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NOMENCLATURE 

r = Space variable 

t = Time variable 

K = Thermal conductivity 

c = Specific heat 

e = Density 

k = Thermal diffusivity (= K/ p c) 

L = Latent heat of fusion 

a = Radius 

Q(t) = Strength of the source of heat per unit time per unit 

length of the cylinder 

Q(t) = Strength of the source of heat per unit time in the case 

of the sphere 

r' = Radius of the source (very, very small) 

T(r,t) = Temperature distribution before melting 

TL(r,t) = Temperature distribution after melting in the liquid 

region 

TSr,t) = Temperature distribution in the solid 

T* = Melting temperature of the material 

t* = Time at which the material begins to melt 

R(t) = Position of the boundary between the phases 

t a 
= The time of the complete melting of the cylinder or the 

sphere 



NOMENCLATURE (Continued) 

z = r/R(t) 

P CL, kL and ps, cs, ks are the corresponding 

quantities in the liquid and solid regions respectively. 

p = p L = ps (no change in density is assumed) 

Units are cgs, calorie and °C. 



ON THE MELTING OF CYLINDERS AND SPHERES 

INTRODUCTION 

Problems involving moving boundaries (known as Stefan 

Problems) are of great current interest in heat conduction theory. 

There is a large number of situations involving heat conduction in 

which moving boundaries result from the change of phase, for ex- 

ample, melting or freezing phenomena and the progress of temper- 

ature dependent chemical reactions through a solid. Many practical 

examples can be also cited, e. g. (1) Decay by evaporation (or 

growth by condensation) of a liquid drop, (2) Motion of a plane 

liquid -vapor interface, (3) Freezing of a lake, (4) Structural dam- 

age to hypersonic missiles caused by aerodynamic heating etc. 

Due to the difficulties caused by the non -linearity of these problems, 

it is generally very difficult to obtain analytical solutions. 

There are many classical references to this type of problem, 

usually involving the melting or solidification of slabs. Problems of 

this type first seem to have been considered by Franz Neumann in 

his lectures in the 1860's; Stefan considered the same type of prob- 

lem in 1891 imposing more restrictions. In 1921, Saitó [22] dis- 

cussed the temperature distribution, during solidification, in steel 

ingots of various shape and size subject to different initial and 

boundary conditions neglecting latent heat of fusion. Lightfoot [ 16] 
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gave extensive study to Saitó's problem when latent heat of fusion 

could not be neglected. A simple solution was obtained by the inte- 

gral equation method. In recent years, high speed computers have 

been used in order to obtain numerical solutions of the partial dif- 

ferential equation involved. Work done by Landau [15] , Citron [3] , 

Lotkin [ 17] , Miranker and Keller [ 18] among others can be men- 

tioned. Boley's [1] contributions towards this end are remarkable. 

He developed a new method in which the problem is reformulated 

so as to involve the solution of two ordinary integro- differential 

equations. By expanding the equations in powers of the time after 

melting starts, an exact analytical solution is obtained which is par- 

ticularly useful for small times. A review of the developments of 

the past few years in the field of heat conduction was presented by 

Boley [2] including the application to problems of change of phase 

and moving boundary. He includes several methods to approxi- 

mate solutions in his paper. Other methods are given by Evans 

et al. [7] , where the solutions are represented as power series. 

Although, this important group of problems has attracted 

the interest of many authors in the 19th and 20th century, problems 

involving radial flow in cylindrical and spherical coordinates have 

received comparatively little attention. The problems of melting 

are more difficult in the case of cylindrical and spherical flows. 

A solution of the non -linear problem of the rate of ice formation on 
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a long cylinder whose surface temperature is variable (but always 

below zero) is given by Pekeris and Slichter [20] . The solution is 

applied to the specific problem of stabilization of wet soil by freez- 

ing. Stewart Paterson [21] has considered the case of fusion when 

heat propogated from a line source (cylindrical coordinates) of heat 

and from a point source (spherical coordinates) of heat. Analytical 

solutions are obtained in both cases. Ingersoll et al.[11] have dis- 

cussed the problem of freezing around pipes in soil at various con- 

ditions, the difficulties faced by piping engineers have been dealt 

with explicitly. Friedman's method [8] of generalization of one 

dimensional problems to two and three dimensional cases should be 

mentioned in this context. Gibson [10] has solved the same prob- 

lem involving spherical symmetry by using the method of separation 

of variables with the help of the special transformation 

T = f(t)G( ) h(t), 

where t is the time and the space variable and f, G, h 

are functions of single variables. Later he concluded that the 

variables are separable only if R(t) = Ct 2 , where C is a 

constant. 

An interesting practical problem, solidification of a cylinder 

and a sphere from the surface, has been presented by Kreith and 

Romie [14] . The diffusion equation is expressed in dimensionless 

+ 

i 

E 

^5 
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form, and the solution of the partial differential equation is obtained 

by means of a method of iterative approximation in which the temper- 

ature is expressed in a series 

T = T + T + T + + Tn+ ... 

