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Abstract
Aim: C4 grasses are distinct from C3 grasses, because C4 grasses respond in a differ‐
ent manner to light, temperature, CO2 and nitrogen and often have higher resource‐
use efficiencies. C3 and C4 grasses are typically represented in earth system models 
(ESMs) by different plant functional types (PFTs). The ability of ESMs to capture C4 
grass biogeography and ecology across differing time periods is important to assess, 
given the crucial role they play in ecosystems and their divergent responses to global 
change.
Location: North America.
Time periods: Last Glacial Maximum (LGM), historical modern period (ca. 1850) and 
end of this century.
Major taxa studied: C4 grasses.
Methods: Proxy data representing relative cover and productivity of C4 grasses were 
collated, including carbon isotope ratios of soil carbon and animal grazer tissue, and 
vegetation plot data in undisturbed grasslands. We selected available model predic‐
tions of C4 PFT percentage cover. Models were compared against one another and 
assessed against proxy data at key time points: the LGM, the historical modern pe‐
riod before widespread grassland conversion to agriculture, and the end of this 
century.
Results: We highlight large differences among model predictions of percentage C4 
grass cover across North America: all pairwise combinations have correlations < .5, 
and most are < .2. Models also do not capture spatial patterns of the percentage C4 
grass cover from proxy data, during either the LGM or the historical modern period. 
Models generally under‐predict percentage C4 grass cover, particularly during the 
historical modern period.
Main conclusions: Earth system models do not accurately represent the biogeogra‐
phy of C4 grasses across a range of time‐scales, and their outputs do not agree with 
one another. We suggest model improvements to represent this crucial functional 
type better, including more collection and greater integration of C3 and C4 grass trait 
data, explicit representations of tree–grass competition for water, and a greater focus 
on disturbance ecology.
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1  | INTRODUC TION

Grasses that use the C4 photosynthetic pathway often dominate 
cover and productivity in grasslands and savannas. These grasses 
are extremely important as food crops and biofuels, and often be‐
come aggressive weeds. C4 grasses also account for a large frac‐
tion of carbon and water cycling (Miranda et al., 1997; Ratnam et 
al., 2011; Still, Berry, Collatz & DeFries, 2003). Grasslands and sa‐
vannas where C4 grasses most commonly occur are recognized to 
dominate the trend and interannual variability of the global land 
carbon sink (Ahlström et al., 2015). Palaeoevidence suggests that 
these grasses were also dominant in many tropical and subtrop‐
ical regions during glacial cycles (Bond, 2008) and ecologically 
important since at least the late Miocene (Edwards et al., 2010). 
C4 grasses also critically influence and are influenced by distur‐
bances, particularly through fire interactions in the tropics and 
subtropics (Bond, Woodward, & Midgley, 2005; Randerson et 
al., 2005). Finally, C4 grasses strongly influence (sub)tropical tree 
cover via competition for soil water, impacts on tree seedling re‐
cruitment and acceleration of the fire cycle (Bond, 2008; Higgins 
& Scheiter, 2012; Scheiter et al., 2012).

Given the influences of C4 grasses on many aspects of the 
earth system, accurately predicting their cover and productiv‐
ity should be a priority for global‐scale modelling. Simulation of 
large‐scale vegetation patterns and processes is accomplished 
with dynamic global vegetation models (DGVMs). The DGVMs 
represent a wide variety of physiological, ecological, hydrological, 
biophysical and biogeochemical processes occurring on the land 
surface (Cramer et al., 2001; Jiang et al., 2015; Piao et al., 2013; 
Shao, Zeng, Sakaguchi, Monson & Zeng, 2013; Sitch et al., 2008; 
Wullschleger et al., 2014). As such, DGVMs are a crucial compo‐
nent of earth system models (ESMs), which are used for predic‐
tions of a future warming climate and its attendant impacts on 
humanity and natural ecosystems.

