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Increasingly, forest management and conservation plans require spatially explicit information within a manage-
ment or conservation unit. Forest biomass and potential productivity are critical variables for forest planning and
assessment in the Pacific Northwest. Their values are often estimated from ground-measured sample data. For
unsampled locations, forest analysts and planners lack forest productivity and biomass values, so values must
be predicted. Using simulated data and forest inventory and analysis data collected in Oregon and Washington,
we examined the performance of the spatial linear model (SLM), random forest (RF) and gradient nearest neigh-
bour (GNN) for mapping and estimating biomass and potential productivity of Pacific Northwest forests. Simula-
tions of artificial populations and subsamplings of forest biomass and productivity data showed that the SLM
had smaller empirical root-mean-squared prediction errors (RMSPE) for a wide variety of data types, with generally
less bias and better interval coverage than RFand GNN. These patterns held for both point predictions and for popu-
lation averages, with the SLM reducing RMSPE by 30.0 and 52.6 per cent over two GNN methods in predicting point
estimates for forest biomass and potential productivity.

Introduction

To manage forest resources in perpetuity, forest analysts, forest
managers and policy-makers need to plan for the future using high-
quality, spatially explicit, up-to-date inventory estimates. Forest
biomass and potential productivity are two variables that are critical
for land transactions, locating timber resources and new processing
facilities, writing silvicultural prescriptions, drafting conservation
plans and linking to climate change and carbon accounting (Latta
etal., 2010). Yet, due to the prohibitive cost of collecting detailed in-
formation overanextensive land base, most forests lack productivity
and biomass values for unsampled locations.

Forest productivity is measured in a wide variety of ways. In the
western US, forest productivity is assessed by the forest inventory
and analysis (FIA) program (Czaplewski, 1999; Roesch and
Reams, 1999) whereby site trees are selected to produce a site
index for forested field plots. The site index is then used in combin-
ation with normal yield tables to determine potential productivity,
i.e. the maximum potential cubic metre volume per hectare per
year (potential mean annual increment; PMAI) that would be pro-
duced over the long term at a given site for a normally stocked
stand (Hanson et al., 2002). In this study, PMAI was used as re-
sponse variable to represent productivity, indicating the average

annual productivity of wood volume (m*ha tyear™?) that
would be realized over time.

Forest biomass isimportant attribute for quantifying the roles of
forests as carbon source or sink and for sustainable forest manage-
ment. The emergence of biomass as a critical variable in assessing
sequestration of atmospheric carbon and in providing critical
information to forest resource management and policy decision-
making has focussed attention on its estimation and prediction
for non-sampled sites. Due to variation in moisture contents,
dry forest biomass estimates (DRYBIOT) are the basis for forest
carbon inventories and most international negotiations. In this
study, DRYBIOT was used as response variable, and represents
the total above-ground oven-dry biomass of live trees>2.5 cm in
diameter.

Different parametric and non-parametric methods have been
proposed for imputing PMAIL and biomass for unsampled locations
by linking measured ground variables and available auxiliary vari-
ables. Recently, nearest-neighbour (NN) methods, such as gradient
nearest-neighbour (GNN, Ohmann and Gregory, 2002), k-nearest
neighbour, (k-NN, McRoberts et al., 2002) and random forests (RF,
Breiman, 2001; Eskelson et al., 2009b), have been developed and
have gained widespread use in imputing (augmenting) data for
point (mapping) and total (block) predictions.
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The reasons for the wide use of the NN methods in forestry
include:

(1) Simultaneous prediction of multiple variables: many variables
of interest can be estimated at once for each location.
(2) The availability of low-cost and wall-to-wall climate and re-
motely sensed auxiliary variables that are related to variables
of interest (Y variable set) (LeMay et al., 2008).
The maintenance of logical relationships among Y variables
and the provision of estimates that are within the bounds of
biological reality (Moeur and Stage, 1995). Because a match
is derived from the sampled locations, the estimate will, neces-
sarily, exist in the population. This is particularly true if a single
neighbour is used in the imputation whereby the covariance
structure of multiple attributes of forests at a target location
is maintained. This property benefits many applications in
forest management and planning, which often require infor-
mation about many variables simultaneously for all or most
sites.
No assumption on the distributional characteristics for the
auxiliary variables or for the variables of interest (LeMay and
Temesgen, 2005): because NN methods are distribution-free,
they mitigate the difficulties encountered with alternative
parametric and semiparametric multivariate modelling
approaches (Koistinen et al., 2008) due to locally varying rela-
tionships between X and Y in response to variation in species,
age, forest structure, soil and climate (Temesgen et al.,
2003;McRoberts et al., 2007).

3
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Despite their wide use, NN methods are neither unbiased nor con-
sistent (LeMay and Temesgen, 2005). While in certain forest inven-
tory applications with comprehensive field data, bias has generally
not been an issue (Packalen and Maltamo, 2007), recent studies
that compared NN methods using light detection and ranging
reported bias that ranged from —8.78 to 0.25 per cent and 0.16
to 16.16 per cent when using most similar and RF imputation,
respectively (Breidenbach et al., 2010; Gagliasso et al.,, 2014). In
addition, NN methods neither extrapolate nor interpolate well for
conditions with limited samples.

An alternative to the NN approach to mapping and estimating
total biomass and productivity is to use a spatial linear model
(SLM), which includes kriging and universal kriging. This approach
was initially developed for a similar goal: predicting geographic
values or totals for mining resources. Kriging has also been used
to preserve spatial and attribute correlation of FIA data (Moeur
and Hershey, 1999) and to account for spatial dependence in
forest inventory and monitoring (Lappi, 2001). Other applications
of kriging in forestry include mapping of forest resources (Gunnars-
son et al., 1998), analysis of insect pests (Aleong et al., 1991) and
predicting forest biomass and productivity (Ver Hoef and Temes-
gen, 2013). Numerous other examples and applications can be
found in Cressie (1990, 1993).

