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Mathematics is permeated with language; it appears in the form of new words and

some old words with new meanings. There are new symbols to be able to read and

consume; much information is presented in tabular or graphic form, and fmally the

language in a mathematics class has its own semantics, syntax and traditions of

argumentation and expression. It is this language, used in the mathematics classroom,

which students must absorb and develop fluency withall while learning the

mathematics expressed by this language. Traditionally, the language of mathematics has

been overlooked in the classroom, as if students could learn it by just being exposed,

rather than having explicit instruction. Numerous professional organizations have called

for a focus on language in mathematics education, yet it appears that this important topic

is overlooked in the classroom. This research project concentrated on developing a

working definition of the language of mathematics and then, speculating that the reason

teachers avoid teaching the language of mathematics, it developed the Language of

Mathematics Teacher Self-Efficacy Scale (L0MTES), a measurement instrument to

measure teacher perceived self-efficacy regarding the teaching of the language of

mathematics. Bandura's socio-cognitive theory was the guiding force in developing this
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instrument. Bandura indicates that self-efficacy is predictivethat teachers with high

perceived self-efficacy on a topic are generally capable of teaching it, while teachers with

low perceived self-efficacy on a topic tend to skip over the topic or teach it in a minimal

way. Self-efficacy, however, is a changeable construct; thus, this instrument could be

used to identifr teachers with low perceived self-efficacy regarding the teaching of the

language of mathematics, which would enable the mathematics education community to

explore possible interventions designed to improve student learning by improving teacher

perceived self-efficacy.
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The Language of Mathematics: A Functional Definition and the
Development of an Instrument to Measure Teacher

Perceived Self-Efficacy

Chapter 1: General Introduction

Language presents a number of difficulties for students in mathematics. It

is easy to get confused when reading about mathematics or when hearing someone

talk about mathematics. It is also difficult to devise good ways to explain one's

own mathematical perspective clearly. As students are learning mathematics they

must contend not only with new vocabulary, but also with vocabulary of the same

words, with new, more precise meanings. There are also symbols that are useful in

mathematics but are difficult to absorb as meaningful representations.

Additionally, mathematics students are expected to develop skills to diagram and

graph information so that meaning can be shared and extracted visually. Finally,

there are a number of syntactic and cultural conventions for students to contend

with as they decode language from others and as they develop their own

communication style in mathematics classes.

The Language of Mathematics has been a veiled topic within the

mathematics classroom. Teachers naturally focus on mathematics instead of

language and students are traditionally expected to learn the new language skills

needed for mathematics by exposure rather than explicit instructionin much the

same way they learned their original, natural language. But the language of

mathematics is not a natural language. First of all, there are no native speakers;
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secondly, mathematics requires an additional natural language to supplement

communication; and finally, one cannot be fluent in this language without being

literate. While students are learning mathematics they are also learning the new

forms of expression containing new rituals, many of which are unlike anything

they have learned while learning their original, natural language.

A number of professional organizations have recognized the need for a

focus on language in mathematics education, including the National Council of

Teachers of Mathematics, The American Mathematical Association, and The

American Mathematical Association of Two Year Colleges. And yet, in

investigating mathematical language the author found little focused research on the

topic. It also was apparent that even though language is the way in which

mathematics is transmitted, teachers rarely focus on language when teaching

mathematics. The question of why this is the case was at the heart of this

dissertation project which focused on speculations that teachers are either unaware

of how to teach the language of mathematics or that they may not believe that they

are capable of successfully implementing language instruction within their

mathematics classrooms. This study developed an instrument to measure teacher

confidence in the ability to teach the language of mathematics.

Bandura's self-efficacy theory is one possible explanation of why teachers

rarely focus on mathematical language. Bandura (1997) posited that behavior is

influenced by an individual's self-appraisal among other factors. It is this self-

appraisal that may be shaping teacher choices regarding language. A teacher's
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perceived self-efficacy is a powerful influence on what she chooses to teach. If she

does not believe she can succeed at teaching a particular topic, she will probably

not be able to. Bandura indicated, however, that self-efficacy is not a static state,

that it can be altered, thus creating a concordant change in a teacher's confidence

and the attached ability to teach language.

In order to view teacher perceived self-efficacy toward the teaching of the

language of mathematics it was necessary to develop an instrument to measure the

construct. This dissertation project was two-fold: (1) to create a functional

definition of the language of mathematics and (2) to create a measurement

instrument to detennine teacher perceived self-efficacy regarding the language of

mathematics.

The first article in this collection focuses on a functional definition of the

language of mathematics and reviews the literature to establish the importance of

the topic and to identify the language difficulties that students face as they learn

mathematics. The second article tackles the question of language being a rare

focus in the mathematics classroom and details a research project of developing a

measurement instrument to assess teacher perceived self-efficacy regarding the

language of mathematics by creating the Language of Mathematics Teacher Self-

Efficacy Scale (LoMTES).

The two articles together detail an investigation into language of

mathematics and the development of an instrument that would enable mathematics

educators to determine teacher confidence in teaching language. It is hoped that
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the instrument will facilitate the identification of teachers who would benefit from

helpfttl intervention. Successful intervention of increasing teacher self-efficacy

should result in increased student learning of and facility with the language of

mathematics.

/
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Chapter 2: Functionally Defining the Language of
Mathematics: A Literature Review

All words begin as servants, eager to oblige and assume whatever
function may be assigned them, but, that accomplished, they
become masters, imposing the will of their predefined intention
and dominating the essence of human discourse. It is for this
reason that articulate conversation must demand not only clarity
of thought and expression but also preciseness of word choice and
meaning. (Pajares, 1992, PP. 308-309)

The eloquent statement by Paj ares focuses on the general need for clarity

of language, but the statement is even more relevant in mathematics because the

use of precise language and expression is part of the very spirit of the subject. As a

demonstration of the difficulty students face with language, Smith (2002) related

the following quote from an unidentified biology text: "Cells divide in order to

multiply" (p. vi). When thinking in biology or English mode, the statement makes

perfect sense. Our brains interpret the terms divide and multiply in an English

sense as separate and increase. But in a mathematical sense, the statement is

humorous, because it is pointless. Division and multiplication are inverse

operations; in mathematics the poor cell is unable to reproduce, leaving nature to

develop only one-celled organisms. English speaking school students must

somehow learn to differentiate between the English and mathematical meanings of

a word. This simple example exposes only one of the several language issues faced

in mathematics. Students must learn to negotiate through considerable confusion

created by language as they are simultaneously trying to follow the abstractions

that make up the bulk of the curriculum in the mathematics classroom.



A number of mathematics educators and educational establishments have

focused on the idea of mathematical literacy (Cooper, 2003; NCTM, 1989, 2000;

OCED, 2003; Romberg, 2000; South African Government, 2003). In 1986 the

National Council of Teachers of Mathematics (NCTM) began its journey toward a

standards document when the Board of Directors created the Commission on

Standards for School Mathematics. When the group was created, it was given two

charges:

1. Create a coherent vision of what it means to be mathematically
literate both in a world that relies on calculators and computers
to carry out mathematical procedures and in a world where
mathematics is rapidly growing and is extensively being
applied in diverse fields.

2. Create a set of standards to guide the revision of the school
mathematics curriculum and its associated evaluation toward
this vision. (NCTM, 1989, p. 1)

In personal communication, Romberg (September 16, 2003) asserted that

mathematical literacy is the key to this mathematics education reform. He defined

literacy more broadly than merely reading and writing. In fact, it might more

generally be called fluency. Students need fluency in mathematics, which includes

an ability to communicate their understanding and to comprehend mathematical

statements. Language is important in developing mathematical fluency, because

mathematics demands precision of language, rejecting ambiguity and vagueness

and valuing brevity and elegance of expression. In order for students to attain the

vision of being mathematically literate, they need a language of mathematics as a

significant tool to develop that literacy (Cooper, 2003; NCTM, 1989; 2000,

OCED, 2003; Romberg, 2000).
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Identifying the Problem

The term language of mathematics is a common yet unfortunately vague

term. A conscientious teacher faces confusion when reading the NCTM

communication standard, which states in part: "Instructional programs from pre-

kindergarten through grade 12 should enable all students to use the language of

mathematics to express mathematical ideas precisely" (2000, p. 60). There is no

indication of what is meant by the term language ofmathematics. There is

apparently an inherent assumption that educators have some sort of tacit agreement

of meaning on this important term.

What is the Language ofMathematics?

This idea of a language of mathematics is not new. Galileo spoke of the

great book of nature being written in the language of mathematics. More recent

theoreticians have also focused on the topic of mathematics as a language. Esty

(1999) and Devlin (1998) have both written books entitled The Language of

Mathematics. Kline (1953) indicated that the language is so rich it suggests new

ideas and is," . . . cleverer than the people who invented it" (pp. 176-177). Kline

also maintained that Leibniz sought to broaden the scope of mathematical

language and create a universal, technical language. Lampert (1998) spoke of the

process of refining language in mathematics. While some mathematics educators

have focused on applications of language (Austin & Howson, 1979; Bakhurst,

1988; Berenson, 1997; Bradley, 1990; Kaput, 1989; Trafton & Bloom, 1990),

other theorists have argued that mathematics should be viewed as a foreign



language and that students should be instructed accordingly (Borasi & Agor, 1990;

Esty, 1992; Rotman, 1990; Sharma, 1985a, 1985b; Usiskin, 1996).

Not only have some theoreticians indicated a view of mathematics as a

language, but others have focused on more specific details regarding language of

mathematics. Morgan (1996) took issue with the use of the definite article in The

Language of Mathematics, indicating the use of the word the indicates". . . an

assumption of uniqueness, suggesting that one description of this language will be

sufficient to characterize any text that arises within the practice of mathematics"

(p. 2). She also argued that it is a mistake to focus on vocabulary and symbolism

without including linguistics. Miura (2001) separated language into two

distinctions, divided according to its purpose: (a) instructional representations

(teacher language, external to the student), and (b) cognitive representations

(student language, constructed by the student).

In considering a definition of the language of mathematics Kane, Byrne,

and Hater (1974) described human language as,".. . a system of vocal behavior

used to communicate among people" (p. 1). In describing the particular language

of mathematics, they depicted it as,

the written language found in mathematics instructional
materials; in journals, books and papers about mathematics; on
chalkboards and overhead projector screens in classrooms; in bank
statements and supermarket advertisements and in the writings of a
host of fields related to mathematics. (p. 3)

Although it covers the places where the language of mathematics can be found,

this definition generally defines the language of mathematics as the language used



in mathematics. Defining a term with itself offers inadequate insight. Also this

definition narrows to a written language and is in direct contrast to the more global

definition of language stated first which focused on vocalization.

language of mathematics can, however, be vocalized, which is impliedby the

NCTM (1980, 1989, 2000) and American Mathematical Association of Teachers

of Two-Year Colleges (AMATYC, 1995) documents. An earlier focus on

language by Kane (1968) gets closer to the heart of the matter:

Mathematical English (ME) is a hybrid language. It is composed
of ordinary English (OE) commingled with various brands of
highly stylized formal symbol systems. The mix of these two kinds
of language varies greatly from elementary school texts to books
written for graduate students. The OE component often is laced
with residue from formal symbol systems.. . . ME and OE exhibit
different characteristics and consequently may require different
skills on the part of readers. (p. 296)

Thus Kane addressed the difficulties in the confusion between English and

mathematical language. Daniels (1995) also indicated that there are a number of

differences between the ordinary language used in most American classrooms and

the language used in mathematics although it is all said to be English.

Although not offering a definition, Pimm (1987) addressed the language of

mathematics as involving (a) meaning, (b) symbols and the things symbolized, and

Similarly, Curcio (2001) identified (a) vocabulary, (b) semantics, (c)

syntax, and (d) symbols. Because mathematicians communicate in more ways than

in vocabulary and sentence structure, it is difficult to pin down the language

aspects of mathematics. Any definition of language of mathematics would need to

employ a broader mode than merely vocabulary, semantics, and syntax. A major



component of communication for mathematicians is also lodged in diagrams and

graphs.

Mathematics educators are left without a sufficient definition of the

10

language of mathematics. Because language can be defined only by experience, it

is impossible to be specific; but the vagueness of the use of the term language of

mathematics needs more precision in order to be useful to mathematics educators.

The Problem

A literature search revealed only the above, unsatisf'ing definitions of the

language of mathematics. This term appears to be common, yet there is no

convincing definition of this ubiquitous term. In order to narrow the search for

meaning it was necessary to develop a functional definition. In so doing this

review will first look at what is meant by the term language, and then more

narrowly, the language of mathematics.

Defining the Language of Mathematics

What is Language?

Darwin (1871) spoke of language ability as ". . . an instinctive tendency to

acquire an art." Pinker (1995) also embraced language as an instinct. He stated:

"The workings of language are as far from our awareness as the rationale for egg

laying is from the fly's" (p. 21). He spoke of the effortlessness, transparency, and

automaticity of language. Although he included a significant glossary in both his

1995 and his 1999 texts, a definition of the term language does not appear in either

of them. Chomsky (1 972b) also avoided defining the term.
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Language is generally an undefined term. Almost every person on earth

acquires a language whether it is spoken or signed. Because of the commonality of

the term language, deliberations tend to rely on the idea that everyone knows what

is meant by the term. Jackendoff (2002) for instance assumed no imperative to

define language in his book containing over 400 pages of text entitled Foundations

of Language: Brain, Meaning, Grammar, Evolution.

Fauconnier and Turner (2002) alluded to language as a form and posited

the following argument,". . . what is behind form is not a thing at all but rather

the human power to construct meanings. It, too, no matter the circumstances, can

be unleashed dynamically and imaginatively to make sense" (p. 6). They

maintained, "Form carries meaning with no loss" (p. 4). In addition to language,

Fauconnier and Turner argued that humans have three additional forms: math,

music, and art. From their descriptions, language can be defined as an instrument

to convey meaning. Note, however, that these theorists see language and

mathematics as distinct, not overlapping, forms.

Chomsky (2000) indicated that every speaker of a language speaks his own

personal languagethat our languages intersect enough that we can communicate.

This idea is explained by Calvin and Bickerton in Lingua ex Machina (2000) as

follows:

. . however little a word evokes in my mind, that little will be a
subset, however weird or limited, of the set of things that the same
word evokes in the mind of those who are expert in the relevant
field. If it isn'tif the word 'orange' evoked in me some of the
properties of bananaswe're in real trouble. But this seldom
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happens, and if it does, we conclude there's something wrong in
the brain of the person concerned. (pp. 16-17)

As a child interconnects with those people within her sphere, she develops

an ability to understand language, which is easier than the later developed skill of

producing messages (Calvin & Bickerton, 2000). These researchers indicate that

this is because producing messages requires syntax, whereas comprehending a

message can involve a number of other modes of information, such as eyes, body

language, tone, and context. They assert that it is syntax, not symbols, that

separates language skills of our species from communication systems of other

species.

The major mystery of language is that it is possible for a speaker to create

an infinite number of sentences and that most sentences have never been uttered

before (Chomsky 2000, 1972; Lasnik, 1990). This literature review is placed in the

vision of Chomsky that language is an intrinsic, human, creative ability, and that

humans understand what is meant by the term language.

How is Language Acquired?

Brown (1994) identified two diametrically opposed positions on

acquisition of language. The first position he discussed was a behaviorist

perspective that assumed children are blank slates who are then shaped through

their environment and conditioned by reinforcement. Brown's second perspective,

in opposition to the behaviorist perspective, was the instinctive perspectivethat

children have specific innate knowledge of the nature of language and a general

sense of semantic structure. Chomsky (2000) posited an imaginary Language
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Acquisition Device (LAD) that children are genetically encoded with, a Universal

Grammar (UG) sense that allows them to disentangle syntax and choose the

appropriate syntax for their native language. Children naturally develop language

skills just as they naturally learn to walk (Chomsky, 1 972a, 2000; Calvin &

Bickerton, 2000). This is not to imply that children are never taught certain aspects

of language; it does, however, imply that certain parts of language are developed

by the combination of exposure and an internal, genetic sense of how language

works. "A conscious knowledge of formal grammar is not a necessary condition

for the acquisition of fluent language skills" (Allen & VanBuren, 1972, p. 149).

