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Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration
rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and
planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements
and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground
biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that
we believe will improve the accuracy of biomass and carbon estimates to meet societal needs. In addition, we discuss
the critical challenges in developing or calibrating tree biomass models and opportunities for improved biomass. Some
of the opportunities to improve biomass estimate include integration of taper and other attributes and combining
different data sources. Biomass estimation is a complex process, when possible, we should make use of already
available resources such as wood density and forest inventory databases. Combining different data-sets for model
development and using independent data-sets for model verification will offer opportunities to improve biomass
estimation. Focus should also be made on belowground biomass estimation to accurately estimate the full forest
contribution to carbon sequestration. In addition, we suggest developing comprehensive biomass estimation methods
that account for differences in site and stand density and improve forest biomass modeling and validation at a range of
spatial scales.

Keywords: biomass allometries; sampling error; uncertainity

Introduction

Forest management faces new and evolving challenges as
society assesses ways to mitigate or adapt to climate
change and reconsiders the balance of its interests
between wood production and the provision of ecosystem
services. Whatever paths this process may take, sound
and broad-based decisions will continue to require accur-
ate and defensible biomass and carbon estimates of past,
current, and future forest conditions under different
management scenarios. In addition, accurate biomass
measurements and analyses are critical components in
quantifying carbon stocks and sequestration rates, asses-
sing potential impacts due to climate change, locating bio-
energy processing plants, and mapping and planning fuel
treatments. To this end, biomass equations will remain a
key component of future carbon measurements and
estimation. However, in many cases our ability to estimate
forest biomass accurately is either unknown or severely
limited. In this paper, we identify key points that we
believe will improve the accuracy of biomass and carbon

estimates from tree-level biomass equations to better meet
societal needs.

The purpose of this paper is to review the present
scenario of aboveground biomass estimation, focusing
particularly on estimation using tree-level models. We
highlight the sources of errors in these models and how
they may propagate in time and space upon application.
In addition, we discuss the practical challenges faced in
the measurement of aboveground forest biomass and its
components in the field. Since the challenges and
opportunities for improvement discussed here cover a
broader aspect of biomass estimation rather than a
comparison of performance of certain techniques or
approaches, we believe that the ideas are applicable to
different species and across many different regions.

In the following sections, we first outline different
types of biomass estimation methods presently in use
and classify the sources of errors in estimating forest
biomass using tree-level models. We then identify what
we feel are the most critical challenges in developing
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biomass and carbon models and discuss selected strat-
egies to develop sound and defensible methods. The
fourth section presents an overview of how selected
strategies can be integrated with existing databases and
knowledge and includes examples and comments on the
role accurate biomass equations play in meeting the
above-described societal challenges. The final section
summarizes our main points and provides the concluding
remarks.

Background

Estimating forest biomass is important for quantifying
the roles of forests as carbon sources or sinks and for
supporting sustainable forest management. The know-
ledge of carbon stocks and fluxes is essential to
understand current states and future courses of the
carbon cycle in response to changing land uses and
climatic conditions (Hollinger 2008). Growing carbon
trade and the desire to mitigate climate change has
spawned a number of policies, programs, and legislative
actions. For example, forest carbon stocks for many
developed and developing nations are reported as part of
the overall carbon accounting under the United Nations
Framework Convention on Climate Change. Also, Sec-
tion 1605(b) of the Energy Policy Act for the USA also
allows a voluntary greenhouse gas reporting program.
Under this program, organizations may report their
overall emission budgets and carbon sequestration rates.

The importance of forest biomass inventories is
further highlighted by the necessity of improving our
understanding of carbon fluxes within ecosystems and
between ecosystems and the atmosphere. To that end, the
amount of biomass existing as living vegetation or dead
wood and debris in forest systems is an important factor in
determining how forestry functions to regulate atmo-
spheric carbon. In particular, accurate forest biomass
estimates are crucial for the growing number of emissions
cap and trade systems designed to reduce emissions of
CO2 and other greenhouse gases (GHG). Given that these
systems provide offsets or credits for carbon sequestra-
tion, the need for accurate biomass estimation is greater
than ever before. This need is further compounded by the
increasing number of climate change agreements and
action plans at varying scales. For example, in the 2007
legislative session, the Oregon State Legislature passed
House Bill 3543 which declared that it is the state’s policy
to reduce GHG to 10% below the 1990 levels by 2020 and
to further reduce GHG to 25% below the 1990 levels
by 2050.

