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Current approaches to presentation of mathematics (on paper or in electronic format) have usability drawbacks that 
make learning and appreciation of mathematics challenging and often frustrating. In a framework of a big research 
project of identifying new approaches to communicating mathematical ideas in a highly usable and effective manner , 
we are building prototype software toolkits displaying documents with math content in various comprehensive ways. 
For the encoding of mathematics we use MathML, a standard XML-based markup language allowing specification 
of both facade and underlying semantic content of mathematical presentations , as well as providing certain possibili­
ties for dynamics and interactivity in communication of math. The Java implementation of a MathML rendering en­
gine which we use in our prototypes is the topic of the current project. 
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) Chapter 1. INTRODUCTION 

j 

MOTIVATION 

In this section we are giving the readers a general perspective on the problems we are dealing with in the framework 
of our big project on Math Visualization. 

Why Bother? 

Comprehending complex mathematics presents a frustrating challenge for many of us. Although mathematics fol­
lows well-defined and logical rules , there are enormous numbers of those rules that we must understand in order to 
comprehend much of today's mathematics . To communicate mathematics, we must proces s a symbolic language that 
can sometimes be very complex. Even as scientists with strong mathematics backgrounds , many of us find that we 
do not have the patience or the time to spend on processing the current complex mathematical explanations that we 
find in journal articles. 

We can gain a lot of insight by examining mathematical presentations in documents (paper or electronic) from a us­
ability perspective . For example, journal articles and textbooks often present enormously long chains of formulaic 
derivations spread over many pages of text (e.g. equation I.I, 1.2, ... , 1.56 ... ), yet, most ofus are unable to clearly 
remember the equations ( or the transitions between them) of more than one or two steps the first time that we see 
them. To understand a derivation, we are thus forced to frequently refer back and forth between different pages to 
refresh our memory of the derivation . Such a process is tedious , time-consuming, and distracting (resulting in losing 
your place in the document). 

Consider consistency - an important facet of good user interface design . Upon reviewing both textbooks and jour­
nal articles, we find different symbols being used for the same mathematical concept. Perhaps worse, we also find 
the same symbol being used for multiple different concepts in different papers. These variations in the mapping be­
tween symbols and concepts can be exceptionally confusing and frustrating to the reader. 

At the core of usability engineering is identification of the user interface's target users and their need s. With tradi­
tional non-dynamic presentations of mathematics, such as those in journals and textbooks, authors must identify 
(sometimes implicitly) the mathematical sophistication of their target audience, and provide explanations in suffi­
cient detail for the target audience. For textbooks , the sophistication assumed depends on the level of students tar­
geted, and for journal articles, the author often assumes that the readers will have the same mathematical sophistica­
tion as the author. Given these assumptions, many appropriate details may be omitted. For example, how often have 
you seen statements like " ... and here we use the standard formula for finding the roots ... " without actually showing 
the formula itself, but only displaying the result of its application? Or we might see statements like "The author as­
sumes that readers have at least [some level] of knowledge in [some math domain}." 

A problem arises in that not all readers have the appropriate level of expertise or sophisticat ion assumed by the au­
thors. The reader may not know what "the standard formula for finding the roots " is or may not have the appropriate 
level of knowledge in the specified math domain. For example, a usability expert working with intelligent user inter­
faces may need to read journal articles about machine learning without having the same mathematical back ground as 
a researcher in machine learning . With static presentations that are created once and then distributed to all, this can­
not be helped . At the other extreme we might have a situation where the author tries to make the math content of the 
document be easily understood by a large audience, thus making the whole presentation of ideas unnece ssarily long 
and irritating for people with extensive knowledge of math. However, when presenting math using a medium that 
supports interaction, such as a personal computer or a personal digital assistant, we can build a presentation of 
mathematics that adapts to the needs of each individual reader. 

The time has come to design , develop , and integrate new approaches to presenting mathematics into our current 
means for transmitting mathematical knowledge in journal articles and textbook s. Several important factors have 
developed in support of this endeavor. We are seeing most journals provide all of their articles in an electronic form. 
The most notable example of this is the ACM Digital Library [1 ]. Electronic textbook s ( or electronic accompani­
ments to traditional textbooks) are being developed. Thus the channels exist for the continued distribution of mathe­
matical communications in digital form. In support of standardized and structured encoding of mathematics , a recent 
standard called MathML [24] has emerged that has been accepted by all major vendors of mathematical software. 
Software already exists to author and display equations in MathML, including stand-alone widgets such as WebEQ 
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or MathPlayer [36], MathML authoring tools such as MathType [25] and IBM Techexplorer [17], and full web­
browsing applications with native support of MathML such as Amaya [5] and Mozilla [27]. What remains is to iden­
tify the ways in which mathematics can be presented in a highly usable, intelligent, and adaptive fashion, while at the 
same time maintaining compatibility with existing means of presentation and display. 

Integration With Document Standards 

Given that we are unlikely to see publishers change their mode of distributing electronic documents, one challenge is 
to identify how to integrate dynamic math into existing digital document formats, most notably Adobe PDF and 
HTML. We believe that these challenges can be addressed, as Adobe Acrobat and all popular HTML browsers sup­
port plug-ins to extend their functionality. Such plug-ins could provide alternative viewing capability for documents 
containing embedded dynamic mathematics presentations. However, we do not address those challenges in this pro­
ject report. Rather we focus on identifying how to present math in a more usable, dynamic, and an adaptive fashion. 

Three Usability Issues 

Now we summarize the problems which readers of math documents usually experience, and which we believe could 
be solved with a more interactive and intelligent interface. 

1. Inability to view, compare, and contrast related mathematical artifacts within a single field of vision due to limita­
tions of print/display medium. 

• The common way to reference equations in documents (numbers, hyperlinks) helps to save document space 
and ensures its consistency and integrity, but working in such an enviromnent is inconvenient and error-prone 
for readers, since locating necessary piece of information in the text takes additional actions - switching be­
tween pages back and forth. 

• When a chain of related equations goes through many pages, comparing the equations to one another is diffi­
cult, since it, again, takes additional actions to switch between pages and increased concentration of mind to 
keep in memory much information about the equations previously viewed. 

• In many cases the separation of math artifacts and their textual explanations may cause difficulties in under­
standing of the mathematical ideas. Authors are ahnost free in naming the variables or arranging math terms in 
expressions in any way they find appropriate or convenient in the course of their presentations. Because of that 
even very common formulas might look quite unfamiliar to readers, who thus will be forced to seek for textual 
explanations in the surrounding text, which means that readers will have to put additional effort in and spend 
additional time on comprehending the presentation. 

• In some cases the notation used in general formulas is similar to that the author uses in his/her derivations (e.g., 
the author may use variable x, and the formula also uses x, but, generally speaking, these two x's describe 
completely different concepts), and the reader must always be warned about such a trap. 

2. Mathematical explanations do not provide the right amount of detail for all potential readers. Something that is 
unclear is very hard to follow; clarity is the key to understanding. 

