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mounted camera for wirelessly transmitting a video stream to provide an optimal viewing location 

for capturing avian and bat strikes. An early version of computer vision software for detecting avian 
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program. Object recognition using a cascading classifier, and a backup tracking system provides a 

potential method for determining bird presence and the likelihood of collision. The ability of the 

program to remove repeating false-positive instances and strengthen the detection system in the 

process, provides a strong platform for avian detection from a blade mounted camera. Hardware 

validation was conducted to ensure the selected components will function as needed. A 3D printed 

on-blade enclosure was designed as a housing for the camera, transmitter, and power supply. 
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1. Introduction 

The first quarter of 2015 has shown a large increase in the growth of wind energy projects, with 

13,600 megawatts of capacity under construction [1]. The implications of this near-record growth 

go beyond the spread of a renewable energy source. Effects of wind farms, or large groupings of 

wind turbines, on local and migrating birds and bats is not well understood. Due to the complexity 

and varying fragility of ecosystems across the globe, each new wind farm poses a different level of 

risk for damaging protected avian and bat populations.  

Current methods for examining the collision risk a wind farm poses are generally costly, 

cumbersome, or inaccurate. While Chapter 2 goes into the detail of these methods, they may be 

summarized as follows: carcass retrieval and mortality estimation [2], collision risk modelling [3], 

and observation [4]. Some budding techniques automate this monitoring process, by using various 

sensors to continuously check for bird or bat interactions and collisions [5-8]. Automated wind 

farm monitoring will play an important role in understanding how oceanic wind farms affect 

seabirds, as the classic technique of carcass retrieval is made impossible by the setting. As a solution 

to this need for automation in detecting avian and bat collisions with wind turbines, Oregon State 

University and the University of Washington have proposed a multi-sensor solution [9]. 

This thesis looks to design and investigate a blade-mounted vision-based camera system for the 

monitoring of bird and bat interactions and collisions with the wind turbine blade. The proposed 

mounting location for the camera is on the root of the blade, positioned in such a way that the field 

of view (FOV) captures the entirety of a single face of the blade. By filming a blade face during 

standard wind turbine operation, the opportunity arises for monitoring both avian and bat collisions, 

as well as flap-wise tip deflection. A further description of integration with the sensor array may 

be found in Chapter 3. 
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Deliverables for this thesis include early iterations of MATLAB code for the avian 

detection/tracking and blade tracking software, and analysis and proof of concept testing for both. 

Also investigated, is the feasibility of selected hardware, case design for the on-blade components, 

and future additions for this unit.  

There are numerous benefits to having a blade-mounted camera. Identification of species that 

collide with the wind turbine is perhaps the most important. The blade-mounted camera position 

provides an optimal view of the bird or bat flying near or colliding with the turbine blade, and could 

yield information regarding the nature of any impacts which might occur. Research has been 

conducted for determining ways blade deflection can be monitored during operation [10-12], as 

discussed in Chapter 2. Extreme situations may cause deflection beyond what the manufacturer has 

specified, and having awareness of such occurrences can allow operators to examine the blade early 

on. 

The primary components of the system include a wireless micro camera, receiver, power source, 

and transmitter; the components are reviewed in detail in Chapter 4. The software used for video 

analysis will be programmed in MATLAB, and will be developed to a functional level, to 

demonstrate the capabilities of the selected computer vision techniques. 

The development of software is covered in chapters 5 and 6, split into avian monitoring, and blade 

tip tracking respectively. Large wind turbines tend to rotate between 15-20 revolutions per minute, 

or 90-120 degrees per second [13]. The challenges associated with mounting a camera on a platform 

rotating at this rate includes a highly dynamic background, and extreme changes in lighting 

conditions- solutions presented for avian and bat interaction and collision tracking were created 

with these factors in mind. 

Finally, chapter 7 outlines future work and considerations for applying this sub-system to real-

world applications. Considerations such as power sources, on-blade mounting, and component 
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longevity are discussed. Also highlighted, is the further testing and design needed to bring this sub-

system to a fully operational level.   
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2. Background and Literature Review 

Understanding the risk that wind turbines pose to local and migrating bird and bat populations is a 

complex task with high variance between locations. There is both public and private interest in 

procuring accurate data pertaining to the mortality rates of birds and bats caused by wind farms. 

Some wind energy companies must work to remain within the bounds of their incidental take 

permits (ITPs) which allow for the accidental fatalities of endangered or otherwise protected 

species [14]. Public opinion can have a large effect on the expansion of wind energy, therefore it is 

imperative that accurate collision data is made available so that the impact of wind farms on 

ecosystems may be properly evaluated.  

The values obtained from studies examining bird mortality rates at wind farms are highly site 

dependent. Data collected in a study by J. Everaert showed yearly avian turbine collisions in three 

wind turbine locations in Belgium ranging from around 0 to 125 per turbine, and for 2002, averages 

ranging from 18 to 35 [15]. Generally less studied than the effects of wind farms on avian 

populations, is the impact of wind farms on endangered and at-risk bat species. Studies have shown 

that the weather and migration patterns both affect bat mortality rate [16]. A concern that has also 

been raised with bats is barotrauma, where the pressure change from wind turbine blades can cause 

organ damage, however this aspect has not been well documented [16]. 

Current Non-Automated Methods 

A common method of determining the rate of avian and bat fatalities on wind farms is the periodic 

collection of carcasses. To address some of the primary sources of inaccuracy for mortality 

estimation and provide a better comparison among estimates, K. S. Smallwood used past report 

data to analyze and model several factors including the mean time to removal and proportional 

remaining carcasses post-search [2]. Errors with this method stem primarily from scavenger 

removal, search accuracy, and mortality estimation equations [2]. Mortality estimation is an attempt 
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at removing the bias of ground search methods utilizing correction factors in a mathematical model 

[2], an example may be seen below: 

 

𝑀𝐴  Adjusted mortality rate 

𝑐̅     Average number of carcasses observed per year 

𝑡̅     Mean number of days until carcass removal 

p    Searcher efficiency rate 

I      Search interval in days 

This equation is a revision, the predecessor of which tended to provide mortality rates that were 

approximately 23% too low [2]. With the large number of factors which affect the accuracy of 

mortality estimation, biases tend to form favoring either high or low estimates [2]. These biases 

can stem from variance in searcher efficiency, which is dependent on factors such as ground 

vegetation; a tilled field will allow for easier searching in comparison to tall grass [2]. Scavenger 

removal of carcasses is also variant, and may be dependent on time of year and the species of the 

carcass; during autumn an increase in removal may occur as scavengers work to store extra fat for 

winter [2]. 

Collision risk modelling is a predictive version of mortality estimation. Geometric factors such as 

wind farm width, airspace volume, rotor size, and bird wingspan are combined to determine the 

likelihood of a bird species coming in contact with a wind turbine [3]. Assumptions must be made 

for this type of risk assessment, and one of the most impactful is the incorporation or exclusion of 

avoidance behavior [3]. A lack of avoidance behavior models bird flight within the wind farm as 

Equation 2-1 
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though the bird does not detect any presence of turbine structures [3]. To correctly model avoidance 

behavior, observation is required, and such information is species and site specific. 

Observation provides an alternative to carcass searches and estimation. This alternative can provide 

more intimate details regarding avian and bat behavior in the presence of operational, non-

operational, and pre-construction wind farms. For example, Cindy L. Hull and Stuart C. Muir 

performed a study which spanned across 875 days to examine the avoidance behavior of two eagle 

species in Australian wind farms [4]. The detail learned from this type of monitoring is much 

greater than the aforementioned estimation method. For instance, it was found that the Tasmanian 

wedge-tailed eagle and white-bellied sea-eagle prefer to fly between 1.5 and 3 rotor diameters 

through wind farms [4]. This type of information can lead to improved mortality estimation, 

however it is costly in time and does not guarantee accuracy between differing species and wind 

farm locations. 

Automated Monitoring for Birds and Bats in Wind Farms 

Non-automated monitoring methods generally are affected by uncertainty (mortality estimation) or 

personnel hours required (observation). Automation of the observation and monitoring process for 

wind farms provides an alternative which allows for both greater accuracy in collision statistics, 

and lowered time and cost. Wind turbines on off-shore locations create the issue of difficult to 

impossible carcass retrieval, and poor location for long term observation. 

There are numerous methods for automating the monitoring process on wind farms. There are 

several companies which have commercialized approaches to this issue, some examples including 

the DeTect Merlin Avian Radar System [5], and DTBird [6]. Other systems include WT-Bird which 

was developed by the Energy research Centre of the Netherlands (ECN) [7], and a system being 

investigated by the California Energy Commission [8]. Each of these solutions will be summarized 

in order to provide insight to current methods. 
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The Merlin Avian Radar System by DeTect is based off of technology developed for use by the 

United States Air Force and NASA, in order to increase the safety of operations by ensuring 

minimal avian activity near mission sites [5]. The equipment necessary for this radar technology 

can be placed on-site and controlled remotely using a variety of techniques [5]. The number of 

birds passing through the radar swept region may be used in order to improve collision risk 

assessment, and provide an early warning system for operators for the approaching of flocks [5].  

DTBird is a system of hardware and software dedicated to detecting birds in wind turbine airspace, 

and optionally taking preventative measures to avoid collision [6]. Four to eight high definition 

cameras create a 360 degree field of view for the detection system, which is setup to include the 

rotor sweep [6]. Preventative measures includes two possibilities, the Collision Avoidance Module, 

and the Stop Control Module [6]. The Collision Avoidance Module emits warning tones when birds 

enter high risk flight paths near wind turbines, with the purpose of dissuading collision [6]. The 

Stop Control Module brings the wind turbine to a complete stop between 20-40 seconds after the 

system has been triggered, to allow safe passage for the bird setting off the module [6]. Finally a 

secondary monitoring system, referred to as the Collision Control Module, provides vision and 

auditory based monitoring around the rotor sweep to record any collisions which may occur [6].  

The Energy Research Centre of the Netherlands has developed a wind turbine detection system 

referred to as WT-Bird, which is comprised of video cameras and contact microphones [7]. Contact 

microphones placed on the inside of the tower continuously check for vibrations which do not 

follow the usual patterns caused by typical operations [7]. Cameras are placed in multiple locations: 

one looking up from the mid-section of the tower towards the rotor sweep, and another looking 

from the nacelle towards the rotor sweep [7]. Abnormal sounds cause analysis of video recorded 

around a given time-span of the instance, which allows for bird recognition during interactions or 

impacts with the wind turbine [7]. 
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The Public Interest Energy Research Program, or PIER, is an organization under the management 

of the California Energy Commission. In 2007, PIER released a report outlining an automated wind 

farm bird and bat collision detection system [8]. The purpose of this particular study was to 

investigate the feasibility of an array of sensors (to be retrofitted on current wind turbines or 

incorporated into new turbines), including accelerometers, fiber-optic sensors, non-contact sensors, 

radar and infrared, and acoustic emission sensors [8]. In terms of ease of implementation and 

overall cost, acoustic emission sensors were found to be the optimal choice, since there is no need 

for on blade installment of the microphones, and microphone cost tends to be low [8]. The use of 

radar or vision based techniques was found to be less than ideal for collision detection when utilized 

on their own, due to the difficulty of deciphering between a bird or bat fly-by versus collision [8]. 

Avian Vision-Based Detection and Tracking Methods 

Vision based avian detection systems are created for a wide range of applications, including 

ecological purposes and airport safety. There is more computer vision research pertaining to 

ornithological applications, however many of the techniques may translate well to bats.  

In Hierarchichal Incorporation of Shape and Shape Dynamics for Flying Bird Detection, Z. Jun, X. 

Qunyu, C. Xianbin, Y. Pingkun, and L. Xuelong present the design and testing of a novel bird 

detection system [17]. Detection is two-fold, first performing shape based confirmation of the bird, 

followed by an analysis of bird movement [17]. Bird flight is categorized in four states, which 

comprise the entire flapping process [17]. The hierarchical structure maintains computational 

efficiency by removing obvious non-bird targets via shape analysis before moving on to more 

process-heavy dynamic shape analysis [17]. This method demonstrated a high detection rate and 

low false positive quantities, including when used with videos that incorporate noise and low 

contrast [17]. 
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Webcams are a technology that can be found in a myriad of locations. By adapting computer vision 

techniques to be used with these affordable cameras, these devices can be used to collect data 

pertaining to bird’s migration patterns [18]. W. W. Verstraeten et al performed experiments to 

investigate the validity of using webcams for the detection and three dimensional tracking of birds 

(for determining flight velocity and altitude) [18]. One of the experiments conducted involved the 

use of a pendulum to test the detectability of varying sizes and contrasts between targets and the 

background [18]. The results of this experiment showed that using background subtraction, as the 

velocity of the target increased, it became harder for lighter targets to be detected (against a white 

background) [18]. This relationship is key for more than background subtraction methods- as the 

contrast between a target and the surrounding environment is lowered, many detection methods 

may become faulty [18]. Accounting for lens distoration, managing multiple moving objects, 

calculating distance, and analyzing error were also performed in this report to develop a bird 

tracking system [18]. 

In “Automatic Bird Species Detection from Crowd Sourced Videos”, W. Li and D. Song designed 

two algorithms, one to extract avian inter-wing tip distance across time, and another to determine 

the wingbeat frequency and estimate the species of the avian target [19]. An important feature of 

the work outlined in this paper is the use of optical flow to decipher between background and 

foreground [19]; a large benefit of this method over background subtraction is the allowance of 

camera motion from crowd sourced videos [19]. Fast Fourier Transform applied to the inter wing 

tip distance time series provided the wingbeat frequency, which is used to estimate the species [19]. 

Experimentation showed successful extraction of inter-wing tip distance and wing beat frequency 

[19]. Robustness to error caused by foreground extraction, species prediction accuracy, and 

behavior when the most current inter-wing tip distance is not available was also tested [19]. 

A wind turbine blade mounted camera brings about challenges that are uncommon to many bird 

detection and tracking computer vision applications. The rotational velocity of the wind turbine 
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blade can create large displacements between frames, which depending on the camera framerate 

and other factors, may cause certain methods to not be a viable option. A limited number of frames 

containing the target leaves little room for analyzing flight. 

Blade Deflection 

Mounting a camera on the root of a wind turbine blade has the potential for monitoring blade 

deflection. From a recent report, the annual blade failures were estimated to be around 0.54% of 

the current number of blades in operation (approximately 3,800 out of 700,000) [20]. There are a 

number of sources which could contribute to the failure of a blade, such as operational failures 

which lead to loading which exceeds the rated amount [21]. One way of monitoring the stresses 

within the blade is to examine the deflection of the tip (the point of greatest deflection). To make 

use of the on-blade camera for measuring blade tip deflection, the system serves an additional 

purpose and bolsters its appeal for mass wind farm use. 

The National Renewable Energy Laboratory in Golden, Colorado developed and tested an optical 

blade position tracking system, with the purpose of determining a low cost method for monitoring 

the loads seen by the wind turbine blade [10]. A standard webcam with infrared LED lighting was 

mounted at the blade root with a light filter on the lens, while reflective strips were placed along 

the wind turbine blade, allowing the lighting from the webcam to bounce back to the lens [10]. A 

bend test of a wind turbine blade provided a comparison between measurements using the optical 

method and string potentiometers [10]. Testing provided a low mean error between the 

measurement types, and demonstrated the viability of the system [10].  

The work of X. Fu, L. He, and H. Qiu shows promise for the utilization of MEMS gyroscopic 

sensors in combination with an articifical neural network for measuring blade deflection on wind 

turbines [11]. For testing, each blade on a 100m diameter wind turbine was outfitted with a MEMS 

gyroscopic sensor 20m from the blade root [11]. Data collected from these sensors during operation 
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was compared with data obtained from a laser measurement device attached at the tower (making 

measurements for each blade once per rotation) [11]. The accuracy of the MEMS sensors came out 

to +/-0.4m, when comparing the data to that of the laser measurement device, the accuracy of which 

is approximately 1 centimeter [11]. 

P. Giri, and J. R. Lee explored a real-time deflection monitoring system for use with wind turbines 

[12]. The proposed system projects and receives the reflection of a laser emanating from the tower 

of the turbine [12]. With this laser displacement sensor (LDS), experiments including bolt 

loosening, nacelle tilting, and blade mass removal were performed to examine the corresponding 

blade deflection [12]. The experiments suggested that this method is an effective way to both 

measure and infer the cause of blade tip displacement [12].  

The use of an on-blade camera for blade tip deflection measurement provides a constant monitoring 

scheme for providing real-time feedback. Preventing turbine failure is one of the foremost reasons 

for implementing this software, however it also has the added value of examining blade deflection 

across large periods of time. Understanding the deflection of large composite wind turbine blades 

will provide key insight to the cyclical loading seen during operation for a range of conditions. This 

information may ultimately reduce the number of wind turbine blade failures, thus cutting costs of 

blade replacement, and most importantly increasing the safety of the system. 
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3. Proposed Solution and System Integration 

The large size, and dynamic state of operational wind turbines makes them a particularly difficult 

structure to monitor. A solution posed by Oregon State University, and the University of 

Washington, aims to use an array of sensors to continuously monitor wind turbines for avian and 

bat interactions and collisions [9]. The application of the sensor array is designed for use with off-

shore wind turbines, however the system has the potential to be used with land based turbines 

without modification [9]. The array is comprised of vibrational sensors, vision based cameras, and 

IR cameras, and bioacoustic microphones [9]. 

The sensor array utilizes wireless accelerometers and contact microphones, which may be placed 

on the tower, nacelle, or blades of the turbine [9]. Using batteries and wireless transmitters, the 

vibrational sensors require minimal support structure to operate [9]. The vibrations caused by an 

impact on a wind turbine will vary based on the size and speed of the object colliding, as well as 

the location of the sensors on the wind turbine; in order to decipher between operational and 

collision caused vibrations, wavelet analysis is performed on the digitized signals [9]. An important 

aspect of this method is its ability to be used in real-time. When a collision does occur, the 

vibrational sensors can act as a trigger mechanism for vision based sensors, and for data storage 

purposes [9].    

Vision and infrared based cameras were explored for the purpose of taxonomic classification, 

detection of flybys and collisions, and capturing bird or bat interactions with the wind turbine for 

later review [9]. There were five camera locations suggested including [9]:  

 Nacelle with a FOV intersecting the rotor plane  

 Nacelle with a FOV above the rotor plane 

 Tower with the FOV facing an upwards direction 
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 Adjacent tower with the FOV intersecting the rotor plane  

 Root of the blade with a FOV that covers most of one face of the blade 

The latter option, with the camera mounted on the root of the blade is what this thesis will develop. 

The reasoning behind this mounting location lies mostly in its ability to capture the critical footage 

of impacts, which provides the most solidifying evidence of bird or bad collisions with the wind 

turbine. Another attractive feature of the on-blade camera location is its ability to track the blade 

tip position, which when used with real-time processing, allows for an alert system when severe 

deflection occurs. 

 

Figure 3-1 Diagram of the FOV on a wind turbine. 

All data will be relayed to a central computing unit inside the nacelle [9]. The purpose of this 

computer is to apply algorithms and computational techniques to the raw incoming data from the 

transducers and cameras [9]. A central computing unit allows for easy data storage and analysis at 

a single location, which can then be relayed to external locations for evaluation [9]. A single camera 
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node (containing both visual and IR cameras) can output data at a rate near 1 Gbps [9]; applying 

vision-based algorithms to such large quantities of data is a resource intensive process, and storage 

for the videos becomes near-impossible with one hour of footage requiring around 3.6 Tb. A 

possible solution for this problem is the use of ring buffering, where data is stored before and after 

an event, creating a temporal “buffering” zone [9]. Infrared cameras are generally associated with 

simpler computer vision techniques, and may be able to run in real-time as an additional triggering 

mechanism for the ring buffering architecture [9]. Vision based data can be stored around the time 

of an event detected by vibrational sensors, and analyzed sub-real-time [9].  

The blade mounted camera will provide a constant transmission of video data to the central 

computing unit. All video processing will be performed in the central computer, limiting the 

amount of components and stored power needed within the camera housing. There are two possible 

methods of processing for this on-blade camera, including sensor triggered ring buffering, or real-

time vision based triggering for event storage. The benefit of real-time processing is the ability of 

the on-blade camera to check for flybys and impacts without input from the other sensors. 

Automated taxonomic classification, which is a future addition for this system, will be performed 

using vision-based data, and recordings from bioacoustic microphones [9]. As a possible future 

addition, the use of two cameras at any of the camera mounting location can provide binocular 

vision, which allows for determination of the size of the bird or bat. Size is generally measured by 

wingspan or body length, and is a key factor in determining species. The importance of taxonomic 

classification lies in its ability to further automate the turbine monitoring process, and alert wind 

farm operators to the presence of collisions or interactions between turbines and endangered or at 

risk species.  
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4. Hardware and Validation 

In this chapter, hardware is selected and validated. Housing for the on-bade camera is designed and 

manufactured.  

Camera Hardware 

The camera selected needs to have a number of requirements for on-blade installation. Automatic 

adjustability of shutter speed for brightness changes, low power consumption, small profile, and 

sufficient resolution are desirable. The Sentech STC-N632 is an NTSC board type CCD micro-

camera which provided the needed for this application (see table 4-1). Additionally, this camera 

supports an assortment lenses for varying focal length and thus FOV. This camera is designed to 

endure a range of humidity, temperatures, and a high level of vibrations- important factors for wind 

turbine applications [22]. 

Table 4-1 Sentech STC-N632 Camera Specifications. Obtained from Sentech mfg. specifications [22]. 

