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The Northwest Forest Plan (NWFP), which aims to conserve late-successional and old-growth forests
(older forests) and associated species, established new policies on federal lands in the Pacific Northwest
USA. As part of monitoring for the NWFP, we tested nearest-neighbor imputation for mapping change in
older forest, defined by threshold values for forest attributes that vary with forest succession. We mapped
forest conditions on >19 millionha of forest for the beginning (Time 1) and end (Time 2) of a 13-year per-
iod using gradient nearest neighbor (GNN) imputation. Reference data were basal area by species and size
class from 17,000 forest inventory plots measured from 1993 to 2008. Spatial predictors were from Land-
sat time-series and GIS data on climate, topography, parent material, and location. The Landsat data were
temporally normalized at the pixel level using LandTrendr algorithms, which minimized year-to-year
spectral variability and provided seamless multi-scene mosaics. We mapped older forest change by spa-
tially differencing the Time 1 and Time 2 GNN maps for average tree size (MNDBH) and for old-growth
structure index (OGSI), a composite index of stand age, large live trees and snags, down wood, and diver-
sity of tree sizes. Forests with higher values of MNDBH and OGSI occurred disproportionately on federal
lands. Estimates of older forest area and change varied with definition. About 10% of forest at Time 2 had
OGSI >50, with a net loss of about 4% over the period. Considered spatially, gross gain and gross loss of
older forest were much greater than net change. As definition threshold value increased, absolute area
of mapped change decreased, but increased as a percentage of older forest at Time 1. Pixel-level change
was noisy, but change summarized to larger spatial units compared reasonably to known changes. Geo-
graphic patterns of older forest loss coincided with areas mapped as disturbed by LandTrendr, including
large wildfires on federal lands and timber harvests on nonfederal lands. The GNN distribution of older
forest attributes closely represented the range of variation observed from a systematic plot sample. Val-
idation using expert image interpretation of an independent plot sample in TimeSync corroborated forest
changes from GNN. An advantage of imputed maps is their flexibility for post-classification, summary,
and rescaling to address a range of objectives. Our methods for characterizing forest conditions and
dynamics over large regions, and for describing the reliability of the information, should help inform
the debate over conservation and management of older forest.

Published by Elsevier B.V.
1. Introduction

The Northwest Forest Plan (NWFP) of 1994 aims to preserve
late-successional and old-growth forests (henceforth ‘‘older for-
ests’’) and associated species in the Pacific Northwest USA (USDA
and USDI, 1994a). The NWFP instituted a major policy shift for fed-
eral land ownerships, including reduced harvesting of older forests
and establishment of a reserve network (USDA and USDI, 1994b).
Covering 9.3 millionha of federal forest within diverse ecoregions
B.V.

: +1 541 758 7760.
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spanning >23 millionha in Washington, Oregon, and California
(Fig. 1), the NWFP represents one of the most sweeping landscape
experiments in history.

The NWFP also implemented an Effectiveness Monitoring
framework to track the status and trends of late-successional and
old-growth forests, as well as watershed conditions, social and eco-
nomic conditions, tribal relationships, and population and habitat
for marbled murrelets and northern spotted owls. As a starting
point for monitoring, NWFP documents define older forests only
in general terms, as forest that meets structural, functional, or min-
imum age criteria (Hemstrom et al., 1998). Hemstrom et al. (1998)
outlined an approach for monitoring older forests that involves
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Fig. 1. Map of study area location, the area covered by the Northwest Forest Plan,
showing modeling regions and land ownership.
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complementary remote sensing (map-) and sample-based ap-
proaches while recognizing the need to adapt to advancements
in technology and data. For remote sensing methods, they defined
older forest as stands dominated by trees 50.8 cm (20 in.) diameter
and larger, including both single- and multi-storied stands. While
they recognized that sample-based approaches could consider
more detailed elements of older forests, including live tree old-
growth trees, standing dead trees, and fallen trees, no specific def-
initions were proposed.

The first monitoring assessment (Moeur et al., 2005) used satel-
lite image classification to map broad forest classes at the begin-
ning of the NWFP, and Landsat change detection methods to map
stand-replacing disturbance as a basis of inferring losses of older
forest over the 10-year period. They employed three definitions
of older forest along a continuum based on average tree size and
canopy layering. Their least restrictive definition, of ‘‘medium
and large’’ forest, was based on a minimum average tree size of
50.8 cm (20 in.).
For the second (current) monitoring assessment (Moeur et al.,
2011), which reports on the first 15 years of the NWFP, we sought
methods for mapping forest conditions at both the beginning
(Time 1) and end (Time 2) of the monitoring period, which could
be used to assess change in older forest as well as wildlife habitat
and watershed condition. Specifically, we looked to nearest-neigh-
bor methods as a way to fill in missing data between forest inven-
tory plots in both space (to make maps) and in time (to estimate
change, or monitor). Our intent was to develop methods that also
could be applied to monitoring change in older forest change into
the future, as repeat measurement data become available. Moni-
toring results presented in the 15-year report (Moeur et al.,
2011) were based on a simple definition of older forest chosen to
be consistent with Hemstrom et al. (1998) and the first assessment
(Moeur et al., 2005): stands with quadratic mean diameter of dom-
inant and codominant conifers at least 50.8 cm (20 in.) and at least
10% canopy cover of conifers.