Chomsky spoke of an "underlying language competence" allowing the learner to

create never before uttered sentences. He believed:

Language is not a 'habit structure.' Ordinary linguistic behavior
characteristically involves innovation, formation of new sentences
and new patterns in accordance with rules of great abstractness and
intricacy. This is true both of the speaker, who constructs new
utterances appropriate to the occasion, and of the hearer who must
analyze and interpret these novel structures. There are no known
principles of association or reinforcement, and no known sense of
'generalization' that can begin to account for this characteristic
'creative' aspect of normal language use. (pp. 153-154).

Chomsky (1972b) also argued that he knows no "technology" of language

teaching for second language learning. He further indicated: ". . . it should serve as

a warning to teachers that suggestions from the 'fundamental disciplines' must be

viewed with caution and skepticism" (p. 153). Thus Chomsky implied that,

although linguists work on the macrostructure of language, they may not be

helpful to the teacher who is passing on information to those new to a language.
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Chomsky's revelation means that students have an instinctive, general

sense of grammar and they learn language both from exposure and direct, explicit

instruction. There is comfort in this perspective, because it is impossible to

identif' all the rules of a formal grammar system in a simple way (Allen &

VanBuren, 1972). Educators can teach a practical grammar, however, and give

some of the rules of structure. It is the learner's task to generalize and apply the

structure to develop an internal, more complete set of rules of the particular

grammar. This work embraces the perspective of some linguists and

neurophysiologiststhat language acquisition is instinctive (Chomsky, 2000;

Pinker, 1995, 1999; Calvin & Bickerton, 2000).

How are Language and Learning Related?

Vygotsky (2002) revealed important connections between language and

thought. "Thought development is determined by language, i.e., by the linguistic

tolls of thought and by the sociocultural experience of the child" (p. 94). Bakhurst

(1988) also asserted that language is an essentially social phenomenon and that a

set of shared social meanings in a language represents a culture. Devlin (1998,

2000), Sfard (1991, 1995), Sfard and Linchevski (1994), Vygotsky and Davydov

(as cited in Confrey, 1991), used language as a metaphor for thinking. As

Vygotsky (2002) indicated, "The child's intellectual growth is contingent on his

mastering the social means of thought, that is, language" (p. 94).

Ellis (1993) also theorized a social focus in language: "A language is a

unique, highly complex, ordered conceptual system. It is the most central factor in
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the social life of those who share it, and it is the most crucial thing that

differentiates one community from another" (p. 199). It is impossible to separate

language from learning in that much of our thinking is in language (Vygotsky,

2002). This review embraces the sociocultural perspective that language and

thought are so intricately intertwined that it is impossible to separate them.

This project explores the teaching of the language of mathematics. The

Chomskian school of linguistics is embraced in envisioning language as an

instinctive act, learned both from exposure and direct explanation. It is easier to

receive messages than to produce them. In the Vygotskian tradition, language is

inseparable from thought.

In applying the concepts of language to mathematics and developing a

functional definition, the questions arises: Is language a metaphorical or a literal

term? This is an important distinction. As the review continues each of these

perspectives is considered.

The Language ofMathematicsLiterally or Metaphorically?

In promoting a literal meaning of the language of mathematics, Esty (1992,

1999), Esty and Teppo (1994), Rin (2001), Sharma (1985a, 1985b), and Usiskin

(1996) used the adjectivesforeign or second. Esty (1999) advocated the

capitalization of Mathematics to indicate its standing as a proper language. Usiskin

(1996) made a strong case for the literal definition of language in mathematics,

identif'ing that it has a grammar, sentences, verbs, and a well-constructed syntax.

He speculated that the reason the language of mathematics is:
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. . not treated by scholars as a language in the same sense that

English or Japanese or French is a language is that, except for the
small whole number, mathematics does not tend to originate as a
spoken language." (p. 233).

Perhaps some of the difficulty students have with the language of

mathematics is indeed related to a second language nature of the subject. In

traditional foreign language study, the student is focused on learning the meaning

of words and the structure of the language. The foreign language curriculum re-

exposes students frequently as it recycles words and syntax; students in foreign

language classes have many opportunities to learn the language specifics.

Mathematics teaching, however, tends to focus on concepts and to treat the

language portion of the subject minimally. Are there any mathematics students

who have not had a symbol or word quickly defined once and then been expected

it use it thereafter with fluency?

Perhaps the pinnacle of viewing the literal meaning of the language of

mathematics occurs at Montana State University. Warren Esty (1999) has taught a

course called "The Language of Mathematics" for over 10 years. His goal is"

to have the students assimilate the basic concepts and language skills which are

fundamental to mathematics" (p. iv). The prerequisites are an ability to read

English at the college level and completion of beginning algebra. The course

focuses on language and is primarily a reading course.

Although mathematics has syntax and a semantic structure and functions

like other languages in that it borrows words (i.e., similar) and gives words (i.e.,

irrational) to other languages, three major differences between mathematics and
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natural languages make a literal view impossible: (a) No one is a native speaker of

this language; (b) the language doesn't stand alone in that it uses an additional,

natural language in tandem with the mathematical symbolism; and (c) it is

impossible to be fluent in this language without being literate.

Because of the symbolic density in mathematical writing, it is tempting to

argue that mathematical language is an international language. Mathematicians,

however, also use words from their native languages within their mathematical

conversations; these words become part of their personal lexicon within

mathematics and thus mathematics commonly uses a natural language as part of its

communication contrivance. Thus the language of mathematics is also used with

massive amounts of an additional, natural language. Also, unlike natural

languages, the language of mathematics is primarily a written language. The

complications of symbols and graphical representations makes fluency in

mathematical language quite another matter from learning to read. The literal

perspective of language in mathematics is not a useful construct for this study,

because it uses a broader perspective than mechanics and translation. Having

rejected a literal perspective, one is led to a metaphorical perspective to consider as

a possible viewpoint.

Some theorists approach language as a metaphorical term (Kaput, 1989;

Goodson-Espy, 1998; Sfard, 1991; Sfard & Linchevski, 1994) Metaphorically, the

phrase language of mathematics addresses the dichotomy of our mathematical

experience: reasoning and communication. Differentiating between mathematics as
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reasoning (another NCTM Standard) and mathematics as communication appears

to be an issue of semantics and hearkens back to the earlier discussion that

language and thought are intricately intertwined. Kaput (1989) remarked,

"Mathematics is, among other things, a collection of languages, and languages

have dual, interlocking roles: They are instruments of communication and

instruments of thought" (p. 167). Can humans differentiate between their reasoning

process and their communication process? Vygotsky would say, "no." Language

allows us not only to share, but also to process our reasoning. It appears that the

two different standards of reasoning and communication are hierarchically related

rather than horizontally related.

Mathematical reasoning has been spoken of as metaphor (Goodson-Espy,

1998; Sfard, 1991). In studying the cognitive structure of mathematics learning.

Sfard (1991) and Sfard and Linchevski (1994) considered cognitiveprocesses in

mathematics. They indicated a reification process whereby a student would

experience a concept as an abstraction and, in applying it to later concepts, reif'

the abstraction into a concrete object. Devlin (1998 & 2000) used the metaphor of

language in expressing the nature of mathematics. Kaput (1989) addressed the

semantics of mathematics and indicated his belief that it is the study of symbols

and syntax that causes alienation in algebra. He posited a "relational semantics" in

considering students' thinking processes and cautioned against a literal perspective

on the phrase language of mathematics as too focused on syntax, exacerbating

student problems.
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This project uses a metaphorical perspective in dealing with the term

language of mathematics. Mathematics is not a natural language as it is not the first

language of anyone. It does not stand on its own in that mathematicians require

another, natural language to make the connections among different symbols in

used in written mathematics. Mathematical language is also primarily a written

language because if there is very much complication in what is being

communicated, the written form is crucial so that the sender and the recipient of

the message concur on the information shared.

If the language of mathematics is not literally a language, then what is it?

In developing a functional definition, this article first considers other distinctions.

A Functional Definition

Some argue that rather than being called a language, mathematics is better

addressed as a register (Forman, 1996; Halliday, 1978; Kang & Pham, 1995;

Pimm, 1991; Winslow, 1998), but the linguistic term register refers to a contextual

style that a speaker or writer uses, dependent upon degree of formality (Chomsky,

1972b; Liles, 1972; Shorter Oxford English Dictionary, 2002). Discussion among

teenagers thus uses a register different from that used when those same teenagers

give formal speeches in English class. Accordingly, register is not precise in

describing language aspects of mathematics.

It can be argued that instead of a register, one could consider mathematics

as a genre (Wertsch, 1991; Winslow, 1998) of language, meaning kind or type.

Wertsch (1991) contended that language in different disciplines should be looked
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at as specific curriculum genres, produced by teachers and students. These

language genres change for students throughout their school day as they move

from subject to subject (Winslow, 1998). Interaction patterns between teacher and

student are demonstrated in the written genres produced by students. These written

genres are context specific and each subject has a specialized discourse. This term

genre is a more nearly accurate term and probably the appropriate one, but the

term language of mathematics is robust. So many people use it that it is unlikely to

be altered to genre, thus this review continues to use the term language and apply it

as a metaphor rather than accept the term literally.

For the purposes of this project, language of mathematics refers to a

metaphorical rather than literal meaning of language and specifies a genre of

English as clarified above, genre meaning kind or type, characterized by a

particular form or purpose (Shorter Oxford English Dictionary, 2002). Because

language is an undefined term, we can accept the term language of mathematics

only as a generalized construct.

The term language of mathematics needs to be defined and there is

apparently no satisfying definition; thus the author offers a functional definition to

drive the literature review. For this review, the language of mathematics is viewed

as a metaphorical term referring to a genre constituted by the union of a subset of

English and a set of symbolic forms that enable the communication process in

English speaking mathematics classrooms. This study focuses on English speaking

classrooms and uses the following functional definition:
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In English speaking classrooms, the Language of Mathematics is
used in combination with English and a set of symbolic forms.
This language refers to the specific words, symbols, graphs, and
conventions used when discussing or writing about mathematics.

The definition is depicted graphically in figure 1.

Language of
Mathematics English

Symbols
Words

sIIIIIII
Figure 1: Graphical representation of language of mathematics used in English

speaking classrooms as the union of subsets of English and symbolic forms.

The four factors of the definition need to be clarified. Words indicates not

only specific vocabulary used in mathematics such as rhombus, polynomial, and

square root, but also terms that have different meanings in English and

mathematics such as similar, continuous, divide, rational, and random. The term

symbols refers to icons that have encoded meaning that can be read, but are not

normally used in mathematics in an alphabetic form. The term graphs refers to

visual representations, such as coordinate graphs, diagrams, and any visual

representations of data. Finally, the term conventions refers to the grammatical and

cultural traditions of expression used in mathematics includingphrasing such as let

x = , or is decreased by, or is a function of x, along with things such as the
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accepted forms of argument, the expectation of precision of language, the respect

for brevity, and the admiration of elegance.

A number of researchers were contacted regarding this definiton. Paj ares

(personal communication, October 13, 2003) responded with , "I see no problem

with this." Kilpatrick (personal communication, October 14, 2003) said, "I'm not

aware of any definition of the term, and yours seems reasonable to me." Yackel

(personal communication, October 12, 2003) suggested it be identified as a

personal definition and also suggested considering the use of the term register

instead of language. Cobb made a suggestion, "I guess I would broaden the

definition a little to include forms of (mathematical) argumentation as these

distinguish mathematical langauge from everyday language." The author concurs

with Cobb's concern and feels that argumentation would be subsumed in the

category of "conventions" within the definition. Romberg said,

"First the major point in NCTM's standards is not about language,
but about literacy. We viewed mathematics as a language (its
signs, symbols, and rules for use all invented to help make sense of
some phenomena), and were concerned that students should not
just learn the language, but how it evolved and how it can be used.
Your working definition is fine except the intersection is with other
languages (and those of other disciplines such as physics, or
archeology).

Although agreeing with Romberg, the author finds it useful to narrow the

definition to a smaller intersection of language (English) in order to pinpoint a

smaller area of study for now. Cooper cautioned that the definition is limited to the

language of American (later changed to English speaking) school mathematics and

also stated, "I find your definition intriguing, connecting the notions of English
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language usage with standard mathematical usage." Lampert opposed the

functional definition as follows: "This seems like a very limited definition given

the volumes of research that have been written about the use of mathematical

language in teaching and learning." The author respectfully continues to embrace

this definition. Lampert studies communication, which is important in

mathematics. This study is designed to look at the narrower topic of language and

needs a narrow, more limited definition than would be used in a communication

study in order to avoid being overly broad.

Literature on the Language of Mathematics

This review continues by focusing on literature related to the language of

mathematics. It uses the proffered functional definition of language of

mathematics, focusing on English speaking classrooms and therefore addresses the

language of mathematics in the context of English. Language issues pertinent to

the mathematics classroom are addressed, recognizing specific difficulties present

for students as they learn this language of mathematics. The review first considers

how the language is learned and then contemplates specific problems students face

as they hear teacher language and develop their own language, while assimilating

features of the words, symbols, graphs, and conventions of mathematics.

Because this mathematical language is the form in which mathematics is

expressed, students must develop a certain amount of fluency or communicative

competence in order to learn the subject. Pimm (1987) identified the importance of

addressing language in mathematics teaching when he stated:
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If we are to view mathematics as a language, communicative
competence becomes an important consideration, and meaningful
communication an overwhelming concern. . Being fluent in a
language, then, involves the ability to tap into the resources
implicit in it and to use these potentialities for one's own ends. (p.
6)

Traditionally mathematics language skills have been learned mostly by

"osmosis" rather than by explicit instruction (Daniels, 1995; Durkin & Shire,

1991). One of the questions for mathematics educators regarding language and

mathematics is how is this language learned?

How do Teachers Learn the Language ofMathematics?

There seems to be consensus that mathematics educators should address

language when teaching mathematics, yet a review of three secondary mathematics

methods textbooks (Huetnick & Munshin, 2000; Posamentier & Stepelman, 1999;

Sobel & Malaetsky, 1999) revealed a total of 27 pages listed in the indices under

language, communication, speaking, reading, writing, or any form of the word

verbal. With a total of 1,371 pages in the texts, this yields less than two percent of

the pages that at least touch on language. The books range from having zero pages

on these topics to less than four percent. Three texts of mathematics for elementary

teachers (Billstein, Libeskind, & Lott, 2001; Bennett & Nelson, 2004; Troutman &

Lichtenberg, 2003) yielded only 3 out of a total of 2,153 pages (only one-tenth of

one percent) that addressed any of the search words.

The Handbook of Research on Mathematics Teaching and Learning

(Grouws, 1992) has 732 text pages. Its index identifies nine pages related to the

term language. On closer inspection, the pages are focused on students who are
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learning mathematics in a language other than the one spoken in the home. While

this is an important focus, it does not address the general need for guidance on

language issues in mathematics education. Further inspection of the index reveals

no entries for communication, discussion, speaking, reading, discourse, or any

word with the same root as verbal. There are a total of nine pages referring to

language, seven pages referring to written symbols, and one page referring to

written composition, making a total of approximately two percent of the pages that

are identified with any of the search words, and only about 1% if the second

language pages are not included in the count.

A teacher, faced with the 2000 Standards, is given a formidable taskto

teach students to use the language of mathematics, yet the mathematics education

community offers little help. Many educators and documents cited above call for

increased emphasis on communication in the language of mathematics.

Unfortunately there is no apparent consensus regarding the pedagogical

implications of how students learn this language and no information on how

teachers can approach the dictated task.

Some studies indicate that discussion is a powerful way for students to

develop language and social norms of discussion. (Hiebert, et al., 1997; Yackel,

2001). A number of researchers have studied the impact of discussion in

developing understanding (Cobb, Wood, & Yackel, 1993; Fennema, Franke,

Carpenter, & Carey, 1993; Wearne & Hiebert, 1988); however, there seems to be a

paucity of literature focused on how students acquire mathematical language.
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Student Difficulties with Language in Mathematics

Pimm (1991) contended that, "Part of learning mathematics is gaining

control over the mathematics register so as to be able to talk like, andmore subtly

to mean like, a mathematician" (p. 18). As students struggle with the semantics

and syntax of mathematical language, their language eventually makes a shift to

include more mathematical terms and structure (Daniels, 1995). This portion of the

review addresses difficulties students experience with learning language in

mathematics. It is subdivided into four sections: (a) teacher language and student

language, (b) vocabulary, (c) symbols and graphs, and (d) conventions. These

categories are not totally distinct and some of the research discussed could fit into

more than one category. The choices of category are thus sometimes arbitrary.