A central component of most DGVMs is the use of the plant 
functional type (PFT) approach to represent a wide range of bi‐
ological properties and traits. The PFT approach has been used 
to represent essential processes and properties of terrestrial veg‐
etation required for earth system modelling (Sitch et al., 2003; 
Wullschleger et al., 2014), but the accuracy of modelled biogeog‐
raphy, cover and productivity across a range of temporal scales is 
crucially important to evaluate. One challenge to such an evalua‐
tion is having relevant empirical data on vegetation characteristics 
against which to compare model predictions at the appropriate 
spatial and temporal scales. Aspects of the C4 photosynthetic 
pathway lead to lower carbon isotope fractionation compared 
with C3 plants (Cernusak et al., 2013), creating a natural tracer of 
carbon inputs from C4 grasses in plant and soil organic matter and 
carbon fluxes. This has been exploited in a range of applications 
to quantify C4 plant contributions (i.e., %C4) to ecosystem respira‐
tion (Still, Berry, Ribas‐Carbo, & Helliker, 2003), soil organic mat‐
ter (Cerling, 1984; von Fischer, Tieszen, & Schimel, 2008), grazer 

tissue (Cotton, Cerling, Hoppe, Mosier, & Still, 2016) and food 
webs (Cerling et al., 2013).

In the present study, we compiled available data from isotope 
ratios preserved in soil organic matter and animal grazer tissues 
to create proxy information on %C4 grass cover and productivity 
during the Last Glacial Maximum (LGM) and historical modern pe‐
riod in North America. We also included information from vege‐
tation plot surveys that measure plant cover. We assessed DGVM 
performance by comparing simulations of %C4 grass PFT cover 
with these proxy datasets for the LGM and historical modern time 
periods. We also compared model predictions for the end of the 
century. For this analysis, we focused on North America, where the 
distributions of C3 and C4 grasses are relatively well characterized 
based on proxy isotope data and modern vegetation plot measure‐
ments (e.g., Cotton et al., 2016; Griffith et al., 2015). We provide 
quantitative comparisons and recommendations for improvement 
in models in better capturing essential aspects of C4 grass ecology 
and biogeography.

2  | METHODS

2.1 | Glacial, modern and future C4 distributions 
from the Coupled Model Intercomparison Project 
Phase 5

We obtained outputs from a subset of models participating in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor, 
Stouffer, & Meehl, 2012). Model outputs included proportional cover 
in each grid cell of all grass PFTs, all tree PFTs and all C4 plant PFTs 
(including grasses and crops) from the Earth System Grid Federation. 
Of the 40+ individual CMIP5 models, only a subset of modelling 
groups provided C4 PFT cover fraction predictions for all time pe‐
riods (Table 1). Although this is a small subset, the selected models 
do represent a range of approaches from well‐respected modelling 
centres. For the LGM, monthly model outputs were averaged to pro‐
duce %C4 layers for the simulated period, which was ca. 100 years for 
each model. For the historical modern period, we used the modelled 
percentage cover of tree PFTs, grass PFTs and C4 grass PFTs from the 
oldest model run year, which corresponds to approximately the mid‐
1800s. This represents a time before extensive land cover change 
in the Great Plains and other regions replaced prairies and savannas 
with croplands (e.g., Hurtt et al., 2006; Ramankutty & Foley, 1999a, 
1999b ). We selected model outputs from the ‘historical’ experiment, 
because that is the experiment for which models simulated all com‐
ponents of the earth system through time. The other model experi‐
ments have different parts of the earth system removed, such as the 
‘historicalGHG’ experiment, which is a simulation of the historical 
period, but with forcings other than anthropogenic greenhouse gases 
removed. For future scenarios, we used simulations based on the 
‘business as usual’ scenario, RCP 8.5 (i.e., corresponding to a ca. 4 °C 
global temperature increase by 2100).
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2.2 | Observed C4 proxy data: LGM and modern

We compiled independent datasets that document the %C4 of herba‐
ceous vegetation in North America during glacial and historical mod‐
ern periods for comparison with model simulations. We used plot 
data from Griffith et al. (2015), resampled to a 100‐km grid (available 
in Griffith, Cotton, Powell, Sheldon & Still, 2017), spanning the con‐
terminous USA and representing C3 and C4 relative grass cover from 
survey plots (< 1,000 m2) located in relatively undisturbed grassland 
remnants. Given that plot data were not collected in crops or farm‐
lands, they are broadly comparable to model predictions for the mid‐
1800s, when natural vegetation predominated. Indeed, plot data and 
carbon isotope ratio proxies suggest little change in relative C3/C4 
abundances from the mid‐1800s (Griffith, Cotton, et al., 2017). We 
also collated glacial and modern observations of the carbon isotopic 
composition (δ13C) of soil and palaeosol organic carbon and grazer 
(bison and mammoth) tissue. Differences between photosynthetic 
pathways drive variations in the δ13C of modern C3 and C4 grasses 
(ca. −27‰ and ca. −12‰, respectively). The δ13C values of soil car‐
bon largely reflect the proportion of C3 and C4 biomass during soil 
formation (Cerling, 1984; Koch, 1998; von Fischer et al., 2008). We 
obtained 55 previously published modern soil δ13C values from von 
Fischer et al. (2008). Given that bison (Bison bison) and Columbian 
mammoth (Mammuthus columbi) are predominately grazers, their tis‐
sues record the mean δ13C of their diets (Cotton et al., 2016; Griffith, 
Cotton, et al., 2017; Hoppe, Paytan & Chamberlain, 2006). Previous 
work has shown that browsing constitutes a small proportion of 
modern bison diet and that they accurately record the abundance of 
C4 grasses within ca. 10% (Hoppe et al., 2006). Additionally, analy‐
sis of Columbian mammoth diet in the late Pleistocene using carbon 