Nearest neighbor methods have become increasingly popular
for mapping detailed forest characteristics over large areas (see re-
views by Eskelson et al. (2009) and McRoberts et al. (2010)). In
many applications, forest attributes from ground-based inventory
plots are assigned to map locations where plot data are lacking.
Usually there are less expensive predictor (X) variables available
for all locations (such as from satellite imagery), but only a sample
of locations where more detailed plot data (response (Y) variables)
are available. The motivation behind nearest neighbor methods is
that two locations with similar values for the spatial predictors
should have similar values for the response variables.

Despite the growing use of nearest-neighbor methods interna-
tionally (see review by McRoberts et al. (2010)), we know of no
applications to monitor change in detailed attributes of forest
structure – and particularly for older forest – in a spatially explicit
way. In the Pacific Northwest USA, we have used gradient nearest
neighbor (GNN) imputation (Ohmann and Gregory, 2002) to map
forest vegetation for a variety of forest ecosystems and objectives
(Ohmann et al., 2007; Pierce et al., 2009; Ohmann et al., 2011),
but only for a single map date. In this study, our objectives were
to: (1) investigate GNN imputation for mapping forest vegetation
at two dates; (2) use imputed maps to characterize change in the
distribution of older forest attributes over the NWFP area; and
(3) evaluate change estimates using newer methods for validation
of multi-temporal map data.

In an analysis of the same GNN maps described in this paper,
Moeur et al. (2011) assessed change in older forest using a simple,
single definition of older forest. In this paper, we apply definitions
of older forest that are more ecologically based and that consider
multiple continuous attributes of forest structure, and examine
the effect of varying the definition on the estimates of change in
older forest area.
2. Methods

2.1. Study area

The NWFP area encompasses 23.2 millionha in the Pacific
Northwest USA (Fig. 1), defined by the range of the northern spot-
ted owl (Strix occidentalis caurina). 19.2 millionha within the re-
gion are forest land, of which 9.3 millionha (48%) are on federal
lands covered by the NWFP (Forest Service, Bureau of Land Man-
agement, and National Park Service) (Moeur et al., 2011). Environ-
mental gradients are shaped by the Pacific Ocean and by mountain
ranges oriented mostly north-south. The climate is maritime along
the Pacific Coast, with mild wet winters, cool dry summers, and
heavy precipitation. Precipitation increases and temperature de-
creases from south to north. East of the crest of the Cascade
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Mountains, temperatures fluctuate more widely and are more ex-
treme, frost-free seasons are shorter and precipitation is much less.
Except for lowland interior valleys, the region is dominated by
mountainous terrain, with elevations ranging from sea level to
>4,300 m, and coniferous forests. Broadleaf trees are associated
with disturbed and wet sites, and become increasingly important
in the mixed conifer and mixed evergreen forests of southwest
Oregon and northwestern California. Fire is the predominant natu-
ral disturbance throughout the NWFP area, but in the last
100 years have been supplanted by timber management and wild-
fire suppression. For detailed descriptions of the vegetation, envi-
ronment, and biogeography of the area (see Franklin and Dyrness
(1988) and Barbour et al. (2007)).

2.2. GNN models for two dates

We mapped forest composition and structure across all forest
land using GNN imputation as described in Ohmann and Gregory
(2002) and Ohmann et al. (2011), with enhancements for two-date
mapping aimed at minimizing differences between maps not asso-
ciated with real change on the ground. Neighbor selection in GNN
is based on weighted Euclidean distance within multivariate gradi-
ent space as determined from canonical correspondence analysis
(CCA) (ter Braak, 1986), a method of constrained ordination (direct
gradient analysis). We implemented GNN with k = 1, assigning a
single nearest-neighbor plot to each map unit.

Spatial predictors (X variables) (Table 1) included climate vari-
ables derived from PRISM (Daly et al., 2008), which are 30-year
normals, topographic and solar radiation variables derived from a
10-m-resolution digital elevation model, geographic location, and
tasseled cap indices (Crist and Cicone, 1984) from Landsat imagery
mosaics developed using LandTrendr algorithms (Kennedy et al.,
2010). LandTrendr (Landsat Detection of Trends in Disturbance
and Recovery) is a trajectory-based change detection method that
simultaneously examines a time-series of yearly Landsat TM satel-
lite images. Using images that are cloud-free, geometrically cor-
rected, and radiometrically normalized (see Kennedy et al. (2010)
for details), the LandTrendr algorithms identify segments of consis-
tent trajectory for each pixel that describe sequences of distur-
bance and growth. The algorithms minimize annual variability
from differences in sun angle, phenology, and atmospheric effects,
such that the remaining signal more closely reflects real changes in
vegetation. LandTrendr has thus far been used primarily to map
forest disturbance and recovery, as was done for monitoring for
Table 1
Spatial predictors (X variables) used in CCA and GNN imputation.