Sentech STC-N632 CCD Camera Specifications 

Electronic Specifications 

Imager 

1/3” Interline NTSC CCD: 

ICX638AK (Sony) 

Active Picture Elements 768 (H) x 494 (V) 

Chip Size 5.59 (H) x 4.68 (V) mm 

Cell Size 6.35 (H) x 7.4 (V) µm 

Scanning System 2:1 Interlace 

Vertical Frequency (Frame Rate) 59.94 Hz 

Horizontal Frequency  15.734 kHz 

Resolution 480 TV lines 

S/N Ratio More than 48 dB (Gain 0 dB) 

Minimum Scene Illumination 0.53 lx at F1.2 
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Sync. System Internal 

Video Output 1.0Vp-p with 75Ω 

Shutter Speed 

Electronic Iris/Fixed Shutter 

(Software Selectable) 

Gain 

AGC/Fixed Gain (Software 

Selectable) 

Gamma 1/0.45 (Software Selectable) 

Input Voltage DC +7V to +13V 

Consumption Less than 1.0W 

Mechanical Specifications 

Dimensions 26 (W) x 26 (H) x ** (D) mm 

Optical Filter IR cut filter 

Weight 12g (without lens) 

Environmental Conditions 

Operational Temperature/Humidity 

-10 to 45°C; 0 to 85% 

(relative humidity with no 

condensation) 

Storage Temperature/Humidity 

-30 to 65°C; 0 to 90% 

(relative humidity with no 

condensation) 

RoHS RoHS Compliant 

 

NTSC cameras, with a frequency of 59.94 Hz, display around 60 fields per second [23]. Fields are 

horizontal lines that alternate between blank space and information from the frame, in such a way 

that two consecutive fields combine to create a whole image [23]. Due to this alternating 

characteristic, digitized NTSC footage translates to 30 frames per second (FPS) [23]. The advantage 

of interlacing is a reduction in bandwidth [24], an important factor for wirelessly transmitted video. 
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A 25 mm focal length M12 lens was selected to apply to the CCD camera. Before making this 

decision, the FOV needed to be calculated for the lens and camera combination, to verify that it 

would be sufficient to capture most of the blade face. The FOV should encompass as much of the 

blade face and its surroundings as possible, while not being so large as to severely degrade the 

resolution of targets at a distance. The FOV is comprised of two angles, which will be referred to 

as the horizontal and vertical FOV. The calculation for these angles requires values for the focal 

length and sensor dimensions [25]. This FOV calculation may be seen below in equation 4-1 and 

figure 4-1. 

 

 

Figure 4-1 Schematic Representation of Camera FOV. 

The vertical FOV is calculated in a similar method. The sensor width is determined using the pixel 

size, along with the number of pixels in the corresponding direction. Pixel size is interchangeable 

with cell size, so 6.35 (H) x 7.4 (V) µm is used. The cell is the light sensing diode which is used in 

digital cameras. The horizontal and vertical FOV were found to be 11.14° and 8.36° respectively.  

For taxonomic identification purposes, the bird or bat being observed must have a sufficient number 

of pixels so that critical features may be visible. In order to ensure the selected hardware provides 

enough resolution, an avian target and observation distance were selected, and the pixel density for 

Equation 4-1 



18 
 

the target was determined. The chosen target was a marbled murrelet, a smaller endangered oceanic 

bird species [9].  

It is important to consider the largest possible blade length to obtain the most conservative pixel 

density estimate. General Electric is looking to construct a 10 MW turbine testing facility, 

indicating that in the near future, offshore wind turbines may have even larger blade lengths than 

those currently used [26]. The blade length of the GE 10 MW turbine is unknown, so an estimation 

was created based on current production turbines. The data and MATLAB code for this estimation 

may be found in Appendix A. 

The estimate of the GE 10 MW blade length provided a turbine blade length of 98.2 m. This blade 

length was used as the observation distance for target pixel density calculations. The marbled 

murellet was modelled as a 23 by 23 cm box for the sake of simplicity. A second MATLAB script 

was written to calculate the pixel density of the target at a specified distance, and provide visuals 

of the pixel size across the turbine blade. Figure 4-2 shows the outputs of the program, and 

supporting code can be found in Appendix B. The program was designed to allow for vertical 

camera tilt, as adjustments to this angle may ultimately be needed for optical FOV placement. For 

the purposes of this initial analysis, the direction of projection (DOP) for the camera was offset 

from the turbine blade face by 4°, and the camera was assumed to be at the root of the blade. 

Calculations for pixel size were made by rotating the DOP, while holding the view plane at a 

specified distance, and normal to the length axis of the blade.  
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The estimated number of pixels in the 23 by 23 cm region of the marbelled murrelet is 73. As 

demonstrated in figure 4-3, the pixilation is severe enough to make identification difficult based on 

discerning features, however the general shape and coloration are still present. A comparison of 

pixel and target areas may be found in Appendix B. From this analysis, the Sentech STC-N632 

CCD camera and 25mm focal length lens should be sufficient for this on-blade system.  

Figure 4-2 Pixel area versus position along length of turbine blade. 
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Figure 4-3 A representation of pixilation, similar to a 23 by 23cm target at 100m from the Sentech STC-

N632 camera. The image on the right approximates the pixilation estimated by the pixel size calculations. 

Transmitter and Receiver Systems 

A wireless transmitter will stream video from the micro-camera to the central computer. The 

transmitter will be connected with the camera and mounted on-blade, while the receiver will either 

be mounted in the nacelle with the central computer, or in a line of sight (LOS) location from the 

transmitter. The transmitter need a small profile and low power consumption. The SDX-26 2.4 GHz 

audio/video transmitter, whose specifications from [27] may be found in table 4-2, provides the 

qualities needed for this application. 

Table 4-2 SDX-26 2.4 GHz audio/video transmitter specifications. Obtained from RF-Links specifications 

[27]. 

SDX-26 2.4 GHz Audio/Video Transmitter Specifications 

Smallest Size 0.5 x 0.5 x 0.12 in 

Voltage Range 4.5 – 6.5 V 

RF Power 25 mW/ 5.5 V 

Current Consumption 60 mA/ 9 V 

Picture quality Broadcast 

TV Systems NTSC, PAL, or SECAM 
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Video Signal  1 V, 75 Ω 

Frequency 2300 – 2500 MHz (Single Channel) 

Channels 4 Channels 

 

To communicate with this transmitter, the multi-channel VRX-24L Audio/Video Receiver was 

chosen. The size and power consumption of the receiver are less important than those of the camera 

and transmitter, due to its mounting location. Strong reception and low cost are the foremost reasons 

for selecting this receiver. Table 4-3 outlines the specifications from [28] of the VRX-24L.  

Table 4-3 VRX-24L Audio/Video Receiver Specifications. Table Obtained from RF-Links specifications 

page for VRX-24L receiver [28]. 

VRX-24L Audio/Video Receiver Specifications 

Operating Frequencies 2300-2500 MHz 

Channel 1-8 

DC Voltage 9-12 V 

RF Power N/A 

Minimum Required Voltage 9 V 

Battery Power 12 V/ 300 mA 

Video Distortion 3% 

Sensitivity -92 dBm 

Video Format PAL, NTSC 

Current Consumption 280 mA/ 9 V 

Antenna Recommended High Gain, Omni Directional Ant. 

Antenna Connector SMA 

Impedance 50 Ω 

Video Output Connector RCA F 

Video Impedance 75 Ω 
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Two Audio Outputs 300 mV per channel 

Carrier Frequencies for Audio Channels 6 MHz and 6.5 MHz 

Temperature Range -25 to 65° C 

Dimensions 2.5 x 5.7 x 0.8 in 

Weight 200 grams 

Demodulation WFM 

 

System Power 

To power the micro-camera and wireless transmitter, a single 120 volt AC to 12 volt DC wall power 

supply was initially used. When mobility was required during testing or otherwise, a 3 cell in-series 

lithium polymer battery pack was used, providing 12 volts at nominal.  

While the camera operates at the voltages provided by the wall power supply and battery, the 

transmitter needs a lower voltage. The solution was to wire the camera, transmitter and resistor, 

and power source in parallel. The current consumption of the transmitter is known from the 

manufacturer specifications (table 4-2), and the voltage drop before the transmitter needed to be 

between 5.5 and 7.5 volts. For testing and early design, a simple resistor (100 Ω) in series was 

utilized to drop the voltage. The current consumption of the transmitter is relatively constant, so 

heat dissipation is the primary concern of using this voltage drop method. Figure 4-4 shows the 

wiring diagram for the camera system and breadboard implementation used to verify the circuit 

design. 
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Figure 4-4 Micro-camera circuit design and breadboard implementation. The yellow wire represents the 

video signal distributed between the camera and transmitter. 

Power distribution for the final system, discussed in Chapter 7, will require circuitry beyond what 

is presented here.  

Hardware Validation 

Fast target-camera relative motion and large contrast changes can compromise video quality. The 

electronic iris of the Sentech STC-N632 allows for a change in shutter speed, or exposure time, 

based on lighting conditions in order to achieve the correct amount of contrast. If large changes in 

lighting conditions between frames are present, the electronic iris may not be able to adjust fast 

enough, causing the resulting frame to appear either too dark or light. The interlacing of NTSC 

cameras does not perform well with fast motion, since each field is captured at different points in 

time. Rapid displacements of an object can cause faulty interlacing, with motion artifacts. These 

defects in the frames could generate issues for computer vision software, and thus should be 

mitigated. 

To explore the extent of these issues with the selected camera, a rotation rig was designed and built 

(Figure 4-5). A high torque 12V 15 RPM motor is mounted on a Manfrotto video tripod. The battery 

and camera/test casing are spaced so the moments generated about the motor shaft are balanced. 

Using the built in spirit level, the rotating platform can be angled as desired. 



24 
 

 

Figure 4-5 Camera rotation rig. On the left is the overall rotation rig, which is balanced about the motor 

shaft. On the right is the 3D printed tripod/motor-mount connector. 

Using indoor fluorescent lighting, the Sentech camera was used with the rotation rig to qualitatively 

observe the effects of rotational motion on video quality. The left image in Figure 4-6 displays a 

resulting frame from the recorded video, and the right image shows what the target with the camera 

motionless. The severe motion blur and poor interlacing can likely be attributed to the low lighting 

conditions, which causes the electronic iris to set longer shutter speeds. The shutter speed can be 

locked at a single rate, however the electronic iris will be required for outdoor applications where 

lighting conditions are variable within each rotation. 

 

Figure 4-6 The effects of motion and lighting on image quality.  

In order to test the video quality in a more realistic lighting setting, the rotation rig and camera 

components were taken to an outdoor setting. A light meter application was used to measure the 

lighting conditions, which came out to 31500 lux, and 6650K. The sun overhead and tree foliage 
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provided changes in lighting within each rotation. The target was distorted during several passes 

due to poor interlacing, however overall the video quality was significantly better than that from 

the indoor test. The linear interpolation deinterlacing MATLAB function was applied to the video 

(this method produced the best results with this footage), the results of which may be seen in Figure 

4-7. The deinterlacing MATLAB function is an algorithm which uses a selected method to correctly 

align the fields in a video to remove motion artifacts [29]. 

 

Figure 4-7 Deinterlacing frames containing significant camera motion. On the left is the original footage 

with significant motion artifacts. On the right, it can be seen that by detinterlacing a frame the motion artifacts 

can be significantly reduced. 

To verify the pixel calculations made earlier, field testing the camera was set at a distance of one 

blade length of a Vestas V90 wind turbine from a 23 by 23 centimeter target (see figure 4-8). The 

composite to USB video capture device crops the video to 720 (H) by 480 (V) pixels, so the pixel 

calculator was modified to account for this and the new distance. 345 pixels were estimated to be 

within the 23 by 23 centimeter target. The perimeter surrounding the target on a single frame was 

determined, and the area was calculated. The area was calculated to be 320 pixels, which provides 

a percent difference of around 7%. This error may be attributed to incorrect positioning of the 

target, and rounding between pixels. 
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Figure 4-8 Target area calculations. A 23 by 23 centimeter target was set at 45 meters (simulating a 

Vestas V90 blade length) from the camera. The corresponding image was analyzed by calculating the 

number of pixels within the target. 

Camera Casing 

The on-blade camera and corresponding components will require housing to protect the electronics 

from the elements and provide secure mounting to the blade. As discussed in Chapter 3, the housing 

may also contain vibrational sensors such as a contact microphone or accelerometer. For the 

purposes of a test enclosure, and demonstration of early design, a rapid prototyped casing was 

designed and printed. The casing had to be able to house a battery, micro-camera, and transmitter- 

all while being as compact as possible. Future iterations of the design are discussed in Chapter 7.  

The proposed mounting location for the camera is on the root of the blade, placed so that the FOV 

encompasses the entirety of the face of the blade. Generally, for large wind turbines such as the GE 

1.5MW, the turbine blade transitions from an airfoil style cross section from the tip and across the 
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face of the blade, to a circular cross section near the root. This circular cross section is large in 

diameter, so a small camera mounted tangentially should have a nearly flat surface on which to be 

placed. If placed correctly, the camera should be able to observe any avian or bat interactions and 

collisions occurring near the face of the blade on which it is mounted. 

Mounting of the casing may be tricky, requiring either a scissor lift or access from the nacelle 

depending on the turbine. Adhesive strips along the bottom of the case, and pull tabs for easy 

removal, should provide sufficient mounting of this lightweight design. Moisture, and the acidity 

in rain water may degrade the adhesive bond over time. Vibrations, aerodynamic forces, and the 

seemingly ever present pull of gravity comprise the three elements which will ultimately lead to 

the failure of this joint.  

3D printing is an excellent manufacturing choice for the on-blade camera casing. The quantity 

needed would be relatively small, which fits the longer lead time of printing a large part. Printing 

allows for easy manufacturing of complex shapes and contours, while requiring a minimal amount 

of hands-on work. This manufacturing method also opens the door for on-site production of the on-

blade system, which could reduce the costs of implementation for wind farms. Another benefit is 

the ease of modification of the casing, should a wind farm require a differing bolt pattern, shape, 

or other change in features. 

For testing, a three cell (11.1V nominal) lithium polymer battery was selected to support the camera 

and transmitter. The battery chosen was high capacity to support multiple tests across a span of 

several days, with the battery connection being unplugged between uses. The primary tradeoff of 

this high capacity battery is the need for larger housing. Maintaining a low profile in the casing 

design is imperative for a marketable unit, which will be sleek in appearance and create a negligible 

drop in efficiency in the turbine blade. 
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Figure 4-9 Camera casing expanded view. 

The camera casing was designed to be as compact as possible, while maintaining an aerodynamic 

shape in the direction of airflow. Support structure for holding components in place was designed 

to be robust but minimal to reduce the amount of material needed for printing. The final drawings 

specifying key dimensions may be found in Appendix C. Bolt holes and hexagonal cut regions for 

nuts were sized with additional space, to account for the tolerance of the 3D printer selected. On 

the trailing side of the camera casing, a heat sink was added for a voltage drop unit before the 

transmitter: maintaining a low temperature within the case is important for extruded materials.  

 

Figure 4-10 3D printed camera casing. 
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The first iteration of the camera case (figure 4-10) was printed using PLA plastic, whose brittleness 

and low melting temperature make it less than ideal for a final case. ABS plastic is a common 3D 

printed (extruded) material, which should be easily used for this casing if the proper 3D printer is 

utilized. A heated bed and closed printing area are especially important for larger and detailed print 

jobs. Some warping of the base plate was noticed after the printing process, as seen in figure 4-11. 

The bolt holes and hexagonal sunk regions were correctly sized, and the dimensions provided 

adequate spacing while not being loose. Assembly time was low, requiring around a half hour for 

bolting the casing together, applying an aluminum heat sink, and sanding the outside of the case. 

 

Figure 4-11 Warping of the camera casing base plate. 
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5. Software Development: Avian Detection and Tracking 

In this chapter, program architecture for avian detection and tracking is determined. A preliminary 

version of vision-based avian interaction and collision sensing program is developed in MATLAB 

and tested. The performance of the program is examined, which dictates whether this program will 

run continuously during the day, or be triggered by other sensors. 

Overview 

For the purposes of this program, daylight is assumed for operation. Additionally, although bat 

flybys and collisions could occur during the day, only birds will be evaluated in this version of the 

program. Any daytime monitoring techniques investigated here should apply similarly to bats. 

There are two types of interactions this program is concerned with: a flyby, where the subject enters 

the blade-mounted camera FOV, but does not collide with the blade, or a collision, where the 

subject has direct impact with the turbine blade. Collisions are of primary concern for wind farm 

operators, so being able to rate the likelihood of a collision versus a flyby is imperative.  

In future versions of the program, images of avian interactions and the likelihood of collision will 

be coordinated with data from the other vision-based, vibrational, and bioacoustic sensors. The 

program developed in this chapter outputs graphics for user review and evaluation of program 

performance. 

Having a camera mounted on a wind turbine blade poses challenges for vision-based algorithms 

including a dynamic background and vastly varying lighting conditions. Shadows, cars, light 

blooms, and other wind turbines are just a few of the factors which may present themselves within 

the FOV during operation. Cameras mounted on offshore wind turbines will see waves, whose 

constantly changing structure creates textures that may generate a large number of FP instances.  
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Despite these detracting factors, there are a number of aspects owed to the nature of this camera 

placement which can be taken advantage of in the program. Assuming constant blade pitch and 

turbine yaw: 

 Objects which are stationary, or nearly stationary, such as buildings, clouds, and hills, 

appear to move in the same direction from the perspective of the rotating camera. (Figure 

5-1) 

 Stationary objects will follow the same path across the image plane during each rotation, 

while moving objects may deviate or disappear depending on their trajectory. (Figure 5-1) 

 The face of the blade for large wind turbines is generally white and free of markings, which 

provides an excellent background for thresholding.  

In actuality the turbine may change pitch or yaw based on wind conditions, however adapting to 

these changing conditions is a feature to be addressed in later versions of the program.  

As data from [15] suggests, even regions containing high bird mortality rates present a low quantity 

of collisions when considering the amount of time captured on camera versus the quantity of events. 

Due to this low frequency, it is key that the program have a true positive (TP) rate approaching 

100%. A TP refers to the correct labeling of a target by the program. It is far more important to 

capture a bird flyby or collision and have a high FP rate, than to have zero FP instances and not 

record a collision. Filtering and the use of data from other sensors may provide a means for 

eliminating FPs. Birds may also appear in flocks instead of a single target, requiring the ability of 

the program to handle several targets in the FOV at any given time. 
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Figure 5-1 Frame of Reference. The upper image represents the 3D world coordinate system. The middle 

image shows the perspective of the blade mounted camera when the turbine is stationary. The bottom image 

shows the apparent motion of all objects in the view plane during turbine rotation. 

Overall Structure 

The overall structure of the program is designed to take an input video (.mp4, .avi, etc.), and using 

a for-loop, obtain one frame at a time for analysis. At the conclusion of the video, the data obtained 

is analyzed and presented to the user. Avian detection is the forefront of the program after video 
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input, and the chosen method has a large effect on the overall performance of the program for 

successfully classifying instances. Figure 5-2 outlines the general program architecture that is be 

used. 

 

Figure 5-2 General program architecture. The input video is loaded into the program. Detections and event 

data are extracted for each frame. Event data refers to any additional information pertaining to the detection 

or otherwise which is used for later analysis. At the conclusion of the video analysis, the final two sections 

occur: filtering, classification, data presentation, and updating the detection system. This format does not 

reflect a real-time format. 

The structure used for this version of the program is conducive to a saved video input, however it 

will need modification to be paired with a live video stream. The speed of operation provides insight 

to determine the feasibility of real-time avian and bat interaction detection. To demonstrate the 

operation of the program when operating as triggered by other sensors, an option is incorporated 

into the MATLAB program allowing for an input signal to trigger video analysis.  
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Figure 5-3 Opening User Prompt. To facilitate the use of this program, the user is asked for their input 

pertaining to various settings pertaining to operation. 

Instead of analyzing the entire video, the triggering setting analyzes a frame buffer surrounding the 

time of the event as determined by a peak in the signal. The units of time for the input signal must 

be converted to frames, which correspond to frames within the video (figure 5-4). 

 

Figure 5-4 Example of input signal simulating vibrational sensor data including a collision. This signal 

would have a frame buffer surrounding the spike in acceleration around the 10th frame. That frame buffer 

would then be analyzed by the program, as opposed to the entire video. 

Filtering, classification, data presentation, and updating the detection system have a post-

processing format, where they operate after the video is done being analyzed. In a real-time setting 

these items would need to be reconfigured to support frame-by-frame analysis. The overall program 

architecture may be seen in detail in Appendix D, and the MATLAB code along with all supporting 

functions may be found in Appendix E. 
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Detection Options 

As a starting point for the program, a detection method was selected. The purpose of detection in 

this program is to determine the presence of birds in the frame. Two methods of avian detection 

were examined, including optical flow and cascade classification. Both of these methods are 

supported by MATLAB Computer Vision System Toolbox, which is a collection of image and 

video processing algorithms. A commonly used technique for determining the presence of a bird, 

or other moving target, is frame differencing. Frame differencing compares two video frames, and 

looks for changes between the two in order to differentiate between the background and foreground 

[30]. A binary image represents the difference between the frames, by highlighting foreground with 

high intensity pixels. Background subtraction uses a learned “background” image, which is 

removed from the current frame, yielding the foreground [30]. The basic differencing techniques 

lose their viability with camera motion and changing lighting conditions.  

Optical Flow 

As explained earlier, a bird flying through the FOV will likely not follow the motion flow field 

induced by the rotating camera. In order to take advantage of this potential deviation in motion, 

optical flow was investigated as a detection method. Two methods provided with Computer Vision 

System Toolbox includes Horn-Schunck and Lucas-Kanade. These optical flow methods originate 

from the constraint of brightness consistency. Brightness consistency dictates that the intensity of 

a point on an image should remain the same after a small change in time and position [31]. With 

an image coordinate system x and y, the following equation is derived [31]: 

 

Expanding the right side via Taylor series, and truncating to the first order terms [31]: 

 

Equation 5-1 

Equation 5-2 
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Combining equations 5-1 and 5-2 produces the following [31]: 

 

Or, by dividing by the partial derivative with respect to time [31]: 

 

The movement of pixels across the image can now be obtained using equation 5-4. With the two 

unknowns, u and v, additional constraining equations are needed. Horn-Schunck utilizes a global 

technique, meaning that the entirety of the image is analyzed at once [32]. The error of the optical 

flow and deviation from global smoothness is combined, and the resulting equation is minimized 

by setting the derivative (with respect to u and v separately) to zero [32]. Iterative solving then 

allows for u and v to be determined [32]. 

