user to input a polygon surrounding the blade (using impoly MATLAB function), as

can be seen in figure 5-8.

Figure 5-8 Selection of the blade ROI. The user is prompted to select the blade ROI before the program

analyzes video.

Figure 5-9 Thresholding and its results. The creation of the binary image on the right was performed using

the ROI selection and thresholding components of the program.

43

For each input frame, the blade region selected by the user is thresholded, and blob analysis is

performed inside the blade ROI. Blob analysis is the examination of high intensity regions in a

binary image. Minimum and maximum values for blob area can be provided to filter out noise and

shadows respectively. Additionally, the number of blobs can be limited, as more than one or two

birds impacting the blade at once is extremely unlikely. Information about blob presence in each

frame is passed on to the final classification stage, to aid in determining whether or not a collision

has occurred.

Tracking

The detections made by the cascade object detector are tracked between frames to find the trajectory

of the bird. The use of tracking is not only for determining the trajectory of the bird through the

image plane, but also for assigning an identification number to the detection. Identification numbers

are primarily for filtering and data management purposes, so that each detection can be recalled

from the global data set for evaluation. Large wind turbine rotational speeds between 90 and 120

degrees per second [13] leave little room for error in the tracking process: at 30 frames per second,

and aligning the horizontal FOV (11.14°) with the direction of motion, the rotating camera can only

capture around 3 to 4 frames containing the target (with no significant target motion in the vertical

direction).

Primary Tracking

The primary tracking framework was obtained from the Motion-Based Multiple Object Tracking

example from the MathWorks website [42], and consists of a MATLAB data structure, containing

the ID of the target, bounding box data, Kalman filter data, detection age, the number of visible

instances, and the number of consecutive invisible instances. A bounding box is simply a box

surrounding the object in question, with coordinates given in pixels measured from the upper left

corner of the image. Kalman filtering allows for the prediction of motion for targets which existed

44

previously, but were not successfully detected in the current frame [42]. The predictions made using

Kalman filtering keep the location of the target updated, so that when a future detection occurs, the

predicted versus true location of the target are not greatly divergent [42]. The option for constant

velocity for Kalman filtering was selected, as the rate of bird and bat motion across the image plane

is not expected to change greatly between frames.

The importance of assigning a detection to a path, is both the capability of the program to match an

identification number with the detection, and for determining the trajectory of the target.

Assignment to a path is based off of the James Menkres’ variation of the Hungarian assignment

algorithm, which is used to output assigned tracks, unassigned tracks, and detections [43]. A

mismatched pairing between the path and detection could lead to incorrect trajectory data.

If a path exists for too long, or does not have detections assigned to it for an extended period of

time, it is deleted. Once this deletion occurs, the path is evaluated. Assuming more than one

detection was assigned to the target, location information is used to evaluate the trajectory. The fast

rotation rate of the camera means that the path of the avian target should be approximately linear,

therefore a linear line of best fit is created using linear regression. The R squared value provides

details on the quality of the tracking. Finally, the angle of the path travelled is calculated. If the

angle is over 15 degrees, the target is considered to deviate significantly from the motion field. An

important distinction is that a target flying away from the wind turbine blade plane is less likely to

have collided than one that is moving toward the blade plane.

Secondary Tracking

If only one detection exists for a target, a secondary tracking method is used in an attempt to capture

the path of the target. A single detection does not allow for the primary tracking method to function,

since the Kalman filter requires at least two detections to make predictions for velocity and future

location (assuming no target acceleration). The Kanade Lucas Tomasi (KLT) feature tracking

algorithm in MATLAB Computer Vision System Toolbox [44] provides qualities that make it a

45

viable candidate for this application. Using the bounding box created using the singular detection,

feature points are determined by finding the minimum eigenvalue features [45] for the region. The

strongest of these points is then tracked between the preceding and proceeding three frames from

the detection- this provides the best possible coverage of the event in order to extract the path of

the target. Between each frame, the points which the algorithm determines as outliers are removed,

so that the final point distribution reflects only successfully tracked feature points. The path

travelled is determined in a similar manner to the primary tracking method, where the angle of the

direction of travel gives insight to the deviation from the motion field.

46

Figure 5-10 Large displacement tracking via point tracking. This example provides a low noise background

with an unchanging object, which is displaced to simulate a bird traversing the image during camera rotation.

Two points (overlapped) are successfully tracked during the image sequence.

The above example of point tracking required the tuning of tracking parameters to successfully

track the target. In this example, the percentage of successfully tracked points across the three

frames was 20%. There are critical parameters that can be varied to achieve point tracking with

large object displacement between frames, including the number of pyramid levels, block size, and

the quantity of iterations. To fully validate this method for the use of high displacement tracking,

sets of images containing bird movement that is 1/4 to 1/3 of the image width between frames

should be created. Using this data, the parameters can be optimized for this application.

Trajectory Classification

After a target disappears and tracking is complete, the trajectory of the target is classified. Four

types of trajectory classifications were created to organize detections. Table 5-1 describes the types

of events, and figure 5-11 provides a graphical display trajectory classifications.

Table 5-1 Tracking Classification Types.

Type Description

1 Greater than 15° deviation from the motion field direction, and towards the blade plane.

47

2 Less than 15° deviation from the motion field direction.

3 Unable to successfully track the target.

4 Greater than 15° deviation from the motion field direction, and away from the blade plane.

Figure 5-11 Example of target motion and corresponding classification. Type 3 classifications are a single

detection, and do not have a determined direction of travel.

Supporting Structure

Detection and tracking provides a set of raw data which must be sorted and interpreted before

passing on to the user.

Data Storage

The data structure for tracking is updated between each frame as new information replaces existing

data. This saves time when there are no active paths present, by eliminating the need for adding

additional data to a matrix. When detections or predictions occur, a matrix stores all relevant

detection and prediction data including the ID, bounding box, centroid, detection versus prediction,

and the frame number. For final evaluation, all data is retrieved from the matrix as opposed to the

structure, so that data from any point in the monitoring process can be reviewed. Information about

the trajectory of the target is stored in a separate matrix, as it exists on a per target basis as opposed

to a per frame basis.

48

Filtering

Stationary objects triggering a FP response will cause a large quantity of non-avian or non-bat

images which must be sorted through by the user. As a post-processing solution, a spatiotemporal

filter was developed to eliminate repeating instances. Figure 5-12 outlines the process for obtaining

repeating instances. Instances which were determined to be repeating are grouped together and

passed to the next stage of filtering.

Figure 5-12 Spatiotemporal filter principle. After a detection, frames are examined at one, two, and three

rotations from the initial instance. If two or more of these instances correlate closely to the initial detection

in vertical location it is considered to be a repeating instance.

Relying on time and space alone for the filtering process could lead to the deletion of TP detections.

In order to decrease the probability of such error, a comparison of the structural similarity between

each detection in a group of repeating instances is made. The structural similarity index (SSIM), is

a method for comparing the similarity of two images. The SSIM is scored 0 to 1, where 1 is an

exact match [46]. SSIM is often used for determining image quality after compression, where a

reference image free of distortion is compared to a modified image [46]. Repeat detections should

49

have the same object within their bounding box, meaning that the SSIM score should be close to 1.

Those object which deviate significantly in structure (<0.65) are removed from the filtering process

to be classified and presented to the user.

Figure 5-13 SSIM comparison between detections. Notice that the two sections compared on the left image

encompass the same object, however the SSIM score is less than 0.7; this is likely due to the higher location

of the blade tip and cloud presence in the right section. The right image shows a successful comparison,

where the SSIM score reflects the large difference in objects that were detected.

The SSIM index accounts for luminance, contrast, and structure when evaluating the similarilty

between images [46]. A possible interference with this method is the shifting of bounding box

location and size between rotations.

Collision Sensing

Once data collection is complete, and filtering has removed any significant quantity of FP instances

from the data set, avian interactions must be classified based on the likelihood of collision.

Likelihood of collision is decided based on three factors, the combinations of which were

subjectively evaluated to determine how likely a collision occurred:

 Bird presence within blade ROI, as determined by thresholding and blob analysis

 Closest proximity of the target to the blade (further explained in Appendix F)

50

 The trajectory of the target (angle with the horizontal, and approaching or departing from

the blade)

A table of the corresponding likelihood of collision may be found in Appendix F. Success of

tracking is based on whether or not the primary or secondary tracking methods were able to create

a reliable linear line of best fit.

Data Presentation

After the classification of instances, the data is ready to be presented to the user. In future versions,

when integrating with the whole bird collision detection system, these results would instead be

analyzed with any relevant data from the other sensors. For this program, presentation of data

involves presenting the user with a separate window for each detected bird. The window provides

whether or not the target was successfully tracked, the likelihood of collision, as well as any frames

containing detections of the target (figure 5-14). The user is then prompted to enter the ID numbers

of any FP instances presented.

Figure 5-14 Example false positive result in a window presenting the detection to the user. Results are color

coded based on the collision likelihood, which assists the user in quickly locating detections which strongly

correlate to an impact.

51

Detection Improvement

Detections removed by the spatiotemporal filter, as well as any user inputted FPs from the data

presentation section are added to a negative image set automatically. The cascade object detector

then retrains using the new negative image set. Objects that trigger a large number of FP instances

will saturate the negative image set, thus ensuring the immunity of the next iteration of the cascade

classifier to that object. In a real-world setting, the program should be run on short time spans after

installation, providing multiple opportunities for the object detector to improve. After a sufficient

number of iterations, the object detector should be significantly better adapted to the environment

of the wind turbine.

Figure 5-15 Examples of repeating or user input FP detections. The three images starting from the left

comprise repeating FP detections caught by the spatiotemporal filter. The two images on the right comprise

user inputted FP detections.

GUI for Detection and Primary Tracking Tests

Rapidly adjusting parameters for the Kalman filter tracking system and the cascade object detector

is imperative for conditioning the system for a new setting or environment. As a tool for quick

evaluation and adjustments, a graphical user interface (GUI) was produced using the MATLAB

graphical user interface development environment (GUIDE) [47]. The options included on the GUI

were the most frequently used during the tuning process: video filename, measurement noise, cost

of non-assignment, and the merge threshold. Stages of the cascade object detector may each detect

an object, meaning that multiple detections on the same object indicates a stronger overall

detection; the merge threshold requires multiple overlapping detections on an object before

52

classifying the region as a detection [48]. Tuning this merge threshold is useful for reducing FPs

(at the cost of increasing the chance of missing a TP instance) [48]. Measurement noise and cost of

non-assignment are properties of the Kalman filter tracking framework.

Figure 5-16 Example of successful tracking in the GUI.

53

Figure 5-17 Example of less successful detection and tracking within the GUI.

The GUI displays the video on a left panel for viewing the frames as they are process, and the right

panel shows the position of current and past tracked objects. Axes of the position plot are in pixels,

displayed in the format that MATLAB interprets images. The GUI code and figure structure may

be found in Appendix G. The videos analyzed above do not reflect a similar tracking situation to

what is seen using an on-blade camera, however they provide high level insight to the behavior of

the detection system when bird orientation and point in the flapping cycle is varied.

Operational Testing

A final proof of concept test demonstrating the operation of the entire program was needed for

holistic validation. The purpose of this test was to demonstrate the program architecture in its

operation, particularly the filtering and classification aspects of the system. The input video was

high resolution footage taken from a blade mounted camera (1920 by 1080 resolution at 60 FPS).

At a length of 6323 frames (1:45), the video was divided into 2000 frame segments for three trials.

54

The first 200 frames not used in the trials were added to the negative image set for the albatross

based cascade detector. The settings of the trained cascade detector included a false alarm rate of

0.4, 19 complete stages, and HOG features.

To provide a target for tracking in the final trial video segment, a murellet target was added to

simulate a bird impact on the face of the blade. The ability of the beginning cascade detector to

locate this target was ensured before testing, and the merge threshold was set to the highest value

which allowed for consistent detection. By maintaining a higher merge threshold, FP detections are

less frequent.

The same detector training parameters (0.4 false alarm rate, 19 stages, HOG features), and merge

threshold were maintained through all three trials. The difference in FP instances between trials 1,

2, and 3 were examined, as well as the successful detection and classification of the murrelet in

trial 3. Frequent sources of FPs should be picked up by the spatiotemporal filter, and a decrease in

FPs should occur between each trial. The results from this test should provide insight to the overall

operation of the program in a true on-blade camera environment. It is imperative to make the

distinction between the footage used here, and the differing resolution and frame rate of the

proposed Sentech STC-N632 micro camera.

Trial 1

For the first 2000 frame video segment, there were 47 detections overall, 38 of which were

successfully removed as repeat false-positives (approximately 81%). The majority of the FPs that

were deleted were due to clouds and infrastructure on the ground.

Table 5-2 Trial 1 results, outlining the cause of the detection, success of tracking, and likelihood of

collision.

True Object Causing

Detection

Successfully Tracked Likelihood of Collision

55

Sun reflection on blade Y Strong

Sun reflection on blade Y Strong

Side of building N Moderate

Lamp post N Strong

Building roof N Strong

Turbine tower shadow N Strong

Roof, cars, lamp post Y Strong

Building roof N Strong

Building roof N Strong

Figure 5-18 Different detected objects incorrectly tracked by the primary tracking system. The sequence of

these objects across the FOV caused them to be linked together as one target. The varying objects within the

bounding box likely caused the filter to reject this as a repeating FP.

56

Figure 5-19 Results seen by the user after program operation. A pop-up window reports the number of

instances deleted by the spatio-temporal filter.

The IDs of all nine of the presented FPs were reported to the system, and the detection system was

updated using the same parameters as the original cascade detector.

Trial 2

Using the refreshed detector, the program was run once more with the same video. The number of

overall FPs was 17, with 7 repeating instances removed (approximately 41%). An over 60%

reduction in overall FPs occurred between the first and second trial.

Table 5-3 Trial 2 results, outlining the cause of the detection, success of tracking, and likelihood of collision.

True Object Causing

Detection

Successfully Tracked Likelihood of Collision

Sun Y Strong

Lamp post Y Strong

57

Lamp post N Strong

Lamp post Y Strong

Lamp post, car Y Strong

Lamp post Y Strong

Lamp post Y Strong

Sun Y Strong

Sun reflection on blade N Strong

Lamp post N Strong

The most frequent FP detection is caused by the lamp post, which comprised a significant portion

of the FP detections presented to the user. After trial 2, the detection system was retrained using

updated negative image set, and the same parameters specified for the original cascade detector.

Trial 3

Using the final refreshed detection algorithm, a third run of the program was made. This video

segment contained the murrlete simulated impact on the turbine blade for a TP instance. There were

12 FPs overall, 9 of which (75%) were successfully removed by the spatiotemporal filter. Over a

25% reduction in FPs occurred between trials 2 and 3.

Table 5-4 Trial 3 results, outlining the cause of the detection, success of tracking, and likelihood of collision.

True Object Causing

Detection

Successfully Tracked Likelihood of Collision

Lamp post Y Strong

Murrelet Y Strong

Lamp post N Strong

Sun reflection on blade N Strong

58

During the tracking process for the murrelet, the tip of the blade was detected after the bird left the

image plane, causing an incorrect assignment of this FP to the bird’s trajectory.

Figure 5-20 False positive quantities, including total and filtered. Note that the filtering no longer detects

any repeating false positive instances after the first retraining of the algorithm.

Discussion

The structure of the program appeared to provide a strong supporting framework for the detection

and tracking algorithms. High quantities of repeating instances caused by stationary objects were

successfully removed using the spatiotemporal filter. The wind turbine blade, structures on the

ground, and light blooms caused by the sun were large contributors to FP instances. A high quantity

of “strong” collision likelihood ratings may be attributed to the locations of the FP detections,

incorrect tracking, and incorrect blade thresholding. The blade thresholding function appeared to

be falsely triggered during frames where the sun was causing light blooms and reflecting off the

blade. A possible solution to the incorrect thresholding would be applying more stringent

parameters to the low intensity regions seen within the blade ROI, such as a tighter size range or

threshold value.

0

10

20

30

40

50

Trial 1 Trial 2 Trial 3

N
u
m

b
er

 o
f

F
P

s
False Positive Quantities

Number of FPs Number of filtered FPs

59

These trials suggest that the updating method for the detection algorithm may work as intended,

however significantly more testing will be needed for further validation. This method of

strengthening the detection algorithm against problematic objects in the FOV will be critical to the

future application of this program. Further testing including extended length (>1 hour) true footage

from bird interactions and flybys past an on-blade camera should be conducted, in order to further

evaluate the performance of this program.

Speed Testing

Operational testing used an AMD FX-8350 Vishera 8-core (4.0GHz) processor with 16 gigabytes

of RAM, and a detection algorithm with a false alarm rate of 0.4, HOG features, 19 cascade stages,

and a merge threshold of 12. The third trial during operational testing required 2116.2 seconds to

complete, with 1641.1 seconds of the total time allocated to the cascade object detector. In other

words, the time for processing the video was greater than 63 times the length of the video. In order

to obtain a realistic estimation of processing time using less data intensive video, and evaluate the

possibility of real-time detection, the field test rotational footage from the hardware validation

section in Chapter 4 was inputted to the program (38 seconds in length). This footage was captured

with the Sentech STC-N632 camera. The merge threshold was maintained at 12 with the same

detector used for trial 3 in operational testing. There were 13 detections in total, with 8 removed by

the spatiotemporal filter. The time for processing the video was 225.4 seconds, with 150.2 seconds

allocated to the cascade object detector. The processing time was nearly 6 times greater than the

length of the footage. The reduction in processing time was an order of magnitude less than that of

the GoPro footage. Figure 5-21 outlines the functions of the program consuming the greatest

amount of time.

