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Abstract
Aim: C4	grasses	are	distinct	from	C3 grasses, because C4	grasses	respond	in	a	differ‐
ent	manner	to	light,	temperature,	CO2	and	nitrogen	and	often	have	higher	resource‐
use	efficiencies.	C3 and C4	grasses	are	typically	represented	in	earth	system	models	
(ESMs)	by	different	plant	functional	types	(PFTs).	The	ability	of	ESMs	to	capture	C4 
grass	biogeography	and	ecology	across	differing	time	periods	is	important	to	assess,	
given	the	crucial	role	they	play	in	ecosystems	and	their	divergent	responses	to	global	
change.
Location: North America.
Time periods:	Last	Glacial	Maximum	(LGM),	historical	modern	period	(ca.	1850)	and	
end	of	this	century.
Major taxa studied: C4 grasses.
Methods:	Proxy	data	representing	relative	cover	and	productivity	of	C4 grasses were 
collated,	including	carbon	isotope	ratios	of	soil	carbon	and	animal	grazer	tissue,	and	
vegetation	plot	data	in	undisturbed	grasslands.	We	selected	available	model	predic‐
tions	of	C4	PFT	percentage	cover.	Models	were	compared	against	one	another	and	
assessed	against	proxy	data	at	key	time	points:	the	LGM,	the	historical	modern	pe‐
riod	 before	 widespread	 grassland	 conversion	 to	 agriculture,	 and	 the	 end	 of	 this	
century.
Results:	We	highlight	 large	differences	among	model	predictions	of	percentage	C4 
grass	cover	across	North	America:	all	pairwise	combinations	have	correlations	<	.5,	
and	most	are	<	.2.	Models	also	do	not	capture	spatial	patterns	of	the	percentage	C4 
grass	cover	from	proxy	data,	during	either	the	LGM	or	the	historical	modern	period.	
Models	 generally	 under‐predict	 percentage	C4	 grass	 cover,	 particularly	 during	 the	
historical	modern	period.
Main conclusions:	Earth	system	models	do	not	accurately	represent	the	biogeogra‐
phy	of	C4	grasses	across	a	range	of	time‐scales,	and	their	outputs	do	not	agree	with	
one	another.	We	suggest	model	 improvements	 to	represent	 this	crucial	 functional	
type	better,	including	more	collection	and	greater	integration	of	C3 and C4 grass trait 
data,	explicit	representations	of	tree–grass	competition	for	water,	and	a	greater	focus	
on disturbance ecology.
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1  | INTRODUC TION

Grasses	that	use	the	C4	photosynthetic	pathway	often	dominate	
cover	and	productivity	in	grasslands	and	savannas.	These	grasses	
are	extremely	important	as	food	crops	and	biofuels,	and	often	be‐
come aggressive weeds. C4	grasses	also	account	for	a	 large	frac‐
tion	of	carbon	and	water	cycling	(Miranda	et	al.,	1997;	Ratnam	et	
al.,	2011;	Still,	Berry,	Collatz	&	DeFries,	2003).	Grasslands	and	sa‐
vannas where C4	grasses	most	commonly	occur	are	recognized	to	
dominate	 the	 trend	and	 interannual	variability	of	 the	global	 land	
carbon	sink	(Ahlström	et	al.,	2015).	Palaeoevidence	suggests	that	
these	grasses	were	also	dominant	 in	many	 tropical	 and	subtrop‐
ical	 regions	 during	 glacial	 cycles	 (Bond,	 2008)	 and	 ecologically	
important	since	at	 least	 the	 late	Miocene	 (Edwards	et	al.,	2010).	
C4	 grasses	 also	 critically	 influence	 and	 are	 influenced	 by	 distur‐
bances,	 particularly	 through	 fire	 interactions	 in	 the	 tropics	 and	
subtropics	 (Bond,	 Woodward,	 &	 Midgley,	 2005;	 Randerson	 et	
al.,	2005).	Finally,	C4	grasses	strongly	influence	(sub)tropical	tree	
cover	via	competition	for	soil	water,	impacts	on	tree	seedling	re‐
cruitment	and	acceleration	of	the	fire	cycle	(Bond,	2008;	Higgins	
&	Scheiter,	2012;	Scheiter	et	al.,	2012).

Given	 the	 influences	 of	 C4	 grasses	 on	 many	 aspects	 of	 the	
earth	 system,	 accurately	 predicting	 their	 cover	 and	 productiv‐
ity	 should	be	 a	 priority	 for	 global‐scale	modelling.	 Simulation	of	
large‐scale	 vegetation	 patterns	 and	 processes	 is	 accomplished	
with	 dynamic	 global	 vegetation	 models	 (DGVMs).	 The	 DGVMs	
represent	a	wide	variety	of	physiological,	ecological,	hydrological,	
biophysical	 and	biogeochemical	 processes	occurring	on	 the	 land	
surface	(Cramer	et	al.,	2001;	Jiang	et	al.,	2015;	Piao	et	al.,	2013;	
Shao,	Zeng,	Sakaguchi,	Monson	&	Zeng,	2013;	Sitch	et	al.,	2008;	
Wullschleger	et	al.,	2014).	As	such,	DGVMs	are	a	crucial	compo‐
nent	of	 earth	 system	models	 (ESMs),	which	 are	used	 for	 predic‐
tions	 of	 a	 future	 warming	 climate	 and	 its	 attendant	 impacts	 on	
humanity and natural ecosystems.

