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NOMENCLATURE

U(x, t) = chemical concentration in porous medium voids

(1.1.g chemical/gram of solution)

N(x, t) = sorbed chemical concentration (lig chemical/gram of

medium)

Mc" = total mass in the packed part of the column. (Both free and

sorbed phases added together at time t.) (gms)

Ur (t) = concentration of chemical in the well-stirred reservoir at
gmstime t. --

3
CIT1

Vo = volume of reservoir (cm3)

Vc = volume of packed part of column (cm3)

M = initial mass of chemical in reservoir (gm)

Uo = initial concentration of chemical in reservoir (gm/cm3 )

Do = diffusion coefficient in non-sorbing medium (open channel

voids)

Dol = diffusion coefficient in non-sorbing medium (porous medium

voids)

E0
= bulk porosity of medium (percent) (Scheidegger, 1960)

Ed = effective porosity of medium (percent)

E min = minimum effective porosity attainable under reasonably high

metersflow velocity values such as the order of 10- (percent)day
a = ratio of chemically active surface area of medium to total

surface area



= partition coefficient (19) defined as y = exp [-AG/RT]

AG = free energy change of sorbtion. (Kilo-cal/mole)

= gas constant (Kilo-cal/mole-0K)

= Kelvin temperature (degrees)

L' = length of column packed with porous medium (cm)

= half-distance between open channels (cm)

Qo
= influx velocity of chemical solution (cm/sec)

X = coupling coefficient (cm/sec) defined as that coefficient

which ties two either related or unrelated systems together

A = plane surface area of packed part of column at x = 0 (A

assumed uniform down column) (cm2)



A MATHEMATICAL MODEL SIMULATING MASS TRANSPORT
OF CHEMICALS IN SATURATED POROUS MEDIA

I. INTRODUCTION

Importance of Problem

The environment in which man lives is rapidly becoming pol-

luted with a broad spectrum of chemicals. Included in this array of

chemicals are the classes known as herbicides, insecticides, and

fertilizers (see Appendix I for chemical term definitions). These

three classes are rapidly increasing in their importance since man

uses great quantities of each of these chemical types every day.

In nature some of these chemicals are concentrated to toxic or

lethal concentration levels. The mechanism of concentration is only

recently beginning to be understood. Since some of these chemicals

may be concentrated to high levels in man's environment and by defi-

nition man's environment includes the air he breathes, the water he

drinks, and the soil in which he grows his crops, it is of the utmost

importance for continued existence of both plants and animals to know

how these chemicals move in the environment.

Historical Justification

In recent years several workers have pointed out the serious-

ness of the problem of chemical concentrations existing in man's
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environment. A survey carried out by Green, Gunnerson, and

Lichtenberg, (1966) has shown that chlorinated hydrocarbons have

been present in our national waters since 1958 and that they have done

considerable damage to fish populations.

They also emphasize that regular surveys regarding the pre-

sence of pesticides (insecticides) are necessary. In a detailed inves-

tigation by Butler (1966a, 1966b, 1966c) on the effect of pesticides in

estuaries and marine environment it was shown that even the presence

of small amounts of pesticides did considerably harm to the produc-

tion of fish and oysters. Similar results have also been reported by

Stickel (1966). Brown and Nishioka (1967) have found considerable

amounts of the chemicals DDT, DDD, dieldrin, endrin, heptachlor,

2, 4-D, etc. in the soils, lakes, and rivers of the western United

States. The existence of DDT in various crops and soils has also

been reported by Seal, Dawsey, and Gavin (1967).

Woodwell (1967) has pointed out that it is possible for chemicals

to enter into biological cycles and become distributed in such a way

so as to concentrate them to a dangerous level. The existence of

pesticides in man is so common that Wasserman and Gon (1967) have

shown chemicals to represent a current constituent of the human body

fat.