Teacher language and student language. Gregory indicated that

the language of teaching must be common to both the teacher and the student and

identified the importance of understanding for both teacher and student in his

century old text:

"In all true teaching thought passes in both directionsfrom pupil
to teacher as well as from teacher to pupil. It is as needful that the
man shall clearly understand the child as it is that the child shall
understand the man" (Gregory, 1886, p. 53).

In this book of advice to teachers, The Seven Laws of Teaching, he included a

section entitled The Law of Language, with the following recommendations:

No one has more language than he has learned, and acquisition of a
large vocabulary is the work of a lifetime. A teacher may know ten
thousand words; the child will scarcely know as many hundreds,
but these few hundreds of words represent the child's ideas, and
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within this narrow circuit of signs and thoughts the teacher must
come if he would be understood. Outside of these the teacher's
language is as unmeaning to the child as if it were mere drum-taps.
His language may sometimes be partially and vaguely understood
by reason of the known words scattered through it but may as
frequently mislead as lead aright. (Gregory, 1886, PP. 49-5 1).

This admonition to teachers from over 100 years ago is applicable today.

As teachers enculturate students into the esoteric mathematical language structure,

they must address language issues, whether implicitly or explicitly. This idea

seems obvious, but it is particularly significant in mathematics education. Teachers

must model mathematical language every day, and Gregory's caution implores

them to be aware of which portions of their language will not be understood by

students.

Adler (1998 & 1999) looked at uses of language in the mathematics

classroom as she studied schools in South Africa and considered language from

the perspective of multiple language speakers. All of the schools she chose taught

classes primarily in English, but some of the teachers and students did not have

English as their main, personal language. Adler's focus was on the nature of

language within the mathematics classroom while exploring the "benefits and

constraints of explicit mathematics language teaching" (1999, p. 47). She looked

at the concept of code-switching which is a term in foreign language study and

refers to the shifting between two distinct languages. This qualitative study

considered the use of language within the mathematics classroom, focusing on

how mathematics teachers in a multilingual setting managed the complicated

balance between: (a) the use of formal mathematical language and informal



language, and (b) a language of instruction which is not the main language of

pupils.

The six teachers were evenly divided among the three main multilingual

educational contexts in South Africa. Adler found that teachers in multilingual

settings moved between talk used for thinking and talk usedas a display of

knowledge. She argued that teaching and learning mathematics entails this moving

back and forth. Adler also found that explicit language teaching is a struggle,

particularly for teachers and students who use English for teaching/learning

mathematics and another language as a first language.

She put forth the idea of transparency of talk in terms of its visibility and

invisibility. At times the teachers wanted invisible talk, comfortable to learners. At

other times the teachers employed visible talk, particularly in teaching

mathematical language. The invisible talk was used to clarify concepts. The visible

talk was used for specific vocabulary and for formal statements of mathematics.

Teachers struggled with the balance between the two types of language codes and

which forms of language were of best use in a classroom situation. The researcher

reported that teachers developed a complex practice of shifting explicitly between

everyday and mathematical discourses and between verbal and symbolic forms as

they attempted to enculturate students into mathematics.

While Adler's research on code-switching is between English and other

South African languages, a parallel can be made with possible code-switching

employed by mathematics teachers, interchanging mathematical English and other
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mathematics as a language, it may reasonable to apply this code-switching

construct of visible and invisible talk to English speaking mathematics classrooms.

Although instruction is in English, teachers might want some of their language to

be visible (as they teach about the formal language and constructions of

mathematics), and they might want some of their language to be invisible (as they

teach the concepts of mathematics).

Similarly to Adler, Miura (2001) separated language into two distinctions

and saw the mathematics classroom language as divided according to its purpose:

(1) instructional representations (teacher language, external to the student), and (2)

cognitive representations (student language, constructed by the student). When

teachers are in control of classroom discourse, the pattern is frequently teacher

initiation, student response, then teacher evaluation (Cazden, 2001; Fullerton,

1995). Fullerton indicated that students used different language when working

separately rather than when the class was in a whole group discussion. Working

separately from the teacher, the student language changed to self-directing speech,

particularly when a pupil worked through the complex thinking needed to solve a

problem. Fullerton (1 995)was interested in the relationship between oral language

and the learning of mathematics and investigated the degree to which students

were able to hear and practice language patterns of mathematics. Her qualitative

study consisted of nearly fifty sessions as a participant-observer in classrooms as

fourth to sixth grade students worked on geometry.
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Fullerton found that students tended to give short answers to the teachers'

whole group questions. She also found that students often ended those responses

with a rising inflection, as if asking for confirmation of their answers. (An

octahedron? Maybe a hexahedron?) When students worked in groups, however,

Fullerton found that they asked more questions as they worked through a task

together. Instead of being directed to the teacher, most of these questions were

directed to each other. The researcher also found a difference in student language

in general. "In contrast to the language used by children when the teacher was in

control, children's language flowed more naturally in small group settings" (p. 14).

Fullerton concluded that students need verbal interaction with others as

they learn the mathematical language. She found that both teachers and students

provided language models, and students used a mixture of the new mathematics

language and less formal language as they developed ways to explain their ideas.

("You slide a circle to make a cylinder" p. 12.) She urged,". . . teachers must

maximize talk opportunities for children" (p. 16). She posited that this

maximization can best be done if teachers devise situations in which students are

encouraged to articulate their ideas within small group discussion. Similarly,

Lampert and Cobb referred to evidence (Brown, Stein & Forman, as cited in

Lampert & Cobb, 2003, p. 246) that ". . . with appropriate support and structures in

place, teachers can improve the quality of their mathematics instruction to build

the capacity of students to think, reason, solve complex problems, and

communicate mathematically" (p. 246).
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Whether mathematics is viewed as a language, as a particular register

within the language of English, or as a genre, there are certainly hazards with

usage that can ensnare a student trying to develop facility in mathematics. Not

only the words, but also the symbols are perilous if approached carelessly. In

addition to these problems, students are faced with the specific syntax and

semantics used in writing and speaking about mathematics, which can also confuse

students. The subsequent portions of this section of the review address focused

topics important to mathematical language: (1) vocabulary, (2) symbols and

graphs, and (3) conventions.

Vocabulary. Students frequently are confused when learning the

distinct vocabulary for mathematics and falter when confronted with a need

for specific words. Rubenstein (2002) was concerned about difficulties of

the language in her elementary students and demonstrated some of those

difficulties through this list of actual student remarks recorded in her

classroom:

Is the diameter the short one or the long one?
I forget, I think obtuse is the wide kind of angle.
Eight is a multiple of 24, I think, . . . or is it a factor? (p. 243)

Rubenstein showed that in addition to the considerable conceptual

difficulties of mathematics, students are faced with a large set of new terms and

arguably a new language. Zazkis (1999) argued that mathematics students are

faced with a significant number of vocabulary words, and some of them are old

words with new, more precise meanings.
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Pimm (1987) identified that some common English words undergo

grammatical shifts as they are used in the mathematics register. As an example he

indicated that the term, diagonal in English was originally an adjective (diagonal

line), yet in mathematics it has undergone a syntactic category shift to the noun a

diagonal. He also identified student remarks that indicated that some students

thought of the term diagonal in respect to physical orientation, and that diagonal

indicated a non-vertical, non-horizontal line. This example shows the kind of

confusion that students experience in mathematical language, particularly with

words that are ordinary English words, used differently in mathematics. Gregory

(1886) cautioned teachers about the difficulty students have with words that have

more than one meaning.

Between English and mathematics there are numerous examples of

polysemous words (words with different, but related meanings) such as the terms

similar, irrational, opposite, and function. Halliday (1978) noted the possible

student confusion with the common term multiply, which means to increase except

when it means to decrease as in multiplication bya half. Because of the subtleties

and different shades of meaning, much of the vocabulary of mathematics is thorny

for students to access, particularly if they are unfamiliar with the mathematical

concepts behind the vocabulary.

As she studied polysemy with different meanings within the mathematics

language, Zazkis (1999) focused on lexical ambiguity that arises in mathematics

classes. She examined the terms quotient and divisor with pre-service elementary
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teachers through classroom transcripts and student interviews (n unidentified). The

quotient in the division of 11 by 4 for example can be interpreted as 2, or as some

form of another answer: 2r3, 2.75, 2, , or the number of rows in an array of

11 elements with 4 columns. The major issue in this example depends upon the

definition of division, and the number set in which the student is working. In

standard reading situations, one is often able to determine meaning from context,

but Zazkis' point is that some mathematical situations lack contextual cues. Zazkis

concluded,". . . the regular 'tools' to determine meaning, such as context or

grammatical form, are not always sufficient" (p. 8). Zazkis' project identified the

confusion that some students experience because contextual cues are frequently

not available. The study report is unfortunately short and lacks detail other than a

discussion of her students' views of the two words.

Durkin and Shire (1991), in a theoretical argument, identified 80

ambiguous words used commonly in school mathematics. As students take on the

language needed in mathematics classes, they encounter new meanings,

complicated symbolism, and multiple interpretations. In addition to these

difficulties, students are faced with syntactic and semantic issues that generate

confusion for the student. Students struggle between meaning and structure as they

learn mathematical concepts and acquire skills to communicate their mathematical

thinking. The new language that mathematics students confront has complicated

semantics and difficult syntax that is not the same as the structure of English, yet it

is similar enough to be confusing.
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Some sentences in mathematics are vocalized in the traditional manner

taught in school English classes. Although there are many new, polysyllabic

words, the word attack techniques students have assimilated elsewhere can work to

sound out these new words. But mathematical language is more complicated than

the language students are faced with elsewhere; in addition to the complicated but

alphabetic words, students must contend with a mixture of signs. (Kane et al.,

1974; Winslow, 1998).

Symbols and graphs. Cajori (1929) identified three types of

mathematical symbols: (1) ones that originated as abbreviations of words such asf

(function), cos (cosine), in (natural log) and + (et); (2) symbols that are

pictographic such as A (triangle), (parallel), or 0 (circle); and (3) symbols that

are ideographic or arbitrary such as .. (therefore), x (multiply), and - (similar).

Some abbreviative symbols eventually lose the clarity of their abbreviation,

functioning as ideographic symbols: 7t (periphery of a circle), and i (imaginary).

One of the major stumbling blocks in mathematical language comes from

ideographic symbols (Kane, Byrne, & Hater, 1974; Skypek, 1982; Winslow,

1998). The meanings of these symbols must be memorized in order to be

pronounced because they are not inherently connected to their symbols the way the

meanings of abbreviated or pictorial symbols are connected cognitively. The

ideographic symbols are the most difficult to learn.

In addition to the problem of pronouncing the considerable number of

symbols, there is the difficulty of the direction of reading (Marks & Mousley,
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1990). Some mathematical symbolism is read in the standard left to right manner

of traditional English texts (2x2 + 7), but then some symbolism is read vertically

(), some is read right to left (13)ii), and sometimes there is a mixture of

directions (- j1). Even something as simple as $100 is read contrary to the

standard English direction. This must create significant confusion for students,

especially if the direction of reading for each type of symbol is only implied.

Franzblau and Warner (2001) demonstrated that not only does

mathematical notation require an adjustment in reading direction, but also the

notation poses a difficulty for students attempting to use symbols to record their

thinking. Additionally, as students are faced with problems with symbols and the

complication of reading direction, they are also faced with complicated

information compacted by notation. This information cannot be gleaned from

context. In their speculation on student learning, Kane et al. (1974) pointed out:

. . all the subject matter related to interpreting correctly a
sequence such as 34flve = 19tefl is to be found in the mathematics
curriculum with little likelihood that these concepts will arise
naturally outside the classroom. In short, comprehending the
language of mathematics is a task more closely related to a specific
subject matter (mathematics) than is comprehending a story such
as The Emperor's New Clothes. (pp. 9-10)

Not only is mathematics dense with polysemous vocabulary, but

mathematics also has symbolism that is polysemous, which is possibly confusing

to learners. For example: (2, 7) may mean the point located on the Cartesian plane

at x = 2 andy = 7 or it may mean the open set of real numbers that are larger than 2
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but smaller than 7. The symbol - sometimes means not and sometimes means

similar. Students can also be confused about graphing something like x = I which

is interpreted in at least two ways as seen in Figure 2.

-3 -2 -1 0 1 2 3 4
x= 1

Figure 2: Two different graphs of x = I.

Even the simple equal sign (=) can be interpreted as, "equals, means, makes,

leaves, the same as, gives, results in, any one of which is itself multi-meaning."

(Durkin & Shire, 1991, p. 73).

Conventions. Concerned about ambiguity in mathematics, Alro and

Skovsmose (1998) presented an exposition about semantic difficulties in teaching

as they took exception with a Danish textbook direction to students to answer the

question, "How much do newspapers fill?" This use of the termfiul is not so

common in English speaking classrooms, but in the research study Alro and

Skovkomose showed their students' confusion between area and volume and made

an important point. In order to function mathematically, students need to make

sense of the mathematical language and develop the necessary language skills.

This point is supported by Kang & Pham (1995): "Such language includes specific

vocabulary, syntax, and other features of the mathematics register that represent

mathematical concepts as well as the language that is used to teach mathematics"

(p. 3).



37
Rowland (1999) focused on the semantic difficulty created by a confusing

use of pronouns in mathematics. He studied transcripts of classroom interchanges

between elementary school teachers and their pupils, and focused on the subtleties

of pronoun use within the classroom. He also included information from a variety

of unidentified transcripts, covering". . . a number of one-off interviews and

teaching episodes with students spanning the age-range 10 to 25" (p. 25). He

indicated that he was the teacher in some of the situations, but not in all. The

information he presented is an amalgamation of the impressions he developed

from the transcripts.

Rowland took great exception to the widespread use of the pronoun "we"

as teachers presented mathematics. He pointed out that, "It is improbable that the

child is included in the 'we' in phrases like 'what we said you had to do.' The

phrase could be intended to imply 'What I said in your presence" (p. 19). He also

pointed out that the pronoun "we" indicates an anonymous expert community the

teacher invokes in order to impose a certain classroom practice.

Regarding the student use of the pronoun "I," Rowland included a set of

student remarks, showing the use of "I" when the student was confused (I want to

find. . .), and a shift to the generalized, "you" when understanding finally occurred

and the student generalized the task verbally (Oh, hey, you just.. .). Rowland also

argued against vague uses of the pronouns, "it" and "you." While his may seem a

picayune perspective, Rowland contended that teachers who are sensitive to

student pronoun use may be able to recognize cognitive shifts in student thinking.



However, with no mention of validity or reliability, the study is incomplete, and

the conclusions must be viewed as tentative.

Students in mathematics are faced with learning to translate among a

variety of ways to represent relations: verbal, graphic, tabular, and symbolic

(Brophy, 1991; Fennema & Franke, 1992). The ability to connect these different

representations of relationships gives students a broader understanding of the

relationship and offers multiple ways to proceed with problems through various

perspectives.

Student difficulty with semantics and syntax is sometimes unrecognized by

teachers (Nathan & Koedinger, 2000). In a study of high school algebra and

geometry students (n 76) and a similar follow up study (n = 171) of the same

level of students, the researchers chose 12 problems for the students to solve. Half

of the problems were arithmetic in nature (defined as result unknown), and half

were algebraic in nature (defined as start unknown). Both types were presented in

three ways: (1) as a traditional word problem, (2) in equation form, but written in

words, and (3) in equation form, and written in symbols. The students had the least

difficulty with the traditional word problems and the most difficulty with the

symbolic form; however, when teachers and mathematics educators ranked the

difficulty of the problems, they indicated that the symbolic form would be the

easiest for students and word problems would be the most challenging. A lack of

information on validity and reliability calls the study into question so the results

must be taken as conditional rather than as established.
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DeCorte and Verschaffel (1991) maintained that there is robust research

(unidentified) that

. . shows psychological significance of the semantic
classification of word problems. A major finding in this respect
derives from children's performance on such tasks: word problems
that can be solved by the same arithmetic operation but differ with
respect to their underlying semantic structure have very different
degrees of difficulty. (p. 119, italics theirs)

This assertion is reaffirmed by Esty and Teppo (1996) who studied

university students who had taken enough algebra for precalculus but did not

perform well at the prerequisite level. The research hypothesis was that the

difficulties these students had with word problems were not because the students

did not understand the mathematical relationships expressed in the words, but that

they did not understand the underlying algebraic language and the use of

symbolism required to express these concepts. Esty and Teppo considered this lack

of ability as an indication of a deficiency in understanding of the language of

algebra.