60

Figure 5-21 Processing time for the overall program. These results are from 0:38 Sentech STC-N632

footage.

The length of time for processing may be reduced when the program architecture is transferred to

a different coding language. The results outline here do not preclude the potential of future versions

of the program operating in real-time.

Conclusions

The program outlined and tested in this chapter is ready for large dataset testing, to validate its use

for on-blade camera avian, and in the future, bat interaction sensing applications. The cascade

classifier will require ground truth testing for complete validation before use in an operational

environment. Adaptation of the cascade object detector algorithm for bat targets would be a simple

addition. Improvements in the speed of operation, and detection system accuracy should be

investigated for the next version of the program. Testing using rotational footage including avian

targets would give further insight to the detection, tracking, collision sensing, and filtering

capabilities of this program.

61

With the highly dynamic background present in on-blade camera applications, object recognition

is a logical detection choice. The ability of repeating FP elements to be added to the negative image

set for training provides a method for strengthening the detection system against mass quantities of

FP instances. Using all of the information extracted by thresholding the blade face, target trajectory,

and for collision sensing The GUI developed provides a platform for the testing and tuning of

cascade object detection and primary tracking system. Rapidly loading video and altering settings

provides a quick method for validating newly trained cascade detectors in combination with

tracking.

While speed testing has indicated that a real-time system is not out of the question for future

versions of the program, the framework developed in this chapter would need significant revision

to operate in real time. The major benefit of a real-time system is the ability of the on-blade camera

to track avian and bat interactions without triggering from other sensors. Without a real-time

running constraint, a less powerful processor may be used for the central computing unit, and more

computationally expensive computer vision techniques can be utilized.

62

6. Blade Tracking

The purpose of the blade tracking algorithm is to determine the tip position of the wind turbine

blade during operation. Constantly monitoring the deflection of the blade allows for operators to

quickly shut down the blade if deflections exceed specified boundaries. This chapter outlines the

program and testing performed to validate the accuracy and precision of an early version of blade

tracking software.

Introduction

For the purposes of this program, the wind turbine blade was simplified as a cantilever beam. With

a cantilever beam setup, where the root of the turbine blade is fixed, the tip will be the point of the

blade seeing maximum displacement during operation. By tracking the blade tip, operators will be

able to monitor maximum deflection, and have the ability to shut down the turbine if limits are

exceeded.

The small displacements of the blade tip in comparison with the length of the blade should provide

manageable feature shifts between frames. By knowing the length of the blade and behavior during

tip deflection, vertical displacements on the image plane can allow for inference about the true tip

position.

Success of the blade tip tracking program is based on its reliability, resolution, accuracy, precision,

and ability to run in real-time. For maximum reliability during operation, future versions of the

program should be able to refresh feature points if lost. Additionally, constraints on horizontal point

movement could help indicate when feature points have lost their lock, since significant horizontal

motion of the blade tip with respect to the blade-mounted camera is not expected during operation.

63

Program Structure

The MATLAB code produced for blade tracking represents an early stage of the software, meant

to test the accuracy and precision of the selected method for this application. Components such as

point regeneration are to be included in later revisions.

The first step in tracking the blade tip, is locking onto feature points. Subjective evaluation

demonstrated that the detectMinEigenFeatures algorithm [45] in MATLAB Computer Vision

System Toolbox worked well for this purpose. Ideally, the face of the turbine blade tapers to an

approximate point at the tip, which provides a corner for tracking. Depending on the performance,

and light variation of footage, true applications may require some type of marker near the blade tip

for strong point tracking. In order to reduce the search area for strong feature points, the program

prompts the used to select a region around the tip of the blade. This also helps to prevent unwanted

background objects from being tracked.

The feature tracking algorithm [44] used for secondary tracking in Chapter 5 was chosen for this

application. Smaller movements between frames, and a high contrast corner (the blade tip or

marker) provide beneficial elements that should contribute to successful tracking. The strongest 8

points from the feature point selection are used. Points which are not successfully tracked between

frames are removed during operation based on a binary confidence score output by the tracking

algorithm. The foremost purpose of removing these points is preventing interpretation of incorrect

data pertaining to the blade tip position.

Before deflection occurs, a horizontal reference line is created using the maximum point on the

blade. The displacement of the maximum point on the blade at a given time is compared to this

reference line, which yields the vertical displacement on the image plane in pixels. Using the known

length of the blade (assumed linear during deflection), and assuming the out of plane distance

64

between the blade tip and camera lens remains constant, the tip deflection can be easily

approximated. The MATLAB code for the blade tracking program may be found in Appendix H.

Testing

For determining the validity of this method, the accuracy must be tested with a range of

displacements. The behavior of the program when tracking the tip of a beam during bending was

unknown, so an initial validation was performed using a 1 meter long balsa wood plank (with a

square end) mounted beneath the camera. During rapid and large beam deflection the corner points

were successfully tracked. Torsion of the plank yielded multiple lost points.

For testing accuracy, a dark backdrop with little to no intensity gradient was used. The balsa wood

plank used for validation was securely mounted beneath the camera. Digital calipers, accurate to

+/- 0.0254 millimeters was clamped beneath the tip of the plank. The depth measurement feature

on the calipers provided a method of displacement for the plank tip. The calipers are manually

extended between each value. The system was adjusted so that the plank was level when the calipers

were at zero. Fluorescent lights were shut off to prevent the noise they produce, and LED lighting

kept the region near the blade tip illuminated. To test the difference in accuracy between small and

large displacements from the zero reference line, the beam was moved to 2, 6, 10, and 20

millimeters (approximately 0.2% to 2% of the overall blade length). The test was repeated 20 times,

with lighting and the zero reference line held approximately constant. When a displacement value

Figure 6-1 Point tracking on balsa wood beam.

65

is reached, the system is left untouched to reduce vibrations and operator induced error. Values for

the displacement calculated by the point tracking algorithm will be obtained by averaging the

displacements across a small timespan, when the system is left alone.

Results

Figure 6-2 Tip displacement in millimeters versus frame number. This plot provides a visual for the

displacement of the beam tip across time. Even when the tip has reached its desired value, there is still

fluctuation in the tracked displacement.

The standard deviation of the tracked blade tip displacement increased at greater displacements.

The mean values for 1, 2, 6, and 10 millimeter displacements were less than the caliper measured

values, while the mean for the 20 millimeter displacement was greater. The maximum error

between the caliper measurement and point tracking came from the 2 millimeter displacement,

which yielded a 12% difference. The 20 millimeter displacement created a 3.9% disparity between

the caliper measurement and point tracking data. The P value from t tests performed at each

66

displacement suggested a statistically significant difference between the means of the caliper

measured values, and those measured by the point tracking program. The test values and statistical

analysis may be found in Appendix I.

Table 6-1 Comparative values between the caliper measured displacement and the mean (of 20 tests)

displacement value from the point tracking program.

Caliper Measured

Displacement [mm]

Mean of Tracking Program

[mm]

Standard Deviation of Tracking

Program [mm]

2.00 1.76 0.16

6.00 5.65 0.26

10.00 9.64 0.35

20.00 20.78 0.48

67

Figure 6-3 Measured Tip Displacement versus True Tip Displacement. Confidence bounds for each point

tracked value are provided via error bars.

Using linear regression, the line of best fit for the data had a slope of 1.02.

Discussion

The differences between the caliper measured values and mean of tip tracking data may partially

stem from errors within the experiment. If the camera was tilted even a small amount during

deflection, it would cause error in the calculated displacement. The highest feature points on the

blade may not exist exactly at the tip of the blade. This misalignment would cause error as the

y = 1.02x

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25

P
o
in

t
T

ra
ck

ed
 T

ip
 D

is
p

la
ce

m
en

t
[m

m
]

Caliper Measured Tip Displacement [mm]

Point Tracked Tip Displacement versus Caliper

Measured Tip Displacement

Test Results Linear (Test Results)

68

perceived displacement is below that of the maximum of the blade tip. Additionally, videos of the

point tracking process demonstrate shifting of the points during displacement, which may create

systematic error.

The noise seen by the tracking algorithm during periods where the system was left untouched may

stem from small vibrations, static of video transmission, or changes in illumination. Point drifting,

where points move away from the original feature being tracked, was observed at small levels

during each beam test video. Similar to the reflective strips used by [10], a possible solution to this

point drifting would be adding a checkerboard sticker near the blade tip (as seen in figure 6-4),

which would provide a stronger feature for tracking. Point drifting also causes hysteresis, as the

point shifts to a new feature it is permanently moved to that location, unless some factor causes it

to revert to its original position.

Figure 6-4 A checkerboard pattern, frequently used for camera calibration and computer vision

applications. This checkerboard applied at the blade tip would provide strong features for point tracking.

Differences between the mean of the tracking data and the caliper values did not scale exactly with

displacement size. This suggests that the extreme displacements that future iterations of the

program will work to detect may have a higher comparative level of accuracy than small regular

displacements. Testing provided some level of apparent systematic error, with mean values from

point tracking consistently greater or less than the caliper values depending on the tip displacement.

Overall the accuracy of this initial system appears to be at a useable level, and validates the system

for further testing.

69

7. Future Developments

To take the on-blade camera system to a level that is ready for use on a widespread scale, further

testing and validation will be required. The purpose of this section is to outline some of the

imperative next steps in developing this system.

Hardware

The limited number of frames which a bird or bat target may occupy due to the fast rotation rate of

the turbine blade puts an enormous emphasis on successful detection and tracking. A possible

solution to this necessity is to select a higher framerate camera. To accommodate this, a more

expensive and likely larger camera and transmitter would be needed. Low latency transmission of

high definition video with high framerates has benefitted from the growing hobby of first person

view (FPV) remote controlled quad rotor unmanned aerial vehicles (quadcopters). A recently

released wireless video transmission and reception system referred to as Connex by Amimon, offers

1080p digital video transmission and reception at up to 60 frames per second with minimal delay

[49]. Systems like this are becoming more prevalent, however the cost is still high in comparison

to the traditional analog wireless video transmission options. The higher framerate could provide a

significant improvement in the secondary tracking algorithm, and would offer an increased

opportunities for detection by the object detector.

Sensor System Integration

As described in Chapter 3, the components comprising the avian and bat collision detection system

work in unison to detect bird collisions [9]. Experimentation with the LabView framework

developed in [9] to incorporate real-time or post-processed data from the on-blade camera software

will be needed. Incorporating the collision likelihood rating given by the program in Chapter 5 will

70

offer the sensor system an additional collision detection method. Storage methods for the events

detected by the on-blade camera will need to be researched for the central computing unit.

Camera Casing

As the current camera casing was designed as an early proof of concept, and to provide a platform

for testing. There are several additions which must be made to future versions of the camera case.

One of the foremost items for preparing this case for operational use is waterproofing. The

following components are imperative for preventing moisture penetration:

 Sealed lens on the camera casing

 Gasket between upper shell and base plate

 Desiccant to prevent condensation on the lens

Incorporating the vibrational sensors (contact microphones and accelerometers) that would

normally be placed on the wind turbine blade into the camera casing would require expansion of

the case volume. Additionally, if using the same power source, a higher current draw would be

placed on the battery. Despite these drawbacks, it is attractive to have the on-blade camera and

vibration sensors combined into a single package for installation and maintenance.

The use of adhesives for mounting the camera casing to the turbine blade is a minimally invasive

method. Determining the adhesion method between the base plate and the root of the turbine blade

will require research about adhesive choice, time required for adhesion, maintaining mounting

through varying weather conditions, and removal from the blade with no damage to the surface of

the blade. A pull strip at the edge of the base plate could provide an easy removal method for

adhered casing.

The utilization of a battery for an on-blade power source, and consequently removal of the need for

a slip ring provides an immense reduction in cost of implementation. Despite this, there is a quantity

71

of supporting hardware needed to make this option truly viable. One such component is solar

power: a natural choice given the green energy aspect of wind power, a photovoltaic cell may

provide sufficient power to maintain charge within a battery. Lithium ion (Li-Ion) batteries do not

have the inherent “memory effect” of some rechargeable batteries [50]. This aspect makes Li-Ion

batteries an ideal choice for recharging via solar power. A 3 cell lithium pack would provide a

nominal voltage of 11.1 volts, which should be sufficient for 12 volt electronics. To support this

charging method, a high and low voltage cutoff board will be necessary to prevent damage to the

battery from overcharging or dipping below minimum cell voltage. These circuit boards are cheap

and widely available. A light sensor exposed through the case wall will provide a shutoff method

when lighting become too poor for the on-blade camera to successfully detect birds or bats. Finally,

a more efficient voltage drop method than a resistor in series should be implemented for power

conservation, and excess heat reduction.

Safety and ease of maintenance are two key aspects this camera casing must include. To warn wind

farm operators of insufficient power, an LED indicator could be implemented to provide a quick

and simple method for checking the status of the on-blade camera power supply. Lithium based

batteries have the potential to combust when improperly manufactured or mishandled. Extensive

testing and checking of any battery cells should be made before installation. As a method of

protection for the wind turbine blade and moreover its operators, flame retardant material should

encase the battery, with porting to allow gases to vent without rapid expansion.

Avian Program

The results from program speed testing in Chapter 5 suggest that a real-time system is feasible,

however significant development (likely outside of the MATLAB environment) will be necessary

to bring the program to this state. Implementation of this program in C++ or another programming

language may speed up the processing time. The filtering and classification methods used for the

program would need to be changed to fit a real-time program. One possibility for FP filtering and

72

classification, is the storing of results in temporary storage, and at set time intervals using the stored

data to perform these actions. Another processing issue not addressed by the current program, is

the need for deinterlacing, or other preparation of footage before analysis. This would also need to

be incorporated into a real-time system.

The presentation and storage of results was created to simulate a possible method for delivering

results to the user, and for an easy evaluation method for the performance of the program. When

integrating with the overall sensor system, these results should instead to pass to the central

computing unit to be combined with input from the entire sensor suite. Vision based standard and

IR cameras mounted on the nacelle could be used to cross check bird and bat flyby information

obtained from the on-blade camera system.

The classification system for the likelihood of collision is based on a subjective scheme. As

advancements are made in the computer vision aspects of the program, a more quantitative

approach would likely yield better results than those presented here. A paramount quality of the

classification system is utilizing all of the information collected during the video analysis process.

Work done in [39] investigated the use of MATLAB cascade object detection for the use of bird

detection, and found Haar features to produce high accuracy rates. The work in [40] has confirmed

that Haar-like features are high performing for low resolution bird detection. The detection of birds

and bats near wind turbines will generally be concerned with targets that are at long distances from

the camera, leading to poor resolution and minimal texture. The use of the created rotation rig in

an outdoor setting with large quantities of birds may provide useful footage for ground truth testing

for this application. An advisable later step is the implementation of the proposed on-blade camera

system on a wind farm to obtain bird flyby or collision footage. The lighting changes, wind turbine

structures, and camera rotation are unique to the on-blade environment, and detection in this setting

needs to be evaluated using true footage.

73

The point tracking method for secondary tracking has been qualitatively evaluated. This seems to

be a plausible option as a backup tracking system, due to the relatively low computing cost and

potential for tracking single detection targets. It is apparent that the displacement and “quality” of

the feature points are dictating factors for the success of tracking. Further validation of this method

is needed, in order to understand its reliability. A secondary tracking system can add a large amount

of value, as determining the path of the bird near the wind turbine blade can provide key information

as to the existence of a collision. For real-time operation, this additional method will need to be

closely evaluated to determine if the extra computational time is worth the tradeoff of secondary

tracking.

Finally, the program must be extended to detect and track bats. Bat flight does not only occur during

the night, meaning that the vision based camera of the on-blade system should be prepared to detect

bat interactions with the turbine blade. Due to the length of operating time for the cascade object

detector, adding an additional detector may prove impractical for real-time monitoring. For

triggered analysis (using ring buffering) the addition of a second cascade object detector should not

pose any large issues beyond an increase in computation time and likely an increase in FP instances.

Blade Track

The program and testing presented in Chapter 6 provided a preliminary evaluation of the accuracy

and precision of a feature tracking method for monitoring flapwise blade deflection. Key

operational related aspects need to be explored further in order to completely validate this method.

One of the foremost aspects is the regeneration of points. Even from the controlled tests performed

to evaluate accuracy, some amount of point drifting occurred. By setting maximum bounds and

rates for point movement, the program should be able to automatically regenerate points which

have lost a lock on their feature. As an additional solution to this issue, a checkerboard patterned

sticker could be placed near the tip of the blade; this would provide a strong feature to track, and

ease the process of point regeneration.

74

Conclusion

This thesis has contributed to the development of an on-blade camera system for the purpose of

monitoring bird and bat impacts. This on-blade system, which will operate cooperatively with a

greater sensor system, uses computer vision techniques to detect the presence of avian and bat

interactions with the wind turbine blade. Specific contributions include the validation of hardware,

design of on-blade casing, and software development for both bird interactions and turbine blade

deflection.

The proposed avian interaction and collision sensing software architecture is ready for further

testing, to validate its use in an operational wind turbine environment. Ground truth testing using

rotational footage with avian targets will provide key information about the accuracy and FP rate

of the cascade object detector. The detection system should be extended to bats as well, in order to

obtain a complete understanding of the system behavior. With the unique rotating setting of this

application, the spatiotemporal filtering and retraining technique provide a method for reducing the

overall number of FPs detected and stored. Through testing, the Kanade Lucas Tomasi feature

tracking algorithm appears to be a viable candidate for blade tip tracking in terms of its accuracy

and precision.

