
Java Implementation of a MathML Rendering Engine

ABSTRACT

Anton N. Dragunov
Master of Science Degree Project

Department of Computer Science
Oregon State University

102 Dearborn Hall
Corvallis, Oregon 973 31, U.S.A.

anton@cs.orst.edu

Current approaches to presentation of mathematics (on paper or in electronic format) have usability drawbacks that
make learning and appreciation of mathematics challenging and often frustrating. In a framework of a big research
project of identifying new approaches to communicating mathematical ideas in a highly usable and effective manner ,
we are building prototype software toolkits displaying documents with math content in various comprehensive ways.
For the encoding of mathematics we use MathML, a standard XML-based markup language allowing specification
of both facade and underlying semantic content of mathematical presentations , as well as providing certain possibili­
ties for dynamics and interactivity in communication of math. The Java implementation of a MathML rendering en­
gine which we use in our prototypes is the topic of the current project.

Keywords

Math Visualization, User Interface, MathML , XML, Java.

ACKNOWLEDGEMENTS

I want to thank all the people who helped me in my work:

• Dr . Jonathan L. Herlocker , my academic advisor who provided me with lots of invaluable ideas and
comprehensive consultations while I was working on this project.

• Yuemei Sun, a graduate student of Computer Science Department of Oregon State University who did a
great job in writing a set of Java classes for Unicode character output which I used in my project.

• NACSE, The Northwest Alliance for Computational Scientists and Engineers, the research center of OSU
and its people for their understanding and suppotting me with all the computing facilities I needed to work
productively on this project.

• All my friends from all over the world who gave me tons of inspiration and advice in my work and studies
in the United States.

2

Table of Contents

Chapter 1. INTRODUCTION 4

MOTIVATION 4

Why Bother? 4

Integration With Document Standards 5

Three Usability Issues 5

RELATED WORK 6

Chapter 2. THE BIG PICTURE 8

The Vision 8

Chapter 3. IMPLEMENTATION 11

THE PROJECT 11

MathML 11

MathML Rendering Tool 12

THE IMPLEMENTATION 12

MathML Parsing . 13

MathView Objects Hierarchy 14

Glyph Rendering 15

Symbol Output 17

Stretchy Characters 18

Object Activation 19

Transition Encoding/Rendering 20

MATHML FORMULA VIEWER 21

FUTURE WORK 22

References 23

)

3

) Chapter 1. INTRODUCTION

j

MOTIVATION

In this section we are giving the readers a general perspective on the problems we are dealing with in the framework
of our big project on Math Visualization.

Why Bother?

Comprehending complex mathematics presents a frustrating challenge for many of us. Although mathematics fol­
lows well-defined and logical rules , there are enormous numbers of those rules that we must understand in order to
comprehend much of today's mathematics . To communicate mathematics, we must proces s a symbolic language that
can sometimes be very complex. Even as scientists with strong mathematics backgrounds , many of us find that we
do not have the patience or the time to spend on processing the current complex mathematical explanations that we
find in journal articles.

We can gain a lot of insight by examining mathematical presentations in documents (paper or electronic) from a us­
ability perspective . For example, journal articles and textbooks often present enormously long chains of formulaic
derivations spread over many pages of text (e.g. equation I.I, 1.2, ... , 1.56 ...), yet, most ofus are unable to clearly
remember the equations (or the transitions between them) of more than one or two steps the first time that we see
them. To understand a derivation, we are thus forced to frequently refer back and forth between different pages to
refresh our memory of the derivation . Such a process is tedious , time-consuming, and distracting (resulting in losing
your place in the document).

Consider consistency - an important facet of good user interface design . Upon reviewing both textbooks and jour­
nal articles, we find different symbols being used for the same mathematical concept. Perhaps worse, we also find
the same symbol being used for multiple different concepts in different papers. These variations in the mapping be­
tween symbols and concepts can be exceptionally confusing and frustrating to the reader.

At the core of usability engineering is identification of the user interface's target users and their need s. With tradi­
tional non-dynamic presentations of mathematics, such as those in journals and textbooks, authors must identify
(sometimes implicitly) the mathematical sophistication of their target audience, and provide explanations in suffi­
cient detail for the target audience. For textbooks , the sophistication assumed depends on the level of students tar­
geted, and for journal articles, the author often assumes that the readers will have the same mathematical sophistica­
tion as the author. Given these assumptions, many appropriate details may be omitted. For example, how often have
you seen statements like " ... and here we use the standard formula for finding the roots ... " without actually showing
the formula itself, but only displaying the result of its application? Or we might see statements like "The author as­
sumes that readers have at least [some level] of knowledge in [some math domain}."

A problem arises in that not all readers have the appropriate level of expertise or sophisticat ion assumed by the au­
thors. The reader may not know what "the standard formula for finding the roots " is or may not have the appropriate
level of knowledge in the specified math domain. For example, a usability expert working with intelligent user inter­
faces may need to read journal articles about machine learning without having the same mathematical back ground as
a researcher in machine learning . With static presentations that are created once and then distributed to all, this can­
not be helped . At the other extreme we might have a situation where the author tries to make the math content of the
document be easily understood by a large audience, thus making the whole presentation of ideas unnece ssarily long
and irritating for people with extensive knowledge of math. However, when presenting math using a medium that
supports interaction, such as a personal computer or a personal digital assistant, we can build a presentation of
mathematics that adapts to the needs of each individual reader.

The time has come to design , develop , and integrate new approaches to presenting mathematics into our current
means for transmitting mathematical knowledge in journal articles and textbook s. Several important factors have
developed in support of this endeavor. We are seeing most journals provide all of their articles in an electronic form.
The most notable example of this is the ACM Digital Library [1]. Electronic textbook s (or electronic accompani­
ments to traditional textbooks) are being developed. Thus the channels exist for the continued distribution of mathe­
matical communications in digital form. In support of standardized and structured encoding of mathematics , a recent
standard called MathML [24] has emerged that has been accepted by all major vendors of mathematical software.
Software already exists to author and display equations in MathML, including stand-alone widgets such as WebEQ

4

or MathPlayer [36], MathML authoring tools such as MathType [25] and IBM Techexplorer [17], and full web­
browsing applications with native support of MathML such as Amaya [5] and Mozilla [27]. What remains is to iden­
tify the ways in which mathematics can be presented in a highly usable, intelligent, and adaptive fashion, while at the
same time maintaining compatibility with existing means of presentation and display.

Integration With Document Standards

Given that we are unlikely to see publishers change their mode of distributing electronic documents, one challenge is
to identify how to integrate dynamic math into existing digital document formats, most notably Adobe PDF and
HTML. We believe that these challenges can be addressed, as Adobe Acrobat and all popular HTML browsers sup­
port plug-ins to extend their functionality. Such plug-ins could provide alternative viewing capability for documents
containing embedded dynamic mathematics presentations. However, we do not address those challenges in this pro­
ject report. Rather we focus on identifying how to present math in a more usable, dynamic, and an adaptive fashion.

Three Usability Issues

Now we summarize the problems which readers of math documents usually experience, and which we believe could
be solved with a more interactive and intelligent interface.

1. Inability to view, compare, and contrast related mathematical artifacts within a single field of vision due to limita­
tions of print/display medium.

• The common way to reference equations in documents (numbers, hyperlinks) helps to save document space
and ensures its consistency and integrity, but working in such an enviromnent is inconvenient and error-prone
for readers, since locating necessary piece of information in the text takes additional actions - switching be­
tween pages back and forth.