A	central	component	of	most	DGVMs	 is	 the	use	of	 the	plant	
functional	 type	 (PFT)	 approach	 to	 represent	 a	wide	 range	of	bi‐
ological	 properties	 and	 traits.	 The	 PFT	 approach	 has	 been	 used	
to	represent	essential	processes	and	properties	of	terrestrial	veg‐
etation	 required	 for	 earth	 system	 modelling	 (Sitch	 et	 al.,	 2003;	
Wullschleger	et	al.,	2014),	but	the	accuracy	of	modelled	biogeog‐
raphy,	cover	and	productivity	across	a	range	of	temporal	scales	is	
crucially	important	to	evaluate.	One	challenge	to	such	an	evalua‐
tion	is	having	relevant	empirical	data	on	vegetation	characteristics	
against	 which	 to	 compare	 model	 predictions	 at	 the	 appropriate	
spatial	 and	 temporal	 scales.	 Aspects	 of	 the	 C4	 photosynthetic	
pathway	 lead	 to	 lower	 carbon	 isotope	 fractionation	 compared	
with C3	plants	(Cernusak	et	al.,	2013),	creating	a	natural	tracer	of	
carbon	inputs	from	C4	grasses	in	plant	and	soil	organic	matter	and	
carbon	fluxes.	This	has	been	exploited	 in	a	range	of	applications	
to	quantify	C4	plant	contributions	(i.e.,	%C4)	to	ecosystem	respira‐
tion	(Still,	Berry,	Ribas‐Carbo,	&	Helliker,	2003),	soil	organic	mat‐
ter	(Cerling,	1984;	von	Fischer,	Tieszen,	&	Schimel,	2008),	grazer	

tissue	 (Cotton,	 Cerling,	 Hoppe,	 Mosier,	 &	 Still,	 2016)	 and	 food	
webs	(Cerling	et	al.,	2013).

In	the	present	study,	we	compiled	available	data	from	isotope	
ratios	 preserved	 in	 soil	 organic	matter	 and	 animal	 grazer	 tissues	
to	create	proxy	 information	on	%C4	grass	cover	and	productivity	
during	the	Last	Glacial	Maximum	(LGM)	and	historical	modern	pe‐
riod	 in	North	America.	We	also	 included	 information	 from	vege‐
tation	plot	surveys	that	measure	plant	cover.	We	assessed	DGVM	
performance	 by	 comparing	 simulations	 of	 %C4	 grass	 PFT	 cover	
with	these	proxy	datasets	for	the	LGM	and	historical	modern	time	
periods.	We	also	compared	model	predictions	 for	 the	end	of	 the	
century.	For	this	analysis,	we	focused	on	North	America,	where	the	
distributions	of	C3 and C4	grasses	are	relatively	well	characterized	
based	on	proxy	isotope	data	and	modern	vegetation	plot	measure‐
ments	(e.g.,	Cotton	et	al.,	2016;	Griffith	et	al.,	2015).	We	provide	
quantitative	comparisons	and	recommendations	for	improvement	
in	models	in	better	capturing	essential	aspects	of	C4 grass ecology 
and	biogeography.

2  | METHODS

2.1 | Glacial, modern and future C4 distributions 
from the Coupled Model Intercomparison Project 
Phase 5

We	obtained	outputs	 from	 a	 subset	 of	models	 participating	 in	 the	
Coupled	 Model	 Intercomparison	 Project	 Phase	 5	 (CMIP5;	 Taylor,	
Stouffer,	&	Meehl,	2012).	Model	outputs	included	proportional	cover	
in	each	grid	cell	of	all	grass	PFTs,	all	tree	PFTs	and	all	C4	plant	PFTs	
(including	grasses	and	crops)	from	the	Earth	System	Grid	Federation.	
Of	 the	 40+	individual	 CMIP5	 models,	 only	 a	 subset	 of	 modelling	
groups	provided	C4	 PFT	 cover	 fraction	predictions	 for	 all	 time	pe‐
riods	(Table	1).	Although	this	 is	a	small	subset,	the	selected	models	
do	represent	a	 range	of	approaches	from	well‐respected	modelling	
centres.	For	the	LGM,	monthly	model	outputs	were	averaged	to	pro‐
duce	%C4	layers	for	the	simulated	period,	which	was	ca.	100	years	for	
each	model.	For	the	historical	modern	period,	we	used	the	modelled	
percentage	cover	of	tree	PFTs,	grass	PFTs	and	C4	grass	PFTs	from	the	
oldest	model	run	year,	which	corresponds	to	approximately	the	mid‐
1800s.	 This	 represents	 a	 time	 before	 extensive	 land	 cover	 change	
in	the	Great	Plains	and	other	regions	replaced	prairies	and	savannas	
with	croplands	(e.g.,	Hurtt	et	al.,	2006;	Ramankutty	&	Foley,	1999a,	
1999b	).	We	selected	model	outputs	from	the	‘historical’	experiment,	
because	that	is	the	experiment	for	which	models	simulated	all	com‐
ponents	of	the	earth	system	through	time.	The	other	model	experi‐
ments	have	different	parts	of	the	earth	system	removed,	such	as	the	
‘historicalGHG’	 experiment,	 which	 is	 a	 simulation	 of	 the	 historical	
period,	but	with	forcings	other	than	anthropogenic	greenhouse	gases	
removed.	 For	 future	 scenarios,	 we	 used	 simulations	 based	 on	 the	
‘business	as	usual’	scenario,	RCP	8.5	(i.e.,	corresponding	to	a	ca. 4 °C 
global	temperature	increase	by	2100).
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2.2 | Observed C4 proxy data: LGM and modern