Historical Re'sume' of Mass Transport of Chemicals
in Porous Media

The fate of chemicals in the soil, a type of porous medium, is

currently a problem of great interest. The main parameters involved

in the process of chemical movement in porous medium are:

the moisture content (water content),

the percolation velocity of the water or chemical solution

through the void spaces in the porous medium,

the sorbtive properties of the medium,

the medium partical size distribution (see Appendix A),

the ratio of the chemically active surface area of the par-.

ticles of the medium to the total surface area of the parti-

cles of the medium,

the magnitude of the chemical diffusion coefficient in the

medium-water-chemical matrix,

and the biological transportation (i.e. , microbiological

phenomena).

Much work has been done on the movement, uptake, and degre-

dation of chemicals which have been applied to soils. Examples of

this are found in the work of Ashton (1961), Burnside, Feuster, and

Wicks (1963), Freed, Vernette, and Montgomery (1962), Harris and

Warren (1962), Hartley (1964), Lambert, Porter, and Schieferstein

(1965), and Talbert and Fletchall (1965). Most of this work has been

3
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of a qualitative nature.

Though very useful by itself, qualitative work sometimes does

not give the understanding of the processes involved which can be de-

rived from the development and testing of a quantitative physical

model.

Some partial quantitative models have been postulated as shown

in the works of Burnside et al. (1963) and Hayward and Trapnell

(1964). Most models set forth so far are based on a linear diffusion-

type partial differential equation. This type of equation fails to take

mass transport via hydrodynamic convection into account and is thus

quite limited in its scope. Several detailed analyses of the movement

of chemicals in porous medium can be found in the literature. These

include the early work on the adsorption of chemicals in chromatog,

raphy and ion-exchange resins done by Kipling (1965), Lapidus and

Amundson (1952), Van Schaik, Kemper, and Olsen (1966), and Vieth

and Sladek (1965). For diffusion in proteins and polymers see Chao

an.d Hodscher (1966), Houghton (1963), and Ward and Holly (1966).

For mixing in chemical reactors see Bischoff (1966) and Bischoff and

Levenspiel (1966a, 1966b). These studies have led to several mathe-

matical models. One early model by Kasten, Lapidus, and Amundson

(1952) which has proved very useful in chromatography theory is based

on the diffusional plus convective type partial differential equation
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Ut + VUx =DU - N-xx E t

where U is the concentration of chemical flowing in the voids, V

is the hydrodynamic flow velocity of the water carrying the chemical,

E
o

is the fractional void volume of the packed bed or porous medium,

and N is the moles of solute adsorbed per unit volume of packed

bed. Using the same type of equation, other models have been devel-

oped by Houghton (1963) and Chao and Hodscher (1966). However,

these models are based on non-linear adsorption, which may be un-

necessary for many herbicides applied to the soil in weak concentra-

tions.

Models which more closely represent the conditions of chemical

movement in soils (porous medium) may be found in the theory of

chromatography (see Littlewood (1962) and Purnell (1962)). Lapidus

and Amundson (1952) made a great contribution along the lines of

chromatography even though their model assumes a constant surface

concentration. Brenner (1962) improved the model postulated by

Lapidus by incorporating a realistic boundary condition of fluxing at

the surface.

In this paper we shall state three distinct models:

(1) a diffusion type model for both finite and semi-infinite

length packed beds (porous medium);



6

diffusional plus convective mass transport type model for

the semi-infinite packed bed;

diffusional, convective, and linear accumulative loss term

type model for the semi-infinite packed bed.

Figures and equations for each model will be given together with

sufficient justification. The first model and part of the second one

have been published in connection with work currently being conducted

at Oregon State University. For definitions of the various chemical

and soil terms used throughout the paper refer to Appendix A. Note

also the special nomenclature section which defines all the terms,

parameters, quantities, etc. used in the paper.



IL SIMPLE DIFFUSIONAL MODEL

Introduction

In this chapter we shall develop a one-dimensional mass trans-

port model based upon diffusion,only. Appropriate boundary and

initial conditions will be given for two cases;

finite length packed bed of porous medium;

semi-infinite length packed bed.

Mass Transport Model

Consider an experimental arrangement as shown in Figure 1.