Tree biomass estimates are the basis for US forest
carbon inventories and most international negotiations.
The emergence of biomass as a critical variable in
assessing sequestration of atmospheric carbon and in
providing critical information to forest resource manage-
ment and policy decision-making has focused attention

on its accuracy (Heath et al. 2008). Local prediction
accuracy of biomass and carbon maps developed for
regional analyses (>4,000,000 ha) has been questioned
by land managers, decision-makers, and research scien-
tists (Ver Hoef & Temesgen 2013). It is reasonable to
seek information to add confidence in biomass estimates
and map products. In this application, studies on
improving the predictive ability of biomass estimation
methods and models are crucial.

Currently, many state and regional forest biomass
estimates for the USA are obtained from tree diameter
measurements using equations developed for national-
level application by Jenkins et al. (2003). The lack of
species-specific parameters and site-specific attributes in
these models allows for a wider domain of application
and greater consistency across administrative zones but
has clear implications for accuracy at smaller scales. The
performance of the national biomass equations for the
Pacific Northwest forests in particular has recently been
questioned. Zhou and Hemstrom (2009) reported that the
equations of Jenkins et al. (2003) resulted in merchan-
table biomass estimates that were 17% higher than those
based on regional biomass equations. While the accuracy
of the regional biomass models that were derived from
local volume equations is unknown, a 17% difference
between the estimates is disquieting.

Biomass estimation methods used in forestry

Although forest biomass used generally includes all live
and dead material in all forms of vegetation (trees,
shrubs, vines, etc.), most of the research on biomass
estimation has focused on the above-ground components
in live trees because of the prominence of this fraction
and the difficulty in collecting below-ground data (Lu
2006). Moreover, estimations of this fraction in live trees
can typically take advantage of strong allometric rela-
tionships between biomass and measured (directly or
indirectly) tree characteristics. Quite different methodo-
logies are generally needed to estimate biomass in
standing dead trees, biomass in understory vegetation,
biomass in downed wood, and biomass in the forest floor
(Domke et al. 2011).

Based on the resolution of prediction, biomass
equations for aboveground live tree biomass estimation
can be categorized into three levels of increasing
specificity, demanding correspondingly more detailed
inventory data inputs:

(1) Regional biomass conversion factors
(2) Stand-level biomass equations
(3) Tree-level biomass equations

Commonly, tree-level biomass equations are derived
through the use of destructive sampling and linear or
nonlinear regressions (Baldwin 1987; Parresol 2001).
Such equations estimate total and component biomass
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for individual trees based on empirical allometric
relationships with more easily measured inventory
attributes – most commonly diameter at breast height.
Applying these equations to obtain stand or regional
biomass estimates requires that tree-level inventory data
are collected across the population of interest. In
contrast, stand-level biomass equations are derived by
relating aggregate tree biomass characteristics to other
stand-level attributes such as stand basal area and tree
density. Stand or regional biomass estimates can then be
formed using strictly stand-level inventory data (e.g.
aggregate basal area per unit area, tree density). Finally,
regional biomass conversion factors identify biomass
density levels (determined from direct or indirect
biomass measurements) associated with qualitative stand
types common to a particular geographic area (Fang &
Wang 2001). This approach then requires only forest
area and forest-type classifications in order to obtain
regional or national biomass estimates.

Relative to the use of tree-level models, application
of stand-level biomass equations or regional conversion
factors requires less detailed information about the
populations of interest. In particular, only stand-level
characteristics are needed. Yet clearly this can also be a
disadvantage from an accuracy standpoint: variation
among stands with, for example, the same forest type
or basal area stocking, cannot be recognized in biomass
or carbon estimation. Application of tree-level models
not only demands more detailed input data, but also
allows one to recognize variation observable at the most
basic unit of forest inventory. As noted below, the
development of tree-level models also allows one to
consider a sizeable body of scientific knowledge con-
cerning the structural and hydraulic constraints on tree
form and mass distribution. For these reasons, we
henceforth focus primarily on tree-level biomass models.

Sources of error in estimating forest biomass

Sampling errors or uncertainty in the inputs needed to
estimate forest biomass leads to error and uncertainty in
biomass estimates, irrespective of the biomass equations
or models applied. As well, errors in the form or
calibration of the models themselves are also relevant
because these errors will propagate through to the
application stage and thus may be amplified over time
and space. Errors in forest biomass models can be traced
back to aspects of sample design and model calibration,
beginning with the selection of sample plots and sample
trees through model development. Moreover, errors
incurred at one stage are generally carried through to or
may otherwise impact later stages.

