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The problem of simple mathematical models of laminar natural convective

flow within a long vertical parallel-plate channels and circular tubes kept at

uniformly heated walls is revisited to seek a clear physical understanding of heat

transfer mechanisms. A series solution method to analyze the fully developed flow

and an integral solution method to analyze the developing flow are used. Chapters
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The channels and circular tubes considered here are assumed to be

sufficiently long to yield a fully developed flow thermally as well as

hydrodynamically before the exit is encountered. In such fully developed flow

situation, the fluid mass flow rate naturally induced into the channel due to

buoyancy is found to be a function of the wall heating condition. The predicted

average Nusselt number as a function of GrPrD/L not only agrees with the existing
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literature but also is found to be in a functional form comparable to that proposed

by Elenbaas (1942 a and b). Our results show that, in spite of being driven by

buoyancy (rather than by a pump or a blower), the flow and heat transfer

characteristics in the fully developed regime are essentially the same as those of

fully developed laminarforced convection in which the flow is externally driven.

This observation is confirmed to be valid also in the study (Chapter 5) of

laminar natural convection in the developing (entrance) region within a long

vertical parallel-plate channel and circular tube. The mass flow rate, which has to

remain invariant with axial location even in the entry region, is determined by the

flow in the fully developed region. This is the same mechanism involved in forced

convection in which the fluid outside the developing boundary layers (i.e. the core

flow) is forced to accelerate in the entrance region. The entrance length of channel

natural convection is also discovered to be about the same as that in forced

convection.
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LAMINAR NATURAL CONVECTION WITHIN LONG VERTICAL
UNIFORMLY HEATED PARALLEL-PLATE CHANNELS AND

CIRCULAR TUBES

CHAPTER 1: INTRODUCTION

1.1 The Problem

This dissertation deals with certain problems of laminar natural convection

heat transfer within long vertical uniformly heated parallel-plate channels and

circular tubes. The topic of natural convective heat transfer in vertical parallel plate

channels and in circular tubes has been studied for over six decades. Wall(s) of the

channel or tube may be at a specified constant and uniform wall temperature or

wall heat flux. More recent applications of this topic have recently emerged in

modem equipment and devices such as in nuclear reactors, solar panels, cooling in

buildings, and electronic circuit boards. Even though forced convection is usually

a main method of removing excessive heat in such applications, natural convection

is always present to some extent. In most situations, natural convection alone is

perhaps preferable for carrying out the cooling since the process is spontaneous,

simpler, and requires no compressors, fans, blowers, or pumps.

In forced convection, the mass and momentum equations can be solved for

the flow distribution before embarking on the solution of the energy equation.



Laminar and turbulent forced convection in channels have been studied for over a

century and the associated physics of flow and heat transfer are well understood. In

contrast, and, in spite of many studies on the subject, the physics of the pure natural

convection process within vertical channels or tubes is not fully understood even in

the laminar regime. Since the flow in natural convection is a consequence of the

non-uniformity in the density field as caused by the temperature distribution, the

flow and energy problems are coupled, whence the complexity of natural

convection. Closed-form solutions of natural convection, if any, are difficult to be

acquired. Analytical modeling for such a flow, therefore, calls for reasonable

simplifications and approximations and some accuracy is prone to be sacrificed.

Our goal in this thesis is to seek solutions to the problem of natural

convection heat transfer in vertical ducts.

1.2 Background

The pioneering work on the topic of natural convection in a vertical channel

(formed by two parallel plates separated by a distance D) was carried out by

Elenbaas (1942a). A semi-empirical correlation of the average Nusselt number as a

function of one parameter the product of Grashof and Prandtl numbers over the

aspect ratio of the parallel plates (Or Pr D/L) has been proposed and confirmed

by experimental data. A similar relation for natural convective flow in a vertical



3

circular tube has also been suggested in a subsequent paper (Elenbaas, 1942b).

These two papers of Elenbaas have been referred to, debated, criticized, discussed,

and extended in numerous investigations which followed over the decades.

The geometric configuration studied by Elenbaas, as shown in Fig. 1.1, is a

vertical channel formed of two very wide parallel plates separated by a distance D

(or tube of circular cross-section with diameter D). The words "channel", "pipe",

"duct", and "tube" are henceforth used in the present work synonymously unless a

specific distinction is called upon. The channel length extends from x 0

(entrance) to x = L (exit). The (radial) coordinate, normal to the axial, is denoted

by r. r = 0 represents the axis, or plane of symmetry, while r = R D/2 represents

the inside surface of the channel. The local acceleration due to gravity is g. This

channel is situated in an infinite chamber of quiescent air at a temperature T and a

pressure P. The ambient pressure varies hydrostatically with height x. The

channel walls are symmetrically kept at a uniform temperature T (larger than T).

This prescribed inner surface temperature boundary condition is henceforth denoted

as the UWT condition. (In contrast, if the channel walls are kept at a

constant/uniform heat flux boundary condition, we denote it as the UHF condition.)

The finite positive temperature difference (T-T) produces density differences in

the air; an upward flow is induced gravitationally within the channel. At the inlet,

boundary layers develop over the two walls. Theories of free convection over an

isolated single wall may fail to satisfactorily describe the interaction between these

boundary layers developing within the channel. If the channel is sufficiently long,



U0 T,

Figure 1.1 Channel configuration and coordinate system

il1(s)



the boundary layers merge at the plane (or axis) of symmetry at some value of x.

Characteristics of the natural convection flow within the channel depend on the

non-dimensional parameter Gr Pr D/L where Grashof, Gr, and Prandtl, Pr,

numbers are defined as usual as

Vg(TW_L)D3
(1.1) Pr= (1.2)

v2 cx

Where 3 is coefficient of fluid thermal expansion, v is fluid kinematic viscosity,

and a is fluid thermal diffusivity.

. Short Channel:

A specified high Gr Pr D/L, represents flow in a short channel (i.e. small

LID) due to strong heating (i.e. high Gr). In this situation, sketched in Fig. 1 .2a, the

boundary layer on one side of the channel has relatively small effect on the one

developing over the opposing surface. The boundary layers may not merge at or

before x = L in this short channel; the mass flow rate is an unknown. Unlike forced

convection in a channel, the flow characteristics in this short-channel case result

from the laminar natural convection flows over each of the two vertical uniformly

heated plates facing each other. As a corollary, as shown in Fig. 1 .2a, the velocity

distribution is doubled-peaked over a channel cross section. These profile

distributions on each side of the flow axis symmetry are similar to those that occur

in the laminar natural convection flows over a vertical uniformly heated plate. If

the channel is short enough such that the interaction between the boundary layers is



Tw>Tc0

x=L

x0

Figure 1 .2a Qualitative radial (r) temperature and velocity distributions at various
values of axial (x) distance from the inlet for limiting case: wide and short channel,
(i.e., high GrPrD/L).
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not well established, the fluid temperature and velocity distributions will approach

the asymptotic limit of flow over a vertical uniformly heated plate

Long Channel:

The characteristics of flow are different when the specified Gr Pr DIL is

low. In this second limiting case, the channel is either very long (i.e. high LID) or

is weakly heated (i.e. low Gr). In this case, as sketched in Fig. 1 .2b, the mass flow

rate is maximum. Again and similar to forced convection, there are two flow

regimes within the channel; (a) near the entrance, there exists a developing region

where the flow and thermal boundary layers gradually develop to merge at the

plane (or axis) of symmetry; and (b) a fully developed region where velocity and

temperature profiles across the channel are unchanging in relative shape. It will be

later shown in Chapter 5 that flow in this fully developed region stipulates the

maximum mass flow rate.

Recalling from Prandtl's boundary layer theory, for air (Pr 0.72), the

heating effect would penetrate into the fluid flow faster than would the friction

effect; therefore, thermal boundary layers reach the channel's axis or plane of

symmetric slightly sooner than the hydrodynamic (viscous) boundary layers do.

The region between x = 0 and the value of x at which the thermal boundary layers

merge (i.e. thermally developing region) shall henceforth be termed the first

entrance region.
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x=L

x=Lh

x = L

x0

Uniformly
heated wall(s)
T=T (>T)

Second entrance region

First entrance region

Figure 1 .2b Qualitative radial (r) temperature and velocity distributions at various
values of axial (x) distance from the inlet for limiting case of narrow and long
channel, (i.e., low GrPrD/L). Lh is hydrodynamic developing length, L is thermal
developing region length.
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At the end of this region, the temperature distribution T(r) across the

channel cross section will be developed in shape whereas the velocity distribution

u(r) may not be yet fully developed. In the subsequent flow, transverse diffusion

will transform the developing velocity distribution into the well-known Poiseuille

parabolic distribution in laminar flow in a channel. This region (in which the flow

confines to develop into the Poiseuille pattern) shall henceforth be termed as the

second entrance region. Its length is expected to be much smaller than that of the

first region since the fluid Prandtl number is close to unity. Following the two

entrance regions, the flow is fully developed both thermally and hydrodynamically.

For the UWT boundary condition, simplified mathematical models with

adjustments to deal with limiting cases form the basis of the following heat transfer

correlations as proposed by Elenbaas (1942a and b). The simplifications are so

severe that many later authors called these correlations as "semi-empirical".

Nu is the Nusselt number (to be defined and discussed in Chapter 2) and generally

correlated as

i( 2A ) GrPrDj1 K liDP" L
/ "3

p[

/ / 4

KEb L
[

EbJ
GrPrDJ]1

(1.3)

which is an average value over the duct length. A is the duct cross-sectional area

and P is the duct perimeter. KEb is a constant obtained from an analysis of the

flow at extreme limits and found to be 24 for the parallel-plate channel and 16 for

circular tube. To match Eq. (1.3) with the experimental results, constants CA and

CB are arbitrarily chosen to be 3/4 and 1, respectively. For parallel-plate channels
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Elenbaas (1942b) also reported that using CA as 1 and CB as 3/4 also yield good

agreement with experimental data within 10 such that

-.3/4

35L '\I_iGrPrD[ijj
(1.4a)

24 L [

For a circular tube, Eq. (1.3) gives

= _L Gr Pr D [1_ ex[_
1 6' 8L

(1 .4b)
128 L GrPrD

,Jj

For the case of a very long channel, L/D is sufficiently large such that Nub then

becomes GrPrD/(24L) for UWT parallel plates and GrPrD/(32L) for UWT circular

tube. However, these numbers serve as the asymptotic values for the case of a long

channel only. They represent the convective heat transfer coefficients of the fluid

when the fluid temperature is very close to the channel wall temperature, implying

that the heating is almost complete; therefore, they do not really describe any

physics of the flow.

The coupled equations of momentum and energy governing pure natural

convection are generally solved by a variety of approaches ranging from simplified

analyses to numerical analyses. With the advent of the digital computer, the

problem of natural convection in vertical channels and tubes has attracted renewed

attention in the recent literature, as authors have attempted to validate the work of

Elenbaas. (see, for instance, Bodia and Osterle 1962, Aung et al. 1972, and

Ramanathan and Kumarl99l.)
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Numerical methods lead to solutions of complex engineering problems. The

mathematical problem is correctly formulated first in terms of the conservation

equations, constitutive relations, and boundary conditions, even if in greater detail

usually than what is necessary. These equations are then discretized by using finite

difference or element techniques. Then, an algorithmic flow chart is developed for

a computer program. The numerical solution is processed in the back-end into

instructive and impressive tabular and graphical output which is interpreted by the

investigator. However, it is fair to recognize that resorting to a numerical method

too early in a study generally leads to a sacrifice of the deeper physical

understanding of the processes involved.

Churchill and Usagi (1972) proposed a way of combining the extreme

limiting cases: the long narrow channel and the short wide channel, to obtain the

characteristics in between. A series of publications exploiting this notion are

available; see, for example, Raithby and Hollands, 1975, Bar-Cohen and

Rohsenow, 1984. Even though much literature of this sort exists, a thorough

understanding of the physics of the flow and heat transfer, and of the interactions

among relevant transport mechanisms is lacking. In this dissertation, we seek a

clear physical understanding of the mechanisms of naturally induced flow and heat

transfer in vertical channels and tubes. To accomplish this goal, we apply

boundary layer theory, a series solution method, and integral methods ofsolutions

to the problems. The governing equations of the considered system remain

complex even after making several reasonable simplifications and approximations.
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Numerical schemes appear to be unavoidable. However, the use of numerical

analysis are limited in this work and used only when absolutely necessary (i.e.,

when no other paths of analysis seem feasible). The numerical procedures

employed are kept as simple as possible while yet delivering acceptable accuracy

for comparison with previous work. The results, especially of the heat transfer, is

then compared with existing work and discussed.

1.3 Outline of this Dissertation

Following the present introductory chapter, several preliminary concepts

and definitions are introduced and reviewed in Chapter 2. The Series Solution

Method for fully developed flows is validated in Chapter 3 by applying it to forced

convection channel/pipe flow with UWT and UHF boundary conditions. (The

method offers an alternative to the iterative method to solve UWT laminar pipe-

flow forced convection problems available in most of the convective heat transfer

textbooks.) Once thus validated, the Series Solution approach similar to what is

done in Chapter 3 is used in Chapter 4 to study the characteristics of fully

developed pure natural convection in vertical plate channels as well as pipes with

UWT and UHF boundary conditions. Using the flow characteristics in the simpler

fully developed flow regime, the developing boundary layer regime of the flow

near the inlet of the long vertical channel/tube is analyzed in Chapter 5 for the
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parallel-plate channel and tube flow with UWT boundary condition by employing

the boundary layer theory and integral method of solution. This developing region

problem for UHF boundary condition is yet to be solved. Chapter presents a

summary of work done here and directions for future work.
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CHAPTER 2: PRELIMINARIES

To facilitate a clear and unambiguous discussion of the problem of laminar

natural convection within a channel or tube, certain basic definitions and concepts

are presented.

2.1 Mass Conservation and Bulk Velocity of Flow

Consider a flow in a uniformly heated parallel-plate channel/circular tube.

For steady state flow, conservation of mass requires that the mass flow rate in the

channel/tube be constant with respect to x, the axial coordinate. This constant mass

flow rate is related to the local velocity distribution u(x,r) at any given value x by

th j pu(x, r)dA (2.1)

where A is a cross-sectional area of channel. To represent a constant mean value

for velocity distribution u(x,r) at any given value x, one defines the bulk (average)

velocity, Ub as

th
ub =

pA
L pu(x, r)dA

pA
(2.2)
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For incompressible flow, Ub is a constant with respect to x and leads to the

following alternative expression for mass conservation:

If \/ j( u l( r
d1--=-- (2.3)

iJjiJ R) 2

where the index values j = 0 and 1 stand for parallel-plate channel and circular

tube respectively. This relation holds in both developing and developed regimes,

regardless of whether the flow is laminar or turbulent and is forced or natural.

2.2 Overall Energy Conservation and Bulk Temperature of Flow

The arguments of section 2.1 also apply to the energy equation. Since the

fluid temperature is possibly dependent on both x and r coordinates, its average

value is of a practical interest. The bulk or mean fluid temperature Tb at a given

cross section is defined in terms of the thermal energy convected by the fluid at any

given cross section. Consider a differential length dx of the heated channel as

shown in Fig. 2.1 and write energy equation balance for this fluid element:

Pdx = IhCPdTb, (2.4)

where Tb is bulk (or average) temperature of fluid (to be formulated below) and P

is channel perimeter. is the heat flux at the channel wall. In essence, this



1 6

t tf
th

:+dx

'rw

Figure 2.1 Energy balance in a segment of length dx in a channel or tube
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equation says that the heat transferred through the periphery area, Pdx, is equal to

the differential increase in the enthalpy rate in the flow. The local bulk temperature

Tb(X) is related to the local temperature distribution T(x,r) as to convey the local

rate of enthalpy flow in the local velocity distribution u(r). This can be express by

the equation

Ii1CP(Tb (x) Tref)
A

r) Tref )CdA (2.5)

where Tref is any chosen reference temperature. Thus, the fluid bulk temperature is

defined as

fpu(r)(T(x, r) Tref )CdA
(2.6)ATb(x)Tref

PubACCP

The numerator on the right hand side is the enthalpy flow rate in the entire channel

cross-section at any x as it is distributed over r. The denominator is the heat

capacity flow rate. For incompressible flow, this leads to another form of the

energy equation, analogous to Eq. (2.3),

1 / (T(xr)-Tref)(rJd(rl (2.7)
L'Iu Tb(X)Tref ii R) 2

Bulk temperature variation with x can be obtained from an integration of

Eq. (2.4). If the channel wall(s) is at an UHF boundary condition, (i.e., a constant

uniform heat flux into the fluid from the channel wall is specified) integration leads

to
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Tb Tb x (2.8)
mC

where Tb1 is the uniform inlet temperature at x 0.

For an UWT boundary condition, (i.e., constant, uniform channel wall

temperature is specified), from Newton's law of cooling, the wall heat flux is

written in terms of the fluid bulk temperature as

= h1,(T,, Tb) (2.9)

to define the heat transfer coefficient hb. The corresponding Nusselt number is

defined as NUb hbD/k. The bulk temperature variation with x is then obtained by

inserting Eq. (2.9) into Eq. (2.4). Separating variables and integrating from the

channel inlet to the outlet gives

hbPw
Tb = T (T T )exP[_

thc
J

(2.10)

where hb is an average over the length x = 0 to L, defined as

hb J1Tb (2.11)

These relations hold for any steady flow in both developing and developed regimes,

for laminar as well as turbulent flow and for forced as well as natural convection.

We note from Eq. (2.2) that while the fluid bulk velocity is invariant with x

respect to x to satisfy the conservation of mass because the channel wall(s) is (are)

impervious, in contrast, the fluid bulk temperature Tb is not a constant with respect

to x. It increases with x due to the heating of the fluid from the channel wall. The

temperature of the fluid within a UWT channel, therefore, increases as a function of
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x and r coordinates. Eventually, when heating in the channel is fully done, the fluid

temperature T(x,r) becomes uniform over the entire cross section in equilibrium

with the wall temperature. However, for the flow within a UHF channel, heating is

never complete as long as the fluid does not reach the end of the channel and as

long as the fluid does not change phase.