A column of large diameter of homogeneous porous medium (possibly

soil) is maintained in intimate contact with a reservoir containing a

well-mixed chemical solution. The initial concentration of chemical

in the reservoir is
Uo

and the initial mass is Mo. It is assumed

that the concentration gradient developed along the boundary x = 0

tends to distribute the chemical into the water saturated porous medi-

um according to the partial differential equation given by Lindstrom

et aL (1968)

x.0

Reservoir Media" /

Figure 1. Sketch of first experimental model.

7



(2. 1) Ut = D U
XX E

Assuming that the chemical is sorbed (see Appendix A) quickly

once it is brought by diffusion into the force field of the active sorbing

sites on the porous medium particles, and assuming a partition of

chemical between free and adsorbed phases of the form

(2.2) N(x, t) = ayU(x, t),

we obtain upon substitution of (2. 2) into (2. 1) and with subsequent re-

arrangement

(2. 3)

Define

(2. 4)

(1+51.1)U,_ =D U .EL 0 XX

D=

as the reduced diffusion coefficient. By substituting (2. 4) into (2. 3)

the diffusion equation (2. 1) is reduced to the standard form given by

Churchill (1944).

(2.5) DU =U=Ut .

In light of (2.5) it is easily seen that when measuring diffusion coeffi-

cients in a sorbing porous medium, one is actually measuring D,

8
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as given by (2. 4) which incorporates the chemical and physical prop-

erties of the porous medium a, y, and E0.

Two different sets of boundary conditions will be considered.

For the first case the packed column is considered to be of finite

length, which imposes a lower boundary condition of no mass trans-

port across the plane x= L'. In the second case the length of the

column is considered to tend to infinity (i. e., semi-infinite case). In

both cases the solution theory employed is that of Laplace transforms.

Case L: Packed Column of Finite Length

Assume that at time t = 0 the initial concentration in the por-

ous medium is zero, for example,

(2.6) U(x, +0) = 0, 0 < x < L'.

It is furthermore assumed that for all time t> 0 the lower bound-

ary condition

(2. 7) U(L', t) = 0

holds. Assume that the surface boundary condition

(2. 8) U(0, t) = Ur(t)

is valid 0 < t < co. We must now determine Ur (t). According to



the principle of conservation of mass

(2. 9) M = Ur(0)Vo = Ur(t)Vo + MC(t).

Solving for Ur (t) we find

M(t)
(2.10) U (t) = Ur(0) - .

Since the mass of chemical which has been transported into the porous

medium via diffusion is divided into that which is free and that which

is sorbed, the total mass in the medium is given as

(2.11)

where

L'
M (t) = Aco(l+a'y)S U(x,t)dx

10

a(1- E)
a' -

EO

By substituting (2.11) into (2.10), the concentration in the reservoir

Ur (t) is found to be

AE (1+aly ) L'
(2.12) U (t) = U (0) - ° U t)dx.

Vo 0

Solution Technique. Recall that the definition of the one sided

Laplace transform of a function f(t), f(t) bounded and measurable

on [0, co), is given as



(2.14)

where Brl is the Bromwich right line contour. Assuming that U

is twice continuously differentiable with respect to x, and once with

respect to t, we find upon applying Laplace transforms to both

sides of (2.5), (2. 6), (2. 7), and (2. 12) the following set of trans-

formed equations:

(2. 15)

equation

1f(t) = TT-Ti
51 est f(s)ds,

13r1

du(i) D su - u(x, +0),
dx2

u(x, +0) = 0,

ux(Lt, s) = 0,

Ur(0) AE0
u(0, s) - (1+a'y ) u (x, s )ds.

V
0 0

The solution to (2.15i) subject to (2. 15ii, iii, and iv) is given by the

11

oo

(2.13) f(s) = e-stf(t)dt.

The definition of the inverse transform is given as (McLachlan, 1963)



(2. 16)

where

AE L'
B =

o
(11-4a1y) = E (1+aly

V 0 Vo

The set of zeros of the denominator in 2.16) is given by

cosh 41- (12-x)
, L12u(x, s) - to)

2D r
LD1 cosh q-)._ L' + BL'Nrf-=-sinh J, EL'

(2.18)

if3n L

where the set
{13n}

is the set of zeros of the equation

(2.17) cos 13 + B sin p = 0, B > 0.