Automation of monitoring bird and bat impacts with wind turbines will save time and cost for wind

farms seeking to comply with national standards for avian and bat deaths. The improvement in

monitoring accuracy from the more prominent manual methods will ensure that governing bodies

will be able to protect species of interest. Ultimately automated techniques such as the one explored

here may provide a platform for better integrating the green energy solution of wind power without

endangering avian and bat populations.

75

Work Cited

[1] American Wind Energy Association. (2015, Apr. 30). Wind Energy Accelerates Record

Growth in First Quarter. AWEA [Online]. Available:

http://www.awea.org/MediaCenter/pressrelease.aspx?ItemNumber=7534 (Accessed:

Nov. 5, 2015).

[2] K. S. Smallwood, “Estimating wind turbine-caused bird mortality,” The Journal of

Wildlife Management, vol. 71, no. 8, pp. 2781-2791, Nov. 2007. [Online]. Available:

http://dx.doi.org/10.2193/2007-006 (Accessed: Sept. 16, 2015).

[3] “Windfarms and birds: calculating a theoretical collision risk assuming no avoiding

action,” Scottish Natural Heritage, Inverness, Scottland, 2000. [Online]. Available:

http://www.snh.gov.uk/docs/C205425.pdf (Accessed: Nov. 30, 2015).

[4] C. L. Hull, S. C. Muir, “Behavior and turbine avoidance rates of eagles at two wind farms

in Tasmania Australia,” Wildlife Society Bulletin, vol. 37, no. 1, pp. 49-58, Mar. 2013.

[Online]. Available: http://dx.doi.org/10.1002/wsb.254 (Accessed: Nov. 15, 2015).

[5] DeTect. n.d. Bird and Bat Radar Systems. [Online]. Available: http://www.detect-

inc.com/avian.html (Accessed: Nov. 30, 2015).

[6] DTBird. (2015, Oct.). Bird Monitoring and Reduction of Collision Risk with Wind

Turbines. [Online]. Available: http://www.dtbird.com/images/Downloads/DTBird-

Brochure-OCT15-web.pdf (Accessed: Nov. 30, 2015).

[7] J. P. Verhoef, C. A. Westra, H. Korterink, A. Curvers, “WT-Bird a novel bird impact

detection system,” ECN Research Centre of the Netherlands, Petten, The Netherlands,

n.d. [Online]. Available: https://www.ecn.nl/docs/library/report/2002/rx02055.pdf

(Accessed: Nov. 30, 2015).

[8] L. Spiegel, K. Birkinshaw, L. T. Hope, M. Krebs, B. B. Blevins, “Development of a cost-

effective system to monitor wind turbines for bird and bat collisions, phase I: sensor

http://www.awea.org/MediaCenter/pressrelease.aspx?ItemNumber=7534
http://dx.doi.org/10.2193/2007-006
http://www.snh.gov.uk/docs/C205425.pdf
http://dx.doi.org/10.1002/wsb.254
http://www.detect-inc.com/avian.html
http://www.detect-inc.com/avian.html
http://www.dtbird.com/images/Downloads/DTBird-Brochure-OCT15-web.pdf
http://www.dtbird.com/images/Downloads/DTBird-Brochure-OCT15-web.pdf
https://www.ecn.nl/docs/library/report/2002/rx02055.pdf

76

system feasibility study,” EDM International, Inc., Fort Collins, CO, United States, No.

500-01-032, 2007. [Online]. Available:

http://www.energy.ca.gov/2007publications/CEC-500-2007-004/CEC-500-2007-

004.PDF (Accessed: Nov. 30, 2015).

[9] J. Flowers, R. Albertani, T. Harrison, B. Polagye, R. M. Suryan, “Design and initial

component tests of an integrated avian and bat collision detection system for offshore

wind turbines,” in 2nd Marine Energy Technology Symposium, Seattle, WA, United

States, 2014. [Online]. Available:

http://depts.washington.edu/nnmrec/docs/METS%20paper2014v7.pdf (Accessed: Apr.

12, 2015).

[10] L. J. Fingersh, “Optical blade position tracking system test,” National Renewable Energy

Laboratory (NREL), Golden, CO, United States, TP-500-39253, 2006. [Online].

Available: http://www.nrel.gov/docs/fy06osti/39253.pdf (Accessed Dec. 20, 2015).

[11] X. Fu, L. He, H. Qiu, “MEMS gyroscope sensors for wind turbine blade tip deflection

measurement,” in Instrumentation and Measurement Technology Conference (I2MTC),

Minneapolis, MN, 2013, pp. 1708-1712. [Online]. Available:

http://dx.doi.org/10.1109/I2MTC.2013.6555706 (Accessed: Oct. 12, 2015).

[12] H. C. Kim, P. Giri, J. R. Lee, “A real-time deflection monitoring system for wind turbine

blades using a built-in laser displacement sensor,” in 6th European Workshop on

Structural Health Monitoring, Dresden, Germany, 2012. [Online]. Available:

http://www.ndt.net/article/ewshm2012/papers/we2b2.pdf (Accessed: Oct. 10, 2015).

[13] European Wind Energy Association. n.d. Wind Energy’s Frequently Asked Questions

(FAQ). EWEA [Online]. Available: http://www.ewea.org/wind-energy-basics/faq/

(Accessed: Nov 5, 2015).

http://www.energy.ca.gov/2007publications/CEC-500-2007-004/CEC-500-2007-004.PDF
http://www.energy.ca.gov/2007publications/CEC-500-2007-004/CEC-500-2007-004.PDF
http://depts.washington.edu/nnmrec/docs/METS%20paper2014v7.pdf
http://www.nrel.gov/docs/fy06osti/39253.pdf
http://dx.doi.org/10.1109/I2MTC.2013.6555706
http://www.ndt.net/article/ewshm2012/papers/we2b2.pdf
http://www.ewea.org/wind-energy-basics/faq/

77

[14] U.S. Fish and Wildlife Service. (2015, Apr. 14). Endangered Species Permits. [Online].

Available: http://www.fws.gov/Midwest/endangered/permits/hcp/index.html (Accessed:

Dec. 21, 2015).

[15] J. Everaert, “Wind turbines and birds in Flanders: preliminary study results and

recommendations,” Natuur Oriolus, no. 69(4), pp. 145-155, n.d. [Online]. Available:

https://www.fws.gov/Midwest/wind/references/Flandersmortstudy.pdf (Accessed: Dec.

15, 2015).

[16] M. Morrison et al, “Wind turbine interactions with birds, bats, and their habitats: a

summary of research results and priority questions,” Department of Energy, United

States, 2010. [Online]. Available:

https://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf (Accessed: Jan.

29, 2016).

[17] J. Zhang, Q. Xu, X. Cao, P. Yan, X. Li, “Hierarchical incorporation of shape and shape

dynamics for flying bird detection,” Neurocomputing, vol. 131, pp. 179-190, May 2014.

[Online]. Available: http://dx.doi.org/10.1016/j.neucom.2013.10.026 (Accessed: Nov. 24,

2015).

[18] W. W. Verstraeten et al., “Webcams for Bird Detection and Monitoring: A

Demonstration Study,” Sensors, vol. 10, pp. 3480-3503, Apr. 2010. [Online]. Available:

http://dx.doi.org/10.3390/s100403480 (Accessed: Nov. 24, 2015).

[19] W. Li, D. Song, “Automatic Bird Species Detection from Crowd Sourced Videos,”

Automation Science and Engineering, IEEE Transactions, vol. 11, no. 2, pp. 348-358,

Apr. 2014. [Online]. Available: http://dx.doi.org/10.1109/TASE.2013.2247397

(Accessed: Nov. 24, 2015).

[20] S. Campbell, “Annual blade failures estimated at around 3,800,” Wind Power Monthly,

May 2015. [Online]. Available:

http://www.fws.gov/Midwest/endangered/permits/hcp/index.html
https://www.fws.gov/Midwest/wind/references/Flandersmortstudy.pdf
https://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf
http://dx.doi.org/10.1016/j.neucom.2013.10.026
http://dx.doi.org/10.3390/s100403480
http://dx.doi.org/10.1109/TASE.2013.2247397

78

http://www.windpowermonthly.com/article/1347145/annual-blade-failures-estimated-

around-3800 (Accessed: Nov. 22, 2015).

[21] M. Malkin, A. Byrne, D. Griffin, “Does the wind industry have a blade problem?,” North

American Wind Power, vol 12, no. 4, May 2015. [Online]. Available:

http://www.nawindpower.com/issues/NAW1505/FEAT_02_Does-The-Wind-Industry-

Have-A-Blade-Problem.html (Accessed: Nov. 22, 2015).

[22] STC-N632/N632CS/N632L STC-P632/P632CS/P632L Product Specification, Sentech

America, Inc., Carrollton, TX, pp. 1-10. [Online]. Available: http://downloads.i-

sentech.com/dl_documents/spec_STC-N632series_en_v1.0.pdf (Accessed: June 10,

2015).

[23] Nicky Pages’ Digital Solutions. n.d. NTSC, PAL & Interlace Explained. [Online].

Available: http://nickyguides.digital-digest.com/interlace.htm (Accessed: Dec. 15, 2015).

[24] Bambooav. n.d. Information About Interlaced and Progressive Scan Signals. [Online].

Available: http://www.bambooav.com/information-about-interlaced-and-progressive-

scan-signals.html (Accessed: Dec. 15, 2015).

[25] P. Bourke. (2013, Apr). Field of View and Focal Length. Paul Bourke [Online].

Available: http://paulbourke.net/miscellaneous/lens/ (Accessed: Dec. 15, 2015).

[26] J. Quilter, “GE to build 10MW turbine testing facility,” Wind Power Monthly, Mar. 2013.

[Online]. Available: http://www.windpowermonthly.com/article/1174697/ge-build-

10mw-turbine-testing-facility (Accessed: Dec. 15, 2015).

[27] SDX-26 Special 2.4 GHz Audio/Video Transmitter with 4 Channels, RF-Links. [Online].

Available: http://rf-links.com/newsite/pdf/sdx26.pdf (Accessed: June 10, 2015).

[28] VRX-24l Audio/Video Receiver 2.4 GHz, RF-Links. [Online]. Available: http://www.rf-

links.com/newsite/pdf/vrx24l.pdf (Accessed: June 10, 2015).

http://www.windpowermonthly.com/article/1347145/annual-blade-failures-estimated-around-3800
http://www.windpowermonthly.com/article/1347145/annual-blade-failures-estimated-around-3800
http://www.nawindpower.com/issues/NAW1505/FEAT_02_Does-The-Wind-Industry-Have-A-Blade-Problem.html
http://www.nawindpower.com/issues/NAW1505/FEAT_02_Does-The-Wind-Industry-Have-A-Blade-Problem.html
http://downloads.i-sentech.com/dl_documents/spec_STC-N632series_en_v1.0.pdf
http://downloads.i-sentech.com/dl_documents/spec_STC-N632series_en_v1.0.pdf
http://nickyguides.digital-digest.com/interlace.htm
http://www.bambooav.com/information-about-interlaced-and-progressive-scan-signals.html
http://www.bambooav.com/information-about-interlaced-and-progressive-scan-signals.html
http://paulbourke.net/miscellaneous/lens/
http://www.windpowermonthly.com/article/1174697/ge-build-10mw-turbine-testing-facility
http://www.windpowermonthly.com/article/1174697/ge-build-10mw-turbine-testing-facility
http://rf-links.com/newsite/pdf/sdx26.pdf
http://www.rf-links.com/newsite/pdf/vrx24l.pdf
http://www.rf-links.com/newsite/pdf/vrx24l.pdf

79

[29] MathWorks. n.d. vision.Deinterlacer System Object. [Online]. Available:

http://www.mathworks.com/help/vision/ref/vision.deinterlacer-class.html (Accessed:

Feb. 5, 2016).

[30] R. Collins. CSE 598C, Class Lecture, Topic: “Towards crowd scene analysis.”

Department of Computer Science and Engineering, Pennsylvania State University, State

College, PA, n.d. [Online]. Available:

http://www.cse.psu.edu/~rtc12/CSE598C/MotionDetection.pdf (Accessed: Feb. 2, 2016).

[31] A. Singh, “State of the Art”, in Optic Flow Computation, Los Alamitos, CA, United

States: IEEE Computer Society Press, 1991.

[32] Y. Wu. EECS 432, Class Notes, Topic: “Optical flow and motion analysis,” Department

of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,

n.d. [Online]. Available:

http://www.ece.northwestern.edu/~yingwu/teaching/EECS432/Notes/optical_flow.pdf

(Accessed: Dec. 15, 2015).

[33] R. Rojas. Class Notes, Topic: “Lucas-Kanade in a nutshell,” Department of Computer

Science, Free Univeristy of Berlin, Germany, n.d. [Online]. Available: http://www.inf.fu-

berlin.de/inst/ag-ki/rojas_home/documents/tutorials/Lucas-Kanade2.pdf (Accessed: Dec.

15, 2015).

[34] T. Pock. Class Lecture, Topic: “Optical flow,” Institute for Computer Graphics and

Vision, Graz University of Technology, Austria, n.d. [Online]. Available:

https://cw.fel.cvut.cz/wiki/_media/courses/ae4m33mpv/optical_flow_2.pdf (Accessed:

Dec. 15, 2015).

[35] MathWorks. n.d. Train a Cascade Object Detector. [Online]. Available:

http://www.mathworks.com/help/vision/ug/train-a-cascade-object-

detector.html?s_tid=gn_loc_drop&refresh=true (Accessed: June 3, 2015).

http://www.mathworks.com/help/vision/ref/vision.deinterlacer-class.html
http://www.cse.psu.edu/~rtc12/CSE598C/MotionDetection.pdf
http://www.ece.northwestern.edu/~yingwu/teaching/EECS432/Notes/optical_flow.pdf
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/Lucas-Kanade2.pdf
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/documents/tutorials/Lucas-Kanade2.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/ae4m33mpv/optical_flow_2.pdf
http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html?s_tid=gn_loc_drop&refresh=true
http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html?s_tid=gn_loc_drop&refresh=true

80

[36] B. Raluca. Class Notes, Topic: “Histograms of oriented gradients,” Computer Science

Department, Technical University of Cluj-Napoca, Romania, n.d. [Online]. Available:

http://users.utcluj.ro/~raluca/prs/prs_lab_05e.pdf (Accessed: Dec. 15, 2015).

[37] P. Viola, M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple

Features,” in Conference on Computer Vision and Pattern Recognition, 2001. [Online].

Available: http://dx.doi.org/10.1109/CVPR.2001.990517 (Accessed: Dec. 10, 2015).

[38] B. S. Hanzra. (May 30, 2015). Texture Matching Using Local Binary Patterns (LBP),

OpenCV, Scikit-Learn and Python. HanzraTech [Online]. Available:

http://hanzratech.in/2015/05/30/local-binary-patterns.html (Accessed: Feb. 3, 2016).

[39] E. Reyes, “A comparison of image processing techniques for bird detection,” M.S. thesis,

Electrical Engineering Department, California Polytechnical State University, San Luis

Obispo, 2014. [Online]. Available:

http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2341&context=theses

(Accessed: Feb. 3, 2016).

[40] R. Yoshihashi, R. Kawakami, M. Lida, T. Naemura, “Construction of a bird image

dataset for ecological investigations,” in 2015 IEEE International Conference on Image

Processing, Quebec City, 4248-4254. [Online]. Available:

http://dx.doi.org/10.1109/ICIP.2015.7351607 (Accessed: Jan. 12, 2016).

[41] “Short-tailed Albatross (Phoebastria albatrus) threatened and endangered species,” U.S.

Fish & Wildlife Service, United States, 2001 [Online]. Available:

http://www.fws.gov/alaska/fisheries/endangered/pdf/STALfactsheet.pdf (Accessed: Dec.

29, 2015).

[42] MathWorks. n.d. Motion-Based Multiple Object Tracking. [Online]. Available:

http://www.mathworks.com/help/vision/examples/motion-based-multiple-object-

tracking.html?s_tid=gn_loc_drop (Accessed: Dec. 20, 2015).

http://users.utcluj.ro/~raluca/prs/prs_lab_05e.pdf
http://dx.doi.org/10.1109/CVPR.2001.990517
http://hanzratech.in/2015/05/30/local-binary-patterns.html
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2341&context=theses
http://dx.doi.org/10.1109/ICIP.2015.7351607
http://www.fws.gov/alaska/fisheries/endangered/pdf/STALfactsheet.pdf
http://www.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html?s_tid=gn_loc_drop
http://www.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html?s_tid=gn_loc_drop

81

[43] MathWorks. n.d. assignDetectionsToTracks. [Online]. Available:

http://www.mathworks.com/help/vision/ref/assigndetectionstotracks.html (Accessed:

May 10, 2015).

[44] MathWorks. n.d. vision.PointTracker System Object. [Online]. Available:

http://www.mathworks.com/help/vision/ref/vision.pointtracker-class.html (Accessed:

Aug. 5, 2015).

[45] MathWorks. n.d. detectMinEigenFeatures. [Online]. Available:

http://www.mathworks.com/help/vision/ref/detectmineigenfeatures.html (Accessed: Aug.

28, 2015).

[46] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, “Image quality assessment: from

error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600-612, Apr. 2004. [Online]. Available:

http://dx.doi.org/10.1109/TIP.2003.819861 (Accessed: Dec. 2, 2015).

[47] J. Doke. n.d. Creating a GUI With GUIDE. MathWorks [Online]. Available:

http://www.mathworks.com/videos/creating-a-gui-with-guide-68979.html (Accessed:

July 15, 2015).

[48] MathWorks. n.d. vision.CascadeObjectDetector System Object. [Online]. Available:

http://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-class.html

(Accessed: June 1, 2015).