Subset Code Description

Landsat TM TC1 Axis 1 (brightness) from tasseled cap transformation, from
TC2 Axis 2 (greenness) from tasseled cap transformation, from
TC3 Axis 3 (wetness) from tasseled cap transformation, from L

Climate ANNPRE Mean annual precipitation (natural logarithm, mm)
ANNTMP Mean annual temperature (�C)
AUGMAXT Mean maximum temperature of August (�C)
CONTPRE Percentage of annual precipitation falling during the grow
DECMINT Mean minimum temperature of (December) (�C)
SMRTP Growing season moisture stress, the ratio of mean tempe
STRATUS Percentage of hours in July with cloud ceiling of marine s

795 m). (Oregon Coast only)
Topography ELEV Elevation (m)

ASP Cosine transformation of aspect (degrees)
SOLAR Cumulative potential relative radiation during the growin
SLOPE Slope (%)
TPI Topographic position index, calculated as the difference b

window
Substrate SAND Sandy sediments (categorical) (Oregon Coast only)
Location UTME Universal Transverse Mercator easting (m)

UTMN Universal Transverse Mercator northing (m)
the NWFP (Moeur et al., 2011; Kennedy et al., in press). For this
study, we used the resulting ‘‘temporally smoothed’’ imagery
mosaics for Time 1 (1996 in Washington and Oregon, 1994 in Cal-
ifornia) and Time 2 (2006 in Washington and Oregon, 2007 in Cal-
ifornia) as spatial predictors in GNN. Because the LandTrendr
algorithms accomplish normalization through time at the pixel le-
vel, multiple scenes can be mosaicked across large regions without
incurring the obvious scene boundaries associated with traditional
normalization and mosaicking processes.

Reference data (Y variables) were basal area by species and size
class from 17,000 field plots measured from 1993 to 2008 in
regional periodic and annual forest inventories: Forest Inventory
and Analysis (FIA) Annual Inventory (USFS, 2003), FIA periodic
inventories by USFS PNW and Region 5 (PNW-FIA Integrated Data-
base version 2.0, http://www.fs.fed.us/pnw/fia/publications/data/
data.shtml), Current Vegetation Survey (CVS) by USFS Region 6
and BLM (Max et al., 1996), and plots installed following the fire-
mon protocol http://frames.nbii.gov/firemon/) in Josephine and
Jackson Counties in southwest Oregon. At each plot location, there
had been as many as three separate field measurements since
1990. Some were remeasurements using the same design, but oth-
ers had somewhat different plot layouts and measurement proto-
cols. We selected a single set of reference plots for use in all
gradient modeling and imputation, to achieve geographic repre-
sentation while minimizing effects of changing plot measurement
protocols on resulting maps. For each plot location, we selected the
single plot that was measured most closely to either the Time 1 or
Time 2 imagery date. Plots measured in 2001 or later were
matched to 2006 or 2007 imagery, and plots measured in 2000
or earlier were matched to 1994 or 1996 imagery. We excluded
outlier plots, where field data did not match forest conditions in
the imagery due to disturbance, inaccurate plot coordinates, or a
distinct land cover boundary within the plot footprint. Previous
analyses (unpublished data) have shown that excluding of outliers
has minimal impact on results in terms of map accuracy, whereas
retaining the outliers results in areas of egregious error (where an
outlier plot is assigned as nearest neighbor) that map users
strongly dislike.

We conducted gradient modeling and imputation for six large
ecoregions (Fig. 1), at 30-m resolution. For each ecoregion, we
developed a single CCA model using the selected plots within the
ecoregion plus a 10-km buffer, which was then used in k = 1 impu-
tation for both Time 1 and Time 2. Plots matched to Time 2 imag-
ery could be selected as neighbors in the Time 1 imputation, and
LandTrendr (Kennedy et al., 2010) imagery
LandTrendr (Kennedy et al., 2010) imagery

andTrendr (Kennedy et al., 2010) imagery

ing season (June–August)

rature (�C) to precipitation (natural logarithm, mm), May–September
tratus <1524 m and visibility <8 km. (unpubl. data from Chris Daly, resolution

g season (Pierce et al., 2005)

etween a cell’s elevation and the mean elevation of cells within a 450-m-radius

http://www.fs.fed.us/pnw/fia/publications/data/data.shtml
http://www.fs.fed.us/pnw/fia/publications/data/data.shtml
http://frames.nbii.gov/firemon/


Table 2
Forest attributes derived from tree-level data collected on field plots, used in characterizing older forest.

