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Monte Carlo Simulation of Atomic Diffusion in

Si and GaAs via Vacancies and Interstitials

"The large amount of literature which is still

devoted to diffusion in semiconductors is a very good

illustration of the fact that nobody understands what

is going on."1

1. INTRODUCTION

Computational physics has become an important and exciting

branch in modern science. The ability to model physical systems on

computers is sometimes the only feasible approach when trying to

solve complex systems such as many body systems or transport

phenomena.

One of the most widely used techniques in computer

simulation is the so-called "Monte Carlo method". It is based on

the idea of creating statistical fluctuations with the help of

"random numbers" and tracking the effects of this generated

probability distribution on a complex system in both space and

time.2 Thus, one not only obtains detailed microscopic
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information of the system to a degree which is inaccessible by

other methods, but also insight into the problem.

This microscopic data can then be easily processed and

compared to both existing theoretical models as well as to

experimental results. Hence, it might help to clarify

controversial research issues and perhaps serve as an impetus for

new theoretical and experimental studies.

We hope that the Monte Carlo simulation program "VIDSIM",

which will be introduced and described in chapter 3, will have

exactly these stimulating effects on "the many puzzles and

controversies that have been debated in the last fifteen years

regarding the mechanisms of atomic diffusion in silicon"3 and

GaAs.

It is evident, why the study of diffusion effects in Si and

GaAs is technologically so important: dopant diffusion is used as

an elementary process step in the fabrication of integrated

circuits (IC's). Although silicon still has a predominant role as

a base for IC's, the need for faster circuits seems to be better

matched by III-IV compounds, such as GaAs.

In spite of its technological importance, our current

knowledge of atomic diffusion is modest. At the present day, a

huge variety of models exist which try to account for the
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experimental diffusion data and reconcile them with other related

data, such as impurity diffusion and quenching data.

Even the most fundamental questions concerning atomic

diffusion, such as

is the vacancy or the interstitial the dominant point defect

which meditates atomic self diffusion at high temperatures ?

what is the nature of these defects, are they simple or

"extended" ?

are still a highly contentious matter.

With VIDSIM, we hope to provide a powerful and unbiased tool

for the study of diffusion effects. The program supports various

simple models and assumptions which can be "customized" by the

user, allowing him (or her) to investigate the evolution of the

diffusion process with the chosen defects, parameters and models.

As an application, we simulated a crucial and uttermost

controversial experiment: the diffusion of gold in silicon.

Various models were simulated and compared to the theories which

try to explain the numerous experimental data. Details and results

of this simulation can be found in chapter 4.
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1.1 Diamond and Zincblende Lattice

The covalent crystals formed by the elements from column IV

of the periodic table (C, Si, Ge) have structures in which each

atom is tetrahedrally coordinated, corresponding to their sp3

hybridized orbitals. The resulting lattice is called diamond or

"A 4" structure. It can be regarded as two interpenetrating FCC

lattices which are shifted by (a/4) along the diagonal (Fig. 1.1).

The coordination number is 4.

When the two interpenetrating FCC lattices are occupied by

different atoms (such as in GaAs) the structure is called

zincblende (sphalerite ZnS type), according to the German chemical

term for ZnS, or "B 3" type.

Some essential properties of these two crystal structures

are compiled in Table A.1. Elements of them are given in Table

A.2.
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Fig. 1.1.
The diamond lattice
[from W. Shockley, Electrons and Holes in Semiconductors (Van
Nostrand Reinhold, Princeton, New Jersey, 1950)].

1.2 Point Defects in Si and GaAs

Point defects can be subdivided into two categories: native

point defects and impurity related defects; both are taken into

account by VIDSIM.

Native point defects are structural, atomic imperfections.

They govern self-diffusion in semi-conductors. There are three

classes of interest:
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(a) Vacancy (V): a regular lattice site is empty. The

missing atom migrated to the surface. This defect is also known as

Schottky defect.

(b) Interstitial (I): an atom is transferred from a lattice

site to an interstitial position, a position not normally occupied

by an atom. This is sometimes called a Frenkel defect. We will

consider three possible interstitial positions of high symmetry in

the Diamond and B 3 lattice (see Figure 1.2):

(1)

(i) the tetrahedral,

(ii) the hexagonal and

(iii) the bond-centered interstitial.

Fig. 1.2.

Simulated types of interstitials.
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Their coordinates within the unit cell were calculated and

are listed in Table A.3; some other geometrical properties are

given in Table A.4.

For (i), an interstitial position was calculated by

inverting a lattice point about its nearest lattice neighbor. The

coordinates of hexagonal interstitials turned out to lie exactly

in the middle between a lattice point and its third nearest

neighbors at a certain distance (ilia/4). The positions of (iii)

are trivial, of course, as they are right in between a lattice

site and its nearest neighbor.

(c) Antisite defect: in a compound crystal, a site is

occupied by the "wrong" atom, e. g. a Ga atom on an As site.

Impurities arise from the (deliberate) introduction of

foreign atoms into the lattice, preferably Group III and IV

elements. In this case, they are called dopants. There are two

possibilities of incorporation:

(a) substitution, i. e. the impurity is located on a regular

lattice site, and

(b) interstitial incorporation, i. e. the foreign atom is

placed at an interstitial position. Again, the three positions

mentioned above are possible.
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The more complicated "interstitialcy" (Seitz, 1950)3 , which

forms bonds with the host, and the "extended interstitial" (Seeger

and Chik, 1968)4 are no subject of this simulation.

1.3 Concentration of Point Defects

Point defects are present in the thermodynamic equilibrium

at finite temperature due to the reduction of sample free energy

that they produce by introducing entropy even at the cost of

increasing the sample internal energy. During crystal growth or

processing, the point defect concentration is often well above the

equilibrium value. When the sample is suddenly heated, it may take

time for the defect concentration to rise to the equilibrium

value. Point defects must migrate into the bulk from sites,

generally on the surface, where they are created.

In thermodynamic equilibrium, the number nV of vacancies at

a temperature T can be calculated for a crystal of N identical

atoms by minimizing the sample free energy F, under the condition

V = const. The calculations yields:

nV = N exp(-Fvf/kBT),

Ff=Ef-TSf
V V V,
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where Elf is the energy needed to form the vacancy, and Svf is the

increase of entropy in formation.

Formulas identical to eqn. (1.1) hold true for other point

defects, such as the interstitial, with the exception, of course,

Elf and fthat Ev an Sv would be the energy and entropy of formation for

the defect under consideration.

1.4 Point Defect Models

As shown above, there is always a certain concentration of

interstitials CI and vacancies C, present in a crystal, which can

be easily calculated for a specimen using eqn. (1.1a). Thus, the

ratio of the two concentrations, Cv/Ci, determines which species

dominates under equilibrium conditions. In a self-diffusion

experiment, however, the measured quantity is:

D5D = DvCv + DICI , (1.2)

where Dv and Di are the diffusion constants (diffusivities) of the

vacancies and interstitials, respectively (see chapter 2.1).
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The following classifications for point-defect models are

made in the literature6:

In the pure vacancy models? -9, it is asserted that C, » CI

and DvCv >> DICI, whereas in the pure interstitial models10, these

inequalities have to be reversed. If the above terms are

comparable, the corresponding models are called combined vacancy

and interstitials models4,11.
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2. ATOMIC DIFFUSION AND ITS MECHANISMS

2.1 Diffusion

Mass transport in a crystal caused by the migration of point

defects is called diffusion. The driving force behind this

non-equilibrium process is a gradient in the concentration C of

the particles. Fick's first law defines a diffusion coefficient D:

j = D grad C , (2.1)

where j(x) is the flux density and C(x,t) the particle con-

centration. Eqn. (2.1) together with the continuity equation

div j + _Ft_ . 0 (2.2)

yields Fick's second law:

at-a- = D V2C. (2.3)
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2.2 Atomic Diffusion Theory

Self-diffusion in a crystal is mediated through the

migration of native point defects, in contrast to impurity-

diffusion, which is a result of the motion of impurities. In the

literature, two basic diffusion mechanisms are distinguished:

(a) Vacancy diffusion. An atom is hopping. into an adjacent

vacancy, leaving behind an unoccupied lattice site. Thus, the

direction of the vacancy migration is opposite to the direction of

the mass transport.

(b) Interstitial diffusion. An atom is exchanging

interstitial sites.