2.3 Fully Developed Flow Criterion

Near the entrance, as the effects of viscosity and the thermal conductivity

diffuse from the channel wall(s), the boundary layers within a uniformly heated

channel gradually develop as a function of x as the flow advances forward into the

channel. If the channel/tube is long enough for the effects to penetrate to a plane

(or axis) of symmetry, the flow then reaches its fully developed regime in which

the relative shapes of velocity u(r) and temperature T(r) remain unchanging with x.

The flow velocity profile in comparison with some reference value (herein using

fluid velocity at the channel wall u) then remains invariant in the fully developed

region:

(u(x,r)u =0 (2.12)
ubuW )FD

This implies that the (u-u)/(ub-u) is a function of r only in the fully developed

flow regime. Since the fluid bulk velocity is a constant to keep a mass flow rate Iii

constant and the reference value at the channel wall u is zero due to the no-slip



condition, Eq. (2.12) is generally stated in heat transfer textbooks and papers

simply as ôu/Ox =0. The velocity profile u(r) is invariant with x in the fully

developed flow. Together with conservation of mass, this leads to the conclusion

that the fluid lateral motion is absent in a fully developed flow regime, if the walls

are impervious. In the laminar case this is denoted at "Poiseuille flow".

In a similar way, the fluid temperature profile T(x,r) at any axial distance x

can be related to the channel wall temperature T and its mean (bulk) value Tb in

the form of

T(x,r) T(x)
Tb(x)TW(x)

The non-dimensional and normalized temperature 0 becomes independent of x

when the flow is fully developed (Kays, 1980). In spite of the fact that the

temperature profile continues to change with x due to continuous heating, the

relative distribution shape remains unchanging with x. Hence, the condition for

thermally fully developed flow can be stated as

ô (T(x,r)T(x)' =0 (2.13)
Tb(x)TW(x) JFD

Following the analogy between flow and heat transfer this condition for

thermally fully developed flow has been incorrectly stated in several existing work

as ÔT/ôx = 0. This wrongly implies that a fully developed temperature profile is no

longer a function of x coordinate. As mentioned above, in a UWT channel, the

only situation in which the flow temperature is invariant with x is when the heating

is complete, i.e. the fluid is in thermal equilibrium with the channel wall. The
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convection heat transfer coefficient calculated from the complete heating region has

no meaning and reveals no essential physics since heat convection from the channel

wall to the fluid is no longer present. Some of the previous investigations of the

flow within the channel used a complete heating condition, oT/ax = 0, instead of

Eq. (2.13), e.g. Kageyama and Izumi, (1970), Davis and Perona (1971) and Aung

(1972). It is even more confusing (as discussed by Yao, 1987) when the complete

heating condition is used for the fully developed flow within a UHF channel in

which fluid temperature profile is not possibly independent of x coordinate but, in

fact, keeps increasing as the flow advances forward. Eq. (2.13), therefore,

introduces and provides more reasonable condition for such a fully developed flow

within uniformly heated channel. Its powerful meaning is that the normalized

"shape" of the temperature distribution is unchanging with x.

Several characteristics of a fully developed flow are recognized from the

thermal condition for fully developed flow, Eq. (2.13). From Newton's law of

cooling, Eq. (2.9) and Fourier's law of conduction, = -kaTar at r =R, the local

Nusselt number can be written as

h=b (T Tb)

hbD D
2 (2.14)

(T Tb)ôrR

As 0 is invariant with the x coordinate in the fully developed flow regime, the

derivatives of 0 with respect to r are also independent of x. It follows from Eq.
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(2.14) that hb and Nub are constants independent of both x and r for a fully

developed flow. This conclusion holds for forced as well as free convection and

for laminar as well as turbulent flow within a channel for all wall-heating

conditions.

Carrying out the differentiation in Eq. (2.13) leads to a relation between the

derivatives (with respect to x) of fluid temperature T(x,r), bulk temperature, and

channel wall temperature as the following,

(2.15)
ax dx dx

For UWT channels (T is a constant), this further simplifies to

2J =.!iI (2.16)
dx dx FD

For flow within UHF channels, Eq. (2.9) shows that dTb/dx = dT/dx. Then, from

Eq. (2.15), aT/ax = dTWdx so that

=O(r)1! (2.16a)
axFD dxFD

2.4 Results for Fully Developed Forced Convection within a Uniformly Heated
Channel

In the developing region of a uniformly heated parallel-plate channel or

circular tube for forced convection, the velocity distribution of the flow can be

determined before attacking the energy equation to obtain the temperature
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distribution. This does not make finding the solution for the developing flow any

easier since both the velocity and temperature fields depend on x and r. The UWT

circular tube problem was solved by Graetz in the late nineteenth century.

Neglecting axial heat diffusion he solved the energy equation: (a) in 1883 by

assuming velocity profile to be uniform across the cross-section (i.e. slug or plug

flow) appropriate for low-Pr fluid; and (b) in 1885 by assuming the velocity

distribution is given by a Poiseulle flow. The details of the analyses will not be

repeated here but can be found in several heat transfer textbooks (e.g. Shah and

London, 1978 and Kays and Crawford, 1980).

In the fully developed flow region, the functions u(x) and T(x,r) are

relatively much simpler than in the developing flow. Eq. (2.12) can then be applied

to the equation of momentum. Setting the lateral velocity component equal to zero

in this region, the fully developed velocity profile (Poiseuille flow) is

2

(2.17)
u0

K1 is 1.5 and 2 for parallel-plate channel and circular tube, respectively, and u0 is

the fluid bulk velocity at the inlet.

Using the condition for thermally fully developed flow stated in Eq. (2.13)

or Eq. (2.15), and the Poiseuille velocity profile from Eq. (2.17), the energy

equation can be solved analytically for the case of UHF channel problem. The

UWT problem, however, can be solved only by invoking successive

approximations for the temperature profile. Details of this iterative calculation are
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well known and can be found in most of heat transfer textbooks. Introduce in the

following section, we show in Chapter 3 an alternative to this method of successive

approximations. The method will be validated in Chapter3 and used in Chapter 4.

Heat transfer to a fully developed flow is then calculated from a temperature

distribution obtained from the energy equation. The result is usually given as the

Nusselt number defined in Eq. (2.14). Table 2.1 gives a summary of the local

Nusselt number results.

It is worth noting that the local Nusselt number, NUb, is defined here based

on the physical channel spacing or tube diameter, D. This definition differs from

the prevailing literature which uses the "hydraulic diameter" as the characteristic

dimension for ducts of noncircular cross-section. The use of "hydraulic diameter"

in heat transfer has recently attracted much criticism. (See Oosthuizen and Naylor,

1999, pp. 178). Our choice to use the separation distance D of the parallel plates

forming the channel is based on its close analogy to the diameter of a tube of

circular cross-section and on the closeness of the so expressed Nusselt number Nub

displayed in Table 2.1. The NUb for a parallel plate channel is a mere 3 percent

higher than that for a tube of circular cross-section with UWT boundary condition

and only 5.5 percent smaller with a UHF boundary condition. The only factor that

makes heat transfer from uniformly heated parallel-plate channel to fluid flow

much larger than that from uniformly heated circular tube is the difference in the

channel perimeter area.
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Table 2.1 Local Nusselt number, Nub hbD/k = D I[(k(T Tb)] for fully
developed laminar forced convective flow within uniformly heated channel and
tube

Geometry UWT UHF

3.77 4.12/D
/

3.66 4.36

There are a several other ways to define the heat transfer coefficient

depending on the particular temperature difference used in Newton's law of

cooling. For example, one can use the difference between the wall temperature and

the temperature at the axis. Another temperature difference used in previous

investigations (including in Elenbaas's work, 1942a and b) is the wall-to-inlet

temperature difference (T-T) so that the corresponding Nusselt number Nuc, is

defined as

(T T )k
(2.18)

A corresponding average Nusselt number is also defined as

Nu = -- Jhdx (2.19)
k kL0
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2.5 A Series Solution Method

The series Solution Method (Power Series Method) is well known as a

powerful technique having a great utility in solving transport problems in which

ordinary differential equations arise in the form of

4+P1(x)+P2(x)y=o (2.20)

The general solution of this equation is

y(x) = Ayi(x)+By2(x)

where yi(x) and y2(x) are linearly independent unknown functions and A and B are

constants to be found.

The method is an effective way to solve linear ordinary differential

equations with variable coefficients by using a convergent power series expressing

the value of the dependent variable y in terms of the independent variable x to any

required degree of accuracy. It can be used to determined I linearly independent

solutions where I is the order of the ordinary differential equation. Hence, the

fundamental assumption made in solving the second-order ordinary differential

equation Eq. (2.20) by the series solution method is such that the solution of the

differential equation can be expressed in the form of a power series,

y=c(xx0)=c0+c1(xx0)+c2(xx0)2+... (2.21)

where c0, c1, ... are constant coefficients of the series and x0 is a constant called the

center of the series.
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If the assumption is valid, the coefficients c0, Cl, ... are determined in such a

manner that Eq. (2.21) does indeed satisfy Eq. (2.20). However, the conditions

under which this assumption is valid remain to be established and discussed below.

The basic definition and theory related to the power series solution method are

introduced in the following.

2.5.1 Basic concepts of power series

Recall from calculus that a power series in the form of Eq. (2.21)

f(x) c(x x0) (2.22)

always converges at x = xo to the sum c0. It may converge only at this point ,or for

all values of x or there may be a positive number R such that the series converges

absolutely for x-xoj <9 and diverges when Ix-xoI > R. The number 91 is called the

radius of convergence of the power series. The interval of convergence, which may

include one or both endpoints x- x0 = ±91. The radius of convergence is mostly

obtained from either a ratio test

or the root test (Kreyszig, 1993)

(2.23)
n-*

n+I

1
91= (2.24)

limn/
fl-)O
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Hence, a power series in Eq. (2.22) defines a function f(x) whose domain is

the interval of convergence. The value f(x) at each point x is the sum of the series

at the point x. It can be shown that if a series f(x) has the radius of convergence R,

then termwise integration and differentiation are valid for every points x E (xo -R,

xo+R).

2.5.2 The existence of power series solutions

The remaining important question is whether a differential equation, Eq.

(2.20) has a power series solution at all. The existence of power series solution

depends on whether the center of the series x0 is an ordinary point or a singular

point.

The point x0 is classified as an ordinary (regular) point of the differential

equation, Eq. (2.20), if all functions P(x), n = 1, 2, are analytical at x0 meaning that

they can be represented by a power series in powers of (x-xo) with some non zero

radius of convergence 9. (Thus, P(x) is called an analytic function.) If at least

one of these functions is not analytic at x0, then xo is called a singular point of the

differential equation. However, if functions defined by (x-xo).Pi and (x-xo)2.Pi are

analytical at x0, then x0 is called regular singular point. A singular point that is not

regular is called otherwise irregular.



. Solutions about an Ordinary Point

If all variable coefficients, Pa's, in Eq. (2.20) are analytic at x = xo then

every solution of Eq. (2.20) is also analytic at x0 and can thus be represented by a

power series in powers of(x- xo) in a form of Eq. (2.21) with some radius of

convergence R>0:

y =Ay1(x)+By2(x)=c(xx0) (2.21)

where A and B are arbitrary, and yi(x) and y2(x) are now linearly independent

series solutions which are analytic at x0. Further the radius of convergence for each

of the series solutions yi(x) and y2(x) is at least as large as the minimum of the radii

of convergence for the series for P1 (x) and P2(x).

Power series expansions for dy/dx and d2y/dx2 are then obtained by

differentiating Eq. (2.21) term by term:

= nc(xx0)'' +2c2(xx0)+3c3(xx0)2 +... (2.25)
X n=O

=2c2 +3.2c3(xx0)+4.3c4(xx0)2 +... (2.26)

and these series are substituted back into the given differential equation. Collecting

the term involving similar powers of x, ones then obtain Eq. (2.20) in a form

k0+k1(xx0)+k2(xx0)2+...k(xx0)=0 (2.27)

where the coefficients k0, k1, k2, ... are expressions involving the unknown

coefficients c0, c1, c2 ..... Since Eq. (2.27) must hold for all values of x in the

specified domain, all coefficients k0, k1, k2, ... must be zero. It is then possible to
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determine the coefficients CO, c1, c2..... , successively. This leads to a set of

conditions which must be satisfied by the various coefficients c11 in the series in

order that Eq. (2.21) be a solution of the differential equation, Eq. (2.20). If the c

are chosen to satisfy the set of conditions which thus occurs; mostly, in terms of a

recurrence formula, then the resulting series, Eq. (2.21) is the desired solution of

the differential equation, Eq. (2.20).

. Solutions about Singular Points; Method of Frobenius

However, if x0 is a either a regular or irregular singular point, the power

series solution may not have a solution in a form of Eq. (2.21). It happens that

under the condition that x0 is a regular singular point of Eq. (2.20), then the

differential equation has at least one non-trivial solution of the form

y =(x_xo)mc(x_xo)n, (2.28)

where m is a constant which is to be determined and this solution is valid in some

deleted interval Ix-xoI <R about x0. The procedure to solve for ce's is mostly

similar to that previously introduced above and it is known as the Frobenius or

extended power series method. The resulting Eq. (2.27) takes the form

k0(x _0)m4 (xx )Ifl+q+I +k2(xx0) m++2 = 0 (2.29)

where q is a certain integer obtained in the process and the coefficients k0, k1, k2,

are functions of m and certain of the coefficients c of the solution. For Eq. (2.29)

to be valid at all x on the interval of convergence, k0, k1, k2, ... must be zero. Upon
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equating to zero the coefficient k0 of the lowest power m+q of (x- xo), an equation

for m is obtained, called the indicial equation of the differential equation. Thus the

unknown constant m is determined. Roots of the indicial equation, m1 andm2

where m1 m2, are called the exponents of the differential equation and are the

only possible values for the constant m in the assumed solution, Eq. (2.28). One

then equates to zero the remaining coefficients k1, k2, ... and are led to a set of

conditions involving constant m, which must be satisfied by the various

coefficients c in the series. There are three cases to consider for the case of 2nd

order linear ordinary differential equation. Recall that the solution is in the form of

y(x) = Ayi(x)+By2(x). It the follows that

Case 1. Distinct roots, m = m1 and m2, not differing by an integer.

Solutions are

and

and

y1(x)=(x_x0)ml(co +c1(xx0)+c2(xx0)2 +...) (2.30)

y2(x)=(x_xo)m2(Co +C1(xx0)+C2(xx0)2 +...) (2.31)

Case 2. Double root m1 = m2 = m. Solutions are

y1(x) =(X_X0)m(C0 +c1(xx0)+c2(xx0)2 +...) (2.32)

y2(x)yi(x)ln(x_x0)+(x_x0)(C01(x_x0)2(x_x0)..) (2.33)
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Case 3. Roots differing by an integer. Solutions are

yi(x)=(x_x0)ml(c0 +c1(xx0)+c2(xx0)2 +...) (2.34)

and

y2(x)=Dyi(x)ln(x_xo)+(x_xo)m2(Co+C1(x_xo)+C2(x_xo)2+...) (2.35)

A constant D may turn out to be zero.

Additionally, we note that ifx0 = 0 is a regular singular point of the

governing equation in a form of

P(x)4+Q(x)+R(x)y =0 (2.36)
dx dx

where P(x), Q(x), and R(x) are polynomials, then the radius of convergence for the

series yi(x) and y2(x) is at least equal to the distance from the origin to the nearest

zero of P.
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CHAPTER 3

VALIDATION OF A SERIES SOLUTION METHOD ON FULLY
DEVELOPED LAMINAR FORCED CONVECTION WITHIN A

UNIFORMLY HEATED VERTICAL PARALLEL-PLATE CHANNEL
AND CIRCULAR TUBE

Nat Vorayos and A. Murty Kanury

Department of Mechanical Engineering

Oregon State University, Oregon

In Preparation
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3.1 Abstract

The familiar problem of forced convection heat transfer in fully developed

laminar flow in a channel and tube is solved by a series solution method. This

serves to offer an alternative method which alleviates the need for successively

approximating of temperature distribution in the flow. It also serves to validate the

series solution method for the use in natural convection in channels and tubes in

our subsequent work.

3.2 Introduction

Our goal is to validate the use of a series solution method as an alternative

approach for solving the well-known problem of fully developed forced convection

in a uniformly heated parallel-plate channel and circular tube as shown in Fig. 3.1.

This validation will give us confidence in using the method to solve the more

complex problem of fully-developed natural convection within similar channel

geometries in our later investigation.

The topic of laminar fully developed forced convection in uniformly heated

vertical channels and circular tubes has been investigated for over century. It is a

topic which these days is included in fundamental heat transfer textbooks due to its

importance in numerous practical engineering applications. As a uniform constant
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x=L

x=O

iformly heated wall
JWT or UHF

Figure 3.1 Coordinates and configuration used for the problem



r.i

inlet velocity is imposed, a forced flow is compelled into and through the duct by

inertia. Because our subsequent work deals, in the larger perspective, with natural

convection, we consider here the present forced flow in a channel that is vertical

but with ignorable gravity.

The channel wall(s) are taken to be at a uniform temperature, T, higher

than the temperature of the entering fluid. As the flow proceeds upward, the effects

of friction and heating diffuse from the uniformly heated surfaces toward the axis

of symmetry of the duct. As a result, hydrodynamic and thermal boundary layers

develop. At some axial distance from the entrance, these boundary layers grow

enough to occupy the entire duct cross-section. Such a portion of the flow is

referred to as the developing region. The flow then advances into the fully

developed region where the velocity distribution at any cross-section no longer

changes with the axial distance. In addition, the fluid temperature distribution

normalized by its local bulk (mean) temperature is also independent of the axial

distance in the fully developed region. These characteristics define the conditions

for a fully developed regime of the flow.