• Whether the explanations are clear or not depends on readers' level of preparation. Novice readers want to see 
all derivation steps and extended explanations of every transition, whereas expert readers want the explanations 
be brief, very high-level. It is desirable to make the document's level of sophistication be dynamically tailored 
for every particular reader. 

• There is always a trade-off between conciseness and detail in documents containing mathematical presenta­
tions. Making the presentation concise saves document space, reduces its creation time, and speeds up reading, 
particularly, for expert users. In contrast, providing math explanations in many details supports non-expert us­
ers, and ensures that ideas are not misunderstood. 

• To some extent any math document can be considered as a presentation in a mix of two languages: natural lan­
guage and the language of math formulas. To be precise, the whole presentation usually follows the rules of a 
natural language, where math terms appear as nouns (playing roles of subjects or objects), with verbs and 
modifiers being taken from natural language. All educated readers understand the symbolic language of math 
formulas, since this language is almost universal. However, the readers might not be that much fluent in the 
language of the document, and this may result in misinterpretation of ideas. Even if the reader is perfectly pro-
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ficient in the language of the document, textual explanations are slower to comprehend than their visual 
counterparts [34, 35] 

3. Sometimes notation being used varies from author to author, from document to document. 

• In case if one document contains references to equations in another document differences in notation might be 
very much misleading . 

The next section describes related work, followed by a description of our vision of a new approach to presentation of 
mathematics . 

RELATED WORK 

We have to emphasize that we were not aiming to develop another tool for symbolic formula derivation. There are 
many successful applications for symbolic math [21, 22, 26]. Also, we are not going to develop a new format for 
representation of mathematical knowledge, like OpenMath [2]. However, in our project we do not exclude the possi­
bility to use the aforementioned tools and formats for doing actual formula derivations , format conversion, and math 
knowledge replesentation. 

Probably, the most popular and very useful technique that electronic document format makes possible to exploit is 
interactive illustrations. Interactive illustrations became very popular in teaching. They have long been studied and 
proved to be successful [13, 32]. The idea of interactive illustration , basically, is to allow readers not only passively 
observe the illustration material (picture , graph, diagram, etc.), but also be able to "play" with it, by rearranging ob­
jects on the illustration , modifying parameters (in case if the illustration shows diagrams , curves , surfaces, or just 
tables of numbers), and immediately seeing the effects of such modifications. E.g., in [20], in the set of problem s on 
plain geometry the users can modify pictures (stretch/ shrink circles and/or triangles, move intersection points, etc.) 
and see that the properties of geometric shapes that need to be proven remain the same for an arbitrary configuration 
of the shape conforming certain initial conditions. 

To some extent, fragments of mathematics in a document can be considered as illustrations to the ideas presented in 
the surrounding text (the converse is also true) . Still, application of the ideas of interactive illustrations to symbolic 
mathematics has not become widespread. 

To enliven their presentations authors may develop small computer applications (which are sometimes interactive , as 
in [20]), create animations , or record short video fragments, thus providing animated visualizations for their docu­
ments/presentations . "Project Mathematics! " [30] by Tom M. Apostol and James F. Blinn (California Institute of 
Technology, Pasadena , CA) is an excellent example of this sort of work. Usually, all such animations follow a fixed 
scenario and are created "by hand" (meaning that the author has to compose the animation out of a set of frames) for 
some particular presentation only. 

An attempt to make math presentations be able to become clearer as more and more readers work with them has been 
undertaken by Gabe Johnson 's team in University of Colorado, Boulder. Their idea of a "v irtual book" [23], in es­
sence, was to put on the "walls" of an on-line book a set of "hooks" on which readers could "hang" multiple bulletin 
boards (on-line discussion systems). Using these boards the readers could ask questions or exchange their opinions 
about the text right inside the book, as if making "notes on margins" 1• The system was expected to serve students to 
better understand course materials. 

A big project, although primarily dealing with internal organization of math knowledge but also introducing innova­
tive techniques for math presentation, is HELM - the Hypertextual Electronic Library of Mathematic s [16] (Uni­
versity of Bologna, Italy). This is an attempt to create a s01t of a repository of structured mathematical knowledge 
based on the use of XML/MathML. For math presentation the project team, too , was looking for " innovative interac­
tive capabilities , such as a structure-aware form of selection and the possibility to conceal and disclose parts of the 
displayed document to change the level of detail". The new MathML rendering engine [29] developed in the frame­
work of HELM was endowed with functionality which went beyond simple display of math in on-line documents . 

1 Almost the same idea, yet, under different name - annotations, is utilized in many web sites. Some annotations may be linear (single-level) , 
and some can be organized into hierarchical trees (i.e., annotations to other annotations are possible), thus havin g right to be called discussion 
board s. For instance , such approach is used at http://www .lenta.ru/, a Russ ian web site for official news. The difference , however , is that annota­
tions are usually created for the whole document , whereas in Gabe Johnson's project users can annotate specific portion s of a document. 
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ActiveMath [6], is a relatively recent project (based on the use ofOpenMath technology) aimed to facilitate presenta­
tion of mathematical knowledge by providing a user-adaptive learning environment. However , the ActiveMath soft­
ware , in essence , is just a web-interface to a repository of math facts, with some features helping to learn mathemati­
cal ideas by giving formal definitions , examples and exercises. 

Finally, we also have to mention a number of small software tools, which were created to facilitate math comprehen­
sion in academic world. FORMULA [14], Alged [2], ComputerMentor [11], Algebra Interactive! [3] are such tool s, 
to mention a few. Some tools allow to "play" with math formulas (rearrange terms , simplify /factorize expressions , 
etc .), thus working as simplified versions of software for symbolic math with capabilities of doing numerical calcula­
tions , aiming , actually , at the same target as interactive illustrations do: answer a question "what if... ?" . In many 
cases such tool s are designed to work with a "standalone math", not included into documents. Some tools (e.g ., 
ComputerMentor and Algebra Interactive!) work as electronic teachers , explaining the material (particular algebraic 
or trigonometric problem) at various levels of detail. 

All the projects we have just spoken about (with exception of HELM) were aimed to provide convenience of calcul a­
tions and "playing around ", and not convenience in navigation among equation s and comprehen sion of math . User 
interface aspect s were not prevalent ; functionality was the pivotal issue. 
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Chapter 2. THE BIG PICTURE 
Here we want to identify the approaches to make the user interface of math presentations help reduce the amount of 
effort needed to grasp the idea s given in math expressions. In what follows we repeat the list the problems we men­
tioned in the Motivation section, and give a vision of how we might address them in our project. For illustrations we 
use "screenshots " displaying chapters taken from a physics textbook on classical mech anic s [9]. 

THE VISION 

1. Problem: Inability to view related mathematical artifacts within a single field of vision due to limit ations of 
print /display medium . 