We	compiled	independent	datasets	that	document	the	%C4	of	herba‐
ceous vegetation in North America during glacial and historical mod‐
ern	periods	 for	 comparison	with	model	 simulations.	We	used	plot	
data	from	Griffith	et	al.	(2015),	resampled	to	a	100‐km	grid	(available	
in	Griffith,	Cotton,	Powell,	Sheldon	&	Still,	2017),	spanning	the	con‐
terminous	USA	and	representing	C3 and C4	relative	grass	cover	from	
survey	plots	(<	1,000	m2)	located	in	relatively	undisturbed	grassland	
remnants.	Given	that	plot	data	were	not	collected	in	crops	or	farm‐
lands,	they	are	broadly	comparable	to	model	predictions	for	the	mid‐
1800s,	when	natural	vegetation	predominated.	Indeed,	plot	data	and	
carbon	isotope	ratio	proxies	suggest	 little	change	in	relative	C3/C4 
abundances	from	the	mid‐1800s	(Griffith,	Cotton,	et	al.,	2017).	We	
also	collated	glacial	and	modern	observations	of	the	carbon	isotopic	
composition	(δ13C)	of	soil	and	palaeosol	organic	carbon	and	grazer	
(bison	 and	mammoth)	 tissue.	Differences	between	photosynthetic	
pathways	drive	variations	in	the	δ13C	of	modern	C3 and C4 grasses 
(ca.	−27‰	and	ca.	−12‰,	respectively).	The	δ13C	values	of	soil	car‐
bon	largely	reflect	the	proportion	of	C3 and C4 biomass during soil 
formation	(Cerling,	1984;	Koch,	1998;	von	Fischer	et	al.,	2008).	We	
obtained	55	previously	published	modern	soil	δ13C	values	from	von	
Fischer	et	al.	 (2008).	Given	that	bison	 (Bison bison)	and	Columbian	
mammoth (Mammuthus columbi)	are	predominately	grazers,	their	tis‐
sues record the mean δ13C	of	their	diets	(Cotton	et	al.,	2016;	Griffith,	
Cotton, et al.,	2017;	Hoppe,	Paytan	&	Chamberlain,	2006).	Previous	
work	 has	 shown	 that	 browsing	 constitutes	 a	 small	 proportion	 of	
modern	bison	diet	and	that	they	accurately	record	the	abundance	of	
C4 grasses within ca.	10%	(Hoppe	et	al.,	2006).	Additionally,	analy‐
sis	of	Columbian	mammoth	diet	in	the	late	Pleistocene	using	carbon	

isotopes	shows	substantial	 inputs	 from	C4 vegetation, indicating a 
diet	rich	in	grasses	(Koch,	Hoppe,	&	Webb,	1997).	Modern	and	fossil	
bison	and	mammoth	data	(measurements	from	281	individual	mod‐
ern	bison	and	95	LGM	individual	bison	and	mammoth)	were	obtained	
from	Cotton	et	al.	(2016).	Additionally,	five	palaeosol	δ13C measure‐
ments	 of	 LGM	age	derived	 from	 the	 literature	were	 added	 to	 the	
palaeo‐proxy	dataset.

We	converted	soil	 and	animal	grazer	δ13C	values	 to	%C4 using 
linear	mixing	models	and	C3 and C4 isotopic	endmembers.	Owing	to	
the	Suess	effect,	the	δ13C	values	of	mammal	tissues	and	palaeosols	
were	corrected	to	a	preindustrial	atmospheric	value	of	−6.3‰	based	
on	their	age	(Francey	et	al.,	1999)	and	then	converted	to	%C4 with 
endmembers	of	−25.3	and	−11.3‰	(Cotton	et	al.,	2016;	Koch,	1998).	
This	correction	results	in	the	following	equation	for	grazer	tissues:

In	 fossil	 localities	 where	 bison	 and	 mammoth	 coexisted,	 their	
δ13C values are similar, although mammoth δ13C values tend to 
be	more	negative,	 reflecting	more	 input	of	C3 vegetation (Connin, 
Betancourt,	&	Quade,	1998).	This	difference	in	δ13C values could be 
interpreted	as	a	 larger	 component	of	C3 browse vegetation in the 
mammoth	diet	compared	with	bison.	Therefore,	the	abundance	of	C4 
vegetation	derived	from	mammoth	can	be	interpreted	as	a	minimum	
estimate.

Soil	samples	were	collected	from	the	A	horizon	(von	Fischer	et	
al.,	 2008),	 which	 is	 the	 uppermost,	 organic‐rich	 soil	 layer	 and	 re‐
flects	more	recent	carbon	inputs	(tens	to	hundreds	of	years;	Leavitt,	
Follett,	 Kimble,	 &	 Pruessner,	 2007).	 Here,	 we	 assumed	 that	 the	
A	horizon	 carbon	has	 a	mean	 age	of	 ca. 100 years and assigned a 

(1)%C4=7.1429�13Cgrazer+180.71

TA B L E  1  Listing	of	earth	system	models	compared	in	this	study,	along	with	relevant	details	about	resolution	and	vegetation	models	used	
for	simulations	of	different	time	periods

Time period of simulation MPI‐ESM IPSL‐CM5A MIROC‐ESM GFDL‐ESM2G

Last	Glacial	Maximum MPI‐ESM‐P IPSL‐CM5A‐LR MIROC‐ESM

SEIB	DGVM1.875 × 1.85
2.81 × 1.77ORCHIDEE	DGVM

3.75 × 1.875

Historical	modern	period MPI‐ESM‐MR IPSL‐CM5A‐MR MIROC‐ESM GFDL‐ESM2G

GFDL	DGVMSEIB	DGVM
2.5 × 2.02.81 × 1.77JSBACH	DGVM ORCHIDEE	DGVM

2.5 × 1.8751.875 × 1.85

Future MPI‐ESM‐MR IPSL‐CM5A‐MR MIROC‐ESM GFDL‐ESM2G

GFDL	DGVMSEIB	DGVM
2.5 × 2.02.81 × 1.77ORCHIDEE	DGVMJSBACH	DGVM

2.5 × 1.8751.875 × 1.85

Note.	Model	metadata	come	from	literature	and	Web	resources	for	each	individual	model:	MPI‐ESM	(Giorgetta	et	al.,	2013),	IPSL‐CM5A	(Dufresne	et	
al.,	2013),	MIROC	(Watanabe	et	al.,	2011)	and	GFDL‐ESM2G	(Dunne	et	al.,	2012).	Resolutions	are	expressed	as	longitude	×	latitude.
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corresponding	atmospheric	δ13C	value	of	−6.6‰.	We	also	assumed	
a	uniform	enrichment	of	1‰	from	plant	matter	to	soil	organic	matter	
(von	Fischer	et	al.,	2008).	We	then	converted	soil	δ13C	to	%C4 with 
endmembers	of	−25.6	and	−11.6‰	using	the	following	equation	for	
soil carbon:

2.3 | Assessing model agreement

To	assess	agreement	among	models	in	%C4	cover	predictions,	we	
calculated	single	score	intraclass	correlation	coefficient	(ICC)	val‐
ues	for	each	of	the	three	time	periods	(‘two‐way’	ICC	analyses	as	
described	 by	Shrout	 &	 Fleiss,	 1979).	 Intraclass	 correlation	 coef‐
ficient	 values	 are	 similar	 in	 interpretation	 to	Cohen’s	κ	 (Fleiss	&	
Cohen,	 1973)	 and	 range	 from	minus	 one	 to	 plus	 one.	 Based	 on	
the	 inter‐rater	reliability	 literature	 (e.g.,	McHugh,	2012;	McGraw	
&	Wong,	1996)	we	conclude	that	ICC	values	<	.6	are	indicative	of	
poor	 reliability,	 that	 is,	 poor	 model–model	 agreement,	 whereas	
values	between	.6	and	1	indicate	moderate	to	excellent	reliability.	
All	ICC	values	were	calculated	using	the	‘icc’	function	(using	type	=	
‘agreement’)	in	the	‘irr’	package	(Gamer,	Lemon,	Fellows,	&	Singh,	
2012)	 in	R	(version	3.4.2).	We	also	calculated	(using	R)	Pearson’s	
product–moment	correlations	for	each	model	pair	combination	and	
each	time	period,	with	values	ranging	from	minus	one	to	plus	one;	
a	value	of	zero	indicates	that	there	is	no	association	between	the	
two	model	pair	predictions.	We	restricted	all	our	model‐to‐model	
comparisons	to	grid	cells	with	non‐zero	values,	reasoning	that	the	
inclusion	of	 the	much	more	numerous	zero	%C4 grid cells would 
artificially	 inflate	model–model	correlations.	Finally,	we	assessed	
model	predictions	of	%C4	cover	with	proxy	data	for	each	time	pe‐
riod	by	calculating	Pearson’s	product–moment	correlations.

3  | RESULTS

3.1 | Last Glacial Maximum period

In	 terms	 of	 simulated	 %C4	 PFT	 grass	 cover,	 the	 models	 diverge	
widely	in	their	predictions	relative	to	one	another.	For	the	LGM,	only	
three	modelling	groups	made	C4	grass	PFT	cover	predictions	avail‐
able:	MPI,	IPSL	and	MIROC.	Among	these,	modelled	C4 cover at the 
LGM	varied	tremendously,	from	minimal	C4	cover	in	the	IPSL	model	
to	fairly	extensive	C4	PFT	cover	in	the	MPI	model,	particularly	in	the	
Great	Plains	region	of	North	America	(Figure	1).	The	MIROC	model	
(Watanabe	et	al.,	2011)	also	predicted	a	fairly	extensive	amount	of	
C4	grass	cover,	but	only	in	a	tier	across	the	southern	part	of	North	
America.	During	the	LGM,	the	ICC	score	was	.27	(Table	2),	a	value	
which	reflects	the	poor	agreement	among	model	predictions	appar‐
ent	in	Figure	1.	The	Pearson’s	correlation	coefficients	(Table	3)	for	
model	pair	predictions	vary	from	.17	(MPI	and	IPSL)	to	.47	(MIROC	
and	MPI).	Despite	relatively	low	values,	this	time	period	has	the	high‐
est	level	of	model–model	agreement	based	on	both	the	ICC	and	the	

correlation	 coefficients	 (Tables	2	 and	3).	Compared	with	 available	
palaeodata	for	the	LGM	(δ13C	of	fossil	bison	and	mammoth	tissues,	
and	palaeosols),	 predictions	 from	 the	MPI	and	MIROC	models	are	
visually	 superior	 to	 those	 from	 the	 IPSL	model	 (Figure	1).	 Indeed,	
Pearson’s	 correlation	 coefficients,	 relating	 proxy	 and	 model	 data,	
range	from	.46	(IPSL)	to	.78	(MPI),	and	all	are	statistically	significant	
(Table	4).	Notably,	 the	proxy	data	sample	a	major	gradient	 in	%C4, 
and	model	predictions	range	from	a	low	of	0–30%C4	in	IPSL	to	a	high	
of	0–70%C4	in	MPI.

3.2 | Historical modern period

A	key	aspect	of	simulating	%C4	grass	cover	during	any	time	period	
is	accurately	capturing	the	relative	cover	of	trees	and	grasses,	given	
that C4 grasses commonly occur in regions with low‐to‐moderate 
tree	 cover	 in	 the	 tropics	 and	 subtropics	 (i.e.,	 savannas	 and	wood‐
lands).	 There	 is	wide	divergence	 in	modelled	 tree	 and	grass	 cover	
fractions	 during	 the	 historical	 modern	 period	 in	 North	 America	
(Figure	 2).	Within	 the	 Great	 Plains	 ecoregion,	 grass	 fractions	 are	
under‐predicted	 and	 tree	 cover	 fractions	 over‐predicted	 in	 the	
GFDL	and	MIROC	models	compared	with	potential	natural	vegeta‐
tion	distributions	for	this	time	period,	which	are	reasonably	well	con‐
strained	by	historical	data	(Ellis,	Klein	Goldewijk,	Siebert,	Lightman,	
&	 Ramankutty,	 2010;	 Ramankutty	 &	 Foley,	 1999b).	 The	MPI	 and	
IPSL	models	generally	have	greater	skill	in	predicting	tree	and	grass	
cover	fractions,	although	tree	cover	is	still	under‐predicted	and	grass	
cover	over‐predicted	by	the	MPI	model.