The authors assume that each term of this series may be related to 

the preceding term by the equation 

ôT aT 

r 
.57a (r arn = a-1, = 1+ A, 

where A is a dimensionless time variable, r is dimensionless 

space variable and G is constant. The last equation is integrated 

between limits 0 to r and each term of the series can be de- 

termined in this way. 

This paper attempts to solve the problem of melting prop- 

agating from the axes of cylinders and the centers of spheres due to 

heat sources of a variable strength. The problem of the sphere 

is artificial, but the problem of the cylinder has some practical 

applications, as for example, melting or solidification of soil or 

ice around a cylindrical heated pipe. Both the cylinder and sphere 

are assumed to be insulated at the surface, but cases involving 

infinite radius will also be treated. Unlike the work of some 

authors, the liquid formed by the melting is not immediately 

ár G 
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removed, but no convective heat transfer is assumed, i. e. trans- 

portation of heat is purely by conduction. The growth of a frozen 

zone, starting from negligible initial dimensions with either a plane, 

cylindrical or spherical boundary, into a surrounding super cooled 

fluid is discussed by Chambré [6] , where convection in the liquid 

region is taken into account. If the density does not change with the 

temperature in the liquid region, the assumption of no- convection 

will be correct. In both cases, analytical solutions are obtained. 

In this work, existence and uniqueness will not be discussed, 

reference can be made to Friedman [8] , Kolodner [ 13] and Miranker 

[19]. 
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ASS UMPT IONS 

In this thesis we shall assume that 

1. The material is homogeneous. 

2. All thermal properties of the material are uniform and 

constant; however, the properties of the liquid phase 

are not necessarily equal to the corresponding proper- 

ties of the solid phase. 

3. There is no convection in the liquid, the transportation 

of heat is effected only by conduction. 

4. Expansion or contraction of volume on melting is 

neglected. 



7 

FORMULATION OF THE PROBLEM 

Cylinder with Finite Radius and Infinite Length 

Consider a cylinder of radius a, perfectly insulated at 

the surface, and subjected to a heat input Q(t) per unit time per 

unit length along the axis. The initial temperature is zero. The 

radius of the source is r' where r' «a. The temperature 

T (r, t) in the cylinder prior to melting is a solution of the following 

boundary value problem: 

a aT(r,t) - 
1 a[rT(r,t)] r' < r < a, 0 < t (1) 

ar ar k at 

(a) T(r, 0) = 0 r' < r < a 

(b) Q(t) _ -2 r Kr ôr at r = r' 

aT(a,t) 
ar 

(2) 

Equation 2(a) states that initially the temperature distribu- 

tion in the cylinder is zero. Conditions 2(b) and 2(c) are bound- 

ary conditions, the first one gives the heat input to the cylinder at 

r = r' , the second results from the insulation of the surface. With 

constant heat input Q(t) = Q0, the foregoing problem could be 

solved by applying the Laplace transformation method. 

(c) 
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Since the cylinder is insulated at the surface, melting will 

be initiated around the source after the elapse of a certain time 

t = t*. For t > t* the cylinder will be divided into two regions, 

liquid and solid. The position of the phase boundary will be an un- 

known function of time which must be determined and hence gives 

rise to a floating boundary value problem. The position of the 

phase boundary will be denoted by r = R(t) and the temperature 

at this boundary will be equal to the melting temperature of the 

material, T *. The problem for the liquid region in the post 

melting period, t > t *, R(t) > r' , may be formulated as follows: 

aTL(r't) r 8T(r,t) 
8r (r 8r ) kL at 

(a) TL(R (t), t) = T* 

(b) Q(t) _ -2TerKL 8r 

r' <r<R(t), t* < t. (3) 

8TL(r,t) 
at r = r' 

(4) 

The condition 4(a) expresses the fact that at the phase boundary, 

the temperature is constant and equal to the melting temperature of 

the material. 

In the solid region we have: 

e 
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ó 
áTS(r, t) r óTS(r, 

ór (r ár ) ks at 
R(t) < r < a, t3 < t. (5) 

TS(R(t), t) = 

óTS(a, t) 

ór 

T* 

= o 

(c) T(r,t*) = T(r,t*) 

áTL(r, t) óTS(r, t) 

(d) -KL ór KS ar I-`P R (t) 

at r=R(t). 

(e) R (t *) = r' . 

(6) 

Conditions 6(a), 6(b) are not new, while 6(c) implies 

that at t = t *, i. e. when melting starts, the temperature is con- 

tinuous. The last two conditions provide (d) that part of the heat 

passing through the liquid region enters the solid region, while part 

goes towards overcoming the latent heat of fusion L and (e) that 

there is no liquid region at t = t *. 

The condition 6(d) above may be put into an alternative 

form by considering the curves of constant temperature 

TL(r,t) = T* = TS(r,t) at r = R(t). 

Hence 

- 

(a) 

(b) 
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aT aTL aT 

ar 
s 

Rdt + at dt = 0 = arS Rdt + at dt at r = R(t). 