Tables of values of
pn

for various values of B may be found in

Carslaw and Jaeger (1959).

The residue at s = 0 is easily found to be

L12
st

e cosh Nil (L1-x)
R = s U (0)

D r
s -4-0 L12 cos b 17) sh 1,1 BLirs inh L'

Passing to the limit yields

Ur (0)
R =

0 (2Tri)(1+B)

12



The residue at

is

Rn = lim
-(32nD

s
L'2

This limit is

(2.19) R -

(2. 20)

(2.21)

P 2D
sn = -

L12
2

pnD
(s+ ) est cosh iris (L1-x)

2
L'

1U(x, t) = U (0) + 2B
1+B

U(x, t) = 1r(0
1+B -

sL'2 NIT Nrs- Nrg-cosh - Li + BL' -D sinh EL
D

a 2 Dt

2BUr(0)e-1-'n
L'2

cos 13n(1--L')

(2Tri)[P2n +B(1+B)] cos Pn

We thus have from the residue theorem

oo

-P2nDt

oo x L12cos 13n(1--i7de

cos pn(P2n+B(1+B))n=1

x L2Pn cos Pn(1--L-T)e

[Pn2+B(B+1)] (sin Pn)

)

13

This representation of U(x, t) is of the Fourier series type with the

set of orthogonal functions {cos pn(i_T--,,)} forming the basis for the

Hilbert space of L2 functions defined on [0, L']. Observe that

we can also write

2
13nDt



This is accomplished by using Equation (2. 17) which defines the set

of pn. We now show that (2. 20) satisfies the original partial differ-

ential equation (2. 5) in the strip

Q = {(x, 01 0 < x < 0 < t < oo},

that is U(x, t) E C2, 1[Q]. The formal second partial derivative of

U with respect to x is given as

2
Pn Dt

oo 2 L '2
- 2BUr(0) Pn cos Pn(1-E-i)e

U -
XX L'2 cos p (13+B(1-1-B))

n=1 n n

and the first formal partial derivative of U with respect to t is

given as
2

Pn DtooL'-2BDUr(0) p2 p (1 )e
Ut

-n L'
2L'2 cos pn(Pn +B(1-1-B))

n=1

Thus, we see that formally at least

all x, t E Q.
DUUxx = Ut,

That the term wise differentiation is valid follows from the uniform

convergence of the resulting series. We show the uniform conver-

gence by showing that a marjorant exists.

2

14



oo 2 x L'22 pn cos Pn(1--E-i) eD a u 1 au 2BD

Ur(0) ax2 Ur(0) at L'2 cos pn(f3n2+ B(1+B))
n=1

CO

2BD
<

L'2
n=1

2BD r
< IP JL' 0

- p2nDt

L'2

co
- 2x-1) --2 Ti'2Dt

4L' 2

dx

B qi {1+ erf N/Dt)}, t > 0,L' irt 2L'

15

By observing a table of values of equation (2. 17) (see Carslaw

and Jaeger (1959)) for various values of B> 0, we quickly see that

the set of zeros has the following property,

1 12 <' n 1' 2' 3'
Pn [ (2n- 1 )2L2r- j2

Also, it is evident that

1 1< and E V , V , y > 0; n = 1, 2, 3,
2 = 2 o o oPn +B(1+B) i3n

As max I cos P(1---x )1 < 1, 0 < x < L', we have the following=
chain of inequalities

_ p 2DT



where

max 1

cos 13n I1<n <oo

and

2BUr(0)
00

w 2erf 2, C e-V dv
qv Jo

Thus, we have found a majorant and the interchange of differentiation

and summation is justified.

By computing the formal derivative of U(x, t) with respect to

x we find

-132nDt

Ux = L' L 2cos iln(13n+B(1+B))

which can be shown to be a uniformly convergent series representa-

tion in Q by the same type of analysis as was carried out for U

and U. In particular for the line {(L', t)I 0 < t < } we find

Ux(L', t) = 0.

This is in agreement with boundary condition (2. 7).