Lucas-Kanade developed a local method for optical flow, which uses small pixel neighborhoods 

[33]. For example, considering a 3x3 pixel cluster, applying the brightness consistency equation 

(equation 2) to each pixel would yield 9 linear equations [33]. The motion (u,v) is then assumed to 

be constant within this neighborhood [33]. By putting these equations into matrix form, Least 

Squares may be used to find a single approximate solution to this over-constrained system [33]. 

Both of the aforementioned methods have their benefits and drawbacks. The global smoothness 

constraint of the Horn and Schunck method limits extreme deviation from the motion field [34]. 

Lucas-Kanade has difficulty determining optical flow in regions of similarity, or when the gradient 

is completely random [33], such as speckle. Due possible large deviations from the motion field 

during blade rotation, and lack of large homogeneous surfaces (barring the blade face, which does 

not need to be tracked), Lucas-Kanade was determined as the primary method to be tested. 

Equation 5-3 

Equation 5-4 
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The footage obtain in Chapter 4 during field testing with the Sentech camera and rotation rig is 

suitable for testing the reliability of Lucas-Kanade optical flow for estimating motion flow fields 

with on-blade applications. Brightness changes seen during rotation are similar to that obtained 

from an on-blade camera. By applying the Lucas-Kanade method to this footage, observations can 

be made about the ability of the algorithm to determine the motion flow field during fast camera 

rotation. 

 

Figure 5-5 Lucas-Kanade Optical Flow Method. An example of optical flow applied to rotating camera 

footage, with low and high level noise filtered. The lines are motion vectors between frames, and are scaled 

to represent the actual distance travelled by a pixel. 

The fast rotation rate of the camera (15 rpm) in combination with varying lighting conditions caused 

significant noise with optical flow. A low and high pass filter were applied in order to reduce noise, 

however the results were not significant enough to mitigate the severe noise present in regions 

containing large shifts in illumination (figure 5-5). Additionally, if a bird flies within the blade 

sweep plane, it may not deviate enough from the motion flow field to stand out. Due to the apparent 

limitations of the basic optical flow algorithms offered on MATLAB, the solution of optical flow 

was dropped in favor of another technique. 
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Cascade Object Detection 

The use of objection recognition is a wide area of research within computer vision. The MATLAB 

Computer Vision System Toolbox offers a trainable cascade object detector, for the recognition of 

objects which do not vary greatly in terms of aspect ratio [35]. This decision tree detector is trained 

using supplied negative and positive image datasets, the latter of which may be labelled using a 

built in image labeler [35]. There are three choices of feature types integrated into the MATLAB 

cascade classifier, including Haar, local binary patterns (LBP), and histogram of oriented gradients 

(HOG) [35].  

HOG features are found by examining the distribution of intensity in a small, generally square, 

region in an image in order to approximate the direction of the gradient using a histogram [36]. 

Each pixel in the region represents a data point in a histogram to find the best fit orientation [36]. 

This feature type is often used in human and vehicle detection, where the shape of the object is 

generally invariant. Haar features are comprised of rectangular regions where the intensities of one 

region are differenced from another [37]. The value obtained from the aforementioned differencing 

provides a data point which may be compared to a threshold to determine if the criteria of the 

desired feature is met. Local binary patterns (LBP) is a method that is robust to changes in 

illumination, as it focuses on texture [38]. For a grayscale image, the LBP is created by comparing 

the intensity value of a pixel to its neighboring pixels [38]. Neighboring pixels are assigned a 1 or 

0, the latter of which is assigned if the intensity value is less than the center pixel [38]. The values 

found in this manner are entered into a histogram, which is normalized to obtain the LBP [38]. 

Testing performed in “A Comparison of Image Processing Techniques for Bird Detection” by Elsa 

Reyes demonstrated much higher accuracy using Haar than HOG features, and generally higher 

accuracy using Haar as opposed to LBP features for bird detection [39]. The tuned accuracy using 

Haar features was determined to be 87% [39]. Also confirming the use of Haar-like features for 

avian detection applications, is a publication by R. Yoshihashi, R. Kawakami, M. Iiada, and T. 
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Naemura, who compared HOG and Haar-like features using a collected image dataset of over 

32,000 TP bird images, and over 4,900 negative images [40]. It was found that Haar-like features 

outperformed HOG features for lower resolution avian detection [40]. Through both of these 

articles, large data sets were examined, and the use of a cascade classifier using Haar-like features 

has been shown to be a potentially reliable choice for avian detection. 

The cascade object detector is based on the Viola-Jones algorithm, where detection involves stages 

to decrease processing time [37]. A sliding window is moved across the image, and the contents 

within the window are tested in stages. Failing to pass a stage leads to labeling as a non-target, and 

the window moves to the next section of the image [37]. The advantage of this method is saved 

time, by moving past non-targets faster than checking each stage before moving to the next region.  

The cascade classifier in the MATLAB environment trains each stage individually via a process 

called supervised learning, where labelled images and negative images are provided [35]. Each 

stage is comprised of an ensemble of weak learners [35]. The weak learners may be comprised of 

the features mentioned earlier, or some other feature type depending on the application. Generally, 

the number of possible weak learners is much greater than what is needed to detect an object, so 

some method of selecting the best weak learners is required [37]. Adaboosting is used to weight 

weak learners and ultimately determine which will be used in each stage [37].  

The effectiveness of cascade object detection is entirely dependent on how the detector is trained. 

Tuning of the positive image sets, negative image sets, number of stages, and false positive rate, 

and false alarm rate are a few of the variables which must be managed to create a reliable detector. 

The initial cascade classifier training set involved the use of around 80 labeled bird images that 

varied in perspective and point in the flapping cycle, and utilized HOG features (the default setting 

for detection training). For nearly every orientation and point in the flapping cycle, the beak or 

wingtips are generally visible on the view plane, which helps in maintaining consistent features for 

detection.  
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The detection system was comprised of around 90% albatross images, along with approximately 

10% murrelet images. Albatross species tend to have distinct sharp wings and beaks, which are 

exaggerated in comparison to other avian species. Additionally, variants such as the Short-tailed 

Albatross, or Phoebastria albatrus, are listed as endangered by the U.S. Fish & Wildlife Service 

[41]. The false alarm rate and number of cascade stages were varied until detection was consistent. 

HOG feature based detection was used during testing and program development, however [39] and 

[40] demonstrated that Haar features provide improved results over HOG features for bird 

detection. 

 

Figure 5-6 A comparison of detection accuracy when rotating the input image. By rotating the input image, 

it can be seen that certain targets are no long detected. The dashed line demonstrates a loss of detection 

between the upright and rotated image. The same detector and merge threshold settings were used for 

detection in these images. 

 



41 
 

  

Figure 5-7 Examples of cascade object detection applied to input bird images. Using the HOG feature based 

albatross detector, other species were able to be detected. Note the FP instance indicated by the red arrow, 

the causation of which was likely the truss structure within the barn. 

As may be seen from figures 5-6 and 5-7, the albatross based detection system is able to 

successfully detect numerous other species. Ground truth testing was not performed on the 

detection system; larger positive image datasets should be utilized before creating and testing the 

next iteration of cascade detection for this program. The detection system provided satisfactory 

results for testing the program operation and framework performed here, however before testing 

the operational capabilities of the program in a true wind farm setting, a more robust cascade object 

detector should be trained.  

Blade Face Thresholding 

The wind turbine blade provides a white backdrop which creates a potential platform for 

thresholding. For a grayscale image, thresholding is the creation of a binary image by setting an 

intensity value which when exceeded yields white (255 with 8-bit depth), and otherwise creates 

black (0 with 8-bit depth). Due to the high intensity of the wind turbine blade, and generally darker 
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colors of avian and bat species, the thresholded image is inversed. A bird or bat flying into the face 

of the wind turbine blade should provide a contrasting region, or blob, assuming their coloration is 

dark enough to trigger the threshold (figure 5-9). When starting the program, a pop-up window 

prompts the user to input a polygon surrounding the blade (using impoly MATLAB function), as 

can be seen in figure 5-8. 

 

Figure 5-8 Selection of the blade ROI. The user is prompted to select the blade ROI before the program 

analyzes video. 

 

Figure 5-9 Thresholding and its results. The creation of the binary image on the right was performed using 

the ROI selection and thresholding components of the program. 
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For each input frame, the blade region selected by the user is thresholded, and blob analysis is 

performed inside the blade ROI. Blob analysis is the examination of high intensity regions in a 

binary image. Minimum and maximum values for blob area can be provided to filter out noise and 

shadows respectively. Additionally, the number of blobs can be limited, as more than one or two 

birds impacting the blade at once is extremely unlikely. Information about blob presence in each 

frame is passed on to the final classification stage, to aid in determining whether or not a collision 

has occurred. 

Tracking 

The detections made by the cascade object detector are tracked between frames to find the trajectory 

of the bird. The use of tracking is not only for determining the trajectory of the bird through the 

image plane, but also for assigning an identification number to the detection. Identification numbers 

are primarily for filtering and data management purposes, so that each detection can be recalled 

from the global data set for evaluation. Large wind turbine rotational speeds between 90 and 120 

degrees per second [13] leave little room for error in the tracking process: at 30 frames per second, 

and aligning the horizontal FOV (11.14°) with the direction of motion, the rotating camera can only 

capture around 3 to 4 frames containing the target (with no significant target motion in the vertical 

direction). 

Primary Tracking 

The primary tracking framework was obtained from the Motion-Based Multiple Object Tracking 

example from the MathWorks website [42], and consists of a MATLAB data structure, containing 

the ID of the target, bounding box data, Kalman filter data, detection age, the number of visible 

instances, and the number of consecutive invisible instances. A bounding box is simply a box 

surrounding the object in question, with coordinates given in pixels measured from the upper left 

corner of the image. Kalman filtering allows for the prediction of motion for targets which existed 
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previously, but were not successfully detected in the current frame [42]. The predictions made using 

Kalman filtering keep the location of the target updated, so that when a future detection occurs, the 

predicted versus true location of the target are not greatly divergent [42]. The option for constant 

velocity for Kalman filtering was selected, as the rate of bird and bat motion across the image plane 

is not expected to change greatly between frames. 

The importance of assigning a detection to a path, is both the capability of the program to match an 

identification number with the detection, and for determining the trajectory of the target. 

Assignment to a path is based off of the James Menkres’ variation of the Hungarian assignment 

algorithm, which is used to output assigned tracks, unassigned tracks, and detections [43]. A 

mismatched pairing between the path and detection could lead to incorrect trajectory data. 

If a path exists for too long, or does not have detections assigned to it for an extended period of 

time, it is deleted. Once this deletion occurs, the path is evaluated. Assuming more than one 

detection was assigned to the target, location information is used to evaluate the trajectory. The fast 

rotation rate of the camera means that the path of the avian target should be approximately linear, 

therefore a linear line of best fit is created using linear regression. The R squared value provides 

details on the quality of the tracking. Finally, the angle of the path travelled is calculated. If the 

angle is over 15 degrees, the target is considered to deviate significantly from the motion field. An 

important distinction is that a target flying away from the wind turbine blade plane is less likely to 

have collided than one that is moving toward the blade plane.  

Secondary Tracking 

If only one detection exists for a target, a secondary tracking method is used in an attempt to capture 

the path of the target. A single detection does not allow for the primary tracking method to function, 

since the Kalman filter requires at least two detections to make predictions for velocity and future 

location (assuming no target acceleration). The Kanade Lucas Tomasi (KLT) feature tracking 

algorithm in MATLAB Computer Vision System Toolbox [44] provides qualities that make it a 
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viable candidate for this application. Using the bounding box created using the singular detection, 

feature points are determined by finding the minimum eigenvalue features [45] for the region. The 

strongest of these points is then tracked between the preceding and proceeding three frames from 

the detection- this provides the best possible coverage of the event in order to extract the path of 

the target. Between each frame, the points which the algorithm determines as outliers are removed, 

so that the final point distribution reflects only successfully tracked feature points. The path 

travelled is determined in a similar manner to the primary tracking method, where the angle of the 

direction of travel gives insight to the deviation from the motion field.  
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Figure 5-10 Large displacement tracking via point tracking. This example provides a low noise background 

with an unchanging object, which is displaced to simulate a bird traversing the image during camera rotation. 

Two points (overlapped) are successfully tracked during the image sequence. 

The above example of point tracking required the tuning of tracking parameters to successfully 

track the target. In this example, the percentage of successfully tracked points across the three 

frames was 20%. There are critical parameters that can be varied to achieve point tracking with 

large object displacement between frames, including the number of pyramid levels, block size, and 

the quantity of iterations. To fully validate this method for the use of high displacement tracking, 

sets of images containing bird movement that is 1/4 to 1/3 of the image width between frames 

should be created. Using this data, the parameters can be optimized for this application.  

Trajectory Classification 

After a target disappears and tracking is complete, the trajectory of the target is classified. Four 

types of trajectory classifications were created to organize detections. Table 5-1 describes the types 

of events, and figure 5-11 provides a graphical display trajectory classifications.  

Table 5-1 Tracking Classification Types. 

Type Description 

1 Greater than 15° deviation from the motion field direction, and towards the blade plane. 
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2 Less than 15° deviation from the motion field direction. 

3 Unable to successfully track the target. 

4 Greater than 15° deviation from the motion field direction, and away from the blade plane. 

 

 

Figure 5-11 Example of target motion and corresponding classification. Type 3 classifications are a single 

detection, and do not have a determined direction of travel. 

Supporting Structure 

Detection and tracking provides a set of raw data which must be sorted and interpreted before 

passing on to the user.   

Data Storage 

The data structure for tracking is updated between each frame as new information replaces existing 

data. This saves time when there are no active paths present, by eliminating the need for adding 

additional data to a matrix. When detections or predictions occur, a matrix stores all relevant 

detection and prediction data including the ID, bounding box, centroid, detection versus prediction, 

and the frame number. For final evaluation, all data is retrieved from the matrix as opposed to the 

structure, so that data from any point in the monitoring process can be reviewed. Information about 

the trajectory of the target is stored in a separate matrix, as it exists on a per target basis as opposed 

to a per frame basis. 
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Filtering 

Stationary objects triggering a FP response will cause a large quantity of non-avian or non-bat 

images which must be sorted through by the user. As a post-processing solution, a spatiotemporal 

filter was developed to eliminate repeating instances. Figure 5-12 outlines the process for obtaining 

repeating instances. Instances which were determined to be repeating are grouped together and 

passed to the next stage of filtering. 

 

Figure 5-12 Spatiotemporal filter principle. After a detection, frames are examined at one, two, and three 

rotations from the initial instance. If two or more of these instances correlate closely to the initial detection 

in vertical location it is considered to be a repeating instance. 

Relying on time and space alone for the filtering process could lead to the deletion of TP detections. 

In order to decrease the probability of such error, a comparison of the structural similarity between 

each detection in a group of repeating instances is made. The structural similarity index (SSIM), is 

a method for comparing the similarity of two images. The SSIM is scored 0 to 1, where 1 is an 

exact match [46]. SSIM is often used for determining image quality after compression, where a 

reference image free of distortion is compared to a modified image [46]. Repeat detections should 
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have the same object within their bounding box, meaning that the SSIM score should be close to 1. 

Those object which deviate significantly in structure (<0.65) are removed from the filtering process 

to be classified and presented to the user. 

 

Figure 5-13 SSIM comparison between detections. Notice that the two sections compared on the left image 

encompass the same object, however the SSIM score is less than 0.7; this is likely due to the higher location 

of the blade tip and cloud presence in the right section. The right image shows a successful comparison, 

where the SSIM score reflects the large difference in objects that were detected. 

The SSIM index accounts for luminance, contrast, and structure when evaluating the similarilty 

between images [46].  A possible interference with this method is the shifting of bounding box 

location and size between rotations. 

Collision Sensing 

Once data collection is complete, and filtering has removed any significant quantity of FP instances 

from the data set, avian interactions must be classified based on the likelihood of collision. 

Likelihood of collision is decided based on three factors, the combinations of which were 

subjectively evaluated to determine how likely a collision occurred: 

 Bird presence within blade ROI, as determined by thresholding and blob analysis 

 Closest proximity of the target to the blade (further explained in Appendix F) 
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 The trajectory of the target (angle with the horizontal, and approaching or departing from 

the blade) 

A table of the corresponding likelihood of collision may be found in Appendix F. Success of 

tracking is based on whether or not the primary or secondary tracking methods were able to create 

a reliable linear line of best fit.  

Data Presentation 

After the classification of instances, the data is ready to be presented to the user. In future versions, 

when integrating with the whole bird collision detection system, these results would instead be 

analyzed with any relevant data from the other sensors. For this program, presentation of data 

involves presenting the user with a separate window for each detected bird. The window provides 

whether or not the target was successfully tracked, the likelihood of collision, as well as any frames 

containing detections of the target (figure 5-14). The user is then prompted to enter the ID numbers 

of any FP instances presented. 

 

Figure 5-14 Example false positive result in a window presenting the detection to the user. Results are color 

coded based on the collision likelihood, which assists the user in quickly locating detections which strongly 

correlate to an impact. 
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Detection Improvement 

Detections removed by the spatiotemporal filter, as well as any user inputted FPs from the data 

presentation section are added to a negative image set automatically. The cascade object detector 

then retrains using the new negative image set. Objects that trigger a large number of FP instances 

will saturate the negative image set, thus ensuring the immunity of the next iteration of the cascade 

classifier to that object. In a real-world setting, the program should be run on short time spans after 

installation, providing multiple opportunities for the object detector to improve. After a sufficient 

number of iterations, the object detector should be significantly better adapted to the environment 

of the wind turbine. 

 

Figure 5-15 Examples of repeating or user input FP detections. The three images starting from the left 

comprise repeating FP detections caught by the spatiotemporal filter. The two images on the right comprise 

user inputted FP detections. 

GUI for Detection and Primary Tracking Tests 

Rapidly adjusting parameters for the Kalman filter tracking system and the cascade object detector 

is imperative for conditioning the system for a new setting or environment. As a tool for quick 

evaluation and adjustments, a graphical user interface (GUI) was produced using the MATLAB 

graphical user interface development environment (GUIDE) [47]. The options included on the GUI 

were the most frequently used during the tuning process: video filename, measurement noise, cost 

of non-assignment, and the merge threshold. Stages of the cascade object detector may each detect 

an object, meaning that multiple detections on the same object indicates a stronger overall 

detection; the merge threshold requires multiple overlapping detections on an object before 
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classifying the region as a detection [48]. Tuning this merge threshold is useful for reducing FPs 

(at the cost of increasing the chance of missing a TP instance) [48]. Measurement noise and cost of 

non-assignment are properties of the Kalman filter tracking framework. 

 

Figure 5-16 Example of successful tracking in the GUI. 
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Figure 5-17 Example of less successful detection and tracking within the GUI. 

The GUI displays the video on a left panel for viewing the frames as they are process, and the right 

panel shows the position of current and past tracked objects. Axes of the position plot are in pixels, 

displayed in the format that MATLAB interprets images. The GUI code and figure structure may 

be found in Appendix G. The videos analyzed above do not reflect a similar tracking situation to 

what is seen using an on-blade camera, however they provide high level insight to the behavior of 

the detection system when bird orientation and point in the flapping cycle is varied. 

Operational Testing 

A final proof of concept test demonstrating the operation of the entire program was needed for 

holistic validation. The purpose of this test was to demonstrate the program architecture in its 

operation, particularly the filtering and classification aspects of the system. The input video was 

high resolution footage taken from a blade mounted camera (1920 by 1080 resolution at 60 FPS). 

At a length of 6323 frames (1:45), the video was divided into 2000 frame segments for three trials. 
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The first 200 frames not used in the trials were added to the negative image set for the albatross 

based cascade detector. The settings of the trained cascade detector included a false alarm rate of 

0.4, 19 complete stages, and HOG features. 

To provide a target for tracking in the final trial video segment, a murellet target was added to 

simulate a bird impact on the face of the blade. The ability of the beginning cascade detector to 

locate this target was ensured before testing, and the merge threshold was set to the highest value 

which allowed for consistent detection. By maintaining a higher merge threshold, FP detections are 

less frequent.  

The same detector training parameters (0.4 false alarm rate, 19 stages, HOG features), and merge 

threshold were maintained through all three trials. The difference in FP instances between trials 1, 

2, and 3 were examined, as well as the successful detection and classification of the murrelet in 

trial 3. Frequent sources of FPs should be picked up by the spatiotemporal filter, and a decrease in 

FPs should occur between each trial. The results from this test should provide insight to the overall 

operation of the program in a true on-blade camera environment. It is imperative to make the 

distinction between the footage used here, and the differing resolution and frame rate of the 

proposed Sentech STC-N632 micro camera. 

Trial 1 

For the first 2000 frame video segment, there were 47 detections overall, 38 of which were 

successfully removed as repeat false-positives (approximately 81%). The majority of the FPs that 

were deleted were due to clouds and infrastructure on the ground.  

Table 5-2 Trial 1 results, outlining the cause of the detection, success of tracking, and likelihood of 

collision. 

True Object Causing 

Detection 

Successfully Tracked Likelihood of Collision 
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Sun reflection on blade Y Strong 

Sun reflection on blade Y Strong 

Side of building N Moderate 

Lamp post N Strong 

Building roof N Strong 

Turbine tower shadow N Strong 

Roof, cars, lamp post Y Strong 

Building roof N Strong 

Building roof N Strong 

 

 

Figure 5-18 Different detected objects incorrectly tracked by the primary tracking system. The sequence of 

these objects across the FOV caused them to be linked together as one target. The varying objects within the 

bounding box likely caused the filter to reject this as a repeating FP. 
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Figure 5-19 Results seen by the user after program operation. A pop-up window reports the number of 

instances deleted by the spatio-temporal filter. 

The IDs of all nine of the presented FPs were reported to the system, and the detection system was 

updated using the same parameters as the original cascade detector. 

Trial 2 

Using the refreshed detector, the program was run once more with the same video. The number of 

overall FPs was 17, with 7 repeating instances removed (approximately 41%). An over 60% 

reduction in overall FPs occurred between the first and second trial. 

Table 5-3 Trial 2 results, outlining the cause of the detection, success of tracking, and likelihood of collision. 