[49] Amimon. n.d. Connex Solution. [Online]. Available: http://connex.amimon.com/

(Accessed: Jan. 28, 2016).

[50] I. Buchmann. (2016). BU-204: How do Lithium Batteries Work? Battery University

[Online]. Available: http://batteryuniversity.com/learn/article/lithium_based_batteries

(Accessed: Jan. 28, 2016).

[51] P. H. Madsen. n.d. Introduction to the IEC 61400-1 Standard. Danish Wind Industry

Association [Online]. Available:

http://www.mathworks.com/help/vision/ref/assigndetectionstotracks.html
http://www.mathworks.com/help/vision/ref/vision.pointtracker-class.html
http://www.mathworks.com/help/vision/ref/detectmineigenfeatures.html
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.mathworks.com/videos/creating-a-gui-with-guide-68979.html
http://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-class.html
http://connex.amimon.com/
http://batteryuniversity.com/learn/article/lithium_based_batteries

82

http://www.windpower.org/download/461/introduction_to_the_iecpdf (Accessed: Dec.

15, 2015).

[52] General Electric. (2015). Wind Turbines. GE Renewable Energy [Online]. Available:

https://renewables.gepower.com/wind-energy/turbines.html (Accessed: June 1, 2015).

[53] HIS Engineering 360. (2016). 2.85-100 and 2.85-103 Wind Turbines. [Online].

Available: http://datasheets.globalspec.com/ds/2797/GEEnergy/D46FFBD2-767E-4B8D-

AC79-FADBA3A0CE83 (Accessed: June 1, 2015).

[54] Vestas. (2014). Vestas. [Online]. Available: https://www.vestas.com/ (Accessed: June 1,

2015).

[55] Siemens. (2016). Wind Power Solutions for Offshore, Onshore, and Service Projects.

[Online]. Available: http://www.energy.siemens.com/hq/en/renewable-energy/wind-

power/ (Accessed: June 1, 2015).

[56] I. Analyst. Masking Out Image Area Using Binary Mask. MathWorks [Online].

Available: http://www.mathworks.com/matlabcentral/answers/38547-masking-out-

image-area-using-binary-mask (Accessed: July 23, 2015).

[57] MathWorks. n.d. Face Detection and Tracking Using the KLT Algorithm. [Online].

Available: http://www.mathworks.com/help/vision/examples/face-detection-and-

tracking-using-the-klt-algorithm.html (Accessed: Aug. 5, 2015).

[58] GraphPad Software. (2016). P Value Calculator. QuickCalcs [Online]. Available:

http://graphpad.com/quickcalcs/PValue1.cfm (Accessed: Jan. 28, 2016).

© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The

MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other

product or brand names may be trademarks or registered trademarks of their respective holders.

http://www.windpower.org/download/461/introduction_to_the_iecpdf
https://renewables.gepower.com/wind-energy/turbines.html
http://datasheets.globalspec.com/ds/2797/GEEnergy/D46FFBD2-767E-4B8D-AC79-FADBA3A0CE83
http://datasheets.globalspec.com/ds/2797/GEEnergy/D46FFBD2-767E-4B8D-AC79-FADBA3A0CE83
https://www.vestas.com/
http://www.energy.siemens.com/hq/en/renewable-energy/wind-power/
http://www.energy.siemens.com/hq/en/renewable-energy/wind-power/
http://www.mathworks.com/matlabcentral/answers/38547-masking-out-image-area-using-binary-mask
http://www.mathworks.com/matlabcentral/answers/38547-masking-out-image-area-using-binary-mask
http://www.mathworks.com/help/vision/examples/face-detection-and-tracking-using-the-klt-algorithm.html
http://www.mathworks.com/help/vision/examples/face-detection-and-tracking-using-the-klt-algorithm.html
http://graphpad.com/quickcalcs/PValue1.cfm

83

Appendix A: Turbine Size Estimation

This appendix provides the MATLAB code and corresponding output, to support the turbine size

estimation plot seen in Chapter 4. This code estimates the blade radius of a wind turbine given its

power output and IEC class.

The IEC class rating, dealing with operational wind speed, is split into the categories of 1, 2, 3, and

S [51]. An IEC rating of 1 represents the highest defined rating, while class S details that the

operational wind speed is specified by the designer [51]. A power output of 10 MW and the

assumption of an IEC class of 1 were entered for the MATLAB code.

MATLAB Code

%% Wind Turbine Characterization
%Given Power, IEC Turbine Class, Find Blade Length

clear
clc
clf
EstimateP = 10; %Turbine Power [MW]
EstimateTC = 1; %Turbine Class
bladeinfGE = [1.7,51.5,3; 1.85,41.25,2; 1.85,43.5,2; 2.5,60,3;

2.75,60,3; 2.85,50,2; 2.85,51.5,2; 3.2,51.5,2; 1.6,41.25,2; 1.5,38.5,1;

1.7,50.2,3];
[a b] = size(bladeinfGE); %GE Turbine information (see proceeding

citation list) %MW, Blade L, IEC Class
bladeinfVESTAS = [1.7,50.2,3; 2,55,3; 2,50,2; 1.8,50,3; 2,50,3;

1.8,45,2; 2,45,3; 3.3,63,3; 3.3,58.5,2; 3.3,56,2; 3.3,52.5,1;

8.0,82,1];
[c d] = size(bladeinfVESTAS); %Vestas Turbine information (see

proceeding citation list)
bladeinfSIEMENS = [2.3,50.5,2; 2.3,54,2; 3,50.5,1; 3.2,50.5,1; 3,54,1;

3.2,54,1; 3,56.5,2; 3.2,56.5,2; 3.6,60,1; 4,60,1; 4,65,1; 6,77,1];
[e f] = size(bladeinfSIEMENS); %Siemens Turbine information (see

proceeding citation list)
colors = ['r','b','k'];
leg = ['class 1','class 1 best fit';'class 2','class 2 best fit';'class

3','class 3 best fit'];
x = [0:0.1:EstimateP+2];
for i = 1:3
classGEfind = bladeinfGE(:,3) == i;
classGE = bladeinfGE(classGEfind,:);
classVESTASfind = bladeinfVESTAS(:,3) == i;
classVESTAS = bladeinfVESTAS(classVESTASfind,:);
classSIEMENSfind = bladeinfSIEMENS(:,3) == i;
classSIEMENS = bladeinfSIEMENS(classSIEMENSfind,:);

84

[o p] = size(classGE);
[g h] = size(classVESTAS);
[m n] = size(classSIEMENS);
class_sort = classGE;
 for j = 1:g
 class_sort(end+1,:) = classVESTAS(j,:);
 end
 for k = 1:m
 class_sort(end+1,:) = classSIEMENS(k,:);
 end
P = polyfit(class_sort(:,1),class_sort(:,2),1);
lines = polyval(P,x);
scatter(class_sort(:,1),class_sort(:,2),colors(i))
hold on
plot(x,lines,colors(i))
hold on
 if i == EstimateTC
 plot(EstimateP,polyval(P,EstimateP),'mX')
 estimated_radius = polyval(P,EstimateP);
 hold on
 line_y = plot([EstimateP,EstimateP],[0,estimated_radius],'--m');
 lineann_y = get(line_y,'Annotation');
 legendmanip_y = get(lineann_y','LegendInformation');
 set(legendmanip_y,'IconDisplayStyle','off');
 hold on
 line_x =

plot([0,EstimateP],[estimated_radius,estimated_radius],'--m');
 lineAnnotate = get(line_x,'Annotation');
 legendoff = get(lineAnnotate','LegendInformation');
 set(legendoff,'IconDisplayStyle','off');
 hold on
 end
hold on
end
if EstimateTC == 1
 legend('class 1','class 1 best fit','Estimated Blade Radius','class

2','class 2 best fit','class 3','class 3 best fit')
elseif EstimateTC == 2
 legend('class 1','class 1 best fit','class 2','class 2 best

fit','Estimated Blade Radius','class 3','class 3 best fit')
else
 legend('class 1','class 1 best fit','class 2','class 2 best

fit','class 3','class 3 best fit','Estimated Blade Radius')
end
title('Blade Radius versus Power Output for Wind Turbines')
xlabel('Power Output (MW)')
ylabel('Blade Radius (m)')
grid on
hold off
%The Vestas V164-8.0 has a hub radius of 2m, so in order to estimate

blade length of the GE 10Mw, a hub radius of 2.5m is assumed
estimated_blade = estimated_radius - 2.5;
fprintf('\nThe estimated blade length is %6.2f m\n \n \n',

estimated_blade)
fprintf('The values displayed were obtained from the websites of GE,

Vestas, and Siemens.\nThe Vestas V164-8.0 is actually a class S, but

due to being offshore has been assumed to be class 1. \n')

85

Output
The estimated blade length is 98.16 m

The values displayed were obtained from the websites of GE, Vestas, and Siemens.

The Vestas V164-8.0 is actually a class S, but due to being offshore has been assumed to be class

1.

>>

86

87

Sources for Wind Turbine Data

Turbine Source

GE 1.7-100/103 [52]

GE 1.85-82.5

GE 1.85-87

GE 2.5-120

GE 2.75-120

GE 2.85-100 [53]

GE 2.85-103

GE 3.2-103 [52]

GE 1.6-82.5

GE 1.5-77

GE 1.7-103

V110-2.0 [54]

V100-2.0

V100-1.8

V100-2.0

V90-1.8

V90-2.0

V126-3.3

V117-3.3

V112-3.3

V105-3.3

V164-8.0

SWT-2.3-101 [55]

SWT-2.3-108

SWT-3.0-101

SWT-3.2-101

SWT-3.0-108

SWT-3.2-108

SWT-3.0-113

SWT-3.2-113

SWT-3.6-120

SWT-4.0-120

SWT-4.0-130

SWT-6.0-154

88

Appendix B: Pixel Size Calculation Program

This MATLAB code provides pixel size information for a camera on a wind turbine blade. The

camera may be rotated up or down, and placed anywhere along the length of the blade.

MATLAB Code
%% Pixel Area Calculator
%Accounts for camera placement and tilt. Two plots:
%Pixel area along blade length %Pixel size compared to 23 by 23cm

target

clear
clc
clf

%Turbine information (currently projected GE 10MW blade radius)
BladeL = 98.16; %m
%Camera information (SENTECH STC-N632 Microcamera)
FL = 25*10^(-3); %m
CellHorz = 6.35*10^(-6); %m
CellVert = 7.4*10^(-6); %m
PixelHorz = 720; %Pix
PixelVert = 480; %Pix
SensHorz = CellHorz*PixelHorz; %m
SensVert = CellVert*PixelVert; %m
%Calculate FOV height and width
AngleHorz = 2*atand(SensHorz/(2*FL)); %Degrees
AngleVert = 2*atand(SensVert/(2*FL)); %Degrees
%User input data
Camloc = input('Distance from root of blade: ');
Camtilt = input('Camera vertical tilt: ');
%Account for camera tilt
AngleVert1 = AngleVert/2+Camtilt;
AngleVert2 = -AngleVert/2+Camtilt;
%Span of blade seen by camera FOV
x = (Camloc:0.1:BladeL);
%Preallocate matrices
PixAreaTop = zeros(length(x),1);
PixAreaBot = zeros(length(x),1);
PixWidthTop = zeros(length(x),1);
PixWidthBot = zeros(length(x),1);
PixHeight = zeros(length(x),1);
%Perform pixel calculations
for i = 1:length(x)
 HypTop = x(i)/abs(cosd(AngleVert1));
 HypBot = x(i)/abs(cosd(AngleVert2));
 WidTop = 2*tand(AngleHorz/2)*HypTop;
 WidBot = 2*tand(AngleHorz/2)*HypBot;
 HtTop = x(i)*tand(AngleVert1);
 HtBot = x(i)*tand(AngleVert2);
 Height = abs(HtTop-HtBot);
 PixHeight(i) = Height/PixelVert;

89

 PixWidthTop(i) = WidTop/PixelHorz;
 PixWidthBot(i) = WidBot/PixelHorz;
 PixAreaTop(i) = PixWidthTop(i)*PixHeight(i);
 PixAreaBot(i) = PixWidthBot(i)*PixHeight(i);
end
%First figure: pixel area versus position along length of blade
plot(x,PixAreaTop*100*100,'r')
hold on
plot(x,PixAreaBot*100*100,'b')
grid on
legend('Pixel Area at Top of FOV','Pixel Area at Bottom of FOV')
xlabel('Distance Along Blade (m)')
ylabel('Pixel Area (cm^2)')
title('Pixel Area versus Position Along Length of Turbine Blade')
hold off
%Print Values
[n m] = max(PixAreaTop);
[b c] = max(PixAreaBot);
targetArea = 23*23; %cm
if n < b
 nconv = n*100*100;
 PWT = PixWidthTop(m);
 PH = PixHeight(m);
 fprintf('The min pixel size occurs at top of FOV\n pixel size is

%6.4f cm^2\n',nconv)
 PixelsPerTarget = targetArea/nconv;
 fprintf('%6.3f pixels fit within the target

area\n',PixelsPerTarget)
else
 bconv = b*100*100;
 PWB = PixWidthBot(c);
 PH = PixHeight(c);
 fprintf('The min pixel size occurs at bottom of FOV\n pixel size is

%6.4f cm^2\n',bconv)
 PixelsPerTarget = targetArea/bconv;
 fprintf('%6.3f pixels fit within the target

area\n',PixelsPerTarget)
end
%Second figure: Compare target area to that of a single pixel
figure
for i = 1:3
subplot(2,3,i)
grid on
Back = area([0,24],[24,24],'FaceColor',[0 0 1]);
hold on
Top =

area([0,PixWidthTop(round((i)*length(x)/3))*100],[PixHeight(round((i)*l

ength(x)/3))*100,PixHeight(round((i)*length(x)/3))*100],'FaceColor',[0

1 0]);
hold on
xlabel('Length (cm)')
ylabel('Length (cm)')
axis([0 30 0 30])
axis square
if i == 2
 title('Target Size versus Pixel Area at 1/3, 2/3, and End of the

Turbine Blade')

90

end
end
legend('Target Size','Pixel Area Near Top of FOV')
for j = 1:3
subplot(2,3,j+3)
grid on
Back = area([0,24],[24,24],'FaceColor',[0 0 1]);
hold on
Bottom =

area([0,PixWidthBot(round((j)*length(x)/3))*100],[PixHeight(round((j)*l

ength(x)/3))*100,PixHeight(round((j)*length(x)/3))*100],'FaceColor',[1

0 0]);
hold on
xlabel('Length (cm)')
ylabel('Length (cm)')
axis([0 30 0 30])
axis square
end
legend('Target Size','Pixel Area Near Bottom of FOV')

Output
Distance from root of blade: 0

Camera vertical tilt: 4

The min pixel size occurs at top of FOV

 pixel size is 7.2710 cm^2

72.755 pixels fit within the target area

>>

91

92

93

Appendix C: Camera Case Dimension

The following drawings provide dimensions for the critical parameters of the first iteration of on-

blade camera casing. This model has been toleranced to allow for error during printing, by

expanding through holes and regions for component installment. The model was printed as two

separate parts, including the base plate, and upper shell.

94

95

96

Appendix D: Avian Program Logic Diagram

This appendix outlines the overall avian interaction program architecture through a block

diagram.

97

98

99

Appendix E: Avian Interaction Program

In this appendix, the entire avian interaction MATLAB program is presented. For ease of use, the

primary code is listed first, followed by its satellite functions in the order that they are utilized. The

program can be operated in one of two ways, including "continuous", and "triggered". Continuous

operation runs through the entire input video before presenting results, while triggered searches for

frames before and after a peak in an input signal. The latter option was used to simulate vibrational

input from the contact microphones or accelerometers used in [9]. Further options include the

recording of video to review detections, and updating the cascade object detection algorithm after

processing. The tracking framework and management of multiple targets was adapted from [42].