A large number of field measurements are a pre-
requisite for developing aboveground biomass estima-
tion models and for evaluating the aboveground biomass
estimation results (Lu 2006). However, early biomass

models or equations were generally focused on narrowly
defined populations, sometimes as small as a single
stand or few stands (e.g. Pollard 1972). Most of the
applications envisioned today are for large ownerships or
for regional/state/national scales. At these scales it is
problematic to identify, for example, all silvicultural
treatments in use or potentially in use in the near future
that might affect tree allometry and biomass distribution.
Yet, the construction of biomass equations requires a
sample from the entire range of tree sizes, ages, sites,
and silvicultural treatments, represented in the popula-
tion of interest (e.g. Bockheim & Lee 1984; Cochran
et al. 1984; Barclay et al. 1986).

The predictive accuracy of a biomass model depends,
in part, on the scope and extent of data used in
development, on the variability in biomass within the
population, and on the methods used to formulate and
calibrate the model. Thus, sources of errors in biomass
estimation can be considered as arising from three main
phases of model development: sampling, measurement,
and model specification. The following points highlight
some of the errors involved in these phases, as well as the
potential for error propagation to occur from phase-
to-phase in application:

Sampling errors

Errors arise from plot and tree selection because of
intrinsic variability in tree attributes such as wood
density and crown architecture. That is, across most
tree populations there is appreciable variation in biomass
levels (and allocations to wood, foliage, etc.) within
species, size, age, and productivity classes, and there is
variation also in the strength or form of the relationships
between the latter attributes and biomass. Direct biomass
measurement is an expensive and destructive process so
most models are developed with relatively small samples
of trees. Therefore, sampling error in model form and fit
is important elements of later biomass estimate uncer-
tainty, and typically only errors in model fit are
estimated.

Different studies have shown a varying range of
sampling error in biomass estimation. Additionally, the
percent sampling error for the total biomass of trees in
the model-development sample differs from the percent-
age sampling error for individual trees. Using two-stage
sampling to estimate individual tree biomass, Ozcelik
and Eraslan (2011) showed the sampling error ranged
from 2.51% to 22.63% per tree (and 2.65% of total
biomass). Their method of subsampling involved the
first stage of randomized branch sampling (RBS) and the
second stage of importance sampling (IS). Williams
(1989) also tested the RBS and IS on loblolly pine
(Pinus taeda) data and found per-tree sampling error
ranging from 5.3% to 28.9% whereas sampling error for
total biomass was just 3.3%. Based on the field test with
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eight trees from a mixed oak stand, Valentine et al.
(1984) found that the sampling error ranged from 2.6%
to 14.4% of the actual fresh weights of the trees and
4.9% of the total biomass.

In addition, if sample selection has been restricted to
trees with symmetric and undamaged crowns, to fully
stocked stands, or to the most accessible portions of the
landscape, then the sampling error estimated in model
development may not correspond to the error incurred
when the model is extrapolated to the full population of
trees or stands.

Measurement errors

As noted, tree biomass is difficult to measure directly, as
to a lesser extent are tree taper/volume and wood density
attributes that may be used to predict biomass. Biomass
measurements are destructive and with many opportun-
ities to lose material (e.g. branch breakage in felling, saw
kerf in stem dissection) and a few to gain material
(entanglement of branches from other trees) measure-
ment error is inevitable and not necessarily symmetric-
ally distributed. Measurement errors also arise from
irregularities in tree form such as out-of-round boles
(leading to variable diameters or cross-sectional areas)
and instrument errors associated with weighing plant
materials in the field. Subsampling procedures used to
estimate crown or stem mass can mitigate certain
nonsampling errors but add another level of within-tree
uncertainty. The latter may be possible to identify and
quantify from the subsampling procedure itself (e.g. if a
probability sampling strategy is used), yet this additional
uncertainty around individual tree biomass can accentu-
ate the difficulty of identifying the form and strength of
relationships between biomass and other tree or stand
factors. The presence of measurement errors results in the
biased and inconsistent estimates of model parameters
and leads to the erroneous conclusions (Canavan &
Hann 2004).