The macroscopic diffusion constant can be related to the

lattice properties using a model, in which the transition rate of

an atom jumping to an adjacent position is determined by the

frequency v, with which the atom tries to overcome the energy

barrier Eact, and the probability p that a fluctuation exists

which provides the defect an energy greater than Eact. Thus, the

atomic jump frequency r is

r --vp=vexp( -Eact/kBT). (2.4)

The attempt frequency v is about the highest frequency of

lattice vibrations and can be approximated by the Debye frequency,

which is about 1.35.1013 for Si. Together with the density
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gradient of defects at a separation distance a, a simple

calculation yields:

j = - g R a2 r grad C, (2.5)

where g is a geometrical factor which is determined by the

structure of the crystal. For the diamond lattice g was found to

be 0.5. R is the so-called correlation factor and differs from

unity, if a hop sets up a geometric configuration in a way, that

the second hop is not independent of the first one. The two

subsequent hops are said to be correlated.

From a comparison with eqn. (2.1), together with eqn. (1.1),

we obtain the Arrhenius equation for the diffusion coefficient:

D = Do exp(-Q/kBT), (2.6a)

with the total activation energy

Q Eact EX
f

and the preexponential factor

(2.6b)

Do = g R a2 v exp(Sxf/kB), (2.6c)
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with the index x = V denoting a simple vacancy mechanism, and

x = I an interstitial mechanism. Thus we have a strong exponential

increase of D with the temperature T. Measurements of the

temperature dependence are usually presented by a logarithmic

Arrhenius plot. One of the most acute problems in the study of

diffusion is, however, that the slope Q of such a plot does not

yield separate information on Eact and El". Some researchers have

such strong feelings about this problem, that they would quit the

diffusion business as soon as this riddle is solved12.

2.3 Simulated Diffusion Mechanisms

As pointed out in the last section (compare eqn. (2.4)), the

probability p for a fluctuation greater than Eact, which is of

course the probability for an event to occur, is one of the most

important terms for the diffusion process. Our "Vacancy and

Interstitial Diffusion Simulator" program (VIDSIM) is based on

calculating p for each mobile defect in the simulated sample.

To accomplish that, the activation energy for each defect

has to be given. The program computes Eact from a set of

parameters, which the user has to "feed" to the program. The way

this is done and the syntax which has to be followed is described

in chapter 3. In the following section, we want to introduce the
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simulated diffusion mechanisms and describe, how the activation

energy is calculated for each of them.

During a simulation, a net flux of defect migration, which

is proportional to eqn. (2.5), will occur. The geometrical factor

g and the separation distance a are automatically taken into

account to during the course of the simulation due to the

geometric constellation. Thus, with the known Debye frequency for

a given crystal, the atomic jump frequency r and j can be

calculated.

2.3.1 Vacancy Diffusion

(a) Vacancy nearest neighbor hopping (NNH)

This mechanism was already explained above. In the

simulation, we take the activation energy for NNH to be

parametrized in the following form:

Eact 11 Ekin + non-add 2 E7J"nd + bond-ad d

where

(2.7)

Ekin is the kinetic energy of the atom to hop into the

vacancy. In the "Ballistic Model" (Van Vechten, 1975) 13-18, this
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is the threshold for the hop into a given zone-boundary cycle. For

other models, is simply designates the main activation energy

parameter.

non-add is a parameter to adjust the variation of the bond

strength, i. e. it allows for deviations from the bond-additivity

approximation. The default value for it is 1.0.

E.bond is the sum of bond energies between the atom which

is to hop into the vacant site and all of its atoms to which it is

bonded, i. e. its nearest neighbors. Thus, it is necessary for the

simulation to be provided with a list of all bond energies between

every possible pair of occupant types.

bond-add. is an adjustment for vacancy neighbors. The jth

component of the bond-additivity vector is used, if the atom that

hops has j vacancy neighbors (0 < j < 4). This parameter can be

useful to take divacancy binding energies into account.

(0, 0, 0, 0, 0) is default.

(b) Vacancy second nearest neighbor hopping (SNNH)

In this case, no antisite defects will be created. Apart

from an additional factor expanSNNH in front of Ekin, which is an

energy adjustment for the longer hop, the activation energy looks

exactly as described in eqn. (2.7). In the Ballistic Model,

expanSNNH is a simple geometrical factor of 8/3, which is also the

default value.
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(c) Divacancy NNH and SNNH

These mechanisms have been proposed in the literature19, 20.

No special arrangements were provided to simulate them

individually, as they are already considered by the bond-addi

parameter in eqn. (2.7) and by the decreasing activation energy,

if a vacancy is a (second) nearest neighbor of the atom to hop,

provided that the bond energy between this atom and the vacancy is

chosen appropriately.

2.3.2 Interstitial Diffusion Mechanisms

Apart from simple, direct interstitial diffusion, there are

two more complicated mechanisms.

(a) Frank-Turnbull (dissociative diffusion) mechanism

The following reaction between an atom X on an interstitial

site XI, a vacancy V and an atom X on a substitutional site Xs was

originally discussed by Frank and Turnbul121:

XI + V <===> Xs . (2.8)
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From the point of view of the interstitial XI, the situation

looks as follows: it migrates via different mechanisms through the

crystal, until a vacancy is its nearest neighbor. Then it needs

the activation energy

EactFT Ekin'
4. 2 Eibind (2.9)

to jump into the vacancy and creates either

- a substitutional site Xs, if X is a dopant

- an antisite defect, if X is one of the host elements of a

compound on the "wrong" sublattice, or simply

- an ordinary lattice site, if X is either a constituting element

of the compound on the right sublattice or the one of an elemental

crystal.

Ekin' in eqn. (2.9) is the kinetic (or dominant) energy

parameter and has to be supplied for every interstitial type of

every occupant.

E E fb
ind is the sum of pairwise energy terms (interstitial

binding energy) between the interstitial under consideration and

its nearest lattice neighbors. This parameter allows for the

variation of Eact FT, when the interstitial has lattice neighbors

of different types.



19

If reaction (2.8) proceeds in the other ( <--- ) direction,

things look different. In this case, we have to consider an atom X

on a lattice site. Again, there are two possibilities:

(i) X is on a regular site. That means, that there are

almost as many candidates for this reaction in the crystal as

there are regular sites (N). Under the assumption that the number

of impurities and possible antisites in the crystal is small

compared to N (approx. 102 : 1012 for a normal simulation), we can

neglect them. Then, the total probability Ptot,rivf that any of

the regular sites forms an interstitial-vacancy pair according to

the reverse Frank-Turnbull mechanism (2.8), is N/2 times the

probability that it is formed by an atom on the A sublattice, plus

N/2 times for an atom on the B sublattice. The activation energy

for such a single process can be described by:

Eactivf Ef (2.10)

with Ef being the energy of formation parameter of the occupant

under consideration. In case we have a diamond lattice, then we

can think of it as a zincblende structure with the same occupant

on the A and B sublattice.

(ii) X is an impurity or a possible antisite. As the jump

probability depends exponentially on the activation energy, this

can not be neglected. Even for a small concentration of

impurities, the sum of the hopping probabilities over all

impurities n
,-tnt ,7

Alf can exceed Pt
to ,r

ivf The probability for



20

such an inverse Frank-Turnbull mechanism has to be calculated for

each impurity and antisite, and the activation energy corresponds

(2.10), with, however, different Ef for different occupants!

The total probability for such an event anywhere in the

sample (as a sum of Ptot,rivf and Ptot,iivf) is calculated at the

beginning of the simulation and has to be adjusted only, if

impurities of antisites are created or annihilated.

(b) Kick-out mechanism

This mechanism was first proposed by Seeger and co-workers

(for a detailed discussion see 6, 22). Its reaction equation is:

XI + Ys <===> Xs + YI . (2.11)

Similar to (2.8) in the '--->' direction, an interstitial Xi hops

onto a lattice site, but this time the site is occupied by the

substitutional atom Ys, and not by a vacancy. The kicked out

occupant is displaced to the interstitial position Yi, its

original position is taken over by Xs. This is a symmetric

reaction which involves the kinetic energy Ekin' of X, the

interstitial formation energy for YI, the energy gain of the

transfer of Xi onto a substitutional site -EfX, and the breaking
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of all bonds around Ys with the energy contribution E Eib°nd,Y;

thus the activation energy yields:

r KO =r X, _LrY_L-X,vrbond,Y
`act `kin 1- `f `f 1- '' `i

(c) Direct interstitial-interstitial mechanism

(2.12)

This is the basic diffusion mechanism mentioned above. In this

case, the direct migration from one interstitial position to the

other does not involve any exchange reactions. Thus, we have one

simple parameter for this mechanism, the interstitial migration

energy:

E DII _ E
`act mig (2.13)
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3. VIDSIM - THE MONTE CARLO SIMULATION PROGRAM

3.1 General Remarks

VIDSIM is a general purpose program for the Monte Carlo

simulation of the atomic diffusion of point defects in diamond and

zincblende lattices via vacancies and interstitials. The program

was developed on an IBM AT clone in the C language, but great care

was taken to make the program as portable as possible. In fact,

VIDSIM has already been ported to and ran successfully on other

systems, such as UNIX systems with the pcc compiler and the IBM

3090 supercomputer of the IBM Palo Alto Scientific Center.