Forest
attribute

Description

MNDBH Mean conifer diameter at breast height (DBH) (cm), weighted by tree basal area, which emphasizes larger (overstory) trees
OGSI Old-growth structure index (Spies et al., 2007), a composite index (0–100) based on AGEDOM, TPHC100, DDI, STPH5015, and DVPH
AGEDOM Average field-recorded age (year) of all dominant and codominant trees (overstory) trees
TPHC100 Density (trees/ha) of all live conifers P100 cm DBH
DDI Diameter diversity index, a measure of canopy structural diversity calculated from tree densities in four DBH classes (5–25, 25–50, 50–100, and

>100 cm)
STPH5015 Density (trees/ha) of snags P50 cm DBH and P15 m tall
DVPH Volume (m3/ha) of all down wood tallied
CANCOV Canopy cover (percent) of all live trees, calculated from tree tally based on species, DBH, height, live crown ratio, and stand density using allometric
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Fig. 2. Distribution of forest area by ownership and forest attribute (MNDBH (a) and OGSI (b)), at Time 1 and Time 2. CANCOV is total tree canopy cover (%).
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vice versa. The validity of this approach relies on the assumption
that LandTrendr effectively normalized the spectral values be-
tween image dates, i.e. that spectral values were equivalent in
the two imagery years. As a result of these methods, all pixel-level
differences in forest vegetation in the imputed GNN maps for Time
1 and Time 2 were associated with differences in the spectral data;
all other X variables were held constant. Imputed ecoregion maps
were then mosaicked over the study area for Time 1 and Time 2.
Nonforest areas were masked using land cover data from the USGS
Gap Analysis Program (http://gapanalysis.nbii.gov/) and the Na-
tional Land Cover Data set (NCLD) (http://landcover.usgs.gov/),
and excluded from all analyses.

We mapped change in older forest attributes by differencing the
GNN maps for Time 1 and Time 2. We had chosen to use k = 1 to

http://gapanalysis.nbii.gov/
http://landcover.usgs.gov/


-2000

-1500

-1000

-500

0

500

1000

1500

2000

> 20 > 35 > 50 > 65

10
00

 h
ec

ta
re

s

OGSI threshold

-35

-25

-15

-5

5

15

25

35

> 20 > 35 > 50 > 65

Pe
rc

en
t o

f b
as

el
in

e 
ol

de
r f

or
es

t

OGSI threshold

-2000

-1500

-1000

-500

0

500

1000

1500

2000

10
00

 h
ec

ta
re

s

MNDBH threshold (cm) 

-35

-25

-15

-5

5

15

25

35

> 25 > 45 > 65 > 85

> 25 > 45 > 65 > 85

Pe
rc

en
t o

f b
as

el
in

e 
ol

de
r f

or
es

t

MNDBH threshold (cm)

a. MNDBH b. OGSI

Gain

Loss

Gain

Loss

Gain

Loss

Gain

Loss

Fig. 3. Change in distribution of older forest from Time 1 to Time 2, shown as gross gain and gross loss, by threshold value for MNDBH where CANCOV >40 (a) and OGSI (b).
Change is expressed as area (top graphs) and as a percentage of older forest at Time 1 (bottom graphs).

J.L. Ohmann et al. / Forest Ecology and Management 272 (2012) 13–25 17
maintain the covariance among multiple forest attributes within
map units (pixels), an advantage for analyses where multiple attri-
butes are to be analyzed together. For this study, we focused on
two forest attributes that vary with forest development and suc-
cession and therefore are relevant to monitoring older forest: a
simple metric based on average conifer size (MNDBH); and an
old-growth structure index (OGSI) (Spies et al., 2007), a composite
index based on stand age (AGEDOM), density of large conifers
(TPHC100), diversity of tree sizes (DDI), density of large snags
(STPH5015), and volume of down wood (DVPH) (Table 2). To map
and estimate area of older forest, we defined older forest as pixels
above a specified threshold value for MNDBH or OGSI. We also
investigated the effect of varying this ‘‘definition threshold’’ on
the estimates of older forest area. We chose a range of threshold
values somewhat arbitrarily and primarily for illustration pur-
poses. However, our threshold value of 50 for OGSI does correspond
with the value used by Spies et al. (2007) in coastal Oregon to de-
fine late-successional and old-growth forest consistent with the
NWFP. We preferred the MNDBH attribute of average tree size over
alternative measures, such as the quadratic mean diameter of
dominant and codominant trees used by Moeur et al. (2011), be-
cause it gives greater weight to larger trees while avoiding the sub-
jective classifications of crown position by field crews. The MNDBH
is almost always larger than the quadratic mean diameter for a gi-
ven stand. Because of the large amount of forest in the study area
with low density of large trees, due to either harsh site conditions
or past disturbance, forest above a threshold value of MNDBH also
had to have at least 40% canopy cover to be considered older forest.
Lastly, to reduce the effects of slight misregistrations between
the two Landsat imagery dates, we filtered the Time 1 and Time
2 maps of MNDBH and OGSI using the focal median of a moving
3-by-3-pixel window. The 3-by-3-pixel approximates the footprint
of the field plots, and median filtering tends to retain distinct
boundaries between forest conditions.