Model misspecifications

These arise from the methods of model identification and
calibration and are influenced primarily by the size and
scope of sample data. In general terms, larger samples
facilitate the identification and quantification of biomass
allometries. Yet it is important to recognize that biomass
samples are often hierarchically structured. Components
of interest in above-ground biomass estimation are
generally foliage, branches, and bole wood and bark;
measurements of these components are taken on the
same trees and these trees are often nested within plots
that are in turn nested in stands. These forms of data
clustering must be accounted for to properly understand
variation in the allometric relationships across a spe-
cies’ range. Also, biomass model parameters are often

estimated on the log-transformed scale. These transfor-
mations are made to stabilize variation or so that the
assumptions of parametric tests are satisfied. However,
nonlinear transformation of variables fundamentally
alters the meaning of model parameters complicating
inference regarding the original allometric parameters of
interest. Finally, most biomass models are developed in a
parametric framework and errors will arise from the
goodness-of-fit of the parametric approximations. Other
model specification errors include:

Omitted variables. Only a few biomass models account
for tree height variation within diameter classes. Past
work has demonstrated that diameter has the strongest
associative relationship with tree biomass, but decades of
research on bole volume estimation makes clear that
height:diameter ratios are critical determinants of cubic
volume and by extension stem biomass. On the other
hand, uncertainty in height estimation is another source
of error in estimating forest biomass from tree-level
inputs. Similar arguments could be made for stem taper,
crown length, and site quality, particularly for individual
components such as stem biomass or crown biomass.

Data integration and fusion. Indiscriminate pooling of
data across a wide range of sites varying in age, site
quality, and stand density, leads to high variability in
biomass within DBH classes. In turn, this complicates
the identification of multivariate biomass allometries or
contributes to a lack of precision in diameter-based
biomass estimation. Similarly, tree species and certain
species subpopulations (e.g. interior [Pseudotsuga men-
ziesii var. glauca] vs. coastal Douglas-fir [P. menziesii
var. menziesii], or shore pine [Pinus contorta ssp.
contorta] vs. lodgepole pine [P. contorta ssp. latifolia])
may differ in their growth, form, and mass characteristics
(see Standish et al. 1985). Equation systems that provide
biomass estimates only by species groups, or apply one
species’ equation to multiple “similar” species, can thus
result in biased estimates (Zhou & Hemstrom 2009).

In partial summary, sampling and measurement
errors in tree biomass, along with measurement errors
in potential predictor variables (tree height, taper, and
site index), lead to errors in biomass model form and fit.
These errors will be compounded by sampling errors
accrued in the inventory of target stands and by the
application of fitted biomass models to the tree data in
those stands especially those that are outside the scope of
the models (e.g. species, sizes, and form classes not
considered in model development). However, the mag-
nitudes and impacts of these forms of error propagation
when equations are applied over hundreds to thousands
of hectares are unknown.
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Critical challenges in developing or calibrating tree
biomass models

Accurate forest biomass and carbon estimation is a
complex endeavor that requires sound statistical formu-
lations and rational biological considerations. In light of
the sources of errors described in the previous section
there is always room for improving forest biomass and
carbon estimation. In this section, we describe the
critical challenges and emerging informational needs
currently encountered in forest biomass and carbon
estimation.

Variation in biomass allometries

The use of allometric biomass equations is inevitable
because the weighing of trees and their components for
direct biomass determination is destructive and prohibi-
tively expensive. However, allometric relations are not
necessarily stationary across a species’ range or even
across size classes within a species. Therefore, it is
important to note that different regions and species link
easily measurable tree and stand attributes to biomass
through different functions such as logarithmic vs. linear
or quadratic forms. There are decades of research
documenting the effects of stand density or local com-
petition on height–diameter ratios and on crown char-
acteristics including biomass (Grigal & Kernick 1984;
Barclay et al. 1986) and wood density (Gonzalez 1990).
For regional or small-scale biomass estimation, it is
important that biomass models allow for calibration
against relatively inexpensive stand or tree metrics such
as stand density or crown length. Also, geographic
variation in moisture stress has been associated with
differences in biomass allometries (e.g. Callaway et al.
1994), and adaptations to moisture stress linked with
differences in wood density (Bouffier et al. 2003).
Identifying such variations is a major challenge given
the high costs of direct biomass measurements. Never-
theless describing these forms of variation is critical to
making efficient use of relatively small numbers of direct
biomass measurements from felled-tree studies, and
ultimately for predicting biomass over a broad geographic
range and differential climatic conditions.