Ver Hoef and Temesgen (2013) compared the suitability and
performance of k-NN and SLM theoretically and empirically,
and reported that SLM is a better option for point and total predic-
tion. Despite the growing research on GNN and RF and their
wide use for mapping and estimating totals for the Pacific North-
west forests, detailed analyses that compare the performance, ef-
ficiency and suitability of RF, GNN and SLM for predicting (or
mapping) biomass and forest productivity at point and block-level

are lacking. The overall goal of this article is to make similar com-
parisons of SLM to GNN and RF that were missing from Ver Hoef
and Temesgen (2013). For potential uses and applications of
k-NN and SLM in forestry, see McRoberts et al. (2002, 2007) and
Ver Hoef and Temesgen (2013), respectively. Below, we provide a
brief overview of GNN, RF and SLM.

Gradient nearest neighbour

GNN methods are also devised for prediction (mapping), both for
single sites and for block averages. In general, the use of GNN
methods in forestry is based on the notion that there are two data-
sets: one that includes a complete set of variables, and one that
does not. The first dataset is called the reference (or training) set
and the latter is called the target set. The missing variables (or
data in the target set) are referred to as the Y-variable dataset,
and the variables that are held in common across both datasets
are referred to as the X-variables. For each observation in the
target set, one or more nearest neighbours are found in the refer-
ence set, based onthe magnitudes of differencesin the X-variables.
Ifthe magnitude of differences between a target observationand a
given reference observation, summed across all X-variables, is
found to be a minimum, when compared with differences in rela-
tion to each of the remaining alternative observations in the refer-
ence set, then that particular reference observation is identified as
the NN. This process may be extended from the NN to the next NN,
and so on, up to the k-NNs, as defined by users of this technique.
Once the NNs have been identified, the missing Y-variables can
then be estimated using some function of the associated k-NNs
(e.g. mean, weighted mean or mode), and those values are then
assigned to the target observation as the best estimate of the
missing data.

Unlike other NN methods, GNN uses canonical correspondence
analysis (CCA) to assign weights to ancillary variables in selecting
NNs. Ohmann and Gregory (2002) asserted that multivariate ordin-
ation space used to weight the ancillary variables provides a better
overall view of ecological, biophysical and biodiversity gradients
over the land base. While this assertion might be true for some eco-
logical variables (e.g. biodiversity, presence or absence species),
GNN was not the most precise in predicting commonly used
forest inventory variables compared with other NN methods (e.g.
Hudak et al., 2008; Eskelson et al., 2009b; Gagliasso et al., 2014).
For detailed history on GNN, see Ohmann and Gregory (2002).

Random forest

Non-parametric methods such as the classification and regression
tree (CART) are used to model or predict multisource data with non-
linear response variables. Bagging trees and RF have the best
performances among CART methods (Prasad et al., 2006). RF has
been used in various applications, including predicting soil type
(Lemercier et al., 2012), soil organic carbon content (e.g. Kheir
et al.,, 2010), basal area and trees per hectare (Hudak et al.,
2008), above-ground biomass (Houghton et al., 2007) and individ-
ual tree attributes (Yu et al., 2011).

The RF approach has been reported to be an efficient prediction
approach, especially when the number of predictor variables is very
large (Svetnik et al., 2003) and when interactions and correlations
among variables are complex and large in number (Strobl et al.,
2008). Prasad et al. (2006) and Liaw and Wiener (2002) assert

20f12

$T0Z ‘ST 4800190 U0 159nb Aq /610°S[euInopioxo*A1saioy//:dny woiy pepeojumod


http://forestry.oxfordjournals.org/

Evaluation of the SLM, RF and GNN methods

that RF is efficient for high-dimensional data, and they list its
advantages as follows: (1) it is non-parametric and does not
require the specification of a functional form (e.g. a general linear
model). Unlike multiple linear regression or maximum likelihood
methods, no single dominant data structure (e.g. normality) is
assumed or required; (2) pre-selection of variables is not needed
(a robust stepwise selection method is used) and the variables
can be a mixture of continuous and categorical variables; (3) the
same variable can be reused in different parts of a tree because
context dependency is automatically recognized; and (4) these
methods are robust to the effects of outliers and missing data.

The RFapproachis not withoutitslimitations. Inanapplication
for classification purposes, the RF approach proved to be biased
towards the most frequent classes. To avoid bias, Chen et al.
(2004) suggested the use of balanced RFs or weighted RFs.
Strobl et al. (2008) found bias when covariates were highly corre-
lated. In addition, like other NN methods, RF cannot extrapolate
beyond the training data and may not interpret well for condi-
tions with few samples (McInerney and Nieuwenhuis, 2009).
Unlike SLM, RF approach cannot provide probabilistic prediction
accuracy.

Spatial linear model

The spatial variation of PMAI and DRYBIOT values is complex but is
not generally unstructured. Due to parent materials and microsite
similarities, the values of PMAI and DRYBIOT are spatially depend-
ent at some scale, with this dependence referred to as spatial
autocorrelation. This structure is assumed to be random, which
can be described by a semivariogram that summarizes the
spatial variation.

A semivariogram expresses the degree of similarity between
two observations separated by a given distance (the lag). An empir-
ical semivariogram can be computed from sampled data using the
following expression:

Mh)

_ N . 2
vy =5 G :Zl {z(x) — z(x; + h)}

where y(h) is the estimated semivariance at a separation dis-
tance, or lag h, and z(x;) and z(x;+ h) are the observed values at
x;and x; + h, of which there are M(h) pairs (Cressie 1993). In most
cases, the semivariance increases as the distance separating
pairs of points (i.e. the lag) increases, indicating that points close
together tend to have more similar values than those that are far
apart.