• References to equations will no longer require users to switch pages of an electronic document (although , old­
fashioned technology of hyperlinks will be also honored). The referenced math expression will appear at the 
point of reference as a tooltip with extended functionality (Figure 1). By the extended functionality we mean 

►J~_anrn1wm.ltffitti.·.mtt1 . . _ 

The grnvilc1!iorn1l at!rnctio n OH n point mnsH from a spherica lly ;;yrnmetric body 
net~ as if ull th e maf:'s of !he body were conce ntrnt ed at iti! cent er, ltS Newlo n 
rigoro ndy prove d from hi s iHvenlioH of calc nlns, We will give a proof of tJ1is 
assertion iH ChaJLZ. For an object of nH1ss 111 on !he sm face of the earth . !he force 
law ofEq / ~i,4) becom es 

..,.,.....,,...,""J,r~ .. ,l 
___ .,,. tL .u ............ _~ 1' 1 G t .. 1. Gta~tational Force Law)l F = -111 + = -11/g 

CfM/vl 2 ! Re F =- ............................ . 

· · r2 • )orn1l acce leration • 
... ~~ ....... ....,;;,, 4-\,,.":,,,""":,,>;;;~'r!,:;v 

g = 9.8ni/s 2 

111e va lnes of mass and rndills of the Earth in fuUl::02 are 

Re= 6,371km 

Me = 5.9, / 1024 kg 

(l -6) 

......... ~ 

Figure 1. Simple tooltip with referenced equation. 

'I11e gravitational a ltrndio n on a point mass from a 1,:ph eri cally synun ehic body 
acts a~ if all the ma ss of th e body were concen!rnted at ils center , as New ton 
1i!lorously pr oved froi••·.. · · · · calc1 niL-\Ye.....u:.ilL!!:i.ve a pro of of thiB 

'- . ~, . M.l.H Of the EJ.rth, kg . . ~ 
•>,,e1·t1c>ll lll Cl1'1p 7 F .,. ,. '" 111 Gr•v~•ttonal • 011st• 111• arth the torce 
' " ·'· • < • · • ~ ,.o,. G=G.67 x 1Q .. 11 m' i(kg) i>2} ' 

law of ·:.o,,,CL,.JJJ.:v:,," • .1.)Jll .es.___ · 

Foro of ~ttnctlon, kg·n~•H••~••H• <: . .,H.,._♦r~;;;;; : 
------....::~- , Ji;f/.1• . 

, f =-111--=-111g ..;. , ,-".·) : 7 R2 '· : ,,,___. Fr•• 1.,11 ,eceter:rtion. rn1, , j 1' 

,_n~---- ~~ .. ~ ............ J 
where <>i~ the o-r;( Ma«ottt,eobj«t , kgtion --------. 

c- · ,"': ~M.. _ ' R;tdlu~otth•E;i.rth. m 

g=9.8rn i::;2 

The v8lues of m,1ss and radius of tlte Ear th in f:s1.;,Ll-6) :ue 

R2 = 6, 371km 

Me =5.97 ~1024 kg 

Figure 2. Simple callouts with brief description s of math term s. 
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the ability of the tool tip to be "pinned" to the display surface (so that the tooltip will stay on the screen even af­
ter the user moves the mouse pointer away from the reference point), and the abi lity to highlight related math 
terms both in the equation and the context (surrounding text, or another equation) where the equation is used. 

• Every math element (variable, index, operator, etc.) will be provided a brief description showing up as a tooltip 
(or a text in status bar) which will help readers know exactly what each term means, and/or what measurement 
units are used for it (Figure 2) . 

• Derivation chains will have several parallel modes of display: original print-friendly document repeating the 
format of ordinary paper-based presentation, and a "wizard" tool, activated by clicking on a link/button located 
at the start of the derivation , and allowing the user to go through the derivation step-by -step, with capabilities 
to show/hide derivation steps on the wizard 's window (Figure 3). In a long chain of math derivation a user will 
be able to see the "history " of a certain variable or math term by highlighting the variable and/or related math 
artifacts throughout the whole derivation chain. This will help the user answer questions like "when was this 
variable first defined? " or "why does this variable /math term appear in the current equation at this particular 
place". 

• The user will be able to see corresponding terms in one or more math expressions by automatic highlighting 
those terms in appropriate manner , and see the semantics of the correspondence : e.g.," sin <p = <p for small rp", 

or" L X p = ...:1'._(L X p) since L is constant in time" (Figure 3). 
dt 

►llllrtttmtwmttt,mm 

From tho explicit form 
T. = 1111• x i • 

Figure 3. Formula Derivation Wizard. 

Step 2 

L><11 

Step,a 

a) Shrunk tran sition. b) Expanded transition , step I. 

18] 

Step 2 [81 

Lxpc·, r~Lxr 

B 

c) Expanded transition, step 2. 

Figure 4. Going through the formula derivation step s. 
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2. Problem: Mathematical explanations do not provide the right amount of detail for all potential readers . 

• Similarly to what is implemented in [36], our tool will provide the users with possibility to tailor the whole 
presentation to their level of knowledge by hiding/showing some derivation steps (Figure 4). The interface will 
include the feature to identify users' level of preparation and give the presentation with the appropriate level of 
details. For the task of such identification we need a way to classify the mathematical facts more or less uni­
versally, so that we could recognize similar patterns of users' behavior over heterogeneous math documents. 
For example, there may be the following classes of math transformations: I) application of a formula (standard 
or derived earlier in the same presentation), 2) term rearrangement, 3) mutual term cancellation, 4) approxima­
tion , etc . There might be other classes of math transformations, as well as there might be sub-classes of the 
classes we have just mentioned. The general idea of learning the user's reading habits and determining his/her 
level of preparation is to keep track of how often (for every particular class of math transformations) the user 
looks into the details hidden by default , shrinks the transitions initially expanded , does no modifications to the 
level of details currently in use, or how many times the user goes through the same derivation during a certain 
period of time. To collect and use this information we have to identify users somehow and keep records about 
their behaviors in user profile data structures. In addition to the users' reading habits we also might need to 
analyze how those habits evolve , so that we could make more precise predictions on the level of details needed 
for the math presentation the user is about to work with. In any case, these learning features must be configur­
able and as much transparent for the user as possible . 

• Very often readers do not care about the correct wording and grammar , or do not have time to figure out what a 
particular word means in the current context, and are mostly concerned about grasping the general idea of how 
math terms transform. ln such cases we need to use another universal language of symbols or gestures . E.g. , to 
express the idea that in an equation some terms are going to be rearranged, simple arrows from initial positions 
of the terms to where they are going to move to may be much easier to understand than a bundle words saying 
" .. . rearranging the factors in the equation gives us . .. " Arrows , and even better , animations of the rearrange­
ment , in fact, convey more information about how the terms move or transform , since they tell us not only that 
the rearrangement takes place and produces a certain result, but also show exactly which term goes where dur­
ing the operation (Figure 5). 

Figure 5. Visual explanation of term rearrangement. 