So equation 6(d) becomes 

aTL (r, t) aTS(r, t) aTL/ at aTS/at 

-KL ar + KS ar - LP aTL/ ar -LP aTS/ar 

at r = R (t) (7) 

That the problem is non - linear can be seen from the fact 

that two different heat input functions Q1(t) and Q2(t) will give 

different phase boundaries R1(t) and R2(t), because the move- 

ment of the phase boundary depends upon the strength of the source 

and on other physical constants; and that the solution for the sum 

Q1(t) + Q2(t) cannot be obtained by addition of R1(t) and R2(t). 

The non -linearity of the problem is also apparent from equation (7) 

above in that form. 

In this work we will attempt to determine the quantities t *, 

ta, TL, TS and R(t). The last three quantities will be obtained in 

the next chapter under further restrictions to be explained later. 

The first two quantities are obtained by Landau [15] for the problem 

of melting of a slab, by Gauss's Theorem applied to the heat conduc- 

tion equation, the domain of integration is xt plane. The same 

quantities for the same problem are determined by Citron [3] by 

using simple integration method. Here, use is made of Citron's 
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procedure to determine t* and ta. 
a 

Integrating (3) between the limit r = r' to r = R(t) and 

using conditions 4(a) and 4(b), we obtain: 

or 

8 (r 
8TL(r't) 

1 CR(t)8 
ar 8r )dr = k 

J 
at [rTL(r, t)] dr. 

r L r 

aT L(r, t) 
r ar 

R(t) 

r =r' 

R(t) 
= kl 

{ et rTL(r, t)dr-R(t)TL(R(t), t)d Rtt) }. 
L r' 

TL(r,t) is the temperature distribution in the homogeneous 

liquid where no convection takes place. Hence TL(r, t) is a solu- 

tion of the heat conduction equation and is therefore a smooth func- 

tion in r' < r < R(t) and hence the order of differentiation and in- 

tegration can be interchanged. 

8TL 
r ar 

or 

8TL 
-r 

8r 
r=-R(t) 

R(t) 

= kl 
{8 

rTL(r,t)dr-R(t)T4 dRtt) r-_ r , L r , 

8TL 8TL 

r-_ r 

1 a 
{ 

R(t) 
rTL(r,t)dr-TrR (t)/2} 2 

r 
r ar -r 8r r =R(t) 

k at 
L 

r' 

= 
J 

R(t) 

, 

at 
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aTL 
r ar 
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R(t) 

2Kt) k at { 
rTL(r,t)dr -T*R (t)/2} 2 

r=R(t) L L r' 
using 4(b) (8) 

Proceeding exactly the same way, integrating (5) between the 

limit r =R(t) to r =a and using conditions 6(a) and 6(b), one 

will obtain: 

-r = kl aá { ,a rTS(r,t)dr + T*R2(t)/2}. (9) 
r=R(t) S R(t) 

Multiplying 6(d) by r we get 

aTL 
-KLr ar 

aT 
S 

r=R(t) 
+ 

KSr ar 

and substituting (8) and (9) 

r=R(t) 

K R(t) 
Q(t) 

- kL L at rTL(r,t)dr - T*R2(t)/2} 2 

L r' 

= LpR(t) R(t) 

k 
S 

at { J a 
rTS(r,t)dr + T*R2(t)/2} = Lp R(t)R(t) 

S R(t) 

Ç { 

k 

aTs 

ar 

2n 

a 



or 
R(t) 

Q(t) = 2Trp cL ôt { rTL(r, t)dr - T*R2(t)/2} 
r' 
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('a 
+ 2Trp cS at { 

J 
rTS(r,t)dr k T*R2(t)/2} + 2Trp LR(t)R(t). (10) 

R(t) 

Integrating (10) between t = t* and t = t1 

Q(t)dt = 2Trp cL 

tl 

(' á 
at 

( PL=PS=P) 

SR(t) 
rTL(r,t)dr - T*R2(t)/2}dt 

r' 

tla 
+ 2Trp cs at 

{ SI rTL(r,t)dr + T*R (t)2} dt 
t* r' 

+ 2Trp L R(t)i(t)dt. 
t* 

Replacing t by t we get 

t* 

R(t) 
,5' 

t 

{ 
t* 

J 
2 
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R(t) 
Q(t)dt = 2TrpcL{S' rTL(r,t)dr - T*R2(t)/2} 

t* r' 

R(t*) 
- 2Trp cL { rTL(r, t* )dr - T*R2(t*)/2} 

r' 

'a 
+ 2Trp cs {.5 rTS(r, t)dr + T *R2(t)/`2} 

JR(t) 

-2npc { rTS(r, t*)dr + T*R2(t*)/ 2} 
R (t *) 

+ 2TrpL[R2(t)/2 - R2(t*)/ 2] 

2Trp c { 
R(t) 

rTL(r,t)dr - T*R2(t)/2} 
r' 

+ 2Trp rTS(r, t)dr + T*R2(t)/2} 
R(t) 

+ 2TrLp [R2(t)/ 2 - r' 2/21 

a 
-2Trpcs[ rTS(r,t*)dr + T*r' 2/2]+ TrpcLT*r'2 

r' 