The sample was one of convenience. All 137 students who attended the

first day of any of the five sections of pre-calculus during one particular term at

Montana State University were included. The article does not indicate any

differentiation of students based on mathematical background, age, recency of any

mathematics class, socio-economic status, or any other indicator. Each student in

Esty and Teppo's study completed one of two quizzes. There is no indication of

whether the quizzes were assigned to students randomly. Each quiz contained two

situational word problems, and included diagrams. One of the two problems on the
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quiz had students recall how to find the area of a shape and then apply the formula

directly. (Nathan and Koedinger, 2000, called this type of problem "result

unknown.") The other problem had students recall an area formula again, but this

time the desired variable was within the formula part of the relation and students

could not solve for it without using an algebraic method. (Nathan and Koedinger,

2000, called this type of problem "start unknown.")

The research design was simple and direct. It purported to study the lack of

algebraic thinking in pre-calculus students, but unfortunately failed to collect

background information on the students. Because it was given on the first day of

class, there could have been additional students who did not belong in that class.

This could of course include students who were "shopping" for a class, and who

were not ready for pre-calculus or perhaps students who were lacking confidence,

but were actually ready for the subsequent course. It could also include students

who just wanted to brush up on their skills. This situation confounded the

demographics of the sample. A closer identification of the sample would make the

inference clearer and more powerful. With the data listed as percentages and no

statistical analysis, the results were unclear. Additionally, the quizzes were

developed by the researchers and did not appear to have been subjected to tests of

reliability or validity. This fact calls the entire study into question as it is not clear

if it is suitably focused on the planned topics of algebraic thinking and language.

In studying sixth grade students, Swafford and Langrall (2000) found that

pre-algebra students were able to generalize problematic situations and to solve
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problems with their own, sometimes non-standard, equations. They had difficulty

generalizing however, being unable to apply solution methods of one problem to a

similar problem. This study demonstrated that before studying algebra, these

students did not see equations as semantic objects, but rather as shorthand

notation. It appeared, though, that students naturally developed a sense of the need

for mathematical language because they tended to invent notation as code for their

thinking.

Rosnick and Clement (1980) completed an often cited study of how

students interface between mathematical symbols and verbal descriptions of real

world problems. They studied nine students, most of whom had taken one

semester of calculus, and all of whom had created a reversed equation (P = 6S,

instead of S 6P) when translating the following problem:

Write an equation using the variables S and P to represent the
following statement: There are six times as many students as
professors at this university. Use S for the number of students and
P for the number of professors. (p. 4)

Rosnick and Clement further studied six of the students who wrote

incorrect equations for the problem. The format alternated between remediation

and interviewing. The remediation techniques were as follows:

1. Simply telling the students that the reversal is incorrect.
2. Telling the student that the variable should be thought of as "number of

students," not "students."
3. Pointing out (with pictures) that since "students" is a bigger group than

"professors," one must multiply the professors by six to create an
equality.

4. Asking the students to test the equations by "plugging in" numbers.
5. Specifically showing the students how to set up a proportion to solve

the problem.
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6. Demonstrating a correct solution to the students, using an analogous

problem. (p. 6)

Rosnick and Clement concluded that the misconception they studied was

resistant and that students' misconceptions were not quickly eliminated. They

further concluded that the error they were studying could not be corrected just by

demonstrating the correct solution or by explaining why it was wrong and that the

mistakes were not casual or careless, merely from lack of concentration. They

surmised that the errors were the result of,".. . deeply ingrained and resilient

misconceptions" (p. 16) and indicated that a subsequent study found similar

results. The authors used flawed reasoning in reporting their results. They

concluded that the misconceptions students had regarding variables and equations

were deep-seated and resistant to change and that a student's ability to write a

correct answer to a problem was not an indication of understanding. This idea may

be accurate, but what the researchers actually showed instead was that six

particular engineering students had deep-seated misconceptions that were not

remediated by a quick-fix algorithmic technique, delivered in a traditional, telling

format, meant to be completed in one sitting.

Rosnick and Clement's interventions were limited to telling students

directions for writing equations rather than creating opportunities for students to

build an internal framework of understanding. The researchers missed some

important intervention possibilities. They could have used a number of other

techniques: manipulatives, translation, or conceptualizationtechniques used by

many K-12 teachers and recommended by NCTM (1989, 2000). The remediation
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could have begun with student conceptualization and continued with helping

students create patterns that allowed them to see the contradictions in their

thinking process while they formulated new conceptions. The research did not

attempt a number of possible approaches and gave up after trying the six

interventions listed, assuming all possibilities were exhausted.

Rosnick and Clement showed their own lack of pedagogical content

knowledge rather than the students' inabilities to adjust their conceptual

understanding. There is no connection of this research to any other research

project. Merely four references were cited in this study and three of them were to

the authors themselves. There is no evidence of validity or reliability. The

researchers also made the error of assuming that six engineering students, chosen

from a group of nine students from one class who answered a particular problem

incorrectly, could represent all students. Although this study is often cited, its

weaknesses make it of little value.

In summary. In learning mathematics students are faced with a number

of difficulties as they try to develop fluency. In order to develop that fluency they

need skills with language that will enable them to communicate their fluency and

understanding of mathematical concepts. Unfortunately that language, which is ill

defined and conceivably impossible to define, is not traditionally a focus of the

teaching in mathematics. The subject of mathematics, however, requires a

precision of expression and a strong mathematics student needs communication

skills utilizing the language of mathematics.
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Some theorists have seen the language of mathematics as a literal language

and advocated the teaching of mathematics as a foreign or second language. Others

view the term language of mathematics metaphorically, as is advocated in this

review. The interplay between language and thought is so complex that it is

impossible to separate them. The language of mathematics is also so different from

a natural language, because (1) students are trying to embrace a genre of language

in which there are no native speakers, (2) the language requires an additional,

natural language, and (3) a student cannot be fluent in this language without being

literate.

Finally, students who learn mathematics in English face numerous

difficulties in learning this genre of language for a number of reasons. Many

common words from English have different meanings in mathematics. There are

words and symbols that have multiple meanings within mathematics. Encoding

and decoding information in graphs is a significant skill that is difficult to learn.

There are syntactic and cultural tenets that students need to assimilate that

mathematical literacy so advocated by the Standards.

Implications for Research

The language of mathematics has been given lip service from the

mathematics education community, but there is little focused support for teachers.

There is sometimes a disconnect between teacher language and student language.

Students are faced with complex vocabulary and symbolism. They have difficulty

taking things they understand in English and translating them to mathematics. In



45
addition to difficulties with translation of word problem sentences into

mathematics and concerns with symbols and polysemy, students in mathematics

are faced with difficult syntax and semantics, confusing language constructions,

and cultural language traditions. Students confront difficulties as they pursue

understanding of mathematics, while filtering information through the

complicated structures within mathematical language.

A number of researchers are addressing the issue of communication in

mathematics by completing qualitative studies within classrooms. In addition to

this research the author suggests research focused directly on language. Three

major problems present themselves: (1) Language has been shown to be important

in mathematics education, yet a focus on language issues is mathematics classes is

rare. (2) It is teachers who are on the front lines of developing a language focus in

mathematics classes, yet teachers are not given instruction in language concepts

themselves and it appears there is no consensus on how teachers should employ

language in order to teach effectively. (3) Students are being expected to assimilate

language concepts in mathematics, yet there is not enough convincing research to

indicate how students learn this language.

If language is important in mathematics education and yet there is rarely a

focus on language in mathematics classes, it would be useful to determine why this

situation exists and how it can be alleviated. It may be that there is not enough

time in the curriculum. The teachers may feel that because they are not evaluated

on language teaching, it is not important to address it. Perhaps the issue is situated
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in the ubiquity of standardized testing which does not include items designed to

probe the language of mathematics skills that students have acquired. Although

professional organizations promote a focus on language concepts in mathematics

classes, it may be that teachers do not support these ideas and thus do not feel

compelled to teach language. An additional reason that teachers do not focus their

mathematics classes on language issues may be that the teachers feel it is not their

job to focus on language, that the English teachers have that in their purview. It

may also be that teachers, not having had much schooling in language of

mathematics, may not feel confident (self-efficacious) to teach the language of

mathematics.

As students are expected to learn the language of mathematics, researchers

can facilitate the process by identifying which language concepts may be

unnecessary in mathematics (rationalizing the denominator, rarely used

vocabulary, archaic notation a: b = c : d) that we continue to teach. It would also

be useful to determine how students assimilate vocabulary. There may be effective

techniques to help students develop rich visualizations of mathematical problems.

Research on assessment techniques might determine ways to enrich student

understanding of language concepts. A focus on the actual language acquisition

process could look for how students learn the difference between an elegant

presentation and a contrived one, and teachers could benefit from research to

determine if it is necessary to address language explicitly or whether students can

learn it through classes rich in communication activities.
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In addition to needing information on student learning, there is a need for

information on how teachers acquire and employ language in their teaching.

Fruitful investigation similar to Adler's code-switching investigation could focus

on whether teachers employ code-switching within the English language, tending

to use informal language at particular times and more formal mathematical

language at other particular times. The question of teacher preparation also could

be addressed in two ways: whether teachers are adequately prepared or not and

whether any preparation should be done in the in-service time rather than in

preservice experiences. It may also be that methods classes are lacking in language

concepts for mathematics teaching.

Clearly, a number of productive research projects related to the language of

mathematics could enhance understanding of language concepts within the

mathematics classroom. This area is a rich assortment of researchable problems

whose answers could facilitate student learning and capacity to develop

mathematical literacy.
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Chapter 3: Development and Initial Validation of the Language of
Mathematics Teacher Self-Efficacy Instrument (LoMTES)

Language is at the heart of nearly every human endeavor, and yet somehow

there is a cultural belief that there is no language in mathematics. How could one

do mathematics without language? How could mathematics be taught without

language? When a problem is particularly significant, even the strongest

mathematics teacher will talk himself through a solution to the answer. The ability

to phrase a mathematical thinking process in language is necessary in becoming

skilled in mathematics. The importance of language in teaching mathematics was

indicated by Durkin (1991):

mathematics education begins and proceeds in language, it
advances and stumbles because of language, and its outcomes are
often assessed in language. Such observations could be made of
most school curricula, but the interweaving of mathematics and
language is particularly intricate and intriguing. (p. 3)

Mathematics insists upon precision of language. It actively discourages

ambiguity and vagueness, and even honors and values brevity and elegance of

expression. Although language is major tool for teaching mathematics, its

importance and impact may have been overlooked because of the possibility that

the tool is so transparent that it is invisible. But this transparent language is used

incessantly. As teachers pass on mathematical knowledge they need language as a

vehicle to transfer it through. Students need communication skills as they

recognize meanings and connections, as they demonstrate and share their

mathematical understanding, and as they employ mathematics while working with
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others. Unfortunately mathematics education has long sidestepped the Language of

Mathematics.

Language and Thought

As students weigh complex relations in mathematics, their language

facilitates their thinking. Vygotsky (2002) argued that word meaning encompasses

both thought and speech and that the two cannot be separated when studying the

meaning of words. He referred to an unspecified study showing that speech

movements facilitate reasoning and that inner speech is helpful for imprinting and

organizing content. Vygotsky also depicted inner speech as a mechanism to

facilitate the selection of essential material from the nonessential and as a

significant factor in making the transition from thought to external speech; this is

not to imply that all thought uses language. It is only to say that much of our

thinking is processed through language.

Smith (2002) argued that".. . language is inseparable from the way we

perceive objects, categories, and relationships in the world" (p. 36). The

neurophysiologist Calvin (Calvin and Bickerton, 2000) discussed how

instantaneously our language is produced in the brain. "If the brain is working in

language mode, words are put together in whole phrases and clauses and even

sentences before they're sent to the speech organs to be pronounced" (p. 43).

Language and thought are clearly inseparable (Coulter, 2001; Vygotsky, 2002),

and students of mathematics use mathematical language as they think through

complex problems and create an internal framework of understanding.



Communication is Essential in Learning

Vygotsky's (2002) zone of proximal development is built on the concept of

communication being essential to learning. Bruner (1984) recounted the results of

a study (193 1-1932) by Vygotsky and Luria which was suppressed by the Soviet

government as being a criticism of peasants. This account shows a very basic

example of learning developing through interaction:

The principal finding of their studysuppressed for years, and
finally appearing not in the form in which Vygotsky wrote it, but
only in Luria's book (1979) of many years laterwas that
participation in an agricultural collective had the effect of
promoting growth in the thinking of the peasants involved, which
took them from childlike, primitive forms of thinking to adult
forms of thought. Collective activity, in a word, led peasants along
the way to adult thinking. (p. 94)

Language and thinking appear to be inseparable. Von Glasserfeld (1987)

theorized that mathematical learning is developed for students as they actively

create knowledge while interacting with other students and the teacher. He also

maintained that this interaction is developed through language. Students are thus

scaffolded to higher understanding. Habermas (as cited in Coulter, 2001) indicated

that the only major use of language is to develop understanding. Sfard (1991) and

Sfard and Linchevski (1994) indicated the importance of communication as

students reify concepts from an abstract understanding to a concrete tool.

Additionally, a number of researchers (Ball, 1993; Cobb, Wood, & Yackel, 1992,

1993; Cazden, 2001) showed uses of discussion in developing understanding in

mathematics. The culture often views mathematics as separate from the humanistic
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action of communication and language, yet clearly this perspective is directly

contrary to student needs.

Literacy and Language

In 1987 the National Council of Teachers of Mathematics appointed a

board and gave them two charges: (1) to "Create a coherent vision of what it

means to be mathematically literate," (NCTM, 1989, P. 1); and (2) to develop a set

of standards of how that vision would be reflected in the classroom. From this

charge of only two tasks, the NCTM Principles and Standards were developed.

The term mathematically literacy was used in a very broad sense, incorporating not

only reading and writing, but also the understandings and applications of

mathematics. It could be termed fluency. Looking at mathematical literacy as a

major goal in mathematics education, one notes that in order to develop literacy in

mathematics, it is paramount that a student develop facility with the language of

mathematics. This language is a major tool that students need for mathematical

literacy (Cooper, 2003; NCTM, 1989; OCED, 2003; Romberg, 2000).

This research project focused on the language of mathematics as a sub-

topic of mathematical literacy within English speaking classrooms and thus

viewed the language of mathematics from that perspective. The language of

mathematics has been viewed in a metaphorical rather than literal meaning of

language, specif'ing a genre of English, meaning kind or type, characterized by a

particular form or purpose (Shorter Oxford English Dictionary, 2002). Because the

term language of mathematics is so common, it remains in this work, but it is



however taken to mean language genre. The following generalization of what is

meant by the language of mathematics was the functional definition in this study:

In English speaking classrooms the language of mathematics is
used in combination with English and is the union of a subset of
English and a set of symbolic forms. This language refers to the
specific words, symbols, graphs, and conventions used when
discussing or writing about mathematics.

In the definition words indicates the specific vocabulary used in mathematics such

as ratio, polynomial, and square root, along with terms that are common in English

but have a different meaning in mathematicswords such as similar, radical,

power, and function. The term symbols refers to icons used to encode meaning that

is not usually written in alphabetic form. The term graphs refers to diagrams,

graphs, and any visual representation of mathematics or data. The term

conventions refers to the grammatical and cultural traditions of expression

including how mathematical work is represented, accepted forms of argument, and

the expectation of precision. The functional definition is depicted graphically in

figure 3. Language of English
Mathematics

Symbols
Words

Figure 3: Graphical representation of language of mathematics used in English
speaking classrooms as the union of subsets of English and symbolic forms.
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Language of Mathematics Varies from Standard English

Smith (2002) indicated that mathematics requires a language different from

our natural language. It is important that students acquire this mathematical

language to expand their thinking in mathematics. Think of the inherent confusion

presented by the concept of similar in mathematics. An English sense of the word

similar allows a conclusion that all triangles are similar. A mathematical use of the

tenn similar is significantly different, allowing only particular combinations of

triangles to be labeled similar.