isotopes shows substantial inputs from C4 vegetation, indicating a 
diet rich in grasses (Koch, Hoppe, & Webb, 1997). Modern and fossil 
bison and mammoth data (measurements from 281 individual mod‐
ern bison and 95 LGM individual bison and mammoth) were obtained 
from Cotton et al. (2016). Additionally, five palaeosol δ13C measure‐
ments of LGM age derived from the literature were added to the 
palaeo‐proxy dataset.

We converted soil and animal grazer δ13C values to %C4 using 
linear mixing models and C3 and C4 isotopic endmembers. Owing to 
the Suess effect, the δ13C values of mammal tissues and palaeosols 
were corrected to a preindustrial atmospheric value of −6.3‰ based 
on their age (Francey et al., 1999) and then converted to %C4 with 
endmembers of −25.3 and −11.3‰ (Cotton et al., 2016; Koch, 1998). 
This correction results in the following equation for grazer tissues:

In fossil localities where bison and mammoth coexisted, their 
δ13C values are similar, although mammoth δ13C values tend to 
be more negative, reflecting more input of C3 vegetation (Connin, 
Betancourt, & Quade, 1998). This difference in δ13C values could be 
interpreted as a larger component of C3 browse vegetation in the 
mammoth diet compared with bison. Therefore, the abundance of C4 
vegetation derived from mammoth can be interpreted as a minimum 
estimate.

Soil samples were collected from the A horizon (von Fischer et 
al., 2008), which is the uppermost, organic‐rich soil layer and re‐
flects more recent carbon inputs (tens to hundreds of years; Leavitt, 
Follett, Kimble, & Pruessner, 2007). Here, we assumed that the 
A horizon carbon has a mean age of ca. 100 years and assigned a 

(1)%C4=7.1429�13Cgrazer+180.71

TA B L E  1  Listing of earth system models compared in this study, along with relevant details about resolution and vegetation models used 
for simulations of different time periods

Time period of simulation MPI‐ESM IPSL‐CM5A MIROC‐ESM GFDL‐ESM2G

Last Glacial Maximum MPI‐ESM‐P IPSL‐CM5A‐LR MIROC‐ESM

SEIB DGVM1.875 × 1.85
2.81 × 1.77ORCHIDEE DGVM

3.75 × 1.875

Historical modern period MPI‐ESM‐MR IPSL‐CM5A‐MR MIROC‐ESM GFDL‐ESM2G

GFDL DGVMSEIB DGVM
2.5 × 2.02.81 × 1.77JSBACH DGVM ORCHIDEE DGVM

2.5 × 1.8751.875 × 1.85

Future MPI‐ESM‐MR IPSL‐CM5A‐MR MIROC‐ESM GFDL‐ESM2G

GFDL DGVMSEIB DGVM
2.5 × 2.02.81 × 1.77ORCHIDEE DGVMJSBACH DGVM

2.5 × 1.8751.875 × 1.85

Note. Model metadata come from literature and Web resources for each individual model: MPI‐ESM (Giorgetta et al., 2013), IPSL‐CM5A (Dufresne et 
al., 2013), MIROC (Watanabe et al., 2011) and GFDL‐ESM2G (Dunne et al., 2012). Resolutions are expressed as longitude × latitude.
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corresponding atmospheric δ13C value of −6.6‰. We also assumed 
a uniform enrichment of 1‰ from plant matter to soil organic matter 
(von Fischer et al., 2008). We then converted soil δ13C to %C4 with 
endmembers of −25.6 and −11.6‰ using the following equation for 
soil carbon:

2.3 | Assessing model agreement

To assess agreement among models in %C4 cover predictions, we 
calculated single score intraclass correlation coefficient (ICC) val‐
ues for each of the three time periods (‘two‐way’ ICC analyses as 
described by Shrout & Fleiss, 1979). Intraclass correlation coef‐
ficient values are similar in interpretation to Cohen’s κ (Fleiss & 
Cohen, 1973) and range from minus one to plus one. Based on 
the inter‐rater reliability literature (e.g., McHugh, 2012; McGraw 
& Wong, 1996) we conclude that ICC values < .6 are indicative of 
poor reliability, that is, poor model–model agreement, whereas 
values between .6 and 1 indicate moderate to excellent reliability. 
All ICC values were calculated using the ‘icc’ function (using type = 
‘agreement’) in the ‘irr’ package (Gamer, Lemon, Fellows, & Singh, 
2012) in R (version 3.4.2). We also calculated (using R) Pearson’s 
product–moment correlations for each model pair combination and 
each time period, with values ranging from minus one to plus one; 
a value of zero indicates that there is no association between the 
two model pair predictions. We restricted all our model‐to‐model 
comparisons to grid cells with non‐zero values, reasoning that the 
inclusion of the much more numerous zero %C4 grid cells would 
artificially inflate model–model correlations. Finally, we assessed 
model predictions of %C4 cover with proxy data for each time pe‐
riod by calculating Pearson’s product–moment correlations.

3  | RESULTS

3.1 | Last Glacial Maximum period

In terms of simulated %C4 PFT grass cover, the models diverge 
widely in their predictions relative to one another. For the LGM, only 
three modelling groups made C4 grass PFT cover predictions avail‐
able: MPI, IPSL and MIROC. Among these, modelled C4 cover at the 
LGM varied tremendously, from minimal C4 cover in the IPSL model 
to fairly extensive C4 PFT cover in the MPI model, particularly in the 
Great Plains region of North America (Figure 1). The MIROC model 
(Watanabe et al., 2011) also predicted a fairly extensive amount of 
C4 grass cover, but only in a tier across the southern part of North 
America. During the LGM, the ICC score was .27 (Table 2), a value 
which reflects the poor agreement among model predictions appar‐
ent in Figure 1. The Pearson’s correlation coefficients (Table 3) for 
model pair predictions vary from .17 (MPI and IPSL) to .47 (MIROC 
and MPI). Despite relatively low values, this time period has the high‐
est level of model–model agreement based on both the ICC and the 

correlation coefficients (Tables 2 and 3). Compared with available 
palaeodata for the LGM (δ13C of fossil bison and mammoth tissues, 
and palaeosols), predictions from the MPI and MIROC models are 
visually superior to those from the IPSL model (Figure 1). Indeed, 
Pearson’s correlation coefficients, relating proxy and model data, 
range from .46 (IPSL) to .78 (MPI), and all are statistically significant 
(Table 4). Notably, the proxy data sample a major gradient in %C4, 
and model predictions range from a low of 0–30%C4 in IPSL to a high 
of 0–70%C4 in MPI.

3.2 | Historical modern period

A key aspect of simulating %C4 grass cover during any time period 
is accurately capturing the relative cover of trees and grasses, given 
that C4 grasses commonly occur in regions with low‐to‐moderate 
tree cover in the tropics and subtropics (i.e., savannas and wood‐
lands). There is wide divergence in modelled tree and grass cover 
fractions during the historical modern period in North America 
(Figure 2). Within the Great Plains ecoregion, grass fractions are 
under‐predicted and tree cover fractions over‐predicted in the 
GFDL and MIROC models compared with potential natural vegeta‐
tion distributions for this time period, which are reasonably well con‐
strained by historical data (Ellis, Klein Goldewijk, Siebert, Lightman, 
& Ramankutty, 2010; Ramankutty & Foley, 1999b). The MPI and 
IPSL models generally have greater skill in predicting tree and grass 
cover fractions, although tree cover is still under‐predicted and grass 
cover over‐predicted by the MPI model.