The topic of this paper is thus forced convective heat transfer in the fully

developed region in a channel. The channel may be formed by two impervious and

wide parallel plates separated by a distance D or by a tube of circular cross-section

of diameter D. The channel wall(s) may be kept either at a constant wall

temperature (UWT) as mentioned above or at a uniform heat flux (UHF) boundary

condition. The flow is fully developed both hydrodynamically and thermally if
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uu
(3.1)

&(Ub _UJ

(3.2)
x ( Tb T)

The subscript "b" stands for bulk mean velocity and temperature at any cross-

section while the subscript "w" stands for those at channel wall. (u = 0 due to the

no-slip condition. ub is a constant at any x for the impervious channels considered

here. Thus Eq. (3.1) reduces to the familiar au/ax 0.) The similarity of Eq. (3.1)

and (3.2) evidently indicates that in the fully developed region, the flow and

temperature distributions, upon being normalized and nondimensionalized as

shown, retain a functional form, invariant in x, in radial coordinate. Using these

conditions, the flow governing equations are solved. The solutions then reveal the

characteristics and involved physics of the heat transfer process.

The problem with the constant-uniform-wall-heat-flux boundary condition

is simple. A fully developed Poiseuille velocity distribution can be obtained

directly from the momentum equation. It is then used in the energy equation to

acquire a corresponding closed-form temperature distribution from which the heat

transfer coefficient hb ICc Tb) can be found. Similar steps are followed to

solve the problem with a constant-uniform-wall-temperature boundary condition as

well; however, in this case, the energy equation is more complex such that a

closed-form solution for the temperature distribution does not exist. In this case,
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the solutions existing in the literature are obtained by an iterative method carried

out either by success approximations or by numerical analysis.

The corresponding heat transfer characteristic of the fully developed flow in

both UHF and UWT problems are typically presented in the form of a Nusselt

number, Nub, based on the wall-to-bulk temperature difference. This Nub

definition formally is

hbD D dT
Nub (i', Tb )k (T Tb)dIrD/2

(3.3)

where D is the plate-to-plate spacing or tube diameter.

From an analysis of fully developed flow (e.g. Incopora and Dewitt, 1990),

hb is known to be a constant with respect to x, the axial position along the duct for

both the UHF and UWT boundary conditions. The local wall-to-bulk Nusselt

numbers based on D available from previous work for parallel-plate channels and

circular tubes, with UHF and UWT boundary conditions, are summarized in Table

3.1.

Table 3.1 Local Nusselt number, Nub, for laminar fully developed forced
convection flow within uniformly heated channel and tube

Geometry UWT UWF

3.77 4.12/D
3.66 4.36
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3.3 Problem Analysis and Discussion

Consider steady laminar forced flow within a long vertical channel which is

made up of either two parallel plates of very large width W and separated by a

spacing distance D; or a tube of circular cross-section of diameter D. The channel

(or tube) length is L. As illustrated in Fig. 3.1, the cartesian and cylindrical

coordinates are chosen in the descriptions of the parallel channel and circular tube,

respectively.

For the sake of convenience, the words "channel", "tube", "pipe", and

"duct" are henceforth used as though they are synonyms unless an explicit

delineation is called for. The inner surface of the impervious channel wall is kept

either at a uniform and constant temperature T greater than the inlet ambient air

temperature T or at a uniform and constant heat flux c. The channel length L is

assumed to be large in comparison with the separation distance D such that the

entrance region where the flow (viscous) and thermal boundary layers develop is

ignorably short compared with the remaining of the channel in which the flow and

heat transfer are fully developed. The transverse velocity v is zero in the fully

developed region. Assuming constant fluid properties and neglecting axial

diffusion, the momentum and energy equations for the steady laminar flow are
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(3.4)rdr( dr) j.idx

(3.5)rar 8r) ax
where j = 0 and I for the parallel-plate channel and circular tube, respectively. The

boundary conditions needed to solve Eqs. (3.4) and (3.5) for u(r) and T(x,r) are as

follows.

U r=D/2 = 0 (3.6)

=0 (3.7)

x,r=O

=0 (3.8)

x,r=O

Additionally, for the uniform wall heat flux (UHF) boundary condition,

q = k = constant (3.9)
ar r=D/2

whereas for the uniform wall temperature (UWT) boundary condition,

T, =T = constant (3.10)
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The following nondimensional variables are now introduced.

uD x 2r
v pv2 I

0 = for the UHF boundary condition (3.11)
k(T Tj

o
T

for the UWT boundary condition
T T

The momentum and energy equations and the boundary conditions then take the

following nondimensional forms

1 d d4 11'dH'
(3.12)

1 a( ôo" Pr ô0i--i\1 J=--
(3.13)

4 =0 (3.14)
111=1

=0 (3.15)
d10

=0 (3.16)
n,1=o

aol i for the UHF boundary condition (3.17)
n,=1

=1 for the UWT boundary condition (3.18)

Integration of Eq. (3.12) gives the velocity distribution regardless of whether the

wall is at the boundary condition of UHF or UWT. Using the boundary conditions
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in Eqs. (3.14) and (3.15), the velocity distribution in terms of the pressure gradient

is

(3.19)
d

A mass flow rate independent of axial distance is obtained by integrating this

velocity distribution

th = pu0A = PJudA (3.20)

so that an inlet Reynolds number, ReD, can be obtained in terms of the mass flow

rate as the following.

(3.21)
V

where u0 is a uniform inlet velocity and A is cross sectional area of the channel.

(The bulk velocity ub is also equal to u0.) The following relation between the inlet

Reynolds number and the pressure gradient is implicit in Eqs. (3.20) and (3.21).

ld[I
ReD

K0 dE,
(3.22)

where K0 is a constant equal to 12 for the parallel-plate channel and 32 for the

circular tube. Equation (3.19), thus, becomes

= K1 ReD(1_112) (3.23)

K1 is 3/2 for the parallel-plate channel and 2 for circular tube.

Further simplification of the energy equation, Eq. (3.13), can be made for

the flow in the fully developed region for each boundary condition.



3.3.1 Temperature distribution for problems with uniform-wall-heat
flux boundary condition

For the UHF boundary condition, differentiation in Eq. (3.2) leads to, in

nondimensional form,
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=I (3.24)
d

PD d
FD FD

Then, an energy balance can be written for the flow over an infinitesimal channel

length dx. It follows that

Pdx = Ii1CPdTb (3.25)

is the specified uniform constant wall heat flux. P is a channel perimeter. The

nondimensional form of this equation is

dOb Pk = constant (3.26)
d ihC

where k is the fluid conductivity. With the mass flow rate determined from a

known Eq. (3.20) into which the velocity profile given by Eq. (3.23) is substituted,

X is

?=
K2

ReD Pr
(3.27)

'(2 is equal to 2 for parallel-plate channel and 4 for circular tube. Neglecting the

entrance effects, °b = 0 at = 0, so that Eq. (3.26) gives

and Eq. (3.24) gives

°b (3.28)

0 = + (3.29)
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where y(ri) is an unknown function of ri.

Introducing Eq. (3.29) and the velocity profile given in Eq. (3.23) into the

energy equation Eq. (3.13), the unknown function y(ri) is governed by

1 d( 3dy'\ 3(8'Y
J-ii j,jIjJ

(1_i2) (3.30)

This equation can now be integrated by noticing that i(i) has to satisfy Eqs. (3.16)

and (3.17) as

=0 and --
di TI

2

In addition, the definition of bulk temperature Ob

J4Ondi
O

0 (3.31)b I

J+'i 'dr
0

requires y to fulfill (through Eqs. (3.28) and (3.29)),

01 =0 (3.32)

11
d1

Solving Eq. (3.30), with (3.16), (3.17), and (3.32), yields y(ri). Thus the

corresponding temperature distribution thus found is

=
K2

(3.33)
ReD Pr
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where K3 = -13/120, 1(4 = 3/8, K5 = -1/16, for parallel-plate channel and K3 = -7/48,

K4 = 1/2, and K5 = 1/8 for circular tube. Hence, the temperature of the fluid

adjacent to the channel wall O is determined from Eq. (3.33) by setting i=l.

Accordingly, the local Nusselt number Nub is calculated, from Eq. (3.3).

170--4.118
17

Nub=
1

=J
0W8b 48

4.363
Li1

for UHF parallel - plate channel (3.34)

for UHF circular tube (3.35)

Similar results for the UWT boundary condition are sought to be obtained in the

following subsection.

3.3.2 Temperature distribution for problems with uniform-wall-
temperature boundary condition

Now, consider the UWT boundary condition. The thermal condition of fully

developed flow in nondimensional form is

implying that

and that

a (io'\

1lObJFD
=0

1-0=y0(i) s() (3.36)

10b =s() (3.37)
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where y0 (ii) and s() are unknown functions of ii and respectively. The energy

equation can now be written in term of y0 (1) and s().After separation of variables,

it follows that

4 1 d ( dO'1ds
(3.38)Prh'0iidiil diii sd

A is an unknown constant. Since Ob = 0 at = 0, s() is readily obtained as

s=exp(A) (3.39)

From an energy balance over an infinitesimal length dx of the duct,

k.1 Pdx = thCPdTb (3.40)
r=DI2

In nondimensional form, this equation can be written in terms ofy0 (ii) from Eq.

(3.36) as

1riiCA
(3.41)

d 2 kP

Equations. (3.36) and (3.37) introduced into Eq. (3.3) reveal that

I (3.42)
d1 2

111=1

A is then written in terms of nondimensional numbers from Eq. (3.41) and (3.42) as

A=K Nub (3.43)6

ReD Pr

where '6 is 2 for the case of a parallel-plate channel and 4 for a circular tube.

Substituting Eqs. (3.23) and (3.43) into Eq. (3.38),
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1 d ( idYo3(8N(2l)
(3.44)

;:iJi(:l -i;-)

Whenj = 1, Eq. (3.44) is similar to the equation given in Bejan (1995) for the case

of UWT circular tube. The boundary conditions needed to solve this equation are

Eqs. (3.16) and (3.18). Equation (3.42) is also needed for determining Nub. In

terms ofy0 (i) , these conditions become

= 0, y0 = 0, = (3.45)
di di , 2

Eqs. (3.44) and (3.45) now complete the problem statement for the flow in

the UWT channel. These equations have been solved in the existing literature by

successive approximations or by numerical finite differences.

We will present below the use of a classical series solution method as an

alternative to the successive approximation method to solve this problem.

Providing that the temperature distribution is symmetry across the channel/tube, it

is assumed that y0 (i) can be represented by a polynomial of degree n, which

satisfies Eq. (3.44) and the conditions in Eq. (3.45).

yo =A0+A1i+...+Ai =Ai (3.46)

A denote coefficients yet to be determined. Introducing Eq. (3.46) into Eq. (3.44)

with a few steps of manipulation, it is clear that A1 and A3 have to be zero to satisfy

the energy equation and A2 is a function of A0 and of the Nusselt number as

A2 = K8NubAO (3.47)
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The constant K8 is 3/8 for the a parallel-plate channel and 1/2 for a circular tube,

respectively. All other coefficients can be found from the recurrence relation,

A Nub(Afl A112) n4 (3.48)--
n(n-1+j)

Half of the coefficients vanish due to the recurrence and those remaining can be

written in terms only of A0 and Nub. As A1 is zero, the condition dy/dq=0 at q0

is satisfied. Hence, the calculation is left with only two boundary condition

equations and two unknowns; A0 and NUb. Instead of using infinite series to

approximate the solution, a polynomial y with a particular small number of terms

is chosen such that its corresponding solution, Nusselt number, shows convergence.

For the sake of an illustration, if a sixth degree polynomial is used to

approximate a function y, for the case of UWT circular tube, from y (i1) = 0, the

recurrence relation shows that

1_-Nub+__Nu2___Nu3 =0
36 b 288 b

from which the solution, Nub, is 3.1033. Then A0=0.875 is retrieved by using the

condition dyJd1= Nub /2 at r=1. From Eq. (3.36), the fluid temperature is

'' 14.66E)0=1_(O.875_1.35812 +0.866 0.3836)expI
(\ ReDPr)

The calculation can be repeated with more than six terms used in the polynomial y

(ti). As more terms are used in the polynomial, the Nusselt number becomes closer

to 3.65 7 for the UWT circular tube. This is graphically illustrated in Fig. 3.2. This
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result is very close to what has been known in the literature from iterative and

numerical solutions.

A similar process is carried out also for the case of UWT parallel-plate

channel. The corresponding plot is shown in Fig. 3.3 indicating that the Nusselt

number Nub for this case converges to an anticipated value of 3.7704.

The number of terms needed in the series to obtain the nearly converged

results is not really very large. Figures 3.2 and 3.3 show that about 17 terms are

needed for the case of parallel-plate channel and 23 terms for the circular tube,

respectively. Moreover, half of the terms are zeros and coefficients of higher-

degree terms are much smaller than those of the lower-degree terms.

Thus , the series solution method gives,

Nub= 3.770 for the UWT parallel-plate channel (3.49)

Nub= 3.657 for the UWT circular tube (3.50)

These results stand next to the UHF results embodied in Eqs. (3.34) and

(3.35). Evidently, the Nusselt numbers acquired from this analysis based on series

solution method agree very well with the existing literature. This agreement

validates our use of the series solution method for a fully developed convection

within uniformly heated parallel-plate channel and circular tube.
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Figure 3.2 Convergence of local Nusselt number solved by series solution method
as a function of number of terms used in the polynomial approximation. (UWT
circular tube)
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Figure 3.3 Convergence of local Nusselt number solved by series solution method
as a function of number of terms used in the polynomial approximation. (UWT
parallel-plate channel)
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3.4 Conclusion

The series solution method of solving the energy equation in fully-

developed forced convection heat transfer in laminar flow in channels/tube seems

to be versatile, efficient, and accurate. It is clear that this method has not only

alleviated the need for an iteration or numerical method for the UWT forced

convection problem but also gives us the confidence in applying the technique to

problem of fully developed natural convection flow in vertical channels. Such an

application is described in an account of our later investigations.
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4.1 Abstract

The equations which mathematically describe the problem of fully

developed laminar natural convective flow in a uniformly heated vertical parallel-

plate channel and tube of circular cross-section are formulated and simplified. A

series solution method is used to solve them to obtain the velocity and temperature

profiles, pressure distributions and heat transfer characteristics. Average Nusselt

numbers based on wall-to-ambient temperature difference Nu are found to be

functions of a single parameter a combination of the Grashof and Prandtl

numbers and the aspect ratio of the channel (Gr Pr D/L). The results are in good

agreement with the existing literature. Local Nusselt numbers based on wall-to-

bulk temperature difference Nub are found to be constants; this is precisely as in the

very familiar fully developed laminarforced convection flow in channels.

Additionally and perhaps surprisingly, the numerical values of Nub for fully

developed natural convection are exactly the same as for fully developed forced

convection. The natural and forced convection in uniformly heated vertical

parallel-plate channels and circular tube approach to the same fully-developed

states, if the length of the channels/tubes is long enough, as the inertia will

eventually prevail. This indicates that same mechanism driving both fully

developed forced and natural convective flow within long channel/tube.
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4.2 Nomenclature

C, specific heat at constant pressure

D plate spacing and diameter of tubes

Dh hydraulic diameter

Gr Grashof number;

for UWT channel, g(T-T)D3/v2,

for UHF channel, gD4 /(kv2)

h coefficient of convection heat transfer;

hb /(TWTb)andh /(TT)
k thermal conductivity of the fluid

L channel/tube length

th mass flow rate

Nu Nusselt number, (bD/k)

Nub local Nusselt number of hb

Nu local Nusselt number of h

Nu average Nusselt number of average h

P pressure

P' pressure difference between fluid pressure and hydrostatic pressure outside

the channel and tube, P' P-P

P channel/tube wetted perimeter

Pr Prandtl number, v/a
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á heat flux at the wall

T absolute fluid temperature

u, v axial and lateral components of fluid velocity,

W width of parallel-plate channels

x, r axial and radial coordinates used in the analysis

a thermal diffusivity

coefficient of thermal expansion

nondimensional axial velocity, (uD/v)

v kinematic viscosity

H nondimensional pressure difference, P'D2/(pv2)

0 nondimensional temperature,

o = (T T ) /("D / k) for the UHF problems,

o = (TTc)/(Tw - T) for the UWT problems

p fluid density

E,ri nondimensional x and r coordinates

,L channel aspect ratio, L/D

Subscripts

b bulk

w wall

o inlet

ambient fluid
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4.3 Introduction

Laminar natural convection heat transfer within uniformly heated vertical

parallel-plate channels and circular tubes has been a subject of many studies. The

pioneering papers of Elenbaas (1942a, b) describe this problem which has

continued to be in focus by many researchers who followed. Applications of this

problem have been recognized in several practical areas ranging from heat

exchangers, nuclear reactors, solar panels and buildings, to recently evolved

practical equipments such as those involving electronic circuit boards.

Even though forced convection is usually the primary method to remove

excess heat in these applications, natural convection is always present. In most

situations, natural convection alone is perhaps preferable to carry out the cooling

since it is spontaneous, simpler, and requires no compressor, pump, or a blower.

Whereas the subject ofpureforced convection has been long studied for over a

century and the associated physics of flow and heat transfer are well understood,

that of pure natural convection within vertical channels or tubes has not been as

extensively studied and is less clearly understood.

The work of Elenbaas has been referred to, quoted, debated, criticized,

discussed, and extended in the studies of numerous investigators. With the advent

of modern computer, the problem of natural convection in vertical channels and

tubes has attracted a renewed and redoubled attention to validate the work of
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Elenbaas (see Bodia and Osterle 1962, Aung et al. 1972, and Ramanathan and

Kumarl99l).

The configuration used in the study by Elenbaas (1942a) is shown in Fig.