True Object Causing 

Detection 

Successfully Tracked Likelihood of Collision 

Sun Y Strong 

Lamp post Y Strong 
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Lamp post N Strong 

Lamp post Y Strong 

Lamp post, car Y Strong 

Lamp post Y Strong 

Lamp post Y Strong 

Sun Y Strong 

Sun reflection on blade N Strong 

Lamp post N Strong 

 

The most frequent FP detection is caused by the lamp post, which comprised a significant portion 

of the FP detections presented to the user. After trial 2, the detection system was retrained using 

updated negative image set, and the same parameters specified for the original cascade detector. 

Trial 3 

Using the final refreshed detection algorithm, a third run of the program was made. This video 

segment contained the murrlete simulated impact on the turbine blade for a TP instance. There were 

12 FPs overall, 9 of which (75%) were successfully removed by the spatiotemporal filter. Over a 

25% reduction in FPs occurred between trials 2 and 3. 

Table 5-4 Trial 3 results, outlining the cause of the detection, success of tracking, and likelihood of collision. 

True Object Causing 

Detection 

Successfully Tracked Likelihood of Collision 

Lamp post Y Strong 

Murrelet Y Strong 

Lamp post N Strong 

Sun reflection on blade N Strong 
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During the tracking process for the murrelet, the tip of the blade was detected after the bird left the 

image plane, causing an incorrect assignment of this FP to the bird’s trajectory. 

 

Figure 5-20 False positive quantities, including total and filtered. Note that the filtering no longer detects 

any repeating false positive instances after the first retraining of the algorithm. 

Discussion 

The structure of the program appeared to provide a strong supporting framework for the detection 

and tracking algorithms. High quantities of repeating instances caused by stationary objects were 

successfully removed using the spatiotemporal filter. The wind turbine blade, structures on the 

ground, and light blooms caused by the sun were large contributors to FP instances. A high quantity 

of “strong” collision likelihood ratings may be attributed to the locations of the FP detections, 

incorrect tracking, and incorrect blade thresholding. The blade thresholding function appeared to 

be falsely triggered during frames where the sun was causing light blooms and reflecting off the 

blade. A possible solution to the incorrect thresholding would be applying more stringent 

parameters to the low intensity regions seen within the blade ROI, such as a tighter size range or 

threshold value. 
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These trials suggest that the updating method for the detection algorithm may work as intended, 

however significantly more testing will be needed for further validation. This method of 

strengthening the detection algorithm against problematic objects in the FOV will be critical to the 

future application of this program. Further testing including extended length (>1 hour) true footage 

from bird interactions and flybys past an on-blade camera should be conducted, in order to further 

evaluate the performance of this program.  

Speed Testing 

Operational testing used an AMD FX-8350 Vishera 8-core (4.0GHz) processor with 16 gigabytes 

of RAM, and a detection algorithm with a false alarm rate of 0.4, HOG features, 19 cascade stages, 

and a merge threshold of 12. The third trial during operational testing required 2116.2 seconds to 

complete, with 1641.1 seconds of the total time allocated to the cascade object detector. In other 

words, the time for processing the video was greater than 63 times the length of the video. In order 

to obtain a realistic estimation of processing time using less data intensive video, and evaluate the 

possibility of real-time detection, the field test rotational footage from the hardware validation 

section in Chapter 4 was inputted to the program (38 seconds in length). This footage was captured 

with the Sentech STC-N632 camera. The merge threshold was maintained at 12 with the same 

detector used for trial 3 in operational testing. There were 13 detections in total, with 8 removed by 

the spatiotemporal filter. The time for processing the video was 225.4 seconds, with 150.2 seconds 

allocated to the cascade object detector. The processing time was nearly 6 times greater than the 

length of the footage. The reduction in processing time was an order of magnitude less than that of 

the GoPro footage. Figure 5-21 outlines the functions of the program consuming the greatest 

amount of time.  
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Figure 5-21 Processing time for the overall program. These results are from 0:38 Sentech STC-N632 

footage. 

The length of time for processing may be reduced when the program architecture is transferred to 

a different coding language. The results outline here do not preclude the potential of future versions 

of the program operating in real-time.  

Conclusions 

The program outlined and tested in this chapter is ready for large dataset testing, to validate its use 

for on-blade camera avian, and in the future, bat interaction sensing applications. The cascade 

classifier will require ground truth testing for complete validation before use in an operational 

environment. Adaptation of the cascade object detector algorithm for bat targets would be a simple 

addition. Improvements in the speed of operation, and detection system accuracy should be 

investigated for the next version of the program. Testing using rotational footage including avian 

targets would give further insight to the detection, tracking, collision sensing, and filtering 

capabilities of this program.  
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With the highly dynamic background present in on-blade camera applications, object recognition 

is a logical detection choice. The ability of repeating FP elements to be added to the negative image 

set for training provides a method for strengthening the detection system against mass quantities of 

FP instances. Using all of the information extracted by thresholding the blade face, target trajectory, 

and   for collision sensing The GUI developed provides a platform for the testing and tuning of 

cascade object detection and primary tracking system. Rapidly loading video and altering settings 

provides a quick method for validating newly trained cascade detectors in combination with 

tracking.  

While speed testing has indicated that a real-time system is not out of the question for future 

versions of the program, the framework developed in this chapter would need significant revision 

to operate in real time. The major benefit of a real-time system is the ability of the on-blade camera 

to track avian and bat interactions without triggering from other sensors. Without a real-time 

running constraint, a less powerful processor may be used for the central computing unit, and more 

computationally expensive computer vision techniques can be utilized. 
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6. Blade Tracking 

The purpose of the blade tracking algorithm is to determine the tip position of the wind turbine 

blade during operation. Constantly monitoring the deflection of the blade allows for operators to 

quickly shut down the blade if deflections exceed specified boundaries. This chapter outlines the 

program and testing performed to validate the accuracy and precision of an early version of blade 

tracking software.  

Introduction 

For the purposes of this program, the wind turbine blade was simplified as a cantilever beam. With 

a cantilever beam setup, where the root of the turbine blade is fixed, the tip will be the point of the 

blade seeing maximum displacement during operation. By tracking the blade tip, operators will be 

able to monitor maximum deflection, and have the ability to shut down the turbine if limits are 

exceeded. 

The small displacements of the blade tip in comparison with the length of the blade should provide 

manageable feature shifts between frames. By knowing the length of the blade and behavior during 

tip deflection, vertical displacements on the image plane can allow for inference about the true tip 

position. 

Success of the blade tip tracking program is based on its reliability, resolution, accuracy, precision, 

and ability to run in real-time. For maximum reliability during operation, future versions of the 

program should be able to refresh feature points if lost. Additionally, constraints on horizontal point 

movement could help indicate when feature points have lost their lock, since significant horizontal 

motion of the blade tip with respect to the blade-mounted camera is not expected during operation. 
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Program Structure 

The MATLAB code produced for blade tracking represents an early stage of the software, meant 

to test the accuracy and precision of the selected method for this application. Components such as 

point regeneration are to be included in later revisions. 

The first step in tracking the blade tip, is locking onto feature points. Subjective evaluation 

demonstrated that the detectMinEigenFeatures algorithm [45] in MATLAB Computer Vision 

System Toolbox worked well for this purpose. Ideally, the face of the turbine blade tapers to an 

approximate point at the tip, which provides a corner for tracking. Depending on the performance, 

and light variation of footage, true applications may require some type of marker near the blade tip 

for strong point tracking. In order to reduce the search area for strong feature points, the program 

prompts the used to select a region around the tip of the blade. This also helps to prevent unwanted 

background objects from being tracked. 

The feature tracking algorithm [44] used for secondary tracking in Chapter 5 was chosen for this 

application. Smaller movements between frames, and a high contrast corner (the blade tip or 

marker) provide beneficial elements that should contribute to successful tracking. The strongest 8 

points from the feature point selection are used. Points which are not successfully tracked between 

frames are removed during operation based on a binary confidence score output by the tracking 

algorithm. The foremost purpose of removing these points is preventing interpretation of incorrect 

data pertaining to the blade tip position. 

Before deflection occurs, a horizontal reference line is created using the maximum point on the 

blade. The displacement of the maximum point on the blade at a given time is compared to this 

reference line, which yields the vertical displacement on the image plane in pixels. Using the known 

length of the blade (assumed linear during deflection), and assuming the out of plane distance 
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between the blade tip and camera lens remains constant, the tip deflection can be easily 

approximated. The MATLAB code for the blade tracking program may be found in Appendix H.  

Testing 

For determining the validity of this method, the accuracy must be tested with a range of 

displacements. The behavior of the program when tracking the tip of a beam during bending was 

unknown, so an initial validation was performed using a 1 meter long balsa wood plank (with a 

square end) mounted beneath the camera. During rapid and large beam deflection the corner points 

were successfully tracked. Torsion of the plank yielded multiple lost points. 

 

For testing accuracy, a dark backdrop with little to no intensity gradient was used. The balsa wood 

plank used for validation was securely mounted beneath the camera. Digital calipers, accurate to 

+/- 0.0254 millimeters was clamped beneath the tip of the plank. The depth measurement feature 

on the calipers provided a method of displacement for the plank tip. The calipers are manually 

extended between each value. The system was adjusted so that the plank was level when the calipers 

were at zero. Fluorescent lights were shut off to prevent the noise they produce, and LED lighting 

kept the region near the blade tip illuminated. To test the difference in accuracy between small and 

large displacements from the zero reference line, the beam was moved to 2, 6, 10, and 20 

millimeters (approximately 0.2% to 2% of the overall blade length). The test was repeated 20 times, 

with lighting and the zero reference line held approximately constant. When a displacement value 

Figure 6-1 Point tracking on balsa wood beam. 
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is reached, the system is left untouched to reduce vibrations and operator induced error. Values for 

the displacement calculated by the point tracking algorithm will be obtained by averaging the 

displacements across a small timespan, when the system is left alone. 

Results 

 

Figure 6-2 Tip displacement in millimeters versus frame number. This plot provides a visual for the 

displacement of the beam tip across time. Even when the tip has reached its desired value, there is still 

fluctuation in the tracked displacement. 

The standard deviation of the tracked blade tip displacement increased at greater displacements. 

The mean values for 1, 2, 6, and 10 millimeter displacements were less than the caliper measured 

values, while the mean for the 20 millimeter displacement was greater. The maximum error 

between the caliper measurement and point tracking came from the 2 millimeter displacement, 

which yielded a 12% difference. The 20 millimeter displacement created a 3.9% disparity between 

the caliper measurement and point tracking data. The P value from t tests performed at each 
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displacement suggested a statistically significant difference between the means of the caliper 

measured values, and those measured by the point tracking program. The test values and statistical 

analysis may be found in Appendix I. 

Table 6-1 Comparative values between the caliper measured displacement and the mean (of 20 tests) 

displacement value from the point tracking program. 

Caliper Measured 

Displacement [mm] 

Mean of Tracking Program 

[mm] 

Standard Deviation of Tracking 

Program [mm] 

2.00 1.76 0.16 

6.00 5.65 0.26 

10.00 9.64 0.35 

20.00 20.78 0.48 
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Figure 6-3 Measured Tip Displacement versus True Tip Displacement. Confidence bounds for each point 

tracked value are provided via error bars. 

Using linear regression, the line of best fit for the data had a slope of 1.02. 

Discussion 

The differences between the caliper measured values and mean of tip tracking data may partially 

stem from errors within the experiment. If the camera was tilted even a small amount during 

deflection, it would cause error in the calculated displacement. The highest feature points on the 

blade may not exist exactly at the tip of the blade. This misalignment would cause error as the 
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perceived displacement is below that of the maximum of the blade tip. Additionally, videos of the 

point tracking process demonstrate shifting of the points during displacement, which may create 

systematic error. 

The noise seen by the tracking algorithm during periods where the system was left untouched may 

stem from small vibrations, static of video transmission, or changes in illumination. Point drifting, 

where points move away from the original feature being tracked, was observed at small levels 

during each beam test video. Similar to the reflective strips used by [10], a possible solution to this 

point drifting would be adding a checkerboard sticker near the blade tip (as seen in figure 6-4), 

which would provide a stronger feature for tracking. Point drifting also causes hysteresis, as the 

point shifts to a new feature it is permanently moved to that location, unless some factor causes it 

to revert to its original position. 

 

Figure 6-4 A checkerboard pattern, frequently used for camera calibration and computer vision 

applications. This checkerboard applied at the blade tip would provide strong features for point tracking. 

Differences between the mean of the tracking data and the caliper values did not scale exactly with 

displacement size. This suggests that the extreme displacements that future iterations of the 

program will work to detect may have a higher comparative level of accuracy than small regular 

displacements. Testing provided some level of apparent systematic error, with mean values from 

point tracking consistently greater or less than the caliper values depending on the tip displacement. 

Overall the accuracy of this initial system appears to be at a useable level, and validates the system 

for further testing. 
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7. Future Developments 

To take the on-blade camera system to a level that is ready for use on a widespread scale, further 

testing and validation will be required. The purpose of this section is to outline some of the 

imperative next steps in developing this system. 

Hardware 

The limited number of frames which a bird or bat target may occupy due to the fast rotation rate of 

the turbine blade puts an enormous emphasis on successful detection and tracking. A possible 

solution to this necessity is to select a higher framerate camera. To accommodate this, a more 

expensive and likely larger camera and transmitter would be needed. Low latency transmission of 

high definition video with high framerates has benefitted from the growing hobby of first person 

view (FPV) remote controlled quad rotor unmanned aerial vehicles (quadcopters). A recently 

released wireless video transmission and reception system referred to as Connex by Amimon, offers 

1080p digital video transmission and reception at up to 60 frames per second with minimal delay 

[49]. Systems like this are becoming more prevalent, however the cost is still high in comparison 

to the traditional analog wireless video transmission options. The higher framerate could provide a 

significant improvement in the secondary tracking algorithm, and would offer an increased 

opportunities for detection by the object detector. 

Sensor System Integration 

As described in Chapter 3, the components comprising the avian and bat collision detection system 

work in unison to detect bird collisions [9]. Experimentation with the LabView framework 

developed in [9] to incorporate real-time or post-processed data from the on-blade camera software 

will be needed. Incorporating the collision likelihood rating given by the program in Chapter 5 will 
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offer the sensor system an additional collision detection method. Storage methods for the events 

detected by the on-blade camera will need to be researched for the central computing unit. 

Camera Casing 

As the current camera casing was designed as an early proof of concept, and to provide a platform 

for testing. There are several additions which must be made to future versions of the camera case. 

One of the foremost items for preparing this case for operational use is waterproofing. The 

following components are imperative for preventing moisture penetration: 

 Sealed lens on the camera casing 

 Gasket between upper shell and base plate 

 Desiccant to prevent condensation on the lens 

Incorporating the vibrational sensors (contact microphones and accelerometers) that would 

normally be placed on the wind turbine blade into the camera casing would require expansion of 

the case volume. Additionally, if using the same power source, a higher current draw would be 

placed on the battery. Despite these drawbacks, it is attractive to have the on-blade camera and 

vibration sensors combined into a single package for installation and maintenance.  

The use of adhesives for mounting the camera casing to the turbine blade is a minimally invasive 

method. Determining the adhesion method between the base plate and the root of the turbine blade 

will require research about adhesive choice, time required for adhesion, maintaining mounting 

through varying weather conditions, and removal from the blade with no damage to the surface of 

the blade. A pull strip at the edge of the base plate could provide an easy removal method for 

adhered casing.  

The utilization of a battery for an on-blade power source, and consequently removal of the need for 

a slip ring provides an immense reduction in cost of implementation. Despite this, there is a quantity 
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of supporting hardware needed to make this option truly viable. One such component is solar 

power: a natural choice given the green energy aspect of wind power, a photovoltaic cell may 

provide sufficient power to maintain charge within a battery. Lithium ion (Li-Ion) batteries do not 

have the inherent “memory effect” of some rechargeable batteries [50]. This aspect makes Li-Ion 

batteries an ideal choice for recharging via solar power. A 3 cell lithium pack would provide a 

nominal voltage of 11.1 volts, which should be sufficient for 12 volt electronics. To support this 

charging method, a high and low voltage cutoff board will be necessary to prevent damage to the 

battery from overcharging or dipping below minimum cell voltage. These circuit boards are cheap 

and widely available. A light sensor exposed through the case wall will provide a shutoff method 

when lighting become too poor for the on-blade camera to successfully detect birds or bats. Finally, 

a more efficient voltage drop method than a resistor in series should be implemented for power 

conservation, and excess heat reduction.  

Safety and ease of maintenance are two key aspects this camera casing must include. To warn wind 

farm operators of insufficient power, an LED indicator could be implemented to provide a quick 

and simple method for checking the status of the on-blade camera power supply. Lithium based 

batteries have the potential to combust when improperly manufactured or mishandled. Extensive 

testing and checking of any battery cells should be made before installation. As a method of 

protection for the wind turbine blade and moreover its operators, flame retardant material should 

encase the battery, with porting to allow gases to vent without rapid expansion. 

Avian Program 

The results from program speed testing in Chapter 5 suggest that a real-time system is feasible, 

however significant development (likely outside of the MATLAB environment) will be necessary 

to bring the program to this state. Implementation of this program in C++ or another programming 

language may speed up the processing time. The filtering and classification methods used for the 

program would need to be changed to fit a real-time program. One possibility for FP filtering and 
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classification, is the storing of results in temporary storage, and at set time intervals using the stored 

data to perform these actions. Another processing issue not addressed by the current program, is 

the need for deinterlacing, or other preparation of footage before analysis. This would also need to 

be incorporated into a real-time system. 

The presentation and storage of results was created to simulate a possible method for delivering 

results to the user, and for an easy evaluation method for the performance of the program. When 

integrating with the overall sensor system, these results should instead to pass to the central 

computing unit to be combined with input from the entire sensor suite. Vision based standard and 

IR cameras mounted on the nacelle could be used to cross check bird and bat flyby information 

obtained from the on-blade camera system.  

The classification system for the likelihood of collision is based on a subjective scheme. As 

advancements are made in the computer vision aspects of the program, a more quantitative 

approach would likely yield better results than those presented here. A paramount quality of the 

classification system is utilizing all of the information collected during the video analysis process.  

Work done in [39] investigated the use of MATLAB cascade object detection for the use of bird 

detection, and found Haar features to produce high accuracy rates. The work in [40] has confirmed 

that Haar-like features are high performing for low resolution bird detection. The detection of birds 

and bats near wind turbines will generally be concerned with targets that are at long distances from 

the camera, leading to poor resolution and minimal texture. The use of the created rotation rig in 

an outdoor setting with large quantities of birds may provide useful footage for ground truth testing 

for this application. An advisable later step is the implementation of the proposed on-blade camera 

system on a wind farm to obtain bird flyby or collision footage. The lighting changes, wind turbine 

structures, and camera rotation are unique to the on-blade environment, and detection in this setting 

needs to be evaluated using true footage.  
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The point tracking method for secondary tracking has been qualitatively evaluated. This seems to 

be a plausible option as a backup tracking system, due to the relatively low computing cost and 

potential for tracking single detection targets. It is apparent that the displacement and “quality” of 

the feature points are dictating factors for the success of tracking. Further validation of this method 

is needed, in order to understand its reliability. A secondary tracking system can add a large amount 

of value, as determining the path of the bird near the wind turbine blade can provide key information 

as to the existence of a collision. For real-time operation, this additional method will need to be 

closely evaluated to determine if the extra computational time is worth the tradeoff of secondary 

tracking. 

Finally, the program must be extended to detect and track bats. Bat flight does not only occur during 

the night, meaning that the vision based camera of the on-blade system should be prepared to detect 

bat interactions with the turbine blade. Due to the length of operating time for the cascade object 

detector, adding an additional detector may prove impractical for real-time monitoring. For 

triggered analysis (using ring buffering) the addition of a second cascade object detector should not 

pose any large issues beyond an increase in computation time and likely an increase in FP instances. 

Blade Track 

The program and testing presented in Chapter 6 provided a preliminary evaluation of the accuracy 

and precision of a feature tracking method for monitoring flapwise blade deflection. Key 

operational related aspects need to be explored further in order to completely validate this method. 

One of the foremost aspects is the regeneration of points. Even from the controlled tests performed 

to evaluate accuracy, some amount of point drifting occurred. By setting maximum bounds and 

rates for point movement, the program should be able to automatically regenerate points which 

have lost a lock on their feature. As an additional solution to this issue, a checkerboard patterned 

sticker could be placed near the tip of the blade; this would provide a strong feature to track, and 

ease the process of point regeneration.  
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Conclusion 

This thesis has contributed to the development of an on-blade camera system for the purpose of 

monitoring bird and bat impacts. This on-blade system, which will operate cooperatively with a 

greater sensor system, uses computer vision techniques to detect the presence of avian and bat 

interactions with the wind turbine blade. Specific contributions include the validation of hardware, 

design of on-blade casing, and software development for both bird interactions and turbine blade 

deflection.  

The proposed avian interaction and collision sensing software architecture is ready for further 

testing, to validate its use in an operational wind turbine environment. Ground truth testing using 

rotational footage with avian targets will provide key information about the accuracy and FP rate 

of the cascade object detector. The detection system should be extended to bats as well, in order to 

obtain a complete understanding of the system behavior. With the unique rotating setting of this 

application, the spatiotemporal filtering and retraining technique provide a method for reducing the 

overall number of FPs detected and stored. Through testing, the Kanade Lucas Tomasi feature 

tracking algorithm appears to be a viable candidate for blade tip tracking in terms of its accuracy 

and precision. 

Automation of monitoring bird and bat impacts with wind turbines will save time and cost for wind 

farms seeking to comply with national standards for avian and bat deaths. The improvement in 

monitoring accuracy from the more prominent manual methods will ensure that governing bodies 

will be able to protect species of interest. Ultimately automated techniques such as the one explored 

here may provide a platform for better integrating the green energy solution of wind power without 

endangering avian and bat populations. 
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Appendix A: Turbine Size Estimation 

This appendix provides the MATLAB code and corresponding output, to support the turbine size 

estimation plot seen in Chapter 4. This code estimates the blade radius of a wind turbine given its 

power output and IEC class. 

The IEC class rating, dealing with operational wind speed, is split into the categories of 1, 2, 3, and 

S [51]. An IEC rating of 1 represents the highest defined rating, while class S details that the 

operational wind speed is specified by the designer [51]. A power output of 10 MW and the 

assumption of an IEC class of 1 were entered for the MATLAB code. 