Similarly, most biomass equations are static in nature,
deriving mass from current stand attributes. We are aware
of no efforts to model tree or stand growth directly in
terms of biomass. However, silviculture – and density
control in particular – can affect biomass accumulation
rates. The literature on the impacts of silviculture on
diameters and basal areas is voluminous. Despite early
work in the 1980s (e.g. Bockheim & Lee 1984; Cochran
et al. 1984; Barclay et al. 1986), there is a lack of
understanding on how silvicultural treatments such as
thinning and fertilization affect allometric relationships
and biomass components. Using the data from 79 destruc-
tively sampled Pinus ponderosa trees in Northeastern

California, Ritchie et al. (2013) found that foliage biomass
relationships varied substantially between thinned and
unthinned units, although branch wood and bole biomass
estimates were more stable. Similar research carried out in
different locations and for different species would help
determine the type of models and amount of data to be
collected to develop an efficient allometric equation.

As an alternative to the use of allometric biomass
equations, tree-level volume equations are often used in
conjunction with biomass expansion factors (BEFs) to
obtain biomass estimates. BEFs are used to convert tree
volume to mass in several ways, including conversion of
not only gross volume to overall stem mass but also
gross volume to merchantable biomass. The use of BEFs
allows for the application of existing volume equations
that have been developed from substantial sampling
efforts and that have been in use in commercial and
inventory settings for long periods of time. Nevertheless
careful consideration should be given in using the
expansion factor approach because volume:biomass
ratios can be expected to vary with stand age, stand
density, site index, and other factors. Also, BEFs are
multiplicative functions so the BEF’s errors could
be much greater than the additive functions that sum
the different component biomass (Tobin & Nieuwenhuis
2007). Therefore, it is necessary to consider different
volume-to-biomass conversion factors for small and
large trees while making a choice of a BEF.

Support to quantify carbon sequestration

Emerging carbon markets demand detailed long-term
information on forest carbon stocks. These include not
only standing merchantable tree stocks, but also carbon
stocks in small trees and noncommercial species. Like-
wise included are stocks in standing dead trees and
downed woody debris. Thus a comprehensive forest
biomass estimation strategy must extend beyond the
traditionally merchantable segment of the tree popula-
tion. Small live trees and minor species might be
approached using traditional methods, although diameter
at breast height obviously will not be a useful scaling
factor for trees below breast height. More importantly,
accounting for the wide variety of forms and decay in
dead wood will require departures from simpler allo-
metric methods used for sound, mature trees.

Belowground biomass and carbon (including stocks
in soils, root systems, and the forest floor) as well as
biomass in understory vegetation are other components
of the forest carbon pool that demand increased atten-
tion. These components are not tracked in many forest
inventories, not only in part because of the expense of
belowground measurements but also in part because
techniques for biomass/carbon determination are lacking
or poorly developed relative to tree stocks. The very
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high spatial variation in belowground carbon (see Nave
et al. 2010) also complicates estimation.

Improving the quality of biomass and carbon esti-
mates and their validation at a range of spatial scales is
important to provide confidence in carbon markets and
in quantifying the amount of sequestration. Deterministic
analysis cannot portray the variability of biomass and
carbon that is a fundamental characteristic and critical
for most emerging carbon accounting and sequestration
policies. For example, while the Intergovernmental Panel
on Climate Change (IPCC 2007) asserts that carbon in
trees is approximately 50% of dry biomass, it is
unknown if that ratio is correct when estimating coarse
root biomass. In addition, none of the biomass equations
in IPCC (2007) report account for soil biomass.

Studies on biomass and carbon attributes at small
and large scales over short- and long-time periods are
needed to mimic temporal and spatial variability and
answer large-scale carbon sequestration inference pro-
blems. Quantifying and incorporating biomass and
carbon variability and error distributions would expand
the scope of inference, validate results (or projections),
and support carbon sequestration endeavors.

Support to quantify bio-energy projects

Aboveground biomass is a substantial source of renew-
able energy. Increasingly, biomass of traditionally non-
commercial components such as broken tops, standing
dead trees, bark and branches, and downed wood is
becoming important substitutes for fossil fuel. The mass
and composition of such forest harvest residues are
affected by many factors including age and size of the
trees harvested, species composition, topography, market
conditions, history and structure of the stand, stumpage
prices, utilization standards, and climatic conditions
(Hakkila 1989). Included in the noncommercial compo-
nents may be tree sections with sweep and butt swell that
are removed during log manufacturing at the landing or
at the stump. This suggests the importance of taper
equations that allow for estimation of log utilization
under alternative utilization standards. For example, our
experience in the Pacific Northwest USA indicates that
logs being cut for export generally yield greater forest
harvest residues than logs cut for domestic grades. Also,
dead branches usually will not reach the landing during
yarding or skidding; depending on pulp markets and
logging system, many tops will not make it to the
landing either. This also supports the use of taper
equations so that stem biomass to different top diameters
can be estimated.