3. Problem : Sometimes notation being used varies from author to author, from document to document. 

• Working with both presentation and content markup our tool will make possible to do automatic conversion of 
notation. 
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THE PROJECT 

All tasks we have mentioned in the previous section require display of mathem atics. Unlike the static disp lay of 
equations in paper document s or their electronic versions in PostScri pt, PDF , MS PowerPoint , MS Word, or other 
similar formats, in our case we need to have all those formulas be able to interact with the user and the parts of the 
document they are included in. Not only the whole equation, but every math term of the equation must be separate ly 
accessible. The processing environment has to know how to link the equation and its terms to other equations and the 
surrounding text. This is because we inevitably need a tool capable of rendering the equations and providing them 
with certain interactivity. 

MathML 

MathML [24] , a markup language designed for encoding math presentation in electronic documents is now being 
supported by more and more software tools dealing with symbolic math. Unlike OpenMath [2] markup language , 
which is designed for the representation of math content only, MathML has syntactic constructs both for presentation 
and content markup . 

The possibility for dynamic and interactive display has initially been laid in the foundation of MathML . Adding a 
link to a Math.ML sub-expression is one basic kind of interactivity, which was provided in MathML recommendation 
in order to fully integrate MathML into XHTML, the Extensible Hypertext Markup Language [37]. For such integra­
tion it should be possible not only to embed MathML in XHTML, but also to embed XHTML in Math.ML. However , 
at present , the MathML specification does not permit any XHTML elements within a MathML expression, although 
this may be subject to change in a future revision ofMathML. 

In the current design ofMathML it is assumed that XHTML elements - headings , paragraphs , lists, etc. - either do 
not apply in mathematical contexts (what, actually, does not agree with our vision in which we see mathem atical 
artifacts be competent parts of the whole presentation), or Math.ML already provides equivalent or better functional­
ity specifically tailored to mathematical content (tables, mathematics style changes, etc.). More information on link­
ing in Math.ML see W3C's Math.ML recomm endation, Chapter 7.1 .4. 

Many other kinds of interactivity cannot be easily accommodated by generic linking mechanisms . For example, in 
lengthy mathematical expressions, sometimes it is desirable to be able to shrink/expand expressions, e.g., allow a 
user to toggle between an ellipsis and a much longer expression that it represents (Figure 6). To create a mechanism 
for binding actions to expressions, MathML provides the <maction> element. This element accepts any number of 
sub-expressions as arguments, and, when given appropriate attributes, can give the math expression certain amount 
of dynamics . 

b) 

2 3 
.r 

e ·.t .:i:- X 
+x + 2! + 3! + 

lfiMothML Formulo Viewer (Z:\profects\math\m027!l«l1I 
File View 

d.Qji{J Dynamic display of mathematical 
equations my include shrinkin g or 
expanding some math terms. In this 
example the ellipsis in Taylor series 
repr ese ntin g the function ex (a) can be 
expanded showin g three more terms 
of the ser ies (b). 

Such interactivity can be achiev ed by 
using a standard MathML construct: 
<maction> element with toggle at­
tribute set. 

Figure 6. Dynamic display made possible by MathML. 

1 1 



) 

) 

) 

The MathML recommendation suggest s several types of actions (i.e., "standard" attributes and their possible values 
for <maction> element): "toggle" , "statusline" "tooltip", "highlight" , "menu", whose meaning is clear from their 
names . However , this list, actually, is not a standard; it is provided in the recommendation only for illustration pur­
poses. Recognized values and behaviors may vary from application to application , from one rendering tool to an­
other . 

MathML Rendering Tool 

MathML rendering software already exists [5, 27, 29, 36]. However, none of the available software tools (at least 
those we are aware of) has all the features we need to implement the required dynamics and interactivity . In the 
framework of our "big" project we are still at the stage of identifying new ways to present mathematics in a more 
efficient, dynamic and highly usable manner. We do not yet know all the properties and behavioral patterns that our 
MathML rendering engine might need to have in the future. Even if we had software package with well-documented 
API that was designed for rendering MathML , this would not be enough , since it still might have certain limitations , 
which would complicate creation of the dynamic and interactive objects we need. For example , a MathML web­
applet by Waterloo Maple , Inc. [21] does a very good job of displaying equations encoded in MathML, correctly 
rendering all special characters used in math notations, and even making them interactive by appropriate processing 
of <maction> element (e.g. , the one with "toggle" attribute). However, there is no possibility to animate the terms in 
arbitrary way, nor is there any documented interface to access the math terms from the "outside" of the applet. The 
applet is a sort of a Thing-in-Itself living its own life and having very little interaction with the environment , except 
its simple reaction to mouse clicks. 

We do not have to be bound by such limitations, and this is because we decided to concentrate on the design of our 
own MathML rendering engine which would have all the features we need . In some respect , we have to repeat much 
of the job done by other developers (MathML parsing, formula layout), but this needs to be done to provide us with 
solid ground in the future: a flexible and configurable tool for dynamic display of mathematics . 

The features which we wanted our MathML rendering tool to have were quite "standard ": the software had to 

• correctly and quickly parse MathML code and do the layout of math on the rendering device ; 
• provide interface to access [ and activate] each math term after the layout is done ; 
• enable the processing environment to manipulate with math terms (change their color , size, positions). 

The development of this software became the core of the current project. 

THE IMPLEMENTATION 

The general scheme of processing MathML does not differ from processing of any other language (Figure 7-a) . 

Source 

Target 

Lexical Analysis 

Syntax Analysis 

Generator 

a) 

MathML 

Interactive 
objects on 
the screen 

Figure 7. Structure of a translator software 

Lexical Analysis 

Syntax Analysis 
DOM Tree construction 

Generator 
Hierarchy of MathView objects, 

Glyph rendering 

b) 

In the case of processing MathML , the Generator does the job of creating an internal repre sentation of math terms 
and performs rendering them on the output device (Figure 7-b) . Lexical Analysis and most of the Syntactic analysi s 
is done by the parser software (the exact distribution of jobs is actually dependent on the parser architecture ; see dis­
cussion below) . 
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MathML Parsing 

) Since MathML, in essence, is a particular implementation of general-purpose XML , any good XML parser can be 
used to parse MathML. The word "good " means that there are some requirements for the parser that must be met to 
make it useful in parsing MathML. 

) 

1. The parser has to correctly proce ss XML tags, and handle errors (should it find any) in a nice manner which 
means that the whole program should not crash because of a syntax error in the source XML code . 

2. The parser must validate the document against its grammar defined in Document Type Declaration (DTD) speci­
fying the valid grammar constructs of the document. With respect to MathML , the validation is important , since 
MathML uses many symbolic names like &PlusMinus;, and also there are some rules specifying how elements 
can be nested. E.g., the parser should generate an error if an <mn> element contains data other than plain text (no 
inner elements allowed in token elements, such as <mn>, <mi>, <mo>, etc.). 

3. The parser must work reasonably fast. We cannot make our readers wait too much before the document is fully 
loaded and rendered on the screen . 