4.1. A vertical channel is formed by two very wide impervious parallel plates

separated by a distance D. The channel extends from x = 0 (entrance) to x = L

(exit). Alternately, the channel is a vertical tube of length x 0 to x = L and

diameter D. The transverse coordinate r is normal to the flow-wise or axial

coordinate x so that r = 0 represents the axis or plane of symmetry while r = R

D/2 represents the inside surface of the channel. The local acceleration due to

gravity is g. This channel is situated in an infinite chamber of quiescent air at

pressure P (which varies with height location x hydrostatically) and temperature

T. The channel walls are symmetrically kept (either) at a uniform temperature T

(>T0) (or at a prescribed uniform heat flux q). Henceforth, the problems with

prescribed inner surface temperature boundary condition are abbreviated as UWT

problems while those with the channel walls kept at a constant/uniform heat flux

boundary condition are abbreviated as UHF problems. Due to the finite positive

temperature difference (T-T), density differences arise in the air and thereby an

upward flow is induced gravitationally within the channel/tube. In Elenbaas paper,

a simplified mathematical model of a flow was formulated and solved. The

solution is compared with and then adjusted with the experimental data. This

"adjustment" made the subsequent researchers declare that Elenbaas correlations

are "semi-empirical". In these semi-empirical correlations the average Nusselt



U0 T

Figure 4.1 Problem configuration and coordinate system
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number is found to be a function of only one parameter; the product of Grashof

and Prandtl numbers over the aspect ratio of the channel! tube

[Gr Pr /(L/D]:

35LNu = -______1 GrPrD[i_exp(_
GPD)] :parallel-platechannel (4.1)

24 L

=J_GrPrD[i_exp[_16( 8L
:circular tube (4.2)

128 L
[ GrPrD

J]

The Grashof' and Prandtl numbers are defined as usual as follows:

Gr g3(T TJD3
(4.3)

VPr =
cx

(4.4)

Two asymptotic limiting conditions of extremely high and low [Gr Pr D/L]

can be pointed out for the heat transfer characteristics of the channel/tube flow. A

specified high [Gr Pr!(L/D)] represents flow in a short and wide channel with

strong heating. In this limit, the flow and heat transfer characteristics of the fluid

on (either of) the channel wall(s) will correspond to those of laminar free

convection along an isolated UWT vertical flat plate. Interaction between

boundary layers along the "opposing" walls is ignorable if at all existent.

'Eq. (4.3) holds for UWT cases. For the UHF cases, the following definition of
Grashof number holds; Gr gD4 " /(v2k).
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Characteristics of the flow are different when the specified [Gr Pr D/L]

value is small. In this second limiting case, the channel is long and narrow with

weak heating. Near the entrance there exists a developing or entrance region where

the flow and thermal boundary layers gradually develop to eventually merge at the

plane or axis of symmetry of the channel to enter into the fully developed region.

In the entrance region, the effect of viscosity and conductivity exists in the flow

field confined only to these boundary layers. Later, once both effects diffuse across

the entire cross section and the channel being longer than the entry length then the

fully developed region is realized. In this region the velocity and temperature

distributions across the channel cross-section remain unchanging in relative shape

such that

uuw =0 (4.5)
ubuW)FD

a(TTW =0 (4.6)
Tb T )FD

Here T and u are the temperature and the x- component velocity of the flow,

respectively. Both T and u may be functions of the axial distance x from the inlet

and transverse distance r from channel's axis or plane of symmetry. Subscript "w"

refers to the T or u at the wall r = R, whereas subscript "b" refers to the bulk

(mean) temperature or velocity. The velocity of the fluid adjacent to the solid wall,

u, is zero due to the no-slip condition. The bulk velocity, ub, is constant and equal

to the uniform inlet velocity (denoted by u0) for an incompressible flow. Fluid bulk

(mean) temperature lb is defined as
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JpCuTdA
Tb(x)=A (4.7)

JpCudA

The definition becomes simpler if the fluid's volumetric heat capacity pCi, is

constant.

Generally, if the product [Gr Pr D/Ll is high enough, it may well be that the

entrance region length is ignorably small so that flow in the entire length of the

channel can be considered fully developed.

Churchill and Usagi (1972) proposed a way of combining the large and

small [GrPrD/L] limiting cases to obtain the characteristics for the intermediate

range of the parameter. A series of publications exploiting this notion are

available; see, for example, Raithby and Hollands, 1975, and Bar-Cohen and

Rohsenow, 1984. In spite of rather extensive existing literature of this sort, an

understanding of the physics of the flow and heat transfer and of the interactions

among relevant transport mechanisms, even in the fully developed flow regime, is

not complete.

In this paper, we study the flow's second limiting case, i.e. thefully

developed laminar natural heat convection within vertical channels and tubes with

UWT and UHF boundary conditions. This is the second of a series three papers

written on our research which seeks an enhanced physical understanding of the

mechanisms of naturally induced steady laminar flow and heat transfer in vertical

channels and tubes.
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Several publications in the existing literature deal with the fully developed

laminar natural convective flow in vertical channels. Aung (1972) studied the flow

in a vertical parallel-plate channel heated symmetrically (and also asymmetrically)

with both UWT and UHF boundary conditions. Instead of what is given in Eq.

(4.6), Aung's solutions for UWT case are obtained by different thermal condition

of fully developed flow as fff/axO. The condition implies that the fluid

temperature no longer adjusts its profile and the heating is so completely done that

the bulk temperature is nearly a constant T. The heat transfer coefficient

calculated from the analysis based on this condition appears to have little or no

physical significance since there is essentially no heat transfer.

We employ here, as our primary tool, a series solution method. It is a basic

and alternative approach to solve an ordinary differential equation. As shown later,

the system of partial differential equations governing a laminar natural convective

flow in the fully developed region are simplified and condensed into a single

ordinary differential equation to which the series solution method is applied to

arrive at reasonably accurate results. The series solution method has been used by

Willie (1996) to study a parallel plate channel problem with UWT boundary

condition. A closed form solution has been obtained by Aktan (1996) (in a manner

very similar to the work of Aung (1972)) on the same geometry but with UHF

boundary condition. Both these problems are here redone using the series method.

The method has then been extended here to UWT and UHF problems of natural

convective flow in a tube of circular cross-section.
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4.4 Mathematical Model

Consider, following Elenbaas, laminar fully developed natural convective

flow within a long vertical channel made up of two parallel plates of a very large

width W separated by a spacing D; or tube of circular cross-section with diameter

D. The channel (or tube) length is L. The configuration used for both the parallel-

plate channel and circular tube is similar to that illustrated in Fig. 4.1. The channel

is described in cartesian coordinates whereas the circular tube is described in

cylindrical coordinates. The inner surface of the channel (or tube) is kept either at a

uniform and constant temperature T greater than the inlet ambient air temperature

or at a uniform and constant heat flux . The involved tempefature difference

between the hot tube wall and the cooler air results in a density distribution in the

air. An upward flow is thus driven by the resultant buoyancy force.

Assume that the channel is very long within which the flow is fully

developed both hydrodynamically and thermally. Also assume that the developing

(entry) length is small in comparison with the channel length. At the inlet x =0,

the inlet air velocity u0 is taken to be uniform across the channel cross section. This

velocity comes out as a part of the our solution. For an incompressible fluid, mass

conservation reveals that u0 equals to Ub, the bulk velocity of the flow. The inlet

temperature is also assumed to be uniform at T. Boussinesq approximation is

applied such that all fluid properties are constant except for the fluid density

appearing in the gravitational term of the x-component momentum equation. Other



details of Boussinesq approximation need not to be repeated here but can be found

in the natural heat convection literature (Bejan ,1995, for example). For the steady,

two-dimensional (axisymmetric), and constant property flow, noting the fully-

developed flow criteria given by Eqs. (4.5) and (4.6), we arrive at the following x-

component momentum and energy conservation equations.

(4.8)rdrl dr) tdx v

1 ( ôT uaT
-I I=-rar ar) aax (4.9)

The index j = 0 is for the problem of the parallel-plate channel and j = 1 is for the

circular tube problem. The pressure defect, P', is defined as

P'PPco (4.10)

where P = P0 - pgx, the hydrostatic pressure of air outside the channel. Pressure

distribution within the fully developed flow channel is a function only of x,

distance from the inlet. In the fully developed regime, both heat and momentum

diffusions in the axial (a flow-wise) direction are negligible. The boundary

conditions for Eqs. (4.8) and (4.9) are:

ULD/2 =0 (4.11)

=0 (4.12)
dr r=O

=0 (4.13)
x,r=O
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x=Oandx=L 0 (4.14)

" =q =k = constant for UHFproblems (4.15)
& r=D/2

= T = constant for UWT problems (4.16)

Equation (4.11) is for the no-slip condition at the channel wall. Equations. (4.12)

and (4.13) are for symmetry. Equation (4.14) gives the pressure condition at the

inlet and exit. Equations (4.15) or (4.16) correspond to the channel wall heating

conditions.

Now the following dimensionless variables can be introduced.

x 2r
11i5
p2

o
Cr T

for UHF problems

o
T L for UWT problemsT T

4 is nondimensional velocity, H is nondimensional pressure, and 0 is

(4.17)

nondimensional temperature. The governing equations and boundary conditions

then take the following nondimensional forms.
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1 _( J')=iI_GrO') (4.18)ridii d) 4d )

1 a( io°'4 (4.19)
c31lC' ôii) 4 a

4c =0 (4.20)

=0 (4.21)
di

=0 (4.22)
ar1

[Io
andE,L

= 0 (4.23)

ao i for UHF problems (4.24)
2

= 1 for UWT problems (4.25)

In Eq. (4.23), L L/D is the channel's aspect ratio. Also the fuiiy developed flow

criteria given by Eqs. (4.5) and (4.6) take the nondimensional form:

__( =0 (4.26)
W)FD

a( 90W =0 (4.27)
°b °w,)FD

For the constant property fluid, conservation of mass requires that the flow

rate



m = pAub = PJAu(x,r)dA (4.28)

be independent of x. Now, an energy balance may be applied over the control

volume of differential length dx as shown in Fig. 4.1 to determine how the fluid's

bulk temperature varies with the axial distance along the channel due to the

convective heat transfer from the warm solid wall of the channel to the fluid.

Pdx = thCPdTb =
A

The local heat transfer coefficient is defined on the basis of the temperature

difference between the wall temperature and the local bulk temperature.

=h,(T Tb)

In the fully developed regime, this coefficient is a constant with respect to x

(4.29)

(4.30)

(Incopera and DeWitt, 1990). P is the wetted perimeter ( = 2W for the parallel-

plate channel and = itD for the circular tube), and A is a flow cross sectional area

(= WD for the plate channel and = icD2/4 for the tube). The local Nusselt number

is defined as

hbDNub (4.31)

4.4.1 The uniform-wall-heat-flux (UHF) problem

For the UHF problem, is a prescribed constant. Equations (4.27), (4.29)

and the derivative of Eq. (4.30) show, in nondimensional forms,

= = kPW constant, X (4.32)
FD d FD FD

Crh
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Since 0b = 0 at = 0, this equation leads to

= (4.33)

o=x+y(ii) (4.34)

where y(ri) is an unknown function of q. 0() is obtained by evaluating 9(,i) at

ii = 1.

Introduce Eq. (4.34) into the momentum equation given by Eq. (4.18) and

then differentiate both sides with respect to to arrive at

d2lJ
= GrX (4.35)

This result describes the pressure distribution in the fully developed flow regime.

It can be solved with the boundary conditions appearing in Eq. (4.23).

Gr(
L) (4.36)

Recall that L is the channel's aspect ration, LID.

Substituting Eqs. (4.32) and (4.34), equation of energy given by Eq. (4.19)

can be rewritten as

- d liii ii) (4.37)
PrX di))

Substitute Eqs. (4.36) and (4.37) back into momentum equation, Eq. (4.18) to

obtain the following equation for the unknown part, y y (q), of the temperature 0

in Eq. (4.34).
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GrPrD 211 + (4.38)
L L)

Since the channel is very long to ensure the fuiiy developed flow in most of the

length, it is reasonable to assume that A.L to be much greater than unity.

Consequently, i+2/(?) 1. Hence, Eq. (4.38) can then be integrated

analytically to obtain ' as a fourth degree polynomial function such that

= A0 + A11 + A2i2 + A33 + A44

Knowing that the fluid temperature and velocity distributions can be written in

terms of? from Eqs. (4.34) and (4.37), the four unknown constant coefficients of

integration A1 to A4 are then obtained from the boundary conditions given by Eqs.

(4.20), (4.21), (4.22) and (4.24). It follows that

0= X + A0 + A212 +A414 (4.39)

= _-_(2(1+j)A2 +4(3+j)A4112) (440)
PrX

A1 and A3 are zero whereas A2 = (3+j)18 and A4 = -(1+j)/16. As the fluid bulk

temperature distribution is given by Eq.(4.33), the remaining constantA0 is

acquired from introducing Eq. (4.39) into Eq. (4.7) and is found to be 39/560 for

the parallel-plate channel and 7/48 for the circular tube. As a corollary, for use in

Eqs. (4.33) and (4.34), we also obtained that

=4(l+j) (3+j) D
(4.41)

Gr Pr L
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The heat transfer characteristics of the laminar free convective flow in the

fully developed region can now be reckoned in terms of the Nusselt number

defined in Eq. (4.31),

hbD 1
Nub (4.42)

From Eqs. (4.33) and (4.39) it follows that this Nusselt number is

Nub ==4.118
17

Nub = = 4.363
11

for UHF parallel - plate channel (4.43)

for UHF circular tube (4.44)

4.4.2 The uniform-wall-temperature (UWT) problem

The criteria for the fully developed flow ( Eqs. (4.26) and (4.27) ) give a

simpler relation between 0 and Ob for the UWT problem as well. Since 0 is a

constant equal to unity in the UWT problem, Eq. (4.27) implies that

1-0 = y0(ri)s() (4.45)

1Ob _S() (4.46)

(ri) and s() are unknown functions of i and , respectively. Introduce Eq.

(4.45) into Eq. (4.19) and separate variables.

4 1 d ( d = A, a constant (4.47)
i itl1 -a:;:-J S

At = 0, Ob = 0 so that s(E0) = 1 immediately leads to

s = exp (- A) (4.48)
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The pressure distribution can be approximated from the momentum equation.

Differentiate Eq. (4.18) with respect to E and integrate it over the channel length. It

follows that

y0Gr exp(A) 1 + (i exp(AL))) (4.49)
A

Substitute this expression in the momentum equation and rewrite it as

1 d d4')
= (1__i_(1exP(AL))) (4.50)d1) 4 AL

Further simplification can be made as done earlier in the UHF problem; since the

channel aspect ratio is large, 1 -y (1-exp(-AIj)/AL 1. With this simplification,

Eq. (4.50) can be easier integrated to obtain the fully developed velocity profile as

(4.51)1+j 8

The corresponding mass flow rate, Eq. (4.28), in the channel is found by integration

of Eq. (4.51).

-_____ IGrth
22+j (1 + j)2 (3 + j) D)

Implicitly, since th is pubA, this result gives a relation between the

nondimensional inlet velocity 4o and Grashof numbers as

Or
(4.52)

V 22(1+j)2(3+j)
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from which o = Gr/12 for UWT parallel-plate channel and Gr/32 for UWT circular

tube. Recall that = k8T / or at r = D/2. Then, nondimensional forms of Eqs.

(4.29) and (4.30) are respectively

80 lthCpdOb

81111=1 2Pk d

801 Ntlb(10)
2

Written in terms of the unknown functions Yo (i) and s(), these relations give

Nub ithCA
(4.53)

dr11 2 2 Pk

NUb can then be rewritten in terms of Gr and A from Eqs. (4.52) and (4.53) as

GrPrA
Nub = (4.54)

8(1+j)2(3+j)

Since the velocity profile is already known from Eq. (4.51), the energy equation

can be solved for the distribution 'Yo (ri). From Eqs. (4.45), (4.46),(4.48),(4.51), and

(4.54), this equation is

1 d ( dy0) 38"jj\1 )4(\3J NubYO(12 _i) (4.55)

with the boundary conditions

(4.56)

=0 (4.57)
di

11=0
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Furthermore, Eq. (4.53) gives one addition relation between (r) and Nub as

=- (4.58)drj 2
11=1

Eq. (4.55) can be solved by several approaches. Successive iteration has been used

for the case of the fully developedforced convection in a UWT circular tube

(Bejan, 1995 and Incopora and DeWitt, 1990).

In the present investigation, a series solution method is chosen due to its

simplicity. Assuming that there exists a polynomial Yo (ii) of degree n which

satisfies Eq. (4.55) and its boundary conditions,

(4.59)

Introducing this polynomial into Eq. (4.55) and collecting terms of equal powers of

, it follows that

+ 2(1 +j2J+[ [J NubCI
+ 3(2 + +... 1

(4.60)

J
[n(n-1+n +[J Nub(Cfl 2

_C4)Jl2

]

=o
JL

This equation is satisfied only if the coefficients of all terms are zero. It is obvious

that C1 has to be zero to satisfy the symmetry condition, Eq. (4.57). Then, for

equation above to be valid on any 11 within the channel, C3 is zero, C2 is a function

of CO3

8'\'

C2 =-1--J NubCO
(4.61)
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and, additionally, a recurrence relation is obtained such that

3 18'' Nub(Cfl_4 -c_2)
C 4j n(nl+j) n4 (4.62)

from which half of the coefficients vanish and all the remaining coefficients can be

written in terms of C0 and NUb. Thus, since y (q) has to satisfy Eqs. (4.56) and

(4.58), leaving two equations for two unknowns that are solvable analytically. C0

and Nub can be obtained manually when the number of terms used in lo (ri) are

only a few. When n is large, however, calculations are accomplished with the

assistance of a computer program since the task at hand is too large to be carried

out manually even if it is a routine process. Local Nusselt numbers based on bulk-

to-wall temperature, Nub, for different values of n, the degree of the polynomial

used and their corresponding C0 are shown in Figs. 4.2 (a) to (d). The solutions

converge to a constant Nub as expected:

Nub = 3.770 for parallel - plate channel (4.63)

Nub = 3.657 for circular tube (4.64)

This completes the solution.