We now will proceed to check the solution by substituting the

series representation into (2. 12) and noting the short and long time

values of Ur (t). Substituting U(x t) from (2. 21) into (2. 12)

n=1

x L'2pn sin fln(1-73- )e

16



obtains

(2. 22)
1

1Ur(t) = Ur(0) - U
11

r(0)T3
1+B -

Carrying out the integration formally yields

- 2L'

Using the results of Appendix F, namely

-132nDt

oo 2
L'

1 = lim 2 e
,

1+B Li 2
t ---P-0

nr___1 n +B(B+1))

we have that,

BU (0) L, L'
(2. 24) lim U(t) = Ur(0) -t 0 1+B - 1+B} Ur(0)

Also, from (2. 23) we find

-1
2n
2Dt

x L'23n cos p(1--1 -3 )e

Li
n=1 nLv2+B(B+1) (sin 13n)]

00

_132nDt

n=1 [p 2+B(B+1)]n

17

dx.

(2. 23) U(t) = U(0)
BUr(0) L,

L' 1+B

(2. 25) urn Ur(t)
Ur (0)

--"00

00
L'2
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Result (2. 25) can also be obtained directly from the steady state solu-

tion of (2. 5) subject to the bottom boundary condition and conservation

of mass.

Asymptotic Formula for U(x, t). For small values of time, it

would be advantageous to have a formula which is rapidly convergent

to compute U(x, t) with. Observe that Equation (2. 20), while afford-

ing an exact solution to the original partial differential equation (2. 5),

is slow in its convergence for small values of time. Let us replace

Equation (2. 16) which is written as

by the expression

where

L'2U(x, s) = ur(o)
cosh Nrf): (L'-x)

sL'2 r-scosh Nri L' +BL' N/ sinh LI

exp [-xN173-!)-]

(2.26) Tj1(x, s) Ur (0)
f,=:1

The inverse of the transform in (2, 26) is found in the tables (Erdelyi

al., 1964) to be

BDt
"2Dt

(2, 27) U(x, t) = Ur(0) exp exp [B2 erfc 2NIDt
L'



co 2
-Perfc W = 2

e dp .

This asymptotic formula is rapidly convergent towards zero for small

values of time t with x> 0. It will be of interest to note that we

will see an equation like (2. 27) again in the case of chemical flow into

a semi-infinite porous medium.

Since, Ul(x, t) defined by Equation (2. 27) becomes a better

and better approximation to U(x, t) defined by (2. 20) as t tends

smaller and smaller, we have by the asymptotic nature of (2. 27)

I

U1(x,
t) - U (X, t) I < E > 0

for

0< Itl < 6(e), 0< x< L' .

Thus,

lim
U1

(x, t) = U(x, 0+)

This limit is computed immediately with the aid of (2. 27).

lim
U1

(x, t) = 0,
t 0+

which agrees with the initial condition (2. 6).

19



Case Z: Packed Column of Semi-Infinite Length

Referring to Figure 1 again let L' 00. Then, the lower

boundary condition becomes

(2. 28) lim Ux(I), t) = 0

and the upper boundary condition is given as

(2. 29) U(0, t) = Ur(t) = Ur(0) -
AE0(1+aty) coo

V jo 0

Again assuming (2. 5) to be valid and the same initial condition as be-

fore, i. e.

U(x, +0) = 0,

we find the transformed system of equations given as:

(2. 30)
2d u(1) D = su - U(x, +0),

dx2

U(x, +0) = 0,

lim u (L', s) = 0,

Ur (0) AE oo

u(0, s) = - --2- (1+a'y)u(x, s)dx.
V0 0

U(x, t)dx.

The solution of (2. 301) subject to (2. 3011, iii, iv) is given as

20



Ur(0) exp [-xNE]
(2. 31) u 1x' s' Nis (Nls+ BiN1D)

where

A
B1 = E (1 +aly )

Vo

The inverse transform of (2. 31) is found in the tables Erdelyi et al.,

1964) to be,

x+2B Dt
(2. 32) U(x, t) = Ur (0) exp [Bix exp[1312Dt] erfc { 2opt

with erfc W being defined in (2. 27).