During the historical modern period, model predictions of %C4 
grass PFT cover are likewise variable (Figure 3). Indeed, this time 
period has the lowest level of model–model agreement among the 
three time periods (Table 2). The ICC score is even lower for this 
time period (.05) than for the LGM. Pearson’s correlation coeffi‐
cients (Table 3) for model pair predictions vary from .02 (IPSL and 
MIROC) to .38 (IPSL and MPI). Only one model, MIROC, predicts 
extensive C4 grass cover in the Great Plains and in the southwest 
and Texas. This agrees fairly well with available data from vegeta‐
tion plots and with proxy data from soil carbon and bison tissue 
δ13C. MIROC also predicts extensive C4 cover in the upper Great 
Plains and into northern Canada, and into the upper Midwest and 
New England states of the USA. There are no plant or isotope proxy 
data to support extensive C4 grass cover in these latter regions, 
which were mostly forested in the mid‐1800s. All other models 
greatly under‐predict C4 grass cover in this time period compared 
with data. The IPSL model predicts moderate C4 cover only in 
the southern USA and northern Mexico. Likewise, the MPI model 
predicts extensive C4 grass PFT cover only in parts of southern 
Mexico, and in areas of the Gulf Coast and New England, although 
this ESM predicts extensive overall grass cover in the Great Plains 
(Figure 2). The GFDL model predicts very high C4 cover across the 
arid Mojave Desert, and in parts of the cooler Great Basin and 
wetter Sonoran deserts and central California (Figure 3). This 
agrees somewhat with a prominent C4 grass component in the 
summer‐active grasses of desert regions that receive monsoon 

(2)%C4=7.1429�13Csoil+182.86
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precipitation (Ehleringer, 1978). However, only the MIROC model 
accurately predicts extensive C4 grass cover in the Great Plains 
during the period before large‐scale agriculture. However, this 

model also over‐predicts C4 cover in north‐central and northeast‐
ern North America. Relative to the LGM comparisons of model 
prediction against proxy data, the correlation coefficients for this 

F I G U R E  1  Modelled C4 plant functional type cover at the Last Glacial Maximum compared with available proxy data (palaeosol and 
animal tissue δ13C; Cotton et al., 2016) in the lower right panel. Light blue colour represents areas covered by glaciers during the Last Glacial 
Maximum. Circles represent C4 abundance estimates derived from fossil bison isotope data, squares represent C4 abundance estimates 
derived from fossil mammoth isotope data, and diamonds represent C4 abundance estimates derived from palaeosol isotope data

TA B L E  2  Comparison of agreement across models based on intraclass correlation coefficient values

Statistic of agreement LGM (1,161, 363)
Historical modern (2,595, 
1,062)

Future RCP 8.5 (not including 
GFDL model) (2,665, 208)

ICC values (95% confidence interval for ICC 
population values). All p‐values < .001

.21 < .27 < .33 .02 < .05 < .08 .07 < .12 < .17

Note. Degrees of freedom are provided in the uppermost panels for each time period (F test, so two types of degrees of freedom are provided). ICC = 
intraclass correlation coefficient.
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period are much lower, ranging from a low of .12 for the MIROC 
model to a high of .42 for the IPSL model. These correlations are 
still statistically significant, but the sample sizes are much larger 
than for the LGM comparisons (Table 4).

3.3 | Future (end of century) period

Predictions for the end of this century further highlight the mis‐
match among models in predicting C4 grass cover (Figure 4) The ICC 
score is also low (.13) for this time period, and correlation coeffi‐
cients vary from .13 (MIROC and MPI) to .41 (IPSL and MPI) (Tables 
2 and 3). The simulated future patterns largely mimic those for the 
mid‐1800s, although all models predict increases in C4 cover. It is 
difficult to disentangle how much of the predicted increase results 
from C4 grasses interacting with a changing climate, atmospheric 
CO2, disturbance patterns and other PFTs, because the future %C4 
cover in these models includes crops. Although models vary in their 
algorithms, crop cover predictions should be related to economic 
decisions, in addition to ecological and biophysical factors (Porfirio, 
Newth, Harman, Finnigan, & Cai, 2017).