R(t*) = r' (11) 

We are interested in obtaining the time for complete melting 

of the cylinder, ta. If heating is continued long enough, the time 

to will be obtained observing that R(ta) = a, hence 

S" 

= J 

t 

a 

a 1 

'.' 

a 



t 
a ('a 

J 
Q(t)dt = 2Trp cL { rTL(r, ta)dr - T>ka2/ 2} + 2Trp cs{T*a2/ 2} 

r' t* 

+ TrpcLT*r'2 + Trp L(a2-r' 2) - 2Trp c 

or 
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51a. rTS(r, t*)dr + T* r' 2/2] 
r' 

t 
a 

Q(t)dt = 
Trp [a2(cST* - cLT*) + L(a2-r' 2)] + TrpcL,I.,,,r,2 

t* 
a 

- 2Trp cs rTS(r, t*)dr + 2Trp cL rTL(r, ta)dr. 
r' r' 

(12) 

Proceeding in exactly the same way, equation (1) and the con- 

ditions 2(a), 2(b) and 2(c) give 

or 

aT 
-rar 

r = r' 

a 
a 

k at rT(r,t)dr 
r ' 

2Trx a a Q(t) - k at 
rT(r,t)dr. 

r' 
(13) 

An expression for t* may be obtained by integrating (13) 

between the limit t = 0 to t = t*: 

1 

(a 
l 

= 



(' t* 
Q(t)dt = 2Trp c 

JO 

Sa 
rT (r, t)dr dt 

r' 

('a 
= 2Trp c [ J rT (r, t*)dr 

r' 

a 
= 2Trp c rT (r, t*)dr 

r' 

So adding (12) and (14) we get, 

rT(r, 0)dr ] 

16 

(14) 

t* ('ta 
Q(t)dt + çQ(t)dt = Trp [a2(cST*-CLT*)+ L(a2-r'2) ]+ TrpcLT*r'2 

0 

a ('a 
-2Trp cs rTS(r,t*)dr+ 2Trp cL rTL(r, ta)dr 

r' r' 

a 
+ 2npc S rT(r,t*)dr 

r' 

But T(r,t *) = Ts(r,t *), c = c. 

t 
a 

Q(t)dt = Trp [ a2(cST- - CLT*) + L(a2 - r'2) ]+ TrpcLTr'2 
0 

+ 2Trp c rTL(r, ta)dr . 

r' 
(15) 

It can be seen that (15) equates the total heat inflow in time t = 0 

to t = ta to the heat content in the cylinder at that moment. 

('t *a 
\ at 

r' 

a 

( 
1 

J a 

1 

t* 

( 
J 

a 
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In order to be able to estimate t* on the basis of equation 

(14) we have to determine T(r, t *). This may be obtained from 

equation (1) with conditions (2) by applying the Laplace transform 

method. A sufficient condition for the existence of the Laplace 

transform is that T(r,t) is of exponential order, i. e. 

I e-Pt T(r,t)1 < c e-(P-a)t 

where c is any constant. We will assume that this condition 

holds, and applying Laplace transform to (1) and (2) we get: 

d2T 1 dT 2- 

dr2 + r dr T 

co 

where T = 1 T(r, t)e -ptdt. 
0 

2_p 
q k 

(a) - Q 
0 

= -2 TrKr dr P 

(b) dT (a P) - 0 dr 

r =r' 

(2)' 

From (1') T(r,p) = AI0(gr) + BK0(qr) where I0 (gr) and 

K0 (gr) are the modified Bessel's functions of the first and second 

kind of zero order. Using 2' (a) and 2' (b) we have 
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Q0 K1(ga)IO(gr) + KO(gr)I1(ga) 
T(r,P) - 2TrKr'Pg [ K1(gr')I1(ga) -K1(ga)I1(gr') I 

Then by the inversion theorem, 

T r t - 
QO K1(a)IO(µr )+KO(µr)Il(a) eAt 

dA ( , ) 2 K (µr')I (µa)-K (µa)I (µr') µX 
4Tr iKr y-100 1 1 1 1 

where µ = . 

The integrand, when expressed in series form, will contain 

only even powers of µ, therefore it is a single valued function. 

So we need to take the contour of integration as shown in Figure 1. 

We take the radius of the semi -circle as k(n+ 2)2Tr2/ a2 so that 

it does not pass through a pole. When n-oO the integral over 

BB' CA'A tends to zero [51 . So the line integral in question will 

be equal to the sum of the residues of the poles at X = 0 and 

K1(4r9I1(µa) - K1(µa)I1(µr') = 0. There are double poles at X = 0. 