• When a chain of related equations goes through many pages, comparing the equations to one another is diffi­
cult, since it, again, takes additional actions to switch between pages and increased concentration of mind to
keep in memory much information about the equations previously viewed.

• In many cases the separation of math artifacts and their textual explanations may cause difficulties in under­
standing of the mathematical ideas. Authors are ahnost free in naming the variables or arranging math terms in
expressions in any way they find appropriate or convenient in the course of their presentations. Because of that
even very common formulas might look quite unfamiliar to readers, who thus will be forced to seek for textual
explanations in the surrounding text, which means that readers will have to put additional effort in and spend
additional time on comprehending the presentation.

• In some cases the notation used in general formulas is similar to that the author uses in his/her derivations (e.g.,
the author may use variable x, and the formula also uses x, but, generally speaking, these two x's describe
completely different concepts), and the reader must always be warned about such a trap.

2. Mathematical explanations do not provide the right amount of detail for all potential readers. Something that is
unclear is very hard to follow; clarity is the key to understanding.

• Whether the explanations are clear or not depends on readers' level of preparation. Novice readers want to see
all derivation steps and extended explanations of every transition, whereas expert readers want the explanations
be brief, very high-level. It is desirable to make the document's level of sophistication be dynamically tailored
for every particular reader.

• There is always a trade-off between conciseness and detail in documents containing mathematical presenta­
tions. Making the presentation concise saves document space, reduces its creation time, and speeds up reading,
particularly, for expert users. In contrast, providing math explanations in many details supports non-expert us­
ers, and ensures that ideas are not misunderstood.

• To some extent any math document can be considered as a presentation in a mix of two languages: natural lan­
guage and the language of math formulas. To be precise, the whole presentation usually follows the rules of a
natural language, where math terms appear as nouns (playing roles of subjects or objects), with verbs and
modifiers being taken from natural language. All educated readers understand the symbolic language of math
formulas, since this language is almost universal. However, the readers might not be that much fluent in the
language of the document, and this may result in misinterpretation of ideas. Even if the reader is perfectly pro-

5

)

)

)

ficient in the language of the document, textual explanations are slower to comprehend than their visual
counterparts [34, 35]

3. Sometimes notation being used varies from author to author, from document to document.

• In case if one document contains references to equations in another document differences in notation might be
very much misleading .

The next section describes related work, followed by a description of our vision of a new approach to presentation of
mathematics .

RELATED WORK

We have to emphasize that we were not aiming to develop another tool for symbolic formula derivation. There are
many successful applications for symbolic math [21, 22, 26]. Also, we are not going to develop a new format for
representation of mathematical knowledge, like OpenMath [2]. However, in our project we do not exclude the possi­
bility to use the aforementioned tools and formats for doing actual formula derivations , format conversion, and math
knowledge replesentation.

Probably, the most popular and very useful technique that electronic document format makes possible to exploit is
interactive illustrations. Interactive illustrations became very popular in teaching. They have long been studied and
proved to be successful [13, 32]. The idea of interactive illustration , basically, is to allow readers not only passively
observe the illustration material (picture , graph, diagram, etc.), but also be able to "play" with it, by rearranging ob­
jects on the illustration , modifying parameters (in case if the illustration shows diagrams , curves , surfaces, or just
tables of numbers), and immediately seeing the effects of such modifications. E.g., in [20], in the set of problem s on
plain geometry the users can modify pictures (stretch/ shrink circles and/or triangles, move intersection points, etc.)
and see that the properties of geometric shapes that need to be proven remain the same for an arbitrary configuration
of the shape conforming certain initial conditions.

To some extent, fragments of mathematics in a document can be considered as illustrations to the ideas presented in
the surrounding text (the converse is also true) . Still, application of the ideas of interactive illustrations to symbolic
mathematics has not become widespread.

To enliven their presentations authors may develop small computer applications (which are sometimes interactive , as
in [20]), create animations , or record short video fragments, thus providing animated visualizations for their docu­
ments/presentations . "Project Mathematics! " [30] by Tom M. Apostol and James F. Blinn (California Institute of
Technology, Pasadena , CA) is an excellent example of this sort of work. Usually, all such animations follow a fixed
scenario and are created "by hand" (meaning that the author has to compose the animation out of a set of frames) for
some particular presentation only.

An attempt to make math presentations be able to become clearer as more and more readers work with them has been
undertaken by Gabe Johnson 's team in University of Colorado, Boulder. Their idea of a "v irtual book" [23], in es­
sence, was to put on the "walls" of an on-line book a set of "hooks" on which readers could "hang" multiple bulletin
boards (on-line discussion systems). Using these boards the readers could ask questions or exchange their opinions
about the text right inside the book, as if making "notes on margins" 1• The system was expected to serve students to
better understand course materials.

A big project, although primarily dealing with internal organization of math knowledge but also introducing innova­
tive techniques for math presentation, is HELM - the Hypertextual Electronic Library of Mathematic s [16] (Uni­
versity of Bologna, Italy). This is an attempt to create a s01t of a repository of structured mathematical knowledge
based on the use of XML/MathML. For math presentation the project team, too , was looking for " innovative interac­
tive capabilities , such as a structure-aware form of selection and the possibility to conceal and disclose parts of the
displayed document to change the level of detail". The new MathML rendering engine [29] developed in the frame­
work of HELM was endowed with functionality which went beyond simple display of math in on-line documents .

1 Almost the same idea, yet, under different name - annotations, is utilized in many web sites. Some annotations may be linear (single-level) ,
and some can be organized into hierarchical trees (i.e., annotations to other annotations are possible), thus havin g right to be called discussion
board s. For instance , such approach is used at http://www .lenta.ru/, a Russ ian web site for official news. The difference , however , is that annota­
tions are usually created for the whole document , whereas in Gabe Johnson's project users can annotate specific portion s of a document.

6

)

J

ActiveMath [6], is a relatively recent project (based on the use ofOpenMath technology) aimed to facilitate presenta­
tion of mathematical knowledge by providing a user-adaptive learning environment. However , the ActiveMath soft­
ware , in essence , is just a web-interface to a repository of math facts, with some features helping to learn mathemati­
cal ideas by giving formal definitions , examples and exercises.

Finally, we also have to mention a number of small software tools, which were created to facilitate math comprehen­
sion in academic world. FORMULA [14], Alged [2], ComputerMentor [11], Algebra Interactive! [3] are such tool s,
to mention a few. Some tools allow to "play" with math formulas (rearrange terms , simplify /factorize expressions ,
etc .), thus working as simplified versions of software for symbolic math with capabilities of doing numerical calcula­
tions , aiming , actually , at the same target as interactive illustrations do: answer a question "what if... ?" . In many
cases such tool s are designed to work with a "standalone math", not included into documents. Some tools (e.g .,
ComputerMentor and Algebra Interactive!) work as electronic teachers , explaining the material (particular algebraic
or trigonometric problem) at various levels of detail.

All the projects we have just spoken about (with exception of HELM) were aimed to provide convenience of calcul a­
tions and "playing around ", and not convenience in navigation among equation s and comprehen sion of math . User
interface aspect s were not prevalent ; functionality was the pivotal issue.