During	the	historical	modern	period,	model	predictions	of	%C4 
grass	PFT	cover	are	likewise	variable	(Figure	3).	Indeed,	this	time	
period	has	the	lowest	level	of	model–model	agreement	among	the	
three	time	periods	(Table	2).	The	ICC	score	is	even	lower	for	this	
time	period	 (.05)	 than	 for	 the	LGM.	Pearson’s	correlation	coeffi‐
cients	(Table	3)	for	model	pair	predictions	vary	from	.02	(IPSL	and	
MIROC)	to	.38	(IPSL	and	MPI).	Only	one	model,	MIROC,	predicts	
extensive	C4	grass	cover	in	the	Great	Plains	and	in	the	southwest	
and	Texas.	This	agrees	fairly	well	with	available	data	from	vegeta‐
tion	plots	and	with	proxy	data	from	soil	carbon	and	bison	tissue	
δ13C.	MIROC	also	predicts	extensive	C4	cover	in	the	upper	Great	
Plains	and	into	northern	Canada,	and	into	the	upper	Midwest	and	
New	England	states	of	the	USA.	There	are	no	plant	or	isotope	proxy	
data	 to	 support	extensive	C4 grass cover in these latter regions, 
which	were	mostly	 forested	 in	 the	mid‐1800s.	 All	 other	models	
greatly	under‐predict	C4	grass	cover	in	this	time	period	compared	
with	 data.	 The	 IPSL	 model	 predicts	 moderate	 C4 cover only in 
the	southern	USA	and	northern	Mexico.	Likewise,	the	MPI	model	
predicts	 extensive	C4	 grass	PFT	 cover	 only	 in	 parts	 of	 southern	
Mexico,	and	in	areas	of	the	Gulf	Coast	and	New	England,	although	
this	ESM	predicts	extensive	overall	grass	cover	in	the	Great	Plains	
(Figure	2).	The	GFDL	model	predicts	very	high	C4 cover across the 
arid	Mojave	Desert,	 and	 in	 parts	 of	 the	 cooler	 Great	 Basin	 and	
wetter	 Sonoran	 deserts	 and	 central	 California	 (Figure	 3).	 This	
agrees	 somewhat	 with	 a	 prominent	 C4	 grass	 component	 in	 the	
summer‐active	 grasses	 of	 desert	 regions	 that	 receive	 monsoon	

(2)%C4=7.1429�13Csoil+182.86
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precipitation	(Ehleringer,	1978).	However,	only	the	MIROC	model	
accurately	 predicts	 extensive	C4	 grass	 cover	 in	 the	Great	 Plains	
during	 the	 period	 before	 large‐scale	 agriculture.	 However,	 this	

model	also	over‐predicts	C4 cover in north‐central and northeast‐
ern	 North	 America.	 Relative	 to	 the	 LGM	 comparisons	 of	 model	
prediction	against	proxy	data,	the	correlation	coefficients	for	this	

F I G U R E  1  Modelled	C4	plant	functional	type	cover	at	the	Last	Glacial	Maximum	compared	with	available	proxy	data	(palaeosol	and	
animal tissue δ13C;	Cotton	et	al.,	2016)	in	the	lower	right	panel.	Light	blue	colour	represents	areas	covered	by	glaciers	during	the	Last	Glacial	
Maximum.	Circles	represent	C4	abundance	estimates	derived	from	fossil	bison	isotope	data,	squares	represent	C4 abundance estimates 
derived	from	fossil	mammoth	isotope	data,	and	diamonds	represent	C4	abundance	estimates	derived	from	palaeosol	isotope	data

TA B L E  2  Comparison	of	agreement	across	models	based	on	intraclass	correlation	coefficient	values

Statistic of agreement LGM (1,161, 363)
Historical modern (2,595, 
1,062)

Future RCP 8.5 (not including 
GFDL model) (2,665, 208)

ICC	values	(95%	confidence	interval	for	ICC	
population	values).	All	p‐values	<	.001

.21	<	.27	<	.33 .02	<	.05	<	.08 .07	<	.12	<	.17

Note.	Degrees	of	freedom	are	provided	in	the	uppermost	panels	for	each	time	period	(F	test,	so	two	types	of	degrees	of	freedom	are	provided).	ICC	=	
intraclass	correlation	coefficient.
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period	are	much	lower,	ranging	from	a	low	of	 .12	for	the	MIROC	
model	to	a	high	of	.42	for	the	IPSL	model.	These	correlations	are	
still	 statistically	significant,	but	 the	sample	sizes	are	much	 larger	
than	for	the	LGM	comparisons	(Table	4).

3.3 | Future (end of century) period

Predictions	 for	 the	 end	 of	 this	 century	 further	 highlight	 the	 mis‐
match	among	models	in	predicting	C4	grass	cover	(Figure	4)	The	ICC	
score	 is	 also	 low	 (.13)	 for	 this	 time	 period,	 and	 correlation	 coeffi‐
cients	vary	from	.13	(MIROC	and	MPI)	to	.41	(IPSL	and	MPI)	(Tables	
2	and	3).	The	simulated	future	patterns	largely	mimic	those	for	the	
mid‐1800s,	 although	all	models	predict	 increases	 in	C4 cover. It is 
difficult	to	disentangle	how	much	of	the	predicted	increase	results	
from	 C4	 grasses	 interacting	 with	 a	 changing	 climate,	 atmospheric	
CO2,	disturbance	patterns	and	other	PFTs,	because	the	future	%C4 
cover	in	these	models	includes	crops.	Although	models	vary	in	their	
algorithms,	 crop	 cover	 predictions	 should	 be	 related	 to	 economic	
decisions,	in	addition	to	ecological	and	biophysical	factors	(Porfirio,	
Newth,	Harman,	Finnigan,	&	Cai,	2017).