In addition to the concepts veiled in vocabulary, the copious symbols in

mathematics can be interpreted as part of mathematical language. Neophytes to

mathematics sometimes consider the symbols to be a major block to

understanding, but of course the symbols facilitate quicker thinking. An example

that might convince those neophytes would be the following problem: fifty-four

minus thirty-nine. The standard symbols are so ingrained in our thinking process

that most adults will automatically convert to the symbolic representation of 54-

39 before completing a solution. This same simplification of thinking occurs for

mathematicians using more complicated symbols, freeing the mathematician to

think beyond the boundaries of wordy explanations of relations. Facility with the

language of mathematics is indispensable in being able to progress in mathematics

and that language, while using many English words, is not the same as English.

Mathematical language is also different from Standard English is its

attention to careful precision. A student in mathematics is subjected to a cultural
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constraint requiring a more demanding meticulousness than is found in standard

communication. The situation was summarized by Dr. Art Clemons at a

mathematics department meeting (Southern Oregon University, November 7,

2000): "English is a natural, sloppy, mushy language and our real purpose is to

teach students to use a precise languagemath. . . . Translating and clarifying

language is a beneficial learning experience." This aspect of the language of

mathematics may be surprising to novices.

In addition to the specific concerns listed above, students need to learn to

translate among a variety of ways to represent relations: verbal, graphic, tabular,

and symbolic (Brophy, 1991; Fennema & Franke, 1992). The ability to view

relations from a variety of perspectives increases student mathematical power by

offering multiple modes of attack. This translation process is part of the language

of mathematics that students learn in our classrooms. In learning the language and

in learning mathematics, communication is an essential ingredient.

Professional Support for a Focus on Language

We have raised the standards in mathematics education, and out of 10 of

them there are four: Reasoning and Proof, Communication, Connections, and

Representation that clearly require the use of languageif not traditional, verbal

language, then at least the encoding of information into a form from which it can

be retrieved. Although they have not clearly defined the term language of

mathematics, the National Council of Teachers of Mathematics (NCTM)

communication standard explicitly refers to it: NCTM placed an emphasis on
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mathematics as communication as early as 1980 in its Agenda for Action and in

both of its standards documents (1989, 2000). The communication standard from

the more recent NCTM document is as follows:

Instructional programs from prekindergarten through grade 12
should enable all students to

Organize and consolidate their mathematical thinking
through communication;
Communicate their mathematical thinking coherently and
clearly to peers, teachers, and others;
Analyze and evaluate the mathematical thinking and
strategies of others;
Use the language of mathematics to express mathematical
ideas precisely. (2000, p. 60)

The American Mathematical Association of Two-Year Colleges

(AMATYC) has also developed a standards document (1995). Although their

standards do not use the terms communication or language, the importance of

language is indicated in the following standard: "Students will acquire the ability

to read, write, listen to, and speak mathematics" (p. 11). This standard implies the

vision of mathematics as a language. The American Mathematical Association's

(MAA) Committee on Undergraduate Program in Mathematics (CTJPM, 2003) has

developed the recommendation that students should, "Develop mathematical

thinking and communication skills" (p. 11). The National Research Council in its

1989 report on American mathematics education asserted that students need to be

able to read technical language. It also alluded to language issues when saying,

"Doing mathematics is much like writing. In each, the final product must express

good ideas clearly and correctly" (p. 44). The South African Government (2003)



indicated the following outcome for their mathematics students, "Use

mathematical language to communicate mathematical ideas, concepts,

generalizations and thought processes" (p. 3). Australia's mathematical literacy

program has students participate in the Programme for International Student

Assessment, which assesses students on "the use of mathematical language"

(OECD, 2003, p. 1).The above citations of various organizations and documents

clearly point to a need for students to learn a language of mathematics so that they

can communicate with each other. Communication activities would help students

learn mathematics and to share their thinking in mathematics as they meet the

requirements of a good mathematics education.

The standards are a statement of values, and they indicate a vision of

mathematics (Friel, Bally, Cooney, & Lappan, 1990; Hiebert, 1999; Martinez &

Martinez, 1998; Romberg, 1990). One might argue that mathematics is an isolated

endeavor and a focus on communication merely creates confusion, pulling the

individual away from the necessary, focused, isolated attention that it takes to do

mathematics. Durkin (1991) addressed this concern in the following argument on

mathematical language:

Why focus on language? The mathematician, after all, works in an
abstract and highly symbolic subject where precision and
formalism are critical. . . surely the mathematician transcends the
vagaries and pitfalls of everyday discourse. (p. 3)

He countered that argument by referring to Pimm (1991, as cited by Durkin)"...

such a view disregards two of the essential ingredients of mathematics: people and

communication" (p. 3). Mathematics is not isolated from the humanistic side of
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thinking; in fact, it requires the use of language and communication in order to

establish concepts and to further significant arguments. Smist and Barkman (1996)

completed a study to indicate that forcing the brain to extract patterns is more

effective than having teachers identify patterns for students. As students identify

these patterns they need mathematical language to describe and justify their

choices.

Burton (1998) found that mathematicians indicated an increased need for

communication skills and an increased need to work collaboratively. Although her

study was focused on a non-randomized subset of mathematicians from only the

British Isles, the information is tentative evidence of language needs of individual

mathematicians. Burton admitted to surprise in her study of 70 mathematicians

when she found merely four (5.7%) of the mathematicians interviewed claimed to

do only individual work. Their collection of reasons for working together reads

like a support document for cooperative education:

Talking is a good way to get a problem done,
It shares the work, you benefit from the experience of
others,
It increases the quantity and quality of ideas,
You have someone off whom to bounce idea,
It enhances the range of skills,
You get into areas that you might not have thought of going
into,
You learn a lot from more senior colleagues,
Under the pressure of writing up, you mustn't let the others
down,
There is someone to take over when you reach a deadend
[sic],
You share 'the euphoria' with someone,
You feel less isolated,
You can benefit from a novice/expert combination. (p. 128)



Note the need for communication indicated by the mathematicians' list. This

attitude of mathematicians certainly supports curricular reform encouraging a

focus on verbal skills and other mathematical communication methods. It also

identifies a perception among mathematicians of the need for skills in

mathematical communication, which is affirmed by Burton and Morgan (2000).

The mathematics education reform movement calls for greater focus on

communication; professional mathematicians concur.

In addition to the needs of practicing mathematicians, there is a need for

students to use language as they develop arguments about mathematical

relationships. Lampert and Cobb (2003) identified these student needs:

If students are to engage in mathematical argumentation and
produce mathematical evidence, they will need to talk or write in
ways that expose their reasoning to one another and to their
teacher. These activities are about communication and the use of
language. (p. 237)

David Pimm (1991) and Paul Cobb (2000) discussed the value of language in

developing understanding in mathematics. Arzarello (1998) indicated "The role of

the verbal code. . . is crucial for developing an algebraic way of thinking in

solving problems" (p. 249).

Reform efforts identify the need for and value of communication and

language skills in mathematics education. Mathematicians need communication

and language skills as they work together. Students require language and

communication proficiency as they develop the ability to make cogent arguments

within the mathematics class.
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A Focus on Language is Rare

Although the need for a focus on language in mathematics education has

been established, it appears that teachers are not concentrating on language in their

teaching (Lampert and Cobb, 2003). In her report comparing traditional and reform

middle school level mathematics classrooms, Fonnan (1996) demonstrated that

reform classrooms offered more opportunity for students to develop fluency in

mathematical language than traditional classrooms did. She indicated that this was

because participation was more broad while in traditional classrooms students

were more likely restricted to reading text and listening to the teacher rather than

participating actively. Forman further indicated that Stodolsky (as cited in Forman,

1996) found fifth grade students had opportunities to discuss with other students

only 1% of the time in mathematics classes as compared to 34% of the time in

social studies classes. This imbalance in traditional classrooms makes learning the

language of mathematics difficult for students, giving them little opportunity to

practice using the complex vocabulary and constructions necessary in

mathematics.

A pilot study by this author asked Oregon high school teachers (n = 116,

randomly chosen from all Oregon high school mathematics teachers) about

mathematical language. The three statements "Learning to speak mathematics is an

important skill," "Learning to read mathematics is an important skill," and

"Learning to write mathematics is an important skill" were included (among other

items) and reported on a five-point Likert scale. Each of the items was scored as
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strongly agreeing at more than 24 standard deviations above the mean, and

reliability established at 95.9% after a Bonferroni adjustment. The project

indicated that Oregon high school teachers are likely to view language issues as

important. Additional questions asking whether teachers actually help students to

learn to speak, read, and write mathematics had mixed results with moderate

reliability. Weaknesses in the study prohibit inferences, but it is reasonable to

consider that further study could be insightful.

Having established that the language of mathematics is an important topic

and yet it is not a consistent focus in mathematics classrooms, one is left with

discomfort of the disconnection between theory and practice. If we know that

students should learn to use the language of mathematics, yet teachers are not

teaching it, then the mathematics education community is faced with a

contradiction. This contradiction merits further study in order to detennine how to

resolve the inconsistency and how to support teachers effectively as they try to

implement reform.

The Problem

In summary, the problem is one of contradiction because theory and policy

stand in opposition to action. Language is inherent in thinking; improving

language can have considerable effect in expanding thinking; and so educational

theory posits communication as essential to learning. Argument and proof are at

the heart of mathematics and require facility with language, including the language

of mathematics. Thus the language of mathematics is an integral part of



mathematics, and of practical importance for communicating within the

mathematics classroom.

Accordingly, mathematics education reform calls for a focus on the

language of mathematics. Yet, there is no particular consensus on what is meant by

language of mathematics, and American mathematics classrooms seldom have

communication and language as an important focus. This conflict between what is

determined to be valuable for students and what is actually happening in the

classroom triggers speculation on the possible causes.

Speculations on Why the Problem Exists

In speculating on the reasons that we have conflicting conditions, there are

a number of possibilities. Initial conversations with three veteran teachers indicate

that the reason some teachers do not focus on the language of mathematics in their

teaching may be:

There is not enough time in the curriculum.
Teachers are not evaluated on language.
Standardized tests capture the focus.

Additional reasons may be:

Teachers are inattentive to reform specifics.
Teachers are unsupportive of the Communication Standard.
Language is taught by other teachers in the school.
Teachers lack pedagogical content knowledge.
Teachers believe mathematical language is taught by "osmosis."
Teachers do not feel confident (self-efficacious) to teach the
language of mathematics.

While all of the speculations above merit study, this research project focused on

the final speculation, that of mathematics teachers' confidence in teaching the
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language of mathematics. This an important problem and merits study in order to

resolve a basic contradiction between theory and practice.

Significance of the Problem

This problem is important because of the contradiction between practice

and conviction at a basic level of mathematics instruction. If mathematical literacy

is a (the?) primary goal in mathematics education, then language of mathematics is

principal. The teacher is the foremost designer of day-to-day instruction. If the

teacher has personal beliefs or concerns that influence the quality and quantity of

classroom efforts to help students to ". . . use the language of mathematics to

express mathematical ideas precisely" (NCTM, 2000, p. 60), then those beliefs

may be the stumbling block to implementation of reform. If teachers have beliefs

that keep them from addressing language, then they will probably not implement

the reform topics of communication and language. Determining a way to establish

teacher self-efficacy on this topic may make it possible to facilitate the teaching of

language within the mathematics classroom. If teachers are not confident that they

can initiate students' learning of the language of mathematics, they probably will

not attempt to train students in that subject matter. If teachers do not focus on

language, then students will have less opportunity to expand their mathematical

thinking and their argumentation skills. They will be less able to think/talk their

way through a problem, and less able to communicate problematic situations and

solutions to others in their chosen vocations. Students need language that enables

them to think and communicate mathematically.
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In order to assess teacher confidence in their ability to teach the language

of mathematics, it is necessary to have a measurement instrument. Because no

instrument was available, this research project was developed to create and

initially validate such an instrument. The vision of confidence used was that of

self-efficacy as developed by Bandura.

Bandura's Social Cognitive Theory

Bandura (1986) posited his theory of triadic reciprocal determination,

which asserts that human activity is caused by a complex interaction among

behavior, personal factors, and environmental factors. He argues that, ". . . people

are both producers and products of social systems" (1997, p. 6) and argued that in

studying self-influence we must recognize a reciprocal relationship among three

factors. Interpersonal factors influence and are influenced by both behavior and the

external environment. Similarly, behavior influences and is influenced by the

external environment. It is these three elements of interpersonal factors, behavior,

and the external environment that make up Bandura's triadic reciprocal causation.

This relationship is graphically depicted in Figure 4.

P Interpersonal Factors
(cognitive, affective, and biological events)/\

B E
B = Behavior E = External Environment

Figure 4. Adaptation of Bandura's triadic reciprocal causation. (1997, p. 6).
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As an example of triadic reciprocal causation, consider a teacher instructing

students on randomization. He plans his lesson and decides upon a behavior based

upon his interpersonal perspective of randonmess and previous interpersonal

experience in teaching the same and similar topics and also chooses his behavior

based upon the external environment such as the text and the given group of

students. His behavior is determined both by his interpersonal factors and by

external factors.

As this teacher begins to teach randomization, the classroom environment

changes and he may choose to change his approach (behavior) or his interpersonal

thinking based on his perceptions of the environment and his interpersonal

thinking. Bandura's theory shows the three determinants of (a) personal factors,

(b) the environment, and (c) behavior are interconnected because each influences

the other two. It is this triadic relationship that is at the heart of Bandura' s social

cognitive theory on which this study is based.

Behavior is influenced then by an individual's self-appraisal among other

factors. As Bandura (1997) explained:

The choice of actions from among alternatives is not completely
and involuntarily determined by environmental events. Rather, the
making of choices is aided by reflective thought, through which
self-influence is largely exercised. People exert some influence
over what they do by the alternatives they consider; how they
foresee and weigh the visualized outcomes, including their own
self-evaluative reactions; and how they appraise their abilities to
execute the options they consider.. . . thus, for example, an
individual will behave differently in an efficacious frame of mind
than in an inefficacious one. But the individual remains the agent
of the thought, the effort, and the actions. (p. 7)
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Henson (2001) summarized the triadic relationship: "We are products of the

dynamic interplay between the external, the internal, and our current and past

behavior" (p. 3). Bandura indicated that people both produce and are products of

their environment and social systems. They are self-reflective, self-organizing, and

self-regulating based on experiences and interactions with their environment. The

three aspects of triadic reciprocal causation together account for choices people

make regarding their actions.

Pajares (2002b) asserted, "Social cognitive theory is rooted in a view of

human agency in which individuals are agents proactively engaged in their own

development and can make things happen by their actions" (p. 2). He further

explained that it is individual beliefs that modif, thoughts, feelings, and actions. In

saying: "What people think, believe, and feel affects how they behave" (1986, p.

25), Bandura exemplifies the essence of his theory of perceived self-efficacy.

This perceived self-efficacy is a powerful construct that predicts human

behavior. Bandura defines it as".. . a judgment of one's ability to organize and

execute given types of performances" (1997, p. 21). He also asserted "Peoples

level of motivation, affective states, and actions are based more on what they

believe than on what is objectively true" (p. 2). Pajares elaborated as follows:

"People's accomplishments are generally better predicted by their self-efficacy

beliefs than by their previous attainments, knowledge, or skills" (2002b, p. 4). The

predictive nature of self-efficacy makes knowledge of a teacher's perceived self-

efficacy an important measure in predicting their accomplishments in teaching the
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language of mathematics. Woolfolk and Hoy (1990) strengthened Pajares' stance

by noting, "Teachers' sense of efficacy is a consistent relationship between

characteristics of teachers and the behavior or learning of students" (p. 81).