Primary Code
clear
clc
clf
close all

%% ***Avian Interaction Program***
% Two modes of operation:
% 1. analyze one video until completion (continuous)
% 2. analyze video surrounding an event using a frame buffer

(triggered)

% option 2 simuluates triggering from vibrational sensors
% Additional Options:
% Record the detections in a new video file
% Update detection system using FP instances

%% NOTES
% Check Zonecheck for framesize before use
% Tick regen & video +1
% Detection using GoPro is on 16th iteration
% Rotation in frames for GoPro is 187
% Blade pitch for GoPro is ~-30 degrees
% Rotation in frame for Sentech outdoor trials is 100
% detector = vision.CascadeObjectDetector('Example_Detection_1.xml');
% for Sentech trial

%% User Prompts
Type = input('Continuous [1] or Triggered [2]? ');
Record = input('Would you like to record this session? [1] yes [2] no

');
Update = input('Should the detection algorithm be updated after

processing? [1] yes [2] no ');

100

%% Detect birds using cascade object detector
% Launch detector
detector = vision.CascadeObjectDetector('Test_02112016_2nd.xml');
% Set detector parameters
detector.MergeThreshold = 12; %This parameter can be varied --> lower

for
% increased number of false positives %14 for regen
rotationSpeed = 187; %frames per rotation
BladePitch = -30; %degrees

%% Video Setup
Vid = VideoReader('New_blade_cropped4.avi'); %Read the file
numOfFrames = Vid.NumberOfFrames %Get the number of frames
if Record == 1
vidWrite = VideoWriter('Test_02112016_Trial3rd_mergethresh12.avi');

%Record results
vidWrite.FrameRate = 25; %Framerate for recorded results
open(vidWrite); %Begin recording
end
switch Type
 case 1 %Continuous
 EndFrame = 2200;
 StartFrame = 200; %Begin video from this frame
 type = 1;
 case 2 %Triggered
 StartFrame = 1;
 signal = load('signal.mat'); %Select signal file
 signal = signal.signal;
 timeline = (1/60).*(1:numOfFrames);
 plot(timeline,signal)
 axis([0 numOfFrames/60 -14 0]);
 title('Accelerometer Data');
 xlabel('Time [sec]');
 ylabel('Acceleration [m/s^2]');
 figure
 frameStore = signalCheck(signal);
 EndFrame = length(frameStore);
 type = 2;
end

%% Initialize blob analysis
% Used to find centroids of detections
blob = vision.BlobAnalysis; %Launch 1st blob analysis
blob.AreaOutputPort = false; %No use for area
blob.BoundingBoxOutputPort = false; %Bounding boxes already created by

cascade object detector
blob.MinimumBlobArea = 1; %1 in order to prevent errors
blob.MaximumCount = 1; %For no more than one centroid per detection
% Used to locate blobs inside blade perimeter
bladeBlob = vision.BlobAnalysis; %Launch 2nd blob analysis
bladeBlob.AreaOutputPort = false; %No current use for area
bladeBlob.BoundingBoxOutputPort = true; %Bounding boxes
bladeBlob.CentroidOutputPort = false; %No need for centroids
bladeBlob.MinimumBlobArea = 40; %Prevent noise from triggering system
bladeBlob.MaximumBlobArea = 400; %Prevent large shadows from triggering

101

bladeBlob.MaximumCount = 3; %10 max detections
bladeBlob.ExcludeBorderBlobs = true; %Requires movement fully in

perimeter

%% Initialize Kalman Filter REF: [42]
vision.KalmanFilter; %Initialize the Kalman filter
% Setup tracks structure with fields for ID's, bounding boxes, age,

etc.
tracks = struct(...
 'id', {}, ...
 'bbox',{},...
 'kalmanFilter', {}, ...
 'age', {}, ...
 'totalVisibleCount', {}, ...
 'consecutiveInvisibleCount', {}); %Key tracking items

stored in struct
nextId = 1; %First ID to assign
centroidKeeper = []; %An empty array to store the centroids and

information of detections
reporter = []; %An empty array to store detection & tracking data for

later analysis

% References to MATLAB's Multiple Object Tracking framework will appear
% throughout code.

%% Setup blade ROI structure
frame = read(Vid, StartFrame); %Obtain the first frame
frame = rgb2gray(frame); %Convert RGB frame to grayscale
[Mask] = boundaries(frame); %Boundaries function allows the user to

outline the blade
bboxes = []; %Empty array for future use

%% For loop for reading frames
% The each frame is analyzed in consecutive order

for num = StartFrame:EndFrame %Loop through specified length of video
 %% Obtain frame from video
 if type == 2 %If signal activated
 num = frameStore(num); %The variable controlled by the outer-

most for loop iterates through the frames located via the signalCheck

function
 end
 img = read(Vid,num); %Read frames
 framegray = rgb2gray(img); %Convert frame to grayscale

 %% Locate blobs within blade ROI
 % This checks the blade ROI for new blobs
 bboxFind = blobCheck(framegray,Mask,bladeBlob,num); %Blob analysis

fcn
 for q = 1:size(bboxFind,1);
 % Add any located blobs to a matrix to be evaluated at a later

time
 if isempty(bboxes)
 bboxes(1,1:5) = bboxFind(q,:); %If empty create 1st row
 else
 bboxes(end+1,1:5) = bboxFind(q,:); %Expand matrix

102

 end
 end

 %% Detect potential birds
 bbox = step(detector,img); %Step the detector with the color image
 [R,C] = size(bbox); %Find size of bbox struct (provides the number

of detections)
 if R > 0 %In order to prevent this section from running with no

detections
 %Combine overlapping bounding boxes (NOTE: only for two bboxes)
 [bboxC] = bboxCombine(bbox); %Collapse any intersecting bounding

boxes
 [R2,C2] = size(bboxC); %Determine the size of the reformatted

bboxes
 centroid = zeros(R2,2); %Create an empty array for centroids
 for i = 1:R2 %Loop through detections
 framesect = framegray(bboxC(i,2):bboxC(i,4)+bboxC(i,2),...

%Examine bbox sections
 bboxC(i,1):bboxC(i,3)+bboxC(i,1));
 level = graythresh(framesect); %Determine local threshold value
 framesectBW = im2bw(framesect,level); %Convert section to

binary
 sectBW = imcomplement(framesectBW); %Birds are usually dark

compared to background- inverse
 centroid(i,:) = step(blob,sectBW); %Locate the centroid
 centroid(i,1) = centroid(i,1) + bboxC(i,1); %Assign the

centroids
 centroid(i,2) = centroid(i,2) + bboxC(i,2); %Assign the

centroids
 end
 end

 %% Predict new locations REF: [42] (Framework)
 for j = 1:length(tracks)
 bboxA = tracks(j).bbox; %Cycle through bounding boxes
 predictedCentroid = predict(tracks(j).kalmanFilter); %Predict

location
 predictedCentroid = int16(predictedCentroid) -

int16(bboxA(3:4)/2); %Convert to 16bit int. Bbox starts from corner,

t/f shift by 0.5 height and width
 tracks(j).bbox = [predictedCentroid, bboxA(3:4)]; %Update

bounding box
 end

 %% Assignment cost analysis REF: [42]
 if R > 0 %If detections occured in this frame
 nTracks = length(tracks); %Number of existing tracks
 nDetections = size(centroid, 1); %Number of detections in this

frame
 cost = zeros(nTracks, nDetections); %Empty matrix
 for k = 1:nTracks
 cost(k,:) = distance(tracks(k).kalmanFilter, centroid); %Find

distance
 end
 costOfNonAssignment = 160; %Adjustable

103

 [assignments, unassignedTracks, unassignedDetections] =

assignDetectionsToTracks(cost, costOfNonAssignment); %Assign detections
 end

 %% Updating assigned tracks REF: [42]
 if R > 0 %If detections occured in this frame
 numAssignedTracks = size(assignments, 1);
 for l = 1:numAssignedTracks
 trackIdx = assignments(l, 1); %Assigned track
 detectionIdx = assignments(l, 2); %Assigned ID
 centroids = centroid(detectionIdx, :); %Assign centroid
 bboxB = bboxC(detectionIdx, :); %Bbox is equal to the combined

of detection
 tracks(trackIdx).bbox = bboxB; %Update bounding box
 correct(tracks(trackIdx).kalmanFilter, centroids); %Updating

Kalman filter data
 tracks(trackIdx).age = tracks(trackIdx).age + 1; %Getting older
 tracks(trackIdx).totalVisibleCount =

tracks(trackIdx).totalVisibleCount + 1; %Visible +1
 tracks(trackIdx).consecutiveInvisibleCount = 0; %No longer

invisible
 centroidKeeper(end+1,1) = tracks(trackIdx).id; %Store the ID
 centroidKeeper(end,2:5) = bboxB; %Store the bbox
 centroidKeeper(end,6:7) = centroids; %Store the centroid
 centroidKeeper(end,8) = 1; %One signifies this is a detection
 centroidKeeper(end,9) = num; %Record the frame
 end
 end
 %% Updating unassigned tracks REF [42]
 if R > 0 %If detections occured in this frame
 for o = 1:length(unassignedTracks)
 ind = unassignedTracks(o);
 tracks(ind).age = tracks(ind).age + 1; %Getting older
 tracks(ind).consecutiveInvisibleCount =

tracks(ind).consecutiveInvisibleCount + 1; %Invisible +1
 centroidKeeper(end+1,1) = tracks(ind).id; %Store the ID
 centroidKeeper(end,2:5) = [0,0,0,0]; %No bbox
 centroidKeeper(end,6:7) =

predict(tracks(ind).kalmanFilter); %Store prediction
 centroidKeeper(end,8) = 2; %Prediction
 centroidKeeper(end,9) = num; %Record the frame
 end
 elseif ~isempty(tracks) && R == 0
 % this is necessary for maintaining Kalman filter when

detections
 % do not occur
 for z = 1:length(tracks)
 tracks(z).age = tracks(z).age + 1;
 tracks(z).consecutiveInvisibleCount =

tracks(z).consecutiveInvisibleCount + 1;
 centroidKeeper(end+1,1) = tracks(z).id;
 centroidKeeper(end,2:5) = [0,0,0,0];
 centroidKeeper(end,6:7) = predict(tracks(z).kalmanFilter);
 centroidKeeper(end,8) = 2; %Two signifies this is a

prediction
 centroidKeeper(end,9) = num;
 end

104

 end
 %% Deleting lost tracks REF: [42]
 if ~isempty(tracks)
 invisibleForTooLong = 15; %Variable parameter
 ageThreshold = 25; %Variable parameter
 ages = [tracks(:).age]; %Listing of ages
 totalVisibleCounts = [tracks(:).totalVisibleCount]; %Number of

visible instances per track
 visibility = totalVisibleCounts ./ ages; %Proportion of visible

and age
 lostInds = (ages < ageThreshold & visibility < 0.1) |

[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong; %Find

tracks to remove
 if ~isempty(tracks(lostInds))
 endedTracks = tracks(lostInds); %Find ended tracks
 for j = 1:size(endedTracks,2)
 ID = endedTracks(j).id; %ID per loop iteration
 check = find(centroidKeeper(:,1) == ID); %Find this ID

in storage
 Detections = find(centroidKeeper(check,8) == 1); %Find

which of these are detections
 if max(Detections) == 1 %Only one detection, requiring

backup tracking
 status = KLTpoints_revised(centroidKeeper(check,:),

Vid, BladePitch); %Secondary tracking
 if status == 1 %Angled and towards blade
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 1; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 1; %Path type
 end
 elseif status == 2 %Little to no angle of path
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 2; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 2; %Path type
 end
 elseif status == 3 %Unsuccessfully tracked
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 3; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 3; %Path type
 end
 else %ergo status == 4 %Angled and away from

blade
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 4; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 4; %Path type

105

 end
 end
 else
 status =

evalKalmanTracks(centroidKeeper(check,:),BladePitch); %Enough

detections for simple path evaluation
 if status == 1
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 1; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 1; %Path type
 end
 elseif status == 2
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 2; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 2; %Path type
 end
 elseif status == 3
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 3; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 3; %Path type
 end
 else
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 4; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 4; %Path type
 end
 end
 end
 end
 end
 tracks = tracks(~lostInds); %Refine struct to exclude lost

tracks
 end
 %% Create new tracks REF: [42]
 if R > 0 %If detections occured in this frame
 centroid = centroid(unassignedDetections, :); %The centroids for

each new/unassigned detection
 for p = 1:size(centroid, 1)
 centroidNew = centroid(p,:); %New centroid for each iteration

of for loop
 bboxD = bboxC(p,:);
 %Create a Kalman filter object
 kalmanFilter =

configureKalmanFilter('ConstantVelocity',centroidNew,[200, 50], [100,

25], 100);

106

 %Create a new track
 newTrack = struct('id', nextId, 'bbox', bboxD, 'kalmanFilter',

kalmanFilter, 'age', 1, 'totalVisibleCount', 1,

'consecutiveInvisibleCount', 0);
 %Add it to the array of tracks
 tracks(end + 1) = newTrack;
 %Add results to storage
 if isempty(centroidKeeper)
 centroidKeeper(1,1) = nextId;
 centroidKeeper(1,2:5) = bboxD;
 centroidKeeper(1,6:7) = centroidNew;
 centroidKeeper(1,8) = 1;
 centroidKeeper(1,9) = num;
 else
 centroidKeeper(end+1,1) = nextId;
 centroidKeeper(end,2:5) = bboxD;
 centroidKeeper(end,6:7) = centroidNew;
 centroidKeeper(end,8) = 1;
 centroidKeeper(end,9) = num;
 end
 %Increment the next id
 nextId = nextId + 1;
 end
 end
 %% Display the results. For the following five lines, REF: [42]
 if ~isempty(tracks)
 ids = int32([tracks(:).id]);
 labels = cellstr(int2str(ids'));
 bboxNotation = cat(1, tracks.bbox);
 frameNotated = insertObjectAnnotation(framegray,

'rectangle', bboxNotation, labels);
 framegray = im2uint8(frameNotated);
 end
 framegray = im2uint8(framegray); %8 bit unsigned integer RGB image

(despite name, allows for yellow bboxes)
 if Record == 1 %If specified to record
 writeVideo(vidWrite,framegray)
 end
end
%^End of master loop
if Record == 1
 close(vidWrite); %Close recording if needed
end

%% Finish tracking any remaining instances.
reporter =

FinishTracking(tracks,reporter,centroidKeeper,Vid,BladePitch);
%% Filter repeat instances
[cleanedCache, data] =

reportAnalysis2(reporter,centroidKeeper,rotationSpeed); %Locates repeat

instances (based on space/time) and separates them from global data
[dataRevised, DifferingDetections] = RepeatCheck(Vid, data,

centroidKeeper); %Checks the repeat instances by comparing SSIM
if ~isempty(DifferingDetections)
 [cleanedCache] = RevisedCache(cleanedCache, DifferingDetections,

centroidKeeper); %Places low SSIM score instances back into review
end

107

close all %Close current figures (in preparation for results

presentation)

%% Instance Information (check for changes in blade ROI, Zone,

Trajectory/Path Type)
if cleanedCache ~= 0 %Ensuring there are results
NumberIDs(:,1) = unique(cleanedCache(:,1)); %Find unique IDs
LengthAnalysis = size(NumberIDs,1); %How many unique IDs are there?
for y = 1:size(cleanedCache,1)
 bladeRoiCheck = zeros(1,1);
 for t = 1:61 %Check 30 frames before and after blade ROI

activity occurs
 instanceCheck = find(bboxes(:,5) == cleanedCache(y,2)-

t+31 ...
 & bboxes(:,3) ~= 0 & bboxes(:,4) ~= 0); %If no

blob, 0's will exist for bboxes
 if isempty(instanceCheck)
 bladeRoiCheck(t,1) = 0;
 else
 bladeRoiCheck(t,1) = size(instanceCheck,1);
 end
 end
 changesInRoi = unique(bladeRoiCheck(:,1)); %Unique changes in blade

ROI
 changesInRoi = size(changesInRoi,1); %Number of unique changes in

blade ROI
 if changesInRoi > 1
 key(y,1) = 1; %If we get some changes in the blade ROI lets

write that down
 else
 key(y,1) = 0; %No detectable changes
 end
 zone(y,1) = zoneCheck(cleanedCache(y,8)); %Proximity of targets to

blade
 typeFind = find(reporter(:,1) == cleanedCache(y,1)); %Recall the

trajectory
 if ~isempty(typeFind)
 type(y,1) = reporter(typeFind(1,1),2); %Assign path
 else
 type(y,1) = 0; %No type. Error.
 end
 IDy(y,1) = cleanedCache(y,1); %Do not forget the ID
end
%% Classification of results
for x = 1:LengthAnalysis
 Id = NumberIDs(x,1);
 rows = find(IDy(:,1) == Id);
 mtype = max(type(rows,1)); %Recall type
 mkey = max(key(rows,1)); %Recall blade ROI changes
 mzone = max(zone(rows,1)); %Recall zone
 %% Likelihood of collision
 %Very Strong
 if mkey == 1 && mtype == 1 && (mzone == 2 || mzone == 3)
 FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 4;
 %Strong
 elseif (mkey == 0 && mtype == 1 && mzone == 3) || (mkey == 1 && ...