7

)

)

Chapter 2. THE BIG PICTURE
Here we want to identify the approaches to make the user interface of math presentations help reduce the amount of
effort needed to grasp the idea s given in math expressions. In what follows we repeat the list the problems we men­
tioned in the Motivation section, and give a vision of how we might address them in our project. For illustrations we
use "screenshots " displaying chapters taken from a physics textbook on classical mech anic s [9].

THE VISION

1. Problem: Inability to view related mathematical artifacts within a single field of vision due to limit ations of
print /display medium .

• References to equations will no longer require users to switch pages of an electronic document (although , old­
fashioned technology of hyperlinks will be also honored). The referenced math expression will appear at the
point of reference as a tooltip with extended functionality (Figure 1). By the extended functionality we mean

►J~_anrn1wm.ltffitti.·.mtt1 . . _

The grnvilc1!iorn1l at!rnctio n OH n point mnsH from a spherica lly ;;yrnmetric body
net~ as if ull th e maf:'s of !he body were conce ntrnt ed at iti! cent er, ltS Newlo n
rigoro ndy prove d from hi s iHvenlioH of calc nlns, We will give a proof of tJ1is
assertion iH ChaJLZ. For an object of nH1ss 111 on !he sm face of the earth . !he force
law ofEq / ~i,4) becom es

..,.,.....,,...,""J,r~ .. ,l
___ .,,. tL .u _~ 1' 1 G t .. 1. Gta~tational Force Law)l F = -111 + = -11/g

CfM/vl 2 ! Re F =-

· · r2 •)orn1l acce leration •
... ~~,;;,, 4-\,,.":,,,""":,,>;;;~'r!,:;v

g = 9.8ni/s 2

111e va lnes of mass and rndills of the Earth in fuUl::02 are

Re= 6,371km

Me = 5.9, / 1024 kg

(l -6)

......... ~

Figure 1. Simple tooltip with referenced equation.

'I11e gravitational a ltrndio n on a point mass from a 1,:ph eri cally synun ehic body
acts a~ if all the ma ss of th e body were concen!rnted at ils center , as New ton
1i!lorously pr oved froi••·.. · · · · calc1 niL-\Ye.....u:.ilL!!:i.ve a pro of of thiB

'- . ~, . M.l.H Of the EJ.rth, kg . . ~
•>,,e1·t1c>ll lll Cl1'1p 7 F .,. ,. '" 111 Gr•v~•ttonal • 011st• 111• arth the torce
' " ·'· • < • · • ~ ,.o,. G=G.67 x 1Q .. 11 m' i(kg) i>2} '

law of ·:.o,,,CL,.JJJ.:v:,," • .1.)Jll .es.___ ·

Foro of ~ttnctlon, kg·n~•H••~••H• <: . .,H.,._♦r~;;;;; :
------....::~- , Ji;f/.1• .

, f =-111--=-111g ..;. , ,-".·) : 7 R2 '· : ,,,___. Fr•• 1.,11 ,eceter:rtion. rn1, , j 1'

,_n~---- ~~ .. ~ J
where <>i~ the o-r;(Ma«ottt,eobj«t , kgtion --------.

c- · ,"': ~M.. _ ' R;tdlu~otth•E;i.rth. m

g=9.8rn i::;2

The v8lues of m,1ss and radius of tlte Ear th in f:s1.;,Ll-6) :ue

R2 = 6, 371km

Me =5.97 ~1024 kg

Figure 2. Simple callouts with brief description s of math term s.

8

/,

)

)

)

the ability of the tool tip to be "pinned" to the display surface (so that the tooltip will stay on the screen even af­
ter the user moves the mouse pointer away from the reference point), and the abi lity to highlight related math
terms both in the equation and the context (surrounding text, or another equation) where the equation is used.

• Every math element (variable, index, operator, etc.) will be provided a brief description showing up as a tooltip
(or a text in status bar) which will help readers know exactly what each term means, and/or what measurement
units are used for it (Figure 2) .

• Derivation chains will have several parallel modes of display: original print-friendly document repeating the
format of ordinary paper-based presentation, and a "wizard" tool, activated by clicking on a link/button located
at the start of the derivation , and allowing the user to go through the derivation step-by -step, with capabilities
to show/hide derivation steps on the wizard 's window (Figure 3). In a long chain of math derivation a user will
be able to see the "history " of a certain variable or math term by highlighting the variable and/or related math
artifacts throughout the whole derivation chain. This will help the user answer questions like "when was this
variable first defined? " or "why does this variable /math term appear in the current equation at this particular
place".

• The user will be able to see corresponding terms in one or more math expressions by automatic highlighting
those terms in appropriate manner , and see the semantics of the correspondence : e.g.," sin <p = <p for small rp",

or" L X p = ...:1'._(L X p) since L is constant in time" (Figure 3).
dt

►llllrtttmtwmttt,mm

From tho explicit form
T. = 1111• x i •

Figure 3. Formula Derivation Wizard.

Step 2

L><11

Step,a

a) Shrunk tran sition. b) Expanded transition , step I.

18]

Step 2 [81

Lxpc·, r~Lxr

B

c) Expanded transition, step 2.

Figure 4. Going through the formula derivation step s.

9

)

)

2. Problem: Mathematical explanations do not provide the right amount of detail for all potential readers .

• Similarly to what is implemented in [36], our tool will provide the users with possibility to tailor the whole
presentation to their level of knowledge by hiding/showing some derivation steps (Figure 4). The interface will
include the feature to identify users' level of preparation and give the presentation with the appropriate level of
details. For the task of such identification we need a way to classify the mathematical facts more or less uni­
versally, so that we could recognize similar patterns of users' behavior over heterogeneous math documents.
For example, there may be the following classes of math transformations: I) application of a formula (standard
or derived earlier in the same presentation), 2) term rearrangement, 3) mutual term cancellation, 4) approxima­
tion , etc . There might be other classes of math transformations, as well as there might be sub-classes of the
classes we have just mentioned. The general idea of learning the user's reading habits and determining his/her
level of preparation is to keep track of how often (for every particular class of math transformations) the user
looks into the details hidden by default , shrinks the transitions initially expanded , does no modifications to the
level of details currently in use, or how many times the user goes through the same derivation during a certain
period of time. To collect and use this information we have to identify users somehow and keep records about
their behaviors in user profile data structures. In addition to the users' reading habits we also might need to
analyze how those habits evolve , so that we could make more precise predictions on the level of details needed
for the math presentation the user is about to work with. In any case, these learning features must be configur­
able and as much transparent for the user as possible .

• Very often readers do not care about the correct wording and grammar , or do not have time to figure out what a
particular word means in the current context, and are mostly concerned about grasping the general idea of how
math terms transform. ln such cases we need to use another universal language of symbols or gestures . E.g. , to
express the idea that in an equation some terms are going to be rearranged, simple arrows from initial positions
of the terms to where they are going to move to may be much easier to understand than a bundle words saying
" .. . rearranging the factors in the equation gives us . .. " Arrows , and even better , animations of the rearrange­
ment , in fact, convey more information about how the terms move or transform , since they tell us not only that
the rearrangement takes place and produces a certain result, but also show exactly which term goes where dur­
ing the operation (Figure 5).

Figure 5. Visual explanation of term rearrangement.

3. Problem : Sometimes notation being used varies from author to author, from document to document.

• Working with both presentation and content markup our tool will make possible to do automatic conversion of
notation.