Biomass yield is usually could be expressed in terms
of kilograms per unit area. Alternative metrics are also
useful. For example, development of biomass yield
expressed in units of commercial volume removed, e.g.
dry tons of biomass per thousand cubic feet or thousand

board feet timber removed. Mass tables to supplement
volume tables are also needed.

Besides biomass, bio-energy projects often require
estimates of related physical or chemical properties. For
example, for biomass utilization, specific gravity is an
important variable. Specific gravity varies by species and
by position in the tree (Bergman et al. 2010). For liquid
fuel, the lignin percentage of tree components is import-
ant. Moisture content is another variable of interest.
Moisture content affects transportation cost and, in the
case of combustion, recoverable energy. The moisture
content of biomass varies between species, between trees,
within a tree, and during the season (Hakkila 1989).

The development of short-rotation woody crops such
as willow (Salix sp.) as a source of bio-energy and bio-
products is growing in the USA and Europe; however,
accurate biomass equations and estimation methods for
clones and coppices are lacking (Tuskan & Rensema
1992). This is particularly true for very high density
energy plantations, which often constitute very different
tree populations. For example, mechanized cutting and
chipping of poplars (Populus sp.) may be limited to trees
less than 10 cm DBH.

Support for forest fuel analyses

In many regions, including the inland and dry forest types
of the western USA, forest management is increasingly
being shaped by wildfire and fuel management considera-
tions. Wildfire and fuel concerns in these regions have
highlighted the importance of crown biomass, its compo-
nents, and its spatial distribution. Although crown char-
acteristics are also relevant to wood quality considerations
and growth modeling, there has been substantially less
biomass data collected for crown components (branches,
tops, foliage) relative to stem components. This is in part
because crown components traditionally lacked commer-
cial value and in part because the merchantable stem often
accounts for the majority of aboveground tree biomass.

Central to the modeling of wildfire behavior and
intensity is the disaggregation of crown biomass into size
classes and the identification of connections among
crowns. Size distributions (e.g. the 1-, 10-, or 100-hour
fuel time lag classes used in the western USA) are
important determinants of the sensitivity of fuel to
changing moisture conditions. However, similar com-
ponent size classes have not been used outside of the fire
science domain and, as with crown characteristics in
general, differences in their absolute or relative magni-
tudes are not always strongly associated with variations
in tree diameter. Also important in the emerging genera-
tion of fluid dynamics-based fire models is the vertical
distribution of fuel in the finer fuel classes, as this
determines fuel proximity to the ground, fuel density
within different portions of the crown, and the con-
nectivity of fuel throughout the canopy.
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Opportunities for improved biomass estimates

To address emerging biomass and carbon information
needs it will be necessary to collect new sets and forms
of biomass data, with an aim to developing a framework
to integrate existing data and equations. Anticipating
changes in future climate regimes, it is not a viable
strategy to simply update or develop new biomass
equations for individual geographic areas based on those
areas’ historic growing conditions. Instead, it will be
necessary to study variations in the allometric forms of a
species across broad climatic and edaphic gradients and
to account for these variations in integrated biomass
equations that are also sensitive to a greater number of
measurable tree dimensions.

Advance understanding of biomass allometries

A considerable body of empirical data and descriptive
information on tree biomass has been developed. For
instance, Ter-Mikaelian and Korzukhin (1997) detail 803
diameter-based component equations collectively derived
from thousands of trees. Many of these data were
collected for the estimation of local weight tables, or to
uncover regionally relevant empirical trends. This situ-
ation is similar to that found in the field of tree volume
estimation. Although substantially more research and data
have accumulated on volumetric analyses, these efforts
have been aimed primarily at calibrating empirical models
to account for local differences in regional height–
diameter relationships, stem form quotients, or utiliza-
tion/merchantability standards. Aside from the important
and extensively documented impacts of stand density,
relatively little research has been aimed at the funda-
mental questions of why and how height–diameter or
form quotients vary among species or across species’
ranges. Further research on the types and magnitudes of
climatic controls on height–diameter ratios, stem taper,
wood density, and other biomass characteristics is
required to advance our ability to accurately estimate
tree biomass within and across broad geographic areas.
For example, the edaphic conditioning of allometric
relationships documented by Lines et al. (2012) and
Callaway et al. (1994) has two clear implications. First,
new tree biomass data should be collected, in part, to
assist in identifying the intraspecific variations in biomass
along climatic gradients. Second, an emerging under-
standing of these variations should be utilized to improve
the collection of additional data and to guide the integra-
tion of existing biomass data.