108

 (mtype == 1 && mzone == 1) || (mtype == 2 && mzone == 3) ||

...
 (mtype == 3 && mzone == 3) || (mtype == 4 && mzone == 3))
 if mtype == 1 || mtype == 2 || mtype == 4
 FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 3;
 else
 FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 3;
 end
 %Moderate
 elseif (mkey == 0 && ((mtype == 1 && (mzone == 1 || mzone == 2)))

|| (mtype == 2 ...
 && mzone == 3) || (mtype == 3 && (mzone == 2 || mzone ==

3))) || ...
 (mtype == 4 && mzone == 3) || (mkey == 1 && ((mtype == 2 &&

...
 (mzone == 1 || mzone == 2))) || (mtype == 3 && (mzone == 1

|| mzone == 2)) ...
 || (mtype == 4 && mzone == 2))
 if mtype == 1 || mtype == 2 || mtype == 4
 FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 2;
 else
 FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 2;
 end
 %N/A
 elseif mtype == 0
 FinalMat(x,1) = Id; FinalMat(x,2) = 0; FinalMat(x,3) = 0;
 %Low
 else
 if mtype == 1 || mtype == 2 || mtype == 4
 FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 1;
 else
 FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 1;
 end
 end
end
%% Present results to user
for z = 1:LengthAnalysis
 %Determine the plot size
 range = find(cleanedCache(:,1) == NumberIDs(z,1));
 plotSize = size(range,1);
 if plotSize == 1
 sqr(1,1) = 1; sqr(1,2) = 1; fact = 0; limit = 0;
 elseif plotSize == 2
 sqr(1,1) = 1; sqr(1,2) = 2; fact = 0; limit = 0;
 elseif plotSize == 3
 sqr(1,1) = 1; sqr(1,2) = 3; fact = 0; limit = 0;
 elseif plotSize <= 6 && plotSize > 3
 sqr(1,1) = 2; sqr(1,2) = 3; fact = 0; limit = 0;
 elseif plotSize <= 9 && plotSize > 6
 sqr(1,1) = 3; sqr(1,2) = 3; fact = 0; limit = 0;
 elseif plotSize <= 12 && plotSize > 9
 sqr(1,1) = 4; sqr(1,2) = 3; fact = 0; limit = 0;
 elseif plotSize <= 15 && plotSize > 12
 sqr(1,1) = 5; sqr(1,2) = 3; fact = 0; limit = 0;
 elseif plotSize <= 35
 sqr(1,1) = 6; sqr(1,2) = 3; fact = 1; limit = 0;
 elseif plotSize <= 41

109

 sqr(1,1) = 7; srr(1,2) = 3; fact = 1; limit = 0;
 else
 fact = 1; limit = 1;
 end
 figure
 if fact == 0;
 for r = 1:plotSize
 rung1 = range(r,1);
 frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame for

instance
 frameDisp = rgb2gray(frameDisp); %Convert to grayscale
 bboxDisp = cleanedCache(rung1,3:6); %Find the bbox
 dispNotated = insertObjectAnnotation(frameDisp, 'rectangle',

bboxDisp, 'Detected Target'); %Annotate
 dispNotated = im2uint16(dispNotated); %Convert image to

unsigned 16bit
 subplot(sqr(1,1),sqr(1,2),r) %Subplot ration
 imshow(dispNotated); %Show
 end
 elseif fact == 1 && limit == 0;
 for r = 1:plotSize
 if mod(r,2) ~= 0
 rung1 = range(r,1);
 frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame

for instance
 frameDisp = rgb2gray(frameDisp); %Convert to grayscale
 bboxDisp = cleanedCache(rung1,3:6); %Find the bbox
 dispNotated = insertObjectAnnotation(frameDisp,

'rectangle', bboxDisp, 'Detected Target'); %Annotate
 dispNotated = im2uint16(dispNotated); %Convert image to

unsigned 16bit
 subplot(sqr(1,1),sqr(1,2),r) %Subplot ration
 imshow(dispNotated); %Show
 end
 end
 else
 rung1 = range(1,1);
 frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame

for instance
 frameDisp = rgb2gray(frameDisp); %Convert to grayscale
 bboxDisp = cleanedCache(rung1,3:6); %Find the bbox
 dispNotated = insertObjectAnnotation(frameDisp,

'rectangle', bboxDisp, 'Detected Target'); %Annotate
 dispNotated = im2uint16(dispNotated); %Convert image to

unsigned 16bit
 subplot(1,1,1) %Subplot ration
 imshow(dispNotated); %Show
 end
 rung2 = find(FinalMat(:,1) == NumberIDs(z,1));
 idZ = NumberIDs(z,1);
 %% Provide labeling for instances
 if FinalMat(rung2,2) == 1
 if FinalMat(rung2,3) == 4
 suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, Very

Strong Chance of Impact',idZ));
 set(gcf,'Color','r');
 elseif FinalMat(rung2,3) == 3

110

 suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked,

Strong Chance of Impact',idZ));
 set(gcf,'Color','y');
 elseif FinalMat(rung2,3) == 2
 suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked,

Moderate Chance of Impact',idZ));
 set(gcf,'Color','g');
 else
 suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, Low

Chance of Impact',idZ));
 set(gcf,'Color','b');
 end
 elseif FinalMat(rung2,2) == 2
 if FinalMat(rung2,3) == 4
 suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Very

Strong Chance of Impact',idZ));
 set(gcf,'Color','r');
 elseif FinalMat(rung2,3) == 3
 suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Strong

Chance of Impact',idZ));
 set(gcf,'Color','y');
 elseif FinalMat(rung2,3) == 2
 suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked,

Moderate Chance of Impact',idZ));
 set(gcf,'Color','g');
 else
 suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Low

Chance of Impact',idZ));
 set(gcf,'Color','b');
 end
 else
 suptitle(sprintf('ID: %3.3g \nUnknown Flight Parameters',idZ));
 set(gcf,'Color','w');
 end
end

else
 msgbox('no detected events'); %Report if no instances
end

if Update == 1
%Execute learning program
NegativeSave(Vid, dataRevised, centroidKeeper);
end

Satellite Functions (Supporting Architecture)

signalCheck

Finding the peak of a signal, and retrieve a frame buffer surrounding the peak.

function frameStore = signalCheck(signal)
frameStore = [];
frameKeep = [];

111

frameFind = [];
for i = 1:length(signal)
 if signal(i) > -5 || signal(i) < -8
 if ~isempty(frameKeep)
 frameKeep(end+1,1) = i;
 else
 frameKeep(1,1) = i;
 end
 end
end
if ~isempty(frameKeep)
for j = 1:length(frameKeep)
 for k = 1:61
 if isempty(frameFind)
 frameFind(1,1) = frameKeep(j) + k - 31;
 else
 frameFind(end+1,1) = frameKeep(j) + k - 31;
 end
 end
end
end
frameStore = unique(frameFind(:,1));
end

boundaries

This function allows the user to draw a polygon surrounding the inner blade ROI. These bounds

are used later in the program to apply a mask to the image, essentially cropping out everything but

the inner regions of the blade.

function [Mask] = boundaries(firstFrame)
%% User creates boundary safely within the constraints of the wind

turbine blade
% This will be used to check for large constrast changes

%the input frame should be grayscale & representative of the blade
%with no occlusions and nominal contrast
imshow(firstFrame);
bounds = impoly;
wait(bounds);
Mask = createMask(bounds);
End

blobCheck

This function is used to crop the frame from the boundary surrounding the blade. The cropped

region is then thresholded, and blob analysis is performed. Cropping is performed using the

perimeter set by the user prior to operation. Bounding boxes created around any detected blobs are

112

then stored. These bounding boxes provide all necessary information for later analysis. Note that

the cropping technique was adapted from [56].

function [bboxes] = blobCheck(frame,Mask,bladeBlob,num)
%% User creates boundary safely within the constraints of the wind

turbine blade
% This will be used to check for constrast changes
%the input frame should be grayscale & representative of the blade
%with no occlusions and nominal contrast
cropped = frame;
cropped(~Mask) = 0;
threshold = graythresh(cropped(Mask));
threshold = threshold*0.5;
cropped = im2bw(cropped,threshold);
cropped = imcomplement(cropped);
cropped(~Mask) = 0;
%Cropping technique from
%[56]
bbox = step(bladeBlob, cropped);
if isempty(bbox)
 bboxes(1,1:4) = 0;
 bboxes(1,5) = num;
else
 for i = 1:size(bbox,1)
 bboxes(i,1:4) = bbox(i,:);
 bboxes(i,5) = num;
 end
end

end

bboxCombine

Often multiple detections occur on the same target- this function combines two bounding boxes if

they overlap.

function [bboxC] = bboxCombine(bbox)
%This function is used to combine the bounding boxes of overlapping
%detections.
bboxes = size(bbox);
flag = 0;
if bboxes(1) == 0
 disp('NO DETECTIONS')
 flag = 1;
end
Combine = zeros(1,2);
if bboxes(1) > 1
 for i = 1:bboxes(1)
 for j = i:bboxes(1)-1
 overlapRatio = bboxOverlapRatio(bbox(i,:),bbox(j+1,:));
 if overlapRatio > 0 && Combine(1,1) == 0

113

 Combine(1,1) = i;
 Combine(1,2) = j+1;
 elseif overlapRatio > 0
 Combine(end+1,1) = i;
 Combine(end,2) = j+1;
 end
 end
 end
end
DontCombine = zeros(1,1);
[R2,C2] = size(Combine);
for u = 1:bboxes(1)
 mark = 0;
 for v = 1:R2
 if Combine(v,1) ~= u && Combine(v,2) ~= u
 mark = mark+1;
 end
 end
 if mark == R2 && DontCombine(1,1) == 0
 DontCombine(1,1) = u;
 elseif mark == R2
 DontCombine(end+1) = u;
 end
end
sized = size(DontCombine);
bboxC = zeros(R2,4);
if Combine(1,1) ~= 0
 for k = 1:R2
 if bbox(Combine(k,1),1) < bbox(Combine(k,2),1)
 bboxC(k,1) = bbox(Combine(k,1),1);
 else
 bboxC(k,1) = bbox(Combine(k,2),1);
 end
 if bbox(Combine(k,1),2) < bbox(Combine(k,2),2)
 bboxC(k,2) = bbox(Combine(k,1),2);
 else
 bboxC(k,2) = bbox(Combine(k,2),2);
 end
 if bbox(Combine(k,1),1)+bbox(Combine(k,1),3) <

bbox(Combine(k,2),1)+bbox(Combine(k,2),3)
 bboxC(k,3) = bbox(Combine(k,2),1)+bbox(Combine(k,2),3) -

bboxC(k,1);
 else
 bboxC(k,3) = bbox(Combine(k,1),1)+bbox(Combine(k,1),3) -

bboxC(k,1);
 end
 if bbox(Combine(k,1),2)+bbox(Combine(k,1),4) <

bbox(Combine(k,2),2)+bbox(Combine(k,2),4)
 bboxC(k,4) = bbox(Combine(k,2),2)+bbox(Combine(k,2),4) -

bboxC(k,2);
 else
 bboxC(k,4) = bbox(Combine(k,1),2)+bbox(Combine(k,1),4) -

bboxC(k,2);
 end
 end
end
if DontCombine(1,1) ~= 0

114

 for y = 1:sized(2)
 if bboxC(1,1) == 0 && flag == 0
 bboxC(1,:) = bbox(DontCombine(y),:);
 elseif flag == 0
 bboxC(end+1,:) = bbox(DontCombine(y),:);
 end
 end
end

end

KLTpoints_revised

This function constitutes the entirety of secondary tracking. If the number of detections for a target

is one or less, this function uses the KLT algorithm to track points across frames. Within this

function, the direction of travel is evaluated and classified for later use. [57] provided guidance on

using the point tracking algorithm.

function [status] = KLTpoints_revised(centroidKeeper,Vid,BladePitch)
%% Initialize KLT Point Tracker, Ref for KLT point tracking: [44], [57]
indices = find(centroidKeeper(:,8) == 1,1,'first'); %Locate the

detection for this ID
frameSt = centroidKeeper(indices,9); %Locate the starting frame
bbox = centroidKeeper(indices,2:5); %Find the bounding box
frame = read(Vid,frameSt); %Read the frame
framegray = rgb2gray(frame); %Convert to grayscale
points = detectMinEigenFeatures(framegray,'ROI',bbox); %Find minimum

eigen features
points = points.selectStrongest(6); %Select the strongest points
sum = 0; %Initialize sum
if ~isempty(points)
pointStore = points.Location(:,:); %Create a matrix to store points
InitialPoints = points.Location(:,:);
%write1 = insertMarker(framegray,points,'+');
%imshow(write1)
%figure
Ymean = mean(pointStore(:,2)); %Find the mean of the Y values
for i = 1:2
 pointTracker = vision.PointTracker('NumPyramidLevels',2,...
 'BlockSize',[11 11],'MaxIterations',50);
 initialize(pointTracker,InitialPoints,framegray);
 for j = 1:3 %Cycle through proceeding frames
 if i == 1 %Frame buffer (after instance)
 framenum = frameSt + j;
 else %Frame buffer (before instance)
 framenum = frameSt - j;
 end
 if framenum > 0
 if size(points,1) >= 2
 frame = read(Vid,framenum); %Read frame

115

 framegray = rgb2gray(frame);
 [points, validity] = step(pointTracker,framegray);

%Point tracker
 points = points(validity,:);
 if ~isempty(points)
 l = size(points,1);
 pointStore(end+1:end+l,1:2) = points(:,:);
 Ymean(end+1) = mean(points(:,2));
 %write1 = insertMarker(framegray,points,'+');
 %imshow(write1)
 %figure
 end
 else
 break
 end
 end
 end
 release(pointTracker)
end
for k = 1:(length(Ymean)-1)
 sum = (Ymean(1,k) - Ymean(1,k+1)) + sum; %Determine main vertical

direction of target
end
x = pointStore(:,1);
y = pointStore(:,2);
linReg = fitlm(x,y); %Linear regression performed on points
Rsq = linReg.Rsquared.Ordinary; %R squared
line = linReg.Coefficients.Estimate;
xtest = 100;
ytest = line(2,1)*xtest;
angle = atand(ytest/xtest);
Difference = abs(angle - BladePitch); %To determine if divergent from

flow field
status = [];
 if Rsq >= 0.500 && Difference >= 15
 if sum < 0
 status(1,1) = 1; %Diverging from flow field
 %Path towards blade
 else
 status(1,1) = 4; %Diverging from flow field
 %Path away from blade
 end
 elseif Rsq >= 0.500 && Difference < 15
 status(1,1) = 2; %Direction similar to flow field
 else
 status(1,1) = 3; %Unsuccessful tracking
 end
else
 status(1,1) = 3; %Unable to determine
end

end

116

evalKalmanTracks

This function is utilized if the number of detections for a target is greater than one. Linear regression

is used to determine the directions of travel for the target. Direction of travel is determined,

classified, and stored for later use.

function [status] = evalKalmanTracks(centroidKeeper,BladePitch)

%% Function to find LoBF & spread of data
x = centroidKeeper(:,6);
y = centroidKeeper(:,7);
linReg = fitlm(x,y);
Rsq = linReg.Rsquared.Ordinary; %R squared
line = linReg.Coefficients.Estimate;
xtest = 100;
ytest = line(2,1)*xtest;
angle = atand(ytest/xtest);
Difference = abs(angle - BladePitch); %To determine if divergent from

flow field
sum = 0;
for i = 2:length(y)
 sum = (y(i-1) - y(i)) + sum; %Determine direction of travel
end
status = [];
 if Rsq >= 0.500 && Difference >= 15
 if sum < 0
 status(1,1) = 1; %Diverging from flow field
 %Path towards blade
 else
 status(1,1) = 4; %Diverging from flow field
 %Path away from blade
 end
 elseif Rsq >= 0.500 && Difference < 15
 status(1,1) = 2; %Direction similar to flow field
 else
 status(1,1) = 3; %Unsuccessful tracking
 end
end

FinishTracking

This function finishes the tracking process for any remaining targets whose tracking did not end

before the final frame of the video.

function [reporter] =

FinishTracking(tracks,reporter,centroidKeeper,Vid,BladePitch)
%% Finish tracking any remaining instances at the conclusion of the

video. This prevents any tracks from remaining unevaluated.

117

 for u = 1:length(tracks)
 ID = tracks(u).id;
 check = find(centroidKeeper(:,1) == ID); %Find this ID

in storage
 Detections = find(centroidKeeper(check,8) == 1); %Find

which of these are detections
 if max(Detections) == 1 %Only one detection, requiring

backup tracking
 status = KLTpoints_revised(centroidKeeper(check,:),

Vid, BladePitch); %Secondary tracking
 if status == 1 %Angled and towards blade
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 1; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 1; %Path type
 end
 elseif status == 2 %Little to no angle of path
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 2; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 2; %Path type
 end
 elseif status == 3 %Unsuccessfully tracked
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 3; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 3; %Path type
 end
 else %ergo status == 4 %Angled and away from

blade
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 4; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 4; %Path type
 end
 end
 else
 status =

evalKalmanTracks(centroidKeeper(check,:),BladePitch); %Enough

detections for simple path evaluation
 if status == 1
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 1; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 1; %Path type
 end
 elseif status == 2

118

 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 2; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 2; %Path type
 end
 elseif status == 3
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 3; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 3; %Path type
 end
 else
 if isempty(reporter)
 reporter(1,1) = ID; %Record ID
 reporter(1,2) = 4; %Path type
 else
 reporter(end+1,1) = ID; %Record ID
 reporter(end,2) = 4; %Path type
 end
 end
 end
 end
end

reportAnalysis2

This function is the first stage of the filtering process- its use is to locate groupings of instances

which are similar in vertical location, and spaced approximately one rotation apart.

function [cleanedCache,dataTrove] =

reportAnalysis2(reporter,centroidKeeper,rotationSpeed)
%% This function was created for analyzing data from the detection

stage
% of the master program. Here false positives will be filtered by
% examining the time and location of reoccuring detections

%Examine all cases for reoccurence
deleteThese = [];
cleanedCache = [];
ImageInds = [];
sortNum = 1;
%Ensure detections and event classifications were made
if ~isempty(reporter)
 if ~isempty(centroidKeeper)
%Begin filtering process
reports = reporter(:,:);
 for i = 1:size(reports,1)
 instance = reports(i,1); %Find where reports is equal to

the instance being examined

119

 instanceInd = find(centroidKeeper(:,1) == instance);

%Determine indices of cK
 centroidKeeper2 = centroidKeeper(instanceInd,:);
 DetectInd = find(centroidKeeper2(:,8) == 1);
 centroidKeeper3 = centroidKeeper2(DetectInd,:);
 instanceTime = centroidKeeper3(1,9); %Find time values
 instancePosY = centroidKeeper3(1,7); %Find Y pos
 CheckInd = find(centroidKeeper(:,1) ~= instance &

centroidKeeper(:,8) == 1 ... %Check future bounds
 & ((centroidKeeper(:,9)-instanceTime >= 0.90*rotationSpeed

& centroidKeeper(:,9) ...
 -instanceTime <= 1.10*rotationSpeed) |

(centroidKeeper(:,9)-instanceTime >= 1.89*rotationSpeed &

centroidKeeper(:,9) ...
 -instanceTime <= 2.11*rotationSpeed) |

(centroidKeeper(:,9)-instanceTime >= 2.88*rotationSpeed &

centroidKeeper(:,9) ...
 -instanceTime <= 3.12*rotationSpeed)) & centroidKeeper(:,7)