) Chapter 3. IMPLEMENTATION

)

THE PROJECT

All tasks we have mentioned in the previous section require display of mathem atics. Unlike the static disp lay of
equations in paper document s or their electronic versions in PostScri pt, PDF , MS PowerPoint , MS Word, or other
similar formats, in our case we need to have all those formulas be able to interact with the user and the parts of the
document they are included in. Not only the whole equation, but every math term of the equation must be separate ly
accessible. The processing environment has to know how to link the equation and its terms to other equations and the
surrounding text. This is because we inevitably need a tool capable of rendering the equations and providing them
with certain interactivity.

MathML

MathML [24] , a markup language designed for encoding math presentation in electronic documents is now being
supported by more and more software tools dealing with symbolic math. Unlike OpenMath [2] markup language ,
which is designed for the representation of math content only, MathML has syntactic constructs both for presentation
and content markup .

The possibility for dynamic and interactive display has initially been laid in the foundation of MathML . Adding a
link to a Math.ML sub-expression is one basic kind of interactivity, which was provided in MathML recommendation
in order to fully integrate MathML into XHTML, the Extensible Hypertext Markup Language [37]. For such integra­
tion it should be possible not only to embed MathML in XHTML, but also to embed XHTML in Math.ML. However ,
at present , the MathML specification does not permit any XHTML elements within a MathML expression, although
this may be subject to change in a future revision ofMathML.

In the current design ofMathML it is assumed that XHTML elements - headings , paragraphs , lists, etc. - either do
not apply in mathematical contexts (what, actually, does not agree with our vision in which we see mathem atical
artifacts be competent parts of the whole presentation), or Math.ML already provides equivalent or better functional­
ity specifically tailored to mathematical content (tables, mathematics style changes, etc.). More information on link­
ing in Math.ML see W3C's Math.ML recomm endation, Chapter 7.1 .4.

Many other kinds of interactivity cannot be easily accommodated by generic linking mechanisms . For example, in
lengthy mathematical expressions, sometimes it is desirable to be able to shrink/expand expressions, e.g., allow a
user to toggle between an ellipsis and a much longer expression that it represents (Figure 6). To create a mechanism
for binding actions to expressions, MathML provides the <maction> element. This element accepts any number of
sub-expressions as arguments, and, when given appropriate attributes, can give the math expression certain amount
of dynamics .

b)

2 3
.r

e ·.t .:i:- X
+x + 2! + 3! +

lfiMothML Formulo Viewer (Z:\profects\math\m027!l«l1I
File View

d.Qji{J Dynamic display of mathematical
equations my include shrinkin g or
expanding some math terms. In this
example the ellipsis in Taylor series
repr ese ntin g the function ex (a) can be
expanded showin g three more terms
of the ser ies (b).

Such interactivity can be achiev ed by
using a standard MathML construct:
<maction> element with toggle at­
tribute set.

Figure 6. Dynamic display made possible by MathML.

1 1

)

)

)

The MathML recommendation suggest s several types of actions (i.e., "standard" attributes and their possible values
for <maction> element): "toggle" , "statusline" "tooltip", "highlight" , "menu", whose meaning is clear from their
names . However , this list, actually, is not a standard; it is provided in the recommendation only for illustration pur­
poses. Recognized values and behaviors may vary from application to application , from one rendering tool to an­
other .

MathML Rendering Tool

MathML rendering software already exists [5, 27, 29, 36]. However, none of the available software tools (at least
those we are aware of) has all the features we need to implement the required dynamics and interactivity . In the
framework of our "big" project we are still at the stage of identifying new ways to present mathematics in a more
efficient, dynamic and highly usable manner. We do not yet know all the properties and behavioral patterns that our
MathML rendering engine might need to have in the future. Even if we had software package with well-documented
API that was designed for rendering MathML , this would not be enough , since it still might have certain limitations ,
which would complicate creation of the dynamic and interactive objects we need. For example , a MathML web­
applet by Waterloo Maple , Inc. [21] does a very good job of displaying equations encoded in MathML, correctly
rendering all special characters used in math notations, and even making them interactive by appropriate processing
of <maction> element (e.g. , the one with "toggle" attribute). However, there is no possibility to animate the terms in
arbitrary way, nor is there any documented interface to access the math terms from the "outside" of the applet. The
applet is a sort of a Thing-in-Itself living its own life and having very little interaction with the environment , except
its simple reaction to mouse clicks.

We do not have to be bound by such limitations, and this is because we decided to concentrate on the design of our
own MathML rendering engine which would have all the features we need . In some respect , we have to repeat much
of the job done by other developers (MathML parsing, formula layout), but this needs to be done to provide us with
solid ground in the future: a flexible and configurable tool for dynamic display of mathematics .

The features which we wanted our MathML rendering tool to have were quite "standard ": the software had to

• correctly and quickly parse MathML code and do the layout of math on the rendering device ;
• provide interface to access [and activate] each math term after the layout is done ;
• enable the processing environment to manipulate with math terms (change their color , size, positions).

The development of this software became the core of the current project.

THE IMPLEMENTATION

The general scheme of processing MathML does not differ from processing of any other language (Figure 7-a) .

Source

Target

Lexical Analysis

Syntax Analysis

Generator

a)

MathML

Interactive
objects on
the screen

Figure 7. Structure of a translator software

Lexical Analysis

Syntax Analysis
DOM Tree construction

Generator
Hierarchy of MathView objects,

Glyph rendering

b)

In the case of processing MathML , the Generator does the job of creating an internal repre sentation of math terms
and performs rendering them on the output device (Figure 7-b) . Lexical Analysis and most of the Syntactic analysi s
is done by the parser software (the exact distribution of jobs is actually dependent on the parser architecture ; see dis­
cussion below) .

12

MathML Parsing

) Since MathML, in essence, is a particular implementation of general-purpose XML , any good XML parser can be
used to parse MathML. The word "good " means that there are some requirements for the parser that must be met to
make it useful in parsing MathML.

)

1. The parser has to correctly proce ss XML tags, and handle errors (should it find any) in a nice manner which
means that the whole program should not crash because of a syntax error in the source XML code .

2. The parser must validate the document against its grammar defined in Document Type Declaration (DTD) speci­
fying the valid grammar constructs of the document. With respect to MathML , the validation is important , since
MathML uses many symbolic names like ±, and also there are some rules specifying how elements
can be nested. E.g., the parser should generate an error if an <mn> element contains data other than plain text (no
inner elements allowed in token elements, such as <mn>, <mi>, <mo>, etc.).

3. The parser must work reasonably fast. We cannot make our readers wait too much before the document is fully
loaded and rendered on the screen .

Many XML parsers already exist. For the first experiments, we started with the DOM (Document Object Model)
parser that comes with PHP 4 .1.1 [30] The parser worked very fast, but had a significant drawback : it did not do the
DTD-validation properly. Although we used the XML parser from PHP only for test purposes , its use gave us an
insight on how the DOM structures are organized and how they could be used in programs. As expected , it turned
out that the procedures for traversing DOM trees all have almost the same architecture , no matter what programming
language is used.

Another reason to start with PHP was to quickly create an application which would be capable of parsing documents
containing MathML and displaying math terms on the screen . The emphasis was on the XML parsing , and the screen
layout of math terms was done by table elements (<TABLE> tags of HTML) nested and styled appropriately , so that
the documents could be viewed in a web-browser. This approach could help us relay the task of elements' layout to
the HTML rendering engine of a web-browser . Although the formula layout done in this way was not perfect (e.g. , it
did not do display of stretchy characters - the characters such as big parentheses, or long fraction lines) , it was a
good "test of concept " , and formulated the requirements which a parser for MathML must meet. The screenshots of
the application is shown on Figure 8-a. Figure 8-b shows the borders of the nested tables used to lay out the math
expression.