2.3. Assessment of map reliability

To assess GNN map accuracy for older forest attributes at the lo-
cal scale, we used modified leave-one-out cross-validation for all
plots used in model development (Ohmann and Gregory, 2002).
Because the Time 1 and Time 2 models were not independent
(the same reference data were used in both models), the cross-
validation assesses the reliability of both models and not the
reliability of differences between models (i.e. change). Observed
(field-measured) values were compared to predicted (map) values
from the Time 1 or Time 2 model that was closest to year of plot
measurement.

We also assessed model accuracy at the plot scale and for 8,660-
ha hexagons (10-km spacing on center) using the protocol of
Riemann et al. (2010). We compared imputed Time 2 map values
to values from a systematic sample of n = 5,505 FIA Annual inven-
tory plots, measured from 2001-2008. At the plot scale, we com-
pared observed FIA plot values with GNN-predicted values for
the 3-by-3-pixel windows coinciding with plot locations. Hexagon
values were calculated as the means of the values for all plots in
the hexagon, and the mean of all pixels within the 3-by-3-pixel
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plot footprints in the hexagon. From a scatterplot of predicted and
observed values, we calculated the symmetric geometric mean
functional relationship (GMFR) regression line (Ricker, 1984). Un-
like least squares regression, the GMFR is a symmetric regression
model that describes the relationship between two datasets that
are both subject to error (see Riemann et al. (2010) for more de-
tail). We constructed empirical cumulative distribution functions
(ECDFs) for the plot- and GNN-based estimates as a way of com-
paring two distributions over larger geographic regions. We con-
ducted these analyses for 30- and 50-km hexagons as well, but
present only the 10-km results for brevity.

2.4. TimeSync validation of spatially explicit change estimates

To validate change in forest attributes between the Time 1 and
Time 2 models in a spatially explicit way, i.e. to assess reliability
of change at specific locations rather than change in area esti-
mates summarized over larger regions, we adapted the TimeSync
tool (Cohen et al., 2010). TimeSync was developed specifically for
validating models based on Landsat time-series data, because
independent validation plot data do not exist for assessing
multi-temporal models. TimeSync relies on expert interpretation
of plots within the TimeSync user interface, which consists of four
components: (1) a chip window, within which an area of user-de-
fined size around an area of interest (i.e. plot) is displayed as a
time-series of Landsat image chips, which are viewed simulta-
neously; (2) a trajectory window that displays the plot’s spectral
properties as a graphed trajectory of Landsat band reflectance
or index through time; (3) a Google Earth window where a recent
high-resolution image of the plot and its neighborhood, as well as
historical imagery where available, can be viewed for context; and
(4) an Access database window where the interpreter’s observations
about plot are entered. See Cohen et al. (2010) for more detail about
TimeSync. The TimeSync interpretations have been demonstrated,
through the use of existing reference data (e.g. field, airphoto, or
other mapped data) where they do exist, to reliably capture
disturbances that are visible in the forest canopy (Cohen et al.,
2010). Disturbances in the understory (e.g., pre-commercial harvest
or understory burning) cannot be seen in TimeSync.

For our application of TimeSync, we randomly selected n = 570
validation plots from strata defined by modeling region (Fig. 1) and
by classes of GNN map attributes that describe successional status
and change: MNDBH at Time 1, and the change in this variable from
Time 1 to Time 2. The stratification assured an adequate sample of
areas of change, particularly disturbed areas, which occupy a small
proportion of the overall landscape. The interpreter examined each
3-by-3-pixel plot within TimeSync using the same Landsat time-
series used in the LandTrendr algorithms, and within the context
of current and historical aerial photography. Each plot was classi-
fied into one of five change categories that described events over
the monitoring period: disturbed (high-, medium-, or low-sever-
ity), stable (no disturbance or recovery visible), or recovery (forest
regrowth clearly visible). Disturbance severity classes were defined
by loss of vegetation cover from Time 1 to Time 2: loss of <1/3 of
Time 1 cover (low), 1/3–2/3 (medium), or >2/3 (high) (Cohen
et al., 2010). Plots often contained multiple change classes, and
the recorded trends described the average across the nine pixels.
In cases where the monitoring period encompassed a disturbance
event followed by regrowth, the interpreter assigned the change
class based on net change in cover between Time 1 and Time 2.