The residues at X = 0 will be given by 

42k= 



1 aan2?3 

V IV 

a lS 

(Z,a-v){, Z(Z,a-Z) Za_Z 
( a+ Y)a .I 

Oj a ns. 
[ 

,ü ti2oT ñ + 
_ r ..vez - 

Z Z £ Z 

61 

Z Z 

0= X TI(eri))i'(Ert)TI(Iarl)Ix, XP 
= 

3Y (Prl)II(ari)Oxrl+(arl)OI("eri)Txri P 

(1a71)II(eT)I31-(erl)tI(iari)T31 
Yj `(P 

Ceri) I(arl)Ox-(arl)OI(eri)Tx Z P 

Z 
- + 

-et 

, 
x 

Y E+ 
- 

a. . [ 

°-'( 
[ 

l(a 
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Neglecting powers of r' greater than one, since r' is 

small in comparison with a, we find that the residue at X =0 is 

The residues at 

2r' r2-a2 a a kt r' 
[ a + -log- f ]- 4a 2 r a 4 

K1(µr')I1(µa) - K1(µa)11(µr' ) = 0 : 

The poles are X = -kal , -ka2 2 
, -ka2 , ' where 

al, a2, a3, are the roots of 

Y1(ar' - Y1(aa)J1(ar') = 0 
1/ 

Hence the residues at X = -ka 2 
n 

1,4K1(F.a..)I0 (1.1,r) f K0 (µr)I1(µa)] 
eXt 

X 2 
d [K1(µr)11(µa)- K1(Na)I1 )] 

= Tr 

X =-ka2 
n 

[ ) ( ) ( )] 
ka2t Jl( an) aYO( an - Y r lanaJOanr Jl( aá1) Jl(ran) e n 

[ J 2(aa ) 
n 

- J1 2 
n 1 

Wan)] 

1/ al, a2, a3, are all real and simple. See Gray and Mathews, 

Treatise on Bessel Functions. 2nd Edition, 1922. p. 82. 

L See [5] page 173. 

k 

a n 

2/ 
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T(r,t) - 
Q 

0 
[ r2-a2+ log a 2kt 

27K 2a 2 
r 2 

1 

4 

co 
YO(anr)J1(aan)-Yl(aan)J0(anr) -ka rit 

+- , J1(aari J1(r'an)e I. 

n=1 an[J1 (aan)-J1 (r' an)] 

This is a rapidly converging series for higher values of time. So 

the sum of finite number of terms will give the result with sufficient 

accuracy. From (16), the time when melting starts at r = r' can 

be obtained: 

T(r't*) - 27rK[ (r 2 + log + 

2a 

2kt * 

a 
4 

+ 
n 

Y0( ñr')Jl(aál)-Y1(aan)J0(anr') J aa J r a ekant 1 

r 
, 

n=1 a n[ (aan) J1 - J1 (r 
i 

an) 1 
( n ) l ( n ) 

Tr n n 1 n n n 
, 

r 
n n 

) 

.. 

2 2 



or 

3 
T* = T(r', t`) _ K[(log r' + 

2 2t 
-4' 

a 

n +- , r 

00 
Y0 (anr' )J1(aari-Y1(aan)J0 (anr' ) 

an[J12 (aan) - J1 
2 

(r an)w 
' 
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-ka 2t* 
J1(aan)J 1(r' ari e n ]. 

(17) 

In this series only unknown quantity is t *; so taking finite 

number of terms, an approximate value of t* could be obtained 

with considerable accuracy. 

In order to apply equation (15) to the problem of determining 

the time of total melting t , a we have to evaluate the integral 

Sa 
rTL(r, ta)dr 

r' 

where TL(r, ta) is the temperature distribution in the cylinder at 

the time t . 
a 

An exact evaluation of this integral therefore requires 

a solution of the melting problem for the cylinder. 

However, the following approximate method can be used in 

order to arrive at a fairly good estimation of the fixed ta. The 

right hand side of (15) is nothing but the total heat content of the just 

molten cylinder. As this quantity involves an integration in space, 

a 
2 

n n n n 
n n 

n-1 
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we can use an approximate temperature distribution. One way of 

arriving at such an approximation is to use the fact that the latent 

heat of fusion L can be regarded as a part of the internal energy 

of the material and define an average specific heat of the material 

for temperatures above the melting point. Hence for T0 > T* we 

define the average specific heat (See Figure 2 and Figure 3) 

cST* + L + CL(TO -T *) 

cav 
TO 

For constant conductivity K, the heat conduction equation 

for an incompressible material can be written as: 

2 DE dE 8T DT 
Kp T= = P 8t - P dT at - p 

c at 

where E is the total internal energy. In general, the specific 

heat c is a function of temperature T and has to include the 

heat of fusion. As pointed out previously, the equation is non - linear 

and can not be solved explicitly in general. But as a first approxi- 

mation we may use c av for c : 

2 8T 
KV T= P cav -at 

and solve this equation in the case of a constant c av' For tempera - 

tures close to the melting temperature, we can use the value 



Molten State 

L 

Source 

Figure 2. 

í /, 

T* 

T* 

Figure 3. 

TO 

t = t 
a 

r'< r < a 

To > T* 

24 

/1 

1 

~T 
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ti 
cav 

.., cS ,T 

So a solution identical to (16) can be obtained, and since it is a 

uniformly convergent series, term by term integration can be 

performed. 