MATLAB Code 
 

%% Wind Turbine Characterization 
%Given Power, IEC Turbine Class, Find Blade Length 

  
clear 
clc 
clf 
EstimateP = 10; %Turbine Power [MW] 
EstimateTC = 1; %Turbine Class 
bladeinfGE = [1.7,51.5,3; 1.85,41.25,2; 1.85,43.5,2; 2.5,60,3; 

2.75,60,3; 2.85,50,2; 2.85,51.5,2; 3.2,51.5,2; 1.6,41.25,2; 1.5,38.5,1; 

1.7,50.2,3]; 
[a b] = size(bladeinfGE); %GE Turbine information (see proceeding 

citation list) %MW, Blade L, IEC Class 
bladeinfVESTAS = [1.7,50.2,3; 2,55,3; 2,50,2; 1.8,50,3; 2,50,3; 

1.8,45,2; 2,45,3; 3.3,63,3; 3.3,58.5,2; 3.3,56,2; 3.3,52.5,1; 

8.0,82,1]; 
[c d] = size(bladeinfVESTAS); %Vestas Turbine information (see 

proceeding citation list) 
bladeinfSIEMENS = [2.3,50.5,2; 2.3,54,2; 3,50.5,1; 3.2,50.5,1; 3,54,1; 

3.2,54,1; 3,56.5,2; 3.2,56.5,2; 3.6,60,1; 4,60,1; 4,65,1; 6,77,1]; 
[e f] = size(bladeinfSIEMENS); %Siemens Turbine information (see 

proceeding citation list) 
colors = ['r','b','k']; 
leg = ['class 1','class 1 best fit';'class 2','class 2 best fit';'class 

3','class 3 best fit']; 
x = [0:0.1:EstimateP+2]; 
for i = 1:3 
classGEfind = bladeinfGE(:,3) == i; 
classGE = bladeinfGE(classGEfind,:); 
classVESTASfind = bladeinfVESTAS(:,3) == i; 
classVESTAS = bladeinfVESTAS(classVESTASfind,:); 
classSIEMENSfind = bladeinfSIEMENS(:,3) == i; 
classSIEMENS = bladeinfSIEMENS(classSIEMENSfind,:); 
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[o p] = size(classGE); 
[g h] = size(classVESTAS); 
[m n] = size(classSIEMENS); 
class_sort = classGE; 
    for j = 1:g 
        class_sort(end+1,:) = classVESTAS(j,:); 
    end 
    for k = 1:m 
        class_sort(end+1,:) = classSIEMENS(k,:); 
    end 
P = polyfit(class_sort(:,1),class_sort(:,2),1); 
lines = polyval(P,x); 
scatter(class_sort(:,1),class_sort(:,2),colors(i)) 
hold on 
plot(x,lines,colors(i)) 
hold on 
    if i == EstimateTC 
      plot(EstimateP,polyval(P,EstimateP),'mX') 
      estimated_radius = polyval(P,EstimateP); 
      hold on 
      line_y = plot([EstimateP,EstimateP],[0,estimated_radius],'--m'); 
      lineann_y = get(line_y,'Annotation'); 
      legendmanip_y = get(lineann_y','LegendInformation'); 
      set(legendmanip_y,'IconDisplayStyle','off'); 
      hold on 
      line_x = 

plot([0,EstimateP],[estimated_radius,estimated_radius],'--m'); 
      lineAnnotate = get(line_x,'Annotation'); 
      legendoff = get(lineAnnotate','LegendInformation'); 
      set(legendoff,'IconDisplayStyle','off'); 
      hold on 
    end 
hold on 
end 
if EstimateTC == 1 
    legend('class 1','class 1 best fit','Estimated Blade Radius','class 

2','class 2 best fit','class 3','class 3 best fit') 
elseif EstimateTC == 2 
    legend('class 1','class 1 best fit','class 2','class 2 best 

fit','Estimated Blade Radius','class 3','class 3 best fit') 
else 
    legend('class 1','class 1 best fit','class 2','class 2 best 

fit','class 3','class 3 best fit','Estimated Blade Radius') 
end 
title('Blade Radius versus Power Output for Wind Turbines') 
xlabel('Power Output (MW)') 
ylabel('Blade Radius (m)') 
grid on 
hold off 
%The Vestas V164-8.0 has a hub radius of 2m, so in order to estimate 

blade length of the GE 10Mw, a hub radius of 2.5m is assumed 
estimated_blade = estimated_radius - 2.5; 
fprintf('\nThe estimated blade length is %6.2f m\n \n \n', 

estimated_blade) 
fprintf('The values displayed were obtained from the websites of GE, 

Vestas, and Siemens.\nThe Vestas V164-8.0 is actually a class S, but 

due to being offshore has been assumed to be class 1. \n') 
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Output 
The estimated blade length is  98.16 m 

The values displayed were obtained from the websites of GE, Vestas, and Siemens. 

The Vestas V164-8.0 is actually a class S, but due to being offshore has been assumed to be class 

1. 

>> 
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Sources for Wind Turbine Data 
 

Turbine Source 

GE 1.7-100/103 [52] 

GE 1.85-82.5 

GE 1.85-87 

GE 2.5-120 

GE 2.75-120 

GE 2.85-100 [53] 

GE 2.85-103 

GE 3.2-103 [52] 

GE 1.6-82.5 

GE 1.5-77 

GE 1.7-103 

V110-2.0 [54] 

V100-2.0 

V100-1.8 

V100-2.0 

V90-1.8 

V90-2.0 

V126-3.3 

V117-3.3 

V112-3.3 

V105-3.3 

V164-8.0 

SWT-2.3-101 [55] 

SWT-2.3-108 

SWT-3.0-101 

SWT-3.2-101 

SWT-3.0-108 

SWT-3.2-108 

SWT-3.0-113 

SWT-3.2-113 

SWT-3.6-120 

SWT-4.0-120 

SWT-4.0-130 

SWT-6.0-154 
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Appendix B: Pixel Size Calculation Program 

This MATLAB code provides pixel size information for a camera on a wind turbine blade. The 

camera may be rotated up or down, and placed anywhere along the length of the blade. 

MATLAB Code 
%% Pixel Area Calculator 
%Accounts for camera placement and tilt. Two plots:  
%Pixel area along blade length   %Pixel size compared to 23 by 23cm 

target 

  
clear 
clc 
clf 

  
%Turbine information (currently projected GE 10MW blade radius) 
BladeL = 98.16; %m 
%Camera information (SENTECH STC-N632 Microcamera) 
FL = 25*10^(-3); %m 
CellHorz = 6.35*10^(-6); %m 
CellVert = 7.4*10^(-6); %m 
PixelHorz = 720; %Pix 
PixelVert = 480; %Pix 
SensHorz = CellHorz*PixelHorz; %m 
SensVert = CellVert*PixelVert; %m 
%Calculate FOV height and width 
AngleHorz = 2*atand(SensHorz/(2*FL)); %Degrees 
AngleVert = 2*atand(SensVert/(2*FL)); %Degrees 
%User input data 
Camloc = input('Distance from root of blade: '); 
Camtilt = input('Camera vertical tilt: '); 
%Account for camera tilt 
AngleVert1 = AngleVert/2+Camtilt; 
AngleVert2 = -AngleVert/2+Camtilt; 
%Span of blade seen by camera FOV 
x = (Camloc:0.1:BladeL); 
%Preallocate matrices 
PixAreaTop = zeros(length(x),1); 
PixAreaBot = zeros(length(x),1); 
PixWidthTop = zeros(length(x),1); 
PixWidthBot = zeros(length(x),1); 
PixHeight = zeros(length(x),1); 
%Perform pixel calculations 
for i = 1:length(x) 
    HypTop = x(i)/abs(cosd(AngleVert1)); 
    HypBot = x(i)/abs(cosd(AngleVert2)); 
    WidTop = 2*tand(AngleHorz/2)*HypTop; 
    WidBot = 2*tand(AngleHorz/2)*HypBot; 
    HtTop = x(i)*tand(AngleVert1); 
    HtBot = x(i)*tand(AngleVert2); 
    Height = abs(HtTop-HtBot); 
    PixHeight(i) = Height/PixelVert; 
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    PixWidthTop(i) = WidTop/PixelHorz; 
    PixWidthBot(i) = WidBot/PixelHorz; 
    PixAreaTop(i) = PixWidthTop(i)*PixHeight(i); 
    PixAreaBot(i) = PixWidthBot(i)*PixHeight(i); 
end 
%First figure: pixel area versus position along length of blade 
plot(x,PixAreaTop*100*100,'r') 
hold on 
plot(x,PixAreaBot*100*100,'b') 
grid on 
legend('Pixel Area at Top of FOV','Pixel Area at Bottom of FOV') 
xlabel('Distance Along Blade (m)') 
ylabel('Pixel Area (cm^2)') 
title('Pixel Area versus Position Along Length of Turbine Blade') 
hold off 
%Print Values 
[n m] = max(PixAreaTop); 
[b c] = max(PixAreaBot); 
targetArea = 23*23; %cm 
if n < b 
    nconv = n*100*100; 
    PWT = PixWidthTop(m); 
    PH = PixHeight(m); 
    fprintf('The min pixel size occurs at top of FOV\n pixel size is 

%6.4f cm^2\n',nconv) 
    PixelsPerTarget = targetArea/nconv; 
    fprintf('%6.3f pixels fit within the target 

area\n',PixelsPerTarget) 
else 
    bconv = b*100*100; 
    PWB = PixWidthBot(c); 
    PH = PixHeight(c); 
    fprintf('The min pixel size occurs at bottom of FOV\n pixel size is 

%6.4f cm^2\n',bconv) 
    PixelsPerTarget = targetArea/bconv; 
    fprintf('%6.3f pixels fit within the target 

area\n',PixelsPerTarget) 
end 
%Second figure: Compare target area to that of a single pixel 
figure 
for i = 1:3 
subplot(2,3,i) 
grid on 
Back = area([0,24],[24,24],'FaceColor',[0 0 1]); 
hold on 
Top = 

area([0,PixWidthTop(round((i)*length(x)/3))*100],[PixHeight(round((i)*l

ength(x)/3))*100,PixHeight(round((i)*length(x)/3))*100],'FaceColor',[0 

1 0]); 
hold on 
xlabel('Length (cm)') 
ylabel('Length (cm)') 
axis([0 30 0 30]) 
axis square 
if i == 2 
   title('Target Size versus Pixel Area at 1/3, 2/3, and End of the 

Turbine Blade') 
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end 
end 
legend('Target Size','Pixel Area Near Top of FOV') 
for j = 1:3 
subplot(2,3,j+3) 
grid on 
Back = area([0,24],[24,24],'FaceColor',[0 0 1]); 
hold on 
Bottom = 

area([0,PixWidthBot(round((j)*length(x)/3))*100],[PixHeight(round((j)*l

ength(x)/3))*100,PixHeight(round((j)*length(x)/3))*100],'FaceColor',[1 

0 0]); 
hold on 
xlabel('Length (cm)') 
ylabel('Length (cm)') 
axis([0 30 0 30]) 
axis square 
end 
legend('Target Size','Pixel Area Near Bottom of FOV') 

 

Output 
Distance from root of blade: 0 

Camera vertical tilt: 4 

The min pixel size occurs at top of FOV 

 pixel size is 7.2710 cm^2 

72.755 pixels fit within the target area 

>> 
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Appendix C: Camera Case Dimension 

The following drawings provide dimensions for the critical parameters of the first iteration of on-

blade camera casing. This model has been toleranced to allow for error during printing, by 

expanding through holes and regions for component installment. The model was printed as two 

separate parts, including the base plate, and upper shell. 
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Appendix D: Avian Program Logic Diagram 

This appendix outlines the overall avian interaction program architecture through a block 

diagram. 
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Appendix E: Avian Interaction Program 

In this appendix, the entire avian interaction MATLAB program is presented. For ease of use, the 

primary code is listed first, followed by its satellite functions in the order that they are utilized. The 

program can be operated in one of two ways, including "continuous", and "triggered". Continuous 

operation runs through the entire input video before presenting results, while triggered searches for 

frames before and after a peak in an input signal. The latter option was used to simulate vibrational 

input from the contact microphones or accelerometers used in [9]. Further options include the 

recording of video to review detections, and updating the cascade object detection algorithm after 

processing. The tracking framework and management of multiple targets was adapted from [42]. 

Primary Code 
clear 
clc 
clf 
close all 

  
%% ***Avian Interaction Program*** 
% Two modes of operation:  
% 1. analyze one video until completion (continuous) 
% 2. analyze video surrounding an event using a frame buffer 

(triggered) 

  
% option 2 simuluates triggering from vibrational sensors 
% Additional Options: 
% Record the detections in a new video file 
% Update detection system using FP instances 

  
%% NOTES 
% Check Zonecheck for framesize before use 
% Tick regen & video +1  
% Detection using GoPro is on 16th iteration 
% Rotation in frames for GoPro is 187 
% Blade pitch for GoPro is ~-30 degrees 
% Rotation in frame for Sentech outdoor trials is 100 
% detector = vision.CascadeObjectDetector('Example_Detection_1.xml');  
% for Sentech trial 

  
%% User Prompts 
Type = input('Continuous [1] or Triggered [2]? '); 
Record = input('Would you like to record this session? [1] yes [2] no 

'); 
Update = input('Should the detection algorithm be updated after 

processing? [1] yes [2] no '); 
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%% Detect birds using cascade object detector 
% Launch detector 
detector = vision.CascadeObjectDetector('Test_02112016_2nd.xml'); 
% Set detector parameters 
detector.MergeThreshold = 12; %This parameter can be varied --> lower 

for   
% increased number of false positives %14 for regen 
rotationSpeed = 187; %frames per rotation 
BladePitch = -30; %degrees 

  
%% Video Setup 
Vid = VideoReader('New_blade_cropped4.avi'); %Read the file  
numOfFrames = Vid.NumberOfFrames %Get the number of frames 
if Record == 1 
vidWrite = VideoWriter('Test_02112016_Trial3rd_mergethresh12.avi'); 

%Record results 
vidWrite.FrameRate = 25; %Framerate for recorded results 
open(vidWrite); %Begin recording 
end 
switch Type 
    case 1 %Continuous 
        EndFrame = 2200; 
        StartFrame = 200; %Begin video from this frame 
        type = 1; 
    case 2 %Triggered 
        StartFrame = 1; 
        signal = load('signal.mat'); %Select signal file 
        signal = signal.signal; 
        timeline = (1/60).*(1:numOfFrames); 
        plot(timeline,signal) 
        axis([0 numOfFrames/60 -14 0]); 
        title('Accelerometer Data'); 
        xlabel('Time [sec]'); 
        ylabel('Acceleration  [m/s^2]');  
        figure 
        frameStore = signalCheck(signal); 
        EndFrame = length(frameStore); 
        type = 2; 
end 

     
%% Initialize blob analysis 
% Used to find centroids of detections 
blob = vision.BlobAnalysis; %Launch 1st blob analysis 
blob.AreaOutputPort = false; %No use for area 
blob.BoundingBoxOutputPort = false; %Bounding boxes already created by 

cascade object detector 
blob.MinimumBlobArea = 1; %1 in order to prevent errors 
blob.MaximumCount = 1; %For no more than one centroid per detection 
% Used to locate blobs inside blade perimeter 
bladeBlob = vision.BlobAnalysis; %Launch 2nd blob analysis 
bladeBlob.AreaOutputPort = false; %No current use for area 
bladeBlob.BoundingBoxOutputPort = true; %Bounding boxes  
bladeBlob.CentroidOutputPort = false; %No need for centroids 
bladeBlob.MinimumBlobArea = 40; %Prevent noise from triggering system 
bladeBlob.MaximumBlobArea = 400; %Prevent large shadows from triggering 
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bladeBlob.MaximumCount = 3; %10 max detections 
bladeBlob.ExcludeBorderBlobs = true; %Requires movement fully in 

perimeter 

  
%% Initialize Kalman Filter REF: [42] 
vision.KalmanFilter; %Initialize the Kalman filter 
% Setup tracks structure with fields for ID's, bounding boxes, age, 

etc.  
tracks = struct(... 
            'id', {}, ... 
            'bbox',{},... 
            'kalmanFilter', {}, ... 
            'age', {}, ... 
            'totalVisibleCount', {}, ... 
            'consecutiveInvisibleCount', {}); %Key tracking items 

stored in struct 
nextId = 1; %First ID to assign 
centroidKeeper = []; %An empty array to store the centroids and 

information of detections 
reporter = []; %An empty array to store detection & tracking data for 

later analysis 

  
% References to MATLAB's Multiple Object Tracking framework will appear 
% throughout code. 

  
%% Setup blade ROI structure 
frame = read(Vid, StartFrame); %Obtain the first frame 
frame = rgb2gray(frame); %Convert RGB frame to grayscale 
[Mask] = boundaries(frame); %Boundaries function allows the user to 

outline the blade 
bboxes = []; %Empty array for future use 

  
%% For loop for reading frames 
% The each frame is analyzed in consecutive order 

  
for num = StartFrame:EndFrame %Loop through specified length of video 
     %% Obtain frame from video 
    if type == 2 %If signal activated 
        num = frameStore(num); %The variable controlled by the outer-

most for loop iterates through the frames located via the signalCheck 

function  
    end 
    img = read(Vid,num); %Read frames 
    framegray = rgb2gray(img); %Convert frame to grayscale  

      
    %% Locate blobs within blade ROI 
    % This checks the blade ROI for new blobs 
    bboxFind = blobCheck(framegray,Mask,bladeBlob,num); %Blob analysis 

fcn 
    for q = 1:size(bboxFind,1); 
        % Add any located blobs to a matrix to be evaluated at a later 

time 
        if isempty(bboxes) 
            bboxes(1,1:5) = bboxFind(q,:); %If empty create 1st row 
        else 
            bboxes(end+1,1:5) = bboxFind(q,:); %Expand matrix 
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        end 
    end 

     
    %% Detect potential birds 
    bbox = step(detector,img); %Step the detector with the color image 
    [R,C] = size(bbox); %Find size of bbox struct (provides the number 

of detections) 
    if R > 0 %In order to prevent this section from running with no 

detections 
    %Combine overlapping bounding boxes (NOTE: only for two bboxes)    
    [bboxC] = bboxCombine(bbox); %Collapse any intersecting bounding 

boxes 
    [R2,C2] = size(bboxC); %Determine the size of the reformatted 

bboxes 
    centroid = zeros(R2,2); %Create an empty array for centroids 
        for i = 1:R2 %Loop through detections 
        framesect = framegray(bboxC(i,2):bboxC(i,4)+bboxC(i,2),... 

%Examine bbox sections 
                bboxC(i,1):bboxC(i,3)+bboxC(i,1));   
        level = graythresh(framesect); %Determine local threshold value 
        framesectBW = im2bw(framesect,level); %Convert section to 

binary 
        sectBW = imcomplement(framesectBW); %Birds are usually dark 

compared to background- inverse 
        centroid(i,:) = step(blob,sectBW); %Locate the centroid 
        centroid(i,1) = centroid(i,1) + bboxC(i,1); %Assign the 

centroids 
        centroid(i,2) = centroid(i,2) + bboxC(i,2); %Assign the 

centroids 
        end 
    end 

     
    %% Predict new locations REF: [42] (Framework) 
    for j = 1:length(tracks) 
        bboxA = tracks(j).bbox; %Cycle through bounding boxes  
        predictedCentroid = predict(tracks(j).kalmanFilter); %Predict 

location 
        predictedCentroid = int16(predictedCentroid) - 

int16(bboxA(3:4)/2); %Convert to 16bit int. Bbox starts from corner, 

t/f shift by 0.5 height and width 
        tracks(j).bbox = [predictedCentroid, bboxA(3:4)]; %Update 

bounding box 
    end 

     
    %% Assignment cost analysis REF: [42] 
    if R > 0 %If detections occured in this frame 
    nTracks = length(tracks); %Number of existing tracks 
    nDetections = size(centroid, 1); %Number of detections in this 

frame 
    cost = zeros(nTracks, nDetections); %Empty matrix 
    for k = 1:nTracks  
        cost(k,:) = distance(tracks(k).kalmanFilter, centroid); %Find 

distance 
    end 
    costOfNonAssignment = 160; %Adjustable 
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    [assignments, unassignedTracks, unassignedDetections] = 

assignDetectionsToTracks(cost, costOfNonAssignment); %Assign detections  
    end 

     
    %% Updating assigned tracks REF: [42] 
    if R > 0 %If detections occured in this frame 
    numAssignedTracks = size(assignments, 1); 
    for l = 1:numAssignedTracks 
        trackIdx = assignments(l, 1); %Assigned track 
        detectionIdx = assignments(l, 2); %Assigned ID 
        centroids = centroid(detectionIdx, :); %Assign centroid 
        bboxB = bboxC(detectionIdx, :); %Bbox is equal to the combined 

of detection 
        tracks(trackIdx).bbox = bboxB; %Update bounding box 
        correct(tracks(trackIdx).kalmanFilter, centroids); %Updating 