For all of the validation plots within each of the five change
categories interpreted in TimeSync, we summarized the change
in total tree basal area between Time 1 and Time 2 by tree size
(diameter at breast height, DBH), using values from tree-level data
in the GNN-imputed pixels within each plot at Time 1 and Time 2.
3. Results and discussion

3.1. The changing distribution of older forest

At both Time 1 and Time 2, forests with lower values for the
OGSI index of older forest structure occurred predominantly on
nonfederal lands, whereas higher index values occurred dispropor-
tionately on federal lands (Fig. 2). Estimates of the amount of older
forest varied as a function of the threshold value chosen to define
older forest (Fig. 2). For example, at Time 2 about 12% of all forest
land had OGSI >50, and 88% of it was on federal lands. There was a
net loss of about 4% of older forest based on this definition thresh-
old, where net change was determined aspatially as the difference
between area estimates for Time 1 and Time 2 (Fig. 2). Patterns
were similar for MNDBH. At Time 2, about 15% of forest land had
MNDBH >65, and 75% of it was on federal lands. Based on this def-
inition threshold, there was a net loss of about 6% of older forest.

When spatially differenced, the gross gain and gross loss of old-
er forest were substantially greater than the net change in area
(Fig. 3). This was true for both forest attributes and for all threshold



Fig. 5. A forest landscape in southwest Oregon encompassing a portion of the 2002 Biscuit Fire, showing tasseled cap axes 1–3 from Landsat imagery as a red-green-blue
composite image for Time 1 (a) and Time 2 (b), areas mapped as disturbed from LandTrendr algorithms (c), older forest (OGSI P50) from GNN at Time 1 (d) and Time 2 (e), and
change in older forest from spatial differencing the Time 1 and Time 2 maps (f). Note the fine-scale variability in older forest as mapped by GNN, and the comingled areas of
older forest gain and loss within the disturbed area.
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values. As threshold value increased, the area (hectares) of mapped
change decreased. However, at increasing threshold values the
amount of change represented an increasing percentage of the area
of older forest at Time 1 (Fig. 3). When expressed as a percentage of
older forest at Time 1, gross gain and gross loss of older forest were
more strongly affected by threshold value for MNDBH than for
OGSI. In other words, OGSI appeared more stable (less noisy) over
time, and therefore potentially more desirable for mapping change,
possibly because it is based on multiple attributes rather than a
single attribute.

The geographic distributions of older forest at Time 2 based on
the above thresholds for MNDBH and OGSI were very similar over-
all when summarized to the spatial resolution of 10-km hexagons
(Fig. 4), although some differences were apparent. For example, a
greater percentage of forest met the older forest threshold for
MNDBH than for OGSI in coastal and southwestern Oregon and Cal-
ifornia. Conversely, in much of the Washington and Oregon Cas-
cades, in the eastern portions of the study area, a greater
percentage of forest met the OGSI threshold. These patterns sug-
gest that productive coastal forests may contain ample numbers
of large live trees, which may develop at younger stand ages and
lack the development of multi-layered canopies or large dead
wood seen in the Cascades.

Although pixel-level change within local areas typically was
noisy (Fig. 5), as expected from differencing two maps imputed
with k = 1, when summarized to larger spatial units (10-km hexa-
gons) the geographic patterns were quite reasonable and interpret-
able. Areas of major disturbance events (large wildfires and timber
harvest) were clearly visible, as were areas dominated by forest re-
growth (Fig. 6). Areas of loss of older forest generally coincided
with areas mapped as disturbed over the same period using Land-
Trendr (Kennedy et al., in press) (Fig. 6). This was particularly true
for areas burned in large wildfires (Fig. 6d), which predominantly
affected federal lands (Moeur et al., 2011). Older forest also de-
creased in areas where timber harvest was the dominant distur-
bance, almost exclusively on nonfederal ownerships (Moeur
et al., 2011). Many hexagons dominated by harvest disturbance
did not coincide with older forest loss or were mapped as older for-
est gain. This would be expected in landscapes where harvested
stands were below the older forest threshold values for MNDBH
and OGSI at Time 1. The LandTrendr algorithms identify distur-
bances but do not characterize the pre- and post-disturbance con-
ditions of the disturbed forest.

3.2. Map reliability at local (plot), 10-km hexagon, and regional scales

Prediction accuracy (root mean squared error, RMSE) from
cross-validation was slightly better at the scale of 10-km hexagons
than at the plot scale for both of the older forest attributes (Fig. 7).
Although the RMSEs for OGSI for MNDBH were comparable, the
geometric mean functional relationship (GMFR) line for OGSI more
closely matched the 1:1 line. The cross validation results apply
equally to the Time 1 and Time 2 GNN maps.

The classification accuracy for older forest (vs. not older forest)
will vary with the threshold value applied, by differentially affect-
ing the sensitivity and specificity of the spatial predictions, as
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demonstrated by Chen et al. (2006). With imputed maps, the over-
all accuracy, sensitivity, and specificity are readily post-calculated
for any threshold value of interest (see Moeur et al. (2011), Table 9,
for one example), and map users may wish to consider these error
rates in choosing a threshold value.