Self-efficacy is task specific. A person might feel particularly efficacious

about being able to build a bookcase, but less self-efficacious about being able to

sail a boat. Because of the task-specificity of self-efficacy, it cannot be measured

in general. It must be measured in reference to a particular activity. It may be that

teacher perceived self-efficacy is a factor in the teaching of language in

mathematics. If teachers do not feel confident about being able to teach the

language of mathematics, they will not likely be able to help students learn it. In

order to determine teacher perceived self-efficacy, it is necessary to measure it.

Although there are numerous instruments to measure self-efficacy, there is none

designed to measure the perceived self-efficacy of mathematics teachers as regards

the teaching of the language of mathematics. This research project, which

developed an instrument to measure teacher perceived self-efficacy for teaching

the language of mathematics, was situated in Bandura's theory.

Teachers' perceived self-efficacy is significant for student learning. Ashton

and Webb (1986) studied seasoned teachers teaching students in basic skills

classes who were placed there because of severe academic difficulties. The

teachers' efficacy beliefs predicted their students' levels of mathematics and

language achievement over the course of an academic year. If teachers do not

believe that they can teach the language of mathematics, they are probably right.
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The Research Project

This research project focused on the fact that there is not an instrument to

assess teacher confidence to teach the language of mathematics. An instrument to

measure perceived teacher self-efficacy on this topic could allow the mathematics

education community to determine teacher confidence, which shapes and predicts

teacher ability and student success. Interventions could then be developed that

would help low-efficacious teachers develop stronger skills for teaching the

language of mathematics.

As Bandura (1997) noted, "Beliefs of personal efficacy constitute the key

factor of human agency. If people believe they have no power to produce results

they will not attempt to make things happen" (p. 3). If teachers have low perceived

self-efficacy regarding the teaching of the language of mathematics, then they

would be less likely to teach it and students would thus have less opportunity to

learn that portion of the curriculum. Conversely, teachers who have high

perceived self-efficacy regarding the teaching of the language of mathematics,

then they would be more likely to teach it.

In order to address the question of teacher perceived self-efficacy on this

construct of teaching the language of mathematics, a measurement instrument was

developed and partially validated. It was designed to measure teacher perceived

self-efficacy as regards teaching the language of mathematics. This Language of

Mathematics Teacher Efficacy Scale (LoMTES) was designed with the hope that it

could eventually enable educators to determine teachers' efficacy levels for
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teaching language concepts in mathematics. Because perceived self-efficacy is

predictive, the instrument should be helpful in determining which teachers would

be successful in teaching this construct and whichmay be able to benefit from

additional support.

Method

The purpose of this study was to make the initial steps in developing and

partially validating the Language of Mathematics Teacher Efficacy Scale

(L0MTES) to measure elementary teachers' perceived self-efficacy for teaching

the language of mathematics. This instrument was developed in five steps

(Bandura, 2001; Gall, Borg, & Gall, 1996):

(1) Defining the Factors: open-ended interviews of subjects of interest to
determine the difficulties of teaching the language of mathematics;

(2) Building a Prototype: using factors developed in the open-ended
interviews to create efficacy measurement items and an original
prototype;

(3) Evaluating and Adjusting the Prototype: critical review, field testing,
and statistical analysis;

(4) Field Testing the Instrument: instrument testing on a group from the
target population;

(5) Establishing Initial Validity: collecting data on reliability and validity.

Target Population

The Language of Mathematics Teacher Efficacy Scale was developed for

inservice elementary teachers (grades 1-6). This level was chosen because these

teachers set the groundwork for students of mathematics. The elementary teachers'

approach to language issues could make a huge difference in the development of

mathematical literacy.
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Step 1: Defining the Factors

Four university mathematics education professors were asked to suggest

elementary teachers who were exemplary mathematics teachers. A pool of eight

mathematics educators who were willing to be interviewed were acquired from

that list, teachers who were identified most frequently being chosen first. There

were four females and four males; all of them had teaching credentials to teach

elementary students. They taught in levels from first grade to seventh grade at a

total of five different schools.

Each teacher participated in an hour-long one-on-one interview with the

researcher. In the open-ended interviews, the researcher attempted to elicit the

more difficult aspects of teaching the language of mathematics (Bandura, 2001;

Gall, Borg, & Gall, 1996). The interview protocol (Appendix A)was designed to

encourage each interviewee to discuss language of mathematics, teaching the

language of mathematics, and each of the four sub-topics of the language of

mathematics: words, symbols, graphs, and conventions.

At the end of the interview, each participant was given contact information

and strongly encouraged to communicate with the researcher later if other thoughts

came to mind. Written notes of each interview were formatted and organized. The

notes of each of the eight interviews were sent to every participant with two

requests: (1) for the participant to indicate approval or alteration of the notes of

each personal interview, and (2) for the interviewees to read the comments of other

participants and identify any reactions based on the opportunity to see the



comments of the others. All eight participants responded to both of the two

requests.

The final collected information from the interviews was color-coded by

topic and sorted and synthesized in order to determine significant factors which

were used to develop items for the efficacy scale. Bandura emphasized the

importance of finding factors that "regulate functioning in the selected domain"

(2001, p. 3), and thus particular care was given to determine the factors that the

educators believed could make a difference in successfully teaching the language

of mathematics.

Step 2: Buildinjt a Prototype

Item development. The comments from the open-ended interviews

were used to develop an item pooi. As suggested by Bandura (2001) an attempt

was made to avoid the following problems as much as possible: ambiguousor

poorly worded items, technical jargon, and multiple questions within one item.

The items were short and explicit (Bandura, 2001). Items were devised to

determine judgment of capacity and capacity to create particular outcomes in order

to reflect self-efficacy. Because efficacy beliefs vary in generality, strength, and

level (Bandura, 2001), the items were varied to reflect those issues.

Each of the four factors (words, symbols, graphs, and conventions) of the

functional definition was represented by ten items in the prototype survey (see

Appendix B). In addition to the language of mathematics items, the prototype

instrument also included demographic items such as age, gender, years of
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teaching, levels of teaching, type of teaching endorsement, and number of college

credit hours in mathematics. One item from each of the four factor groups is

shown below:

Words: I am not able to find lots of places to use mathematical
words when I teach other subjects.

Symbols: I can help students understand that mathematical
symbols are just codea short cut for writing.

Graphs: I am able to get students to discuss what a graphs shows
after it is completed.

Conventions: I cannot help students to learn to translate between
words and equations and vice versa.

Each of the items was investigated for readability and clarity and then built

into an initial instrument of 40 items. The prototype instrument included 10 self-

efficacy items for each of the four sub-topics (words, symbols, graphs, and

conventions). Items were ordered on the instrument by random selection. Half of

the items were negatively worded, and these were chosen to be negatively worded

by random selection.

Response Scales. Pajares, Hartley, & Valiante (2001) administered two

versions of a writing self-efficacy scale (ii = 497) in which the only difference was

in response possibilities. One instrument consisted of 10 items, each measured on

a six point Likert scale. The second contained the same 10 items, but on a 100

point scale separated into 10 intervals. The second approach developed greater

reliability. Items in the instrument being developed in this project were initially

also to be measured on a 100 point scale with responses separated into 10 intervals
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from 0 to 100. This scale was deemed more sensitive and reliable than using only a

few response points (Bandura, 2001; Pajares, Hartley, & Valiante, 2001). When

preservice and inservice elementary teachers checked the initial document for face

validity, the general response was confusion because of the 100 point scale. The

teachers were concerned that it was like a 100 point grading scale, where 65 was

failing. Many indicated a reluctance to score themselves below 70 on the

positively worded items. For this reason and as an attempt to maintain the

advantages of Paj ares' 10 interval scale, the response values were altered to be 0 to

10 in intervals of size one. Respondents were asked to determine ratings as to how

they viewed themselves at that particular point in time rather than at any future

vision or in any sense of possible eventuality (Bandura, 2001).

Step 3: Evaluating the Prototype

The prototype was evaluated in two steps. First a critical review to assess

the prototype for face and content validity. Second the prototype was field tested

with 43 elementary teachers. Statistical analysis on the results of this

administration led to alterations in the instrument items.

Critical review for face and content validity. Cates (1985)

defined face validity as referring to". . . whether the instrument appears to be all

right. That is, does it look right?" (p. 122). He defined content validity as the"...

extent to which an instrument covers content which is appropriate to the research

study, to the samples and population to be studied" (p. 122). Face and content

validity of the prototype were assessed by five professional mathematics educators



81
and four self-efficacy specialists.. Content validity was determined to see if the test

content paralleled the objectives contained in the factors from the open-ended

interviews and in the four factors of the functional definition (Hopkins, Stanley, &

Hopkins, 1990). Adjustments to the instrument were made based on comments

from the panel of experts. Eighteen individuals from the target group also

inspected the initial instrument, paying careful attention to readability and clarity

(Bandura, 2001).

Field testing. The prototype instrument was administered to a sample (n

= 43) from the target population in order to determine if the efficacy items held

sufficient gradations of difficulty and that they avoided ceiling effects (Bandura,

2001). All respondents were certified elementary teachers; they worked in 12

different schools. Procedures outlined by Bandura in his 2001 set of guidelines for

constructing self-efficacy scales were followed In order to minimize response bias:

The self-efficacy judgments were recorded privately rather
than given publicly.
The questionnaire was identified by code number rather
than by name.
Respondents were informed that their responses would
remain confidential and be used only with number codes by
the researcher.
The scale is labeled, with the nondescript title of
"Mathematics Teaching Survey" rather than "Self-
Efficacy."

Analysis. The prototype was completed by 43 certified teachers (29

females and 14 males) in 12 schools There were 12 prototype surveys which were

not used due to missing data, leaving a pool of 31 prototype surveys to analyze.



An iterative reliability analysis was performed to determine the subset of

questions which best independently correlated to each of the four factor groups of

words, symbols, graphs, and conventions. Item Total Item Correlations > 0.3 were

used to determine the difficulty, validity, and reliability of each item in the

prototype (Enochs, Smith, & Huniker, 2000; Robinson, Shaver, & Wrightsman,

1991). In the iterative reliability analysis each factor group was analyzed

independently. Test instrument items were iteratively deleted if their total item

correlation was less than 0.3. This level was identified as exemplary by Robinson,

Shaver, & Wrightsman, (1991).

Table 1: Item-Total Correlations After Prototype Analysis, iteratively deleting
items <0.30. A indicates a neatr

Scale Item Item-Total
Correlation

Words 1 0.67
6* 0.44

a=0.75 10* 0.42
11 0.45
16* 0.40
19* 0.33
21 0.63
30 0.60

Symbols 2 0.34
8 0.36

a=0.79 12 0.67
13* 0.60
14 0.50
15 0.43
32* 0.55
34* 053

worded item.
Scale Item Item-Total

Correlation
Graphs 9 0.57

18 0.50
a = 0.82 22 0.45

23 0.70
26* 0.62
29 0.74
31* 0.58
35* 0.40

Conventions 5 0.43
7* 0.51

a = 0.80 20* 0.59
25 0.50
27* 0.67
28 0.50
39 0.55

The language teaching items were hypothesized to fit in four factor groups:

words, symbols, graphs, and conventions. Reliability was determined by
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Cronbach' s alpha within each of these four constructs (Bandura, 2001;

Charalambos& Philippou, 2003; Fouad, Smith, & Enochs, 1997; Hagedom &

Enochs, L, & Smith, P. & Huinker, D., 2000; Robinson, Shaver & Wrightsman,

1991), the acceptance level was chosen at 0.70. Adjustments in the items were

made based on the results of the reliability tests.

The statistical analysis deleted nine of the initial items, leaving an

instrument of 31 items (see Appendix B) to be tested in the field on a larger

sample. The 31 remaining items in the survey instrument distributed nearly evenly

among the four factor groups, each group containing eight items except for the

conventions group which maintained seven items. The reliability estimates of each

factor group had an alpha value ranging from 0.75 to 0.82 with a mean of 0.79 as

can be seen in Table 1.

Step 4: Field Testing the Instrument

In order to begin validation so that the scores were meaningful, the final

instrument developed from the successful pilot test items was administered to a

sample of the target subjects. The instrument was formatted two ways: (1) as a

traditional paper document and also (2) in an electronic format which sent results

to the researcher's email account. The paper version was completed by 22

elementary teachers chosen by convenience. The electronic version was emailed to

a stratified random sample of 6000 teachers of grades 1-6. The sample involved

50% suburban, 28% urban, 22% rural teachers from across the United States. The

electronic instrument was returned by 223 respondents in 39 states, yielding a total
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of 245 respondents. After 14 surveys were removed due to missing data, the pool

of respondents was 231.

Step 5: Establishing Initial Validity

Construct validity. Construct validity was measured by an

accumulation of evidence (Brown, 1996). The validation will be an ongoing

process, but the initial attempt to begin construct validation originated after the

final instrument was administered to the group of the target subjects (n 231). The

final instrument was a subset of the prototype instrument; because of this fact, the

seven prototype samples that arrived after the prototype analysis was completed

were included in the 231 documents that were analyzed as the final instrument.

This is reasonable as all items contained the same wording as in the prototype and

no additional questions were added to the instrument. The only change was to

delete nine of the original items.

All negative items were reversed coded and the reliability results of the

data without the original prototype scores was compared with the reliability results

of the data with the original prototype scores was compared. An item analysis was

conducted on each of the 31 items. The Item Total Item Correlations were used to

determine homogeneity (Enochs, L, & Smith, P. & Huinker, D. 2000; Fouad,

Smith, & Enochs, 1997). Reliability was established by Cronbach's alpha. These

values are summarized in Table 2. Because the prototype results were so similar

with the final results in terms of reliability and alpha, it was decided to include the

original prototype study results in the final pooi of results used for analysis. This
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method of including data from the earlier study and using it in the later is

sometimes referred to as bootstrapping a sample, which is a statistical iterative

sampling technique and could be implemented because the second document was a

reduction of the first. This technique increased n from 231 to n = 266.

Demographics of the population sample. Of the 266 respondents

used in the final analysis, their self-reports indicated that 17% were male and 83%

were female. They represented 39 states, and all claimed to be certified to teach at

least one grade level in the range of 1-6. The current teaching levels identified

were 2.7% teaching pre first grade, 13.6% teaching first grade, 20.4% teaching

second grade, 15.8% teaching third grade, 11.3% teaching fourth grade, 19.0%

teaching fifth grade, 12.7% teaching sixth grade, and 4.5% teaching above grade 6.

The teachers reported teaching experience had a mean of 15 and median of 12.5

years.

Data analysis. Because the original prototype data was so consistent,

only one item was deleted from the field tested instrument through Item-Total

Item-Correlations, removed for an item-total item-correlation below 0.30, leaving

30 items in the instrument at that time. The remaining 30 items were subjected to

frequency analyzed for discrimination by a frequency analysis, and seven of them

were removed because they failed to discriminate between respondents as the

responses tended to be clustered at the high end of the scale, indicating that

respondents tended to answer alike. The removal for non-discrimination resulted in

23 items remaining in the instrument.
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Table 2: Reliability established through Item-Total Item Analysis and Cronbach's

pa for the data collected. A * indicates a negatively worded item.
Final Data with Prototype Final Data without Prototype

Scale Item Item Total Alpha Item Item Total Alpha
number Correlation number Correlation

new=.old new=.old

Words l=1 0.34 0.71 1=i 0.32 0.73
2=6* 0.40 2=6* 0.44
3=10* 0.32 310* 0.34
4=1 1 0.47 4=1 1 0.47

0.46 5=,16* 0.46
6=19* 0.51 6=19* 0.56
7=21 0.38 7=2l 0.38
8=30 0.52 8=30 0.53

Symbols 9=2 0.44 0.76 9=2 0.46 0.77
1l=12 0.51 11=12 0.61
12=13* 0.53 12=13* 0.54
13=14 0.47 13=14 0.46
14=15 0.52 1415 0.53
15=32* 0.54 15=32* 0.56
16=.34* 0.39 16=34* 0.39

Graphs 24=9 0.53 0.81 249 0.55 0.81
25=18 0.41 25=18 0.42
2622 0.57 2622 0.57
2723 0.62 27=23 0.64
28=.26* 0.48 28=26* 0.51
29=29 0.57 29=29 0.60
30=31* 0.48 30=31* 0.46
31=35* 0.59 3135* 0.59

Conventions 17=5 0.37 0.76 17=5 0.49 0.78
187* 0.49 18=7* 0.49
19=20* 0.62 19=20* 0.65
20=25 0.45 2025 0.45
21=27* 0.52 21=27* 0.53
22=28 0.52 22=28 0.55
23=39 0.39 23=39 0.39



Confirmatory factor analysis. In order to determine the strength of

each of the four hypothesized factors of words, symbols, graphs, and conventions,

the items characterizing each of the factors were subjected to confirmatory factor

analysis (Enochs, L, & Smith, P. & Huinker, D., 2000; Krathwohl, 1998). Freed,

Ryan, and Hess (1991) have asserted,

Factor analysis is used to reduce the data from a large set of
measures to a smaller set of factors that retain all the basic
information of the measures, but does not reflect redundancies
found in the original measures. Factor analysis can be used as a
confirmatory procedure to verif' theoretically or empirically
derived constructs.