If the liquid thus formed is removed at once, then from (15) 

a 

Q(t)dt = Tr p [a2cT* f L(a2-r' 2)1 = rp a2(cT+ L) (r' ; 0) 

0 

If Q(t) = Q0, then ta = Trpa2(cT):4+ L) /Q0 which is similar to 

the expression obtained by Landau in the case of melting of a slab. 

Also this corresponds to Citron's expression for the complete 

melting time for the slab. 

Sphere with Finite Radius 

Consider a sphere of radius a, insulated over its surface. 

A constant heat input (point source) Q0 units per unit time is at 

the centre of the sphere; the initial temperature distribution is 

zero. The temperature distribution in the sphere before melting 

occurs will be given by the following boundary value problem: 

L 

('t 



a 2 aT 1 a 2 

ar (r ar ) k T(1. T) 
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0<r<a, 0<t (18) 

(a) 

(b) 

T(r, 0) 

QO 

= 

= 

0 

2 -4TrKr ar r=0 
(19) 

(c) ôr (a, t) = 0 

This problem can be solved by applying Laplace's transform. 

The subsidiary equations 

d 2v 

are: 

2- 
2 dr q 

v 
, 

v = Tr (18)' 

(b) 
QO 

=-4TrKr 2[ 1 dv v 
r dr -17) 2 r r=0 

(19)' 

áv 
dr 

v(a, p) 
a r=a 

Solving (18)' and (19)' we get, 

Q 
0 sinhq(a-r) - aq coshq(a-r) 

v - 
, 

4TrKp [ sinhqa - aq coshga 

By inversion formula, 

aT 

p 

= 

= 

- 

(cl 



Q0 T(r,t) - 
81r2kir 

Y-loo 

sinhµ (a-r) - aµ cos hµ (a-r) e 
t 

dX. sinhµa - aµcoshµa 

= µ 

The integrand when expanded will contain only terms with 

even powers of µ, so it is a single -valued function. So we take 
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the same contour as shown in Figure 1. The radius of the circle 

is large enough to include all the poles and we will assume that the 

circle will not pass through any one of the poles. As the radius of 

the circle tends to infinity the integral over the circumference tends 

to zero. So the line integral in question will be equal to the sum of 

the residues at the poles. We have residues at X = 0: 

(a-r)2 (2a+r) 3krt 

2a3 a3 

The poles at sinhµa - aµcoshµa = 0 are 

X = -kai/a2, -ka2/a2, . 

where µa = ±ian are the roots of sinhµa - aµcoshµa = O. The 

n n residues at X = -kan %a are : 

X 

k 

k 

n 

(1' 

J 

- 



sinhµ(a-r) - aµcos hµ (a-r) , Xt at X = _kat/a2 
X d [ sinhµà - aµcos hµa 1 

n 

- 2 
sin[ an(a -r) /a1 - ancos[an(a -r) /a1 2 /a2)t 

e n 

a sin¢ 

.. T(r,t) - 

n n 

QO 3krt 
+ 

(a-r)2(2a+r) 
4TrKr 3 

a 2a3 

+ 2 

00 

n=1 
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sin[ an(a -r) /a1 - ancos[ an(a -r)/ a1 -ka 2 
2 

e ( n )t" 
2 

an 
n 

an 

(20) 

After melting occurs, our problem will satisfy the following 

set of equations : 

a 2 aTL 1 a 2 

ôr (r ôr. ) = kL T (r TL) 

(a) TL(R(t), t) = T* 

0<r<R(t), t*<t. (21) 

2 aTL 
(b) QO = -47KLr ôr 

and 

r=0 

(22) 

e 

n 

(¢ n n k 
2 

[ 

1 
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aT 

a r 
a (2 

arS) kl at (r 2 TS), R(t) < r < a, t* < t . (23) 
S 

(a) TS(R(t), t) = T* 

(b) TS(r, t'x) = T (r, t*) 

(c) ar [TS(a, t)1 = 0 

aT L aTs 
(d) -KL ar + KS ar = 

Lp R (t) at r = R(t) 

(e) R(t*) = 0 

(24) 

Proceeding exactly the same way as in the case of the cylin- 

der, we are able to get the time for complete melting: 

a 
QOta = 3 Tra3[PcT* - pLcLT"`+ Lp1 +4TrpLcL r2TL(r,ta)dr. (25) 

0 

When the liquid is removed as soon as it forms, 

ta = 3Tra3p[cT"`+ LIQO (26) 

For an approximation of TL(r, ta), let To be the aver- 

age temperature, and c av , the average specific heat, then as 

before, 

= 
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csT*+ L+ cL(TO - T*) 

c av - T, 0 

With this specific heat, assuming no melting occurs, we have from 

(18) and (19), 

Q 
0 

3k ' rta (a-r) (2a+r) TL(r,t) 
4TrKr [ a3 + 2a3 

where k' 

+ 2 

co sin[an(a-r)/aJ -álcos[an(a-r)/aJ anta/ ,a2 
e 

n=1 

K 
pc av 

be given by (20) : 