The SLM is an extension of geostatistical methods, combining
regression with classical geostatistics, which were developed for
prediction (also called universal kriging), both for single sites or
block averages. For a history, see Cressie (1990). In comparison to
GNN and RF, SLM predictions were designed to minimize the
RMSPE. The SLM has optimality properties with regard to normally
distributed data and/or linear predictors, as reviewed in Ver Hoef
and Temesgen, (2013).However, the SLMis generally robust to mis-
specification of the covariance model (Stein, 1988 and Putter and
Young, 2001), and because SLM predictors are linear (as weighted
averages of data), they are fairly robust to non-normal data due to
a spatially correlated version of the central limit, (e.g. Bolthausen,
1982), allowing for inference based on a standard normal distribu-
tion (e.g. for prediction intervals). There are many extensions of the

SLMwhen predictions cannot be assumed approximately normally
distributed (Diggle et al., 1998). Although geostatistical methods
classically estimated the covariance model by binning data into
distance classes and using a least-squares fit (Cressie, 1985) to
a semivariogram, as described above; modern estimation of
the SLM uses restricted maximum likelihood (REML) estimation
(Patterson and Thompson, 1971; Harville, 1977). REML not only
allows for less biased estimation of regression effects and covari-
ance parameters, but also removes the arbitrary nature of binning.

Like any method, SLM has some disadvantages. These tend to
be related to the problem of estimating the spatial covariance
function. The data are used twice, called empirical best linear un-
biased prediction (Zimmerman and Cressie, 1992); once to esti-
mate the covariance parameters and secondly used for best
linear unbiased prediction (Cressie, 1993). Theory suggests that
SLM should be optimal, but much of that theory is based on an
assumed spatial stochastic model, which does not take into
account the estimation of the covariance parameters. Also, the
theory does not indicate how much better SLM might be; GNN
and RF have fewer assumptions. Perhaps GNN and/or RF are
easier to implement and faster to compute than SLM, and a
small loss in efficiency is compensated by ease of use and compu-
tational speed (Finley and McRoberts, 2008).

Objectives

While GNN and RF are widely used for mapping and estimating
totals for western forests, detailed analyses that compare their
performance, efficiency and suitability to SLM and other geostatis-
tical methods for predicting DRYBIOT and PMAI at the point and
block level are lacking. The overall goal of this article is to
compare the performances of the SLM, RF and GNN approaches
for predicting both point and total DRYBIOT and PMAI of Pacific
Northwest forests through simulations and resampling of real for-
estry data. Building on Ver Hoef and Temesgen (2013), this manu-
script extends that work by (1) simulating lognormal variables; (2)
comparing SLM with two RF and two gradient NN methods; (3)
using a larger dataset collected in Washington and Oregon; and
(4) discussing both theoretical and applied issues.

Methods

Simulation of artificial data

Thedatasimulation procedures are givenindetailin Ver Hoef and Temesgen
(2013). We give a brief summary here. We created spatially patterned and
cross-correlated X-variables. All datasets were repeatedly simulated on a
20x 20 reqgular grid evenly spaced between —1 and 1 on both coordinate
axes. Eight covariates, X; - Xs, were simulated on the grid. Each X; was simu-
lated from an autoregressive recursion where X;depended on X;_1, and each
of these was, in turn, spatially autocorrelated (the autoregression creates
the cross-correlation). We simulated the data so there was signi-
ficant cross-correlation between X;-X,, and there was significant cross-
correlation between Xs-Xg, but the set X;-X, was independent of the set
Xs-Xg. We then simulated the response variable, Y, from the SLM with cov-
ariates X; -Xs, where dependence on the Xs varied from strongly positive to
zero to strongly negative. The group X;-X, had less autocorrelation and
smaller variances than did group Xs-Xs. The response variable was
related to both groups through regression coefficients, but the coefficients
were zero for X, and Xs. The response Y had a smallindependent component
and strongly spatially autocorrelated errors, with a range parameter of 3, for
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data with x- and y-coordinates ranging from —1 to 1. The exact values used
in the simulation are given in Ver Hoef and Temesgen (2013). The spatial
autocorrelation model for simulation was a spherical model, although all
estimations used an exponential autocorrelation model, so there was
model mis-specification for autocorrelation.

We simulated three types of response variables. In all three types, the
data were initially simulated from a normal (Gaussian) distribution, and
this was the first type of response variable. In the second type, we exponen-
tiated the response variable and used it as the mean when drawing Poisson
random variables. In the third type, we exponentiated the response vari-
able, creating autocorrelated lognormal variables.

In summary, several model mis-specifications were made: inclusion of
covariates with no effect (X, and Xs), exclusion of covariates with real
effects (X3 and Xg), and, in the case of SLM, generating data from a spherical
autocovariance model, but fitting the data with an exponential autocovar-
iance model. One of the so-called advantages to the NN methods is that
they are non-parametric, and so can be used on a wide variety of data.
Ver Hoef and Temesgen (2013) outlined why the SLM is ‘robust’, although
it is not completely non-parametric, which was summarized here in the
Introduction. Part of the demonstration of robustness is to simulate non-
normal data, simulate data under a different model than is being used
for analysis, etc. Thus, aim to demonstrate that the SLM, too, can be used
on a wide variety of data.

For each of the three simulation methods listed above, 2000 datasets
were simulated (with 400 simulated values per dataset). For each simula-
tion, 100 locations were sampled randomly, and from each sample, the
other 300 were predicted, along with the overall total for each prediction
method.

Forest productivity and biomass data

Our study uses FIA data collected in Oregon and Washington. The FIA data-
bases are part of the national inventory of forests for the US (Roesch and
Reams 1999; Czaplewski 1999). A tessellation of hexagons, each ~2400
ha in size, is superimposed across the nation, with one field plot randomly
located within each hexagon. Approximately the same number of plots is
measured each year. Each field plot is composed of four subplots, with
each subplot composed of three nested, fixed-radius areas used to
sample trees of different sizes (Figure 1). Forested areas that are distin-
guished by structure, management history, or forest type are identified as
unique condition-classes.

For our study area there were 3356 forested FIA plots measured
between 2001 and 2006. Biomass (DRYBIOT), maximum PMAI, elevation
and primary speciesidentifier (i.e. Douglas-fir (Pseudotsuga menziesii), pon-
derosa pine (Pinus ponderosa) or western hemlock (WH; Tsuga hetero-
phylla)) were obtained from the FIA annual database. For climate data,
we used monthly temperature and precipitation normal data for the
period 1971-2000 that was produced by the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM). The model provided an 800-m
grid that produced differences between measured plot elevation and over-
laid PRISM grid elevation up to 350 mmin the mountainous areas of Oregon
and Washington. Following the data compilation, the Pearson product-
moment correlation coefficients were used to describe relationships
between PMAI and climate variables (Table 1).