In order to run the program on personal computers such as

the IBM PS/2, AT and compatibles, and to overcome the memory

restrictions which apply to MS-DOS, extensive use of dynamic

memory allocation during run-time has been made. As a result of

this programming technique, VIDSIM will require only as much

memory as absolutely necessary to simulate the current defect

configuration, which is determined by the number of defects, the

types of interstitials and the diffusion mechanisms being

simulated. To accomplish these requirements together with a high

efficiency in speed, which is of course an imperative for

numerical intensive calculations, full advantage of the pointer

concepts available in the C language has been taken. In fact,

there are such concepts as pointers to dynamically allocated
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arrays of pointers, whose elements again point to structures,

which are dynamically allocated, too. This approach has been

chosen for two reasons: although it sounds very complicated, it is

one of the fastest things that can be done in 'C', and it also

circumvents the use of static arrays, which would have prevented

the programming of this software on personal computers. As a

result of this technique, a representative simulation will request

only about 120-200 KBytes of RAM, which allows to run the

simulation continually in the background with one of the multi-

tasking programs available for MS-DOS.

As VIDSIM performs a lot of floating point arithmetic, it is

advised to use the program only on microcomputers which are

equipped with a math-coprocessor.

VIDSIM is programmed in a modular way, which means that

procedures which act on logically related components of the

program are combined in one file. The main diffusion simulator

program consists of about 6200 lines of source code (-163

Kbytes), which are split up into 15 modules (source files), and

another 800 lines of data declarations (-23 Kbytes) in 11 so-

called "header"-files. The modules and their function are shown in

Table A.5. In addition, there is a variety of utility programs for

processing data, sorting the defect files and producing profiles.

The present author is responsible for about half of this code,

expanding an old version of the program which basically performed
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vacancy migration. The old version was written by Nathan C. Myers,

whose superb programming job exerted a considerable influence on

the code that followed.

For the program development, different compilers and

integrated development environments were used. The most satisfying

results were obtained with the Microsoft C 5.1 Optimizing

Compiler, both as far as the efficiency of the produced code is

concerned (it was 25 - 45 % faster than the rest), and the

capacity of its debugger.

Depending on the size of the sample and the simulated

diffusion mechanisms, the simulation runs at a rate of about 40 to

100 events (hops) per second in real (computer) time on an IBM AT

compatible (12 MHz), equipped with a 80287 math co-processor.

After a run, this rate is displayed, together with a small event

statistics, which shows how many of each hopping mechanisms has

been performed.

The dimensions of the simulated sample, which can be set by

the user, are limited by the "natural" integer representation of

the compiler and the computer, respectively. If the integer type

occupies N bits, then the maximum dimension (in one direction)

will be 2N-3. As there are 8 atoms in a unit cell of a unit

volume, this restricts the number of the atoms in the simulated
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crystal to 23N-6. For a 16 bit machine, this is approximately

4.4.1012.

As a practical limit for the mobile defects, fewer than 200

vacancies and interstitials and less than 1000 defects overall may

be treated with the IBM AT compatible implementation.

The program can also be run under different 'debug'-levels

to provide various degrees of information about the calculated

properties of the simulation and the assumptions it makes. In the

highest debug-level (3), the maximum of information is displayed,

including the hopping probabilities of each single mobile defect,

followed by the hop which was finally performed. This is

especially useful to check the assumptions one made during the

start phase of a planned simulation. The logical step is then to

reduce the debug level to 1, which still gives the run-time

statistics.

For each occupant, one of the three types of interstitials

(as described in chapter 1.2) may be selected for the simulation.

Thus, in a GaAs crystal it would be possible to simulate bond-

centered Ga and hexagonal As interstitials, for example,

disregarding the impurities.

There is also the concept of 'computational periodic

boundary conditions' which has to be explained: if a mobile defect
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migrates beyond a surface in one direction, it will appear again

on the other side of the crystal. This is very useful for

excluding surface effects and conserves the number of mobile

defects.

3.2 User Interface

VIDSIM is fundamentally controlled by the contents of its

input files, which are:

environment file

- occupant file (occ-file)

inter-occupant file (ocx-file)

defect placement file (dfp-file).

It will write the dfp-out-file. The function and syntax of

each of these files will be described below.

For the syntax description throughout this chapter the EBNF-

notation (Extended Bacus-Naur Form) is used, in which "i"

separates alternatives, 'V and "1" surround optional parts and

n(n and n)n enclose optional parts, which can be used multiply. A

n" finishes a rule, and reserved words are written in bold.
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3.2.1 Environment File

This is the main control file of the simulation. It contains

the names of all the other files and controls the migration

mechanisms and various modes of the program, such as the

conditions for terminating the simulation. In addition, some

decisive simulation-constants, as for example the temperature, are

defined in this file. The name of the environment file has to be

specified as an argument in the command line when starting the

program:

C: \SIM> vidsim test.env

starts the simulation with test.env as its environment-file.

The syntax of the environment file in EBNF notation is:

env-file:
( comment-line 1 keyword (arguments) );

A comment-line is any line that starts with the '#'-

character. Table 3.1 lists all keywords which are defined in

VIDSIM version 2.1; their numerical arguments are given with

default values which are set, if the corresponding line is

commented out.



Table 3.1.
VIDSIM keywords.

vacancy-simulation
kick-out
Frank-Turnbull
boundaries
real-timelimit
virtual-timelimit
eventlimit
debug
occupant-file
occx-file
def-in-file
def-out-file
temperature
bond-additivity
non-additivity
numdefects
compound
2NN-hopping
randseed
snapshot
total-time

4000 4000 4000
86400.0
0.0
10000
1

test.occ
test.ocx
test_in.dfp
test out.dfp
273.15
0.0 0.0.0.0 0.0 0.0
0.0
1297

385047
10000
0.0
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The first three keywords (vacancy-simulation, kick-out and

Frank-Turnbull) select the migration mechanisms which are to be

simulated. If commented out, they are not in effect.

boundaries ix iy iz sets the periodic boundaries of the simulated

crystal to (-ix < x < ix) etc. in units of the lattice

constant. If omitted, the maximum possible values (depending

on the integer representation of the compiler) are used.

real-timelimit, virtual-timelimit and eventlimit set the

conditions (upper limits) for terminating the program.
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Setting a limit to zero imposes no restriction with respect

to this parameter. Thus, in our example (Table 3.1), the

simulation will run until 10000 events will have been

simulated or the real (computer) time exceeds one day (86400

seconds), whichever conditions occurs first. There is no

restriction with regard to the virtual time.

debug i (0 < i < 3) controls the amount of information displayed

by the program, as explained above.

occupant-file and occx-file take the name of the files, which are

to be used as occupant and inter-occupant files, as their

argument. If necessary, the full path can be given.

def-in-file and def- out -file specify the defect placement files to

read from (input file) and to write to (output file).

temperature x is the simulation temperature in degrees Kelvin.

bond-additivity and non-additivity are the parameters for vacancy

simulation as used in eqn. (2.7).

numdefects i with i a prime number: size of the defect hash-table,

which should be greater than the maximum number of defects

expected.



30

2NN-hopping has to be set, if SNNH for vacancy migration is

desired.

randseed i is the seed for the random number generator. Useful, if

the computations should be repeatable, as a random seed

which depends on the system time is used, if this parameter

is not set.

snapshot i is the number of events after which the defect

configuration is written into the def-out-file to ensure

that a interruption of the simulation won't result in a

total loss of data.

total-time x is the sum of the virtual time of previous

simulations. The virtual simulation time of the current run

will be added to this value and will be written into the

clef-out-file, from where it will be added up consecutively.

3.2.2 Defect Placement File

The defect placement files contain all the defects and their

coordinates of a simulation. The data in the def-in-file defines

the initial defect configuration of the simulated crystal, whereas

the configuration as calculated during the course of a simulation
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will be written (after each snapshot) to the clef-out-file (note

that these two files have to be itemized in the environment-file).

The syntax is:

dfp -file:

( comment-line 1 defect-line );

defect-line:
defect coord coord coord [tag];

defect:
substitutional 1 mobile;

substitutional:
occupant;

mobile:
interstitial 1 vac;

interstitial:
occupant separator i-type;

i-type:
tetra I hex I bc;

separator:

-;

coo rd:

float;

tag:

short integer;

Again, a comment-line starts with the pound-character ('#').

In the case of the der-out-file, comments are created by the

program to identify some of the conditions under which the data

was generated, the virtual time it needed for this single run and

the total amount of virtual time (as the sum of previous runs). In
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debug level 1 or higher, it will also write some event statistics

in this file.