·~~·l.'#tl!lffllll\Nr.i:iftfll.lt. tffiill!l· l•:i:l#ilti· ~~ •• ·=· lmAi@il,l'.IJIE!ltfi~!@;;J.· ilit!:il;mt~d~:· ~-;.,;, ;;;;;:::;::::;;::::~,:.:: •P•-- ~~
,j E.fo I;.dit YJew f&v°'tcs Iools ijclp

I A!!&•» l!l htlp://«>JQ><,nom,org/020208/ln•lhOl ,p/-,p 1... .. .

x 2 + 4x + 12 = 0

The ro ot:; of the abo ve equati on con be computed using
th e foll owing general formu la (source file m00 3.xml):

2a

[r i !lb lntemet

a)

.J,

X =

Figure 8. Simple "box " renderin g ofMathML.

b)

We have to mention other XML parser s we came across doing our experiments with displaying mathematics in a
web-browser.

13

)

)

)

There are two built-in DOM XML parsers in MS Internet Explorer 5+, Microsoft.XMLDOM and
Msxml2.DOMDocument. Both work as ActiveX objects in JavaScript. The parsers work reasonably fast but again ,
do not do DTD validation appropriately . Also, they work only in MSIE 5+ and only on Win32 platform.

The Apache Software Foundation [7] has an initiative - The Apache XML Project [8] - that works on the tool s for
XML processing. Xerces Java XML parser is one of them. The software is written in Java and distributed freely un­
der the Apache Software License . Xerces parsers are distributed as Java archive (* .jar) files; their source code is
also available for download at http://xml.apache.org /dist/xerces-j / . The parsers are highly configurable, and they
have a well-documented Application Program Interface (API).

First experiments with the parsers showed that the Xerces XML DOM parser was very good at validating XML
documents against DTDs , although the parsing was done slower than that with the parser from PHP.

The PHP application described earlier was re-written to a JSP (Java Server Pages [18]) application . The program did
the same processing of XML document with resolving correctly all the entities defined in the DTD of MathML.
However , the program worked much slower, and the speed of parsing seemed to be not very much dependent on the
size of the document. Later experiments, in which we used the same parser in Java application, showed the same
unsatisfying result. One of the reasons is that MathML has a relatively complex grammar (mathml2. dtd plus 23 files
with entity definitions) , whose parsing takes about 1- 3 seconds. The situation can be improved if we pre-parse the
grammar at the time of MathML rendering engine initialization, and then use the "binary " representation of the
grammar in the process of parsing the document. The possibility of such pre-processin g is provided in the Xerce s
parser interface , but it is documented somewhat vaguely, which by now has prevented us from creating a reliable and
efficient implementation of the grammar pre-parser.

DOM parsers create complete tree of DOM objects, which afterwards can be used to do the nece ssary manipulations
on the document. Such manipulation s may include not only reading the document ' s content, but also changing its
structure . With such design , DOM parsers are more time- and resource-consuming (parsing process is full of mem­
ory allocations for the DOM tree nodes, and after parsing the whole DOM tree must be kept in memory) , however,
experiments with Xerces parser showed that DOM parser is almost as fast as an event-driven SAX (Simple AP! for
XML) parser with the same functionality . The possibility to change document's structure might be necessary for
creation of interactive MathML documents , or providing interactivity to existing document s.

The PHP and JSP application have been run on an Apache HTTP-server with PHP4.1. l. and Tomcat 4 JSP Serv­
let/JSP [33] running on Windows 2000 machine in NACSE (http: //cougar.nacse .org/).

MathView Objects Hierarchy

Initially, we were creating our own hierarchical objects for displaying math terms. However , it turned out that Java
classes already had appropriate structures for building the hierarchy - the Container-Component hierarchy (Java
classes Component and Container , j ava. awt package) , which fit nicely to the concept of "terminal " and "non­
terminal" elements of math terms . The terminal elements are identifiers, numbers, operators and pl ain text encoded
in MathML by the tags <mi>, <mn>, <mo>, <plus/>, <minus/> and <text>. Non-terminal elements are all other
markup elements that are used to represent displayable objects (e .g., elements sub/superscripts , encoding fraction s,
etc .). Non-displayable elements (such as <style> or <maction>) are processed in such a way that they become at­
tributes of displayable elements , or they are represented in auxiliary data structure s respon sible for dynamic features.

Every math expression encoded in MathML can be naturally thought of as tree structure . Each node in the tree corre­
sponds to a particular layout schema, and its branches or child nodes correspond to its subexpressions. This structure
nicely fits into the Container-Component hierarchy. The hierarchy of MathView objects descending from the
java.awt.Container class is shown on Figure 9.

14

)

)

java .awt.Container
A generic AWf container object class

LMa thView
abstract class for Math layout objects

[---------------- MathGroup
abstract class to group many Math elements in one

Math Token
abstract class for Math symbolsftext

t StretchySymbol
a special stretchy character

NormalSymbol
alphabet character or special math symbol

Math Identifier
identifier

MathNumber
number

M athOperator
operator, fence, or separator

MathText
text

MathSpace
space

MathString
string literal

MathGlyph
adding new character glyphs

MathRow
group any number of sub-expressions horizontally

Math Fenced
surround content \'\'ith a pair of fences

MathFrac
form a fraction of two sub-expressions

MathSqrt
form a square root (radical 'Nithout an index)

MathRoot
form a radical with specified index

MathSub
attach a subscript to a base

MathSup
attach a superscript to a base

MathSubSup
attach a sub/super-script pair to a base

MathUnder
attach an underscript to a base

MathOver
attach an overscript to a base

MathUnderOver
attach an under/over-script pair to a base

MathMultiScripts
attach prescripts and tensor indices to a base

Figure 9. Hierarch y ofMathView objects (fragment) .

The hierarchy of displ ayable math objects is built after the parser creates the DOM tre e. The DOM tre e is traversed
from the root node up to the every leaf (a terminal token element), and all math object s are created along the way. A
small observation: the internal hierarchical structure of multiply-nested math elements is invariant for font-style,
color , and many other properties defining the appearance of the element on the screen. So, the buildin g of the hierar­
chy of the math terms , which require s many operations with the dynamic memory allocation (object creation and
initiali zation) which are relatively time-consuming, is done only once. The arrangement and resizing of the elements
according to the new font style/size/color is done when the math expression is about to be redrawn on the screen.
During the arrangement stage, the tree of math objects is traversed recur sively, and layout rules are applied to every
e lement. The layout rules for math formu las are specified in every detail in Appendix G of Knuth's TEX book [19] .

Since the procedure of arranging the components deals (mostly) with arithmetic operations and doe s almost no
memory allocations, the arrangement is done very quickly .

Glyph Rendering

However , the arrangement of math terms is not that simple , as it could be thou ght of at a g lance . The princip al prob ­
lem is that we cannot consider every math term only as a rectan gular object (as we did in the first experiments with
PHP /JSP applica tio ns, when we used nested tabl es). For a profe ssional-lookin g layout of math term s the layout pro­
cedures must always take into account the contents of the terms. Fortunately, Java prov ides all nece ssa ry classes and
interfaces for access to and manipulations of font properties. For example, Figur e 10 shows the placement of the
math terms with (a) and without (b) taking into account their contents. As we can see , information about the contents
(e.g., the advance property of the text string in a math token) is very important for proper placement of the charac­
ters.