NNimputation methods are donor-based methods. Variables of interest
are those forest attributes that are only measured on a subset of plots (e.g.
PMAT and DRYBIOT). Auxiliary variables are attributes that are measured on
all plots. In this study, the 3356 sample points (n) were randomly divided
into reference and target points. Reference points refer to sampled points
that had both DRYBIOT and PMAI, while target points refer to unsampled
points that had only climate, topographic and map attributes. Reference
points formed the pool of potential similar neighbours that could be
selected to impute forest biomass and PMAI and related attributes onto
target points. They were used to develop a similarity function in selecting

®2

Annular Plot
(17.95 m radius)

x
Q

Subplot
(7.32 m radius)

Microplot
(2.07 m radius)

Forest Inventory and Analysis (FIA) plot design

Figure 1 Each field plot is composed of four subplots, with each subplot
composed of three fixed-radius areas used to sample trees of different
sizes.

a neighbour point in the NN analysis. The target points were used to re-
present unsampled points (missing DRYBIOT and PMAI data). They were
used to validate the accuracy of the NN approach by comparing the
observed to the predicted DRYBIOT and PMAI values. The predicted values
were obtained by substituting the DRYBIOTand PMAI of the most similar ref-
erence point.

For SLM, we used 3356 known FIA values and resampled to predict PMAI
and DRYBIOT. These were subsampled in two different experiments. For
each resampling experiment listed below, the datasets were subsampled
500 times. For each subsample, a sample of 672 values was chosen ran-
domly without replacement, and from each sample the remaining 2684
locations were predicted, along with an estimate of the total for all 3356
values. The covariates used were temperature, precipitation, Climate Mois-
ture Index (CMI), an indicator variable for shade tolerance based on WH
trees and elevation. The 500 resamplings were performed for PMAI and
DRYBIOT.

Prediction methods

Seven different prediction methods were examined; these consisted of five
different NN methods, multiple regression (a special case of an SLM that
assumes the random errors are independent), and an SLM:

e GNN1: GNN that uses Mahalanobis distance with k= 1.Unlike the k-NN

methods, GNN uses a CCA.

GNNS5: GNN that uses Mahalanobis distance with k= 5.

RF1: RF that uses one neighbour.

RF5: RF that uses five neighbours.

BestNN: k-NN that uses both Mahalanobis distance and weighted Maha-

lanobis distance and triesk ~ 1,2, .. .,30, and then chooses the distance

matrix and k with the smallest cross-validation RMSPE from the observed
data.

e SLM: a SLM that uses the same covariates as all NN methods as
main effects only, with an exponential spatial autocovariance model
estimated by REML, and using prediction and variance equations, as
described in Ver Hoef and Temesgen (2013).
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Table 1 Pearson correlation coefficients for the FIA plot data (n = 3356 plots)

Elevation (m) Dry biomass (kg) PMAI (m3-ha~*.year™?) Latitude (degrees)

Attribute Temperature (°C) Precipitation (cm) CMI
Precipitation (cm) 0.393

CMI 0.229 0.837

Elevation (m) —-0.789 —-0.512 —0.467
Dry biomass (kg) 0.179 0.372 0.276
PMAI (m*ha™!year™)  0.555 0.629 0.6
Latitude (degrees) -0.678 -0.626 -0.461
Longitude (degrees) —0.255 0.107 0.291

—0.181
—0.685 0.304
0.638 —0.298 —0.598
-0.213 —0.003 0.123 0.308

e L M: multiple regression, like SLM, but assuming all random errors are in-
dependent.

The five NN methods differ primarily in terms of the way they handle the dis-
tance calculations, the number of NNs (k) or the weighting functions they
use, and the assumptions they make.

Nearest neighbor imputation

The GNN and RF methods were conducted using the yaImpute packagein R
language (http:/www.r-project.org) (Crookston and Finley, 2008). The simi-
larity betweenreference and target plots s defined using a weighted Euclid-
ean distance for best most similar neighbour (MSN) and GNN:

Dj* = (Xi — X)) W(X; — X)) (1)

where Wis the weight matrix, X; is a vector of standardized values of the an-
cillary variables for the jth target plot; and X; is a vector of standardized
values of ancillary variables for the jth reference plot. The ancillary variables
for both target and reference plots were standardized using the mean and
variance of the ancillary variables of the reference plots. For bestNN, the
weight usedis W = TA’T”, where T'is the matrix of standardized canonical
coefficients for the ancillary variables and A? is the diagonal matrix of
squared canonical correlations between ancillary attributes and variables
of interest (Moeur and Stage 1995).

In GNN, distances are calculated in multivariate ordination space.
Weights are assigned using a projected ordination score on the ancillary
variables and eigenvalues on the axes and ancillary variables. In addition
to weighting, the prediction procedure involves the following four steps
(Ohmann and Gregory 2002).

e Using CCA, conduct direct gradient analysis and develop a model to
quantify relations between response and auxiliary variables.

e Foreach unsampled location, predict scores for the first eight axes by ap-
plying coefficients from the model developed in (1) using their auxiliary
variables, and identify nearest reference point based on Euclidean and
predicted scores, weighted by their eigenvalues.

e Impute the response variables of the selected NN sample to the
unsampled locations.

Abinary CART (Breiman, 1984) approach was used to develop classification
rules for estimating DRYBIOT and PMAI and to characterize relationships
between potential productivity and site (geographic and climatic) variables.
In fitting the CART models, vegetation and site variables were used to split
the data into increasingly homogenous subsets, using binary recursive
algorithms developed in R language (http:/www.r-project.org). The geo-
graphic and climatic classifying variables included latitude, longitude, ele-
vation, temperature and precipitation. Within each homogenous subset
(also known as node), sample points were randomly divided into reference
and target points. Following that, imputation was carried out within each

node. The reference points were used to develop a similarity function to
select a neighbour point within each node. To quantify similarity a distance
measure, which was calculated as one minus the proportion of trees where
a target observation is in the same terminal node as a reference observa-
tion, was used. Following that, within each node, the target points repre-
sented unsampled locations without biomass and productivity values.
The number of neighbours (k) considered for predictions of the target unit
can be set to any number of reference points. In this study, we set the
number of reference points (k) to 1 and 5.