4  | DISCUSSION

4.1 | Modelled vegetation distributions: Potential 
biases from climate models

C4	abundance	predicted	by	vegetation	models	will	be	 influenced	
by	the	accuracy	of	the	atmospheric	models	that	simulate	climate	
forcing	 data.	 Many	 recent	 studies	 have	 assessed	 climate	 model	
accuracy	by	comparing	model	outputs	with	palaeoclimatic	proxy	
data	 for	 historical	 time	 periods,	 such	 as	 the	 LGM.	Much	 of	 this	
model–proxy	data	comparison	work	for	the	historical	periods	has	
been	focused	on	sea	surface	temperature	(e.g.,	Bakker	et	al.,	2014;	
Hossain,	 Zhang,	 &	 Lohmann,	 2018)	 and	 has	 found	 that	 models	
are	 in	broad	agreement	with	proxy	data	 from	the	LGM	and	mid‐
Holocene,	 although	 deviations	 do	 occur	 in	 some	 regions,	 such	
as	 the	mid‐latitudes	 of	 the	 Southern	Hemisphere	 (Bakker	 et	 al.,	
2014).	However,	comparisons	between	proxy‐based	terrestrial	cli‐
matic	reconstructions	and	models	are	more	variable.	For	instance,	
Braconnot	 et	 al.	 (2012)	 and	 Jiang,	 Tian,	 and	 Land	 (2013)	 found	
discrepancies	 between	 predictions	 from	 Paleoclimate	Modelling	
Intercomparison	 Project	 (PMIP)	 outputs	 and	 proxy‐based	 mean	
annual	precipitation	data	for	the	eastern	portion	of	the	northern	
hemisphere	 and	 China,	 respectively,	 during	 the	 mid‐Holocene.	
Otto‐Bleisner	 et	 al.	 (2013)	 showed	 that	 the	 CCSM3	 model	 has	
difficulties	 reproducing	 last	 interglacial	 warming	 over	 the	 ter‐
restrial arctic and suggested that the simulation is missing crucial 
feedbacks.	It	is	possible	that	greater	model–proxy	data	mismatch	
occurs	over	the	 land	compared	with	the	ocean,	especially	 if	pre‐
cipitation	is	driving	deviations	between	modelled	and	proxy‐based	
reconstructions	of	C4	abundance	at	the	LGM.

Global	vegetation	models	are	often	driven	by	observed	or	mod‐
elled	climate	data	in	so‐called	‘offline	simulations’,	and	many	vege‐
tation	models	have	been	tested	using	this	approach	(Bonan	&	Levis,	
2006).	Importantly,	vegetation	model	performance	can	be	strongly	

TA B L E  3  Comparison	of	agreement	across	models	based	on	Pearson’s	product–moment	correlations

Pairwise Pearson’s product–moment correlations between model 
predictions (*p << .001) MPI IPSL MIROC

LGM

MPI 1

IPSL .17*	(799) 1

MIROC .32*	(1,174) .47*	(1,141) 1

Historical

MPI 1

IPSL .38*	(1,046) 1

MIROC .08*	(2,595) .02	(2,758) 1

Future

MPI 1

IPSL .41*	(1,050) 1

MIROC .13*	(2,672) .14*	(2,954) 1

Note.	Degrees	of	freedom	for	each	test	are	provided	in	parentheses.

TA B L E  4  Comparison	of	agreement	between	model	predictions	
and	proxy	data	based	on	Pearson’s	product–moment	correlations

Pairwise Pearson’s product–moment 
correlations between proxy data and 
model prediction of %C4 (*p << .001) LGM Historical

MPI .78*	(93) .12*	(661)

IPSL .46*	(93) .42*	(680)

MIROC .58*	(92) .33*	(646)

Note.	The	historical	modern	model	comparison	is	against	vegetation	plot	
proxy	data,	because	bison	proxy	data	are	highly	correlated	with	plot	data	
(Griffith,	Cotton,	et	al.,	2017).	Degrees	of	freedom	for	each	test	are	pro‐
vided	in	parentheses.
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affected	 by	 biases	 in	 the	 climate	 model	 forcing.	 For	 example,	
Ahlström,	Schurgers,	and	Smith	 (2017)	showed	that	climate	model	
biases	could	be	responsible	for	up	to	40%	of	the	range	in	simulated	
terrestrial	 carbon	 storage	 across	 18	 of	 the	CMIP5	models.	Global	
vegetation	models	that	are	coupled	to	climate	models,	as	is	the	case	
for	 the	 simulations	 highlighted	 here,	may	 also	 be	 biased	 from	 the	
coupling	 itself.	 Bonan	 and	 Levis	 (2006)	 highlighted	 problems	 that	
might	arise	when	coupling	two	highly	nonlinear	systems.	However,	
the	advantage	of	the	coupled	approach	is	that	feedbacks	between	
the	 land	 and	 atmosphere	 can	 be	 captured.	 In	 sum,	 some	 of	 the	
model–model	discrepancies	and	lack	of	agreement	with	proxy	data	
we	highlight	here	is	very	likely	to	be	a	result	of	poor	performance	of	
the	atmospheric	models	 that	drive	the	vegetation	models,	 in	addi‐
tion	to	potential	feedbacks	inherent	in	the	model	coupling	process.

4.2 | Improving simulated C4 grass biogeography: 
Missing processes and properties

Despite	 the	 importance	of	atmosphere	model	 influences	on	 simu‐
lated	PFT	biogeography	and	carbon	cycle	dynamics,	the	vegetation	
models	are	also	very	likely	to	be	missing	essential	processes	that	in‐
fluence	the	cover	and	productivity	of	C4	grasses.	The	importance	of	
capturing	the	photosynthetic	physiologies	of	C3 and C4	grass	types,	
and their variation with CO2	and	climate,	has	long	been	recognized	

(Collatz,	Berry,	&	Clark,	1998;	Sellers	et	al.,	1997;	Still,	Berry,	et	al.,	
2003).	However,	additional	ecological	and	hydrological	factors	con‐
trol C3 and C4 distributions	and	can	interact	 in	complex	ways,	pro‐
ducing	 offsetting	 effects	 driven	 by	 interactions	 with	 hydrological	
cycles	(Griffith,	Lehmann,	et	al.,	2017)	or	by	driving	systems	towards	
deterministically	 woody	 states	 (Bond,	 2008;	 Moncrieff,	 Scheiter,	
Bond,	&	Higgins,	2013;	Oliveras,	&	Malhi,	2016).	For	example,	in	an	
experimental	study	conducted	in	a	semi‐arid,	mixed	C3/C4 grassland 
in	North	America,	Morgan	et	al.	(2011)	showed	that	C4 grasses were 
counterintuitively	 outperforming	C3 grasses owing to increases in 
water‐use	efficiency	driven	by	interacting	effects	of	higher	CO2 and 
warming	on	soil	moisture	and	plant	physiological	responses.