Accuracy evaluation and improvements

Because the performance of biomass estimation models
varies, evaluations of their predictive abilities in large-
scale biomass modeling and estimation are warranted. For
estimating biomass and carbon sequestration, models’

suitability and predictive abilities should be considered
during the data collection phase (Lu 2006). A precise
model requires a sound statistical formulation. Hence, it is
desirable to have two independent data-sets; one for
developing prediction equations (the fit data-set) and the
other for evaluation of the methods (the validation
data-set).

Given the high costs of collecting biomass data,
statistical modeling and estimation techniques that allow
one to borrow strength from related units or variables
should always be considered. Common, though not
unique, to tree-level biomass models is the multivariate
nature of the regressand; often models are sought not
only for total biomass but for crown biomass, stem
biomass, etc. Moving beyond simple linear models and
ordinary least squares algorithms to capture cross-
correlations among these attributes is important for
improving parametric and predictive accuracy. As well,
it is often desired that the biomass components should
add up to the total biomass. Parresol (2001), Sabatia
et al. (2008), and Dong et al. (2014) describe models for
ensuring additivity and multi-stage least squares estima-
tion routines for calibrating them. However, the latter
can restrict the class of models that can be entertained,
and there is a need to advance these methodologies to
allow for more flexible (nonlinear or nonparametric)
model forms. In addition to modeling and capitalizing on
cross-correlations among biomass component variables,
similarities in model forms and coefficients across
species or regions could be considered. For instance,
Zapata-Cuartas et al. (2011) have used Bayesian meth-
ods to take advantage of commonalities across species
and regularize individual species model coefficients.

The lack of local biomass equations and the uncer-
tainty of estimates obtained from existing regional or
global equations necessitate improved stochastic model-
ing and validation at a range of spatial scales (Temesgen
et al. 2007). Uncertainty could vary by tree sizes. Chave
et al. (2004) reported that the uncertainty involved in
aboveground biomass estimation of a single tree ≥10 cm
diameter is 47% of the estimated aboveground biomass:
31% from choice of allometric model and 16% due to
measurement uncertainty, but this error averaged out at
the stand level.

Integration of taper and other tree attributes

Tree volume is related to biomass which in turn is
related to carbon. Compatible taper functions segmented
polynomial models and other simpler taper equations
have been used very successfully in the past to estimate
stem volume for commercial species. Oderwald and
Rayamajhi (1991) found that the taper-equation-based
estimates of volume produced less than one-half of the
mean-squared error obtained using volume equations.
Biomass equations for a given species often differ over
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that species’ range because of variation in tree compon-
ent ratios and taper associated with changing site and
stand conditions (Van Lear et al. 1986). Therefore,
formulation of consistent taper equations and biomass
equations using the same data should improve forest
biomass and carbon estimates.

Given the costs associated with direct biomass
measurements, it is also useful to capitalize on existing
taper equations and wood density information to
improve the efficiency of biomass sampling efforts. In
particular, IS and control variate methods have been
developed to provide accurate estimates of stem and
whole-tree mass (e.g. see Van Deusen & Baldwin 1993;
Van Deusen & Roesch 2011). These methods typically
utilize regional tree taper equations at the selection and/
or estimation phases of sampling to improve precision
while disc- or core-based measurements ensure unbia-
sedness for the individual tree. The extensive literature
and some of the past data collected on wood density
could be similarly employed to improve the efficiency of
data collection at the tree level, as well as to help
identify trends in tree biomass associations at broad
levels. For example, the US western wood density
survey program collected data from over 30,000 trees
of 15 commercial species across more than 4000 sites in
the western USA (Maeglin & Wahlgren 1972). Given the
important effects of stem wood density on total tree
biomass, it is likely that considerable information on
species, site-level, and geographic variations in biomass
could be recovered from these legacy data-sets.