For NN methods, prediction standard errors are computed using
cross-validation (Ohmann and Gregory, 2002; Temesgen et al., 2003;
Stage and Crookston, 2007; Eskelson et al., 2009b). Cross-validation
makes predictions for sites that already have values, where each
sample is removed one at a time, and the rest of the sample is used to
predict the one that was removed. The idea is to use in-sample averaged
squared errors between the predicted and observed values to serve as a
global estimator of squared errors when out-of-sample. Let the NN pre-
diction standard error be estimated as (after Ver Hoef and Temesgen
2013),

where 6 is the cross-validation prediction of ¢ for i = 1,..,n sample values.
Assuming prediction errors are normally distributed, 90 per cent prediction
intervals are formed as & +1.6457 for j=n+ 1,.., n+m out-of-sample
values, where mis the sample size of the target dataset. Note that Zis con-
stant for all sites.

For the standard error (SE) of estimating a total (T), onecanusetheidea
of classical sampling theory, e.g. (Thompson, 1992), where £ replaces the
standard error (after Ver Hoef and Temesgen 2013),

SE(T) = ¢/(n+mm

Spatial linear model

Heuristically, the LM and SLM can be envisioned as follows. Suppose that we
develop a multiple regression model between a response variable and cov-
ariates; this is the fitted LM. Predictions for samples with covariates, but
without the response variable, are then based on the estimated regression
coefficients applied to the covariate values in that sample. The SLM uses
additional information. For example suppose we notice that, when
making a prediction at an unsampled location, the residuals tend to be posi-
tive between the LM fit and the actual values at nearby sampled locations.
Then it makes sense to adjust a prediction to some value that is also above
its LM fit. The amount of that adjustment depends on the estimated spatial
covariance model, which also provides the estimated variance for the
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prediction through a set of formulas that can be found in Ver Hoef and
Temesgen (2013) and references therein, and many other places.

One problem in making the comparison is that GNN and RF are algo-
rithms that make no assumption about how spatial data were created;
they only assume a fixed surface. The SLM, on the other hand, is based on
the idea that data are a realization of a spatial stochastic model. By condi-
tioning onrealizations under a SLM, and hence adopting a fixed surface per-
spective, GNN, RF and SLM can be evaluated in a common framework.
Foresters and forest managers are interested in the global performance
of predictive or imputation methods across a management region,
among management regions, and across time. Supporting that practice,
the comparison of prediction or imputation methods using global compu-
tations of average bias and RMSPE is described in the following section.

Performance measures

Following the performance measures used in Ver Hoef and Temesgen
(2013), we evaluated the predictive performance of RF, GNN and SLM for
both individual point predictions and totals over all points. For each of the
seven prediction methods, the random separation of the data into target
vsreference points was repeated 500 times for the three performance mea-
sures.In general, let 6;be the true, known values from the dataset, and let 6;
be a prediction, either for a specific point or for a total (after Ver Hoef and
Temesgen 2013).

(1) RMSPE: root-mean-squared prediction error, measures how close the
estimates are to the true values.

RMSPE = ERS 0 — 6))?
- m; i i

where mis the number of simulated values and MSPE is RMSPE squared.
A smaller value of RMSPE indicates that predictors are closer to true
values.

SRB: signed relative bias. Absolute bias is meaningless, so it is expressed
as a fraction of the variability. It is well known that MSPE = bias? + vari-
ance. Thesign of biasis also informative, so signed relative bias as a frac-
tion of variability, and is computed as,

) [ 7
SRB = sign(7) MSPE — 22

1i R
T=="3 (6 —6)
mi:l l

=

where

and sign () is the sign positive or negative of . A smaller absolute value of
SRB has smaller bias, a negative sign indicates under-prediction, and a posi-
tive sign indicates over-prediction.

(1) PIC90:90 percent predictioninterval coverage. This measures how well
uncertainty is being estimated. For many predicted values, or over
many simulations, a prediction interval should cover the true value
with the claimed percentage. For normally distributed estimators, the
prediction interval coverage is

m
PIC90 = %ZI(@i — 1.645SE(0,)))6; & 6;(0; + 1.645SE(1))
i=1

where §; is the ith predictor, SE (6;) is the estimated standard error of 6,
andé; is the true value. PIC90 should be near 0.90, if prediction intervals
are properly estimated. Itis also possible to compute PIC95 by replacing

1.645 with 1.96 in the formula above, in which case PIC95 should be
near 0.95.

Results and discussion

Data summary

The FIA data collected in Oregon and Washington showed that
both PMAI and DRYBOT were negatively correlated with elevation,
but positively correlated with temperature, precipitation, CMI and
percent composition of WH (Table 1). The data depicted relation-
ship between distance and semivariance (Figure 2).

Predictions

For both the simulated and forestry data, the predictive abilities of
the seven methods substantially differed in terms of RMSPE, SRB
and prediction interval coverage. The performance of these
methods varied by the type of distribution and variables examined.
Except for the lognormal distribution, SLM resulted in the smallest
RMSPE. For predicting biomass and potential productivity, SLM
resulted in the lowest RMSPE and reasonable prediction interval
coverage.

Simulated data

For the Gaussian simulated data, the SLM had the lowest RMSPE,
for both point and total predictions, as expected (Table 2). Not
only was it lowest, it was dramatically lower than any other pre-
dictor. The datawere simulated with a high amount of autocorrel-
ation, so this demonstrates how much better SLM can be in that
case. When compared with RF1 and GNN1 (the two commonly
used NN methods for prediction and mapping of attributes of
western forests), SLM reduced RMSPE by 68.3 and 78.4 per cent
for the point predictions and by 60.2 and 75.9 per cent for the
total predictions, respectively. SLM was also noticeably better
than LM (linear model assuming independence), with reduced
RMSPE of 37.7 and 35.8 per cent for point- and block prediction,
respectively.