The solutions Eqs. (4.43) and (4.44) for UHF boundary condition and Eqs. (4.63)

and (4.64) for UWT boundary are summarized in Table 4.1 from which it is evident

that the Nub of the flow within the fully developed regime of laminar natural

convection is exactly the same as that of laminar forced convection despite the fact

that the flow is driven by different mechanisms. If the flow is allowed to be fully

developed, the local heat transfer characteristics are then significantly influenced
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by the same mechanisms as those effective in the fuiiy developed laminar forced

convection. Further discussion follows.

Table 4.1 Local Nusselt number, Nub hbD/k= D/[(k(T Tb)] for fully
developed laminar natural convective flow within uniformly heated channel and
tube

Geometry UWT UHF

D 3.770 4.118

© 3.657 4.363

4.5 Results and Discussions

In forced convection, the momentum equation can be solved independently

of the energy equation. The same is not possible in natural convection since the

momentum and energy equations are coupled. The problem is, therefore, more

complicated even in the relatively simpler regime of fully developed flow. The

criteria for fully developed flow in a long channel leads to simplifications which

permit two partial differential equations to be combined into a single ordinary
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differential equation, i.e., Eq. (4.38) for the UHF problem and Eq. (4.55) for the

UWT problem.

Vorayos and Kanury (2000) validated a series solution method by applying

it to the well-known problem of fully developed laminar forced convection within

long UHF and UWT parallel-plate channel and circular tube. The governing

equation given by Eq. (4.55) is the same as that governing the fully developed

forced convection flow within a UWT channel/tube. Hence, it solidifies the fact

that the forced convection mechanisms dominate over the fully developed laminar

natural convection in long channels/tubes. A similar observation can be drawn for

the case of the UHF problem. For each boundary condition imposed on the channel

wall, the flow characteristic in the fully developed region of a very long

channel/tube are unique and independent of how the flow is driven; by the density

differences in natural convection or by the specified inlet inertia in forced

convection.

4.5.1 Velocity distribution

Fully developed x-dependent velocity profile of the laminar natural

convective flow within uniformly heated parallel-plate channel and circular tube,

for both UHF and UWT boundary conditions, is found to be parabolic as expected.

For UHF case, a relation between a constant ? and inlet velocity is acquired

from Eqs. (4.28), (4.29), and (4.33). This relation is

?= PD (4.65)
40PrA
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It allows the velocity profile expression, Eq. (4.40), to be rewritten in terms of inlet

velocity,

(1+)(3+)(12)
(4.66)

Equate Eqs. (4.41) and (4.65) to arrive at the relation between prescribed Gr and

induced fluid inlet velocity 4o.

(4.67)2(1+j)3+j DPr

For the case of the UWT problem too, substituting Eq. (4.52) into the

velocity distribution given by Eq. (4.51), an approximate velocity profile can be

obtained in terms of the inlet velocity to find it be exactly the same as Eq. (4.66).

These velocity distributions for both the heating conditions are graphically

illustrated in Fig. 4.3.

Furthermore, fully-developed velocity profiles obtained from the work of

Vorayos and Kanury (2000) on forced convection within a long UWT and UHF

parallel-plate channel and a long circular tube are also similar to Eq. (4.66). Hence,

the fully developed velocity profile written in terms of the inlet velocity o is the

same for both natural and forced duct flow. A matter of difference is that the

nondimensional inlet velocity 4o for forced convection is a parameter specified as

the inlet Reynolds number. For natural convection, on the other hand, it is
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Figure 4.3 Velocity profiles of fully developed flow within uniformly heated
channel/tube (same for both UHF and UWT boundary conditions).
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determined by the specified wall heating condition, and can be written in terms of

the imposed Grashof number as evident in Eqs. (4.52) and (4.67).

4.5.2 Temperature distribution

The fully developed temperature profile of UHF problem is shown in Eq.

(4.39). Substituting ? from Eq. (4.41), this distribution becomes

O=4(1+j)/(3+j) L
+A0

(3±j)2 (1+j)4

GrPrD 16

For the UWT problem, Eq. (4.60) shows that

o=1_(1.319+1.865o12

for the parallel-plate channel and

0=1_(1.803+3.29612

for the circular tube.

) expl- 90.48 L
_-_') (4.68)

GrPrDL)

)exP(468.48 L
(4.69)

GrPrD LJ

These distributions are plotted in comparison in Fig. 4.4. It can be seen

that the nondimensional fluid temperature increases the flow progresses upward

due to the wall heating condition. The temperature of the flow with larger GrPrD/L

is higher than that with lower GrPrD/L in a UHF boundary condition while larger

GrPrD/L brings the fluid temperature closer to the specified wall temperature.
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4.5.3 Heat transfer characteristics

The local Nusselt number, Nub, based on wall-to-bulk temperature

difference (Tw-Tb) and channel spacing (diameter) D, of fully developed laminar

natural convection flow is shown above in Table 4.1 for UHF and UWT plate

channels/tubes. The numerical values of Nub determined here for natural

convection are found to be the same as those for forced convection.

Furthermore, the values of Nub for the parallel-plate channel are quite close

to those of a circular tube provided that the characteristic dimensions used in the

definitions of Nusselt number is the separation distance of the channel plates D and

the tube diameter D. This closeness holds for both the UHF and UWT boundary

conditions. (Quantitatively the channel and tube results are within 6% of each

other for UHF problems and within 3% for UWT problems.) This simple finding is

apparently not discussed in the existing literature in which the Nusselt number for

the parallel-plate channel is usually defined on the basis of the "hydraulic diameter"

Dh, for forced as well as natural convection. Since Dh = 2D for the parallel plates,

the resultant Nusselt number magnitudes are about twice the values for a circular-

section pipe thus obscuring the physical significance of the separation distance D as

the characteristic dimension. Notwithstanding the strong debate in the existing

literature (e.g. In Oosthuizen and Naylor, 1999, pp. 177-178 ) about the

meaninglessness of the hydraulic diameter in heat transfer, the same literature

absurdly continues to present Nusselt number results in terms of the hydraulic



diameter. Our study strongly advocates the use of physical channel spacing D in

defining the Nusselt number. The hydraulic diameter should be abandoned.

The Nusselt number may be defined in other ways as well to facilitate a

comparison with the literature. For UHFproblems, the local Nusselt number based

on the inlet temperature difference is defined as

Nu h,D 1

k (T T,, )k
(4.70)

Knowing the temperature distribution Eqs. (4.39), it follows that,

'-1

L
h1 (4.71)Nu) =(4(1+J)(

GrPrD L )

3+j) +K

Kh is a constant of 17/70 for parallel-plate channel and 11/48 for circular tube. This

correlation is valid only for a fully developed flow and is not valid for flow within

a short channel, i.e. small aspect ratio LID or GrPrD/L. Our results, plotted in Fig.

4.5 for GrPrD/L between 0.01 and 1000, are in a fairly good agreement with the

existing solutions. Wirtz and Stutzman (1982) and Bar-Cohen and Rohsenow

(1984) reported their results in terms of Nusselt number, Nu, at x = L (at channel

exit) as a function of GrPrD/L for laminar convection in a UHF channel including

for the effect of the entry region. Our result, Eq. (4.72), on the other hand, deals

only with the fully developed flow. The downward departure of our result from the

literature at high GrPrDIL is thus understandable. It agrees well also with the work

of Aktan (1996) in which a closed form solution was obtained for a laminar fully

developed natural convection flow within a UHF parallel-plate channel.

Furthermore, in fully developed flow within an UHF circular tube, our work
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Figure 4.5 Nusselt number based on wall-to-inlet temperature difference at the
channel/tube exit for UHF parallel-plate channel and circular tube
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compares well with that of Aihara and Maruyama (1986) up to GrPrDIL=1000 with

a difference less than 2%.

The nusselt number can be alternatively written in terms of average value as

well, i.e.

Nu=iJNudx (4.72)

where Nu is defined in Eq. (4.71). The average Nusselt number Nu from the

present solution is compared with the existing works of Aktan (1996) and Dyer

(1975) in Fig. 4.6. In spite of the fact that the solution of Dyer (1975) includes heat

transfer in the vicinity of the entrance, it agrees quite well with the current solution

up to GrPrD/L1000 within 10% of error.

A local Nusselt number based on inlet temperature for UWT problems is

found to be

hD D D ff' =2iNu
k (T T)k (T _Tj&rR 1j

Since 0 = 1 y0 (q)s (), the local Nusselt number based on inlet temperature for

UWT channel is

LNu =KwiexP(_Kw2 GrPrD)J (4.73)

where K1 and K2 are respectively 3.770 and 90.48 for a parallel-plate

channel and 3.65 7 and 468.48 for a circular tube. Substitute Eq. (4.74) into Eq.

(4.73) to obtain, for UWT pallelel-plate channel,
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Figure 4.6 Average Nusselt number of UHF parallel-plate channel and circular tube
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1 GrPrD1Nu= Ii ex
24 L p( 90.48 L i'i : for UWT parallel - plate channel (4.74)

Or Pr D))

and

1 GrPrD1Nuc= Ii CX
128 L

(_468.48 L :forUWTcirculartube (4.75)
Or Pr D )j

Equations (4.75) and (4.76) are in a form directly comparable to those

proposed by Elenbaas (1942a and b), so much so that the only difference is in the

constants within the argument of the exponential. None of the existing analyses of

fully-developed natural convection flow have shown this important resemblance.

A graphic comparison is shown in Fig. 4.7. Although the average Nusselt number

obtained in the current work altogether ignores the developing region, our solutions

agree well with Elenbaas's solutions of UWT circular tube (1942b) with an error

less than 10 percent if GrPrL/D is less than 450. The agreement is good with

Elenbaas (1942a) for a UWT parallel-plate channel to a lower range of GrPrL/D; an

error of 10% when GrPrL/D is less than 20. These agreements appear to suggest

that a great tribute is to be paid to the vision embodied in Elenbaas's correlations

which were to harshly characterized as "semi-empirical" by the investigators who

followed. Agreement is reasonable also with Aung (1972) and Martin et al. (1991)

whose analyses account for the development of the flow in the vicinity of the

entrance.
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4.6 Conclusion

Heat transfer characteristics of steady fuiiy developed laminar natural

convection flow within long vertical UHF and UWT parallel-plate channels and

circular tubes are studied. The corresponding governing equations are simplified

with reasonable assumptions and temperature and velocity profiles of the flow are

approximated as polynomial functions for use in a series solution method. Laminar

natural convection flow within uniformly heated channel/tube is a spontaneous

process in which fluid motion is gravitationally induced by a density variation of a

fluid within a flow field; nevertheless, as has been shown in the paper, if the

channel is sufficiently long to allow the flow to become fully developed, the flow

characteristics in the regime are not different from those of a fully developed

laminarforced convection in which the process is mandated by a specified inlet

velocity. Fully developed velocity profiles of a laminar flow within the

channel/tube are parabolic function similar for both forced and natural convection.

While an inlet Reynolds number of forced convective flow is prescribed because of

the uniform inlet velocity, that of natural convective flow is part of solution of the

problem, dependent upon the boundary condition at the channel/tube's wall(s).

The heating condition is prescribed by the Grashof number. Similar fully-

developed temperature profiles are also presented and found to depend on the

product of Grashof number, Prandtl number, and the channel's geometry: GrPrD/L.

The resemblance between fully developed laminar natural and forced convective

flow is highlighted with the finding that their local heat transfer coefficients, Nub,
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are remarkably close to one another. In spite of being initiated by different

mechanisms, the flow physics in the fully developed region are independent of how

the flow is driven. Also shown in this paper is the need to avoid using the

hydraulic diameter in the description and definition of convective heat transfer in

ducts of noncircular cross-section, especially in a parallel-plate channel.
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Department of Mechanical Engineering,
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5.1 Abstract

This is the third of a series of three papers in which we revisit the famous

investigation of Elenbaas (1942a and 1942b).

The developing laminar natural convection of air (Pr = 0.7) within a vertical

parallel plate channel and a circular tube is investigated. Our approach involves

obtaining the development of the viscous and thermal boundary layers near the

channel inlet using the well-known integral method. Use of classical boundary

layer concepts, the Boussinesq approximation, and the integral method of solution

gives us a better perspective of the interactions among the relevant mechanisms. It

is presumed that the channel or tube, kept at a uniform wall temperature, is

sufficiently long to ensure a fully developed flow. Under such long channel/tube

conditions, the physics of flow and heat transfer is found to be the same as that

involved in forced convection. Comparison of our results with previous

investigations indicates a close agreement. The entrance length of such aflow can

be approximated as Le/L 0.O5GrPrD/(KL) where K is a constant equal to 12 and

32 for the parallel plate channel and circular tube, respectively.
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5.2 Nomenclature

D plate spacing or tube diameter

Gr Grashof number; based on constant temperature difference,

Gr = gf(T-T)D3/v2,

h coefficient of convection heat transfer

k thermal conductivity

L parallel-plate-channel or circular-tube length

Le entrance length

NUb local Nusselt number based on temperature difference between wall

temperature and bulk temperature

Nub average Nusselt number

P pressure

P' pressure difference between fluid pressure and hydrostatic pressure outside,

= P-P

Pr Prandtl number, v/a

R half of channel spacing or tube radius

ReD inlet Reynolds number based on D, u0D/v

T absolute temperature

u, v axial and transverse component of velocity vector

U0 inlet velocity

u core velocity; velocity of the fluid outside the boundary layer
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W width of parallel plates

x, r the coordinates used in the analysis (see Fig. 1)

A nondimensionalhydrodynamic boundary layer thickness, ö/R

A nondimensionalthermal boundary layer thickness, 6TIR

a thermal diffusivity

coefficient of thermal expansion

6 hydrodynamic (viscous) boundary layer thickness

6 T thermal boundary layer thickness

nondimensionalvelocity, axial component, $. = u/u0

4 nondimensionalcore velocity, u/u0

v kinematic viscosity

U nondimensionalpressure difference, U = P'/(p2)

9 nondimensionaltemperature, 0 = (T Tc0)/(Tw Tco)

p fluid density

ratio between thermal and hydrodynamic boundary layer thickness, (AT/A)

,11 nondimensionaiquantities of the coordinates used in the analysis,

j nondimensionalvelocity, transverse component, N' = vD/v

Subscripts

Ob bulk

() wall

Q° inlet
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5.3 Introduction

The topic of natural convective heat transfer in vertical parallel plate

channels and in circular tubes whose walls are kept at a uniform constant

temperature has been studied for over sixty years. Newer applications of this topic

recently emerged in numerous modern equipments and devices, as for example in

nuclear reactors, solar panels, and electronic circuit boards. Even though forced

convection is usually the primary method to remove excessive heat in these and

other applications, natural convection is always present. In most situations, natural

convection alone is perhaps preferable to carry out the cooling since the process is

spontaneous, simpler, requires no compressor or pump.

Laminar (and turbulent)forced convection in channels and in circular cross-

section tubes has been studied for over a century so that the associated physics of

flow and heat transfer are reasonably well understood. In contrast, and in spite of

considerable numbers of studies on the subject, the physics of pure natural

convection process within vertical channels or tubes is not as clearly understood.

The pioneering work in this area has been that which was carried out by Elenbaas

(1942a) on a vertical parallel plate channel. The average Nusselt number has been

correlated in a "semi-empirical" manner as a function of one parameter the

product of Grashof and Prandtl numbers divided by the aspect ratio of the parallel-

plates channels has been developed and confirmed with experiments. Elenbaas

also suggested similar relations for the channel geometry of circular tube in his
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subsequent paper (Elenbaas, 1942b). These works of Elenbaas have been referred

to, debated, criticized, discussed, and extended in the studies of many investigators

who followed.

Let us briefly describe the problem at hand by considering a vertical

channel formed of two very wide parallel plates separated by a distance D 2R.

The channel extends from x = 0 (entrance) to x L (exit). The local acceleration

due to gravity is g. This channel is situated in an infinite chamber of quiescent air

at pressure P (which varies hydrostatically with height location x) and temperature

The channel walls are symmetrically kept at a uniform temperature T (>T).

Due to the finite positive temperature difference (TTc), density differences arise

in the air and thereby an upward flow is induced gravitationally within the

channel/tube. It is this flow (after it attains a steady state) upon which we focus our

attention in this investigation.

At the inlet, boundary layers develop over the two walls. Little or no

interaction or influence exists between these boundary layers very near the inlet.

Here, the boundary layer growth is quite satisfactorily described by the theories of

free convection over a single wall. At larger distances x from the entrance,

however, the boundary layers grow thicker, thus the growth is influenced by the

confinement of the flow. Eventually the boundary layers merge at the plane or axis

of symmetry.

For air, whose Prandtl number, Pr, is approximately 0.7, the region between

x = 0 and the value of x at which the thermal boundary layers merge shall
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henceforth be termed the "first entrance region". At the end of this region, the

temperature distribution T(r) across the channel exhibits a minimum at the axis or

plane of symmetry whereas the velocity distribution u(r) is still developing or

double-peaked depending on the channel aspect ratio and wall heating condition.

In subsequent flow, transverse diffusion will transform the developing

velocity distribution into the well-known Poiseuille parabolic distribution in

laminar flow in a channel. This region is henceforth termed the "second entrance

region"; its length is assumed to be ignorably small compared to the length of the

first region. To quantitatively describe the flow and heat transfer in the entrance

region is the objective of this present paper.

Following the two entrance regions, the flow is fully developed both

thermally and hydrodynamically. We assume in this work that our channel is

sufficiently long to result in fully developed flow at the exit of the channel/tube.

Because the governing equations for pure natural convection are complex

and coupled, an explicit closed-form mathematical solution is difficult, if not

impossible. Characteristics of the flow are therefore generally sought to be

deduced from variety of approaches ranging from simplified mathematical analyses

to experimental studies.