When
Vo

is large, or for small value of t (i. e., whenever

B1
f\iDt << 1) Equation (2. 32) reduced to

x
UN, Ur(0) erfc

2N/Dt ie
(2. 33)

Hence, one is justified in using (2. 33) instead of (2. 32) whenever

is small. Note the similarity between (2. 27) and (2. 32).

This theory has been applied by Lindstrom et al. (1968) to cal-

culate diffusion coefficients for the chemical 2, 4-D (2, 4-dichloro-

phenoxy acetic acid) in different soils (examples of porous medium).

For figures and tables of data recovered from experiments performed

refer to Appendix B.
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III. MASS TRANSPORT VIA DIFFUSION AND CONVECTION

Introduction

In this chapter we will develop a one dimensional mass trans-

port model based upon diffusion and hydrodynamic convection of mass.

Again, as in Chapter II, we state the appropriate boundary and initial

conditions. Only the semi-infinite case will be given here.

Mass Transport Model

Consider an experimental setup as is shown in Figure 2.

Figure 2. Sketch of semi-infinite medium for second model.

As we have a mass transport problem in which there exist con-

centration gradients, we shall base our derivation on 1) Fick's Law,

2) conservation of matter, and 3) an adsorption equation. For the

22



or

A J
(3. 3) -c x= -(D (U)U ) + (V U)

AX 0 XX 0 X
A X--"0

Now by the law of conservation of matter for one dimensional flow

au au=-D + D (U)-1 + V Ul - Vouo
lax axx+isx o

rx-FAx

23

last stated assumption we will use the same form of partitioning be-

tween adsorbed and free chemical as was stated in Chapter II,

(3. 1) N(x, t) = °NU(x, t).

Now by considering the flux of chemical J across an imagi-

nary boundary of a plane sheet of packed porous bed at depth x, we

have the vector expression (one dimensional) for the flux

(3. 2) J = -Do(U)Ux + Vo(x, t) UN, t),

where. Do(U) is the diffusivity of the chemical in the void spaces of

the packed bed. Vo(x, t) is the average water velocity in the inter-

particle voids. Note, all the mass transport is assumed to be uni-

form along the plane x = a (a constant). Gradients exist normal to

this plane only. Proceeding to a depth x + Ax, we find the same

type of expression. The net gain of flux is given as

(3.4) Ut = -Jx



Hence, we find upon substitution that

(3.5) Ut = (D(U)U) - (V U).

To this equation we must add the appropriate loss of mass term to

take into account adsorption of mass by the surrounding porous medi-

um. Partial differentiation of (3. 1) and subsequent multiplication of

N by c-12!

Ed

or upon combining like terms

(3. 6) U = (D(U)Ux)x - (VU)x

where

D (U)
(3. 7 ) (i) D(U) - °

1+ a)/---

E

and
Vo(x, t)

(ii) V(x, t) .

1+
d

For the remainder of this chapter, it is assumed that D (U)---is con-

stant in U, i. e.,

yields

Ut = (Do (U)U) - V U)xx 0 x E

Do(U) = Do, (a constant).

24



Furthermore, for steady saturated plane flow in porous medium

V = V = 0.
x t

Thus, (3. 6) is written as

(3.8) Ut =DU -VU
xxx

which is the equation we are interested in solving subject to the fol.-

lowing initial and boundary conditions:

(3. 9) (i) U(x, +0) = 0,

-DUx(0, t) = (h+V)(U -U(0, t)),

lim Ux = 0,

where h is a constant parameter in space and time but is probably

dependent upon temperature and surface forces acting in the porous

medium.

We have chosen this set of initial and boundary conditions to

simulate a chemical flow in porous medium which is initially at zero

chemical concentration, is a mass conserving system, and the chemi-

cal moves into the porous medium under the combined driving forces

of

hydrodynamic convection (V)

molecular diffusion gradients (la).
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We note here that the input flux of solution
Qo

see Appendix A)

is related to the effective porosity and the solution velocity

(average velocity assumed here) in the porous medium voids by the

simple relation

o(3.10) v = .
o

Ed

A relation between the effective porosity
Ed

and the bulk porosity

Eo
has been postulated by Lindstrom and Boersma (work yet to be

published) on the grounds of some recent experiments conducted at

0.S. U., Department of Soils by Professor Boersma. The empirical

equation is

(3. 1 1 ) E z= -E ) exp [-OV + E .mm o mm

where 0 is a constant parameter characterizing the soil. 8 is

temperature dependent, though as yet sufficient experimentation has

not been done to attempt to deduce the form of this dependence.