15

)

rt~1#ffl1b;11 wttt MfAt@tt!«~~lntF~~r ·· MathML Formula Y-iewer (2:\ptli)ect! . .JQJ25.J
File View Fife View

a) Content-dependent layout. b) Simple "box" layout.

Figure 10. Layout of math terms (variables).

Another big issue arises from the fact that MathML has relatively small number of lexical constructs , which are to be
used to represent a large variety of mathematical terms. As a result, the same constructs must be rendered differently ,
depending on the contents they have . For example, the same MathML element <munder> can be used both for encod­
ing limits and summations (Figure 11 shows the source MathML code and how it is rendered in these two cases). In
the former case the size of the font used for the token "Jim" is the same as the font size for the element on this level
of nesting and the baseline of "Jim" is the same as the baseline of the whole expression, whereas in the latter case the
summation symbol must be made about 150% of the default font size, and the centerline of the symbol must be
aligned with the centerline of the following expression. Lots of other similar exceptions documented in [24] must be
processed by a MathML rendering engine.

l:t.4AM!ti@lii·ii,,l'·b?i§fl3JQffllffl~~-~!Ul-:ir
Filo V"re.w

<math>
<mrow>

<munder>
<mo>lim</mo>
<mrow>

<mi>n</mi>
<mo>→</mo>
<mo>∞</mo>

</mrow>
</munder>
<msqrt>

</msqrt>
</mrow>

</math>

.JQJ25.J

a) The baseline of " lim" operator is aligned
with the baseline of the whole expression.

1~1@ffiib31i@tffitib'l!ail'i ffi!Affiffl.~\1'il~'~~~ri~u
f1Jt• Vit.'W

<math>
<mrow>

<munder>
<mo>∑</mo>
<mrow>

<mo>∀</mo>
<mi>x</mi>

</mrow>
</munder>
<msqrt>

</msqrt>
</mrow>

</math>

.JQJ25.J

b) The summ ation operator symbol is aligned accor­
ding to the center line of the whole expre ss ion .

Figure I 1. Con tent-dependent layout of math operator s.

16

)

Symbol Output

Since we are dealing with mathematical expressions, many special characters are to be used. Java SDK has a number
of classes and interfaces to work with non-standard glyphs. The principal problem is that ordinary procedures for
font output cannot be used in the task on output of special characters (Greek or "fractur" symbols, stretchy symbols,
etc.) Due to the "platform-independecy", Java graphic text output capabilities are very limited, and special proce­
dures must be used for non-standard font output. In this project, all symbol output is done using the classes operating
with glyph and glyph vectors, which allows the user to see the symbols on the screen exactly as they are in the font
files, not dependent on the current language settings of the system. For ordinary symbols from the first part of ASCII
table this approach might seem too complicated, but this is the only way to put out stretchy characters such as big
parentheses , brackets, or root symbols.

The general scenario of symbol output is as the following :

The MathView object is initialized with a certain contents - a string of Unicode characters. Before the drawing pro­
cedure is called, all MathView objects must be resized and laid out according to the current font size. The arrange­
ment is done in the virtual procedure arrange() . For token objects (descendants from MathToken class) this proce­
dure works with the glyphs representing the symbols, and for the non-terminal objects the procedure does the appro­
priate positioning of insider objects. In Both cases arrange() determines the new screen size of the MathView objects
in the current graphics context.

For token objects the procedure arrange() takes the Unicode string, " looks" what characters are in it, creates a cor­
responding glyph vector, which is used to determine some font-related properties (e .g., baseline, advance, centerline,
etc.). The glyph vector is then transformed to a Shape object, using which the procedure determines the visual sizes
of the string, which are used to set the size of the MathView object itself. In non-terminal objects arrange() applies
positioning rules depending on what class this object is an instance of.

If a Unicode string contains characters which must be taken from different fonts, the use of glyph vectors and their
transformation to Shape objects is necessary, since it allows us to do a much nicer layout. Figure 12 shows the sam­
ple string containing a mix of Latin and Greek characters. When all characters are taken from the same font, some
symbols might "drop" being rendered as empty rectangles (Figure 12-a). Using our approach with glyph output , all
characters are rendered appropriately (Figure 12-b). Although it is very unlikely that a math variable encoded in a
single MathML tag would contain a mix of characters, such approach makes the symbol output procedure universal.

(1-;,j¢ffi!HA1ii>li,,Ui&ttffi4tliftffi·8V~W11J~~1/U 1~~1rnrn@ili·hti\'iit#Mii®ffi~1~1};1n'.'-y~~1~';;,~1~: !-=-1Q12,j
f je View File View

aOcOd aj3cyd

a) All glyphs are taken from the same font b) Each glyphs is taken from an appropriate font.

Figure 12. Rendering of a Unicode string containing a mix of Latin and Greek characters

Shape-based output might create a small problem with the output of characters when the font size is small (e.g.,
I Opt). Most probably, this is the result of the double-to-integer approximation when the double-precision coordinates
of the Shape are cast to the integer coordinates of the output graphics context (see Figure 13-a). The problem is still
actual for the font sizes which are much bigger: the characters look ugly even when the font size is 14 ... 16 pt, the
size which is usually used in many document browsing tools. Enabling antialiasing in the rendering context solved
the problem. Now even very small characters do not lose their pixels . The approximation is done by adding some J grayscale pixels to the output image (Figure 13-b)

17

)

)

---=·-­.,l\•

1 -
a) No antialiasing

.'i1. ,.l, -·;; '" 11 ;,.~ ,,, ., "'

b) Antialiasing is on.

Figure 13. Use of antialiasing in glyph output.

Stretchy Characters

Stretchy characters are composed of several (1, 2, 3, or 4) parts. They usually have some "terminal" parts which are
"glued" together with "extenders". Figure 14 shows examples of such characters. The procedure of output of these
characters is very similar to that of normal symbols, except that with the stretchy characters the size of the symbols is
known before the symbol is "arranged" and drawn on the screen. When the size is pre-defined , what is left for the
drawing procedure is to arrange the "terminal" elements of the character and "glue" them with extender parts
stretched appropriately. The stretching is usually done by putting as many extenders as needed next to each other (or
one on top of the other) to achieve the desired size. In this project , however, we use another approach: the extenders
are stretched by applying affine transformations to them. This allows us to make the whole character be precisely the
size it needs to be. With simple repetition of extender parts such precision is generally impossible to achieve .

extender glyphs

)
Figure 14. Stretchy characters.

"(fi:1;mfa#1#$#61&¥1tat\mrt1mnfo1tD;_~;~,:'. _dQJ29
: Fk 'View

1

~/'

1,
3

a) Stretching is done by repet1t10n of the extender
glyph. Notice the inappropriate alignment of the center
part of the left brace and a cut-off of its bottom part.

t-i#MIMliittffim!i?§ffiifatiEmI't'~~l~rS.!t=-~.L·= ·..d.QJ~
H~ Vi!!w

(

I

b) Stretching is done by stretching the extender
glyph using affine transformations of the shape .
The alignment and the size of the brace is preci se.

Picture 15. Two ways of stretching the character s.