P i

5000

semivariance
3000

o < MAI Variogram

3 — MAI Fitted Model

B © DRYBIOT Variogram

o - — DRYBIOT Fitted Model
I I I I I I I 1
0 50 100 150 200 250 300 350

distance

Figure 2 Variograms for the PMAI and dry biomass, fitted model using the
spherical model.
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Table 2 Performance summaries for the 2000 Gaussian simulated spatial datasets

Gauss Point/total RF1 RF5 bestNN GNN1 GNN5 LM SLM
RMSPE Point 7.717 7.714 4.476 11.300 9.100 3.922 2.443
RSB —0.002 —0.002 —0.001 0.036 0.044 0.001 0.006
PIC90 0.703 0.704 0.880 0.875 0.864 0.897 0.894
RMSPE Total 223.4 2229 154.2 370.0 320.0 138.7 89.0
RSB —-0.020 —-0.018 -0.012 0.345 0.401 0.008 0.052
PICS0 0.784 0.784 0.882 0.906 0.858 0.882 0.892
2 RF1
— B RF5 -
O bestNN
N | B GNns N
— |olM -
o SLM
o | Eo E s | S
S« 1 I | i i 3 o | 1+
[SIR=] O o 171
o o
E s
c 7| S
Qo <
° Gaussian Poisson lognormal ° Gaussian Poisson lognormal

Simulated spatial dataset

Figure 3 Prediction interval coverage (90%) for point by simulated spatial
dataset.

All prediction methods were essentially unbiased for both point
and total predictions. Except for RF1 and RF5, prediction interval
coverage was near 0.90 for all point predictions. It appears that
the RF1 and RF5 had extremely low interval coverage for both
point and total estimates (0.78). GNN5 had relatively low coverage
(0.86) as well (Table 2).

While there was no sizable difference between RF1 and RF5,
GNNS5 performed much better than GNN1. When compared with
GNNS5, RF1 and bestNN reduced RMSPE by a respective 15.2 and
42.0 per cent for point predictions and by 30.3 and 31.0 per cent
for total predictions. However, RF1 and RF5 had low prediction
interval coverage for both point (0.703) and total (0.784) predic-
tions (Figures 3 and 4).

For the Poisson-simulated data, SLM had, again, the lowest
RMSPE, for both point and total prediction (Table 3). When com-
pared with RF1 and GNN1, SLM reduced RMSPE by 28.2 and 31.1
per cent for the point and by 16.3 and 43.1 per cent for total pre-
dictions, respectively. The performance difference declined when
the number of NNs increased from 1 to 5. Compared with GNN5,
SLM reduced RMSPE by 14.9 and 36.1 per cent for point and total
predictions, respectively. Except for GNN1 and GNNS5, all of the
methods appeared to be unbiased for point prediction, with gener-
ally valid confidence interval coverage. There appeared to be some
bias among the RF and GNN methods for predicting totals, and
their confidence interval coverage was low, at 0.71 and 0.55, re-
spectively. The 0.852 prediction interval coverage for the LM and
SLM was also somewhat low, and this simulation was SLM’s
poorest performance on that measure.

Simulated spatial dataset

Figure &4 Prediction interval coverage (90%) for total by simulated spatial
dataset.

Although there was also no sizable difference between RF1 and
RF5 for the Poisson-simulated data, GNN5 performed much better
than GNN1. For point estimate, GNN5 reduced RMSPE by 18.4 per
cent when compared with RF5.When compared with GNN5, RF1
and bestNN reduced RMSPE by 23.1 and 3.0 per cent for total pre-
dictions. However, both RF1 and RF5 had low prediction interval
coverage (0.703). Surprisingly, the prediction interval coverage
for totals was extremely low for GNN (0.5) and very poor for RF (0.7).

The performance measures for lognormal simulated data are
presented in Table 4. For both point and total prediction, the
bestNN had the lowest RMSPE. When compared with SLM,
bestNN reduced RMSPE by 19.9 per cent for point estimates and
by 15.8 per cent for total predictions, but its PIC90 was very short
when predicting total. It had prediction interval coverage of 0.77.
This was a surprising result and can be partly attributed to the
skewed distribution depicted by lognormal distribution.

For lognormal simulated data, except for RF1 and RF5, all of the
methods appeared to be unbiased for point prediction, with gener-
ally valid confidence interval coverage. For RF1 and RF5, there
appeared to be some bias among all methods for predicting the
total. Their confidence interval coverage was dismally low, at
0.34 and 0.13 (Figure 5). Also, the 0.83 total prediction interval
coverage for the LM and SLM was a bit low, and this simulation
was its poorest performance on that measure.

While there was also no sizable difference between RF1 and RF5
for the lognormal simulated data, GNN5 performed much better
than GNNT1. For total prediction, GNN5 reduced RMSPE by 142.3
per cent, when compared with RF5.When compared with GNN5,
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Table 3 Performance summaries for 2000 Poisson-simulated spatial datasets