The empirical cumulative distribution functions (ECDFs) for the
FIA plots and the Time 2 GNN map were quite similar for both old-
er forest attributes and at both scales (Fig. 8). In all cases, the ECDFs
indicated that the GNN maps very closely represented the distribu-
tion and range of variation in forest conditions present in the FIA
plot sample. This is an important consideration when forest struc-
ture maps are used for spatially explicit ecosystem modeling
(Duane et al., 2010), as is the case for the maps developed in this
study (Moeur et al., 2011).
3.3. TimeSync validation of spatially explicit change between two GNN
maps

The TimeSync validation data based on independent observa-
tions generally corroborated forest changes captured by the GNN
maps for Time 1 and Time 2 (Fig. 9). On average, plots interpreted
as one of the disturbance categories decreased in basal area from
Time 1 to Time 2 from GNN, and the magnitude of basal area loss
was positively correlated with disturbance severity. For areas of
high- and medium-severity disturbance, almost all diameter clas-
ses decreased in basal area over the period. For low-severity distur-
bances, basal area of larger trees decreased but basal area of
smaller trees increased, which likely could be attributed to post-
disturbance regrowth of smaller trees within the monitoring
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period. Areas interpreted as stable showed very small amounts of
both gain and loss in basal area across all diameter classes, proba-
bly an indication of fine-scale error in the GNN maps (Fig. 5) as
well as natural variability among forests in this state. In areas
interpreted as recovery, basal area increased in the smaller diame-
ter classes as would be expected, while basal area change in the
larger diameter classes was minor and variable. Basal area gain
above 50 cm DBH was essentially nonexistent in any of the change
categories.

3.4. Implications for spatial monitoring of landscape change with
nearest-neighbor methods

Spatial monitoring of landscape dynamics poses unique chal-
lenges for model-based mapping. Our approach draws on the
advantages of three newer methods: (1) The LandTrendr algo-
rithms (Kennedy et al., 2010) normalize imagery through time at
the pixel scale, which provides X variables for spatial modeling that
are more stable spectrally through time for a given location than is
possible with other normalization methods. The LandTrendr algo-
rithms also yield mosaics that are more consistent and seamless
across multiple Landsat scenes than are obtained with other meth-
ods. (2) Nearest-neighbor imputation provides a means of charac-
terizing forest pixels or patches with detailed attributes of forest
composition and structure, which is not achieved with traditional
change detection techniques that identify areas of change but little
about the specific forest conditions. (3) TimeSync affords an accu-
rate and independent assessment tool for characterizing errors in
maps of forest change. In addition, we developed a novel way of
combining multiple plot datasets that span a variety of date ranges
into a single reference dataset for multi-date mapping. This ap-
proach would not be possible without the temporally normalized
LandTrendr imagery. Taken together, these methods provide capa-
bility to map forest condition for any year, and at any time-step, for
which imagery are available, not just for two dates as presented in
this paper. In addition, our methods have the potential to be ap-
plied to other forest systems where both plot data and Landsat
(or other imagery) time-series are available.

Results from this first investigation of nearest-neighbor imputa-
tion to map forest change are promising, but further improvements
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are needed. In particular, additional diagnostics are needed for
describing the reliability of change information from model-based
maps. In this study, the magnitude of estimated net change in older
forest area was quite small relative to the various sources of error
and uncertainty in the imputed maps. This could be attributed in
part to the length of the monitoring period (10–13 years), which
is quite short relative to the time needed for development of
late-successional or old-growth characteristics (several decades
to centuries). Nevertheless, we would like to be able to estimate
the uncertainty of area estimates in the form of variances or stan-
dard errors, in order to state whether differences between two
model-based estimates – in this case for two points in time – are
statistically different. Approaches for variance estimation for kNN
have only very recently been proposed (McRoberts et al., 2007;
Magnussen et al., 2010; McRoberts et al., 2012) but are computa-
tionally intensive and have not yet been implemented over large
study areas like ours.

Even if variance estimators were available, both developers and
users of nearest-neighbor maps also would like to have informa-
tion about the reliability of the spatially explicit (mapped) change
between two imputed maps. This is why we tested the new
TimeSync validation procedure (Cohen et al., 2010), which was
developed specifically for the purpose of validating maps of forest
disturbance and regrowth. We successfully used TimeSync to cor-
roborate the spatially explicit information on forest disturbance
and growth contained in the GNN maps for Time 1 and Time 2.
However, TimeSync cannot provide a true validation of a classifica-
tion of older forest in the classic sense, because precise thresholds
associated with class boundaries (e.g., MNDBH >65 or OGSI >50)
cannot be reliably interpreted in Landsat imagery. Rather, the ap-
proach provides corroboration of GNN-based change estimates
from a set of independent observations. Another limitation is that
TimeSync validation results are aspatial, for a sample of plots, and
do not depict error in a spatially explicit way.