2 
an an 

n 

J 

. The time when the sphere starts to melt will 

oo 

QO 3kt 3 2 cos an+ansin an -ka 2t¡a2 n T 
4TrK [ 3 2a a a sina e J (27) 

a n n 
n=1 

n _k' 

- 

in 
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CASE OF AN INFINITELY LONG CYLINDER AND A SPHERE 

Cylinder with a Very Large Radius 

Our main problem is to determine the location of the moving 

boundary (phase boundary) at any time t* < t < t 
a 

. This is a dif- 

ficult task due to the non - linear character of the problem. However, 

the melting proceeds only a relatively small distance into the solid 

in many cases occurring in practice; so it will be sufficiently accu- 

rate to assume a = 00. Landau seems to make this assumption in 

the case of the melting of slabs. The assumption is applicable, for 

example, in the case of melting or solidification of wet soils around 

a cylindrical pipe. In the case of melting, the input Q0 will rep- 

resent a source, while in the case of solidification Q0 is a sink 

(negative source). 

When a = 00, the boundary condition at infinity is physical- 

ly equivalent to 

T (00 t) 
S ' 

= To . 

So our problem now is the following: 
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a aTL(r' t) I a 
ar (r ar ) k at (r TL(r,t)) 0 < r < R(t), t*<t 

(a) QO = -2irKLr ar 

aTL 

r = 0 

(b) TL(r,t) = T* for r = R(t) . 

8 
aTS(r,t) a(r T(r,t) 

Or (r ar ) kS at 

(a) TS(co, t) = TO 

(b) TS(R(t),t) = T* 

R(t)<r<co, t*<t 

aTL 8TS 
(c) -KL ar + KS ar - LpR(t) at r = R(t) 

(28) 

(29) 

(30) 

(31) 

We can apply the so- called Boltzmann transformation 

z = r /R(t); so at r = R(t) i. e. at the phase boundary z = 1. 

Or in other words, we fix the moving boundary at z = 1. Then 

equations (28), (29), (30), and (31) become: 

3/ The source is assumed to be line source here. 

L 

3/ 



and 

33 

2 
d 

2L Z Rk )R (t) 
z ) ddz - 0, 0 < z < 1 ( 28) ' 

dz L 

(a) QO = -2 nKLz 
dz 

dTL 

(b) TL(1) = T* 

z=0 

(29)' 

2 
d 25+ (Z R(kR(t) 

z) ddZ 
= 0, 1< z< o0 (30)' 

dz S 

(a) TS(oo) = T0 

(b) TS(1) = T* (31)' 

dTL dTS 
(c) -KL dz + KS dz - Lp R(t)R(t) at z = 1. 

The above equations could be solved explicitly if 
i 

R(t) R(t) = constant. Or R = ct2 where c is an arbitrary 

constant to be determined. If the value of c is known, the 

location of the phase boundary is known at any time t. This 

result has been applied by other authors [4, 9, 12] . Solving (28)' : 

+ + 



dTL e-z2c2/4kL 
dz 

A 

('z -z2c2`4kL, 
TL = A 

J 
e dz + B. 

0 

Using conditions (29)' (a), (b) we have 

TL(z) - T* - 
QO 1 e-z2c2/4kL, 

2TrK , z 
L z 

34 

(32) 

dz. (33) 

From (33) we get, putting ß = zc/ 2 Nr kL r 
(ß - ), 2t 

c 

2NrkL 
2 

TL(r't) - T 
2TrK 

e-ß dß (34) 
L r (3 

2 kLt 

Similarly from (30)' and (31)' 

2 2 Ale- zc/4ks dTS 

dz z 

z -z2c2/ 4ks 
TS(z) = Al e 

z 
dz + B1 

1 

(35) 

And using conditions (31)' (a), (b) and putting 13 = zc/ 2'[ks we get, 

z 

e 

Q 

J 

. . 
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r 

2 kSt -ß2 _ß2 
T r,t) = Ty _(T - T ) 

e 
dß ! 

e 
dß 

( O S ß c c 

2 Nrk5 2ArkS 

Now we will be able to satisfy the boundary condition (31)' (c): 

dT dT5 
2 -KL dz + KS dz - Lp c / 2 . 

Utilizing (32) and (35) in (37) we obtain: 

(36) 

(37) 

2 
QO 

e-c 2/ 4kL - KS(T* - T O)e -c 2/ 4kS /C e dß = p Lc 2/ 2 2n 
c 

Let ß 2 = u, and c = 2 X TkL 

So from (38): 

dß = 
1 

2 

2rk5 

-u 
e du 

u 

/kS) 

X 2(kL/kS) -u 
- - 1 

S 
e du 

2 u 00 

X 2k 
--2Ei(- kL). 