With the advent of numerical analyses, the problem of natural convection in

vertical channels and tubes has attracted a great deal of attention to validate the

work of Elenbaas (for instance, Bodia and Osterle 1962, Aung et al. 1972, and

Ramanathan and Kumar 1991). Numerical methods lead to solutions of complex
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engineering problems which are otherwise insoluble. First, the mathematical

problem is correctly formulated in terms of the conservation equations, constitutive

relations, and boundary conditions, even if in a greater detail than generally

necessary. Second, these equations and boundary conditions are then discretized

by using finite difference or finite element techniques. Third, an algorithmic flow

chart is developed and a computer program is written in one language or another.

(It is more likely that a contemporary researcher would use a commercially

available solver/program.) The numerical solution is processed in the back-end into

impressive tabular and graphical output which is interpreted by the investigator.

However, choosing to work with a numerical method too soon tends to sacrifice the

level of understanding gained of the physics of the involved processes.

The parameter [Gr Pr D/L] plays an important role in natural convection in

vertical channel with Gr and Pr respectively denoting the Grashof and Prandtl

numbers of the flow and L/D is channel/tube aspect ratio. (a) Large values of this

parameter correspond to a short and wide channel with strong wall heating where

the solution approaches the limiting case of laminar free convection along a vertical

flat plate. (b) Small values of the parameter [Gr Pr DILl correspond to a long and

narrow channel with low wall heating where the solution approaches the limiting

case of laminar fully developed channel flow. Churchill and Usagi (1972)

proposed a way of combining the limiting case to obtain the characteristics in

between. A series of publications exploiting this notion are available such as, for

example, that of Bar-Cohen and Rohsenow (1984). In spite of rather extensive
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literature of this sort, only the heat transfer characteristics between extreme limits

are predicted but the physics of the flow and heat transfer and interactions among

relevant transport mechanisms have not been well understood.

In this paper, we seek to obtain an improved physical understanding of the

mechanisms of naturally induced laminar flow and heat transfer in vertical channels

and tubes. We use boundary layer theory and integral methods of solutions. The

governing equations of such systems are complex even after making several

reasonable simplifications and approximations. Numerical schemes appear to be

unavoidable. The use of numerical analysis will be limited in our work and used

only when absolutely necessary; even the numerical procedures employed will be

kept relatively simple while yet delivering acceptable accuracy for comparison with

previous work. The results, especially of the heat transfer characteristics, are then

compared with existing work and discussed.

This is the third in a series of three stand-alone papers. The use of a series

solution method on the problem of laminar fully developedforced convection

within uniformly heated parallel-plate channels and circular tubes is validated in

the first paper. In the second paper, the series solution method is applied to laminar

fully developed natural convection within a uniformly heated vertical parallel-plate

channel and a tube of circular cross-section. The channel/tube is so long that the

flow is fully developed and that the length of the developing region is ignorably

small.
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In the present paper we apply boundary layer theory to the flow near the

entrance of a long vertical channel or circular tube whose wall(s) is kept at a

constant and uniform temperature. By employing an integral method, we analyze

the development of the hydrodynamic and thermal boundary layers. The

channel/tube is assumed to be long enough for the flow to be fully developed at its

upper end. Mass flow rate in the channel tube is then prescribed by the fully

developed flow'.

5.4 Mathematical Model

Consider steady laminar natural convective flow within a long vertical

channel made up of two very wide parallel plates separated by a spacing D 2R; or

a long vertical tube of circular cross-section with diameter D 2R. The words

"channel" and "tube" are henceforth used in the present work synonymously unless

a distinction needs to be made. The channel or tube length is L. As illustrated in

Fig. 5.1, cartesian and cylindrical coordinates are chosen in the descriptions of the

parallel channel and circular tube, respectively. The inner surface(s) of the channel

wall(s) is (are) kept at a uniform and constant temperature T greater than the inlet

ambient air temperature T(,. This prescribed inner surface temperature boundary

'If the channel/tube is so short as not to yield a fully developed flow, the mass
flow rate is a smaller unknown quantity.
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Figure. 5.1 Configuration and coordinate used in an analysis with qualitative radial (r)
temperature and velocity distributions along axial (x). Lh and L are viscous
(hydrodynamic) and thermal developing lengths, respectively
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condition is henceforth referred as the UWT condition2. At the inlet x = 0, the

air velocity is to be determined and taken to be a constant and uniform, u(x =0) =

u0, across the cross-section 0< r <R. The inlet temperature is also assumed to be

uniform at T0. The mass flow rate is gravitationally induced upward and is part of

the unknowns. However, since the channel is very long, the flow is fully developed

beyond some axial location which is sufficiently downstream from the entrance.

The dynamics of this fully developed natural convective flow as studied by

Vorayos and Kanury (2000b) give the unknown mass flow rate.

The following simplifications are made in the present analysis. All the

properties are constant. Even the density is constant everywhere except in the

buoyancy term of the momentum equation, thus the well-known Boussinesq

approximation (Schlichting, 1968) is adopted. The fluid density in the gravitational

term is expressed in terms of the fluid temperature. An order-of-magnitude

analysis of the viscous and thermal boundary layers indicates that the axial (x)

component of fluid velocity u is much larger than the lateral (r) component v.

Additionally, lateral gradients and the resultant diffusions are much larger than the

axial ones. These observations allow the governing equations to be simplified as

follows:

Conservation of mass

a(rjv)
ôu+=0 (5.1)rôr

2 The problem of uniform-wall-heat-flux (UHF) boundary condition is not
considered here.
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Conservation of momentum

ôu ôu loP' vO(Ou' (5.2)
Ox Or pOx rOrk\ Or)

Conservation of Energy

OT OT aO(ffF"u+v--= --j riI (5.3)
Ox Or rOr1 Or)

When j =0, this system of equations pertains to the flow within the vertical

parallel-plate channel. When j = 1, flow in a tube of circular cross-section is

described. The pressure defect P' is defined as

P'PPco (5.4)

where P = P0 - pgx , is the hydrostatic pressure of an air outside the channel or

tube. P0 is a reference ambient pressure. All calculations are carried out based on

the presumption that the fluid within channel is air whose Prandtl number is about

0.7. The boundary conditions needed to solve the foregoing governing equations

are as below.

u(x = 0, r) = u0 (5.4a)

v(x = 0,r) =0 (5.4b)

T(x = 0, r) = T (5.4c)

u(x,r=R)=0 (5.5a)

v(x,r=R)=0 (5.5b)

T(x,r=R)=T (5.5c)
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R1 ldP'
a' Th)T=R

_T)) (5.6a)

= (5.6b)'ri---- 0
& Jr=R

The boundary conditions given by Eqs. (5.6a) and (5.6b) are the momentum and

energy equation evaluated at the wall; r = R, giving the conditions for the second

derivatives of fluid velocity and temperature. The conditions outside the boundary

layers where the flow is not yet affected by viscosity and heating are:

u(x,RrR)=u (5.7a)

=0 (5.7b)
or

T(x,0rR-6)=T (5.8a)

OTI =0 (5.8b)

Here, u is defined as fluid velocity outside the boundary layer, i.e., in the "core" of

the flow. It is an unknown quantity; a function of axial distance. The core half-

thickness is R-ö.

By making the following substitutions

u vD11=
u0 v

0= TT
pu TT

x
DReD

(5.9)

The Reynolds number ReD is nondimensionaluniform inlet velocity u0 defined by
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ReD 
=u9-D 

(5.10) 

The governing equations can now be rewritten in nondimensionalform as 

Conservation of mass 

2 ô )+=o (5.11) ---(1NJ 

Conservation of momentum 

+2 ô[1 ( Gr '1 4 ô ( ô4 ' - +I-iO+---Ii--I (5.12) 'TiôE (\ReD) i''i &q) 

Conservation of energy 

(5.13) 
q Pr1'ô ) 

The Grashof number Gr and Prandtl number Pr are defined as 

Gr 
g3(TTjD3 

(5.14) 

The boundary conditions become 

V Pr= (5.15) 
a 

4 =0,q)=1 (5.16a) 

= 0,) =0 (5.16b) 

= 0,i) = 0 (5.16c) 

(5.17a) 

= 1) = 0 (5. 17b) 

(5.17c) 



113

a I =- (5.18a)
C' Oi), 4

(I=o (5.18b)1 8i
11=1

(5.19a)

=0 (5.19b)

(5.20a)

aol =0 (5.20b)

Here, A and AT are nondimensionalforms of viscous and thermal boundary layer

thicknesses ö and 8T respectively, and defined as A 6/R, AT = 6T/R. G is defined

as

dill GrG=--+--
d ReD

(5.21)

Outside the boundary layer(s), i.e., in the core, friction and heating effects are

absent. The flow here is governed simply by Bernoulli's equation. In a

nondimensionalform, this relation is

(5.22)Cd d

So that Eq. (5.21) can be rewritten as

(5.23)
d ReD
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Recall that the lateral component of fluid velocity is zero both at the channel wall

and at the axis or plane of symmetry. Integrating conservation of mass, Eq. (5.11)

from ii = 0 to 1, it follows that

= { JT14d1l + Ji1J4d1i) =0 (5.24)

This is nothing but the statement that the sum of mass flow rates in the boundary

layer and in the core is a constant.

Since mass is conserved,

th = pu0A
AC

= a constant with respect to x (5.25)

for our incompressible flow, this equation is rewritten in nondimensionalform as

Ji4dn + = (5.26)

1-A
1+j 1+j

This is a useful alternative form of Eq. (5.24). Integration of the conservation of

mass, Eq. (5.11), from i=(1-A) to 1, i.e. for the portion of the flow inside the

viscous boundary layer 6, gives the lateral velocity component at the edge of the

boundary layer (i=1-A) as

1 d1

2 d ()i fi4di (5.27)

Multiply the momentum and energy conservation equations, Eqs. (5.12) and (5.13),

by With a few steps using the continuity equation given by Eq. (5.11), the

Bernoulli equation of the core flow given by, Eq. (5.23), and the lateral-component

velocity Eq. (5.27), the momentum and energy equations take the following forms.
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d4 1 Gr (5.28)+1 I9+4
1ReD) Oi( On)

4 01 OO'\0(1jO)+2(iO)= _11iJ
J

(5.29)

Integrating Eq. (5.28) from i = (1-A) to 1,i.e., across the boundary layer, it follows

that

Gr j1iJ0d1i+4.!i (5.30)
ReD 1-A

Similarly integrating Eq. (5.29) from 11 = (i-AT) to 1, i.e., across the thermal

boundary layer, we obtain

JliiO4d1= (5.31)
d Pr On

11=1

The integrated form of the governing equations given by Eqs. (5.26), (5.30)

and (5.31) will allow the transformation of a system of three partial differential

equations into three simpler ordinary differential equations for the three unknown

functions A, AT and 4 as dependent on . An approximate solution can be then

obtained if the shape of the velocity and temperature distributions is assumed. This

approach is pioneered by T. von Karman as shown by Mill (1992) which has been

followed by several investigators, for example, the work of Spalding (1954) on

laminar flow with mass transfer on a flat plate and Sparrow (1955) on laminar

forced convection heat transfer in entrance region of flat rectangular ducts.
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the boundary layer, 4) and 0, can be represented by third-degree polynomial

functions of ii as
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0=A0 +A1i+A2i2 +A3i3 (5.32)

4) = B + B11 + B22 + B313 (5.33)

where the coefficients may be functions of axial coordinate and can be

determined by boundary conditions of the problem as specified in Eqs. (5.17a),

(5.18a), (5.19a), and (5.19b) for 4) and in Eqs. (5.17c), (5.18b), (5.20a), and (5.20b)

for 0. It follows that

\f '\3

6 (i-1 3JAT (1n22(1+jAT hh111
(4+jAT)j (4 + jAT)AJ 4+jA1

(5.34)

A2
+4(4+jA)A) A) A)

4) 6_21 + 2(1
'Y 1

(4+jA)[ A ) A ) __J j
(5.35)

A and AT are functions of , yet to be determined. A knowledge of A and AT will

lead to the heat transfer characteristics of the flow in the channel.

Vorayos and Kanury (2000b) have shown that if the channel is long enough

to yield full development of the flow thermally and hydrodynamically, the resultant

Poiseuille flow velocity distribution in the fully developed region is given for a

UWT heating boundary condition in the channel by
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1 Gr (l_i2)

=i-ii-iii;;;- 8
(5.36)

Integration of this distribution give the mass flow rate in the channel which

has to be , including within the developing region. Therefore, the induced

Reynolds number ReD at the entrance can be obtained as a function of the wall

heating condition embodied in the UWT Grashof number. Introducing Eqs. (5.36)

into (5.25), this relation is

Gr
ReD =K (5.37)

where K is 12 for a parallel-plate channel and 32 for a circular tube.

The velocity distribution in the fully developed region Eq. (5.36) and the

associated mass flow rate Eq. (5.37) reveal that the velocity at the axis (core

velocity) increases from unity at the entrance = 0 to 1.5 (for a parallel-plate

channel) or 2 (for a tube of circular cross-section) in the fully developed region.

Hence, flow at the axis is accelerated in the developing region.

Three ordinary equations for the three -dependent variables, 4, A, and AT

then emerge from the introduction of the velocity and temperature profiles, Eq.

(5.34) and (5.35) into the integral conservation equations; namely, the mass

equation given by Eqs. (5.26), momentum equation given by Eq. (5.30), and energy

equation given by Eq. (5.31). Omitting details of this substitution and horrendously

tedious algebraic manipulation, these three equations are given as follows:
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Conservation of mass

GA2 )+(F2 F3)= 4+JA(l(lA)1+J) (5.38)F1

j+1

where F1, F2, and F3 are functions of A given by

F1 _(_A)'(_L 2 1

(j+2j+3j+4J (5.38a)

F2 J(1A) (5.38b)

6 3jA 2+2jA"
F3 =(_A)J+l[ j+4 j (5.38c)

Conservation of Momentum

d (G2F4 +G4F5 +4F6 _F7)+1. CJd4C GF +4F9 +__{jF'10 _(_A)1F11}
(4+jA)2 j+l ReD

(5.39)

where F4 to ii are also functions of A given by

F4 =j
1

A5 (5.39a)
16x105 16

= -i-----A+ AF5 j(10A 13 1 5)(1)J+2 (5.39b)
840 120 2

.(272 117 2 74 3 _A4+(_1)i+2J3A (5.39c)F6j A+---A A
35 35 35 7 ,)

F7 _(1_A)') (5.39d)
J+1
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A
F8

(4+jA)
(5.39e)

24
F9 (5.390

6 1 1(3A1 i1i+Ai
F10 ' 24+AJ 34+AJç 24+AJ (5.39g)

6 1 3j 2 (1+jA 1
F11 j+1j+2(4+jAJj+34+jcA)2 j+44+jAJ (5.39h)

Conservation of Energy

d {G(iFI2 +(_1)J+2A3F13)+(jF14 +(-1)2AF )1 _24 115

(4 + jA)(4 + jA) ii (4 + jA)A (5.40)

where F12 to F15 are also functions of A given by

F12 kj20 )ç3 12O 336 )2
(_-LA3_1A4+LA5+1A3+I-LA4_LA5k (5.40a)

20 80 140 )c 12 I48 120 )

F3=J4_+J5!+J6 (5.40b)

F=
14 35 14 70 )3 35 35 70 )2

I_6A_2A2+A3')+
5 5 35 28 ) 5 )

I6A---A +---A+ (2A2 +-A32 +I-A ---A (5.40c)
10 20) 10) 5 20)

F15 (5.40d)
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is the ratio of thermal to viscous boundary layer thicknesses, APr/A. Ji to Jio

are constants and listed in Table 5.1.

The viscous and thermal boundary layers are quite thin, especially in the

vicinity of the inlet. Thereby, the high-order terms of A and AT in the foregoing

equations are ignorably small. One can thus obtain approximate solution for A and

as dependent on for small values of, from Eqs. (5.38) to (5.39). With a few

steps of calculation under an additional assumption that is close to unity in the

vicinity of the inlet, it can be shown that

A = jCi(1_e_C2) (5.41)

(i-c3)
(5.42)

Values of the constants C1 (i = 1, 2, and 3) are listed in Table 5.2. These small-

results serve as the starting solutions in dealing with Eqs. (5.38), (5.39), and (5.40)

to obtain , A and AT at larger values oft.

At this juncture, use of a numerical method is unavoidable to solve the

system of Eqs. (5.38)-(5.40). That this system is complex is an obvious

understatement. We choose a simple numerical approach namely the Runge-Kutta

method. All numerical calculation work involved was done on a solver of an

ordinary differential equation (0DE45) of the commercially available software

MATLAB. Equations. (5.41) and (5.42) are used to start the calculation in the

domain close to the inlet to avoid dealing with the associated with the inlet

condition; A( = 0) and AT ( = 0) equal to zero.
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Table 5.1 Values of constant i's appearing in Eqs. (5.39) and (5.40)

Parallel-plate channel Circular tube
j=0 j=1
1/105 1/280

J2 19/105 37/420

J3 272/35 11/2

J4 1/210 1/336

J5 -1/20 -1/40

1/12 1/30

-6/35 -1/10

i8 12/5 1

-6 -8/5

J10 6 8/5

Table 5.2 Values of constant C's appearing in Eqs. (5.41) and (5.42)

Parallel-plate channel Circular tube
j=0 j=1

C1 4 3/2

C2 35/6 140/9

C3 3/8 3/4
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The heat transfer characteristics of the region can be observed in a variety

of ways as seen from existing literature. For the sake of comparison with the

available works, we define here local and average Nusselt numbers as follows:

hbD (\&JrD/2Nub==
(TWTb)

(5.43)

hbDDIh dx (5.44)Nub =
k xk b

0

5.5 Results and Discussions

0DE45, a Runge-Kutta scheme in MATLAB, is deployed to solve Eqs.

(5.38)-(5.40). The start up solution given by Eqs. (5.41) and (5.42) is used up to

=i0 after which the Runge-Kutta scheme takes over the calculation.