In this study, where we imputed forest attributes at the 30-m
pixel scale with k = 1, it is not surprising that the Time 1 and
Time 2 maps contained a high level of fine-scale variability
among pixels (Fig. 5). This variability was even more pronounced
in the maps of forest change, constructed by spatially differenc-
ing two maps. Evidence suggested that much of the fine-scale
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change in the maps was error rather than real change. This was
indicated by the improvement in RMSEs at the 10-km-hexagon
scale over the plot scale (Fig. 7), and by the fact that gross losses
and gains of older forest greatly exceeded the amount of net
change regardless of the threshold applied (Fig. 3). Yet despite
the fine-scale noisiness (Fig. 5) and the lower prediction accu-
racy (RMSE) at the local scale (Fig. 7), the mapped distributions
of older forest across the study area were very consistent with
the FIA field plots at both the plot and 10-km-hexagon scales
(Fig. 8). Estimates of older forest change from GNN also were
corroborated by plot-based estimates from successive forest
inventories where available, as reported by Moeur et al. (2011)
based on analyses of the same GNN maps. Furthermore,
geographic patterns of older forest and change were consistent
with mapped disturbances over the same period (Fig. 6).

The primary challenge of this study, as with any model-based
estimation, was to reduce error and uncertainty to the point where
real forest change could be determined with confidence. Several
ongoing improvements are expected to reduce error in future near-
est-neighbor maps. In model development, each plot will be paired
with LandTrendr imagery from the same year of plot measure-
ment, reducing the temporal mismatch from the current maximum
of six years down to one year. In addition, information on historical
context (disturbance history) available from the LandTrendr time-
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series will be incorporated as spatial predictors, which has the
potential to greatly increase prediction accuracy (Pflugmacher
et al., in press). Although recruitment of older forest through
growth and restoration activities is a key objective of the NWFP,
small changes in average tree diameter in mid- to late-successional
forests are particularly difficult to detect with Landsat imagery
(Cohen et al., 1995). The above-mentioned enhancements should
improve capabilities to map this kind of forest development.

Lastly, error in the field plot data contributes to an unknown
degree to the total error present in the imputed maps. This in-
cludes sampling error within plots, which affects how well the
sample trees represent the surrounding stand, as well as differ-
ences in plot design among the component datasets used in
our analysis. Tree tally collected using different plot designs will
produce different plot classifications and estimates of landscape
proportions of older forest (Williams et al., 2001; Gray, 2003).
However, the inventory plot designs and measurement protocols
for the primary plot datasets used in our analysis (FIA and CVS)
are similar. An analysis by Gray et al. (2009) indicates that FIA
and CVS plots produce similar plot-level estimates for several
forest attributes in the Oregon Coast Range, including for the
OGSI composite variable we used in this paper. Further research
is needed to quantify sampling effects on estimates of older for-
est in other forest ecosystems, and to quantify effects on the im-
puted maps. The differences among plot designs used in our
analyses are another reason we caution against pixel-level inter-
pretation of k = 1 nearest neighbor maps.

3.5. Implications for older forest policy

The methods for spatial monitoring of forest conditions pre-
sented in this paper provide an unprecedented wealth of infor-
mation about forest landscape patterns and dynamics over
broad regions. The pixel-level data on multiple forest attributes,
expressed as continuous variables, can be summarized, post-
classified, and re-scaled to address a wide array of forest man-
agement and policy issues. This flexibility is perhaps the greatest
advantage of maps developed with nearest-neighbor imputation,
and in this paper we demonstrated this flexibility using two
attributes of older forest. However, the richness and complexity
of the data pose new challenges for use of the information by
forest managers and policy-makers. It is incumbent on research-
ers and developers of this information to be as transparent as
possible about methods, and to provide useful measures of
map uncertainty to guide interpretation and application of the
maps. As noted in previous papers (Ohmann and Gregory,
2002; Pierce et al., 2009), GNN maps constructed from regional
inventory plots and Landsat imagery are useful for many appli-
cations in land management and conservation planning at land-
scape to regional scales, but should not be expected to be
sufficiently reliable for project-scale applications. This is perhaps
even more so for maps of forest change derived from GNN maps
for two or more points in time.

Controversy has surrounded the conservation and use of older
forests in the Pacific Northwest – and in many other parts of the
world – for several decades if not longer, and will no doubt con-
tinue. Our methods for characterizing forest conditions and
dynamics over large regions, and for describing the reliability of
the information, should help inform this debate. By providing
information comprised of multiple forest attributes as continuous
variables, at a moderate spatial resolution, debates over how to de-
fine older forest can shift to discussions of which definitions are
most appropriate for the stated objectives. We have illustrated
how, with the paired LandTrendr/GNN maps, effects of varying
the definitions and thresholds on estimates of older forest area
can be examined explicitly.
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