18

)

)

The output of stretchy characters is very complicated. Thanks to Yuemei Sun who did a great job of writing the gen­
eral procedures for stretchy symbols output, based on which I wrote the subroutines that are now used in this project.

Object Activation

The principal reason why we started designing our own rendering engine is that no MathML renderers that we could
find had any interactive features. At least, there were no documented API for creation of interactive formulas. At a
glance, the MathML rendering software we developed might seem to have no difference from similar software al­
ready existing. However, we had to design our own rendering engine for the future tasks of making math content in
on-line documents be dynamic and interactive.

Had the ultimate purpose of the program been only to display the formulas, the complex hierarchy of Ma th View ob­
jects would not have been needed . But for the purposes of making the math display dynamic it was necessary to have
every math term be accessible in some way after the math expression is drawn on the screen. This is because we de­
scend the class hierarchy of our objects from Java's Component-Container classes. Those classes can be easily ex­
tended to support handling of mouse events, and they provide us with possibility to access each component (math
term) independently: every math term (terminal or non-terminal) can be re-drawn/hidden/shown/moved arbitrarily
when needed.

The activation API of the math terms include methods for firing activation events in response to user's actions. In
our first design we do the synchronous highlights of related math terms: when a mouse pointer is moved over a math
term, the term is highlighted (changes color, or draws itself in a thin frame) and all or some related terms are also
highlighted .

Every math term that needs to be identified is assigned a cross-reference identifier (xref parameter in the correspond­
ing MathML tag). When the source document is parsed , the rendering engine creates additional data structures to
store the information about all objects identified with xref

For the purposes of synchronous highlight , we accept a simple model of a directed activation graph: an object may
activate other objects, if there are directed arcs from a node representing that object to nodes representing the objects
that must be activated synchronously with it (Figure 16).

Cl Source expression

--.lm ,..

I Standard formula I

r- a r .)
Resulting expression ····· ~ m I \ r · r ~------~ r· , ...

Figure 16. Activation Graph (fragment).

By doing in this way we can, e.g., highlight some variable in an equation, and (synchronously with that) highlight the
corresponding fragment in the surrounding text containing, e.g., description of the variable or some other expression
(Figure 17, Figure 18-c). Also, considering activation chains as a directed graph, we can assign certain properties to
its edges, thus providing information about the semantics of the links between the terms. Such information might
appear as callouts , or show up in the status bar of the window that displays the document.

19

)

)

J

~Claulcal Medtaolcs A Modem Pers:pedtve, Cha(ltcr+1.'.fl t;

1.2. INTERA CTIONS

The gra,.itation.'1.1 ;ind electromagnetic forces deu::nnine oor tv-hc,\e r.onditlon of life. Newton
dediJced the folk,wing force law for gravitation by H1d-;ing data phenomenok,gically fitted by
Kepler on 1he motion of plane ls and satellites in ◊Ur solar system.

(1-4)

[q. 1-4. G1<'ivil&!ict1 [,aw

~; ·"t-;;:c·e··betwe·e;~"fl)·~s·se•s·i{l 'M<i i~·;;··p~~POrtional to the squ·Me -~·r,he <.ti;t;~C~"b'er.~ee;i"ti;em·.1
Tile negativl! sign in lliLU..:1l <lenotes an attractive force bet:\veen the masses. Ne\\-rton prop◊se<l
that this gravitational law was: univr.:rt.al. the saiM force apr,lying 0 1) the earth as betnreen cclr.stial
bodies. The universality .;.f gravitatiemal law r.an be verified. and the proportionality constant G
detennmed. by delicate e:.-tperimental measurements of the force between masses in the laboratory. ..:J

fID""""'''"""''"I .,.,..,&; r r·1 ·-r!jl 1.1,;;;;,--·-----1

a)

~Clanlcal Mechanlts. A Modern Peri;pedive.Chaptei<l' "'

1.2. INTERACTIONS

'[ne £f&Vitationa1 and electromag,nebc forces <letennine our whole con<liti◊n of life.] ,:Jewihn

deduced the following force la•,v for gra,.,tahon by sudying <la.ta phenomenologically fitted by
Kepler on the motion <:>fplanets and i:atelliles in our solar system.

Tilc force betwee1\ masses Ji11 and Ji12 is proportional. to the sqoare of the distance between them.

~~:-~~i~~Y,~~:~~-:~.~9::{F~L~h~~~~L~ ·:\ttfac·tiv;;· forc~--b~t:\ve;,~· ih~·~~~~ses. i',Ti!wt◊n pt<>rosed
that this gravitational law was univemil, the same forr.e applyu1g ◊n the r,nnh as between celestial
bo<lies. The universality of gr,wit..,rional lmv can be verified, and the yrnportionalit'",' u,nstant G
detem1ined, by dehc.'l.te e;,,'J)enmental measurements of the force between masses in the laboratwy. .::J

4ij·.;;-,.., ,.;r.,.,,~----· ---·---· ·----r- r-i-·:~ """.;;- /4

b)

Figure 17. Synchronous highlight of math terms and their explanations.

In the current design every math term that can be activated has an identifier. Also, every term has a list of "child "
elements that are prone to activation when their parent is activated . Encoding of such a construct can be done by add ­
ing to MathML tags attribute children whose value can be a set of id's of other math terms separated by commas
(thus forming a sort of adjacency list,. However, this is not a proper solution since it adds to MathML tags new non­
standard attributes not documented in W3C's MathML recommendation. Instead, the source document should have
separate sections that would encode the behavior of the identified math terms.

Transition Encoding/Rendering

A similar graph model is used in the encoding of transitions . At present, transition s are encoded as an XML element
with two sub-elements describing two states, s0 and SJ - before and after the transition , and additional sub-elements
used for indication what math object from state s0 becomes what in state SJ. For the encoding of the states and estab­
lishing links between related objects we use cross-reference identifiers of the math objects in the document.

Such design gives us certain freedom in choosing how the transitions will be rendered. At this point in time we con­
sider showing the transitions step-by-step (two states at a time with corresponding math elements highlighted and/or
connected by arrows, see Figure 4), but in future we can use animations in addition to highlights in order to show
how one math artifact becomes another, should this technique prove to result in a better user' s satisfaction .

Since the activation chains and transition s are modeled as digraph s, their encoding can simply follow the XML rules
for encoding graphs [15] .

20

MATHML FORMULA VIEWER

·) Currently, the MathML rendering engine is implemented as a part of a MathML formula viewer - a Java applica­
tion which allows loading math expressions encoded in MathML and viewing them with different default font sizes
(Figure 18 - a, b). When the mouse pointer is moved over certain math terms, those terms and other terms related to
them are synchronously highlighted (Figure 18-c).

)

The same Java classes can be used in creating applets to include mathematics on web-pages (Figure 17) .

• ,J.!;;]Jj{j
File View

File name; jm0~6.1anl .Qpen

File, of];'po. jAI Files {". ") 3 Cane.el

a) Loading a MathML file for viewing .

'; . ..,,

Show bounds:

10pl

12pl

14pt

18pt

b2
F========,

an\6)a 2 + b2

tan(6)a 2 }··········

,,r = --;::::::==========
✓ tan2(&)a2 + b2 .

20pi

241~

Ui :;:
46pt

OOpt

72pi

100pt

120pt

150pt

b) Changing default font size.