Many XML parsers already exist. For the first experiments, we started with the DOM (Document Object Model) 
parser that comes with PHP 4 .1.1 [30] The parser worked very fast, but had a significant drawback : it did not do the 
DTD-validation properly. Although we used the XML parser from PHP only for test purposes , its use gave us an 
insight on how the DOM structures are organized and how they could be used in programs. As expected , it turned 
out that the procedures for traversing DOM trees all have almost the same architecture , no matter what programming 
language is used. 

Another reason to start with PHP was to quickly create an application which would be capable of parsing documents 
containing MathML and displaying math terms on the screen . The emphasis was on the XML parsing , and the screen 
layout of math terms was done by table elements (<TABLE> tags of HTML) nested and styled appropriately , so that 
the documents could be viewed in a web-browser. This approach could help us relay the task of elements' layout to 
the HTML rendering engine of a web-browser . Although the formula layout done in this way was not perfect (e.g. , it 
did not do display of stretchy characters - the characters such as big parentheses, or long fraction lines) , it was a 
good "test of concept " , and formulated the requirements which a parser for MathML must meet. The screenshots of 
the application is shown on Figure 8-a. Figure 8-b shows the borders of the nested tables used to lay out the math 
expression. 

·~~·l.'#tl!lffllll\Nr.i:iftfll.lt. tffiill!l· l•:i:l#ilti· ~~ •• ·=· lmAi@il,l'.IJIE!ltfi~!@;;J.· ilit!:il;mt~d~:· ~-;.,;, ;;;;;:::;::::;;::::~,:.:: •P•-- ~~ 
,j E.fo I;.dit YJew f&v°'tcs Iools ijclp 

I A!!&•» l!l htlp://«>JQ><,nom,org/020208/ln•lhOl ,p/-,p 1... .................................................................................................................. . 

x 2 + 4x + 12 = 0 

The ro ot:; of the abo ve equati on con be computed using 
th e foll owing general formu la (source file m00 3.xml): 

2a 

[ r i !lb lntemet 

a) 

.J, 

X = 

Figure 8. Simple "box " renderin g ofMathML. 

b) 

We have to mention other XML parser s we came across doing our experiments with displaying mathematics in a 
web-browser. 

13 



) 

) 

) 

There are two built-in DOM XML parsers in MS Internet Explorer 5+, Microsoft.XMLDOM and 
Msxml2.DOMDocument. Both work as ActiveX objects in JavaScript. The parsers work reasonably fast but again , 
do not do DTD validation appropriately . Also, they work only in MSIE 5+ and only on Win32 platform. 

The Apache Software Foundation [7] has an initiative - The Apache XML Project [8] - that works on the tool s for 
XML processing. Xerces Java XML parser is one of them. The software is written in Java and distributed freely un­
der the Apache Software License . Xerces parsers are distributed as Java archive (* .jar ) files; their source code is 
also available for download at http://xml.apache.org /dist/xerces-j / . The parsers are highly configurable, and they 
have a well-documented Application Program Interface (API). 

First experiments with the parsers showed that the Xerces XML DOM parser was very good at validating XML 
documents against DTDs , although the parsing was done slower than that with the parser from PHP. 

The PHP application described earlier was re-written to a JSP (Java Server Pages [18]) application . The program did 
the same processing of XML document with resolving correctly all the entities defined in the DTD of MathML. 
However , the program worked much slower, and the speed of parsing seemed to be not very much dependent on the 
size of the document. Later experiments, in which we used the same parser in Java application, showed the same 
unsatisfying result. One of the reasons is that MathML has a relatively complex grammar (mathml2. dtd plus 23 files 
with entity definitions) , whose parsing takes about 1- 3 seconds. The situation can be improved if we pre-parse the 
grammar at the time of MathML rendering engine initialization, and then use the "binary " representation of the 
grammar in the process of parsing the document. The possibility of such pre-processin g is provided in the Xerce s 
parser interface , but it is documented somewhat vaguely, which by now has prevented us from creating a reliable and 
efficient implementation of the grammar pre-parser. 

DOM parsers create complete tree of DOM objects, which afterwards can be used to do the nece ssary manipulations 
on the document. Such manipulation s may include not only reading the document ' s content, but also changing its 
structure . With such design , DOM parsers are more time- and resource-consuming (parsing process is full of mem­
ory allocations for the DOM tree nodes, and after parsing the whole DOM tree must be kept in memory) , however, 
experiments with Xerces parser showed that DOM parser is almost as fast as an event-driven SAX (Simple AP! for 
XML) parser with the same functionality . The possibility to change document's structure might be necessary for 
creation of interactive MathML documents , or providing interactivity to existing document s. 

The PHP and JSP application have been run on an Apache HTTP-server with PHP4.1. l. and Tomcat 4 JSP Serv­
let/JSP [33] running on Windows 2000 machine in NACSE (http: //cougar.nacse .org/). 

MathView Objects Hierarchy 

Initially, we were creating our own hierarchical objects for displaying math terms. However , it turned out that Java 
classes already had appropriate structures for building the hierarchy - the Container-Component hierarchy (Java 
classes Component and Container , j ava. awt package) , which fit nicely to the concept of "terminal " and "non­
terminal" elements of math terms . The terminal elements are identifiers, numbers, operators and pl ain text encoded 
in MathML by the tags <mi>, <mn>, <mo>, <plus/>, <minus/> and <text>. Non-terminal elements are all other 
markup elements that are used to represent displayable objects (e .g., elements sub/superscripts , encoding fraction s, 
etc .). Non-displayable elements (such as <style> or <maction>) are processed in such a way that they become at­
tributes of displayable elements , or they are represented in auxiliary data structure s respon sible for dynamic features. 

Every math expression encoded in MathML can be naturally thought of as tree structure . Each node in the tree corre­
sponds to a particular layout schema, and its branches or child nodes correspond to its subexpressions. This structure 
nicely fits into the Container-Component hierarchy. The hierarchy of MathView objects descending from the 
java.awt.Container class is shown on Figure 9. 
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java .awt.Container 
A generic AWf container object class 

LMa thView 
abstract class for Math layout objects 

[ ---------------- MathGroup 
abstract class to group many Math elements in one 

Math Token 
abstract class for Math symbolsftext 

t StretchySymbol 
a special stretchy character 

NormalSymbol 
alphabet character or special math symbol 

Math Identifier 
identifier 

MathNumber 
number 

M athOperator 
operator, fence, or separator 

MathText 
text 

MathSpace 
space 

MathString 
string literal 

MathGlyph 
adding new character glyphs 

MathRow 
group any number of sub-expressions horizontally 

Math Fenced 
surround content \'\'ith a pair of fences 

MathFrac 
form a fraction of two sub-expressions 

MathSqrt 
form a square root (radical 'Nithout an index) 

MathRoot 
form a radical with specified index 

MathSub 
attach a subscript to a base 

MathSup 
attach a superscript to a base 

MathSubSup 
attach a sub/super-script pair to a base 

MathUnder 
attach an underscript to a base 

MathOver 
attach an overscript to a base 

MathUnderOver 
attach an under/over-script pair to a base 

MathMultiScripts 
attach prescripts and tensor indices to a base 

Figure 9. Hierarch y ofMathView objects (fragment) . 