A defect-line consists of the identification for the defect,

its carthesian coordinates (in units of the lattice constant a),

and an optional tag (an integer between ±32000) to keep track of

it.

Table 3.2 shows a sample file. It is a good illustration of

the rule for specifying mobiles, which are, in this case, si and

au interstitials of the type (i-type) be (bond-centered).

Table 3.2.
Sample defect placement file.

# Sun Aug 28 16:08:11 1988 seed:49669508
# in:kodiff2.dfp
# temperature:1368.5 events:7710000 time:8.45166e+010
# Event statistics:
# interst.-interst.-hops:
# kick-out:
# total-time: 1.34175e+011

7704305
5695

(99.93 %)
( 0.07 %)

au -999.000 -96.000 96.000
au 999.500 60.500 -36.000
vac -976.000 -26.500 -33.500
vac 980.500 -82.000 -29.500
si-bc 981.625 44.875 -6.625 100
si-bc 981.125 77.625 37.625 -100
au-bc 985.875 -35.375 -47.625
au-bc -971.375 54.625 -43.875
au-bc 975.625 95.125 41.625
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The coordinates of the different defect types and the syntax

will be checked and any inconsistencies will be reported.

3.2.3 Occupant File

The occupant file contains all data about each particular

type of defect. Each line consists of several fields:

occ-file:
( comment-line I °cc-line (i-spec-line] );

°cc-line:
lattice-occ sublat display-symbol (Ekin];

i-spec-line
i-type display-symbol Ekin' Ef [Emig];

lattice-occ:
occupant I vac;

occupant:
char ( char );

display-symbol:
char;

sublat:
A I B I X;

For each occupant, there is an obligatory occupant-line,

followed by an optional interstitial-specification-line. Table 3.3

shows a sample file.
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Table 3.3.
Sample occupant file.

# au diff.occ: list of occ. & energies
# (all energies in eV)

vac X . 1.0
si X . 1.2

bc . 0.40 4.4 0.40
au X . 2.5

bc . 0.39 2.5 0.39

The occupant-name (any string can be used) is the same one

as used in the dfp-files. The sublattice field indicates, that the

following data applies to the named defect in the A sublattice,

the B sublattice or both (X), respectively. If the compound flag

of the env-file is disabled, then any data specified for the A

sublattice is used for the B sublattice, and vice verse.

The display symbol is not yet used, but it is supported

already for a planned graphical representation of the defects.

The Ekin parameter has to be specified only, if vacancy

migration is to be simulated (vacancy-simulation flag must be

set!); it is the energy needed in eqn. (2.7), and has to be

specified in eV.

The order of entries is important: if vacancies occur in the

bulk, then the vac entry has to be the first one. In an elemental

crystal, the next entry defines the natural site occupant, whereas
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in a compound, the two following entries classify, respectively,

the A and B sublattice occupants. In either case, subsequent

entries define the properties of impurities.

If a i-spec-line is encountered (which begins with an

interstitial-type keyword), then the specified interstitial of the

°cc-line immediately preceding it will be simulated. In our

example (see Table 3.3), the diffusion of bond-centered si and

bond-centered au will be taken into account. Remember, that for

each occupant there may be one interstitial type, although there

may be different interstitial types for different occupants.

This time, the display-symbol is followed by Ekin' and Ef,

which are the parameters as requested by eqns. (2.10) and (2.12).

If the optional inter-interstitial migration energy Emig (compare

eqn. (2.13)) is declared, then this means that this type of

interstitial-interstitial migration is allowed! Emig acts quasi

like a switch to enable/suppress this mechanism.

3.2.4 Inter-occupant File

The inter-occupant file describes the interaction between

the different occupant. It contains
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(a) the bond-energy Ebdnd (compare eqn. (2.7)) between every

possible pair of occupant types

(b) the interstitial-lattice binding energy Ebind (see eqn.

(2.9)) between every interstitial type of one species and all

other species.

Table 3.4.
Sample inter-occupant file.

# au diff.ocx:
# alT energies in eV!
# a)

si vac -1.0
au vac 0.0
si si 0.18
si au 0.0
au au 0.029
# b)
si-bc si 0.00
au-bc si 0.00
si-bc au 0.00
au-bc au 0.00
au-bc vac 0.00
si-bc vac 0.00

Table 3.4 shows a sample file. The corresponding syntax is:

occx-file:
( comment-line 1 bond-line 1 bind-line );

bond-line:
7attice-occ lattice-occ Eb°nd;

bind-line:
interstitial lattice-occ Ebind-,
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The bind-line is only necessary, if the Frank-Turnbull

switch is set, whereas the bond energies are required for the

vacancy migration and the kick-out mechanism. Again, the file is

checked for complete information, and any discrepancy is reported.

3.3 The Simulation

VIDSIM is started with the environment file as an argument.

From the data contained in this file, it will configure the

simulation according to the desired mechanisms and modes. Then it

will continue the setup with the occupants and interstitial types

and the pertaining energy parameters, as specified in the occ- and

ocx-files. The next step is the processing of the def-in-file,

which represents the initial defect configuration of the sample.

All mobile defects, such as interstitials and, if desired,

vacancies, are extracted and put together in a mobile list. Then,

all information necessary for the neighbors of each of its

elements is gathered and calculated. An interstitial, for example,

has to "know" its nearest lattice neighbors and the nearest

lattice neighbors of each of them, so that for the kick-out

mechanism the bond energy terms of the kicked out site (eqn.

(2.12)) can be calculated quickly. Thus, depending on the

simulation configuration, a lot of complex data has to be

processed.
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All the defects, the mobile and static ones, are entered

into the defect list. As it is important to decide, whether a

specific site is already occupied or not, a hash-table has been

implemented to ensure a fast look-up.

Now the genuine simulation can start. One main part of it is

the calculation of the probability p
tot, that any of the mobile

defects will hop, which is of course the sum of the hop

probabilities of each mobile. To accomplish this, VIDSIM will go

through the mobile list and check, whether the hop probability for

each mobile has already been calculated and whether it is still

valid. If not, it will recalculate this value, depending on the

mobile, its vicinity, and the simulation configuration. If the

mobile defect under consideration is a vacancy, the bond energies

of all its neighbors have to be added up to get the activation

energy as in eqn. (2.7).

In case we have an interstitial, things become a little more

complicated. First of all, we have to consider the direct

interstitial-interstitial migration, if allowed for this type, and

calculate the probability for a hop of the interstitial into any

of its nearest interstitial neighbors. Then, we have to take care

of the interstitial-lattice hops, scanning all the direct lattice

neighbors of the interstitial and calculate all the pertaining

probabilities. If the lattice neighbor under consideration is a



39

vacancy, then this is a possible Frank-Turnbull mechanism, as

given in eqns. (2.8) and (2.9). If the lattice site is unoccupied,

however, we have to deal with the kick-out-mechanism (eqn.

(2.11)), using the activation energy (2.12).

These computations are done for the whole mobile list, and

the values are added to ptot. Last, but not least, we still have

to consider the reverse Frank-Turnbull mechanism (if operative).

This is done by the methods described in chapter 2.3.2. To cover

all impurities in the crystal, the defect list is processed at the

start of the simulation, all impurities and antisites are

extracted and nf-tot,ifvf is calculated. During run-time, it only

has to be updated when certain events occur.

Finally, we calculated
Ptot' the total probability that any

of the hops will occur. The average time until this happens, is

then

<T> = 1/13tot (3.1)

We call this "virtual time", as it is proportional to the actual

time the experiment would take in a laboratory to get this "real"

time, we have to divide <T> by the Debye frequency of the crystal,

as we conclude from eqn. (2.4). Thus, the natural time unit of our

simulation is one phonon period.
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To decide, which event (i.e. diffusion process performed by

a mobile defect in a certain direction) has to occur after <T>, we

eventually use the random number generator, which provides a

random number r in the range (0 5 r < 1). The quantity

Pcritical Ptot * r (3.2)

determines, which event is to take place. This is accomplished by

adding up all partial probabilities and subpropabilities, until

the sum becomes greater than n-critical* The event with the

probability which was added up last is the chosen one.

Then, this event has to be carried out. The affected

defect(s) will be moved, and the mobile list updated, resulting in

a recalculation only of the hop probabilities of the defects,

which are located in the vicinity of the moving atom. This sounds

very simple, but it becomes quite complicated, if coded in an

efficient way, as some kind of indirect reference tables have to

be installed for the following problem:

If a mobile X moved, then tell its neighbor Y of the

direction d, that its direct neighbor in the reverse

direction (X) has changed.
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This is still complicated by the variety of mobile defects

such as three types of interstitials, the geometry of the

zincblende structure and the generality of the program.