4  | DISCUSSION

4.1 | Modelled vegetation distributions: Potential 
biases from climate models

C4 abundance predicted by vegetation models will be influenced 
by the accuracy of the atmospheric models that simulate climate 
forcing data. Many recent studies have assessed climate model 
accuracy by comparing model outputs with palaeoclimatic proxy 
data for historical time periods, such as the LGM. Much of this 
model–proxy data comparison work for the historical periods has 
been focused on sea surface temperature (e.g., Bakker et al., 2014; 
Hossain, Zhang, & Lohmann, 2018) and has found that models 
are in broad agreement with proxy data from the LGM and mid‐
Holocene, although deviations do occur in some regions, such 
as the mid‐latitudes of the Southern Hemisphere (Bakker et al., 
2014). However, comparisons between proxy‐based terrestrial cli‐
matic reconstructions and models are more variable. For instance, 
Braconnot et al. (2012) and Jiang, Tian, and Land (2013) found 
discrepancies between predictions from Paleoclimate Modelling 
Intercomparison Project (PMIP) outputs and proxy‐based mean 
annual precipitation data for the eastern portion of the northern 
hemisphere and China, respectively, during the mid‐Holocene. 
Otto‐Bleisner et al. (2013) showed that the CCSM3 model has 
difficulties reproducing last interglacial warming over the ter‐
restrial arctic and suggested that the simulation is missing crucial 
feedbacks. It is possible that greater model–proxy data mismatch 
occurs over the land compared with the ocean, especially if pre‐
cipitation is driving deviations between modelled and proxy‐based 
reconstructions of C4 abundance at the LGM.

Global vegetation models are often driven by observed or mod‐
elled climate data in so‐called ‘offline simulations’, and many vege‐
tation models have been tested using this approach (Bonan & Levis, 
2006). Importantly, vegetation model performance can be strongly 

TA B L E  3  Comparison of agreement across models based on Pearson’s product–moment correlations

Pairwise Pearson’s product–moment correlations between model 
predictions (*p << .001) MPI IPSL MIROC

LGM

MPI 1

IPSL .17* (799) 1

MIROC .32* (1,174) .47* (1,141) 1

Historical

MPI 1

IPSL .38* (1,046) 1

MIROC .08* (2,595) .02 (2,758) 1

Future

MPI 1

IPSL .41* (1,050) 1

MIROC .13* (2,672) .14* (2,954) 1

Note. Degrees of freedom for each test are provided in parentheses.

TA B L E  4  Comparison of agreement between model predictions 
and proxy data based on Pearson’s product–moment correlations

Pairwise Pearson’s product–moment 
correlations between proxy data and 
model prediction of %C4 (*p << .001) LGM Historical

MPI .78* (93) .12* (661)

IPSL .46* (93) .42* (680)

MIROC .58* (92) .33* (646)

Note. The historical modern model comparison is against vegetation plot 
proxy data, because bison proxy data are highly correlated with plot data 
(Griffith, Cotton, et al., 2017). Degrees of freedom for each test are pro‐
vided in parentheses.
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affected by biases in the climate model forcing. For example, 
Ahlström, Schurgers, and Smith (2017) showed that climate model 
biases could be responsible for up to 40% of the range in simulated 
terrestrial carbon storage across 18 of the CMIP5 models. Global 
vegetation models that are coupled to climate models, as is the case 
for the simulations highlighted here, may also be biased from the 
coupling itself. Bonan and Levis (2006) highlighted problems that 
might arise when coupling two highly nonlinear systems. However, 
the advantage of the coupled approach is that feedbacks between 
the land and atmosphere can be captured. In sum, some of the 
model–model discrepancies and lack of agreement with proxy data 
we highlight here is very likely to be a result of poor performance of 
the atmospheric models that drive the vegetation models, in addi‐
tion to potential feedbacks inherent in the model coupling process.

4.2 | Improving simulated C4 grass biogeography: 
Missing processes and properties

Despite the importance of atmosphere model influences on simu‐
lated PFT biogeography and carbon cycle dynamics, the vegetation 
models are also very likely to be missing essential processes that in‐
fluence the cover and productivity of C4 grasses. The importance of 
capturing the photosynthetic physiologies of C3 and C4 grass types, 
and their variation with CO2 and climate, has long been recognized 

(Collatz, Berry, & Clark, 1998; Sellers et al., 1997; Still, Berry, et al., 
2003). However, additional ecological and hydrological factors con‐
trol C3 and C4 distributions and can interact in complex ways, pro‐
ducing offsetting effects driven by interactions with hydrological 
cycles (Griffith, Lehmann, et al., 2017) or by driving systems towards 
deterministically woody states (Bond, 2008; Moncrieff, Scheiter, 
Bond, & Higgins, 2013; Oliveras, & Malhi, 2016). For example, in an 
experimental study conducted in a semi‐arid, mixed C3/C4 grassland 
in North America, Morgan et al. (2011) showed that C4 grasses were 
counterintuitively outperforming C3 grasses owing to increases in 
water‐use efficiency driven by interacting effects of higher CO2 and 
warming on soil moisture and plant physiological responses.