5.5.1 Velocity and temperature distributions

The viscous and thermal boundary layers obtained as functions of x from

such calculations are plotted Figs. 5.2 (for a channel) and 5.3 (for a tube). Velocity

and temperature distribution at three different cross-sections along the axis are

shown in Figs. 5.4 for the channel and 5.5 for the tube. The distance required for

the thermal boundary layer(s) to reach the axis of symmetry (i.e., = R) is 0.0145

for parallel-plate channel and 0.0159 for circular tube. At this -value, the
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velocity boundary layer has yet to penetrate about a 1/4 (for a channel) to 1/3 (for a

tube) of the cross-section. However, for a fluid of Pr 1, the flow will develop

quite soon after the thermal development. This can be seen in Figs. 5.4 and 5.5

the velocity at the axis at the location of thermal development is quite close to the

fully developed values of 1.5 for a channel and 2 for a tube.

At any cross section, the velocity and the temperature distributions inside

the boundary layers are approximated by third degree polynomials. It can be noted

from Eqs. (5.34) and (5.35) that the velocity profile comprises of two distinct parts;

one with G as a multiplier and the other with 4 as a multiplier. These two parts

deal with natural and forced convection respectively. In fact, the well-known

polynomial representations of the velocity distributions in free convection and

forced convection can be recovered from Eq. (5.34).

If the core flow is small and buoyancy is large, the velocity distribution is

little influenced by the core flow. In the limit of 4-O, the velocity distribution

tends to be

Or 2 11-u
4 (4+) 1_21__1!f1

) A) A)

which is the same as the natural convective velocity distribution in the boundary

layer over a UWT vertical parallel plate (see Thomas, 1999) in which the velocity

profile are shown to be double-peaked.

In contrast, if the core flow dominates over that of buoyancy (see Sparrow,

1955), a forced-convection-like velocity distribution will result.
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) j

which is the same as the forced convective velocity distribution in the boundary

layer over a parallel-plate channel (j = 0 ) in a laminar flow of free stream speed

4. The details of upward flow inside the boundary layer thus depend not only on

the heat diffusion near the wall(s) but also on the forced-convection-like flow

outside the boundary layer. While the heat diffusion near the wall(s) results to a

local buoyancy (to be reckoned in terms of local Grashof number

Gr g(Tw-Tc)x3/v2), the forced-convection-like flow outside the boundary layer

is the result of overall buoyancy due to the heating in the fully-developed flow

regime of our very long channel (to be reckoned in terms of inlet Reynolds number

ReD). These driving forces is also reported by Metai and Eckert (1964) in which

the two parameters are used to determine whether the laminar flow within vertical

tubes was forced, mixed, or free convective. Hence, in this developing region of a

long channel where Eqs. 5.37 holds, the ratio Gr / Re is much greater than one.

Mills (1992) shows that in such the limit the effect of overall buoyancy will

dominate over the local buoyancy. This leads us to anticipate the prevailing of the

overall buoyancy over the local buoyancy as soon as the fluid enters channel at x =

0 until it leaves the exit at x = L such that the flow and heat transfer characteristics

in the long channel will close to those of channel forced convection. This is

confirmed from Figs. 5.4 and 5.5, in which the velocity profiles are not in double-

peaked shapes as what one would obtain from the natural convection over the
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vertical flat plate where Gr. / Re is much smaller than one but, in fact, they are

similar to those of channel forced convection.

5.5.2 Pressure variation

According to boundary layer theory, variation of pressure across the cross-

section at any axial location is negligible. Pressure is thus independent of the

transverse coordinate, r, it is only a function of x. The pressure distribution in

terms of P' ( P -P = P -pgx) is simply determined from Bernoulli equation,

Eq. (5.22), applied to the flow outside the boundary layer, i.e., at the axis. The

result is shown in Fig. 5.6. The pressure difference rapidly decreases near the

entrance. It decreases more rapidly in a circular tube than in a channel. When the

flow is fully developed, the pressure drop with x also reaches its fully developed

form, i.e., parabolic form for UHF boundary condition and exponential form for

UWT boundary condition as shown by Vorayos and Kanury (2000b). The

corresponding core velocity 4 is calculated by the Bernoulli equation given in Eq.

(5.22) and shown in Fig. 5.6. As the fluid advances, the boundary layers grow and

the core region gets smaller resulting to the acceleration of nondimensional core

velocity from 1 at the inlet to a fully developed value of 1.5 for a parallel-plate

channel and 2 for a circular tube at some location x sufficiently far from the

channel entrance. The acceleration of the core flow resulting from the pressure

difference between the fluid inside and outside the channel is similar to what occurs
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in channel forced convective flow where the fluid is forced into the channel by the

specified inertia.

5.5.3 Heat transfer

The heat transfer results determined are as shown in Figs. 5.7 and 5.8. for

the case of parallel plates and in Figs. 5.9 and 5.10 for the case of circular tube.

Local and average Nusselt numbers defined in Eqs. (5.43) and (5.44) are plotted as

functions of x/(D ReDPr); an inverse of the Graetz number. Vorayos and Kanury

(2000b) have shown that the Nusselt number of fully developed flow within the

long vertical UWT parallel-plate and circular tube is not dependent on whether the

flow is driven by natural or forced convection. Local Nusselt number based on

wall-to-bulk temperature difference and physical D, Nub, is found in the fully

developed flow to be a constant in both cases and equal to 3.770 and 3.657 for the

parallel-plate channel and circular tube respectively. As seen in Fig. 5.7 and 5.9,

the local NUb is large near the entrance and gradually decreases with an increase in

x to asymptotically approach the fully developed constant value of 3.770 for the

parallel-plate channel and 3.65 7 for circular tube.

For the case of parallel plates shown in Figs. 5.7 and 5.8, our developing

flow solutions of pure natural convection agree fairly well with the forced

convection results of Kays, Stephan (1959), and Hwang and Fan (1964) (the first

and the third are taken from Rohsenow and Hartnett's Handbook of Heat Transfer,

1971). Kays solved the problem of forced convection with the fully developed
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parabolic inlet velocity distribution. When compared with the results of Kays, our

solution is slightly over-predicted. This departure is reasonable since the parabolic

velocity inlet yields lesser intensity of heat transfer than does a uniform inlet

velocity distribution. The results of Stephan (1959) and Hwang and Fan (1964)

based on the assumption of a uniform inlet velocity shows an especially close

agreement with our predictions.

Kays (1955) provided the numerical work in terms of average Nusselt

number from x =0 to x as a function of Graetz number [ReD Pr! (xID)] for forced

convection in circular tube with a parabolic inlet velocity and give the its best-fitted

expression for it as

0.104-x!D)Nub = 3.66+ (5.45)
1ØØ16(ReD Pr°8

x/D )

This relation is usually given to in most standard textbooks of convective heat

transfer. It is this relation which is plotted in Fig. 5.10 for the sake of comparison

over present work. Our result is within 8 per cent when compared with Eq. (5.45)

in a range of x/(D ReD Pr) larger than 0.001, i.e. Graetz number lower than 1000.

A numerical finite-difference solution of heat transfer in pure natural

convection within circular tube is also available in the work of Kageyama and

Izumi (1970). As seen in Fig. 5.9, our solution is in good agreement with this

work. Some difference is noted at high Graetz number, i.e., the vicinity of the inlet,

where the boundary layer theory is not accurate due to the neglect of the essential
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axial conduction. Our start-up solution used to enter the Runge-Kutta scheme

without having to deal with the singularity at x =0 may also possibly contribute to

this departure. In spite of this, it can be said that the heat transfer characteristics in

the developing region of natural convection flow in both long parallel plates and

circular tube are not only similar but also quite close to those in the developing

region of forced convection.

As discussed in previous sections that the mechanisms of forced convection

dominate over those of natural convection, the observation is consolidated again by

the fact that the heat transfer characteristics of the natural convection in vertical

channels are close to those of channel forced convection. Hence, despite the fact

that the flow is naturally induced by wall heating condition, its flow and heat

transfer characteristics in terms of the velocity and temperature distributions and

Nusselt numbers are similar to those of forced convective flow. The distinction

between channel forced and natural convection is that, in channel forced

convection, the core flow is forced into the channel by a specified inertia in terms

of inlet Reynolds number ReD but, in channel natural convection, the core flow is

naturally induced by the condition of heating wall. As such, the inlet Reynolds

number in natural convection is a function of the prescribed wall heating condition.

It should be emphasized again that the channel has to be sufficiently long to

assure fully developed flow at the upper end and the dominance of overall

buoyancy over local buoyancy. Inlet ReD of the flow is then governed by the flow

in the fully developed region and equal to Gr/K where K is a constant 12 for a
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parallel-plate channel and 32 for a circular tube. If ReD exceeds this limit, the flow

is then forced into the geometry rather than naturally induced. The flow problem

then is categorized either as "mixed convection" or even as pure forced convection

if the ReD is significantly large.

5.5.4 Entry length

From the boundary layer thickness determined as a function of x, we can

now approximate the entry length. In spite of the fact that the boundary layer

theory does not allow the calculation to proceed beyond where the thermal

boundary layers merge at the axis of symmetry, by extrapolating the Nub(x)

solution curve in Figs. 5.7 and 5.9 to asymptotically approach the fully developed

flow Nub value, we can determine the entry length (or developing length) Le to be

approximately

= O.05ReD Pr
D

(5.46)

for both the parallel-plate channel and circular tube. This is quite the same relation

as that is known in channel forced convection flow (Langhaar, 1942) which, once

again, support the fact that the flow is dominated by the forced-convection-like

mechanisms. Since ReD is a function of Gr, Eq. (5.37), the above equation for

entry length becomes

L 0.05--=--GrPr (5.47)
D K
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Again, recall that K is a constant 12 for a parallel-plate channel and 32 for a

circular tube. Hence, if the aspect ratio L/D of the vertical UWT channel is larger

than this Le/D, the channel is long enough for the flow to become fuiiy developed

at the upper end such that the heat transfer and flow characteristics are then

determined by the forced-convection mechanisms described in this paper. In other

word, for the channel with specified aspect ratio to be sufficiently long to assure a

fully developed flow, the wall heating condition has to satisfy the requirement that

1KLGr<------ (5.48)
Pr 0.05 D

for which the present results are applied.

5.6 Conclusion

Laminar natural convection heat transfer of air in the entry (developing)

region of a long UWT parallel-plate channel and a circular tube is studied in this

paper to gain an understanding of the physics involved in the evolution of thermal

and viscous boundary layers. The problem is studied from the view-point of the

boundary layer theory with an integral method of solving the governing equations.

The resulting ordinary differential equations are highly nonlinear and could

only be solved numerically although with a simple commercially available solver

known as MATLAB. The solutions agree reasonably well with the existing

literature in spite of the fact that velocity and temperature distributions within the

boundary layer(s) are approximated by polynomials merely of third-degree.
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It is evident that the flow which is induced by buoyancy within a long

vertical UWT heated channel becomes fully developed at an axial distance

sufficiently downstream from the entrance. It is this fully developed flow that

determines the flow rate which has to remain invariant with x even in the entry

region. Both the entry flow and the fuiiy developed flow follow heat transfer

physics which is identical to the physics of forced convection heat transfer.

As the boundary layer develops within a long channel, it interacts with the

core flow, which is unaffected by channel wall friction and heating, such that the

fluid in the core is entrained across the viscous boundary layers inducing the core

flow to accelerate with the axial distance. Fluid mass is drawn into the channel at a

rate dictated by the flow in the fully developed regime. This mechanism is similar

to that of forced convection in which the core flow is forced to accelerate as the

boundary layer(s) develop(s). In our long tubes, this forced convection mechanism

dominates the natural convection mechanism. This observation is affirmed by the

excellent agreement of the Nusselt numbers from the present study with those

appearing in the existing duct-flow- forced-convection literature. The solutions

compare well also with the existing numerical solutions of the forced convection

problem.

Our present model also suggests that if the duct inlet Reynolds number ReD

smaller than GrIK, where K is a constant 12 for a parallel-plate channel and 32 for

a circular tube, then the results of this paper become inapplicable, for then the flow

is either (a) not fully developed in the (short) tube or (b) the natural convection in
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the boundary layer(s) dominates to yield a velocity distribution development

significantly different from the manner of development described in thispaper

pertaining to long ducts in which the flow gets to be fully developed. The entry

length has been reasonably predicted and is in excellent agreement with the result

of forced-convection-duct-flow available in the literature. It can be then deduced

that, for the channel with the specified aspect ratio LID, the wall heating condition

should not exceed some particular limit for the flow to be fully developed.
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CHAPTER 6: SUMMARY AND FUTURE WORK

6.1 Summary of the Dissertation

Heat transfer due to convection within a uniformly heated vertical channel

has been a topic of many theoretical and experimental studies due to its importance

in practical applications. When the amount of heat to be transferred is large,

forced convection is usually favored over natural convection. In applications where

the heating/cooling rates and loads are not large, natural convection is preferable

since it requires no prime-movers. The equations governing channel natural

convection are coupled, and so much more complex. Closed form solutions

become rarely possible. However, many experimental and numerical studies exist

in the literature attempting to predict heat transfer and flow characteristics of

natural convection within a vertical channel.

In this dissertation, we sought to gain a clear physical understanding of the

mechanisms of naturally induced flow and heat transfer in vertical channels and

tubes. A series of problems have been considered beginning with the flow in fully

developed regime and consequently advancing to the developing flow regime.

Three stand-alone papers have been prepared and presented in Chapters 3, 4, and 5.

A series solution method is proposed in Chapter 3 and validated for fully developed
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laminar forced convective flow within a uniformly heated vertical parallel-plate

channel and tube.

Using the series solution method, Chapter 4 is devoted to the study of the

flow and heat transfer characteristics of steady-statefully developed laminar

natural convection within long vertical uniformly heated parallel-plate channels

and circular tubes. The velocity and temperature distributions of the fluid are

obtained; and, from them, the heat transfer characteristics are deduced. An inlet

Reynolds number, representing mass flow rate of the channel, is determined as one

of the unknowns. In the fully developed regime, no matter whether the flow is

forced or naturally induced, the velocity and temperature distributions are same or

similar and local Nusselt number, Nub, are very close. Thus, we condlude that the

flow in the fully developed region is altogether independent of how the it is driven.

Following the study of fully-developed channel natural convection we

investigated, as reported in Chapter 5, flow in the developing regime of laminar

natural convection within a very long vertical UWT parallel-plate channel or tube.

The flow rate obtained from the fully developed flow analysis of Chapter 4 is

employed as a specified input into the problem of flow and heat transfer in the

developing region near the inlet. Closed-form solutions for the developing flow

are impossible to this problem of natural convection analog of the Graetz problem

in forced flow in the tube. An integral method of solution is sought to arrive at the

development of thermal and viscous boundary layers in a form of ordinary

differential equations. Since even this system of ordinary differential equations are
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highly nonlinear, a Runge-Kutta numerical integration scheme is engaged to solve

them. The results thus obtained show that the heat transfer (Nusselt number) isa

function of the axial distance x from the inlet plane, asymptotically approaching the

fully developed flow results which confirm those obtained from Chapter 4.

The velocity profile distribution across the channel at locations close to the

entrance reveals no resemblance to the velocity profile in the natural convection

boundary layer over a single vertical plate, i.e., we found no double-peaked

velocity distribution in the channel as suggested by Elenbaas. Although the flow in

the channel is definitely driven by buoyancy, it is the fully developed regime that

determines the flow rate. The inertia of the fluid thus drawn into the channel is the

mechanism that dominates the character of the local natural convection in the

entrance region. This is as though the flow is forced.

Interactions between the developing boundary layers and the core of the

flow near the channel's axis of symmetry are found to be no different from those

occuring in the developing channelforcedconvectiveflow. The entrance length of

channel natural convection is also discovered to be the same as that in channel

forced convection. However, boundary layer theory is applicable up to the point

before the boundary layers reach the axis or plane of symmetric only. For fluids

whose Pr is of the order of unity, e.g: air, viscous and thermal development lengths

are not significantly far apart.
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6.2 Future Work

The studies presented in this dissertation are intended to be used for fluid

whose Pr is of the order of unity, e.g: air. Extension of this work for fluids whose

Pr is much larger or lesser than one is not now foreseen but possible.

The parallel-plate channel problems described here deal with symmetric

heating boundary heating conditions. Extension of the studies to asymmetric

boundary conditions is possible.

The work described in Chapter 5 is for a problem in which the channel wall

is kept at a prescribed uniform wall temperature, (i.e., the UWT condition). The

problem has yet to be solved for the boundary condition of uniform wall heat flux

(i.e., UHF condition).

Nonuniform wall heating boundary conditions appear to be important in a

number of newly evolving applications. Extension of the present work to such

problem seems possible but probably very difficult.

Also related to Chapter 5, if the UWT channel is not sufficiently long to

allow the flow to filly develop, the mass flow rate within the channel becomes one

of the unknowns of the problem in which the flow is not fully developed at the exit.

The work of Chapter 5 then needs a large effort to adapt to such short channels.

The physics will most likely involve the local natural convection (showing double

peak velocity distribution). This is the problem of short, wide, and intensively

heated channel with small Or Pr D/L mentioned in Chapter 1. The flow
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characteristics over the channel wall are then expected to asymptotically reach

those of laminar natural convection over a single vertical plate. Work is yet to be

done to verify and quantify these expected physical features of flow and heat

transfer in short wide channels.

6.3 Closure

Thus, in the current study, we have reported the flow and heat transfer

characteristics of laminar natural convection of air within long uniformly heated

vertical parallel-plate channels and circular tubes as obtained from a combination

of mathematical teclmiques. Our accomplishments are:

. A series solution method is proposed and shown to yield acceptably accurate

results offering an alternative way to solve fully developed channel forced and

natural convection problems with UWT and UHF boundary conditions.

Eventhough natural convection in vertical channels and ducts is driven by

buoyancy, the results in the fully developed region are very nearly the same as

those for forced convection channel flow. These results are summarized once

again in Table 6.1.