The hierarchy of displ ayable math objects is built after the parser creates the DOM tre e. The DOM tre e is traversed 
from the root node up to the every leaf (a terminal token element), and all math object s are created along the way. A 
small observation: the internal hierarchical structure of multiply-nested math elements is invariant for font-style, 
color , and many other properties defining the appearance of the element on the screen. So, the buildin g of the hierar­
chy of the math terms , which require s many operations with the dynamic memory allocation (object creation and 
initiali zation) which are relatively time-consuming, is done only once. The arrangement and resizing of the elements 
according to the new font style/size/color is done when the math expression is about to be redrawn on the screen. 
During the arrangement stage, the tree of math objects is traversed recur sively, and layout rules are applied to every 
e lement. The layout rules for math formu las are specified in every detail in Appendix G of Knuth's TEX book [19] . 

Since the procedure of arranging the components deals (mostly) with arithmetic operations and doe s almost no 
memory allocations, the arrangement is done very quickly . 

Glyph Rendering 

However , the arrangement of math terms is not that simple , as it could be thou ght of at a g lance . The princip al prob ­
lem is that we cannot consider every math term only as a rectan gular object (as we did in the first experiments with 
PHP /JSP applica tio ns, when we used nested tabl es). For a profe ssional-lookin g layout of math term s the layout pro­
cedures must always take into account the contents of the terms. Fortunately, Java prov ides all nece ssa ry classes and 
interfaces for access to and manipulations of font properties. For example, Figur e 10 shows the placement of the 
math terms with (a) and without (b) taking into account their contents. As we can see , information about the contents 
(e.g., the advance property of the text string in a math token) is very important for proper placement of the charac­
ters. 
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rt~1#ffl1b;11 wttt MfAt@tt!«~~lntF~~r ·· MathML Formula Y-iewer (2:\ptli)ect! . .JQJ25.J 
File View Fife View 

a) Content-dependent layout. b) Simple "box" layout. 

Figure 10. Layout of math terms (variables). 

Another big issue arises from the fact that MathML has relatively small number of lexical constructs , which are to be 
used to represent a large variety of mathematical terms. As a result, the same constructs must be rendered differently , 
depending on the contents they have . For example, the same MathML element <munder> can be used both for encod­
ing limits and summations (Figure 11 shows the source MathML code and how it is rendered in these two cases). In 
the former case the size of the font used for the token "Jim" is the same as the font size for the element on this level 
of nesting and the baseline of "Jim" is the same as the baseline of the whole expression, whereas in the latter case the 
summation symbol must be made about 150% of the default font size, and the centerline of the symbol must be 
aligned with the centerline of the following expression. Lots of other similar exceptions documented in [24] must be 
processed by a MathML rendering engine. 

l:t.4AM!ti@lii·ii,,l'·b?i§fl3JQffllffl~~-~!Ul-:ir 
Filo V"re.w 

<math> 
<mrow> 

<munder> 
<mo>lim</mo> 
<mrow> 

<mi>n</mi> 
<mo>&rarr;</mo> 
<mo>&infin;</mo> 

</mrow> 
</munder> 
<msqrt> 

</msqrt> 
</mrow> 

</math> 

.JQJ25.J 

a) The baseline of " lim" operator is aligned 
with the baseline of the whole expression. 

1~1@ffiib31i@tffitib'l!ail'i ffi!Affiffl.~\1'il~'~~~ri~u 
f1Jt• Vit.'W 

<math> 
<mrow> 

<munder> 
<mo>&sum;</mo> 
<mrow> 

<mo>&forall;</mo> 
<mi>x</mi> 

</mrow> 
</munder> 
<msqrt> 

</msqrt> 
</mrow> 

</math> 

.JQJ25.J 

b) The summ ation operator symbol is aligned accor­
ding to the center line of the whole expre ss ion . 

Figure I 1. Con tent-dependent layout of math operator s. 
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Symbol Output 

Since we are dealing with mathematical expressions, many special characters are to be used. Java SDK has a number 
of classes and interfaces to work with non-standard glyphs. The principal problem is that ordinary procedures for 
font output cannot be used in the task on output of special characters (Greek or "fractur" symbols, stretchy symbols, 
etc.) Due to the "platform-independecy", Java graphic text output capabilities are very limited, and special proce­
dures must be used for non-standard font output. In this project, all symbol output is done using the classes operating 
with glyph and glyph vectors, which allows the user to see the symbols on the screen exactly as they are in the font 
files, not dependent on the current language settings of the system. For ordinary symbols from the first part of ASCII 
table this approach might seem too complicated, but this is the only way to put out stretchy characters such as big 
parentheses , brackets, or root symbols. 

The general scenario of symbol output is as the following : 

The MathView object is initialized with a certain contents - a string of Unicode characters. Before the drawing pro­
cedure is called, all MathView objects must be resized and laid out according to the current font size. The arrange­
ment is done in the virtual procedure arrange() . For token objects (descendants from MathToken class) this proce­
dure works with the glyphs representing the symbols, and for the non-terminal objects the procedure does the appro­
priate positioning of insider objects. In Both cases arrange() determines the new screen size of the MathView objects 
in the current graphics context. 

For token objects the procedure arrange() takes the Unicode string, " looks" what characters are in it, creates a cor­
responding glyph vector, which is used to determine some font-related properties (e .g., baseline, advance, centerline, 
etc.). The glyph vector is then transformed to a Shape object, using which the procedure determines the visual sizes 
of the string, which are used to set the size of the MathView object itself. In non-terminal objects arrange() applies 
positioning rules depending on what class this object is an instance of. 

If a Unicode string contains characters which must be taken from different fonts, the use of glyph vectors and their 
transformation to Shape objects is necessary, since it allows us to do a much nicer layout. Figure 12 shows the sam­
ple string containing a mix of Latin and Greek characters. When all characters are taken from the same font, some 
symbols might "drop" being rendered as empty rectangles (Figure 12-a). Using our approach with glyph output , all 
characters are rendered appropriately (Figure 12-b). Although it is very unlikely that a math variable encoded in a 
single MathML tag would contain a mix of characters, such approach makes the symbol output procedure universal. 

(1-;,j¢ffi!HA1ii>li,,Ui&ttffi4tliftffi·8V~W11J~~1/U 1~~1rnrn@ili·hti\'iit#Mii®ffi~1~1};1n'.'-y~~1~';;,~1~: !-=-1Q12,j 
f je View File View 

aOcOd aj3cyd 

a) All glyphs are taken from the same font b) Each glyphs is taken from an appropriate font. 