S 

(38) 

ß 

°° 

X 

( 
J 

-P2 e 

k'J kL 
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-X 
2(kL/kS) 

QO 
2 2KS(T* - TO)e 

2 
e - 2p LX k 

2n E i(-X 2kL/kS) 

-X 
2(kL/kS) 

QO - 2 KS(T* 
- 

T 
0 
)e2 

4Tr 
e - - Lp X kL (39) 

E i(-X kL/kS) 

which is the result given by Carslaw and Jaeger [4, p. 2961. The 

left hand side decreases monotonically from Q0/ 4Tr to -00 as X 

increases from 0 to co. So it has one and only one real 

solution. 

Sphere with Infinite Radius 

Now to determine the location of the solid liquid interface and 

the temperature TL and T, we we make use of the same assump- 

tion that the sphere is of infinite radius and that the temperature of 

the surface is held constant. So our new set of equations and condi- 

tions are as follows : 

aT 
a 

) 
r< R(t), 

r = 0 

t* < t (40) 

(41) 

ôr 
(r2 

ar 

(a) 

k at (r2TL), 0 < 

2 aTL 
Q0 = -47KLr ar 

(b) TL(R(t),t) = T* 

-X 



and 

a 2 aT5 1 a 2 

ar (r ar ) 
= ks at (r Ts)' 

(a) TS(°°, t) = TO 

(b) TS(R(t), t) = T* 

37 

R (t) < r < oo, t>k < t (42) 

âTL aTS 
(c) -KL ar K5 + ôr - Lp R (t) at r =R(t) . 

(43) 

Letting z = r /R(t) as before, we get from (40), (41), (42) 

and (43): 

2 
d 

2L +( 
2 

+ k R(t)R(t)) - 0, 
dTL 

0< z< 1 (40)' 
dz L dz 

dT 
QO = -4TrKLz2R(t) dz L 

(b) TL(1) = T* 

z 
d 

2S+ [ Z+ k R(t)R(t)] dz - 0, 
dz 5 z 

(a) TS(oo) = TO 

z =0 

1 <z <ao 

(41)' 

(42)' 

(b) TS(1) = T* (43)' 

dT dTS 
(c) -KL dz + KS dz - LP R (t) R (t) at z =1 

S 

(a) 

s 
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The above equations can be solved explicitly only when 
i 

R(t) = et ? where c is any constant. 

.. R(t)R(t) = c2/ 2 . 

But the condition (41)'(a) still presents difficulties. However if we 

assume that the heat input is Q0t2 , an analytical solution can be 

obtained, [ see Paterson[21] ] . With this assumption we have the 

solution as follows: 

From (40)' and (41)', 

dTL 
2c 2/ 

4kL 
L e 

dz 2 
z 

(`z -z2c2/4kL 
TL(z) = A J e 

0 z 
dz + B 

Q 
-z2c2/ 4kL 

0 

T L(z )= 
TL(z) = T* 

4TrK c ,) e 2 dz 
L z z 

And letting f3 - zc 

2NrkL 

c 

Q 
24-kL 2 2NrkL 

TL(r't) = T* +4TrK 
c 2 

dß / c 
L r 2t 

(44) A 

ß 

i 

- 

-z 

1 

e 



TL(r, t) 

c 

Q 2k 
T* + 

8TrKL^ÏkL r 2t 
Similarly we have from (42)' and (43)' : 

e 
2 

39 

dß. (45) 

-z2c2/ 4k5 
dT5 Ale 

dz 2 
(46) 

z 

T5(z) = A 

-z 2c z 4k5 
e- dz+B. 

Evaluating the constants, we finally get 

r 
2 1477 e-R2 -ß2 

T5(r,t) = T*+ (T0-T) 2 
e 

dß 
2 dß 

c ß c 

24-1(5 2 4-k5 

Then (43)'(c) gives: 

(47) 

= 
Sb 

ß 

z2 

/ 
ß 

J 2 

(' 
z 1 

1 

e 
J 



Q0 
4Tr 

-c 4kL 
2/ 

e 

-2i 4ks 
cK5(T*-TO)e 

0o -z2c2/ 
4k5 

Sb e dz 
1 z2 

Letting ß = 
Zc where z - 

2NrkS 

r 
i 

ctg 
we get 

40 

= Lp c3/ 2 (48) 

2 2/ - -z2c2/ 4kS -c 4k 
2/ 

00 2 
e dz = e 

5- 
C Ç e-ß dß 

z 4-k5 c 

2NrkS 

2/ 

c 
k 

4-Tr erfc( C 
) 

5 2 Nrk5 

So (48) will be 

Q cK (T * - TO) 
0 5 

_ Lp c3/ 3/ 
2 (49) 

4Tr 

1 
c Tr 

e 
c 

2/ 
4kS c - - 

2 kS 
2NrkS 

which is identical with the equation obtained by Paterson [21] . The 

Q0 
left hand side of (49) decreases monotonically from - to -00 

4Tr 

as c increases from 0 to 00. Hence it has always one and 

only one real root. We have derived a solution for propagation of 

- 

= e 
-c 4kS 

2 

- 

( 

1 
2 

e rfc ( ) 
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heat from a point source where strength increases as Ït . Due 

to this fact, however, this solution is of less practical importance. 

We have obtained the same results as Paterson, but the 

method of approach is different. 
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