This view of factor analysis can be coupled with that of Kim and Mueller (1978)

who stated,

Most confirmatory factor analysis can provide self-validating
information. If a given factorial hypothesis is supported by the
data, we will in general also have greater confidence in the
appropriateness of the factor analytic model for the given data. (p.
46).

This analysis was used to determine items that correlated highly outside of their

factor group. Seven items that correlated highly outside of their group were deleted

from the final instrument, leaving a total of 16 items. The 16 items were balanced

with respect to scale as exactly four of the items loaded on each of the four factors

of words, symbols, graphs, and conventions. It had been hypothesized that the

confirmatory factor analysis would identif' that the survey items would load on

the four factors from the functional definition: words, symbols, graphs, and

conventions. Factor Analysis indicated a general grouping of items in the four

categories, but there were some relatively high correlations outside of the groups.



88
The remaining 16 items were subjected to a confirmatory path analysis in order to

confirm the model hypothesized by the functional definition.

Path analysis. LISREL was used to confirm a path analysis model,

identifying the strength between the observed and the latent variables. Two items

were deleted to strengthen the model, leaving a total of 14 items (see Appendix B)

in the instrument, The Chi Square Goodness of Fit (ratio of Chi Square to its

degrees of freedom) of 2.7 indicated the model was not rejected, (Mueller, 1996).

The LISRELTM model also yielded a Goodness of Fit Index of 0.91, being greater

than 0.90. Thus the model can be tentatively accepted. The model diagram is

shown in figure 2. the initial model is shown in figure 3, and the final model is

shown in figure 4.

Latent and observed variables. The LoMTES instrument measures

items as observed variables in order to assess the latent variables which cannot be

easily measured. The four latent variables of the LoMTES are words, symbols,

graphs, and conventions. Observable variable examples are shown below:

Words: I am able to get my students to use mathematical
vocabulary appropriately.

Symbols: I can teach students to read and to write mathematical
symbols.

Graphs: I can get students to recognize a need to create diagrams to
model mathematical situations.

Conventions: I am not able to teach appropriate ways for students
to justify their thinking in mathematics.
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Further examples of observable items designed to measure the latent variables can

be found in Appendix B. Figure 5 below shows the initial LISRELTM model which

included 16 items. Following that, Figure 6 shows the final LISRELTM model

comprising a total of 14 items.

tem1

Word Item 4

Word Item 5

Symbols Item I

Symbols Item 3

IEIISymbols Item 4

Symbols Item 6

Graphs Item 2

Graphs Item 3

Graphs Item 4

Graphs Item 7

EnnsConventions

Item 2

Conventions Item 3

Conventions Item 5

Conventions Item 6

Figure 5: Initial LISRELTM model showing factor loading on four latent variables
using 16 observed variables
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Symbols Item 3

Symbols Item 6

Graphs Item 2 163

sItem3E71Graph
Graphs Item 4

Convenons Item 5
1.78

Conventions Item 6

Figure 6: Final LISRELTM model showing factor loading on four latent
variable using 14 observed variables

Convergent validity. In the final form of the survey, teachers were

asked questions designed to illicit information that would help to determine

convergent validity, by ascertaining if teachers scoring high on the LoMTES were

likely to be successful in teaching the language of mathematics. To this end, the

responses on the 14 items in the final instrument were analyzed along with the
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answers to the convergent validity questions included in the final administration of

the instrument. It was assumed that teachers who were more confident about

teaching mathematics should score high on the LoMTES.

The first item focused on perceived self-efficacy regarding the teaching of

mathematics in general. The first was: Jam one of the most outstanding teachers in

my school. Teachers answered in integer values between 0 and 10 inclusive, where

10 indicated total agreement and 0 stood for no agreement at all. The ANOVA

shows that the teachers who scored high on the LoMTES were more likely to

consider themselves one of the most outstanding teachers in the school, indicating

they are probably more self-efficacious. This was significant at the p <0.001 level.

Figure 3: ANOVA table comparing teachers answers on lam one of the most
outstanding teachers in my school with teachers' scores on the LoMTES.
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

1 7 582 83.14 114.14
2 12 1150 95.83 302.15
3 9 833 92.56 362.03
4 10 1075 107.50 224.94
5 46 4630 100.65 538.72
6 22 2380 108.18 294.82
7 31 3386 109.23 247.11

8 34 3863 113.62 224.12
9 13 1554 119.54 64.77

10 19 2293 120.68 153.56

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 16486.18 9 1831.80 6.13 1.43E-07 1.93
Within Groups 57713.74 193 299.03

Total 74199.92 202
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The second convergent validity item was: If you had your choice, would

you choose to be the one to teach mathematics to your students? Answers were on

a five point scale from definitely no to definitely yes. It was originally

hypothesized that because these questions focus on perceived self-efficacy,

teachers scoring high on the LoMTES should be more likely to score high on these

items and teachers scoring low on the LoMTES should be more likely to score low

on these two items. The means of the five groups shows an increasing relationship.

The more confidence a teacher had, the more likely the teacher was to have a high

score on the LoMTES. The relaionship was significant beyond thep = 0.001 level.

Table 4: ANOVA showing the relationship between teacher scores on the
LoMTES and their answers to Ifyou had your choice, wouldyou choose to be the
one to teach mathematics to your students?

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

1 13 1178 90.62 360.92
2 15 1458 97.20 163.17
3 19 1800 94.74 356.76
4 58 6049 104.29 407.75
5 120 13435 111.96 294.88

!MIIW
Source of
Variation SS df MS F P-value F crit

Between Groups 11056.25 4 2764.06 8.52 2.07E-06 2.41
Within Groups 71369.97 220 324.41

Total 82426.22 224

Finally, teachers were asked to complete the Subject Preference Inventory

(SPI) developed by Markle (1978). In this instrument teachers are given pairs of



subjects commonly taught in grades 1 -6--all 28 pairs that can be made from

language arts, science, health, social studies, art, music, reading, and mathematics.

The teachers choose which subject in the pair they would prefer to teach. In

translating teacher answers to useful information, each respondent was given a

score from 0 to 7 that indicated the number of times they chose mathematics over

another subject. An ANOVA compared the groups designated by the number of

times the teachers chose mathematics. The analysis was based on the teachers'

scores on the LoMTES and showed the groups were significantly different at thep

= 0.01 level. Teacher who chose to teach mathematics more frequently were more

likely to score high on the LoMTES, indicating a likely higher sense of self-

efficacy. Bandura (1997) indicated that teachers are more likely to choose to teach

a topic they are successful with than another so it was hypothesized that teachers

who have a higher score would be more effective mathematics teachers and thus

more likely to be effective at teaching the language of mathematics.

Table 5: ANOVA table showing teachers preferring to teach mathematics more often
were different from teachers choosing less often as compared by LoMTES scores.

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

7 58 6409 110.5 257.34
6 45 5196 115.47 330.62
5 51 5459 107.04 254.32
4 26 2721 104.65 425.20
3 18 1787 99.28 355.51

0-2 10 963 96.30 162.46
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Table 5: ANOVA Table (continued)
ANOVA

Source of

Variation SS df MS F P-value F crit

Between Groups 5923.55 5 1184.71 3.98 0.001812 2.26

Within Groups 60067.22 202 297.36

Total 65990.76 207

Teachers who scored high on perceived self-efficacy on the LoMTES

differed in distinct ways from teachers who scored low on perceived self-efficacy.

The overall results indicated that the instrument identifies teachers high in

perceived self-efficacy.

Limitations of the Study

The limitations in the development of the LoMTES are centered

around three issues: (1) the sample, (2) the nature of self-reported

responses, and (3) the electronic format of the instrument. Each of the three

foci will be addressed in turn.

Although an attempt was made to collect a representative sample,

the survey was completed voluntarily. It may be that the volunteers are

significantly different from the general target population. Also, the study is

focused on English, and the language issues may change when a different

natural language is the vehicle used. Additionally, the survey was entitled

Mathematics Teaching Survey, and it may be that relatively strong math

teachers were more likely to respond, with weaker teachers less inclined to

complete the instrument.
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Because the responses are self-reported, bias may have been

introduced. The assumption was made that the respondents told the truth.

Without external validation such as student test scores, student interviews,

or observations, the responses may be questionable.

Although the use of the electronic format of collecting survey

responses facilitated sampling from a geographically large pool of

elementary teachers, the collection of data had some unforeseen problems.

In the electronic instrument, the data were collected through drop-down

menus. If the respondent skipped a question or stopped responding before

sending the results, the data were confounded by default responses

appearing as actual teacher responses. Significant effort was needed to

determine and remove survey responses that were likely in this category.

The electronic format introduced another issue. This format required that

the teacher have email access. It was initially believed that the electronic

format would bias the responses toward younger teachers, but the pool of

respondents had a mean of 15 years of teaching experience and a median of

12.5 years.

There are concerns about bias in the sample. Electronic sampling is

a new technique and possible bias has not been adequately researched.

There is bias in traditional mailed surveys also. It was a matter of concern

that the sample could tend to bias toward younger, more computer savvy

teachers, but results indicate the average teacher had taught 12-15 years.



Implications for Future Research

This study used the functional definition of language of mathematics put

forward in this paper to develop an instrument for measuring teacher perceived

self-efficacy of inservice elementary mathematics teachers as regards teaching the

language of mathematics. The instrument was developed in five stages by: (1)

Defining the Factors, (2) Building a Prototype, (3) Evaluating the Prototype, (4)

Field Testing the Instrument, and (5) Establishing Initial Validity

The implications for future research offer a number of possibilities. The

research could be focused in three areas: (1) determining why teachers tend not to

teach language concepts in mathematics, (2) subjecting the LoMTES to additional

validation procedures in order to strengthen the measure, and (3) investigating

possible interventions for teachers of mathematics in order to increase student

learning of the language of mathematics.

This research project focused on the speculation that the reason a focus on

language is rare in mathematics is because teachers are not confident about

teaching it. Additional research could be focused on other possible speculations in

this area. The problem may be rooted in the lack of class time teachers have. It

may be that teachers are unaware or even unsupportive of the NCTM

Communication Standard. It could be that teachers do not see language as part of

their responsibility in teaching. It also may be that teachers are lacking in the

necessary pedagogical content knowledge that would enable them to teach the

language of mathematics.
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Validation of an instrument is a continual process, and the LoMTES would

be strengthened by additional investigation in that area. This study was an initial

effort and should be extended. This could be accomplished by many further

administrations of the instrument. The groundwork is also laid to examine the

differences in responses based on paper or electronic forms of data collection.

Explorations to establish a baseline of convergent, divergent, and predictive

validity are paramount

The application of the LoMTES could be used to determine teacher self-

efficacy as regards the teaching of the language of mathematics and a number of

possible interventions could be evaluated. It may be that teachers would improve

their perceived self-efficacy by vicarious experience, seeing other teachers as they

successfully teach language concepts in mathematics. It might be possible to

improve teacher perceived self-efficacy also by social persuasion, having peers

encourage each other to success. The key may also be in developing teacher

activities that would help them to have success in teaching language which would

increase their belief in the possibility of succeeding again.

As Bandura (1997) indicated, "Teachers sense of instructional efficacy

partly determines how much their students learn." (p. 248). Self-efficacy is

predictive of success in a task and self-efficacy can be influenced by intervention;

thus if teachers' efficacy levels for teaching language concepts in mathematics can

be determined, it may be possible to increase teacher skill and thus student

learning. The Language of Mathematics Teacher Efficacy Scale developed in this



project should be helpfiul in improving the quality of teaching in the language of

mathematics. This improved teaching should result in students who are more fluent

in mathematical language, creating students with improved mathematical literacy

who are thus more adept at mathematics.
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Chapter 4: General Conclusion

This research project analyzed lIterature related to the language of

mathematics and how it is taught in the classroom. It found that there is no

consensus on the meaning of the term language of mathematics and developed a

functional definition of the term involving four factors of words, symbols, graphs,

and conventions. The literature review determined that although there is

professional consensus that students need to learn the language of mathematics, it

appears that teachers are not teaching it.

Speculating on the contradiction of a need for students to learn language of

mathematics and yet a lack of teaching focus, the project explored the possibility

of the problem being rooted in teacher perceived self-efficacy. If teachers are not

efficacious about being able to teach the language of mathematics, then they will

be unlikely to succeed at teaching it. In order to study this construct, a

measurement instrument was needed, yet there was none. This project developed

an instrument to measure teacher perceived self-efficacy regarding the teaching of

the language of mathematics and was termed the Language of Mathematics

Teacher Efficacy Scale (LoMTES). The scale was developed in five steps: (1)

defining the factors by interviewing exemplary professionals in the field, (2)

building a prototype by devising items to reflect not only the factors determined in

those interviews but also to reflect the four factors of the functional definition of

language of mathematics, (3) evaluating and adjusting the prototype by applying

various statistical techniques, (4) field testing the instrument by surveying teachers
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certified to teach at the 1-6 levels, and (5) establishing initial validity through

statistical analysis.

The result of the survey is an instrument to measure teacher perceived self-

efficacy regarding the teaching of the language of mathematics. Further validation

would indicate the strength of the instrument. The instrument could be used to

determine which teachers could benefit from intervention to increase teacher

perceived self-efficacy and ultimately student learning in the language of

mathematics.
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APPENDIX A: Interview Protocol

1. Shaping the Topic

a. I am interested in language issues in mathematics; so first of all, I

would like to know how you look at language in the mathematics

class.

b. How do you address those issues?

c. Are there specific student problems you see when you teach that?

d. Additional probing/follow-up questions based on the direction of

the teacher's response.

2. Focusing on Words

a. How do you teach vocabulary?

b. What if I think of vocabulary in three ways: (1) concrete words,

meaning words that have some visual component such as trapezoid,

sphere, and denominator; (2) abstract words, such as ratio, prime

number, and congruent; and (3) multiple meaning words, meaning

words that mean one thing in English and something else in

mathematics, such as similar, plane, mean, divide, power, or

random. Am I leaving out any particular type if I group them by

being concrete, abstract, and of multiple meaning?

c. Do you approach the teaching of words differently for different

types as we identified?
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d. How do you approach teaching concrete words?

e. How do you approach teaching abstract words?

f. How do you approach teaching words with multiple meanings?

g. What are the difficulties students face in learning vocabulary?

h. What advice would you give a beginning teacher about teaching

words?

i. Do you have any other thoughts or things to add that focus

particularly on words?

j. Additional probing/follow-up questions based on the direction of

the teacher's response.

3. Focusing on Symbols

a. What sort of symbols do you teach in your curriculum?

b. Can we categorize symbols in any way such as we did with words?

c. Do you have a specific way you usually approach the teaching of

new symbols?

d. What are the difficulties students face in learning to use symbols?

e. What advice would you give a beginning teacher about teaching

symbols?

f. Do you have any other thoughts or things to add that focus

particularly on symbols?

g. Additional probing/follow-up questions based on the direction of

the teacher's response.
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4. Focusing on Graphs

a. I don't know if you think of graphs as part of the language issues in

mathematics, but I would like to talk about them. What kind of

graphing do you teach?

b. Do you think of graphs in categories?

c. What are the difficulties students face in learning to create graphs?

d. What are the important issues in teaching graphing?

e. What advice would you give a beginning teacher about teaching

graphing?

f. What about diagrams? How do you teach those?

g. What are the difficulties students face in learning to create

diagrams?

h. What advice would you give a beginning teacher about helping

students learn to create diagrams?

i. Do you have any other thoughts or things to add that focus

particularly on diagrams or graphs?

j. Additional probing/follow-up questions based on the direction of

the teacher's response.