Another key difference important to capture in models is the 
seasonal offset in cover and productivity between C3 and C4 grasses 
(Collatz et al., 1998). This is especially important in the Great Plains 
region of North America, where temporal mixtures of these grass 
types have been well studied. For example, in the shortgrass and 
upland mixed grass prairie ecosystem, C3 grasses generally grow in 
spring and early summer, whereas C4 grasses predominate during 
mid‐ and late summer (Kemp & Williams, 1980; Ode, Tieszen, & 
Lerman, 1980). The tallgrass prairie ecosystems are also character‐
ized by seasonal C3 and C4 mixtures, although the variation is greatly 
dampened and C4 grasses assimilate most of the carbon on an annual 
basis (Nippert, Knapp, & Briggs, 2006; Still, Berry, Ribas‐Carbo, & 

F I G U R E  2  Relative cover fractions for tree and grass plant functional types as represented in various earth system models from historical 
simulations for the earliest model year (1850–1861, depending on the model)
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F I G U R E  3  Modelled C4 plant functional type cover in the historical modern period (ca. 1850 CE) compared with available data (soil δ13C, 
bison tissue δ13C and plot data; Cotton et al., 2016; Griffith et al., 2015) in the lower right panel. Circles represent modern grazer isotope 
data, and diamonds represent soil isotope data

F I G U R E  4  Modelled C4 cover (sum of C4 natural grass and crop plant functional types) for the mean of years 2071–2100 based on 
Representative Concentration Pathway 8.5
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Helliker, 2003). Importantly, the proxy data we have collated here 
should generally capture such mixing, because soil organic matter 
and grazer hair tissue represent a weighted average of carbon inputs 
from each photosynthetic pathway type over seasonal and interan‐
nual time‐scales.

Despite such complexities, global vegetation models driven by 
offline climate forcing data capture broad biogeographical pat‐
terns, generating reasonable tree–grass ecotones (Brovkin et al., 
2013) and predicting primarily C3 grasses in temperate zones and 
C4 grasses in the tropics and subtropics. However, in our compar‐
ison, errors in simulating %C4 cover in North America highlight 
challenges that are model specific. The GFDL model misplaced the 
grassland biome at a continental scale in the historical modern 
period. In contrast, the MIROC, MPI and IPSL models predicted 
somewhat realistic continental‐scale grassland distributions, but 
very different C4 grass distributions. The MPI grass distribution 
is based on the JSBACH model (Raddatz et al., 2007), which has 
been partly validated against satellite‐based estimates of modern 
tree and grass cover (Brovkin et al., 2013). The LGM C4 predic‐
tions from MPI were reasonable, whereas the MPI model under‐
estimated C4 grass cover in the historical period, indicating that 
other factors might need to be incorporated into the models, 
including aspects of disturbance ecology or competitive effects 
(e.g., Griffith et al, 2015). The MIROC natural grass distribution is 
based on the SEIB‐DGVM (Sato, Itoh, & Kohyama, 2007), which 
simulates light competition among trees and a range of pro‐
cesses including population, community and ecosystem dynamics. 
Notably, this model seemed to match C4 grass cover distributions 
best in the LGM and historical modern periods, although it also 
strongly over‐predicted C4 cover in northern and northeastern 
North America in the latter period.

The grass family is one of the most species‐rich Angiosperm 
families and is easily one of the most dominant plant functional 
groups. Nevertheless, grasses are remarkably under‐represented in 
trait databases (Engemann et al., 2016; Kattge et al., 2011; Wright 
et al., 2004), which are being used increasingly to enhance the eco‐
logical realism of DGVMs. For example, of the 2,548 species in the 
GLOPNET leaf trait database analysed by Wright et al. (2004), only 
134 were grasses or sedges (5.3% of the total), and only 16 were 
C4 grasses (.6% of the total database). Grasses are frequently ig‐
nored or minimized in global syntheses and meta‐analyses, such as 
a recent study of plant respiration and its temperature response, 
which did not include a single grass species in the dataset used for 
analysis (Heskel et al., 2016). Likewise, meta‐analyses of photosyn‐
thetic traits and leaf C and N dynamics do not include any C4 grass 
species (Walker et al., 2014; Wullschleger, 1993). These gaps surely 
result from a lack of available trait data, not intentional exclusion 
of grasses, although missing information can result in environmental 
policies that endanger grassy ecosystems (Griffith, Lehmann, et al., 
2017). This lack of data further highlights the challenges inherent 
in global modelling and synthesis analyses that fundamentally do 
not represent the functional diversity of grass‐dominated biomes, 

in particular those dominated by an herbaceous layer of C4 grass 
species.