A very condensed form of this algorithm is shown in Table

3.5. As we can see from it, the migration continues until one of

the maximum parameters for the simulation, as defined in the

environment file, is exceeded.

Thus the result after a certain number of events, will be a

file with the updated defects and their coordinates and the

virtual time in which the simulation was performed. Thus, we have

information about the diffusion on a microscopic level, both in

space and time.
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Table 3.5. The main simulation algorithm.

read and check env-, occ- and ocx-files

set up configuration as specified by parameters

read and check def-in-file

create mobile and defect list

do
calculate Ptot
<T> = 1 / Ptot.
calculate randm number r
pick event with r * ,-

n tot
move the chosen event and update all data
virtual-time = virtual-time + <T>;
if condition for snapshot then

if max. real-time exceeded
exit do-loop

write def- out -file

events = events + 1;
until desired max. virtual-time exceeded OR

desired max. number of events exceeded

sort and write def-out-file

print statistics

end



43

3.4 Algorithm Checks

3.4.1 Random Number Generator

As we have seen in the last section, the simulation relies

severely on the random number generator, which have to be

excellent. In VIDSIM, there is two random number generators

available: the original one (drand48) is working on the machine

level by shifting bits and is adopted from UNIX System V.2. The

second was added after some difficulties with drand48 on the IBM

3090. It was decided to take a highly portable and first class

generator: ran123. It is based on the linear congruential

method23, which provides a practical infinite period and no

sensible correlation.

To check the "quality" of these generators, two tests have

been performed. The first involves the calculation of moments /

(7 = 1, 2, 3, 4) of the distribution:

si - (1/N) 2 r11;

and the second the correlation:

(3.3a)

cl = (1/N) 2 ri r1 +1, (3.3b)
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where i runs from 1 to N. In our case, we took N = 104. This test

was done for 10 different seeds. The relative deviations from the

theoretically expected values,

sith = 1/(7 + 1),

ci th = 0.25,

(3.4a)

(3.4b)

averaged over the 10 different seeds, are listed in Table 3.6. The

occurring errors exceed the calculated ones only a few times by a

minor amount, which can easily be explained by the finite accuracy

of the digital representation of floating point numbers in a

computer. The results of rani seem to be a little bit better; both

random number generators, however, gave extremely satisfying

results.

Table 3.6.
Test of random number generators.
Shown are the deviations from the theoretical values.

1

rand
<Dsl> <Dcl>

drand48
<Dsl> <Dcl>

calculated
<Dsl> <Dcl>

1 0.27% 0.60% 0.35% 0.70% 0.21% 0.42%
2 0.40% 0.47% 0.57% 0.71% 0.42% 0.42%
3 0.47% 0.58% 0.77% 0.66% 0.63% 0.42%
4 0.54% 0.61% 0.96% 0.78% 0.84% 0.42%
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3.4.2 Random Walk

Another standard check is the random walk problem. A

particle that performs n steps of the same length d in random

directions will according to the central limit theorem of Gauss

eventually move by the distance

Dn = ./17 d. (3.5)

As this is a wildly fluctuating quantity, we decided to take

advantage of some statistics and average over N-n steps, where N

is the maximum number of steps taken, and plot the following

quantity:

1 N-n
Rn = E di dfil = -d I17 d,

N-n f=1

where cif is the position of the atom after i hops.

(3.6)

This check was performed for N = 5.105 and Rn plotted

against IF. The results of the interstitial-interstitial hop

(bond-centered type) are shown in Fig. 3.1. As expected, we have

an almost straight line through the origin. A linear correlation

calculation - forced through the origin yielded 0.3597 for the

slope, which deviates by only 1.7% from the 'true' value, the
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distance of nearest bond-centered neighbors d = .//4 (rf. Table

A.4). The correlation coefficient R was found to be 0.9975.

Table 3.7.
Random walk check.

direct inter- kick-out
stitial hop mechanism

slope 0.3597 0.3115
d 0.3536 0.3062
dev. 1.7% 1.7%
R 0.9975 0.9991

For the kick-out mechanism, the results are presented in

Fig. 3.2. In Table 3.7, the calculated slope was compared to

fl times the distance of the bond-centered interstitial to its

nearest lattice neighbor (j /8). Again, very good accordance with

the theoretical value was achieved.

The same test were done for the tetrahedral and hexagonal

interstitials, and similar results were obtained.
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Fig. 3.1.
Random walk by bond-centered interstitial.
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Fig. 3.2.
Random kick-out by bond-centered interstitial.
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4. DIFFUSION OF GOLD INTO SILICON

4.1 Theoretical and Experimental Issues

Extensive literature exists on gold diffusion into silicon

due to its considerable technological interest. Gold is used in

high voltage silicon power devices to control the charge-carrier

lifetime24.

Under thermal equilibrium conditions, gold is dissolved in

silicon either on substitutional (Aus) or interstitial sites

(Au ) From experimentalF i tl dt26, 26 it has been concluded for a

long time that the solubility of Aus is much higher than that of

Aui and that Aus diffuses much slower than Aup It is also known

that there is an exchange of Au between interstitial and

substitutional sites, so that the direct interstitial-interstitial

migration cannot be the only mechanism involved. The two competing

mechanisms which can account for such a behavior are the Frank-

Turnbull mechanism

Au
I
+ V <===> Au

and the kick-out mechanism

(4.1)

Aui + Si <===> Aus + Sip (4.2)
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In the first case (reaction (4.1)), the diffusion of gold

into silicon is limited by the in-diffusion of vacancies from the

surface, which are annihilated via (4.2) by the highly mobile Aup

The surface acts as a source both for the vacancies and Aup

replenishing the resulting undersaturation. This effect is

simulated by a special version of VIDSIM by creating a vacancy and

an Aus at random positions on the surface.

If reaction (4.2) is operative, then the resulting Aus-

profile is established by the in-diffusion of the AuI and the

diffusion of the self-interstitials to the surface, which acts as

a sink for the self-interstitials produced by reaction (4.2) in

supersaturation.

Experimentally, the following two properties of the profile

resulting from the in-diffusion of Au into Si are well

established:

(a) the diffusion of Au from both surfaces into a Si wafer

yields a U-shaped gold concentration (Cs) profile

(b) the concentration of Aus in the middle of the U-shaped

profile (Csm) increases proportional to the square root of the

diffusion time:

(4.3)
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over a long period of time.

Whereas in the 1960's and 70's Au diffusion was ascribed to

the Frank-Turnbull mechanism25-29, Goesele et al.3° and Seeger31

suggested in 1980 the kick-out mechanism as an explanation. Their

theory is based on analytical calculations, i. e. a set of

nonlinear partial differential equations for the concentration of

the substitutional atoms, the vacancies and the self-

interstitials, in which they claim that after some approximations

the effective Aus diffusivity has to be independent of the Aus

concentration in the case of the Frank-Turnbull mechanism; in the

case of the kick-out mechanism, however, they calculated it to be

strongly concentration dependent.

According to their calculations, which neglected among other

things electrostatic interactions, the Aus profile resulting from

the Frank-Turnbull process is the error function complement

(ERFC):

Cs = Cseq erfc(x/2(001/2) (4.4)

in the case of a semi-infinite solid at x > 0 with an

inexhaustible source for Aus at its surface x = 0, which remains

at its equilibrium concentration Cseq at all times. This result is

not in accordance with the available experimental profiles. For

the kick-out mechanism, the same profile results in the case of a
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high density of internal sinks or sources, which is not within the

scope of this thesis. For the Au diffusion into highly perfect

wafers (low density of interstitial sinks), however, different

results follow: Goesele et al.30 calculate the solution for this

problem with the boundary conditions

Cs(x=0, t) = Cs(x=d, t) = co

and the initial condition

(4.5)

Cs(0<x<d, t=0) = 0

to be32

erf[(1n(Cs/Csm))1/2]
d/2-x

(4.6)

(4.7)
d/2

where d is the thickness of the wafer.

Seeger31, though, points out that solution (4.7) is a poor

approximation near the wafer surfaces. He presents a solution

which can be used near the surfaces, even for experimental

conditions where Cs does not come close to its equilibrium value

in the bulk:
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1

C(n)
aolx1/20).71/271

(4.8a)
1 + (-1n(21

n = x/(D*0 1/2. (4.8b)

Another very important result of these deductions is the

prediction of the square root law (eqn. (4.3)) for the kick-out

model, whereas for the Frank-Turnbull model a linear time

dependence of Csm is calculated° - quite in contrast to Huntley

and Willoughby27, 28, who obtained eqn. (4.3) in their calculations

for the dissociative mechanism.

It is the goal of our Monte Carlo simulation to shed new

light on these issues by simulating Au into Si diffusion with the

two different models, remaining as closely as possible to the

assumptions of the different authors. The results of the

simulation will then be compared to the theoretical predictions to

check, whether they really comply with them. In other words: a

computer experiment is performed, adapted to the different

mechanisms, defects and parameters of the two competing models.