5. Focusing on Conventions

a. In mathematics we have certain conventions in communication

such as justifying your reasoning, writing your work in such a way

that the reader can follow your path of thinking, identifying what
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each variable means, and being very precise. How do you teach

those concepts?

b. How do you teach communication concepts to your students?

c. How do you get students to develop precision in their explanations?

d. What do you do to teach students how to combine reasoning and

methods in mathematics?

e. What are the difficulties students face in learning these language

conventions in mathematics?

f. What advice would you give a beginning teacher about helping

students learn the conventions of language in mathematics?

g. Do you have any other thoughts or things to add that focus

particularly on conventions?

h. Additional probing/follow-up questions based on the direction of

the teacher's response.

6. In Closing

a. We began by talking about language in mathematics. Are there any

additional thoughts you have on the topic, either specifically on the

four topics we discussed or in general?

b. How important is it to thing about language in teaching

mathematics?

7. If you think of anything else, please contact me:
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8. When I finish the interviews in days, I will put all this information

together and send it to you; ;then you can check that I recorded it correctly

and add or comment on anything.



Mathematics Teaching Survey (Original Prototype 40 Items)
1) Gender:Male Female 2) Age: 3) Name of School: in (city)
4) Prof. Status: Preservice Teacher Certified Teacher 5) Years of Experience 6) Current grade you teach:
7) Grade level(s) you are (will be) certified to teach 8) Subject area(s) you are (will be) certified to teach
9) Number of years of high school math 10) Approx. number of math credit hours in college [quarters or sem.?]
11) How many tenns of calculus have you completed? 0 1 2 3 4 5 6 [quarters or semesters?]

Directions: Circle the appropriate level to which you agree with each NOTEof the statements as regards teaching mathematics.
Answer about your abilities,0 1 2 3 4 5 6 7 8 9 10

do not moderately agree not what you would do or
agree agree totally what you actually do in
at all practice.

1. If I come across a word (such as similar) that has one meaning in English and a different one in mathematics, I am
able to compare and contrast the English and mathematical meanings of the word as I teach it to my students.

0 1 2 3 4 5 6 7 8 9 10
2. 1 can help students understand that mathematical symbols are just codea short cut for writing.

0 1 2 3 4 5 6 7 8 9 10
3. I am not able to help students use the language of mathematics to develop precise arguments.

0 1 2 3 4 5 6 7 8 9 10
4. I am unable to teach my students to write word problems to match computational problems that I give them.

0 1 2 3 4 5 6 7 8 9 10
5. In helping students with word problems, I am able to use words that show action in the problem and to act it out as

we discuss it (such as "Fred put five figs in a basket" rather than "Fred had five figs"].01 2 3 4 5 6 7 8 9 10

I



Mathematics Teaching Survey (Original Prototyve-40 Items) (Continued)
Directions: Circle the appropriate level to which you agree with each

of the statements as regards teaching mathematics. NOTE:
Answer about your abilities,0 1 2 3 4 5 6 7 8 9 i0

do not moderately agree
agree agree totally
at all

not what you would do or
what you actually do in
practice.

6. I am not able to mix formal and informal language in teaching mathematical terms. (Using informal language when
teaching a concept and more formal language after students understand the ideas.)

0 1 2 3 4 5 6 7 8 9 10
7. I am not able to get students to appreciate that there are many good ways to solve a mathematical problem.

0 1 2 3 4 5 6 7 8 9 10
8. I can teach students to read and to write mathematical symbols.

0 1 2 3 4 5 6 7 8 9 10
9. I am able to get students to discuss what a graph shows after it is completed.

0 1 2 3 4 5 6 7 8 9 10
10 I am unable to use multiple perspectives when I teach students the meaning and use of words in mathematics.

0 1 2 3 4 5 6 7 8 9 10
11. I am able to get my students to use mathematical vocabulary appropriately.

0 1 2 ,3 4 5 6 7 8 9 10
12. I can teach my students to connect equations to something concrete instead of just letting equations be abstract.

0 1 2 3 4 5 6 7 8 9 10
13. I cannot help students learn to translate between words and equations and vice versa.

0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaching Survey (Original Prototype-40 Items) (Continued)
Directions: Circle the appropriate level to which you agree with each NOTEof the statements as regards teaching mathematics.

Answer about your abilities,0 1 2 3 4 5 6 7 8 9 10 not what you would do ordo not moderately agree what you actually do inagree agree totally practice.atall

14. I am able to explain mathematical symbols in many ways as I teach them.
0 1 2 3 4 5 6 7 8 9 10

15. I can teach mathematical symbols in much the same way as I teach mathematical words.
0 1 2 3 4 5 6 7 8 9 10

16. When I teach mathematical words, 'I cannot seem to give students lots of examples.
0 1 2 3 4 5 6 7 8 9 10

17. I am not able to model diagrams such that students can make them too.
O 1 2 3 4 5 6 7 8 9 10

18. I can get students to recognize a need to create diagrams to model mathematical situations.
0 1 2 3 4 5 6 7 8 9 10

19. I am not able to check in with students to see if they understand mathematical words when I teach them.
0 1 2 3 4 5 6 7 8 9 10

20. I am not able to get students to verbally explain and connect ideas in mathematics
0 1 2 3 4 5 6 7 8 9 10

21. 1 can help students as they use a mix of formal and informal language while learning the vocabulary used in
mathematics.

0 1 2 3 4 5 6 7 8 9 10
22. I am able to get my students to do lots of graphs.

0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaching Survey (OriinaI Prototvoe-40 Itemsi (Continued
Directions: Circle the appropriate level to which you agree with each

NOTE:of the statements as regards teaching mathematics.
Answer about your abilities,0 1 2 3 4 5 6 7 8 9 10 not what you would do ordo not moderately agree what you actually do inagree agree totally practice.atall

23. I can get students to graph very carefully.
0 1 2 3 4 5 6 7 8 9 10

24. I am not able to find lots of places to use mathematical words when I teach other subjects.
o i 2 3 4 5 6 7 8 9 10

25. I am able to get students to explain their mathematical thinking.
0 1 2 3 4 5 6 7 8 9 10

26. I cannot get students to recognize the value of graphs to display information visually.
0 1 2 3 4 5 6 7 8 9 10

27. I am not able to teach appropriate ways for students to justify their thinking in mathematics.
0 1 2 3 4 5 6 7 8 9 10

28. I can get my students to discuss mathematics as they work in collaborative groups.
0 1 2 3 4 5 6 7 8 9 10

29. I am able to teach students to read graphs after they make them.
0 1 2 3 4 5 6 7 8 9 10

30. I am able to explain the words used in mathematics so that they really make sense to students.
0 1 2 3 4 5 6 7 8 9 10

31. I am not able to find ideas for data that is interesting for students to graph.
0 1 2 3 4 5 6 7 8 9 10

32. I am not able to get my students to translate the equations they write into English.
0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaching Survey (Original PrototvDe-40 Items) (Continued)
Directions: Circle the appropriate level to which you agree with each NOTEof the statements as regards teaching mathematics.

Answer about your abilities,0 1 2 3 4 5 6 7 8 9 10 not what you would do ordo not moderately agree what you actually do inagree agree totally practice.atall

33. I am unable to help students see the similarities and differences between types of graphs.
0 1 2 3 4 5 6 7 8 9 10

34. I am unable to teach students the understanding of a concept before I introduce the abstract symbols for it.
0 1 2 3 4 5 6 7 8 9 10

35. I am not able to get students to create diagrams for their word problems.
0 1 2 3 4 5 6 7 8 9 10

36. I can help students understand mathematics informally before expecting them to have a formal way of looking at
mathematics.

0 1 2 3 4 5 6 7 8 9 10
37. I am not able to teach students to approach a problem in more than one way.

0 1 2 3 4 5 6 7 8 9 10
38. I am able to reinforce abstract vocabulary frequently so that students can learn the words.01 23 4 5 6 7 8 9 10
39. I am able to listen to students and understand their misconceptions from what they say.

0 1 2 3 4 5 6 7 8 9 10
40. I am unable to teach students to write equations to represent their thinking.

0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaching Survey (Field Tested Instrument-31 Items)
1) Gender:Male Female 2) Age: 3) Name of School: in (city)
4) Prof. Status: Preservice Teacher Certified Teacher 5) Years of Experience 6) Current grade you teach:
7) Grade level(s) you are (will be) certified to teach 8) Subject area(s) you are (will be) certified to teach
9) Number of years of high school math 10) Approx. number of math credit hours in college [quarters or sem.?]
11) How many terms of calculus have you completed? 0 1 2 3 4 5 6 [quarters or semesters?]

Directions: Circle the appropriate level to which you agree with each NOTE:of the statements as regards teaching mathematics. Answer about your0 1 2 3 4 5 6 7 8 9 10 abilities, not what youdo not moderately agree
agree agree totally would do or what you
at all actually do in nractice.
If I come across a word (such as similar) that has one meaning in English and a different one in mathematics, I am
able to compare and contrast the English and mathematical meanings of the word as I teach it to my students.

0 1 2 3 4 5 6 7 8 9 10
2. I can help students understand that mathematical symbols are just codea short cut for writing.

o i 2 3 4 5 6 7 8 9 10
3. In helping students with word problems, I am able to use words that show action in the problem and to act it out as

we discuss it (such as "Fred put five figs in a basket" rather than "Fred had five figs"].
0 1 2 3 4 5 6 7 8 9 10

4. I am not able to mix formal and informal language in teaching mathematical terms. (Using informal language when
teaching a concept and more formal language after students understand the ideas.)

0 1 2 3 4 5 6 7 8 9 10
5. I am not able to get students to appreciate that there are many good ways to solve a mathematical problem.

0 1 2 3 4 5 6 7 8 9 10

00



Mathematics Teaching Survey (Field Tested Instrument-31 Items) (Continued)

t'J

Directions: Circle the appropriate level to which you agree with each
of the statements as regards teaching mathematics. NOTE:

O 1 2 3 4 5 6 7 8 9 10 Answer about your
do not moderately agree abilities, not what you
agree agree totally would do or what youat all actually do in practice.

6. I can teach students to read and to write mathematical symbols.
0 1 2 3 4 5 6 7 8 9 10

7. I am able to get students to discuss what a graph shows after it is completed.
0 1 2 3 4 5 6 7 8 9 10

8. I am unable to use multiple perspectives when I teach students the meaning and use of words in mathematics.
0 1 2 3 4 5 6 7 8 9 10

9. I am able to get my students to use mathematical vocabulary appropriately.
0 1 2 3 4 5 6 7 8 9 10

10. I can teach my students to connect equations to something concrete instead of just letting equations be abstract.
0 1 2 3 4 5 6 7 8 9 10

11. I cannot help students learn to translate between words and equations and vice versa.
0 1 2 3 4 5 6 7 8 9 10

12. 1 am able to explain mathematical symbols in many ways as I teach them.
0 1 2 3 4 5 6 7 8 9 10

13. I can teach mathematical symbols in much the same way as I teach mathematical words.
0 1 2 3 4 5 6 7 8 9 10

14. When I teach mathematical words, I cannot seem to give students lots of examples.
0 1 2 3 4 5 6 7 8 9 10

15. I can get students to recognize a need to create diagrams to model mathematical situations.
0 1 2 3 4 5 6 7 8 9 10



MthPmflties Tenehino Siirvtv (Field Tcfd TnstriimcntU Itms (Cantiniitd'
Directions: Circle the appropriate level to which you agree with each NOTE:

of the statements as regards teaching mathematics. Answer about your
0 1 2 3 4 5 6 7 8 9 10 abilities, not what you

do not moderately agree would do or what you
agree agree totally
at all

actually do in Dractice.

16. I am not able to check in with students to see if they understand mathematical words when I teach them.
o i 2 3 4 5 6 7 8 9 10

17. I am not able to get students to verbally explain and connect ideas in mathematics.
0 1 2 3 4 5 6 7 8 9 10

18. I can help students as they use a mix of formal and informal language while learning the vocabulary used in
mathematics.

0 1 2 3 4 5 6 7 8 9 10
19. I am able to get my students to do lots of graphs.

0 1 2 3 4 5 6 7 8 9 10
20. I can get students to graph very carefully.

0 1 2 3 4 5 6 7 8 9 10
21. I am able to get students to explain their mathematical thinking.

0 1 2 3 4 5 6 7 8 9 10
22. I cannot get students to recognize the value of graphs to display information visually.

0 1 2 3 4 5 6 7 8 9 10
23. I am not able to teach appropriate ways for students to justify their thinking in mathematics.

0 1 2 3 4 5 6 7 8 9 10
24. I can get my students to discuss mathematics as they work in collaborative groups.

0 1 2 3 4 5 6 7 8 9 10
25. I am able to teach students to read graphs after they make them.

0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaehin Snrvev (Field Tested Instrumentil Items (Continueth
Directions: Circle the appropriate level to which you agree with each NOTE:

of the statements as regards teaching mathematics. Answer about your
0 1 2 3 4 5 6 7 8 9 10 abilities, not what you

do not moderately agree would do or what youagree agree totally actually do in practice.at all
26. I am able to explain the words used in mathematics so that they really make sense to students.

0 1 2 3 4 5 6 7 8 9 10
27. I am not able to find ideas for data that is interesting for students to graph.

0 1 2 3 4 5 6 7 8 9 10
28. I am not able to get my students to translate the equations they write into English.

0 1 2 3 4 5 6 7 8 9 10
29. I am unable to teach students the understanding of a concept before I introduce the abstract symbols for it.

0 1 2 3 4 5 6 7 8 9 10
30. I am not able to get students to create diagrams for their word problems.

0 1 2 3 4 5 6 7 8 9 10
31. I am able to listen to students and understand their misconceptions from what they say.

0 1 2 3 4 5 6 7 8 9 10

-I



Mathematics Teaching Survey (Final Instrument-14 Items)
Directions: Circle the appropriate level to which you agree with each

of the statements as regards teaching mathematics. NOTE.
0 1 2 3 4 5 6 7 8 9 10 Answer about your

do not moderately agree abilities, not what you
agree agree totally would do or what you
at all actually do in practice.

1. I can help students understand that mathematical symbols are just codea short cut for writing.
0 1 2 3 4 5 6 7 8 9 10

2. I am not able to mix formal and informal language in teaching mathematical terms. (Using informal language when
teaching a concept and more formal language after students understand the ideas.)

0 1 2 3 4 5 6 7 8 9 10
3. I am not able to get students to appreciate that there are many good ways to solve a mathematical problem.

0 1 2 3 4 5 6 7 8 9 10
4. I can teach students to read and to write mathematical symbols.

0 1 2 3 4 5 6 7 8 9 10
5. I am unable to use multiple perspectives when I teach students the meaning and use of words in mathematics.

0 1 2 3 4 5 6 7 8 9 10
6. I am able to get my students to use mathematical vocabulary appropriately.

0 1 2 3 4 5 6 7 8 9 10
7. I can teach my students to connect equations to something concrete instead of just letting equations be abstract.

0 1 2 3 4 5 6 7 8 9 10
8. I am able to explain mathematical symbols in many ways as I teach them.

0 1 2 3 4 5 6 7 8 9 10
9. When I teach mathematical words, I cannot seem to give students lots of examples.

0 1 2 3 4 5 6 7 8 9 10



Mathematics Teaching Survey (Final Instrument-14 Items
Directions: Circle the appropriate level to which you agree with each

of the statements as regards teaching mathematics.
0 1 2 3 4 5 6 7 8 9 10

NOTE -
Answer about your

do not moderately agree abilities, not what you
agree agree totally would do or what you
at all actually do in practice.

10. I am not able to model diagrams such that students can make them too.
0 1 2 3 4 5 6 7 8 9 10

11. I can get students to recognize a need to create diagrams to model mathematical situations.
0 1 2 3 4 5 6 7 8 9 10

12. I am able to get my students to do lots of graphs.
0 1 2 3 4 5 6 7 8 9 10

13. I am able to get students to explain their mathematical thinking.
0 1 2 3 4 5 6 7 8 9 10

14. I am not able to teach appropriate ways for students to justif' their thinking in mathematics.
0 1 2 3 4 5 6 7 8 9 10