· t~t~@ffl!b314·;;;;;Jii:tN:;1Lihi4miAw~in1:--::~:~.~---:.,.::·.•:· .
File View

dv
dt

~

dvi¢r
dt:dtl

dv
'))-

clx

.,JQ.lj{j

c) Showing dependencies by synchronou s highlight of the related math term s.

Figure 18. MathML formula viewer application.

21

FUTURE WORK

) The MathML rendering software we have developed is not yet perfect. There are still many issues which need further
consideration and implementation .

)

_)

1. We need to implement rendering of all MathML constructs (all elements , all attributes , style rendering). Although
providing support for additional MathML tags is rather a mechanical job of writing appropriate class definitions
and overriding their arrange () subroutine, implementation of style rendering is not that simple . MathML rec­
ommendation suggests using Cascading Style Sheet (CSS) technology [11] in MathML documents. For us this
means that in order to provide full support for styles in MathML we will have to use an appropriate (non-XML)
parser to validate and parse the values of style attribute.

2. The MathML rendering engine will probably need to have an interface to serve as a MathML authoring tool. One
of the useful feature we can think of is that the software provides possibility for drag-and-drop operations which
can be used to move equations from one display frame to another (Figure 19). For authoring of the static math
content we can use existing software tools like Amaya [5] or MathType [25], but new dynamic featmes we are
going to introduce will require the math editor software to have additional editing capabi lities corresponding to
the display capabilities of our rendering engine. Also, in the task of authoring of the documents with interactive
and dynamic content the authors will have to carefully consider syntactic aspects of the math presentations . In
addition to providing nice layout of math expressions, the authors will have to ensure that their formulas and
equations have appropriate internal structure with all terms properly annotated and no links broken. The author ­
ing tool must be able to automatically check internal integrity of the documents being created.

►!.itwttiFM@D•Ji.· · · lwl
fj<! l;;dl: i~i f-)-m.:t.ts 1~ tltb

·==, ·:=,,:::::::::,,:::~,,:::·,:::::,::,:::,:: ·:::::c:,:,: """"'=""''""""""'"" '''""''""·'' . J
The solution in Eq.(4-46) for the 01bit of a pmticle in au iuverse-sr uare force 7
field can be obtained in an elegm1t nlte.rm,tive nrnnner
teduuques . The equation of motion of a particle of mass 111 in
defined by Eqf -J-39)is

. I'
1•=-1:13

r

\V,c tnke the cross product of both sides ofEq/4-5 6} wi th L.

From the explicit form
1. = w1•xi ·

Figure 19. Authoring the Formula Derivation Wizard (prototype).

3. At some point in time we might be considering working with math knowledge repositories . To work with math
content we will need to use efficient algorithms for rendering content markup (e.g., OpenMath or MathML) . Al­
though the user-interface features we are working with are primarily related to how the information is presented,
in our project the presentation is tightly connected with the underlying mathematical content of the documents.

4 . Up to now we did not concentrate too much on the efficiency issues. However, the time has come to start think­
ing of how to optimize the current implementation of our MathML parser. So far, the parsing time is unaccepta­
bly long. The procedures creating internal tree ofMathView objects are also need to be optimized to reduce the
amount of time required for their creation and initialization .

22

References
I . ACM Digital Library . [on-line] http ://www.ac m.org /dl/

2. Abbott , J., Diaz, A., Sutor, R.S. A report on OpenMath : a protocol for the exchange of mathematical informa-
tion . In ACM SIGSAM Bulletin, Vol.30 , No.I , pp . 21- 24, 1996.

3. Algebra Interactive! [on-line] http: //www.win.tue.nl/ ~ ida/home.html

4. ALGED - Algebra Editor, Software (DOS) . http: //www.geocities.com /pari s/6502/a lged35

5. Amaya. W3C's Open Source Editor /Browser. http: //www.w3c .org/Amaya /

6. Andres, E., Melis, E., et al. ActiveMath: System Description . Artificial Intelligence in Education 2001.

7. Apache Software Foundation , The . [on-line] http ://apache .org/

8. Apache XML Project , The. [on-line] http: //xml.apache.org /

9 . Barger , V., Olsson, M. , Classical Mechanics . A Modern Perspective. McGraw-Hill , Inc .

10. Bell , J.E., Doppelt , A.M., Hughes , J.F. Developing an Interactive Illustration : Using Java and the Web to Make
It Wo1thwhile. Proceedings of3D and Multimedia on the Internet , WWW and Networks , 1996.

I I. Cascading Style Sheets, Level 2. W3C Recommendation. [on-line] http: //www .w3.org /TR/REC-CSS2 /

12. ComputerMentor (Win32). Availab le at http ://www.computermentor.da.ru /

I 3. Exploratory Project. Department of Computer Science , Brown University. http: //www.cs.brown .edu/exploratory /

14. FORMULA (DOS). Available at http ://www .exponenta.ru /soft/others /formula /fonnula.asp

I 5. GXL , Graph eXchange Language. [on-line] http: //www.gupro.de /GXL/

16. Hypertextual Electronic Library of Mathematics. [on-line] http: //www.cs.unibo.it /helm/

17. IBM Techexplorer Hypermedia Browser. [on-line] http ://www-3 .ibm.com/software /network /techexplorer /

18. JSP (web-scripting technology). [on-line] http ://java.sun .com/products /jsp/

) 19. Knuth , D.E. , The TEXbook. Addison-Wesley Publishing Co., 1984. - ISBN: 0201134489 .

20. Live Pictures for problems on Plain Geometry [on-line] http ://zadachi.mccme.ru :8 l O 1/njava/

21 . Maple . Waterloo Maple, Inc. [on-line] http: //www.maplesoft.com /products /Maple8 /index .shtml

22. Mathematica. Wolfram Research Inc. [on-line] http: //www.wolfram.com /

23. Mathematical Discussion System. [2000]. [on-line] http: //sourceforge.net /projects /mds/

24. MathML. W3C Recommendation . http ://www.w3.org/Math /

25. MathType . [on-line] http: //www.mathtype.com /

26. Matlab . The Math Works, Inc. [on-line] http ://www.mathworks.com /

27. Mozilla Open Source Web Browser. [on-line] http: //www.mozilla.org /

28. Multimedia Tools for Communicating Mathematics. Springer Verlag, 2002 - ISBN: 3540424504 .

29. Padovani L. A Stand-Alone Rendering Engine for MathML. MathML Conference, 2002. [on-line]
http ://www.mathmlconference.org /2002 /presentations /padovani /

30. PHP (web-scripting technology) . [on-line] http: //www.php.net /

31. Project Mathematics! [on-line] http: //www.projectmathematics.com /

32. Simpson, R.M., Spalter A.M. , van Dam, A. Exploratories: An Educational Strategy for the 21st Century, in Pro-
ceedings of ACM SIGCSE '99, 1999.

33. Tomcat 4 Servlet/JSP . The Apache Jakarta Project. [on-line] http: // jakmta.apache.org /tomcat /

34. Tufte, E.R. Envisioning Information. 7'" Ed. Graphics Press, 1999.

3 5. Tufte, E.R. The Visual Display of Quantitative Information. 2ml Ed. Graphics Press , 2001.

36 . WebEQ /Math Player. Design Science, Inc. [on-line] http: //www.dessci.com /webmath /

37. XHTML , The Extensible Hypertext Markup Language. [on-line] http ://www.w3.o rg/TR/xhtmll/

23