Kalman filter data 
        tracks(trackIdx).age = tracks(trackIdx).age + 1; %Getting older 
        tracks(trackIdx).totalVisibleCount = 

tracks(trackIdx).totalVisibleCount + 1; %Visible +1 
        tracks(trackIdx).consecutiveInvisibleCount = 0; %No longer 

invisible 
        centroidKeeper(end+1,1) = tracks(trackIdx).id; %Store the ID 
        centroidKeeper(end,2:5) = bboxB; %Store the bbox 
        centroidKeeper(end,6:7) = centroids; %Store the centroid 
        centroidKeeper(end,8) = 1; %One signifies this is a detection 
        centroidKeeper(end,9) = num; %Record the frame 
    end 
    end 
    %% Updating unassigned tracks REF [42] 
    if R > 0 %If detections occured in this frame 
        for o = 1:length(unassignedTracks) 
            ind = unassignedTracks(o); 
            tracks(ind).age = tracks(ind).age + 1; %Getting older 
            tracks(ind).consecutiveInvisibleCount = 

tracks(ind).consecutiveInvisibleCount + 1; %Invisible +1 
            centroidKeeper(end+1,1) = tracks(ind).id; %Store the ID 
            centroidKeeper(end,2:5) = [0,0,0,0]; %No bbox 
            centroidKeeper(end,6:7) = 

predict(tracks(ind).kalmanFilter); %Store prediction 
            centroidKeeper(end,8) = 2; %Prediction 
            centroidKeeper(end,9) = num; %Record the frame 
        end 
    elseif ~isempty(tracks) && R == 0 
        % this is necessary for maintaining Kalman filter when 

detections 
        % do not occur 
        for z = 1:length(tracks) 
            tracks(z).age = tracks(z).age + 1; 
            tracks(z).consecutiveInvisibleCount = 

tracks(z).consecutiveInvisibleCount + 1; 
            centroidKeeper(end+1,1) = tracks(z).id; 
            centroidKeeper(end,2:5) = [0,0,0,0]; 
            centroidKeeper(end,6:7) = predict(tracks(z).kalmanFilter); 
            centroidKeeper(end,8) = 2; %Two signifies this is a 

prediction 
            centroidKeeper(end,9) = num; 
        end 
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    end 
    %% Deleting lost tracks REF: [42] 
    if ~isempty(tracks) 
        invisibleForTooLong = 15; %Variable parameter 
        ageThreshold = 25; %Variable parameter 
        ages = [tracks(:).age]; %Listing of ages 
        totalVisibleCounts = [tracks(:).totalVisibleCount]; %Number of 

visible instances per track 
        visibility = totalVisibleCounts ./ ages; %Proportion of visible 

and age 
        lostInds = (ages < ageThreshold & visibility < 0.1) | 

[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong; %Find 

tracks to remove 
        if ~isempty(tracks(lostInds)) 
            endedTracks = tracks(lostInds); %Find ended tracks 
            for j = 1:size(endedTracks,2) 
                ID = endedTracks(j).id; %ID per loop iteration 
                check = find(centroidKeeper(:,1) == ID); %Find this ID 

in storage 
                Detections = find(centroidKeeper(check,8) == 1); %Find 

which of these are detections 
                if max(Detections) == 1 %Only one detection, requiring 

backup tracking 
                    status = KLTpoints_revised(centroidKeeper(check,:), 

Vid, BladePitch); %Secondary tracking 
                        if status == 1 %Angled and towards blade 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 1; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 1; %Path type 
                            end 
                        elseif status == 2 %Little to no angle of path 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 2; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 2; %Path type 
                            end 
                        elseif status == 3 %Unsuccessfully tracked 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 3; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 3; %Path type 
                            end 
                        else %ergo status == 4 %Angled and away from 

blade 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 4; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 4; %Path type 
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                            end 
                        end 
                else  
                    status = 

evalKalmanTracks(centroidKeeper(check,:),BladePitch); %Enough 

detections for simple path evaluation 
                        if status == 1 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 1; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 1; %Path type 
                            end 
                        elseif status == 2  
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 2; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 2; %Path type 
                            end 
                        elseif status == 3 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 3; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 3; %Path type 
                            end 
                        else 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 4; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 4; %Path type 
                            end 
                        end 
                end 
            end 
        end 
        tracks = tracks(~lostInds); %Refine struct to exclude lost 

tracks 
    end 
    %% Create new tracks REF: [42] 
    if R > 0 %If detections occured in this frame 
    centroid = centroid(unassignedDetections, :); %The centroids for 

each new/unassigned detection 
    for p = 1:size(centroid, 1) 
        centroidNew = centroid(p,:); %New centroid for each iteration 

of for loop 
        bboxD = bboxC(p,:); 
        %Create a Kalman filter object 
        kalmanFilter = 

configureKalmanFilter('ConstantVelocity',centroidNew,[200, 50], [100, 

25], 100); 
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        %Create a new track 
        newTrack = struct('id', nextId, 'bbox', bboxD, 'kalmanFilter', 

kalmanFilter, 'age', 1, 'totalVisibleCount', 1, 

'consecutiveInvisibleCount', 0); 
        %Add it to the array of tracks 
        tracks(end + 1) = newTrack; 
        %Add results to storage 
        if isempty(centroidKeeper)  
            centroidKeeper(1,1) = nextId; 
            centroidKeeper(1,2:5) = bboxD; 
            centroidKeeper(1,6:7) = centroidNew; 
            centroidKeeper(1,8) = 1; 
            centroidKeeper(1,9) = num; 
        else 
            centroidKeeper(end+1,1) = nextId; 
            centroidKeeper(end,2:5) = bboxD; 
            centroidKeeper(end,6:7) = centroidNew; 
            centroidKeeper(end,8) = 1; 
            centroidKeeper(end,9) = num; 
        end 
        %Increment the next id 
        nextId = nextId + 1; 
    end 
    end 
    %% Display the results. For the following five lines, REF: [42] 
    if ~isempty(tracks) 
            ids = int32([tracks(:).id]);  
            labels = cellstr(int2str(ids'));  
            bboxNotation = cat(1, tracks.bbox); 
            frameNotated = insertObjectAnnotation(framegray, 

'rectangle', bboxNotation, labels); 
            framegray = im2uint8(frameNotated); 
    end 
    framegray = im2uint8(framegray); %8 bit unsigned integer RGB image 

(despite name, allows for yellow bboxes) 
    if Record == 1 %If specified to record 
        writeVideo(vidWrite,framegray) 
    end 
end 
%^End of master loop 
if Record == 1 
    close(vidWrite); %Close recording if needed 
end 

  
%% Finish tracking any remaining instances. 
reporter = 

FinishTracking(tracks,reporter,centroidKeeper,Vid,BladePitch); 
%% Filter repeat instances 
[cleanedCache, data] = 

reportAnalysis2(reporter,centroidKeeper,rotationSpeed); %Locates repeat 

instances (based on space/time) and separates them from global data 
[dataRevised, DifferingDetections] = RepeatCheck(Vid, data, 

centroidKeeper); %Checks the repeat instances by comparing SSIM  
if ~isempty(DifferingDetections) 
    [cleanedCache] = RevisedCache(cleanedCache, DifferingDetections, 

centroidKeeper); %Places low SSIM score instances back into review 
end 
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close all %Close current figures (in preparation for results 

presentation) 

  
%% Instance Information (check for changes in blade ROI, Zone, 

Trajectory/Path Type) 
if cleanedCache ~= 0 %Ensuring there are results 
NumberIDs(:,1) = unique(cleanedCache(:,1)); %Find unique IDs  
LengthAnalysis = size(NumberIDs,1); %How many unique IDs are there? 
for y = 1:size(cleanedCache,1) 
    bladeRoiCheck = zeros(1,1); 
            for t = 1:61 %Check 30 frames before and after blade ROI 

activity occurs 
                instanceCheck = find(bboxes(:,5) == cleanedCache(y,2)-

t+31 ... 
                    & bboxes(:,3) ~= 0 & bboxes(:,4) ~= 0); %If no 

blob, 0's will exist for bboxes 
                if isempty(instanceCheck) 
                    bladeRoiCheck(t,1) = 0;  
                else 
                    bladeRoiCheck(t,1) = size(instanceCheck,1); 
                end 
            end 
    changesInRoi = unique(bladeRoiCheck(:,1)); %Unique changes in blade 

ROI 
    changesInRoi = size(changesInRoi,1); %Number of unique changes in 

blade ROI 
        if changesInRoi > 1 
            key(y,1) = 1; %If we get some changes in the blade ROI lets 

write that down 
        else 
            key(y,1) = 0; %No detectable changes 
        end 
    zone(y,1) = zoneCheck(cleanedCache(y,8)); %Proximity of targets to 

blade 
    typeFind = find(reporter(:,1) == cleanedCache(y,1)); %Recall the 

trajectory 
    if ~isempty(typeFind) 
    type(y,1) = reporter(typeFind(1,1),2); %Assign path 
    else 
    type(y,1) = 0; %No type. Error. 
    end 
    IDy(y,1) = cleanedCache(y,1); %Do not forget the ID 
end 
%% Classification of results 
for x = 1:LengthAnalysis 
    Id = NumberIDs(x,1); 
    rows = find(IDy(:,1) == Id); 
    mtype = max(type(rows,1)); %Recall type 
    mkey = max(key(rows,1)); %Recall blade ROI changes 
    mzone = max(zone(rows,1)); %Recall zone 
    %% Likelihood of collision 
    %Very Strong 
    if mkey == 1 && mtype == 1 && (mzone == 2 || mzone == 3) 
        FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 4; 
    %Strong 
    elseif (mkey == 0 && mtype == 1 && mzone == 3) || (mkey == 1 && ... 



108 
 

            (mtype == 1 && mzone == 1) || (mtype == 2 && mzone == 3) || 

... 
            (mtype == 3 && mzone == 3) || (mtype == 4 && mzone == 3)) 
        if mtype == 1 || mtype == 2 || mtype == 4 
            FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 3; 
        else 
            FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 3; 
        end 
    %Moderate 
    elseif (mkey == 0 && ((mtype == 1 && (mzone == 1 || mzone == 2))) 

|| (mtype == 2 ... 
            && mzone == 3) || (mtype == 3 && (mzone == 2 || mzone == 

3))) || ... 
            (mtype == 4 && mzone == 3) || (mkey == 1 && ((mtype == 2 && 

... 
            (mzone == 1 || mzone == 2))) || (mtype == 3 && (mzone == 1 

|| mzone == 2)) ... 
            || (mtype == 4 && mzone == 2)) 
        if mtype == 1 || mtype == 2 || mtype == 4 
            FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 2; 
        else 
            FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 2; 
        end 
    %N/A     
    elseif mtype == 0 
            FinalMat(x,1) = Id; FinalMat(x,2) = 0; FinalMat(x,3) = 0; 
    %Low 
    else 
        if mtype == 1 || mtype == 2 || mtype == 4 
            FinalMat(x,1) = Id; FinalMat(x,2) = 2; FinalMat(x,3) = 1; 
        else 
            FinalMat(x,1) = Id; FinalMat(x,2) = 1; FinalMat(x,3) = 1; 
        end 
    end 
end 
%% Present results to user 
for z = 1:LengthAnalysis 
    %Determine the plot size 
    range = find(cleanedCache(:,1) == NumberIDs(z,1)); 
    plotSize = size(range,1); 
        if plotSize == 1 
            sqr(1,1) = 1; sqr(1,2) = 1; fact = 0; limit = 0; 
        elseif plotSize == 2 
            sqr(1,1) = 1; sqr(1,2) = 2; fact = 0; limit = 0; 
        elseif plotSize == 3 
            sqr(1,1) = 1; sqr(1,2) = 3; fact = 0; limit = 0; 
        elseif plotSize <= 6 && plotSize > 3 
            sqr(1,1) = 2; sqr(1,2) = 3; fact = 0; limit = 0; 
        elseif plotSize <= 9 && plotSize > 6 
            sqr(1,1) = 3; sqr(1,2) = 3; fact = 0; limit = 0; 
        elseif plotSize <= 12 && plotSize > 9 
            sqr(1,1) = 4; sqr(1,2) = 3; fact = 0; limit = 0; 
        elseif plotSize <= 15 && plotSize > 12 
            sqr(1,1) = 5; sqr(1,2) = 3; fact = 0; limit = 0; 
        elseif plotSize <= 35 
            sqr(1,1) = 6; sqr(1,2) = 3; fact = 1; limit = 0; 
        elseif plotSize <= 41 
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            sqr(1,1) = 7; srr(1,2) = 3; fact = 1; limit = 0; 
        else 
            fact = 1; limit = 1; 
        end 
    figure 
    if fact == 0; 
        for r = 1:plotSize 
        rung1 = range(r,1); 
        frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame for 

instance 
        frameDisp = rgb2gray(frameDisp); %Convert to grayscale 
        bboxDisp = cleanedCache(rung1,3:6); %Find the bbox 
        dispNotated = insertObjectAnnotation(frameDisp, 'rectangle', 

bboxDisp, 'Detected Target'); %Annotate 
        dispNotated = im2uint16(dispNotated); %Convert image to 

unsigned 16bit 
        subplot(sqr(1,1),sqr(1,2),r) %Subplot ration 
        imshow(dispNotated); %Show 
        end 
    elseif fact == 1 && limit == 0; 
        for r = 1:plotSize 
            if mod(r,2) ~= 0     
            rung1 = range(r,1); 
            frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame 

for instance 
            frameDisp = rgb2gray(frameDisp); %Convert to grayscale 
            bboxDisp = cleanedCache(rung1,3:6); %Find the bbox 
            dispNotated = insertObjectAnnotation(frameDisp, 

'rectangle', bboxDisp, 'Detected Target'); %Annotate 
            dispNotated = im2uint16(dispNotated); %Convert image to 

unsigned 16bit 
            subplot(sqr(1,1),sqr(1,2),r) %Subplot ration 
            imshow(dispNotated); %Show 
            end 
        end  
    else 
        rung1 = range(1,1); 
            frameDisp = read(Vid,cleanedCache(rung1,2)); %Obtain frame 

for instance 
            frameDisp = rgb2gray(frameDisp); %Convert to grayscale 
            bboxDisp = cleanedCache(rung1,3:6); %Find the bbox 
            dispNotated = insertObjectAnnotation(frameDisp, 

'rectangle', bboxDisp, 'Detected Target'); %Annotate 
            dispNotated = im2uint16(dispNotated); %Convert image to 

unsigned 16bit 
            subplot(1,1,1) %Subplot ration 
            imshow(dispNotated); %Show 
    end 
    rung2 = find(FinalMat(:,1) == NumberIDs(z,1)); 
    idZ = NumberIDs(z,1); 
    %% Provide labeling for instances 
    if FinalMat(rung2,2) == 1 
        if FinalMat(rung2,3) == 4 
            suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, Very 

Strong Chance of Impact',idZ)); 
            set(gcf,'Color','r'); 
        elseif FinalMat(rung2,3) == 3 
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            suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, 

Strong Chance of Impact',idZ)); 
            set(gcf,'Color','y'); 
        elseif FinalMat(rung2,3) == 2 
            suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, 

Moderate Chance of Impact',idZ)); 
            set(gcf,'Color','g'); 
        else 
            suptitle(sprintf('ID: %3.3g \nUnsuccessfully Tracked, Low 

Chance of Impact',idZ)); 
            set(gcf,'Color','b'); 
        end 
    elseif FinalMat(rung2,2) == 2 
        if FinalMat(rung2,3) == 4 
            suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Very 

Strong Chance of Impact',idZ)); 
            set(gcf,'Color','r'); 
        elseif FinalMat(rung2,3) == 3 
            suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Strong 

Chance of Impact',idZ)); 
            set(gcf,'Color','y'); 
        elseif FinalMat(rung2,3) == 2 
            suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, 

Moderate Chance of Impact',idZ)); 
            set(gcf,'Color','g'); 
        else 
            suptitle(sprintf('ID: %3.3g \nSuccessfully Tracked, Low 

Chance of Impact',idZ)); 
            set(gcf,'Color','b'); 
        end 
    else 
        suptitle(sprintf('ID: %3.3g \nUnknown Flight Parameters',idZ)); 
        set(gcf,'Color','w'); 
    end 
end 

  
else 
    msgbox('no detected events'); %Report if no instances 
end 

  

  
if Update == 1 
%Execute learning program  
NegativeSave(Vid, dataRevised, centroidKeeper); 
end 

 

Satellite Functions (Supporting Architecture) 

signalCheck 

Finding the peak of a signal, and retrieve a frame buffer surrounding the peak. 

function frameStore = signalCheck(signal) 
frameStore = []; 
frameKeep = []; 
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frameFind = []; 
for i = 1:length(signal) 
    if signal(i) > -5 || signal(i) < -8 
        if ~isempty(frameKeep) 
            frameKeep(end+1,1) = i; 
        else 
            frameKeep(1,1) = i; 
        end 
    end 
end 
if ~isempty(frameKeep) 
for j = 1:length(frameKeep) 
    for k = 1:61 
        if isempty(frameFind) 
            frameFind(1,1) = frameKeep(j) + k - 31; 
        else 
            frameFind(end+1,1) = frameKeep(j) + k - 31; 
        end 
    end 
end 
end 
frameStore = unique(frameFind(:,1)); 
end 

 

boundaries 

This function allows the user to draw a polygon surrounding the inner blade ROI. These bounds 

are used later in the program to apply a mask to the image, essentially cropping out everything but 

the inner regions of the blade. 

function [Mask] = boundaries(firstFrame) 
%% User creates boundary safely within the constraints of the wind 

turbine blade 
% This will be used to check for large constrast changes 

  
%the input frame should be grayscale & representative of the blade 
%with no occlusions and nominal contrast 
imshow(firstFrame); 
bounds = impoly; 
wait(bounds); 
Mask = createMask(bounds); 
End 

 

blobCheck 

This function is used to crop the frame from the boundary surrounding the blade. The cropped 

region is then thresholded, and blob analysis is performed. Cropping is performed using the 

perimeter set by the user prior to operation. Bounding boxes created around any detected blobs are 
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then stored. These bounding boxes provide all necessary information for later analysis. Note that 

the cropping technique was adapted from [56]. 

function [bboxes] = blobCheck(frame,Mask,bladeBlob,num) 
%% User creates boundary safely within the constraints of the wind 

turbine blade 
% This will be used to check for constrast changes 
%the input frame should be grayscale & representative of the blade 
%with no occlusions and nominal contrast 
cropped = frame; 
cropped(~Mask) = 0; 
threshold = graythresh(cropped(Mask)); 
threshold = threshold*0.5; 
cropped = im2bw(cropped,threshold); 
cropped = imcomplement(cropped); 
cropped(~Mask) = 0; 
%Cropping technique from 
%[56] 
bbox = step(bladeBlob, cropped); 
if isempty(bbox) 
    bboxes(1,1:4) = 0; 
    bboxes(1,5) = num; 
else 
    for i = 1:size(bbox,1) 
        bboxes(i,1:4) = bbox(i,:); 
        bboxes(i,5) = num; 
    end 
end 

  
end 

 

bboxCombine 

Often multiple detections occur on the same target- this function combines two bounding boxes if 

they overlap. 

function [bboxC] = bboxCombine(bbox) 
%This function is used to combine the bounding boxes of overlapping 
%detections. 
bboxes = size(bbox); 
flag = 0; 
if bboxes(1) == 0 
    disp('NO DETECTIONS') 
    flag = 1; 
end 
Combine = zeros(1,2); 
if bboxes(1) > 1 
    for i = 1:bboxes(1) 
        for j = i:bboxes(1)-1 
        overlapRatio = bboxOverlapRatio(bbox(i,:),bbox(j+1,:)); 
            if overlapRatio > 0 && Combine(1,1) == 0 
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                Combine(1,1) = i; 
                Combine(1,2) = j+1; 
            elseif overlapRatio > 0 
                Combine(end+1,1) = i; 
                Combine(end,2) = j+1; 
            end 
        end 
     end 
end 
DontCombine = zeros(1,1); 
[R2,C2] = size(Combine);  
for u = 1:bboxes(1) 
    mark = 0; 
    for v = 1:R2 
    if Combine(v,1) ~= u && Combine(v,2) ~= u 
    mark = mark+1; 
    end 
    end 
    if mark == R2 && DontCombine(1,1) == 0 
        DontCombine(1,1) = u; 
    elseif mark == R2 
        DontCombine(end+1) = u; 
    end 
end 
sized = size(DontCombine); 
bboxC = zeros(R2,4); 
if Combine(1,1) ~= 0 
    for k = 1:R2 
    if bbox(Combine(k,1),1) < bbox(Combine(k,2),1) 
        bboxC(k,1) = bbox(Combine(k,1),1); 
    else 
        bboxC(k,1) = bbox(Combine(k,2),1); 
    end 
    if bbox(Combine(k,1),2) < bbox(Combine(k,2),2) 
        bboxC(k,2) = bbox(Combine(k,1),2); 
    else 
        bboxC(k,2) = bbox(Combine(k,2),2); 
    end 
    if bbox(Combine(k,1),1)+bbox(Combine(k,1),3) < 

bbox(Combine(k,2),1)+bbox(Combine(k,2),3) 
        bboxC(k,3) = bbox(Combine(k,2),1)+bbox(Combine(k,2),3) - 

bboxC(k,1); 
    else 
        bboxC(k,3) = bbox(Combine(k,1),1)+bbox(Combine(k,1),3) - 

bboxC(k,1); 
    end 
    if bbox(Combine(k,1),2)+bbox(Combine(k,1),4) < 

bbox(Combine(k,2),2)+bbox(Combine(k,2),4) 
        bboxC(k,4) = bbox(Combine(k,2),2)+bbox(Combine(k,2),4) - 

bboxC(k,2); 
    else 
        bboxC(k,4) = bbox(Combine(k,1),2)+bbox(Combine(k,1),4) - 

bboxC(k,2); 
    end 
    end 
end 
if DontCombine(1,1) ~= 0 
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    for y = 1:sized(2) 
        if bboxC(1,1) == 0 && flag == 0 
        bboxC(1,:) = bbox(DontCombine(y),:); 
        elseif flag == 0 
        bboxC(end+1,:) = bbox(DontCombine(y),:); 
        end 
    end 
end 

  
end 

 

KLTpoints_revised 

This function constitutes the entirety of secondary tracking. If the number of detections for a target 

is one or less, this function uses the KLT algorithm to track points across frames. Within this 

function, the direction of travel is evaluated and classified for later use. [57] provided guidance on 

using the point tracking algorithm. 