E . is defined as the minimum effective porosity attainable.mm

E min > 0 always; but, it may be small in numerical value.

Solution Technique

As (3. 8) and (3. 9) form a set of linear partial differential equa-

tions in space and time and since the coefficients are continuous

cm
'sec
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(3. 12) (i)
du du

1-1 -V- = su,
dx2 dx

O106.

(constant) on the space-time cylinder Q, where

= {(x, 01 0< x< oo, 0< t< oo}

we assume that U is twice continuously differentiable with respect

to x and once continuously differentiable with respect to t in Q,

where

= {(x, 01 0 < x < oo, 0 < t < oo}.

Also, it is assumed that U is Laplace transformable in Q. Hence

in applying Laplace transforms to (3. 8) and (3. 9) we obtain the follow-

ing system:

-Dux(0, s) = (h+V)(--s2- u(0, s)),

lim u = 0.

Since U(x, 0+) = 0, we have the solution to (3. 12 i) subject to

(3. 12 ii, iii) given as

(3.13) u(x, s) =

xV s VU exp [_
x2D

h+V 4D
71-5- h+V/2

[ +
s v
T5+-2-

4D

Applying the Mellin inversion theorem (McLachlan, 1963) to (3. 13)

27



yields

xV
2D

h+V u e(3. 14) U(x, t) - Tiff 27ri Bri

Vh+
2

ept r
N/D

X y 1-
VBrij-( V21

I h+
l'u- 4D ' N5.2--4D

is V2-x +---
2

este 4D ds
Vh+ ff' 2
2 V

.JD s+ 4D

V2where Br1 is the Bromwich right line contour. Let P = s

dp = ds, then (3. 14) reduces to the following complex integral

xV V2t

h+V e
2D - 4D c e e dpPte

(3.15) U(x, t) )U
o 2Tri JBr 2

V
V r- 2

P 74E) NP+ NiD )

This integral has not been found in readily accessible tables, books,

nor journals; therefore, we propose to evaluate it and thus form an

extension to the tables of integral transforms.

We begin this analysis by observing that the integral expression

(3.15) can be rewritten in the form

2xV V t--
U(x, t)

h+v e2D 4D
)

Uo4D 2Tri

28

-xj2-D dp



(3.16) xV V zt
2D 4Dh+V eU(x, t) -. )1.7\ID o 2Tri

(3. 17) 2xV Vt
h+V 2D - 4DU(x, t) = ()U eop 0

Br
1

-xjf-
epte D dp

17.2

Nr1"; (P )4D

a, VI
xV V2t

(h+V) u e2D 4D c epte D dp
t4D o 2Tri Br 2 h.+Y,T

, v )
P (p-)('5+ 2

ITS

Now we observe that (3.16) can formally be written as

1

2xV VtV

ept dpe-301.-17-
11+ -

e2D - 4D D
cbc,h+V 2+ ()(----)U S x 21Iri. 51qD qD 0 0:0 VBr h+

1

V2Ifq--+
2

P- 413' P qD

e_ tjr.)_
pte dxt

2Tri Br v2
1

r)- 4D

epte-x
xV V2t

D
1 C dpNTE e- 2D+ 4D U(x, t) -

2Tri JBr 2 h+uo (h+v )
1 V 2

(P- )(Nri.) + W )

we substitute this definition into the second integral expression in

29

where s x symbolizes an anti-derivative. Since



(3. 17) to find

(3.18)
xV V2t-

U(x, t) = - (h+V 2D 4D s 1
e

D o 2Tri

, V XV X /V
11+ - -- X -

2 2D 2D+ (----) e j e U(x',t)dx'

We find from the tables (Erdelyi et al., 1964) that

-xt\r1-2- V2t xV

2Tri

1 e e 1 2D { 2D
dp = e e erfc, x+Vt ) 2D

xVpt
f

Br1 p V2
2 2,413t

e r. c -
2,4Dt

- 4D

Thus, substituting this result into (3. 18) obtains

(3. 19)
xV x'V -

h+V) u 2D 5.1 2D 2DU(x, t) = e erfc )+ e erfc
2D o 2N/Dt

x'+Vt
124Dt x

, , V xV x/Vx
2 2D C 2D

+
)e

e t)dxf .