>= instancePosY - 15 ...
 & centroidKeeper(:,7) <= instancePosY + 15);
 if ~isempty(CheckInd)
 Idz = centroidKeeper(CheckInd,1);
 Idz = unique(Idz);
 if size(Idz,1) >= 2
 for j = 1:size(Idz,1)
 if isempty(deleteThese)
 deleteThese(1,1) = instance;
 deleteThese(1,2) = sortNum;
 deleteThese(end+1,1) = Idz(j);
 deleteThese(end,2) = sortNum;
 elseif ~isempty(deleteThese) && j == 1
 deleteThese(end+1,1) = instance;
 deleteThese(end,2) = sortNum;
 deleteThese(end+1,1) = Idz(j);
 deleteThese(end,2) = sortNum;
 else
 deleteThese(end+1,1) = Idz(j);
 deleteThese(end,2) = sortNum;
 end
 end
 sortNum = sortNum + 1;
 end
 end
 end
 if ~isempty(deleteThese)
 NumberMatches = max(deleteThese(:,2));
 deleteInds = unique(deleteThese(:,1));
 for q = 1:size(deleteInds,1)
 SimInds = find(deleteThese(:,1) == deleteInds(q));
 if SimInds > 1
 Combined = deleteThese(SimInds,2);
 numLabel = min(Combined);
 for w = 1:length(Combined)
 CombInds = find(deleteThese(:,2) == Combined(w));
 for z = 1:length(CombInds)
 deleteThese(CombInds(z),2) = numLabel;
 end

120

 end
 end
 end
 deleteInds2 = unique(deleteThese(:,2));
 for s = 1:size(deleteInds2,1)
 for t = 1:size(deleteThese,1)
 if deleteThese(t,2) == deleteInds2(s,1)
 deleteThese(t,2) = s;
 end
 end
 end
 dataTrove = unique(deleteThese,'rows');
 numberOfDelInst = size(deleteInds,1);
 else
 numberOfDelInst = 0;
 deleteInds = 0;
 dataTrove = 0;
 end
 else
 numberOfDelInst = 0;
 deleteInds = 0;
 dataTrove = 0;
 end
else
 cleanedCache = 0;
 numberOfDelInst = 0;
 deleteInds = 0;
 dataTrove = 0;
end
%msgbox(sprintf('There were %3.3g repeat instances marked for potential

deletion',numberOfDelInst),'Repeat Instances')
%Uncomment above for a readout of the quantity of deletion candidates
 if numberOfDelInst > 0 && ~isempty(centroidKeeper)
 ImageInds = centroidKeeper(:,1);
 for k = 1:length(deleteInds)
 deleteSelection = deleteInds(k);
 ImInds = find(ImageInds(:,1) ~= deleteSelection);
 ImageInds = ImageInds(ImInds,1);
 end
 ImageInds = unique(ImageInds);
 elseif ~isempty(centroidKeeper)
 ImageInds = unique(centroidKeeper(:,1));
 end
 if ~isempty(ImageInds)
 for l = 1:size(ImageInds,1)
 ImageInd = ImageInds(l);
 Indz = find(centroidKeeper(:,1) == ImageInd &

centroidKeeper(:,8) == 1);
 Time = centroidKeeper(Indz,9);
 Bbox = centroidKeeper(Indz,2:5);
 ID = centroidKeeper(Indz,1);
 Centroid = centroidKeeper(Indz,6:7);
 for h = 1:size(Indz,1)
 if isempty(cleanedCache)
 cleanedCache(1,1) = ID(h);
 cleanedCache(1,2) = Time(h);
 cleanedCache(1,3:6) = Bbox(h,:);

121

 cleanedCache(1,7:8) = Centroid(h,:);
 else
 cleanedCache(end+1,1) = ID(h);
 cleanedCache(end,2) = Time(h);
 cleanedCache(end,3:6) = Bbox(h,:);
 cleanedCache(end,7:8) = Centroid(h,:);
 end
 end
 end
 else
 cleanedCache = 0;
 end
end

RepeatCheck

RepeatCheck is used to compare the similarity between detections. This provides an additional

layer of safety to the filtering process. Detections are cropped to the same size, then the SSIM index

is used to check similarity [46].

function [dataRevised, DifferingDetections] = RepeatCheck(Vid, data,

centroidKeeper)
%% This function uses the SSIM index to compare detections
%This process includes cropping detections to the same size, then

utilizes
%SSIM index
vheight = 1080;
vwidth = 1920;
if data ~= 0
NumIter = unique(data(:,2));
scores = [];
NoRepeats = [];
for i = 1:length(NumIter)
 currentSet = NumIter(i);
 segmentInd = find(data(:,2) == currentSet);
 for j = 1:size(segmentInd,1)
 for k = 1:size(segmentInd,1)
 compare1 = segmentInd(j,1);
 compare2 = segmentInd(k,1);
 ID1 = data(compare1,1);
 ID2 = data(compare2,1);
 if ID1 ~= ID2
 if ~isempty(scores)
 NoRepeats = find(scores(:,1) == ID2 & scores(:,2)

== ID1);
 end
 if ~isempty(NoRepeats)
 for r = 1:length(NoRepeats)
 scores(end+1,1) = ID2;
 scores(end,2) = ID1;
 scores(end,3) = scores(NoRepeats(r), 3);
 end

122

 else
 iterations1 = find(centroidKeeper(:,1) == ID1 &

centroidKeeper(:,8) == 1);
 iterations2 = find(centroidKeeper(:,1) == ID2 &

centroidKeeper(:,8) == 1);
 for l = 1:length(iterations1)
 for m = 1:length(iterations2)
 bbox1 = centroidKeeper(iterations1(l),2:5);
 bbox2 = centroidKeeper(iterations2(m),2:5);
 frame1 = centroidKeeper(iterations1(l),9);
 frame2 = centroidKeeper(iterations2(m),9);
 Frame1 = read(Vid,frame1);
 Frame2 = read(Vid,frame2);
 height1 = bbox1(4); height2 = bbox2(4);
 width1 = bbox1(3); width2 = bbox2(3);
 hdiff = abs(height1 - height2);
 wdiff = abs(width1 - width2);
 if height1 > height2
 if (bbox2(4) + bbox2(2) + hdiff) <

vheight
 bbox2(4) = bbox2(4) + hdiff;
 else
 bbox2(2) = bbox2(2) - hdiff;
 bbox2(4) = bbox2(4) + hdiff;
 end
 else
 if (bbox1(4) + bbox1(2) + hdiff) <

vheight
 bbox1(4) = bbox1(4) + hdiff;
 else
 bbox1(2) = bbox1(2) - hdiff;
 bbox1(4) = bbox1(4) + hdiff;
 end
 end
 if width1 > width2
 if (bbox2(3) + bbox2(1) + wdiff) <

vwidth
 bbox2(3) = bbox2(3) + wdiff;

 else
 bbox2(1) = bbox2(1) - wdiff;
 bbox2(3) = bbox2(3) + wdiff;

 end
 else
 if (bbox1(3) + bbox1(1) + wdiff) <

vwidth
 bbox1(3) = bbox1(3) + wdiff;

 else
 bbox1(1) = bbox1(1) - wdiff;
 bbox1(3) = bbox1(3) + wdiff;
 end
 end
 framesect1 =

Frame1(bbox1(2):bbox1(4)+bbox1(2),...

123

 bbox1(1):bbox1(3)+bbox1(1));
 framesect2 =

Frame2(bbox2(2):bbox2(4)+bbox2(2),...
 bbox2(1):bbox2(3)+bbox2(1));
 SimScore = ssim(framesect2,framesect1);
 %Use below for displaying visual comparison,

used
 %for testing
 %if SimScore < 0.XXX
 %subplot(1,2,1)
 %imshow(framesect1)
 %subplot(1,2,2)
 %imshow(framesect2)
 %suptitle(sprintf('ID: %3.3g & %3.3g

\nSSIM score = %3.3g',ID1,ID2,SimScore));
 %figure
 %end
 if isempty(scores)
 scores(1,1) = ID1; scores(1,2) = ID2;
 scores(1,3) = SimScore;
 else
 scores(end+1,1) = ID1; scores(end,2) = ID2;
 scores(end,3) = SimScore;
 end
 end
 end
 end
 end
 end
 end
end
IDS = unique(scores(:,1));
showThese = [];
for g = 1:length(IDS)
 currentID = IDS(g);
 IDscoreInds = find(scores(:,1) == currentID & scores(:,3) >= 0.65);
 if isempty(IDscoreInds)
 if isempty(showThese)
 showThese(1,1) = currentID;
 else
 showThese(end+1,1) = currentID;
 end
 end
end
DifferingDetections = [];
DifferingDetections = showThese;
dataRevised = [];
if ~isempty(showThese)
 sizeShowThese = size(showThese(:,1));
 for d = 1:sizeShowThese
 dataInds = find(data(:,1) ~= showThese(d,1));
 data = data(dataInds,:);
 end
end
dataRevised = data;
msgbox(sprintf('There were %3.3g repeat instances

deleted',size(dataRevised,1)),'Repeat Instances');

124

else
 dataRevised = 0;
 DifferingDetections = 0;
end
end

RevisedCache

The purpose of this function is to implement any instances which were shown to be dissimilar in

the RepeatCheck function. Such instances are placed back into the matrix used for classification.

function [cleanedCacheRevised] = RevisedCache(cleanedCache,

DifferingDetections, centroidKeeper)
%% This function restores any instances that were deemed dissimilar in

the RepeatCheck function
if DifferingDetections ~= 0
 for i = 1:length(DifferingDetections)
 IDtba = DifferingDetections(i);
 IDrungs = find(centroidKeeper(:,1) == IDtba &

centroidKeeper(:,8) == 1);
 for j = 1:length(IDrungs)
 cleanedCache(end+1,1) = IDtba;
 cleanedCache(end,2) = centroidKeeper(IDrungs(j),9);
 cleanedCache(end,3:6) = centroidKeeper(IDrungs(j),2:5);
 cleanedCache(end,7:8) = centroidKeeper(IDrungs(j),6:7);
 end
 end
end
cleanedCacheRevised = cleanedCache;
end

zoneCheck

The zoneCheck function divides the image plane into thirds, and checks the vertical coordinates of

instances to determine the closest approach of a target to the blade.

function zone = zoneCheck(yCoord)
%% This function divides the image plane and categorizes the vertical

location of targets
Zone1 = 0.3*1080;
Zone2 = 0.6*1080;

if yCoord <= Zone1
 zone = 1;
elseif yCoord > Zone1 && yCoord <= Zone2
 zone = 2;
else
 zone = 3;
end
end

125

NegativeSave

NegativeSave provides the necessary tools for storing negative instances to a negative image

dataset, and retraining the cascade object detection algorithm. This function only operates if the

user selected for the detection algorithm to be updated after processing.

function NegativeSave(Vid, data, centroidKeeper)
%% This function provides a retraining method for the cascade object

detection algorithm

%% This section saves negative instances to a negative image set folder
%The negative instances here are from repeating FPs
if data ~= 0
for i = 1:length(data)
 Inds = find(centroidKeeper(:,1) == data(i,1) & centroidKeeper(:,8)

== 1);
 NumFrames = length(Inds);
 Frames = centroidKeeper(Inds,9);
 Bboxes = centroidKeeper(Inds,2:5);
 for j = 1:NumFrames
 Frame = read(Vid,Frames(j),'native');
 framesect = Frame(Bboxes(j,2):Bboxes(j,4)+Bboxes(j,2),...

%Examine bbox sections
 Bboxes(j,1):Bboxes(j,3)+Bboxes(j,1),:);
 name =

sprintf('D:/MATLAB/toolbox/vision/visiondata/Negatives/%s%d_%d.png','ne

gImageR2',i,j);
 imwrite(framesect,name);
 end
end
end
Cases = input('Please enter any IDs of false-positives: ');
Cases = transpose(Cases);
%% This section saves negative instances to a negative image set folder
%The negative instances here are from user inputted FPs
if ~isempty(Cases)
 for i = 1:length(Cases)
 Inds2 = find(centroidKeeper(:,1) == Cases(i,1) &

centroidKeeper(:,8) == 1);
 NumFrames2 = length(Inds2);
 Frames2 = centroidKeeper(Inds2,9);
 Bboxes2 = centroidKeeper(Inds2,2:5);
 for j = 1:NumFrames2
 Frame = read(Vid,Frames2(j),'native');
 framesect = Frame(Bboxes2(j,2):Bboxes2(j,4)+Bboxes2(j,2),...

%Examine bbox sections
 Bboxes2(j,1):Bboxes2(j,3)+Bboxes2(j,1),:);
 name =

sprintf('D:/MATLAB/toolbox/vision/visiondata/Negatives/%s%d_%d.png','Ca

sesNegImageR2',i,j);
 imwrite(framesect,name);

126

 end
 end
end

%Retraining section
if ~isempty(Cases) | data ~= 0
load('Documents/MATLAB/NewAlbaLabel.mat');
NewNegatives =

fullfile(matlabroot,'toolbox','vision','visiondata','Negatives');
trainCascadeObjectDetector('Test_01072016_1st_Regen.xml',labelingSessio

n.ImageSet.ROIBoundingBoxes,NewNegatives,'FalseAlarmRate',0.4,'NumCasca

deStages',20);
end

127

Appendix F: Collision Likelihood

The following table provides a reference for how avian interaction information is utilized to

produce collision results. Each combination was considered in the context of the blade-mounted

camera, in order to subjectively determine the likelihood that a collision occurred.

Zones (proximity to blade):

Bird Path: As described in sub-section Trajectory Classification, section Tracking, in Chapter 5

Contrasting object infront of blade face: Y/N

Type of Path Contrasting Object

Infront of Blade Face

Zone Resulting

Classification

1 Y 1 Strong

1 Y 2 Very Strong

1 Y 3 Very Strong

1 N 1 Moderate

1 N 2 Moderate

1 N 3 Strong

2 Y 1 Moderate

2 Y 2 Moderate

2 Y 3 Strong

2 N 1 Low

2 N 2 Low

2 N 3 Moderate

3 Y 1 Moderate

3 Y 2 Strong

128

3 Y 3 Strong

3 N 1 Low

3 N 2 Moderate

3 N 3 Moderate

4 Y 1 Low

4 Y 2 Moderate

4 Y 3 Strong

4 N 1 Low

4 N 2 Low

4 N 3 Moderate

129

Appendix G: GUI Code

The following is the code for the GUI program. This code was generated via GUIDE [47]. The raw

figure created for the GUI is presented last. Tracking and dealing with multiple detected objects

was adapted from [42].

Primary Code
function varargout = BirdTracker_V1_1(varargin)
% BIRDTRACKER_V1_1 MATLAB code for BirdTracker_V1_1.fig
% BIRDTRACKER_V1_1, by itself, creates a new BIRDTRACKER_V1_1 or

raises the existing
% singleton*.
%
% H = BIRDTRACKER_V1_1 returns the handle to a new

BIRDTRACKER_V1_1 or the handle to
% the existing singleton*.
%
% BIRDTRACKER_V1_1('CALLBACK',hObject,eventData,handles,...) calls

the local
% function named CALLBACK in BIRDTRACKER_V1_1.M with the given

input arguments.
%
% BIRDTRACKER_V1_1('Property','Value',...) creates a new

BIRDTRACKER_V1_1 or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before BirdTracker_V1_1_OpeningFcn gets

called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to BirdTracker_V1_1_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help BirdTracker_V1_1

% Last Modified by GUIDE v2.5 16-Jan-2016 17:44:52

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @BirdTracker_V1_1_OpeningFcn, ...
 'gui_OutputFcn', @BirdTracker_V1_1_OutputFcn, ...
 'gui_LayoutFcn', [] , ...

130

 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before BirdTracker_V1_1 is made visible.
function BirdTracker_V1_1_OpeningFcn(hObject, eventdata, handles,

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to BirdTracker_V1_1 (see VARARGIN)
clc
% Choose default command line output for BirdTracker_V1_1
handles.output = hObject;
%Remove tick marks from video plot
set(handles.axes1,'ytick',[],'xtick',[]);
handles.stopper = 0;
%% Update handles structure
guidata(hObject, handles);

% UIWAIT makes BirdTracker_V1_1 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = BirdTracker_V1_1_OutputFcn(hObject, eventdata,

handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)
global filename
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
filename = get(hObject,'String');

% Hints: get(hObject,'String') returns contents of edit1 as text

131

% str2double(get(hObject,'String')) returns contents of edit1 as

a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit3_Callback(hObject, eventdata, handles)
global CONA
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
CONA = get(hObject,'String');
CONA = str2double(CONA);
% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as

a double

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
global MN
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
MN = get(hObject,'String');

132

MN = str2double(MN);

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as

a double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit4_Callback(hObject, eventdata, handles)
global MT
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
MT = get(hObject,'String');
MT = str2double(MT);
% Hints: get(hObject,'String') returns contents of edit4 as text
% str2double(get(hObject,'String')) returns contents of edit4 as

a double

% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton1 (START/RESET).
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%% Button Controls
set(handles.stopper,'UserData',0);
cla(handles.axes2)

133

axes(handles.axes2)
set(handles.axes2,'Ydir','reverse');
xlim([0,1920]);
ylim([0,1080]);
grid on

global filename MN CONA MT
%% Tracker Program
%Launch detector
detector = vision.CascadeObjectDetector('AlbatrossDetector3.xml');
%Set detector parameters
detector.MergeThreshold = MT;
%Launch blob analysis
blob = vision.BlobAnalysis;
blob.AreaOutputPort = false;
blob.BoundingBoxOutputPort = false;
blob.MinimumBlobArea = 8;
blob.MaximumCount = 1;
vision.KalmanFilter; %Initialize the Kalman filter
% Setup tracks structure with fields for ID's, bounding boxes, age,

etc.
tracks = struct(...
 'id', {}, ...
 'bbox',{},...
 'kalmanFilter', {}, ...
 'age', {}, ...
 'totalVisibleCount', {}, ...
 'consecutiveInvisibleCount', {});
nextId = 1;
centroidKeeper = [];
count = 0;
color = ['r','b','k','g','c','m','y'];
% References to MATLAB's Multiple Object Tracking framework [42] will

appear
% throughout code.
%% Load Video
Vidin = VideoReader(filename); %Call global variable
numOfFrames = Vidin.NumberOfFrames;
%% loop for reading frames
for j = 1:numOfFrames
 hold(handles.axes2,'on')
 if get(handles.stopper,'UserData') %Pause button
 pause on
 uiwait
 pause off
 end
 hold(handles.axes2,'on')
 %Read frames
 img = read(Vidin,j);
 framegray = rgb2gray(img); %Convert frame to intensity
 %Detect potential birds
 bbox = step(detector,img); %Creation of bounding box
 [R,C] = size(bbox); %Find size of bbox struct
 if R > 0
 %% Combine overlapping bounding boxes (NOTE: only for two bboxes)
 [bboxC] = bboxCombine(bbox);
 %% Find centroids

134

 [R2,C2] = size(bboxC);
 centroid = zeros(R2,2);
 for i = 1:R2
 framesect = framegray(bboxC(i,2):bboxC(i,4)+bboxC(i,2),...