function [status] = KLTpoints_revised(centroidKeeper,Vid,BladePitch) 
%% Initialize KLT Point Tracker, Ref for KLT point tracking: [44], [57] 
indices = find(centroidKeeper(:,8) == 1,1,'first'); %Locate the 

detection for this ID 
frameSt = centroidKeeper(indices,9); %Locate the starting frame 
bbox = centroidKeeper(indices,2:5); %Find the bounding box 
frame = read(Vid,frameSt); %Read the frame 
framegray = rgb2gray(frame); %Convert to grayscale 
points = detectMinEigenFeatures(framegray,'ROI',bbox); %Find minimum 

eigen features 
points = points.selectStrongest(6); %Select the strongest points 
sum = 0; %Initialize sum 
if ~isempty(points)  
pointStore = points.Location(:,:); %Create a matrix to store points 
InitialPoints = points.Location(:,:); 
%write1 = insertMarker(framegray,points,'+'); 
%imshow(write1) 
%figure 
Ymean = mean(pointStore(:,2)); %Find the mean of the Y values 
for i = 1:2 
    pointTracker = vision.PointTracker('NumPyramidLevels',2,... 
    'BlockSize',[11 11],'MaxIterations',50); 
    initialize(pointTracker,InitialPoints,framegray); 
    for j = 1:3 %Cycle through proceeding frames 
         if i == 1 %Frame buffer (after instance) 
         framenum = frameSt + j; 
         else %Frame buffer (before instance) 
         framenum = frameSt - j; 
         end 
            if framenum > 0 
                if size(points,1) >= 2 
                    frame = read(Vid,framenum); %Read frame 
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                    framegray = rgb2gray(frame); 
                    [points, validity] = step(pointTracker,framegray); 

%Point tracker 
                    points = points(validity,:);  
                    if ~isempty(points) 
                        l = size(points,1); 
                        pointStore(end+1:end+l,1:2) = points(:,:); 
                        Ymean(end+1) = mean(points(:,2)); 
                        %write1 = insertMarker(framegray,points,'+'); 
                        %imshow(write1) 
                        %figure 
                    end 
                else   
                break 
                end 
            end 
    end 
    release(pointTracker) 
end 
for k = 1:(length(Ymean)-1) 
    sum = (Ymean(1,k) - Ymean(1,k+1)) + sum; %Determine main vertical 

direction of target 
end 
x = pointStore(:,1); 
y = pointStore(:,2); 
linReg = fitlm(x,y); %Linear regression performed on points 
Rsq = linReg.Rsquared.Ordinary; %R squared 
line = linReg.Coefficients.Estimate; 
xtest = 100; 
ytest = line(2,1)*xtest; 
angle = atand(ytest/xtest); 
Difference = abs(angle - BladePitch); %To determine if divergent from 

flow field 
status = []; 
    if Rsq >= 0.500 && Difference >= 15 
        if sum < 0 
            status(1,1) = 1; %Diverging from flow field 
                             %Path towards blade 
        else 
            status(1,1) = 4; %Diverging from flow field 
                             %Path away from blade 
        end           
    elseif Rsq >= 0.500 && Difference < 15 
        status(1,1) = 2; %Direction similar to flow field 
    else 
        status(1,1) = 3; %Unsuccessful tracking 
    end 
else 
    status(1,1) = 3; %Unable to determine  
end 

  
end 
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evalKalmanTracks 

This function is utilized if the number of detections for a target is greater than one. Linear regression 

is used to determine the directions of travel for the target. Direction of travel is determined, 

classified, and stored for later use. 

function [status] = evalKalmanTracks(centroidKeeper,BladePitch) 

  
%% Function to find LoBF & spread of data 
x = centroidKeeper(:,6); 
y = centroidKeeper(:,7); 
linReg = fitlm(x,y); 
Rsq = linReg.Rsquared.Ordinary; %R squared 
line = linReg.Coefficients.Estimate;  
xtest = 100; 
ytest = line(2,1)*xtest; 
angle = atand(ytest/xtest); 
Difference = abs(angle - BladePitch); %To determine if divergent from 

flow field 
sum = 0; 
for i = 2:length(y) 
   sum = (y(i-1) - y(i)) + sum; %Determine direction of travel 
end 
status = []; 
    if Rsq >= 0.500 && Difference >= 15 
        if sum < 0 
            status(1,1) = 1; %Diverging from flow field 
                             %Path towards blade 
        else 
            status(1,1) = 4; %Diverging from flow field 
                             %Path away from blade 
        end           
    elseif Rsq >= 0.500 && Difference < 15 
        status(1,1) = 2; %Direction similar to flow field 
    else 
        status(1,1) = 3; %Unsuccessful tracking 
    end 
end 

 

FinishTracking 

This function finishes the tracking process for any remaining targets whose tracking did not end 

before the final frame of the video.  

function [reporter] = 

FinishTracking(tracks,reporter,centroidKeeper,Vid,BladePitch)               
%% Finish tracking any remaining instances at the conclusion of the 

video. This prevents any tracks from remaining unevaluated. 
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                for u = 1:length(tracks) 
                ID = tracks(u).id; 
                check = find(centroidKeeper(:,1) == ID); %Find this ID 

in storage 
                Detections = find(centroidKeeper(check,8) == 1); %Find 

which of these are detections 
                if max(Detections) == 1 %Only one detection, requiring 

backup tracking 
                    status = KLTpoints_revised(centroidKeeper(check,:), 

Vid, BladePitch); %Secondary tracking 
                        if status == 1 %Angled and towards blade 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 1; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 1; %Path type 
                            end 
                        elseif status == 2 %Little to no angle of path 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 2; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 2; %Path type 
                            end 
                        elseif status == 3 %Unsuccessfully tracked 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 3; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 3; %Path type 
                            end 
                        else %ergo status == 4 %Angled and away from 

blade 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 4; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 4; %Path type 
                            end 
                        end 
                else  
                    status = 

evalKalmanTracks(centroidKeeper(check,:),BladePitch); %Enough 

detections for simple path evaluation 
                        if status == 1 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 1; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 1; %Path type 
                            end 
                        elseif status == 2  
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                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 2; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 2; %Path type 
                            end 
                        elseif status == 3 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 3; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 3; %Path type 
                            end 
                        else 
                            if isempty(reporter) 
                                reporter(1,1) = ID; %Record ID 
                                reporter(1,2) = 4; %Path type 
                            else 
                                reporter(end+1,1) = ID; %Record ID 
                                reporter(end,2) = 4; %Path type 
                            end 
                        end 
                end 
                end 
end 

 

reportAnalysis2 

This function is the first stage of the filtering process- its use is to locate groupings of instances 

which are similar in vertical location, and spaced approximately one rotation apart. 

function [cleanedCache,dataTrove] = 

reportAnalysis2(reporter,centroidKeeper,rotationSpeed) 
%% This function was created for analyzing data from the detection 

stage 
% of the master program. Here false positives will be filtered by 
% examining the time and location of reoccuring detections  

  
%Examine all cases for reoccurence 
deleteThese = []; 
cleanedCache = []; 
ImageInds = []; 
sortNum = 1; 
%Ensure detections and event classifications were made  
if ~isempty(reporter) 
    if ~isempty(centroidKeeper) 
%Begin filtering process 
reports = reporter(:,:); 
        for i = 1:size(reports,1) 
            instance = reports(i,1); %Find where reports is equal to 

the instance being examined 
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            instanceInd = find(centroidKeeper(:,1) == instance); 

%Determine indices of cK  
            centroidKeeper2 = centroidKeeper(instanceInd,:); 
            DetectInd = find(centroidKeeper2(:,8) == 1); 
            centroidKeeper3 = centroidKeeper2(DetectInd,:); 
            instanceTime = centroidKeeper3(1,9); %Find time values 
            instancePosY = centroidKeeper3(1,7); %Find Y pos 
            CheckInd = find(centroidKeeper(:,1) ~= instance & 

centroidKeeper(:,8) == 1 ... %Check future bounds 
            & ((centroidKeeper(:,9)-instanceTime >= 0.90*rotationSpeed 

& centroidKeeper(:,9) ...  
            -instanceTime <= 1.10*rotationSpeed) | 

(centroidKeeper(:,9)-instanceTime >= 1.89*rotationSpeed & 

centroidKeeper(:,9) ...  
            -instanceTime <= 2.11*rotationSpeed) | 

(centroidKeeper(:,9)-instanceTime >= 2.88*rotationSpeed & 

centroidKeeper(:,9) ...  
            -instanceTime <= 3.12*rotationSpeed)) & centroidKeeper(:,7) 

>= instancePosY - 15 ...  
            & centroidKeeper(:,7) <= instancePosY + 15); 
                if ~isempty(CheckInd) 
                Idz = centroidKeeper(CheckInd,1); 
                Idz = unique(Idz); 
                    if size(Idz,1) >= 2 
                        for j = 1:size(Idz,1) 
                            if isempty(deleteThese) 
                                deleteThese(1,1) = instance; 
                                deleteThese(1,2) = sortNum; 
                                deleteThese(end+1,1) = Idz(j); 
                                deleteThese(end,2) = sortNum; 
                            elseif ~isempty(deleteThese) && j == 1 
                            deleteThese(end+1,1) = instance; 
                            deleteThese(end,2) = sortNum; 
                            deleteThese(end+1,1) = Idz(j); 
                            deleteThese(end,2) = sortNum; 
                            else 
                            deleteThese(end+1,1) = Idz(j); 
                            deleteThese(end,2) = sortNum; 
                            end 
                        end 
                        sortNum = sortNum + 1; 
                    end 
                end 
        end 
        if ~isempty(deleteThese) 
        NumberMatches = max(deleteThese(:,2)); 
        deleteInds = unique(deleteThese(:,1)); 
        for q = 1:size(deleteInds,1) 
            SimInds = find(deleteThese(:,1) == deleteInds(q)); 
            if SimInds > 1 
                Combined = deleteThese(SimInds,2); 
                numLabel = min(Combined); 
                for w = 1:length(Combined) 
                CombInds = find(deleteThese(:,2) == Combined(w)); 
                    for z = 1:length(CombInds) 
                        deleteThese(CombInds(z),2) = numLabel; 
                    end 
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                end 
            end 
        end 
        deleteInds2 = unique(deleteThese(:,2)); 
        for s = 1:size(deleteInds2,1) 
            for t = 1:size(deleteThese,1) 
                if deleteThese(t,2) == deleteInds2(s,1) 
                    deleteThese(t,2) = s; 
                end 
            end 
        end 
        dataTrove = unique(deleteThese,'rows'); 
        numberOfDelInst = size(deleteInds,1); 
        else 
        numberOfDelInst = 0; 
        deleteInds = 0; 
        dataTrove = 0; 
        end 
    else 
        numberOfDelInst = 0; 
        deleteInds = 0; 
        dataTrove = 0; 
    end 
else 
    cleanedCache = 0; 
    numberOfDelInst = 0; 
    deleteInds = 0; 
    dataTrove = 0; 
end 
%msgbox(sprintf('There were %3.3g repeat instances marked for potential 

deletion',numberOfDelInst),'Repeat Instances') 
%Uncomment above for a readout of the quantity of deletion candidates  
    if numberOfDelInst > 0 && ~isempty(centroidKeeper) 
        ImageInds = centroidKeeper(:,1); 
        for k = 1:length(deleteInds) 
            deleteSelection = deleteInds(k); 
            ImInds = find(ImageInds(:,1) ~= deleteSelection); 
            ImageInds = ImageInds(ImInds,1); 
        end 
            ImageInds = unique(ImageInds); 
    elseif ~isempty(centroidKeeper) 
            ImageInds = unique(centroidKeeper(:,1)); 
    end 
        if ~isempty(ImageInds) 
            for l = 1:size(ImageInds,1) 
            ImageInd = ImageInds(l); 
            Indz = find(centroidKeeper(:,1) == ImageInd & 

centroidKeeper(:,8) == 1); 
            Time = centroidKeeper(Indz,9); 
            Bbox = centroidKeeper(Indz,2:5); 
            ID = centroidKeeper(Indz,1); 
            Centroid = centroidKeeper(Indz,6:7); 
                for h = 1:size(Indz,1) 
                    if isempty(cleanedCache) 
                        cleanedCache(1,1) = ID(h); 
                        cleanedCache(1,2) = Time(h); 
                        cleanedCache(1,3:6) = Bbox(h,:); 
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                        cleanedCache(1,7:8) = Centroid(h,:); 
                    else 
                        cleanedCache(end+1,1) = ID(h); 
                        cleanedCache(end,2) = Time(h); 
                        cleanedCache(end,3:6) = Bbox(h,:); 
                        cleanedCache(end,7:8) = Centroid(h,:); 
                    end 
                end 
            end 
        else 
            cleanedCache = 0; 
        end 
end  

 

RepeatCheck 

RepeatCheck is used to compare the similarity between detections. This provides an additional 

layer of safety to the filtering process. Detections are cropped to the same size, then the SSIM index 

is used to check similarity [46]. 

function [dataRevised, DifferingDetections] = RepeatCheck(Vid, data, 

centroidKeeper) 
%% This function uses the SSIM index to compare detections  
%This process includes cropping detections to the same size, then 

utilizes 
%SSIM index 
vheight = 1080; 
vwidth = 1920; 
if data ~= 0 
NumIter = unique(data(:,2)); 
scores = []; 
NoRepeats = []; 
for i = 1:length(NumIter) 
    currentSet = NumIter(i); 
    segmentInd = find(data(:,2) == currentSet); 
    for j = 1:size(segmentInd,1) 
        for k = 1:size(segmentInd,1) 
            compare1 = segmentInd(j,1); 
            compare2 = segmentInd(k,1); 
            ID1 = data(compare1,1); 
            ID2 = data(compare2,1); 
            if ID1 ~= ID2 
                if ~isempty(scores) 
                    NoRepeats = find(scores(:,1) == ID2 & scores(:,2) 

== ID1); 
                end 
                if ~isempty(NoRepeats) 
                        for r = 1:length(NoRepeats) 
                        scores(end+1,1) = ID2; 
                        scores(end,2) = ID1; 
                        scores(end,3) = scores(NoRepeats(r), 3); 
                        end 



122 
 

                else 
                    iterations1 = find(centroidKeeper(:,1) == ID1 & 

centroidKeeper(:,8) == 1); 
                    iterations2 = find(centroidKeeper(:,1) == ID2 & 

centroidKeeper(:,8) == 1); 
                    for l = 1:length(iterations1) 
                    for m = 1:length(iterations2) 
                        bbox1 = centroidKeeper(iterations1(l),2:5); 
                        bbox2 = centroidKeeper(iterations2(m),2:5); 
                        frame1 = centroidKeeper(iterations1(l),9); 
                        frame2 = centroidKeeper(iterations2(m),9); 
                        Frame1 = read(Vid,frame1); 
                        Frame2 = read(Vid,frame2); 
                        height1 = bbox1(4); height2 = bbox2(4);  
                        width1 = bbox1(3); width2 = bbox2(3); 
                        hdiff = abs(height1 - height2); 
                        wdiff = abs(width1 - width2); 
                            if height1 > height2  
                                if (bbox2(4) + bbox2(2) + hdiff) < 

vheight 
                                    bbox2(4) = bbox2(4) + hdiff; 
                                else 
                                    bbox2(2) = bbox2(2) - hdiff; 
                                    bbox2(4) = bbox2(4) + hdiff; 
                                end 
                            else 
                                if (bbox1(4) + bbox1(2) + hdiff) < 

vheight 
                                    bbox1(4) = bbox1(4) + hdiff; 
                                else 
                                    bbox1(2) = bbox1(2) - hdiff; 
                                    bbox1(4) = bbox1(4) + hdiff; 
                                end 
                            end 
                            if width1 > width2  
                                if (bbox2(3) + bbox2(1) + wdiff) < 

vwidth 
                                    bbox2(3) = bbox2(3) + wdiff; 

                                     
                                else 
                                    bbox2(1) = bbox2(1) - wdiff; 
                                    bbox2(3) = bbox2(3) + wdiff; 

  
                                end 
                            else 
                                if (bbox1(3) + bbox1(1) + wdiff) < 

vwidth 
                                    bbox1(3) = bbox1(3) + wdiff; 

                                 
                                else 
                                    bbox1(1) = bbox1(1) - wdiff; 
                                    bbox1(3) = bbox1(3) + wdiff; 
                                end 
                            end 
                        framesect1 = 

Frame1(bbox1(2):bbox1(4)+bbox1(2),...  
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                                        bbox1(1):bbox1(3)+bbox1(1)); 
                        framesect2 = 

Frame2(bbox2(2):bbox2(4)+bbox2(2),...  
                                        bbox2(1):bbox2(3)+bbox2(1)); 
                        SimScore = ssim(framesect2,framesect1); 
                        %Use below for displaying visual comparison, 

used 
                        %for testing 
                        %if SimScore < 0.XXX 
                            %subplot(1,2,1) 
                            %imshow(framesect1) 
                            %subplot(1,2,2) 
                            %imshow(framesect2) 
                            %suptitle(sprintf('ID: %3.3g  & %3.3g 

\nSSIM score = %3.3g',ID1,ID2,SimScore)); 
                            %figure 
                        %end 
                        if isempty(scores) 
                            scores(1,1) = ID1; scores(1,2) = ID2; 
                            scores(1,3) = SimScore; 
                        else 
                            scores(end+1,1) = ID1; scores(end,2) = ID2; 
                            scores(end,3) = SimScore; 
                        end 
                        end 
                end 
                end 
            end 
        end 
    end   
end 
IDS = unique(scores(:,1)); 
showThese = []; 
for g = 1:length(IDS) 
    currentID = IDS(g); 
    IDscoreInds = find(scores(:,1) == currentID & scores(:,3) >= 0.65); 
    if isempty(IDscoreInds) 
        if isempty(showThese) 
            showThese(1,1) = currentID; 
        else 
            showThese(end+1,1) = currentID; 
        end 
    end 
end 
DifferingDetections = []; 
DifferingDetections = showThese; 
dataRevised = []; 
if ~isempty(showThese) 
    sizeShowThese = size(showThese(:,1)); 
    for d = 1:sizeShowThese 
    dataInds = find(data(:,1) ~= showThese(d,1)); 
    data = data(dataInds,:); 
    end 
end 
dataRevised = data; 
msgbox(sprintf('There were %3.3g repeat instances 

deleted',size(dataRevised,1)),'Repeat Instances'); 
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else 
    dataRevised = 0; 
    DifferingDetections = 0; 
end 
end 

 

RevisedCache 

The purpose of this function is to implement any instances which were shown to be dissimilar in 

the RepeatCheck function. Such instances are placed back into the matrix used for classification. 

function [cleanedCacheRevised] = RevisedCache(cleanedCache, 

DifferingDetections, centroidKeeper) 
%% This function restores any instances that were deemed dissimilar in 

the RepeatCheck function 
if DifferingDetections ~= 0 
    for i = 1:length(DifferingDetections) 
        IDtba = DifferingDetections(i); 
        IDrungs = find(centroidKeeper(:,1) == IDtba & 

centroidKeeper(:,8) == 1); 
        for j = 1:length(IDrungs) 
            cleanedCache(end+1,1) = IDtba; 
            cleanedCache(end,2) = centroidKeeper(IDrungs(j),9); 
            cleanedCache(end,3:6) = centroidKeeper(IDrungs(j),2:5); 
            cleanedCache(end,7:8) = centroidKeeper(IDrungs(j),6:7); 
        end 
    end 
end 
cleanedCacheRevised = cleanedCache; 
end 

 

zoneCheck 

The zoneCheck function divides the image plane into thirds, and checks the vertical coordinates of 

instances to determine the closest approach of a target to the blade. 

function zone = zoneCheck(yCoord) 
%% This function divides the image plane and categorizes the vertical 

location of targets 
Zone1 = 0.3*1080; 
Zone2 = 0.6*1080; 

  
if yCoord <= Zone1 
    zone = 1; 
elseif yCoord > Zone1 && yCoord <= Zone2 
    zone = 2; 
else 
    zone = 3; 
end 
end 
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NegativeSave 

NegativeSave provides the necessary tools for storing negative instances to a negative image 

dataset, and retraining the cascade object detection algorithm. This function only operates if the 

user selected for the detection algorithm to be updated after processing. 

function NegativeSave(Vid, data, centroidKeeper) 
%% This function provides a retraining method for the cascade object 

detection algorithm 

  
%% This section saves negative instances to a negative image set folder 
%The negative instances here are from repeating FPs 
if data ~= 0 
for i = 1:length(data) 
    Inds = find(centroidKeeper(:,1) == data(i,1) & centroidKeeper(:,8) 

== 1); 
    NumFrames = length(Inds); 
    Frames = centroidKeeper(Inds,9); 
    Bboxes = centroidKeeper(Inds,2:5); 
    for j = 1:NumFrames 
        Frame = read(Vid,Frames(j),'native'); 
        framesect = Frame(Bboxes(j,2):Bboxes(j,4)+Bboxes(j,2),... 

%Examine bbox sections 
                Bboxes(j,1):Bboxes(j,3)+Bboxes(j,1),:); 
        name = 

sprintf('D:/MATLAB/toolbox/vision/visiondata/Negatives/%s%d_%d.png','ne

gImageR2',i,j); 
        imwrite(framesect,name); 
    end 
end 
end 
Cases = input('Please enter any IDs of false-positives: '); 
Cases = transpose(Cases); 
%% This section saves negative instances to a negative image set folder 
%The negative instances here are from user inputted FPs 
if ~isempty(Cases) 
  for i = 1:length(Cases) 
    Inds2 = find(centroidKeeper(:,1) == Cases(i,1) & 

centroidKeeper(:,8) == 1); 
    NumFrames2 = length(Inds2); 
    Frames2 = centroidKeeper(Inds2,9); 
    Bboxes2 = centroidKeeper(Inds2,2:5); 
    for j = 1:NumFrames2 
        Frame = read(Vid,Frames2(j),'native'); 
        framesect = Frame(Bboxes2(j,2):Bboxes2(j,4)+Bboxes2(j,2),... 

%Examine bbox sections 
                Bboxes2(j,1):Bboxes2(j,3)+Bboxes2(j,1),:); 
        name = 

sprintf('D:/MATLAB/toolbox/vision/visiondata/Negatives/%s%d_%d.png','Ca

sesNegImageR2',i,j); 
        imwrite(framesect,name); 
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    end 
  end   
end 

  
%Retraining section 
if ~isempty(Cases) | data ~= 0 
load('Documents/MATLAB/NewAlbaLabel.mat'); 
NewNegatives = 

fullfile(matlabroot,'toolbox','vision','visiondata','Negatives'); 
trainCascadeObjectDetector('Test_01072016_1st_Regen.xml',labelingSessio

n.ImageSet.ROIBoundingBoxes,NewNegatives,'FalseAlarmRate',0.4,'NumCasca

deStages',20); 
end 
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Appendix F: Collision Likelihood 

The following table provides a reference for how avian interaction information is utilized to 

produce collision results. Each combination was considered in the context of the blade-mounted 

camera, in order to subjectively determine the likelihood that a collision occurred. 