Another	 key	 difference	 important	 to	 capture	 in	models	 is	 the	
seasonal	offset	in	cover	and	productivity	between	C3 and C4 grasses 
(Collatz	et	al.,	1998).	This	is	especially	important	in	the	Great	Plains	
region	of	North	America,	where	 temporal	mixtures	of	 these	grass	
types	 have	 been	well	 studied.	 For	 example,	 in	 the	 shortgrass	 and	
upland	mixed	grass	prairie	ecosystem,	C3 grasses generally grow in 
spring	 and	 early	 summer,	whereas	C4	 grasses	 predominate	 during	
mid‐	 and	 late	 summer	 (Kemp	 &	Williams,	 1980;	 Ode,	 Tieszen,	 &	
Lerman,	1980).	The	tallgrass	prairie	ecosystems	are	also	character‐
ized	by	seasonal	C3 and C4	mixtures,	although	the	variation	is	greatly	
dampened	and	C4	grasses	assimilate	most	of	the	carbon	on	an	annual	
basis	 (Nippert,	Knapp,	&	Briggs,	2006;	Still,	Berry,	Ribas‐Carbo,	&	

F I G U R E  2  Relative	cover	fractions	for	tree	and	grass	plant	functional	types	as	represented	in	various	earth	system	models	from	historical	
simulations	for	the	earliest	model	year	(1850–1861,	depending	on	the	model)
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F I G U R E  3  Modelled	C4	plant	functional	type	cover	in	the	historical	modern	period	(ca.	1850	CE)	compared	with	available	data	(soil	δ13C, 
bison tissue δ13C	and	plot	data;	Cotton	et	al.,	2016;	Griffith	et	al.,	2015)	in	the	lower	right	panel.	Circles	represent	modern	grazer	isotope	
data,	and	diamonds	represent	soil	isotope	data

F I G U R E  4  Modelled	C4	cover	(sum	of	C4	natural	grass	and	crop	plant	functional	types)	for	the	mean	of	years	2071–2100	based	on	
Representative	Concentration	Pathway	8.5
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Helliker,	2003).	 Importantly,	 the	proxy	data	we	have	collated	here	
should	generally	 capture	 such	mixing,	because	 soil	 organic	matter	
and	grazer	hair	tissue	represent	a	weighted	average	of	carbon	inputs	
from	each	photosynthetic	pathway	type	over	seasonal	and	interan‐
nual time‐scales.

Despite	such	complexities,	global	vegetation	models	driven	by	
offline	 climate	 forcing	 data	 capture	 broad	 biogeographical	 pat‐
terns,	generating	reasonable	tree–grass	ecotones	(Brovkin	et	al.,	
2013)	and	predicting	primarily	C3	grasses	in	temperate	zones	and	
C4	grasses	in	the	tropics	and	subtropics.	However,	in	our	compar‐
ison,	 errors	 in	 simulating	%C4 cover in North America highlight 
challenges	that	are	model	specific.	The	GFDL	model	misplaced	the	
grassland biome at a continental scale in the historical modern 
period.	 In	contrast,	 the	MIROC,	MPI	and	 IPSL	models	predicted	
somewhat realistic continental‐scale grassland distributions, but 
very	different	C4	 grass	distributions.	The	MPI	grass	distribution	
is	based	on	the	JSBACH	model	 (Raddatz	et	al.,	2007),	which	has	
been	partly	validated	against	satellite‐based	estimates	of	modern	
tree	 and	 grass	 cover	 (Brovkin	 et	 al.,	 2013).	 The	 LGM	C4	 predic‐
tions	from	MPI	were	reasonable,	whereas	the	MPI	model	under‐
estimated C4	grass	cover	 in	 the	historical	period,	 indicating	 that	
other	 factors	 might	 need	 to	 be	 incorporated	 into	 the	 models,	
including	 aspects	 of	 disturbance	 ecology	or	 competitive	 effects	
(e.g.,	Griffith	et	al,	2015).	The	MIROC	natural	grass	distribution	is	
based	on	 the	SEIB‐DGVM	 (Sato,	 Itoh,	&	Kohyama,	2007),	which	
simulates	 light	 competition	 among	 trees	 and	 a	 range	 of	 pro‐
cesses	including	population,	community	and	ecosystem	dynamics.	
Notably, this model seemed to match C4 grass cover distributions 
best	 in	 the	LGM	and	historical	modern	periods,	 although	 it	 also	
strongly	 over‐predicted	 C4 cover in northern and northeastern 
North	America	in	the	latter	period.

The	 grass	 family	 is	 one	 of	 the	 most	 species‐rich	 Angiosperm	
families	 and	 is	 easily	 one	 of	 the	 most	 dominant	 plant	 functional	
groups.	Nevertheless,	grasses	are	remarkably	under‐represented	in	
trait	databases	(Engemann	et	al.,	2016;	Kattge	et	al.,	2011;	Wright	
et	al.,	2004),	which	are	being	used	increasingly	to	enhance	the	eco‐
logical	realism	of	DGVMs.	For	example,	of	the	2,548	species	in	the	
GLOPNET	leaf	trait	database	analysed	by	Wright	et	al.	(2004),	only	
134	were	grasses	or	 sedges	 (5.3%	of	 the	 total),	 and	only	16	were	
C4	 grasses	 (.6%	 of	 the	 total	 database).	 Grasses	 are	 frequently	 ig‐
nored	or	minimized	in	global	syntheses	and	meta‐analyses,	such	as	
a	 recent	 study	 of	 plant	 respiration	 and	 its	 temperature	 response,	
which	did	not	include	a	single	grass	species	in	the	dataset	used	for	
analysis	(Heskel	et	al.,	2016).	Likewise,	meta‐analyses	of	photosyn‐
thetic	traits	and	leaf	C	and	N	dynamics	do	not	include	any	C4 grass 
species	(Walker	et	al.,	2014;	Wullschleger,	1993).	These	gaps	surely	
result	 from	 a	 lack	 of	 available	 trait	 data,	 not	 intentional	 exclusion	
of	grasses,	although	missing	information	can	result	in	environmental	
policies	that	endanger	grassy	ecosystems	(Griffith,	Lehmann,	et	al.,	
2017).	 This	 lack	of	 data	 further	 highlights	 the	 challenges	 inherent	
in	 global	 modelling	 and	 synthesis	 analyses	 that	 fundamentally	 do	
not	 represent	 the	 functional	 diversity	 of	 grass‐dominated	biomes,	

in	 particular	 those	 dominated	 by	 an	 herbaceous	 layer	 of	 C4 grass 
species.