%Examine bbox sections
 bboxC(i,1):bboxC(i,3)+bboxC(i,1));
 level = graythresh(framesect); %Determine local threshold value
 framesectBW = im2bw(framesect,level); %Convert section to

binary
 sectBW = imcomplement(framesectBW); %Birds are usually dark

compared to background- inverse
 centroid(i,:) = step(blob,sectBW); %Locate the centroid
 centroid(i,1) = centroid(i,1) + bboxC(i,1);
 centroid(i,2) = centroid(i,2) + bboxC(i,2);
 end
 end
 %% Predict new locations REF: [42] (Framework)
 for j = 1:length(tracks)
 bboxA = tracks(j).bbox;
 predictedCentroid = predict(tracks(j).kalmanFilter);
 predictedCentroid = int16(predictedCentroid) -

int16(bboxA(3:4)/2);
 tracks(j).bbox = [predictedCentroid, bboxA(3:4)];
 end
 %% Assignment cost analysis REF: [42]
 if R > 0
 nTracks = length(tracks);
 nDetections = size(centroid, 1);
 cost = zeros(nTracks, nDetections);
 for k = 1:nTracks
 cost(k,:) = distance(tracks(k).kalmanFilter, centroid);
 end
 costOfNonAssignment = CONA;
 [assignments, unassignedTracks, unassignedDetections] =

assignDetectionsToTracks(cost, costOfNonAssignment);
 end

 %% Updating assigned tracks REF: [42]
 if R > 0
 numAssignedTracks = size(assignments, 1);
 for l = 1:numAssignedTracks
 trackIdx = assignments(l, 1);
 detectionIdx = assignments(l, 2);
 centroids = centroid(detectionIdx, :);
 bboxB = bboxC(detectionIdx, :);
 tracks(trackIdx).bbox = bboxB;
 correct(tracks(trackIdx).kalmanFilter, centroids);
 tracks(trackIdx).age = tracks(trackIdx).age + 1;
 tracks(trackIdx).totalVisibleCount =

tracks(trackIdx).totalVisibleCount + 1;
 tracks(trackIdx).consecutiveInvisibleCount = 0;
 centroidKeeper(end+1,1) = tracks(trackIdx).id;
 centroidKeeper(end,2:3) = centroids;

scatter(centroids(1,1),centroids(1,2),color(tracks(trackIdx).id),'Paren

t',handles.axes2)
 drawnow

135

 hold(handles.axes2,'on')
 end
 end
 %% Updating unassigned tracks REF: [42]
 if R > 0
 for o = 1:length(unassignedTracks)
 ind = unassignedTracks(o);
 tracks(ind).age = tracks(ind).age + 1;
 tracks(ind).consecutiveInvisibleCount =

tracks(ind).consecutiveInvisibleCount + 1;
 centroidKeeper(end+1,1) = tracks(ind).id;
 centroidKeeper(end,2:3) =

predict(tracks(ind).kalmanFilter);

scatter(centroidKeeper(end,2),centroidKeeper(end,3),color(centroidKeepe

r(end,1)),'Parent',handles.axes2)
 drawnow
 hold(handles.axes2,'on')
 end
 elseif ~isempty(tracks) && R == 0
 % this is necessary for maintaining Kalman filter when

detections
 % do not occur
 for z = 1:length(tracks)
 tracks(z).age = tracks(z).age + 1;
 tracks(z).consecutiveInvisibleCount =

tracks(z).consecutiveInvisibleCount + 1;
 centroidKeeper(end+1,1) = tracks(z).id;
 centroidKeeper(end,2:3) = predict(tracks(z).kalmanFilter);

scatter(centroidKeeper(end,2),centroidKeeper(end,3),color(centroidKeepe

r(end,1)),'Parent',handles.axes2)
 drawnow
 hold(handles.axes2,'on')
 end
 end
 %% Deleting lost tracks REF: [42]
 if ~isempty(tracks)
 invisibleForTooLong = 18; %was set to 15
 ageThreshold = 25;
 ages = [tracks(:).age];
 totalVisibleCounts = [tracks(:).totalVisibleCount];
 visibility = totalVisibleCounts ./ ages;
 lostInds = (ages < ageThreshold & visibility < 0.1) |

[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;
 tracks = tracks(~lostInds);
 end
 %% Create some new tracks REF: [42]
 if R > 0
 centroid = centroid(unassignedDetections, :);
 for p = 1:size(centroid, 1)
 centroids = centroid(p,:);
 bboxA = bboxC(p,:);
 %Create a Kalman filter object
 kalmanFilter =

configureKalmanFilter('ConstantVelocity',centroids,[200, 50], [100,

25], MN);

136

 %Create a new track
 newTrack = struct('id', nextId, 'bbox', bboxA, 'kalmanFilter',

kalmanFilter, 'age', 1, 'totalVisibleCount', 1,

'consecutiveInvisibleCount', 0);
 %Add it to the array of tracks
 tracks(end + 1) = newTrack;
 if isempty(centroidKeeper)
 centroidKeeper(1,1) = nextId;
 centroidKeeper(1,2:3) = centroids;

scatter(centroid(1,1),centroid(1,2),color(nextId),'Parent',handles.axes

2)
 drawnow
 hold(handles.axes2,'on')
 else
 centroidKeeper(end+1,1) = nextId;
 centroidKeeper(end,2:3) = centroids;

scatter(centroid(1,1),centroid(1,2),color(nextId),'Parent',handles.axes

2)
 drawnow
 hold(handles.axes2,'on')
 end
 %Increment the next id
 nextId = nextId + 1;
 end
 end
 %% Display the results. For next 5 lines, REF: [42]
 if ~isempty(tracks)
 ids = int32([tracks(:).id]);
 labels = cellstr(int2str(ids'));
 bboxNotation = cat(1, tracks.bbox);
 frameNotated = insertObjectAnnotation(framegray,

'rectangle', bboxNotation, labels);
 framegray = im2uint16(frameNotated);
 end
framegray = im2uint16(framegray);
imshow(framegray,'parent',handles.axes1)
drawnow

figureSnap = getframe(gcf);
%writeVideo(vid,figureSnap)
end
%close(vid);
% --- Executes on button press in pushbutton2 (STOP).
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.stopper,'UserData',1);

% --- Executes on button press in pushbutton3 (Resume).
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

137

% handles structure with handles and user data (see GUIDATA)
set(handles.stopper,'UserData',0);
uiresume

GUI Figure
Below is the figure used for the GUI; this figure was created in guide [47]. The version was rolled

to V1.2 after updating the primary tracking framework, and adding a Merge Threshold input box.

138

Appendix H: Blade Tracking Code

In this appendix the MATLAB code for the blade tracking program is presented. Satellite functions

proceed the main code, and are shown in the order that they are called. [57] provided guidance on

utilizing the point tracking function. [44] gives details on the point tracking function itself.

Primary Code
clear all
close all
clc
clf

%% Kanade-Lucas-Tomasi feature tracker for the monitoring of wind

turbine
%blade deflection.

% Functions will be used for edge finding & point tracking.

% Setup video. In this case a premade video file will be loaded &

played...
% In the final version the video feed will be realtime
Vidin = VideoReader('Blade_Animation_2.avi');
vidStart = 500; %Start later in test
numOfFrames = Vidin.NumberOfFrames;
markerInserter = vision.MarkerInserter('BorderColor','black');
%uncomment below for video writing
%vid = VideoWriter('Blade_Animation_2');
%vid.FrameRate = 18;
%open(vid)
position = [1 50]; %Position on frame for annotation
position2 = [1 150]; %Secondary position on frame for annotation

%User input of beam length
Length = 1068.4; %mm
%input('Input beam length: ');

%Camera information (SENTECH STC-N632 Microcamera)
FL = 25*10^(-3); %m
CellHorz = 6.35*10^(-6); %m
CellVert = 7.4*10^(-6); %m
PixelHorz = 720; %Pix (cropped by USB capture device)
PixelVert = 480; %Pix (cropped by USB capture device)
SensHorz = CellHorz*PixelHorz; %m
SensVert = CellVert*PixelVert; %m
%Calculate FOV height and width
AngleHorz = 2*atand(SensHorz/(2*FL)); %Degrees
AngleVert = 2*atand(SensVert/(2*FL)); %Degrees

%Tip location calculations
Height = 2*tand(AngleVert/2)*Length;

139

tipHeight = [];
frame = [];
tick(1,1) = 1;
%For-loop to cycle through frames
for num = vidStart:numOfFrames
 frame = read(Vidin,num); %Load frame
 framegray = rgb2gray(frame); %Convert to grayscale
 if num == vidStart
 [points, Tracker] = pointFinder(framegray);
 pointsRef = min(points.Location(:,2)); %Minimum equates to

highest vertical point on frame
 refLine = (PixelVert/pointsRef)*Height;
 end
 pointsPre = pointTracker(Tracker, framegray, points);
 points = int32(pointsPre);
 outline = sortrows(points,1);
 tip = min(pointsPre(:,2));
 tipHeightAbs = (PixelVert/tip)*Height;
 tipHeightn = tipHeightAbs - refLine;
 tipHeight(num-(vidStart-1),1) = round(tipHeightn,3);
 frameNum(num-(vidStart-1),1) = num;
 Annotized = step(markerInserter, framegray, points);
 Notated = insertText(Annotized, position, tipHeight(num-(vidStart-

1),1), 'AnchorPoint',

'LeftBottom','FontSize',40,'BoxColor','white','BoxOpacity',0.9);
 imshow(Notated)
 %uncomment below for simulated beam shape
 %plt = plot(outline(:,1),outline(:,2));
 %set(gca,'Ydir','reverse')
 %axis([0 720 0 480])
 drawnow
 %uncomment below for live feed during processing
 %hold(gca,'off')
 %subplot(1,2,2)
 %vid = imshow(Notated2);
 %plot(tick(:,1),tipHeight(:,1),'k')
 %axis([1 numOfFrames -2 25])
 %grid on
 %xlabel('Frame Number')
 %ylabel('Tip Displacement [mm]')
 %title('Tip Displacement vs Frame Number')
 %drawnow
 %hold(gca,'off')
 tick(tick+1,1) = tick + 1;
 %uncomment below for video writing
 %figureSnap = getframe(gcf);
 %writeVideo(vid,Notated);
end
%close(vid);
figure
plot(frameNum(:,1),tipHeight(:,1),'k') %plot results
grid on
axis([vidStart numOfFrames -5 25])
title('Tip Height versus Frame Number')

%input vibration plateus (system left untouched during testing)
st2 = input('start 2: ');

140

nd2 = input('end 2: ');
st6 = input('start 6: ');
nd6 = input('end 6: ');
st10 = input('start 10: ');
nd10 = input('end 10: ');
st20 = input('start 20: ');
nd20 = input('end 20: ');
%Average values in that region
Ave_2 = sum(tipHeight(st2:nd2,1))/size(tipHeight(st2:nd2,1),1)
Ave_6 = sum(tipHeight(st6:nd6,1))/size(tipHeight(st6:nd6,1),1)
Ave_10 = sum(tipHeight(st10:nd10,1))/size(tipHeight(st10:nd10,1),1)
Ave_20 = sum(tipHeight(st20:nd20,1))/size(tipHeight(st20:nd20,1),1)

Satellite Functions

pointFinder

This function locates points on the blade, and initializes the point tracking process. [57] provided

guidance on using the point tracking function. [44] gives details on the point tracking function

itself.

function [points, Tracker, validity] = pointFinder(framegray)
%allow user to specify bbox
subplot(1,2,1)
imshow(framegray);
rect = imrect; %Specify bbox
drawnow
wait(rect); %Wait for user input
bbox = getPosition(rect);
bbox = int32(bbox);
points = detectHarrisFeatures(framegray,'ROI',bbox); %find points
points = points.selectStrongest(8);
Tracker = vision.PointTracker('NumPyramidLevels',2);
initialize(Tracker, points.Location, framegray);
markerInserter = vision.MarkerInserter('BorderColor','white');
pointsToTrack = int32(points.Location); %Convert to integer (pixels)
Annotized = step(markerInserter,framegray,pointsToTrack);
hold on
subplot(2,1,1)
imshow(Annotized)
drawnow
hold on
validity = zeros(size(points.Location,1),1) + 1; %Validity of one
end

pointTracker

This function steps the point tracking algorithm, and checks the validity of the remaining points.

[57] provided guidance on using the point tracking function. [44] gives details on the point

tracking function itself.

141

function [points, validity] = pointTracker(Tracker, framegray, points,

validity)
 if size(points,1) >= 2
 [points, validity] = step(Tracker, framegray); %Step function
 DelInd = find(validity ~= 0); %Find points to keep
 points = points(DelInd,:); %Keep valid points
 if ~isempty(points)
 setPoints(Tracker,points); %Continue with valid points
 else
 disp('Need to recalibrate') %No more valid points
 end
 else
 disp('Need to recalibrate')
 %Here lies the future location of recalibration
 end
end

142

Appendix I: Blade Tracking Results

The results of the blade tracking trials are presented here. Shown for each trial are the average

values for each displacement. Proceeding the results, the statistical analysis is shown, which

includes standard deviation and t-testing.

Tip Deflection

Trial 1

True Value:

2 6 10 20 mm

Estimated Value:

1.99 6.05 10.17 21.45 mm

Trial 2

True Value:

2 6 10 20 mm

Estimated Value:

1.74 5.33 9.30 20.59 mm

Trial 3

True Value:

2 6 10 20 mm

Estimated Value:

1.85 5.71 9.84 21.04 mm

Trial 4

True Value:

2 6 10 20 mm

Estimated Value:

1.65 5.62 9.63 20.06 mm

Trial 5

True Value:

2 6 10 20 mm

Estimated Value:

1.66 5.40 9.17 20.45 mm

Trial 6

True Value:

2 6 10 20 mm

Estimated Value:

1.80 5.58 9.33 20.67 mm

Trial 7

True Value:

2 6 10 20 mm

Estimated Value:

1.79 5.56 9.58 20.82 mm

Trial 8

True Value:

2 6 10 20 mm

Estimated Value:

1.68 5.57 9.55 20.50 mm

143

Trial 9

True Value:

2 6 10 20 mm

Estimated Value:

1.76 5.64 9.85 21.00 mm

Trial 10

True Value:

2 6 10 20 mm

Estimated Value:

1.86 6.01 10.03 21.30 mm

Trial 11

True Value:

2 6 10 20 mm

Estimated Value:

1.52 5.28 9.03 19.92 mm

Trial 12

True Value:

2 6 10 20 mm

Estimated Value:

1.92 5.83 9.86 19.83 mm

Trial 13

True Value:

2 6 10 20 mm

Estimated Value:

1.99 6.02 9.92 21.25 mm

Trial 14

True Value:

2 6 10 20 mm

Estimated Value:

1.71 5.67 9.59 21.13 mm

Trial 15

True Value:

2 6 10 20 mm

Estimated Value:

1.46 5.51 9.69 20.99 mm

Trial 16

True Value:

2 6 10 20 mm

Estimated Value:

1.69 5.83 9.81 20.97 mm

Trial 17

True Value:

2 6 10 20 mm

Estimated Value:

2.08 6.02 9.99 21.27 mm

Trial 18

True Value:

2 6 10 20 mm

Estimated Value:

1.85 5.85 10.05 21.32 mm

Trial 19

144

True Value:

2 6 10 20 mm

Estimated Value:

1.67 5.28 9.35 20.75 mm

Trial 20

True Value:

2 6 10 20 mm

Estimated Value:

1.55 5.34 8.96 20.36 mm

Below is the statistical analysis for the blade deflection program. Note that the final P values for

each displacement were significantly low, so the null hypothesis that there is no difference between

the means and measured values can be rejected. P values were obtained from GraphPad [58].

Disp.

(mm)

Averages

(mm)

Std Dev

(mm)

2 1.76 0.16

6 5.65 0.26

10 9.64 0.35

20 20.78 0.48

Confidence Intervals (99%)

Disp.

(mm)

Stdev

(mm)

Alpha Smpl Size Confid.

(mm)

2 0.16 0.01 20 0.104534

6 0.26 0.01 20 0.164123

10.00 0.35 0.01 20 0.224033

20 0.48 0.01 20 0.306322

Disp.

(mm)

T-Value P Value

2 -6.52479 <0.0001

6 -6.01643 <0.0001

10 -4.65887 0.0002

20 7.319152 <0.0001