Poisson Point/total RF1 RF5 bestNN GNN1 GNN5 LM SIM
RMSPE Point 6.29 6.28 5.27 6.54 5.30 5.32 4.51
RSB —0.052 —0.052 —0.033 0.242 0.290 —0.002 -0.001
PICS0 0.839 0.839 0.904 0.892 0.890 0.931 0.915
RMSPE Total 309.0 311.6 297.1 455.0 405.0 299.7 258.7
RSB -0.157 -0.161 —0.142 0.571 0.560 0.010 0.015
PIC90 0.709 0.712 0.810 0.554 0.495 0.852 0.852
Table &4 Performance summaries for 2000 lognormal simulated spatial datasets
Lognormal Point/total RF1 RF5 bestNN GNN1 GNN5 LM SLM
RMSPE Point 1.35 1.26 1.00 1.50 1.30 1.30 1.19
RSB —0.188 —0.280 —0.047 —0.027 —0.040 —0.008 —0.004
PIC90 0.88 0.91 0.91 0.90 0.91 0.94 0.93
RMSPE Total 82.0 106.6 36.5 49.0 44.0 458 43.4
RSB —2.074 —2.798 -0.492 —0.235 -0.411 -0.110 -0.067
PIC90 0.34 0.13 0.77 0.89 0.84 0.83 0.83
o _[2 FET the use of GNN, eithgr for ppinF or.total predictions, when data
— | = besthN have Gaussian and Poisson distributions.
o GNNS
o LM
o =St Forestry data
S - _H,-H ..... .H_.H. . L1} -H..H. The performor)ce medsures for resampling PMAI are presented in
8 Table 5. For point prediction, SLM, followed by the LM and bestNN,
ol resulted in the smallest RMSPE. For predicting total, SLM again
0 _| had the lowest RMSPE. SLM reduced RMSPE by 31.4 and 26.9 per
= cent over RF1 and GNN1 (Table 5). There appeared to be some
bias for the bestNN and RF methods. All prediction intervals were
reasonable for the point estimates. Prediction interval coverage
g_ was too short for RF1, RF5 and bestNN (Figure 5).

Biomass_Point Biomass_Total PMAI_Point PMAI_Total

Figure5 Pointand total predictioninterval coverage (90%) for biomass and
productivity.

RF1 and bestNN reduced RMSPE by 2.8 and 25.6 per cent, respect-
ively, for total predictions. However, RF1 and RF5 had low prediction
interval coverage. Among the methods examined, only GNN1 had
valid prediction interval coverage for both point and total predic-
tions (Figure 3 and 4).

SLM outperformed LM for Poisson and lognormal distributions
for both point and total estimates. When compared with GNN5,
LM reduced RMSPE by 65.3 per cent for point and 62.5 per cent
for total predictions for Gaussian; 18.7 per cent for point and 34.1
per cent for total predictions for Poisson; and 13.2 per cent for
point and 6.5 per cent for total predictions for lognormal distribu-
tions (Tables 2-5). In addition to high RMSPE, GNN1 and GNN5
had the poorest prediction interval coverage, except for the log-
normal distribution. Based on these results, we do not suggest

The performance measures for resampling DRYBIOT data are
presented in Table 6. For point prediction, SLM reduced RMSPE by
25.0 and 28.9 per cent over RF1 and GNN1, respectively. The per-
formance difference declined when RF5 and GNN5 were consid-
ered. SLM reduced RMSPE by 9.2 per cent over both RF5 and
GNNS5. Point prediction appeared unbiased for all methods. Predic-
tion interval coverage was quite good for all methods. For predict-
ing totals, there appeared to be some bias for the RF and GNN
methods, and prediction intervals were extremely short, as well
as small, for RF. SLM reduced RMSPE for predicting total DRYBIOT
by 66.6 and 25.1 per cent over RF1 and GNN1, respectively.

SLM and LM outperformed both GNN5 and bestNN for both
point and total prediction of PMAI and DRYBIOT. Except for point
biomass prediction, GNN5 outperformed RF5 in predicting both
biomass and PMAIL Although there were minor differences
between RF1 and RF5 for predicting PMAIL and biomass, GNN5
resulted in lower RMSPE than did GNN1. Increasing the number
of reference points effectively shifted the prediction toward the
sample mean, or altered the shape of the distribution of predic-
tions toward normal, which is unrealistic when the distribution
is non-normal or skewed.
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Table 5 Performance summaries for 500 resampling of the forest productivity data

PMAI Point/total RF1 RF5 BestNN GNN1 GNN5 LM SLM
RMSPE Point 2.9 2.9 23 33 2.6 2.4 2.2
RSB 0.023 0.024 0.048 0.004 0.004 —0.003 —0.002
PIC90 0.846 0.845 0.904 0.891 0.899 0.904 0.902
RMSPE Total 325.4 323.2 404.6 305.2 257.8 255.6 223.1
RSB 0.746 0.732 1.434 0.113 0.104 —-0.097 —-0.05
PIC90 0.74 0.728 0.572 0.932 0.906 0.902 0.894
Table 6 Performance summaries for 500 resampling of the forest biomass data

Biomass Point/total RF1 RF5 bestNN GNN1 GNN5 LM SLM
RMSPE Point 89.5 89.5 68.5 94.3 73.9 68.3 67.1
RSB —0.082 —-0.083 -0.025 —-0.011 —-0.003 —-0.001 —0.002
PIC90 0.859 0.86 0.914 0.899 0.906 0.922 0.918
RMSPE Total 21106 21291 8728 9411 7429 7244 7048

RSB -2.3 -2.321 —-0.63 —-0.303 —-0.086 —0.044 —0.053
PIC90 0.212 0.2 0.792 0.902 0.888 0.904 0.908

In predicting stand volume and biomass in a temperate forest,
Latifiand Koch (2012) reported that RF resulted in lower RMSPE (by
3.5 per cent, on average) than the MSN method, but higher bias
than MSN (average bias of 5.13 per cent with RF, compared with
2.44 per cent with MSN for stem volume). Other authors have
also reported the general superiority of RF over MSN and k-NN.
Examples include Vauhkonen et al. (2010) for estimating single-
tree attributes and Hudak et al. (2008) for predicting basal area
and tree counts. However, these studies neither split the data in
their examinations (simulations) more than once, nor examined
the prediction interval coverage. Hence, the inference and asser-
tion might be easily influenced by random sampling of data.

In contrast to the above studies, McInerney and Nieuwenhuis
(2009) reported that k-NN outperformed RF in predicting volume
and basal area per hectare. Eskelson et al. (2009a) also concluded
that MSN is better suited for predicting mean annual increment
than is RF. Breidenbach et al. (2010) found that RF outperformed
MSN when predicting stand volume in central Europe. In this
study, RF resulted in the highest bias in predicting total product-
ivity and biomass. The bias in RF was more than twice as high
as that of the GNN methods. The high bias is one of the
reasons for the poor performance of RF in this study. Bias in RF
has been previously reported by Chen et al. (2004) and Latifi
and Koch (2012).