Finally, future biomass and carbon modeling efforts
should draw on recent advances in biomechanical
models of tree form. Allometric scaling theory derived
from first principles could be used to guide the devel-
opment of model forms for the allocation of tree biomass
in order to improve robustness over what could be
achieved from empirical data alone. For example, the
quarter-power scaling theory of West et al. (1999)
implies specific constraints on the distribution of tree
biomass, while the work of Mäkelä and Valentine (2006)
establishes specific tree-level covariates besides DBH
that are needed for component biomass estimation.

Combining data sources

Consistent methods for data collection and analysis are
crucial in developing standard biomass estimation pro-
cedures. While forest biomass estimation has been done
using stand-based inventory data and remotely sensed
data, little research has been dedicated toward integrat-
ing these two approaches. In assessing the accuracy of
regional LiDAR-based biomass estimation using a
simulation approach, Ene et al. (2012) found approxi-
mately 1.8 times larger estimated standard errors for the
airborne laser scanning estimates compared to the
ground-based inventories; however, when LiDAR and

ground data are combined the accuracy, measured in
terms of root mean squared error, was improved by 59%.
Traditional field measurement methods are considered to
be more accurate but this information may change very
quickly and become outdated because of the dynamic
nature of forest environments. More frequent satellite
remote sensing data may provide a supplement or a
substitute (Main-Knorn et al. 2011; Goerndt et al. 2013).
More generally, the integration of multiple data sources
and advanced technology will become critical for
estimating forest biomass and carbon accurately over
time (Temesgen et al. 2007). Moreover, because of the
independence of the data-sets, performance of the
models could be cross-verified by using stand-based
inventory data as validation data-sets for models
developed from remotely sensed data.

Zapata-Cuartas et al. (2011) proposed a Bayesian
approach for estimating aboveground tree biomass
which outperformed the classical statistical approach of
least square regression. They found similar significant
values in the estimation of parameters using a sample
size of six trees compared to 40–60 trees in the classical
approach.

Discussion

The global issue of climate change, trade in carbon
credits, and the interest in reducing fossil fuel carbon
dioxide emission by using forest biomass for energy
production has increased the importance of forest bio-
mass quantification in recent years. Different national
and international reports have presented the amount of
carbon sequestered by forests, e.g. IPCC (2007) reports
that forests contain about 80% of aboveground and 40%
of belowground carbon stocks. Additionally, it has been
reported that the amount of carbon stored in dry wood is
approximately 50% by weight. All these numbers are
based on allometric equations developed to relate forest
biomass to easily measurable attributes of forest stands
or trees. Thus, an accurate estimate of carbon stocks
requires improved and consistent methods for forest
biomass quantification.

The most common biomass modeling approach
selects some trees for destructive sampling and weighs
their components. Then regression models are fitted to
describe the relationship of biomass to species and size
variables. However, there are questions that need to be
answered before we apply these models at different
spatial scales. The questions include would the species
composition and stand density at new sites be similar to
those sites where sample trees were selected.

In this regard, caution should be taken in developing
and evaluating methods for estimating aboveground
biomass and its components. Application of more soph-
isticated fitting methods such as seemingly unrelated
regression and nonlinear three-stage least squares and
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their wide use are necessary. Additionally, assessing the
effect of sub-sampling design and sample size in estim-
ating component biomass, the uncertainty involved in the
estimation, scope of inference of the models, and accuracy
of biomass conversion and expansion factors are import-
ant subjects for biomass studies and methodological
research.

We foresee future work in several directions. Exam-
ination of Bayesian methods to preserve the covariance
among biomass components is warranted. In addition to
considering the below ground biomass, there is a need to
develop comprehensive biomass estimation methods that
account for differences in site and stand density and
improve forest biomass modeling and validation at a
range of spatial scales.

Because biomass estimation is a complex process,
when possible, we should make use of already available
resources such as wood density and forest inventory
databases. Combining different data-sets for model devel-
opment and using independent data-sets for model veri-
fication will offer opportunities to improve biomass
estimation. Focus should also be made on belowground
biomass estimation to accurately estimate the full forest
contribution to carbon sequestration. The increasing
demand for credible biomass and carbon estimates at
widely varying spatial scales requires circumspect evalua-
tions of the sampling and modeling practices used for
biomass equation development. The accuracy of forest
biomass estimates can be improved, including estimates
of the aboveground live tree components as well as the
dead and nontree fractions.
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