The experimental outcome will hopefully contribute to decide,

whether these models are verifiably suitable for the explanation

of diffusion processes.
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4.2 Simulation Methods and Aspects

When setting up a VIDSIM simulation, one of the first things

one has to do is to determine the size of the simulated crystal.

As the envisaged diffusion simulation is basically a one

dimensional process, one of the dimensions of the sample (let's

call it the x direction) can be much larger than the other two -

the periodic boundary conditions of VIDSIM will then guarantee

almost infinite y and z proportions. After some tests we decided

to take 2000 lattice constants a in the x direction, which is (rf.

Table A.2) 1.09 Am in real space. The y and z direction,

respectively, were taken smaller by a factor of ten, resulting in

a simulated bulk of 6.4.108 atoms.

Secondly, the parameters for the simulation have to be

determined. We decided to take a simulation temperature of

1368.5 K (z 1095°C) because it is high enough to ensure a fast

diffusion process and there is abundant data at this temperature

region. The required activation energies for the kick-out

mechanism were excerpted from the literature, in which the

diffusivities were given. It has to be mentioned, however, that

these values are estimates, based on numerous experiments and

assumptions; the problem of gaining separate values for Eact and

the enthalpy of formation Exf (see (eqn. 2.6)) is as mentioned

in chapter 2.2 - not yet completely solved. Table 4.1 shows the

adopted values.
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Table 4.1.
Simulation energy parameters.

Defect Energy Source

Au/ Emig Ekin' = 0.40 eV Tan and Goesele33=

Ef = 2.5 eV Weber34

Si' Emig Ekin' = 0.39 eV Weber34

Ef = 4.4 eV Tan and Goesele33

The corresponding values for the thermodynamic equilibrium

concentration of the defects were also taken from Ref. 33,

yielding 588 Au5, 110 V, 48 Au' and 4 Si' for the size of our

simulated bulk.

For the Frank Turnbull simulation, values from Van Vechten's

long established Ballistic Mode114- 18 were calculated, according

to

Ekin =4 mv2 -.4 (F6,02, (4.9)

where vp is the Debye frequency, d the distance between the two

lattice sites, m the mass of the hopping atom and F a geometric

constant equal to 0.9 in the case of the diamond lattice. The

calculations gave 1.2 eV for the hopping Si atom. We chose 2.5 eV

for Au as a reasonable value. Table 3.3 shows the activation
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energies in the form of the occupant file, the way they were fed

into the program.

Finally, the values for the inter-occupant files have to be

specified. The bond energies between two Si and two Au atoms,

respectively, were calculated from the latent melting heat to be

0.18 eV for Si-Si and 0.029 eV for Au-Au, respectively. The

silicon-vacancy bond energy was set to -1.0 eV in accordance with

the Ballistic Model, and the remaining parameter, such as the

interstitial-lattice binding energies, were supposed to be of

negligible values and were set to zero.

Because the advocates of an interstitial mechanism cannot

specify which type of interstitial accounts for diffusion in

silicon12, we arbitrarily chose the bond-centered for simulational

reasons, and in order to save CPU time.

Due to the poorly known boundary conditions and surface

effects, we decided to simulate two cases for the kick-out, which

differ in the way the injection of the Au interstitials into the

surface is handled:
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(a) In the stimulated kick-out, a AuI is injected into the

surface at a random position every time a Aus is formed in the

bulk via reaction (4.2). Physically, this could be explained by

the release of energy of the kick-out, which could incite an

injection. This method ensures a constant concentration of AuI

throughout the whole simulation and can be regarded as a good

approximation of the surface condition (4.5). In the initial

configuration, all of the AuI calculated for the thermal

equilibrium (48) were distributed along the two surfaces. The

initial 588 Aus were also distributed on the exterior of the bulk

to take into account any effects resulting from an eutectic layer.

Another surface effect which has to be considered is the

annihilation of a Si', when it reaches the (y-z) surface, so that

the surface can act as a sink for the supersaturated AuI. In fact,

the simulation was determined by the in-diffusion of the AuI,

which created a Aus via the kick-out. As the resulting Si/ has a

very high probability of inverting again that process in the next

event via (4.2), we decided to modify the kick-out to a second

neighbor event. Furthermore, to speed up the direct interstitial-

interstitial migration in the diffusional direction, we added ±

one lattice constant to the hop in the ix direction, which affects

two thirds of all hops (one third does not hop in the ix direction

at all). This measure has two effects: First, it takes care that

an Si
I which is created somewhere in the middle of the bulk does

not take days of simulation time, until it is annihilated on the

surface. As the direct self-interstitial migration is extremely
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fast in virtual (laboratory) time and does practically not advance

the virtual clock, this does not bias the result. Second, it

boosts the Aul at a faster migration speed into the bulk, so that

they penetrate faster and deeper. This means that the resulting

profile will be stretched out but still proportional to the

original one. In particular the shape of the profile is not

affected by this measure. Nonetheless, the overwhelming event was

still the direct interstitial-interstitial hop of the Aup a

fairly uninteresting event. We raised the migration energy for Aui

to 2.2 eV, so that for every three thousand direct interstitial

hops we had one kick-out. The predominance of the direct

interstitial hops (an experimental fact!) was not disturbed, but

the time scale reduced by a factor of 4.6.106.

(b) In the spontaneous kick-out, it is assumed that the

injection of the Aui proceeds at a constant rate of time. We found

the average time for a AuI injection to be 2.8.109 time units from

our experience with the stimulated kick-out. In contrast to the

case (a), the initial dfp-file was empty, i. e. we simulated the

evolution of crystal defects in time by a constant rate of Aul

injection. Apart from these two differences, this simulation was

set up exactly the same way as the stimulated kick-out.

For the Frank-Turnbull mechanism, basically the same

distinction was made:
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(a) In the stimulated Frank-Turnbull, a creation of a Aus

via reaction (4.1) prompts the injection of one V. The initial 588

Aus were again distributed at random positions along the surface,

acting as an inexhaustible source for the Au/ and V according to

the reverse dissociative mechanism (4.1). This way, they are

providing "supplies" for the initial 48 Aui, which had also been

located near the surface.

(b) In the spontaneous Frank-Turnbull, every 6.8.103 time

units (an experimental value) two V and one Aul. are formed on the

surface, but, as all vacancies and interstitial reaching the

surface are annihilated, most of them don't survive the first

events as we assume a free surface and no eutectic layer . Again,

there are no defects existing at the start of the simulation.

The different versions of this simulation were running for

almost 4 months on up to 6 computers, including one PS/2 Model 70

and the IBM 3090 of the Palo Alto Scientific Center.
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4.3 Results

4.3.1 Kick-out Mechanism

(a) Stimulated Kick-out

During the simulation we found that the Au/ diffused fast

into the sample and remained at a high concentration near the

surface, but were undersaturated in the middle of the sample, as

they got eaten up during their migration to the center. The number

of Si' hardly ever exceeded the value 1.

Fig. 4.1 shows a logarithmic plot of the obtained Au

concentration profiles after 3 different virtual times, up to

t = 6.4.1012 time units (in phonon periods). In real time, this

would be the equivalent of 0.1 ps. The concentration was obtained

by "virtual" cutting the crystal in the x direction into slices of

20 lattice constants and then counting the Aus which are within

one slice, and subsequent adding the numbers which result from the

diffusion from both surfaces Thus, to get a relative Aus

concentration, these values have to be divided by 1.28.109. To

eliminate the stretching out of the profile which is due to the

methods described in chapter 4.2, the distance from the surface

would have to be reduced by a factor of 4.83.



61

CONCENTRATION
1000

100 =

10=

1

0.1

0
0

÷ 0 0
0

A + + 0A + 0±
A 0

A + 0 0

A + + 0
4 - 0 0

0
A '6 0+ + ++ 0

0
+ 0 +

0

0 50 100 150 200 250 300 350 400
DISTANCE FROM SURFACE IN LATTICE CONST.

0 6.4E12 Time Units + 3.0E12 Time Units

A 1.0E12 Time Units

Fig. 4.1.