Zones (proximity to blade):  

 

Bird Path: As described in sub-section Trajectory Classification, section Tracking, in Chapter 5 

Contrasting object infront of blade face: Y/N 

Type of Path Contrasting Object 

Infront of Blade Face 

Zone Resulting 

Classification 

1 Y 1 Strong 

1 Y 2 Very Strong 

1 Y 3 Very Strong 

1 N 1 Moderate 

1 N 2 Moderate 

1 N 3 Strong 

2 Y 1 Moderate 

2 Y 2 Moderate 

2 Y 3 Strong 

2 N 1 Low 

2 N 2 Low 

2 N 3 Moderate 

3 Y 1 Moderate 

3 Y 2 Strong 
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3 Y 3 Strong 

3 N 1 Low 

3 N 2 Moderate 

3 N 3 Moderate 

4 Y 1 Low 

4 Y 2 Moderate 

4 Y 3 Strong 

4 N 1 Low 

4 N 2 Low 

4 N 3 Moderate 
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Appendix G: GUI Code 

The following is the code for the GUI program. This code was generated via GUIDE [47]. The raw 

figure created for the GUI is presented last. Tracking and dealing with multiple detected objects 

was adapted from [42]. 

Primary Code 
function varargout = BirdTracker_V1_1(varargin) 
% BIRDTRACKER_V1_1 MATLAB code for BirdTracker_V1_1.fig 
%      BIRDTRACKER_V1_1, by itself, creates a new BIRDTRACKER_V1_1 or 

raises the existing 
%      singleton*. 
% 
%      H = BIRDTRACKER_V1_1 returns the handle to a new 

BIRDTRACKER_V1_1 or the handle to 
%      the existing singleton*. 
% 
%      BIRDTRACKER_V1_1('CALLBACK',hObject,eventData,handles,...) calls 

the local 
%      function named CALLBACK in BIRDTRACKER_V1_1.M with the given 

input arguments. 
% 
%      BIRDTRACKER_V1_1('Property','Value',...) creates a new 

BIRDTRACKER_V1_1 or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before BirdTracker_V1_1_OpeningFcn gets 

called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to BirdTracker_V1_1_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help BirdTracker_V1_1 

  
% Last Modified by GUIDE v2.5 16-Jan-2016 17:44:52 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @BirdTracker_V1_1_OpeningFcn, ... 
                   'gui_OutputFcn',  @BirdTracker_V1_1_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
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                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before BirdTracker_V1_1 is made visible. 
function BirdTracker_V1_1_OpeningFcn(hObject, eventdata, handles, 

varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to BirdTracker_V1_1 (see VARARGIN) 
clc 
% Choose default command line output for BirdTracker_V1_1 
handles.output = hObject; 
%Remove tick marks from video plot 
set(handles.axes1,'ytick',[],'xtick',[]); 
handles.stopper = 0; 
%% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes BirdTracker_V1_1 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = BirdTracker_V1_1_OutputFcn(hObject, eventdata, 

handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  
function edit1_Callback(hObject, eventdata, handles) 
global filename 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
filename = get(hObject,'String'); 

  
% Hints: get(hObject,'String') returns contents of edit1 as text 
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%        str2double(get(hObject,'String')) returns contents of edit1 as 

a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit3_Callback(hObject, eventdata, handles) 
global CONA 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
CONA = get(hObject,'String'); 
CONA = str2double(CONA); 
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as 

a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit2_Callback(hObject, eventdata, handles) 
global MN 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MN = get(hObject,'String'); 
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MN = str2double(MN); 

  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as 

a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function edit4_Callback(hObject, eventdata, handles) 
global MT 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MT = get(hObject,'String'); 
MT = str2double(MT); 
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as 

a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in pushbutton1 (START/RESET). 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Button Controls 
set(handles.stopper,'UserData',0); 
cla(handles.axes2) 
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axes(handles.axes2) 
set(handles.axes2,'Ydir','reverse'); 
xlim([0,1920]); 
ylim([0,1080]); 
grid on 

  
global filename MN CONA MT 
%% Tracker Program 
%Launch detector 
detector = vision.CascadeObjectDetector('AlbatrossDetector3.xml'); 
%Set detector parameters 
detector.MergeThreshold = MT; 
%Launch blob analysis 
blob = vision.BlobAnalysis; 
blob.AreaOutputPort = false; 
blob.BoundingBoxOutputPort = false; 
blob.MinimumBlobArea = 8; 
blob.MaximumCount = 1;  
vision.KalmanFilter; %Initialize the Kalman filter 
% Setup tracks structure with fields for ID's, bounding boxes, age, 

etc.  
tracks = struct(... 
            'id', {}, ... 
            'bbox',{},... 
            'kalmanFilter', {}, ... 
            'age', {}, ... 
            'totalVisibleCount', {}, ... 
            'consecutiveInvisibleCount', {}); 
nextId = 1; 
centroidKeeper = []; 
count = 0; 
color = ['r','b','k','g','c','m','y']; 
% References to MATLAB's Multiple Object Tracking framework [42] will 

appear 
% throughout code. 
%% Load Video 
Vidin = VideoReader(filename); %Call global variable 
numOfFrames = Vidin.NumberOfFrames; 
%% loop for reading frames 
for j = 1:numOfFrames 
    hold(handles.axes2,'on') 
    if get(handles.stopper,'UserData') %Pause button 
    pause on 
    uiwait 
    pause off 
    end 
    hold(handles.axes2,'on') 
    %Read frames 
    img = read(Vidin,j); 
    framegray = rgb2gray(img); %Convert frame to intensity 
    %Detect potential birds 
    bbox = step(detector,img); %Creation of bounding box 
    [R,C] = size(bbox); %Find size of bbox struct 
    if R > 0  
    %% Combine overlapping bounding boxes (NOTE: only for two bboxes) 
    [bboxC] = bboxCombine(bbox); 
    %% Find centroids 
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    [R2,C2] = size(bboxC); 
    centroid = zeros(R2,2); 
        for i = 1:R2 
        framesect = framegray(bboxC(i,2):bboxC(i,4)+bboxC(i,2),... 

%Examine bbox sections 
                bboxC(i,1):bboxC(i,3)+bboxC(i,1));   
        level = graythresh(framesect); %Determine local threshold value 
        framesectBW = im2bw(framesect,level); %Convert section to 

binary 
        sectBW = imcomplement(framesectBW); %Birds are usually dark 

compared to background- inverse 
        centroid(i,:) = step(blob,sectBW); %Locate the centroid 
        centroid(i,1) = centroid(i,1) + bboxC(i,1); 
        centroid(i,2) = centroid(i,2) + bboxC(i,2); 
        end 
    end 
    %% Predict new locations REF: [42] (Framework) 
    for j = 1:length(tracks) 
        bboxA = tracks(j).bbox; 
        predictedCentroid = predict(tracks(j).kalmanFilter); 
        predictedCentroid = int16(predictedCentroid) - 

int16(bboxA(3:4)/2); 
        tracks(j).bbox = [predictedCentroid, bboxA(3:4)]; 
    end 
    %% Assignment cost analysis REF: [42] 
    if R > 0 
    nTracks = length(tracks); 
    nDetections = size(centroid, 1); 
    cost = zeros(nTracks, nDetections); 
    for k = 1:nTracks 
        cost(k,:) = distance(tracks(k).kalmanFilter, centroid); 
    end 
    costOfNonAssignment = CONA; 
    [assignments, unassignedTracks, unassignedDetections] = 

assignDetectionsToTracks(cost, costOfNonAssignment); 
    end 

     
    %% Updating assigned tracks REF: [42] 
    if R > 0 
    numAssignedTracks = size(assignments, 1); 
    for l = 1:numAssignedTracks 
        trackIdx = assignments(l, 1); 
        detectionIdx = assignments(l, 2); 
        centroids = centroid(detectionIdx, :); 
        bboxB = bboxC(detectionIdx, :); 
        tracks(trackIdx).bbox = bboxB; 
        correct(tracks(trackIdx).kalmanFilter, centroids); 
        tracks(trackIdx).age = tracks(trackIdx).age + 1; 
        tracks(trackIdx).totalVisibleCount = 

tracks(trackIdx).totalVisibleCount + 1; 
        tracks(trackIdx).consecutiveInvisibleCount = 0; 
        centroidKeeper(end+1,1) = tracks(trackIdx).id; 
        centroidKeeper(end,2:3) = centroids; 
        

scatter(centroids(1,1),centroids(1,2),color(tracks(trackIdx).id),'Paren

t',handles.axes2) 
        drawnow 
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        hold(handles.axes2,'on') 
    end 
    end 
    %% Updating unassigned tracks REF: [42] 
    if R > 0 
        for o = 1:length(unassignedTracks) 
            ind = unassignedTracks(o); 
            tracks(ind).age = tracks(ind).age + 1; 
            tracks(ind).consecutiveInvisibleCount = 

tracks(ind).consecutiveInvisibleCount + 1; 
            centroidKeeper(end+1,1) = tracks(ind).id; 
            centroidKeeper(end,2:3) = 

predict(tracks(ind).kalmanFilter); 
            

scatter(centroidKeeper(end,2),centroidKeeper(end,3),color(centroidKeepe

r(end,1)),'Parent',handles.axes2) 
            drawnow 
            hold(handles.axes2,'on') 
        end 
    elseif ~isempty(tracks) && R == 0 
        % this is necessary for maintaining Kalman filter when 

detections 
        % do not occur 
        for z = 1:length(tracks) 
            tracks(z).age = tracks(z).age + 1; 
            tracks(z).consecutiveInvisibleCount = 

tracks(z).consecutiveInvisibleCount + 1; 
            centroidKeeper(end+1,1) = tracks(z).id; 
            centroidKeeper(end,2:3) = predict(tracks(z).kalmanFilter); 
            

scatter(centroidKeeper(end,2),centroidKeeper(end,3),color(centroidKeepe

r(end,1)),'Parent',handles.axes2) 
            drawnow 
            hold(handles.axes2,'on') 
        end 
    end 
    %% Deleting lost tracks REF: [42] 
    if ~isempty(tracks) 
        invisibleForTooLong = 18; %was set to 15 
        ageThreshold = 25; 
        ages = [tracks(:).age]; 
        totalVisibleCounts = [tracks(:).totalVisibleCount]; 
        visibility = totalVisibleCounts ./ ages; 
        lostInds = (ages < ageThreshold & visibility < 0.1) | 

[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong; 
        tracks = tracks(~lostInds); 
    end 
    %% Create some new tracks REF: [42] 
    if R > 0 
    centroid = centroid(unassignedDetections, :); 
    for p = 1:size(centroid, 1) 
        centroids = centroid(p,:); 
        bboxA = bboxC(p,:); 
        %Create a Kalman filter object 
        kalmanFilter = 

configureKalmanFilter('ConstantVelocity',centroids,[200, 50], [100, 

25], MN); 
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        %Create a new track 
        newTrack = struct('id', nextId, 'bbox', bboxA, 'kalmanFilter', 

kalmanFilter, 'age', 1, 'totalVisibleCount', 1, 

'consecutiveInvisibleCount', 0); 
        %Add it to the array of tracks 
        tracks(end + 1) = newTrack; 
        if isempty(centroidKeeper) 
            centroidKeeper(1,1) = nextId; 
            centroidKeeper(1,2:3) = centroids; 
            

scatter(centroid(1,1),centroid(1,2),color(nextId),'Parent',handles.axes

2) 
            drawnow 
            hold(handles.axes2,'on') 
        else 
            centroidKeeper(end+1,1) = nextId; 
            centroidKeeper(end,2:3) = centroids; 
            

scatter(centroid(1,1),centroid(1,2),color(nextId),'Parent',handles.axes

2) 
            drawnow 
            hold(handles.axes2,'on') 
        end 
        %Increment the next id 
        nextId = nextId + 1; 
    end 
    end 
    %% Display the results. For next 5 lines, REF: [42] 
    if ~isempty(tracks) 
            ids = int32([tracks(:).id]); 
            labels = cellstr(int2str(ids')); 
            bboxNotation = cat(1, tracks.bbox); 
            frameNotated = insertObjectAnnotation(framegray, 

'rectangle', bboxNotation, labels); 
            framegray = im2uint16(frameNotated); 
    end 
framegray = im2uint16(framegray); 
imshow(framegray,'parent',handles.axes1) 
drawnow 

  
figureSnap = getframe(gcf); 
%writeVideo(vid,figureSnap) 
end 
%close(vid); 
% --- Executes on button press in pushbutton2 (STOP). 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.stopper,'UserData',1); 

  

  
% --- Executes on button press in pushbutton3 (Resume). 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
set(handles.stopper,'UserData',0); 
uiresume 

 

 

GUI Figure 
Below is the figure used for the GUI; this figure was created in guide [47]. The version was rolled 

to V1.2 after updating the primary tracking framework, and adding a Merge Threshold input box. 
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Appendix H: Blade Tracking Code 

In this appendix the MATLAB code for the blade tracking program is presented. Satellite functions 

proceed the main code, and are shown in the order that they are called. [57] provided guidance on 

utilizing the point tracking function. [44] gives details on the point tracking function itself. 

Primary Code 
clear all 
close all 
clc 
clf 

  
%% Kanade-Lucas-Tomasi feature tracker for the monitoring of wind 

turbine 
%blade deflection. 

  
% Functions will be used for edge finding & point tracking. 

  
% Setup video. In this case a premade video file will be loaded & 

played... 
% In the final version the video feed will be realtime 
Vidin = VideoReader('Blade_Animation_2.avi'); 
vidStart = 500; %Start later in test 
numOfFrames = Vidin.NumberOfFrames; 
markerInserter = vision.MarkerInserter('BorderColor','black'); 
%uncomment below for video writing 
%vid = VideoWriter('Blade_Animation_2'); 
%vid.FrameRate = 18; 
%open(vid) 
position = [1 50]; %Position on frame for annotation 
position2 = [1 150]; %Secondary position on frame for annotation 

  
%User input of beam length  
Length = 1068.4; %mm 
%input('Input beam length: '); 

  
%Camera information (SENTECH STC-N632 Microcamera) 
FL = 25*10^(-3); %m 
CellHorz = 6.35*10^(-6); %m 
CellVert = 7.4*10^(-6); %m 
PixelHorz = 720; %Pix (cropped by USB capture device) 
PixelVert = 480; %Pix (cropped by USB capture device) 
SensHorz = CellHorz*PixelHorz; %m 
SensVert = CellVert*PixelVert; %m 
%Calculate FOV height and width 
AngleHorz = 2*atand(SensHorz/(2*FL)); %Degrees 
AngleVert = 2*atand(SensVert/(2*FL)); %Degrees 

  
%Tip location calculations 
Height = 2*tand(AngleVert/2)*Length; 
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tipHeight = []; 
frame = []; 
tick(1,1) = 1; 
%For-loop to cycle through frames 
for num = vidStart:numOfFrames 
    frame = read(Vidin,num); %Load frame 
    framegray = rgb2gray(frame); %Convert to grayscale 
        if num == vidStart 
        [points, Tracker] = pointFinder(framegray); 
        pointsRef = min(points.Location(:,2)); %Minimum equates to 

highest vertical point on frame 
        refLine = (PixelVert/pointsRef)*Height; 
        end 
    pointsPre = pointTracker(Tracker, framegray, points); 
    points = int32(pointsPre); 
    outline = sortrows(points,1); 
    tip = min(pointsPre(:,2)); 
    tipHeightAbs = (PixelVert/tip)*Height; 
    tipHeightn = tipHeightAbs - refLine; 
    tipHeight(num-(vidStart-1),1) = round(tipHeightn,3); 
    frameNum(num-(vidStart-1),1) = num; 
    Annotized = step(markerInserter, framegray, points); 
    Notated = insertText(Annotized, position, tipHeight(num-(vidStart-

1),1), 'AnchorPoint', 

'LeftBottom','FontSize',40,'BoxColor','white','BoxOpacity',0.9); 
    imshow(Notated) 
    %uncomment below for simulated beam shape 
    %plt = plot(outline(:,1),outline(:,2)); 
    %set(gca,'Ydir','reverse') 
    %axis([0 720 0 480]) 
    drawnow 
    %uncomment below for live feed during processing 
    %hold(gca,'off') 
    %subplot(1,2,2) 
    %vid = imshow(Notated2); 
    %plot(tick(:,1),tipHeight(:,1),'k') 
    %axis([1 numOfFrames -2 25]) 
    %grid on 
    %xlabel('Frame Number') 
    %ylabel('Tip Displacement [mm]') 
    %title('Tip Displacement vs Frame Number') 
    %drawnow 
    %hold(gca,'off') 
    tick(tick+1,1) = tick + 1; 
    %uncomment below for video writing 
    %figureSnap = getframe(gcf); 
    %writeVideo(vid,Notated); 
end 
%close(vid); 
figure 
plot(frameNum(:,1),tipHeight(:,1),'k') %plot results 
grid on 
axis([vidStart numOfFrames -5 25]) 
title('Tip Height versus Frame Number') 

  
%input vibration plateus (system left untouched during testing)  
st2 = input('start 2: '); 
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nd2 = input('end 2: '); 
st6 = input('start 6: '); 
nd6 = input('end 6: '); 
st10 = input('start 10: '); 
nd10 = input('end 10: '); 
st20 = input('start 20: '); 
nd20 = input('end 20: '); 
%Average values in that region 
Ave_2 = sum(tipHeight(st2:nd2,1))/size(tipHeight(st2:nd2,1),1) 
Ave_6 = sum(tipHeight(st6:nd6,1))/size(tipHeight(st6:nd6,1),1) 
Ave_10 = sum(tipHeight(st10:nd10,1))/size(tipHeight(st10:nd10,1),1) 
Ave_20 = sum(tipHeight(st20:nd20,1))/size(tipHeight(st20:nd20,1),1) 

 

Satellite Functions 

pointFinder 

This function locates points on the blade, and initializes the point tracking process. [57] provided 

guidance on using the point tracking function. [44] gives details on the point tracking function 

itself. 

function [points, Tracker, validity] = pointFinder(framegray) 
%allow user to specify bbox 
subplot(1,2,1) 
imshow(framegray); 
rect = imrect; %Specify bbox 
drawnow 
wait(rect); %Wait for user input 
bbox = getPosition(rect); 
bbox = int32(bbox); 
points = detectHarrisFeatures(framegray,'ROI',bbox); %find points 
points = points.selectStrongest(8); 
Tracker = vision.PointTracker('NumPyramidLevels',2);  
initialize(Tracker, points.Location, framegray); 
markerInserter = vision.MarkerInserter('BorderColor','white'); 
pointsToTrack = int32(points.Location); %Convert to integer (pixels) 
Annotized = step(markerInserter,framegray,pointsToTrack); 
hold on 
subplot(2,1,1) 
imshow(Annotized) 
drawnow 
hold on 
validity = zeros(size(points.Location,1),1) + 1; %Validity of one 
end 

pointTracker 

This function steps the point tracking algorithm, and checks the validity of the remaining points. 

[57] provided guidance on using the point tracking function. [44] gives details on the point 

tracking function itself. 
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function [points, validity] = pointTracker(Tracker, framegray, points, 

validity) 
    if size(points,1) >= 2 
        [points, validity] = step(Tracker, framegray); %Step function 
        DelInd = find(validity ~= 0); %Find points to keep 
        points = points(DelInd,:); %Keep valid points 
        if ~isempty(points) 
        setPoints(Tracker,points); %Continue with valid points 
        else 
        disp('Need to recalibrate') %No more valid points 
        end 
    else 
        disp('Need to recalibrate') 
        %Here lies the future location of recalibration 
    end 
end  
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Appendix I: Blade Tracking Results 

The results of the blade tracking trials are presented here. Shown for each trial are the average 

values for each displacement. Proceeding the results, the statistical analysis is shown, which 

includes standard deviation and t-testing. 

Tip Deflection 

Trial 1 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.99 6.05 10.17 21.45 mm 

Trial 2 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.74 5.33 9.30 20.59 mm 

Trial 3 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.85 5.71 9.84 21.04 mm 

Trial 4 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.65 5.62 9.63 20.06 mm 

Trial 5 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.66 5.40 9.17 20.45 mm 

Trial 6 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.80 5.58 9.33 20.67 mm 

Trial 7 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.79 5.56 9.58 20.82 mm 

Trial 8 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.68 5.57 9.55 20.50 mm 
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Trial 9 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.76 5.64 9.85 21.00 mm 

Trial 10 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.86 6.01 10.03 21.30 mm 

Trial 11 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.52 5.28 9.03 19.92 mm 

Trial 12 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.92 5.83 9.86 19.83 mm 

Trial 13 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.99 6.02 9.92 21.25 mm 

Trial 14 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.71 5.67 9.59 21.13 mm 

Trial 15 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.46 5.51 9.69 20.99 mm 

Trial 16 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.69 5.83 9.81 20.97 mm 

Trial 17 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

2.08 6.02 9.99 21.27 mm 

Trial 18 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.85 5.85 10.05 21.32 mm 

Trial 19 
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True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.67 5.28 9.35 20.75 mm 

Trial 20 

True Value: 

  

2 6 10 20 mm 

Estimated Value: 

  

1.55 5.34 8.96 20.36 mm 

 

Below is the statistical analysis for the blade deflection program. Note that the final P values for 

each displacement were significantly low, so the null hypothesis that there is no difference between 

the means and measured values can be rejected. P values were obtained from GraphPad [58]. 

Disp. 

(mm) 

Averages 

(mm) 

Std Dev 

(mm) 

2 1.76 0.16 

6 5.65 0.26 

10 9.64 0.35 

20 20.78 0.48 

 

Confidence Intervals (99%) 

Disp. 

(mm) 

Stdev 

(mm) 

Alpha Smpl Size Confid. 

(mm) 

2 0.16 0.01 20 0.104534 

6 0.26 0.01 20 0.164123 

10.00 0.35 0.01 20 0.224033 

20 0.48 0.01 20 0.306322 

 

Disp. 

(mm) 

T-Value P Value 

2 -6.52479 <0.0001 

6 -6.01643 <0.0001 

10 -4.65887 0.0002 

20 7.319152 <0.0001 

 