Chenetal. (2004) and Strobl et al. (2007), respectively, asserted
that RF does not perform well for imbalanced data and for corre-
lated covariates. In contrast, Prasad et al. (2006) asserted that RF
is efficient for high-dimensional data. Our study does not bear
out that assertion. RF and GNN had substantial bias for both the
simulated data and the FIA data. RF and GNN entirely failed to
project or relate the references to the target units. They had
dismal prediction interval coverage for predicting both total dry
biomass and forest productivity.

Hudaket al. (2008) reported that MSN performed better than GNN
when predicting basal area and stem counts per hectare using laser

imaging detection and ranging (LiDAR) attributes. In this study, RF
and GNN prediction methods performed poorly. The dismal perfor-
mances of RF and GNN are disconcerting, and their use might lead
to incorrect forest management decisions. Because of their poor
prediction interval coverage, we do not suggest the use of RF and
GNN for predicting PMAIL and DRYBIOT across the landscape.

Performance measures and their patterns were similar for RFand
GNN. SLM outperformed GNN and RF when bias, RMSPE and PIC90
were considered. Both RF and GNN select NN based on non-spatial
variables and the weight matrix (W in equation 1) is not directly
related to the spatial distances between observations. On the
other hand, SLM bases prediction on spatial nearness and on the rea-
lized residuals in the neighbourhood. Theimprovement of the predic-
tion of PMAI and biomass by using SLM suggests that the UTM Easting
and Northing may have captured the warm-dry to cool-moist,
north-south and east -west gradients that span Oregon and Wash-
ington. The performance of SLM might be attributed to its effective
incorporation of the UTM coordinates. In contrast to our findings,
Pierce et al. (2009) working on a fire model, found that kriging
performed poorly when compared with GNN.

Bias was lowest for LM and SLMin predicting both point and total
forest DRYBIOT and PMAI. Unlike LM and SLM, RF and GNN do not
minimize for error and also include distance component imput-
ation error. Hence, they almost always result in greater error than
do LM and SLM (Ver Hoef and Temesgen 2013).

RMSPE and bias of SLM were greater for the simulated data than
for the FIA data because the forestry data exhibited lower variabil-
ity than did the simulated data. Unlike the parametric LM and SLM
approaches, GNN and RF methods did not require distributional
assumptions in order to predict DRYBIOT and PMAI for non-
sampled locations. Although NN provides the advantage of pre-
dicting forest biomass and PMAI in one step, the results from
this study indicated that SLM generally performed better at this
than did GNN and RF. SLM allows spatial modelling of forest
biomass and PMAIL, which are useful in assessing forest resources.
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The approaches examined in this study can be used to estimate
forest biomass and productivity from map labels or aerial
attributes and can used in other applications, such as landscape
modelling or 3D visualization (Magauhye, 1998; McCarter et al.,
1998).

Our results can be compared with those reported in Pierce et al.
(2009) and Raty and Kangas (2012), where SLM is mathematically
equivalent to their universal kriging and kriging-with-external-drift,
respectively. In Pierce et al. (2009), the SLM performed well com-
pared with GNN, but not as consistently better as our results.
However, parameter estimation likely differed in the studies, as
they do not specify if they used the REML option when they fit
variograms using the GSTAT package. Raty and Kangas (2012)
estimate the SLM by first fitting alinear model assuming independ-
ence, and then computing and fitting a semivariogram on resi-
duals. It is worth to note that both studies do not give a standard
error estimator of point-wise predictions. The use of REML for the
SLM, as described in Ver Hoef and Temesgen (2013), estimates
the fixed effects assuming correlated residuals, and is expected
to be more efficient.

In summary, this article set out to compare RF, GNN and SLM for
predicting totals or averages for DRYBIOT and PMAI in the PNW
forests. Our simulations of synthetic data and resamplings of FIA
data are not exhaustive; however, for the criteria that we chose
(RMSPE, signed relative bias and prediction interval coverage), the
results clearly favour SLM in general. We simulated data under
conditions that should severely test the SLM method. In all cases,
even with mis-specified covariance models, mis-specified linear
models (including non-significant covariates and ignoring signifi-
cant ones), zero-inflated count data, lognormal data and skewed
FIA data, the SLM performed better than RFand GNN and generally
provided valid inference with little bias, and prediction intervals
that contained the true values the correct proportion of time.

Conclusions

Among the methods considered, substantial differences were
found in the abilities for predicting DRYBIOT and PMAL. As a result,
the seemingly divergent parametric and non-parametric approa-
ches resulted in different point and total predictions. SLM outper-
formed GNN and RF in terms of accuracy and precision because
SLM localizes the relation between the response variables and cov-
ariate in both the geographical and variable space. Unlike GNN, SLM
also accounts for the spatial structure of the data and minimizes
differences between observed and predicted values.

The potential applications for SLM are numerous. The SLM can
be used to extrapolate any response variable collected at sample
locations across the landscape and to map probability surfaces
for prediction or errors, which, in turn, provide a higher level of
confidence for their uses. However, like most other methods, the
accuracy of both the SLM, RFand GNN methods depends ontherep-
resentativeness of the sample, as well as the similarity of the target
and reference points.

We foresee future work in several directions. Examination of
multivariate SLM to preserve the covariance among multiple re-
sponse variables at new locations is warranted. In addition to con-
sidering the spatial structure, there is a need to relate forest
biomass and PMAI with stand density and other confounding
factors. Hence, the examination of spatial linear mixed model,

spatial generalized linear model (Diggle et al., 1998) and Bayesian
spatial regression models (Finley et al., 2008, 2011, 2013) using
LiDAR and multispectral imagery that provide wall-to-wall sets of
predictor variables which describe stand structure and stand
density might improve the quality of predictions.

Recently Bayesian spatial regression models have been used
to fully incorporate uncertainty of selected forest attributes in
the spatial covariance parameters and propagate uncertainty
through to prediction intervals (Finley et al., 2008, 2011, 2013).
These approaches also provide a framework for fitting various
types of models. Future studies or activities that consider spatial
prediction would benefit from further comparative investigation
of Bayesian spatial regression models and SLM.
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