Au concentration profiles of stimulated kick-out.
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All the three profile look very much the same and show a

very nice exponential behavior until the penetration depth exceeds

about 150 lattice constants, where they are flattening out a

little bit. Ergo, on the scale of the whole length of the x

direction, we have a U-shaped profile. Figure 4.2 shows an attempt

to fit the data which we obtained at 6.4.1012 time units to an

exponential curve. The plotted error bars represent a A error

behavior which is typical for Monte Carlo problems and which we

assumed to be valid in this case, too. Using these data and

errors, we used a x2 fitting program for nonlinear models

according to the Levenberg-Marquardt23 method to calculate the

parameters of the function Co exp(-x/a) and to get an estimate of

the goodness-of-fit. The main premise for such a fit, namely the

normal distribution of the measurement errors, is certainly

fulfilled for a Monte Carlo simulation. The calculated values for

x2 never exceeded the degrees of freedom N (data points

adjustable parameters) of the fit by more than 10.5%, which is an

indication for a good fit. Moreover, we calculated the statistical

probability Q that, given the calculated parameters, this data set

would have occurred plus or minus the given errors:

Q = r(0.5 N, 0.5 x2), (4.10)

where r is the incomplete Gamma function. As shown in Table 4.2,

the Q values start off with an excellent value of 0.967 and abate

with progressive time to an acceptable value of 0.300. This is an
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indication that at the beginning of the diffusion process the

profile commences with an accurately exponential shape. As time

increases, however, the "tail" of the profile becomes

consecutively smoother; this seems to be confirmed by the increase

of the inverse slope of the semi-logarithmic plot, a. The physical

process that causes this change of the profile shape is the "real"

diffusion by the inverse kick-out mechanism, i. e. the Aus get

displaced by interstitials, in contrast to the exponential

contour, which is simply determined by the in-diffusion of the Aui

from the surface until they knock off a silicon substitutional.

This characteristic has also been confirmed by "tagging" the Aup

which transfer their tag to the Aus in such a case. Furthermore, a

is identical to the square root of the probability that the

interstitial performs a direct interstitial hop rather than a

kick-out (53.7).

Table 4.2.
X2 fit for exp() function of stimulated kick-out.

time co a x2

0.5.101 75.3 ± 2.4 49.6 ± 4.4 8.7 0.967
1.0.10;,t 126.7 ± 10.2 54.1 ± 3.3 12.3 0.832
2.0.1012 232.5 ± 13.3 57.9 ± 2.4 18.5 0.435
3.0.1012 341.9 ± 16.1 57.1 ± 2.0 19.9 0.530
4.0.10;", 449.4 ± 18.4 57.7 ± 1.7 23.3 0.330
5.0.10!.; 534.4 ± 19.7 59.5 ± 1.6 23.8 0.534
6.0.1012 605.5 ± 20.5 60.9 ± 1.5 24.2 0.390
6.4.1012 643.6 ± 21.2 60.9 ± 1.5 26.0 0.300
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When we tried to fit the data to the predicted function

(4.8), we obtained Q = 0. This attempt is plotted in Fig. 4.2,

(solid line) and labeled as "theory". It seems to be evident that

the simulation could not verify the theoretical predictions.

We also compared the kick-out results with eqn. (4.7), which

is the alternative theoretical derivation. As illustrated in Fig.

4.3, the data points are way off the straight line, which eqn.

(4.7) would assert. This theory cannot be supported either by our

data, either.

Besides the shape of the diffusion profiles, the time

dependence of the concentration in the middle of the bulk Csm(t)

is another important issue. To obtain Csm, we added all Aus which

penetrated deeper than 250 lattice constants into the bulk. The

result is a nice linear plot, as shown in Fig. 4.4. A linear fit,

which is drawn as a solid line, yielded a regression coefficient

of R = 0.9966. The hypothesized square root behavior (4.3) is not

in accordance with our result.
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(b) Spontaneous Kick-out

Fig. 4.5 shows the concentration of the Aui at t = 1.9.1012

and t = 3.8.1012 time units. Just like in the stimulated kick-out,

there is a high and constant concentration of Aul. near the

surface, which drops off, exponentially after about 50 lattice

constants. In both cases, the concentration of Aui is almost zero

beyond 180 lattice constants. The few interstitials beyond that

point result from the inverse kick-out mechanism, a conclusion

which accords with our observation of the flattening contour of

the Aus beyond 150 lattice constants. In addition, it seems that

the proportion of these interstitials is increasing with time.

This result is quite in contrast to what the protagonists of the

kick-out assert34 and assume for their calculations30, namely a

flat Au' profile. At the end of the simulation, there were 60 Aui

in the sample, which is close to the expected value.

The Aus profiles of this version are shown in Fig. 4.6. They

are very similar to the previous ones. The differences can only be

made transparent by statistical methods, as shown in Table 4.3.
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Table 4.3.
x2 fit for exp() function of spontaneous kick-out.

time co a X2 Q

0.5.1012 55,7 ± 7.2 49.6 ± 5.0 9.2 0.954
1.0.10'4 122.6 ± 9.9 53.0 ± 3.1 7.4 0.986
1.5.1012 177.5 ± 11.9 52.7 ± 2.5 10.0 0.932
2.0.10!,4, 227.2 ± 13.2 55.3 ± 2.3 11.4 0.978
2.5.10!,t 272.9 ± 14.0 58.8 ± 2.2 9.8 0.940
3.0.1012 327.7 ± 15.2 59.1 ± 2.0 9.2 0.955
3.5.1012 386.5 ± 16.5 58.6 ± 1.8 14.7 0.680
3.8.1012 422.9 ± 17.3 58.2 ± 1.7 13.1 0.784

The data indicate that at first the exponential behavior is

very well fulfilled. Then, however, the exponential fit

deteriorates again; a behavior, which is completely analogous to

the stimulated kick-out. We may conclude from that there is

basically no difference in the two cases. Even the slopes seem to

be in exact agreement with each other.

This conclusion is reinforced by Fig. 4.7 and Fig 4.8,

respectively, which speak for themselves. The obligatory linear

fit for the time dependence of Csm yielded a correlation

coefficient of R = 0.9894, a reasonable value. Fig. 4.9 shows the

corresponding graph.
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4.3.2 Frank-Turnbull Mechanism

One basic problem which occurs for the Frank-Turnbull is the

number of Aus which are produced during a simulation. According to

the law of mass action, this is proportional to 'the product of the

components which are involved in the reaction. As it turns out,

the product for the kick-out mechanism, CIC5 (ref. reaction

(4.2)), is about 5.8.108 greater than the corresponding product

for the Frank-Turnbull mechanism, Ci.Cv (reaction (4.1)),

resulting in a much lower concentration of Aus in the Frank-

Turnbull case. This is also the reason why the Aui profile in the

kick-out is not a flat one, as an Aul. will find during every hop

from the surface on a Si, which it can knock off its site, quite

in contrast to the Frank-Turnbull case, where the vacancies (and

the Aui) spend a lot of time diffusing into the bulk, before their

reaction partner comes into their vicinity. Thus, in a first

approximation, the vacancies can be regarded as free defects

diffusing into the crystal with no interaction at all, which

corresponds to the Fickian assumptions. In the case of a constant

rate of injection the resulting profile is know to be of the ERFC

type36. This is exactly what is the result of our spontaneous

Frank-Turnbull simulation, as shown in Fig. 4.10. Close to the

surface, the V concentration was constant and in thermodynamic

equilibrium. The x2 fit to the ERFC function yielded the

diffusivity for vacancies,
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Dv = (8.1 ± 1.3).10-6 cm2/s. (4.11)

The probability for, obtaining these data with the fitted

parameters was Q = 0.925, an excellent value.

This is almost exactly the value which we calculated, using

an equation which can be derived from the Ballistic Model9,

Dv = 8.5-10-6 cm2/s, if we include into the preexponential factor

the enthalpy of formation9 of 4.1 kB.
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(a) Stimulated Frank-Turnbull

As explained above, the number of occurring Aus was quite

limited. To partly cure this problem, we ran the same simulation

on two computers and added up the amount of Aus. The resulting

profile after 5.3-107 time units (almost 4 As) is depicted in

Fig. 4.11. The best fit we could obtain with these data was to the

one to an ERFC function (Q = 0.913), which would be in accordance

with theoretical reflections (compare eqn. (4.4)). However, some

Aus seemed to occur at much higher level deep in the sample than

what could accounted for by the ERFC function. As we also allowed

the spontaneous formation of V via the reaction

Si ---> Si' + V, (4.12)

(rf. chapter 2.3.2) in the bulk, there is an additional source of

vacancies at random positions within the crystal, i. e. vacancies,

which don't have to diffuse from the surface into the bulk and

would be readily available for a Frank-Turnbull in the middle of

the bulk. The calculated rate at which reaction (4.12) can happen

is not enough to explain the observed deviation, as we hoped. This

deviation from the ERFC profile seems to be a real physical

effect.
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The ERFC fit also yielded the diffusivity of the Aus:

Ds = (3.4 ± 1.3).10-6 cm2/s. (4.13)

Unfortunately, the experimental values for this property are

hard to find and vary by several orders of magnitude, which makes

it hard to compare our results. From Wilcox and La Chapelle26 we

find a value of about 1.0 10-10 cm2/s,
. which seems to be in

accordance with values we extracted from the profiles measured by

Huntley and Willoughby27. It can be concluded that the pure Frank-

Turnbull model does not account for the experimental data, either.