A	 model	 improvement	 that	 would	 benefit	 from	 additional	
grass‐specific	trait	data	is	explicit	representation	of	different	life‐
history	and	allocation	strategies	in	grass	PFTs.	Most	grass	species	
are	perennial	 (Atkinson	et	al.,	2016),	but	a	number	of	 important	
invasive	species	are	annuals,	including	cheat	grass	(Bromus tecto-
rum)	(D’Antonio	&	Vitousek,	1992).	Key	traits	such	as	leaf	lifespan	
(Lemaire,	Da	Silva,	Agnusdei,	Wade,	&	Hodgson,	2009)	and	seed	
mass	(Bergmann,	Ryo,	Prati,	Hempel,	&	Rillig,	2017;	Liu,	Edwards,	
Freckleton,	&	Osborne,	2012)	vary	greatly	among	grass	 lineages	
and	 across	 plant	 families	 in	 general	 (Davies	 et	 al.,	 2013).	 These	
traits	 represent	 key	 axes	 of	 variation	 in	 plant	 ecological	 and	 al‐
location	 strategies	 (Westoby,	 1998)	 that	 should	 greatly	 con‐
tribute	 to	 intra‐annual	 productivity	 and	 distributions	 of	 plants.	
Furthermore,	phenological	and	reproductive	traits	are	frequently	
associated	with	disturbance	regimes	such	as	fire	and	grazing	(e.g.,	
D’Antonio	&	Vitousek,	 1992;	 Lemaire	 et	 al.,	 2009).	 These	 influ‐
ence	grass	and	tree	coexistence	(Higgins,	Bond,	&	Trollope,	2000),	
resulting	 in	 major	 variation	 in	 nutrient	 cycling	 and	 productivity	
(Lehmann	et	al.,	2014).

We	suggest	 that,	 in	 addition	 to	 the	need	 for	more	collection	
and	greater	integration	of	C3 and C4 grass trait data, other model 
improvements	 are	 needed	 to	 capture	 better	 the	 important	 eco‐
logical	and	biogeographical	processes	that	influence	distributions	
of	grasses	and	their	photosynthetic	pathways,	cover	and	produc‐
tivity.	Chief	among	these	improvements	should	be	more	accurate	
representation	 of	 tree	 and	 grass	 cover	 distributions	 (Figure	 2);	
these	distributions	should	be	reasonably	well	constrained	by	pol‐
len	data	for	the	historical	modern	period	(Whitmore	et	al.,	2005).	
Accurate	 tree	 and	 grass	 cover	 distributions	 are	 crucial	 for	 pre‐
dicting C4	grass	cover	and	a	wide	variety	of	biophysical	and	bio‐
geochemical	 processes.	Models	 can	 differ	 strongly	 in	 how	 they	
capture	 mechanisms	 that	 influence	 tree	 and	 grass	 distributions	
(Sitch	et	al.,	2008,	2003	),	especially	the	representation	of	compe‐
tition	for	water	and	response	to	disturbance.	Tropical	 tree	cover	
is	often	overestimated	at	the	expense	of	savanna	and	grass	cover	
in	 ESMs	 (Bonan,	 Levis,	 Sitch,	Vertenstein	&	Oleson,	 2003;	 Sitch	
et	 al.,	 2003).	 Models	 that	 more	 accurately	 capture	 disturbance	
responses	and	aspects	of	tree–grass	competition	have	been	suc‐
cessful	at	simulating	C4	grass	cover	and	productivity	across	Africa	
(Higgins	 et	 al.,	 2000;	 Higgins	 &	 Scheiter,	 2012;	 Ratnam	 et	 al.,	
2011;	Scheiter,	Langan,	&	Higgins,	2013).	Capturing	the	competi‐
tion	for	water	between	trees	and	grasses	 is	especially	 important	
(Quijano,	Kumar,	Drewry,	Goldstein,	&	Misson,	2012).	At	regional	
scales,	such	as	those	observed	in	the	present	study,	the	represen‐
tation	of	C4	cover	and	grass‐dominated	vegetation	often	contrasts	
with	observations.	This	contrast	may	be	because	the	distribution	
of	grassy	vegetation	is	often	modified	by	ecosystem	ecology	and	
disturbance	 (Griffith	 et	 al.,	 2015;	 Moncrieff	 et	 al.,	 2013),	 and	
biome	patterns	may	not	be	deterministic	 but	 instead	 contingent	
on	biogeographical	and	evolutionary	history	(Higgins,	Buitenwerf,	
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&	Moncrieff,	2016;	Lehmann	et	al.,	2014;	Moncrieff	et	al.,	2016,	
2016	).

5  | CONCLUSIONS

We	highlight	important	disagreement	among	global	vegetation	mod‐
els,	in	addition	to	generally	poor	agreement	between	model	predic‐
tions	and	observations	of	C3 and C4	grass	cover	and	productivity.	This	
lack	of	agreement	occurs	at	a	range	of	climates	and	atmospheric	CO2 
concentrations,	and	it	is	unlikely	that	the	same	factors	explain	disa‐
greement	 across	 models.	 Future	 improvements	 in	 grass	 modelling	
will require close collaborations between modellers and grassland 
ecologists	and	physiologists.	We	suggest	that	approaches	integrating	
additional	grass	trait	data	and	evolutionary	history,	in	addition	to	ap‐
proaches	from	community	and	disturbance	ecology,	are	required	to	
capture	C4	grass	ecology	and	biogeography	more	accurately.
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