Figure 12. Rendering of a Unicode string containing a mix of Latin and Greek characters 

Shape-based output might create a small problem with the output of characters when the font size is small ( e.g., 
I Opt). Most probably, this is the result of the double-to-integer approximation when the double-precision coordinates 
of the Shape are cast to the integer coordinates of the output graphics context (see Figure 13-a). The problem is still 
actual for the font sizes which are much bigger: the characters look ugly even when the font size is 14 ... 16 pt, the 
size which is usually used in many document browsing tools. Enabling antialiasing in the rendering context solved 
the problem. Now even very small characters do not lose their pixels . The approximation is done by adding some J grayscale pixels to the output image (Figure 13-b) 
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a) No antialiasing 
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b) Antialiasing is on. 

Figure 13. Use of antialiasing in glyph output. 

Stretchy Characters 

Stretchy characters are composed of several (1, 2, 3, or 4) parts. They usually have some "terminal" parts which are 
"glued" together with "extenders". Figure 14 shows examples of such characters. The procedure of output of these 
characters is very similar to that of normal symbols, except that with the stretchy characters the size of the symbols is 
known before the symbol is "arranged" and drawn on the screen. When the size is pre-defined , what is left for the 
drawing procedure is to arrange the "terminal" elements of the character and "glue" them with extender parts 
stretched appropriately. The stretching is usually done by putting as many extenders as needed next to each other ( or 
one on top of the other) to achieve the desired size. In this project , however, we use another approach: the extenders 
are stretched by applying affine transformations to them. This allows us to make the whole character be precisely the 
size it needs to be. With simple repetition of extender parts such precision is generally impossible to achieve . 

extender glyphs 

) 
Figure 14. Stretchy characters. 

"(fi:1;mfa#1#$#61&¥1tat\mrt1mnfo1tD;_~;~,:'. _dQJ29 
: Fk 'View 

1 

~/' 

1, 
3 

a) Stretching is done by repet1t10n of the extender 
glyph. Notice the inappropriate alignment of the center 
part of the left brace and a cut-off of its bottom part. 

t-i#MIMliittffim!i?§ffiifatiEmI't'~~l~rS.!t=-~.L·= ·..d.QJ~ 
H~ Vi!!w 

( 

I 

b) Stretching is done by stretching the extender 
glyph using affine transformations of the shape . 
The alignment and the size of the brace is preci se. 

Picture 15. Two ways of stretching the character s. 
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The output of stretchy characters is very complicated. Thanks to Yuemei Sun who did a great job of writing the gen­
eral procedures for stretchy symbols output, based on which I wrote the subroutines that are now used in this project. 

Object Activation 

The principal reason why we started designing our own rendering engine is that no MathML renderers that we could 
find had any interactive features. At least, there were no documented API for creation of interactive formulas. At a 
glance, the MathML rendering software we developed might seem to have no difference from similar software al­
ready existing. However, we had to design our own rendering engine for the future tasks of making math content in 
on-line documents be dynamic and interactive. 

Had the ultimate purpose of the program been only to display the formulas, the complex hierarchy of Ma th View ob­
jects would not have been needed . But for the purposes of making the math display dynamic it was necessary to have 
every math term be accessible in some way after the math expression is drawn on the screen. This is because we de­
scend the class hierarchy of our objects from Java's Component-Container classes. Those classes can be easily ex­
tended to support handling of mouse events, and they provide us with possibility to access each component (math 
term) independently: every math term (terminal or non-terminal) can be re-drawn/hidden/shown/moved arbitrarily 
when needed. 

The activation API of the math terms include methods for firing activation events in response to user's actions. In 
our first design we do the synchronous highlights of related math terms: when a mouse pointer is moved over a math 
term, the term is highlighted (changes color, or draws itself in a thin frame) and all or some related terms are also 
highlighted . 

Every math term that needs to be identified is assigned a cross-reference identifier (xref parameter in the correspond­
ing MathML tag). When the source document is parsed , the rendering engine creates additional data structures to 
store the information about all objects identified with xref 

For the purposes of synchronous highlight , we accept a simple model of a directed activation graph: an object may 
activate other objects, if there are directed arcs from a node representing that object to nodes representing the objects 
that must be activated synchronously with it (Figure 16). 

Cl Source expression 

--.lm ,.. 

I Standard formula I 

r- a r . ) 
Resulting expression ····· ~ m I \ r · r ~------~ r· , ... 

Figure 16. Activation Graph (fragment). 

By doing in this way we can, e.g., highlight some variable in an equation, and (synchronously with that) highlight the 
corresponding fragment in the surrounding text containing, e.g., description of the variable or some other expression 
(Figure 17, Figure 18-c). Also, considering activation chains as a directed graph, we can assign certain properties to 
its edges, thus providing information about the semantics of the links between the terms. Such information might 
appear as callouts , or show up in the status bar of the window that displays the document. 
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Kepler on 1he motion of plane ls and satellites in ◊Ur solar system. 
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Figure 17. Synchronous highlight of math terms and their explanations. 

In the current design every math term that can be activated has an identifier. Also, every term has a list of "child " 
elements that are prone to activation when their parent is activated . Encoding of such a construct can be done by add ­
ing to MathML tags attribute children whose value can be a set of id's of other math terms separated by commas 
(thus forming a sort of adjacency list,. However, this is not a proper solution since it adds to MathML tags new non­
standard attributes not documented in W3C's MathML recommendation. Instead, the source document should have 
separate sections that would encode the behavior of the identified math terms. 

Transition Encoding/Rendering 

A similar graph model is used in the encoding of transitions . At present, transition s are encoded as an XML element 
with two sub-elements describing two states, s0 and SJ - before and after the transition , and additional sub-elements 
used for indication what math object from state s0 becomes what in state SJ. For the encoding of the states and estab­
lishing links between related objects we use cross-reference identifiers of the math objects in the document. 

Such design gives us certain freedom in choosing how the transitions will be rendered. At this point in time we con­
sider showing the transitions step-by-step (two states at a time with corresponding math elements highlighted and/or 
connected by arrows, see Figure 4), but in future we can use animations in addition to highlights in order to show 
how one math artifact becomes another, should this technique prove to result in a better user' s satisfaction . 

Since the activation chains and transition s are modeled as digraph s, their encoding can simply follow the XML rules 
for encoding graphs [15] . 
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MATHML FORMULA VIEWER 

·) Currently, the MathML rendering engine is implemented as a part of a MathML formula viewer - a Java applica­
tion which allows loading math expressions encoded in MathML and viewing them with different default font sizes 
(Figure 18 - a, b ). When the mouse pointer is moved over certain math terms, those terms and other terms related to 
them are synchronously highlighted (Figure 18-c). 

) 

The same Java classes can be used in creating applets to include mathematics on web-pages (Figure 17) . 
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Figure 18. MathML formula viewer application. 
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FUTURE WORK 

) The MathML rendering software we have developed is not yet perfect. There are still many issues which need further 
consideration and implementation . 