It should be mentioned, that the previous analysis of the kick-out

model did not yield any constant value for Ds, as the local rate

of migration varies with the Aus concentration. As a consequence

of this, it was concluded that the profile ought not to be of the

ERFC type.

Fig. 4.12 shows the central gold concentration. A straight

line gives a reasonable fit to these data (R = 0.963), taken the

few data points into account. The data seem to be in accordance

with the theoretical predictions for the ERFC profile.
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(b) Spontaneous Frank-Turnbull

Here, we have even less data points. Fig. 4.13 indicates,

however, a ERFC behavior, too. The fit is with Q = 0.630 not

great, but better than any other trial function. The calculated

value for the Aus diffusivity is in this case

Ds = (4.0 ± 2.4)10-6 cli/s, (4.14)

which differs by only 10% from (4.13). In particular, the error

limits of (4.13) and (4.14) overlap totally. Thus we can conclude,

that the result of our simulation does not depend decisively on

the injection conditions on the surface, something we saw already

in the kick-out simulations. There also seems to be a slightly

increased Cs in the middle of the bulk, as observed in the

stimulated Frank-Turnbull.

The central gold concentration suggest a linear behavior in

this case, too.
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4.4 Discussion

With our application it was demonstrated, that VIDSIM can

cope even with extremely complex problems, such as the diffusion

of Au into Si. The main goal of this simulation, namely to gain

insight into this puzzle by challenging two contradictory

theories, has been fully achieved.

It was shown that both the kick-out and the Frank-Turnbull

model are in qualitative agreement with the experimental data, as

both yield U-shaped profiles.

The kick-out profiles, however, differ quantitatively from

the predicted ones, and thus also from experimental profiles. The

fact that the simulated crystal is thinner by a factor of about

500 compared to a typical experiment32 is almost compensated by

the small diffusion times we could apply due to limited runtime on

computers. One crucial advantage of a computer simulation is the

fact, that surface effects can be excluded, in contrast to real

wafer experiments, which can be severely limited by them, so that

thicker samples have to be used in real life. After all, the

physics of diffusion is not affected by the dimension of the

sample. We can also monitor the diffusion process right from the

beginning and don't have to take heating-up periods into

account32. Thus, our profiles are exact even for extremely short

times something which is experimentally impossible. The fact
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that the Aus concentration decreased by about 2 orders of

magnitude along the diffusion direction - a comparable amount to

experiments - is also a hint that the applied virtual diffusion

time was enough. An interesting question, however, is how the

flattening of the initial exponential contour affects the profile

with time overall a problem, which will keep several micro-

computers busy for quite a while.

Another interesting 'kick-out result is the Aui profile and

the behavior of the Aup during their migration. The kick-out

hypothesis obviously gives the Aui a fairly high "cross-section",

which results in a low penetration depth into the bulk; a "flat"

distribution can't be explained with this model.

The profile obtained by testing the Frank-Turnbull

hypothesis appear to be in quantitative agreement with the

predicted theory, if we disregard the deviations in the middle of

the bulk discussed earlier. During the end of the simulation, the

number of inverse Frank-Turnbull effects (which create a V and a

Au
I ) was smaller by a factor of 4 than the inverse reaction. We

can conclude from this that the simulation proceeded slowly

towards an equilibrium state, in which the number of Aus would be

conserved. It is also shown that the process which determines the

profile, namely the in-diffusion of vacancies, yields an ERFC

shaped profile, which is what we expected for quasi-free defects

(Fickian assumptions). Beyond that, we obtained an excellent value
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for the diffusivity 'of the vacancies, a fact, that clearly

restates the significance of the Ballistic Model.

It was observed that for both models the surface and

injection conditions imposed on the simulation had only

insignificant effects on the outcome.

As far as the central gold concentration is concerned, we

could clearly show that neither of the two hypothesis yield a

square root law, as experimentally observed. Though, the linear

rise can't go on for ever, as inverse reactions of (4.1) and (4.2)

will take effect and finally create an equilibrium, in which the

creation and annihilate rate of Aus are the same. It is easy to

see that in both the Frank-Turnbull (4.1) and the kick-out

mechanism (4.2) the rate of Aus annihilation is proportional to

the number of Au
S, whereas the rate of creation is, as we found,

constant. In a local equilibrium the total change of the central

concentration of Aus can then be expressed by:

dCsm
- a - b Csm .

dt
(4.15)

The solution of this differential equation is well known to be:

Csm = d exp(-bt) + (a/b) (1 - exp(bt)), (4.16)
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which can be expanded into a Taylor series for short times:

CS = d + (a - db) t, (4.17)

yielding the observed linear time dependance. For longer times,

however, there has to be saturation. By analyzing this simple

differential equation it becomes evident that none of the two

proposed models can give the right time dependence of the central

gold concentration. In fact, there are many physical properties of

the defects which neither of the two models takes into account:

the Fermi level is affected by point defects and thus

varies across the sample and throughout the process

point defects are known to carry electric charge;

electromagnetic interaction, however, has been disregarded37

electron-hole recombination-enhanced migration is observed

in Si for positively charged vacancies38.

Our results clearly show the importance of these effects,

and we hope, that this study serves as an impetus for a thorough

theoretical and experimental investigation of these effects, and

their contribution towards diffusion in Si.
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Table A.1.
Properties of the diamond - and zincblende structure.

Number of
atoms per
unit cell

Basis coordinates
Coordina- Distance

tion of nearest
number neighbors

1 1 1 1 1 1

0 0 0; - - 0; 0 -; 0 -;

22 2 2 22
8 4

1 1 1 3 3 1 3 1 3 1 3 3

4 4 4 4 4 4 4 4 4 4 4 4

.5a

4

Table A.2.
Elements with the diamond or zincblende structure.

Element structure cube side a [A]

C A 3.57
Si A 5.43
Ge A 5.66
ZnS B 5.42
GaAs B 5.65
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Table A.3.
Calculated interstitial positions.

Type coordinates

tetrahedral

1 1 1 1 1 1

0 0 -; 0 0; - 0 0; - -;

2 2 2 2 2 2

1 1 3 1 3 1 3 1 1 3 3 3
_ _ _; _ _ _ _ _ _

4 4 4 4 4 4 4 4 4 4 4 4

1 1 5 1 3 7 1 5 1 1 7 3 3 1 7 3 3 5

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

3 5 3 3 7 1 5 1 1 5 3 3 5 5 5 5 7 7
hexagonal _ _ _ _ _; _ _ _ _ _ _ _ _

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

7 1 3 7 3 1 7 5 7 7 7 5

8 8 8 8 8 8 8 8 8 8 8 8

1 1 1 1 3 3 1 5 5 1 7 7 3 1 3 3 3 1

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

3 5 7 3 7 5 5 1 5 5 3 7 5 5 1 5 7 3
bond-centered - -; -; - - -; - - -; - - -; - - -;

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

7 1 7 7 3 5 7 5 3 7 7 1

8 8 8 8 8 8 8 8 8 8 8 8
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Table A.4.
Properties of the interstitial lattice.

Number of Number of Number of
Type interstitial lattice site nearest

neighbors of neighbors of interstitial
a lattice site this interst. neighbors

tetrahedral 4 4 4

hexagonal 12 6 6

bond-centered 4 2 6

Table A.4 continued.

Type
Distance of

nearest lattice
neighbors

Distance of
nearest interstitial

neighbors

tetrahedral

hexagonal

bond - centered.

.5a/4

IAla /8

ja/8

.5a/4

.5a/4

12-a/4



Table A.5.
VIDSIM modules.

Executable file:
vidsim.exe

Main program:
dosim.c

Sources:
defect.h
defect.c

dfio.c

dosim.c

envir.h
envir.c

event.h
event.c
evio.c

95

The actual simulator program.

(by module)
Header for "defect" handling code
Code to manage defect lists: add, remove, lookup

Code to read & write defects to/from files

main program for simulation

Code to set up global environment for a run, and
to clean up afterward. Opens and closes files,
reads environment files.

Opens, reads, writes event files

fundphys.h
fundphys.c Provides "fundamental physical" constants and

functions.

global.h
global.c

mobile.h
mobile.c

Contains definitions & initialization of objects
and data types visible throughout all LM modules

arrays & functions to operate on mobile items:
vacancies and interstitials

occupant.h
occupant.c code to read an occupant file, and to perform

services related to the lattice-site-occupant
list

sim.h
simrun.c
sim.c

simdata.c

Code to calculate and choose a next event.
Code to adjust the simulation state in

preparation for the next event.
Initialized data structures for simulation.