A model improvement that would benefit from additional 
grass‐specific trait data is explicit representation of different life‐
history and allocation strategies in grass PFTs. Most grass species 
are perennial (Atkinson et al., 2016), but a number of important 
invasive species are annuals, including cheat grass (Bromus tecto-
rum) (D’Antonio & Vitousek, 1992). Key traits such as leaf lifespan 
(Lemaire, Da Silva, Agnusdei, Wade, & Hodgson, 2009) and seed 
mass (Bergmann, Ryo, Prati, Hempel, & Rillig, 2017; Liu, Edwards, 
Freckleton, & Osborne, 2012) vary greatly among grass lineages 
and across plant families in general (Davies et al., 2013). These 
traits represent key axes of variation in plant ecological and al‐
location strategies (Westoby, 1998) that should greatly con‐
tribute to intra‐annual productivity and distributions of plants. 
Furthermore, phenological and reproductive traits are frequently 
associated with disturbance regimes such as fire and grazing (e.g., 
D’Antonio & Vitousek, 1992; Lemaire et al., 2009). These influ‐
ence grass and tree coexistence (Higgins, Bond, & Trollope, 2000), 
resulting in major variation in nutrient cycling and productivity 
(Lehmann et al., 2014).

We suggest that, in addition to the need for more collection 
and greater integration of C3 and C4 grass trait data, other model 
improvements are needed to capture better the important eco‐
logical and biogeographical processes that influence distributions 
of grasses and their photosynthetic pathways, cover and produc‐
tivity. Chief among these improvements should be more accurate 
representation of tree and grass cover distributions (Figure 2); 
these distributions should be reasonably well constrained by pol‐
len data for the historical modern period (Whitmore et al., 2005). 
Accurate tree and grass cover distributions are crucial for pre‐
dicting C4 grass cover and a wide variety of biophysical and bio‐
geochemical processes. Models can differ strongly in how they 
capture mechanisms that influence tree and grass distributions 
(Sitch et al., 2008, 2003 ), especially the representation of compe‐
tition for water and response to disturbance. Tropical tree cover 
is often overestimated at the expense of savanna and grass cover 
in ESMs (Bonan, Levis, Sitch, Vertenstein & Oleson, 2003; Sitch 
et al., 2003). Models that more accurately capture disturbance 
responses and aspects of tree–grass competition have been suc‐
cessful at simulating C4 grass cover and productivity across Africa 
(Higgins et al., 2000; Higgins & Scheiter, 2012; Ratnam et al., 
2011; Scheiter, Langan, & Higgins, 2013). Capturing the competi‐
tion for water between trees and grasses is especially important 
(Quijano, Kumar, Drewry, Goldstein, & Misson, 2012). At regional 
scales, such as those observed in the present study, the represen‐
tation of C4 cover and grass‐dominated vegetation often contrasts 
with observations. This contrast may be because the distribution 
of grassy vegetation is often modified by ecosystem ecology and 
disturbance (Griffith et al., 2015; Moncrieff et al., 2013), and 
biome patterns may not be deterministic but instead contingent 
on biogeographical and evolutionary history (Higgins, Buitenwerf, 
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& Moncrieff, 2016; Lehmann et al., 2014; Moncrieff et al., 2016, 
2016 ).

5  | CONCLUSIONS

We highlight important disagreement among global vegetation mod‐
els, in addition to generally poor agreement between model predic‐
tions and observations of C3 and C4 grass cover and productivity. This 
lack of agreement occurs at a range of climates and atmospheric CO2 
concentrations, and it is unlikely that the same factors explain disa‐
greement across models. Future improvements in grass modelling 
will require close collaborations between modellers and grassland 
ecologists and physiologists. We suggest that approaches integrating 
additional grass trait data and evolutionary history, in addition to ap‐
proaches from community and disturbance ecology, are required to 
capture C4 grass ecology and biogeography more accurately.
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