Laminar natural convection heat transfer in the developing region of a long

UWT channel and tube is found to be quite the same as that in laminar forced

convection. Additionally, the entry length for forced and naturalconvection



within UWT parallel-plate channel and circular tube is reasonably

approximated as

= GrPr
D K
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where K is a constant 12 for a parallel-plate channel and 32 for a circular tube.

Table 6.1 Comparison of local Nusselt number NUb hbD/k = D /[(k(T Tb)]
for fully developed laminar forced and natural convection within uniformly heated
parallel-plate channels and tubes. D is channel spacing or tube diameter.

Geometry Parallel-Plate Channel Circular Tube
Wall heating condition UWT UHF UWT UHF

Forced Convection 3.770 4.118 3.657 4.363

Natural Convection 3.770 4.118 3.657 4.363
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APPENDIX A: RADIUS OF CONVERGENCE OF THE POLYNOMIAL
FUNCTION 70 FOR UWT PROBLEMS

In Chapter 4, the polynomial function yo used to approximate the

temperature distribution in the problem of laminar fully-developed natural

convection flow within UWT problem is

y0(ii)=Co +C1i+C2i2 +

for which the coefficients C are solved using a series solution method.

Specifically, C with n is an odd number is found to be zero. This leaves

y0(rO=Co +C2i2 + C414 +

To verify if the polynomial above is convergent over the cross-section area of the

channel, i.e. on 0 1 1, the radius of convergence has to be calculated by using

the ratio test such that,

91=lim C2m
m*o C 2m+2

Define the ratio Rm IC2m/C2m+21 so that 91 = limRm . Hence, the radius of

convergence 91 is obtained by plotting Rm as seen in Figures A. 1 and A.2. For

n*, it is suggested from the plot that the convergence interval of yo is infinite;

therefore, the polynomial Yo is convergence everywhere including the domain of

interest; 0q1.
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Figure A. 1 Distribution of a ratio Rm IC2m/C2m-l-21 for the UWT parallel-
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APPENDIX B: NUMERICAL SUBROUTINES USED FOR A SERIES
SOLUTION METHOD IN CHAPTER 4

In Chapter 4, the fluid temperature distribution for the problem of laminar

fuiiy developed natural convection within UWT parallel-plate channel and circular

tube can be simplified as

0 = 1 70('11)s()

While s() is solved analytically as shown in Chapter 3 of this paper, y0 is solved by

a series solution method from which the funcition is approximated by a polynomial

function,

= C0 + C1i+ ...+ C'
Substituting this function into the energy equation,

1 d ( dy " = NubyO (112 1))it\11 4\3)

Then the coefficients of the function can be found and C1, C3, C5, ... are zeros

whereas the remaining coefficients can be written in terms of the coefficients

before them;

and

1C2=-----4-I NubCOl+ji)

n4C i:i
NUb(Cfl4 C2)

n(n-1+j)
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These coefficients has to satisfy the conditions such that

0L11 =c0+c2+c4+....=o

=2C2+4C4+6C6+...=
d1 2I=1

If the low degree polynomial function y is used, the calculation can be definitely

carried out by hands. However, for the higher degree used, the calculation becomes

time consuming and, therefore, a numerical subroutine are used. The detail of the

program written in MATLAB is hence shown in Figure B. 1. for the UWT parallel-

plate problem and in Figure B.2. for the UWT circular tube problem.
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NuOld=3.6;
NoTmax=31;
AC ( 1) =1;

for jdex=7 :2 :NoTmax
NuDiff=l;

while (NuDiff>0.0000l)
A(l) =1;
A(2) =0;
A(3)=_3/8*NuOld;
A(4 ) =0;

A(5)3/4*NuOld*(A(1)_A(3))/12;
A(6)=0;
NuNew=8/3* (l+A(5) );
for idex=7:jdex

A(idex)=3/4*NuOld*(A(idex_4)_A(idex_2) )/(idex-l)/(idex-2);
idex=idex+l;
A(idex)=0;
NuNew=NuNew+8/3* (A(idex)+A(idex-1));

end
NuDiff=abs (NuNew-NuOld);
NuOld=NuNew;

end

NuNew
Nub( (jdex-5) /2)=NuNew;
NoTerm( (jdex-5) /2)=jdex;

AC (2) =0;
AC(3)=_3*NuNew/8;
AC (4) =0;

AC (5) =1/16*NuNew* ( 1-A ( 3)

AC (6) =0;

SumM=2*AC (3) +4*AC (5);

for kdex=7:jdex
AC(kdex)=0.75*NuNew*(AC(kdex_4)_AC(kdex_2))/(kdex_1)/(kdex_

2);

SumM=SumM+ (kdex-1) *AC (kdex);
kdex=kdex+1;
AC(kdex)=0;

end
AC(l)=-NuNew/2/SumM;
A0 ( (jdex-5) /2)=AC(l)

end

figure(l) ;plot (NoTerm, Nub, 'ko');
fiair(2:n1(NnTrm1\O. 'kn'.

Figure B.1 MATLAB subroutine used to calculate C in UWT parallel-plate
channel problem.
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NuOld=3.2;
AC ( 1) =1;

NoTMax=29;
for j dex=7 : 2 : NoTMax

NuDiff=1;
while (NuDiff>0.0000l)

A(1) =1;

A(2)=0;
A(3)=_l/2*NuOld;
A(4)=0;
A(5)=2/16*NuOld* (A(l)-A(3)
A(6)=0;
NuNew=2+2*A(5);
for idex=7:jdex

A(idex)=2*NuOld*(A(idex_4)_A(idex_2))/(ideX_l)A2;

idex=idex+l;
A(idex)=0;
NuNew=NuNew+2* (A(idex) +A(idex-1));

end
NuDiff=abs (NuNew-NuOld);
NuOld=NuNew;

end
NuNew
Nub((jdex-5)/2)=NuNew;
NoTerm( (jdex-5) /2)=jdex;

AC (2) =0;

AC (3) =-NuNew/2;
AC (4) =0;

AC (5) =NuNew/8* ( 1-AC (3)

AC (6) =0;

SumM=2 *AC ( 3) +4 *AC (5)

for kdex=7:jdex
AC(kdex)=2*NuNew*(AC(kdex_4)_AC(kdex_2) )/(kdex-l)'2;
SumM=SumM+ (kdex-l) *AC (kdex);
kdex=kdex+l;
AC(kdex)=0;

end
AC (l)=-NuNew/2/SumM;
A0( (jdex-5)/2)=AC(1)

end

figure(l) ;plot (NoTerm, Nub, ko');
figure (2) ;plot (NoTerm,A0, 'ko');

Figure B.2 MATLAB subroutine used to calculate C in UWT circular tube
problem.
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APPENDIX C: NUMERICAL SUBROUTINES USED TO SOLVE THE
PROBLEM OF DEVELOPING FLOW IN CHAPTER 5

In Chapter 5, it follows that the conservation equations reduced from a

system of partial differential equations into a system of three non-linear ordinary

differential equations given by Eqs. (5.38), (5.39), and (5.40). Runge-Kutta

numerical schemes written in MATLAB are used to solve these equations for three

unknowns; namely, 4, Ai, and A, using Eqs. (5.41) and (5.42) as start-up solutions

from = 0 to 1 0 to avoid singularities due to the fact that, at the inlet, A(=O) = 0

and AT(=O) = 0. The detail of main-body programs is shown in Figure C. 1 for

the UWT parallel-plate channel and Figure C.2 for the UWT circular tube. There

are a relating functions called out from the main-body programs are also shown in

Figure C.3 and C.4.
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Pr=O . 7

psistt=le-7
psistp=O.024;

GrByPhO=12;
BLSt=sqrt(4* (1_exp(_35/6*psistt) ) );
VelSt=1/ (1_3/8*BLSt);
RtSt=1;

[psi, y]=ode45('G1011c', [psistt psistp], [VeiSt BLSt
RtSt], [1, (GrByPhO), (Pr));

Figure C. 1 Program subroutine written in MATLAB and used to solve the problem
of developing laminar natural convection flow within a UWT parallel-plate
channel.

Pr=O. 7

psistt=le-7
psistp=O.024;

GrByPhO=32;
BLSt=sqrt (1.5* (1_exp(_140/9*psistt) ) );
VelSt=1/ (1_3/4*BLSt);
GSt=35/4*(Ve1St'3)*exp(_14O/9*psistt)/BLSt+GrByPhO;
RtSt=1;

[psi, y]=ode45('01015a', [psistt psistp], [GSt VeiSt BLSt
RtSt], [1, (GrByPhO), (Pr));

Figure C.2 Program subroutine written in MATLAB and used to solve the problem
of developing laminar natural convection flow within a UWT circular tube.



161

function dy=Gi011c (psi, y, flag, GrByRd, Pr)
dy=zeros (3,1)
dy(1)=24*(1_y(i)+0.75*y(l)*(y(2)/2)_
((y(2)/2)A3)*GrByRd/24)/(y(l)*((y(2)/2)A3));

Bf=-24/35/ ( (y(2) /2) 2) * (1-

y(l)+O.75*y(i)*(y(2)/2))2+i8/35*y(1)/(y(2)/2)*(1_
y(i)+O.75*y(i)*(y(2)/2))_3/28*(y(1)2);
Cf=24/35/ (y(2) /2) * (i-y(i) +O.75*y(i) * (y(2) /2)) *
1+0.75* (y(2) /2) )+19/35* (i_41/38*y(i)+5/76*y(l) * (y(2) /2));

if Pr>l
Df=_O.25*GrByRd*(y(2)/2)_

l.5*y(i)/(y(2)/2)+3/8*GrByRd*y(3)*(y(2)/2);
Ef=3*((y(3)'2)/5_(y(3)'s3)/6+3/70*(y(3)4))*(0.75*(y(2)/2)_

i)+3/4*(y(2)/2)*((y(3)2)/5_(y(3)A4)/70);
Hf=9/4*( (y(3)"2)/5-

(y(3)A3)/6+3/7O*(y(3)4))*y(l)+0.75*y(l)*((y(3)s2)/5_
(y(3) "4) /70);

IIf=3* (l+y(l) * (0.75* (y(2) /2)-i)) *

0.5* (y(3) 2)+l2/70* (y(3) A3) )+...
O.7S*y(l)*(y(2)/2)*(2/5*y(3)_2/35*(y(3)s3));

else
Df=_0.25*GrByRd* (y(2)/2)

l.5*y(1)/(y(2)/2)+GrByRd*(y(2)/2)*(i_0.75/y(3)+1/8/(y(3)3));
Ef=_8/35+87/280* (y(2) /2);
Hf=87/280*y(1)+(_1+3/8*y(3)+0.75/y(3)_1/8/(y(3)/3));
IIf=(y(2)/2)*(3/8+0.75/(y(3)2)+3/8/(y(3)"4));

end

dy(2)=2/Bf*(Df_Cf*dy(i) );
dy(3) =i/IIf* (3/2/Pr/y(3) / (y(2) /2) _Ef*dy(l) _Hf*dy(2) /2);

Fig. C.3 Function subroutine called out from the main-body program for the
problem of developing natural convection flow within UWT parallel-plate
channel.
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functiondy=G1015a (psi, y, flag, GrByRd, Pr)

D=y(3);D2=y(3)"2;D3=y(3)"3;D4=y(3)"4;D5=y(3)"5;D6=y(3)"6;

Z=y(4);Z2=y(4)"2;Z3=y(4)"3;Z4=y(4)"4;Z5=y(4)"5;Z6=y(4)"6;

FpD=(4+D);

dy=zeros(4, 1);

delt=y(3)*y(4);

Fl=(D3/24-D4/60) /FpD;
F2=(4_2*D_D2/5+3/lO*D3) / (4+D) ;
F3=y(l)*(D2/2_ll/60*D3_l/20*D4)/(FpD"2)+y(2)*(_12_
8/5*D+17/5*D2+3/5*D3) / (FpD"2) ;

F4=y(l) * (D5/105/8-D6/280/8) / (FpD"2) +y(2) * (19/210*D3_l/35*D4_
l/120*D5) / (FpD"2) ;
F5=y(l)*(l9/2lO*D3_l/35*D4_l/l2O*D5)/(FpD2)+y(2)*N544/35*D_
151/35*D2_148/35*D3_4/7*D4) / (FpD"2) + (l-D) "2-1/2);
F6=(y(l) "2) * (D4/84_l/280*D5_
l/1120*D6) / (FpD'3) +y(l) *y(2) * (38/35*D2_ll/30*D3_47/210*D4_
l/40*D5) / (FpD"3)+.
(y(2) "2) * ( (1088/35_876/35*D_888/35*D2_234/35*D3_
4/7*D4)/(FpD3)_(l_D)
ifPr<=l
F7=_y(l)*(D/FpD)_y(2)*24/D/FpD+.
GrByRd*D*Nl/2_2/5*D)/Z3+(l/2*D_2/5*D2)/Z2+(_
3+D+3/4*D2) /Z+ (4_2*D) + (D-D2/2) *Z) / (4+delt);
F8=( (D3/210-D4/336)/Z3+(D4/210-D5/336)/Z2+(-
D3/20+D4/80+D5/140) /z+ (D3/12-D4/30) +Z (D4/48-
D5/120) ) /FpD/ (4+delt) ;
F9=( (_6/35*D+l/35*D2+3/70*D3) /z3+ (-
6/35*D2+1/35*D3+3/70*D4)/Z2+(12/5*D+2/5*D2_16/35*D3_
3/28*D4) /Z+.
(_6*D_2/5*D2+3/5*D3)+Z*(6*D_
l/lO*D3+3/20*D4)Z2*(2/5*D21/1O*D3)+Z3*(_3/5*D3_
3/20*D4) ) /FpD/ (4+delt);
F1O=y(l)*((D2/70_D3/84)/Z3+(2/105*D3._5/336*D4)/Z2+(_
3/20*D2+D3/20+D4/28)/Z+(D2/4_2/15*D3)+Z* (D3/12-D4/24)-.
F8* (4+2*delt+4*Z) ) /FpD/ (4+delt)+y(2) * ( (_
6/35+2/35*D+9/70*D2) /Z3+ (_12/35*D+3/35*D2+6/35*D3) /Z2+.
(12/5+4/5*D_48/35*D2_3/7*D3) /Z+ (_6_4/5*D+9/5*D2)+Z* (6-

Fig. C.4 Function subroutine called out from the main-body program for the
problem of developing natural convection flow within UWT circular tube.
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3/1O*D2+3/5*D3) +Z2* (4/5*D+3/1O*D2) +Z3* (_9/5*D2_3/5*D3) -. 
F9* (4+2*delt+4*Z) ) /FpDI (4+delt); 

F1l=y(l)*N_D3/70+D4/112)/Z4+(_D4/105+D5/168)/Z3+(D3/20_ 
D4/80_D5/140)/Z2+(D4/48_D5/120)_F8*(4*D+D2))/FpD/(4+delt)+... 

y(2)*((18/35*D_3/35*D2_9/70*D3)/Z4+(12/35*D2_2/35*D3_ 
3/35*D4) /Z3+(_12/5*D_2/5*D2+16/35*D3+3/28*D4) /Z2+. 

(6*D_l/lO*D3+3/20*D4)+Z*(4/5*D2+l/5*D3)+Z2* (_9/5*D3_ 
9/20*D4)_F9*(4*D+D2))/FpD/(4+delt); 

else 
F7=-y(l) * (D/FpD)- 

y(2) *24/D/FpD+GrByRd*D*Z* (3/2+Z* (l/lO*D) +Z2* ( 

3/20*D2) ) / (4+delt); 
F8= (Z2* (D3/lO) +Z3* (l/12*D3_l/24O*D4) +Z4* (3/140*D3+D4/105_ 

D5/60)+Z5* (_4/280*D4+l/56*D5)+. 
Z6* (_3/560*D5) ) /FpD/ (4+delt) ; 

F9=(Z2*(12/5*D)+Z3*2/5*D2+Z4*(_6/35*D_6/35*D2_ 
16/35*D3)+Z5*(l/35*D2+1/35*D3_3/28*D4)+. 

Z6* (3/70*D3+3170*D4) ) /FpD/(4+delt); 
F1O=y(l) * (Z2* (3/1O*D2) +Z3* (_l/4*D2_ 

l/60*D3) +Z4* (9/140*D2+4/105*D3_D4/12)+z5* ( 

l/70*D3+5/56*D4) +. 
Z6* (_3/112*D4) - 

F8*(4+4*Z+2*Z*D) )/FpD/(4+delt)+y(2)*(Z2* (12/5)+Z3*(4/5*D)+Z4* 
6/35l2/35*D_48/35*D2)+. 

Z5*(2/35*D+3/35*D2_3/7*D3)+Z6*(9/70*D2+6/35*D3)_ 
F9* (4+4*Z+2*delt) ) /FpD/ (4+delt) ; 

Fll=y(l)*(Z*(D3/5)+Z2*(_l/4*D3_ 
l/80*D4)+Z3* (3/35*D3+4/105*D4_D5/15)+Z4*(_ 

1/56*D4+5/56*D5) +Z5* (_9/280*D5) -. 

F8*(4*D+D2fl/FpD/(4+delt)+y(2)*(Z*(24/5*D)+Z2*(6/5*D2)+Z3*(_ 
24/35*D_24/35*D2_64/35*D3) +. 

Z4*(1/7*D2+l/7*D3_15/28*D4)+Z5*(9/35*D3+9/35*D4)_ 
F9* (4*D+D2) ) / (4+delt) /FpD; 
end 

dy(2)=l/y(2)*(y(l)_GrByRd); 
dy(3)=(Fl*F7_dy(2) * (F5*Fl_F2*F4) ) / (F6*Fl_F3*F'4) ; 

dy(l)=l/F1* (-dy(2) *F2_dy(3) *F3) ; 

dy(4)=l/F11*(24/Pr/delt/(4+delt)_dy(1)*F8_dy(2)*F9_dy(3)*FlO); 

Fig. C.4 (Continued) Function subroutine called out from the main-body program 
for the problem of developing natural convection flow within UWT circular tube. 