) 

_) 

1. We need to implement rendering of all MathML constructs (all elements , all attributes , style rendering). Although 
providing support for additional MathML tags is rather a mechanical job of writing appropriate class definitions 
and overriding their arrange () subroutine, implementation of style rendering is not that simple . MathML rec­
ommendation suggests using Cascading Style Sheet (CSS) technology [11] in MathML documents. For us this 
means that in order to provide full support for styles in MathML we will have to use an appropriate (non-XML) 
parser to validate and parse the values of style attribute. 

2. The MathML rendering engine will probably need to have an interface to serve as a MathML authoring tool. One 
of the useful feature we can think of is that the software provides possibility for drag-and-drop operations which 
can be used to move equations from one display frame to another (Figure 19). For authoring of the static math 
content we can use existing software tools like Amaya [5] or MathType [25], but new dynamic featmes we are 
going to introduce will require the math editor software to have additional editing capabi lities corresponding to 
the display capabilities of our rendering engine. Also, in the task of authoring of the documents with interactive 
and dynamic content the authors will have to carefully consider syntactic aspects of the math presentations . In 
addition to providing nice layout of math expressions, the authors will have to ensure that their formulas and 
equations have appropriate internal structure with all terms properly annotated and no links broken. The author ­
ing tool must be able to automatically check internal integrity of the documents being created. 

►!.itwttiFM@D•Ji.· · · lwl 
fj<! l;;dl: i~i f-)-m.:t.ts 1~ tltb 

·==, ·:=,,:::::::::,,:::~,,:::·,:::::,::,:::,:: ·:::::c:,:,: """"'=""''""""""'"" '''""''""·'' . J 
The solution in Eq.(4-46) for the 01bit of a pmticle in au iuverse-sr uare force 7 
field can be obtained in an elegm1t nlte.rm,tive nrnnner 
teduuques . The equation of motion of a particle of mass 111 in 
defined by Eqf -J-39)is 

. I' 
1•=-1:13 

r 

\V,c tnke the cross product of both sides ofEq/4-5 6} wi th L. 

From the explicit form 
1. = w1•xi · 

Figure 19. Authoring the Formula Derivation Wizard (prototype). 

3. At some point in time we might be considering working with math knowledge repositories . To work with math 
content we will need to use efficient algorithms for rendering content markup (e.g., OpenMath or MathML) . Al­
though the user-interface features we are working with are primarily related to how the information is presented, 
in our project the presentation is tightly connected with the underlying mathematical content of the documents. 

4 . Up to now we did not concentrate too much on the efficiency issues. However, the time has come to start think­
ing of how to optimize the current implementation of our MathML parser. So far, the parsing time is unaccepta­
bly long. The procedures creating internal tree ofMathView objects are also need to be optimized to reduce the 
amount of time required for their creation and initialization . 

22 



References 
I . ACM Digital Library . [on-line] http ://www.ac m.org /dl/ 

2. Abbott , J., Diaz, A., Sutor, R.S. A report on OpenMath : a protocol for the exchange of mathematical informa-
tion . In ACM SIGSAM Bulletin, Vol.30 , No.I , pp . 21- 24, 1996. 

3. Algebra Interactive! [on-line] http: //www.win.tue.nl/ ~ ida/home.html 

4. ALGED - Algebra Editor, Software (DOS) . http: //www.geocities.com /pari s/6502/a lged35 

5. Amaya. W3C's Open Source Editor /Browser. http: //www.w3c .org/Amaya / 

6. Andres, E., Melis, E., et al. ActiveMath: System Description . Artificial Intelligence in Education 2001. 

7. Apache Software Foundation , The . [on-line] http ://apache .org/ 

8. Apache XML Project , The. [on-line] http: //xml.apache.org / 

9 . Barger , V., Olsson, M. , Classical Mechanics . A Modern Perspective. McGraw-Hill , Inc . 

10. Bell , J.E., Doppelt , A.M., Hughes , J.F. Developing an Interactive Illustration : Using Java and the Web to Make 
It Wo1thwhile. Proceedings of3D and Multimedia on the Internet , WWW and Networks , 1996. 

I I. Cascading Style Sheets, Level 2. W3C Recommendation. [on-line] http: //www .w3.org /TR/REC-CSS2 / 

12. ComputerMentor (Win32). Availab le at http ://www.computermentor.da.ru / 

I 3. Exploratory Project. Department of Computer Science , Brown University. http: //www.cs.brown .edu/exploratory / 

14. FORMULA (DOS). Available at http ://www .exponenta.ru /soft/others /formula /fonnula.asp 

I 5. GXL , Graph eXchange Language. [on-line] http: //www.gupro.de /GXL/ 

16. Hypertextual Electronic Library of Mathematics. [on-line] http: //www.cs.unibo.it /helm/ 

17. IBM Techexplorer Hypermedia Browser. [on-line] http ://www-3 .ibm.com/software /network /techexplorer / 

18. JSP (web-scripting technology). [on-line] http ://java.sun .com/products /jsp/ 

) 19. Knuth , D.E. , The TEXbook. Addison-Wesley Publishing Co., 1984. - ISBN: 0201134489 . 

20. Live Pictures for problems on Plain Geometry [ on-line] http ://zadachi.mccme.ru :8 l O 1/njava/ 

21 . Maple . Waterloo Maple, Inc. [on-line] http: //www.maplesoft.com /products /Maple8 /index .shtml 

22. Mathematica. Wolfram Research Inc. [on-line] http: //www.wolfram.com / 

23. Mathematical Discussion System. [2000]. [on-line] http: //sourceforge.net /projects /mds/ 

24. MathML. W3C Recommendation . http ://www.w3.org/Math / 

25. MathType . [on-line] http: //www.mathtype.com / 

26. Matlab . The Math Works, Inc. [on-line] http ://www.mathworks.com / 

27. Mozilla Open Source Web Browser. [on-line] http: //www.mozilla.org / 

28. Multimedia Tools for Communicating Mathematics. Springer Verlag, 2002 - ISBN: 3540424504 . 

29. Padovani L. A Stand-Alone Rendering Engine for MathML. MathML Conference, 2002. [on-line] 
http ://www.mathmlconference.org /2002 /presentations /padovani / 

30. PHP (web-scripting technology) . [on-line] http: //www.php.net / 

31. Project Mathematics! [on-line] http: //www.projectmathematics.com / 

32. Simpson, R.M., Spalter A.M. , van Dam, A. Exploratories: An Educational Strategy for the 21st Century, in Pro-
ceedings of ACM SIGCSE '99, 1999. 

33. Tomcat 4 Servlet/JSP . The Apache Jakarta Project. [on-line] http: // jakmta.apache.org /tomcat / 

34. Tufte, E.R. Envisioning Information. 7'" Ed. Graphics Press, 1999. 

3 5. Tufte, E.R. The Visual Display of Quantitative Information. 2ml Ed. Graphics Press , 2001. 

36 . WebEQ /Math Player. Design Science, Inc. [on-line] http: //www.dessci.com /webmath / 

37. XHTML , The Extensible Hypertext Markup Language. [on-line] http ://www.w3.o rg/TR/xhtmll/ 

23 