Integration by parts once in the first integral expression yields

(3. 20) xV xV x IV (xt+Vt)
h+V 2D{
2D

2D 2D x+Vt 2D 1 yx + 2D 4Dt dx'U(x, t) = - ()U e e erfc (/Dt)+V TrDt
e e

o '2N q

epte
2Br Vl p - 4D

xV xTV ( -Vt)22D -7--Dxx-Vt 2D 1 2D 4Dt- -v- e ertc ( ) - e
2qDt V qirDt
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Observe that the two inside integrals are equal and opposite in alge-

braic sign; hence, we find

Let us multiply through both sides of (3. 21) by e2D . Doing this

obtains

(3. 22)
xV xV xV

2D 4)Uo erfc x-Vt 1 D ,x+Vt(1+
1

e
2D 2Dt) = 2t4Dti- e erfc (

2N/Dt/

V XIV
D.+ --2- -

) e
2D U(x!, t)dx' .

Differentiating (3. 22) once with respect to x yields

(3. 23)

xV x1V
2D ic 2D t)dx'

V xVh+- x
2 2D s

+ e

x'V

2D U(x', t)dx1 .

xV
UoV h

)
U (x, t) - (-15 ) U = -

(1+-17
erfc

) eD erfc
x2-FNIVDtt )1h+V x-Vt

2h 2N/Dt

Define

xV
x-Vt

1

D erfc (x+Vtf(x, t) = erfc
2

+ e
N/Dt' 21413ti

31

(3. 21) xV

U(x,t) = - h+V D _ ,x+Vt
e eric

2N/Dt '
x-Vt

(erfc)U
' 2t4Dt)



and rewrite (3. 23) to read

U Vh+V(3. 24) U - )U 7-- - (14)f(x, t).x D 2D

Applying Laplace transforms with respect to x to both sides of

(3. 24) we have

UV h
pu(p, t) - U(0, t) - )u(p, t) = _ (1+ )f(p, t) .

ZD V

Solving for u(p, t) obtains

h
(l+v)f(13,t)

(3. 25) t) t) UoV
11(13' " - h+V - 2D h+V

D

Inversion of (3. 25) yields

(3. 26)
E(h+V) UoV h

U(x, t) U(0, t)e - (1+
2D V

(3. 27

h+Vx (x-p)(-- )
f(p, t)d.p.

Substituting into (3. 26) the definition of f, we have

(h+V) h (h+V) x - D(h+V)
U(x, t) U(0, t)e - -2- (1+ )e

s-fo U V

2D
erfc p-Vt

ZN/Dt'
0

UoV h (h+V) x -1-1) (h+V)
D-

2D---(1+V J
)e e

D erfc
2N/Dtiu-P.

O
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or

(3. 28)
(h+V )

Uo h (h+V) x - P- (h+V
)erfc (p-Vt 1,3U(x, t) = U(0, t)e e '2N/Dt'uP

0

-
2D

UoV
)e

(h+V e-P erfc ( p+Vt )dp
V

0
2N/Dt '

Continuing with the analysis, we now integrate by parts the integral

expressions found in (3. 28). The first integral expression yields

x -13- (h+V ) -2-(h+V) x
,. p-Vt D 1 ( p-Vt a 1

(3. 29) s e D ierc )dp =
h+V ieD erfc24Dt 2,\IDti

1oo

_p_ 0.1+,71 (p-Vtf
D D .'

e dp.
Or7r5I.S'x

4Dt
- (h+V) o e

By completing the square in the argument of the exponential in

the last integral we obtain the expression

(3. 30)
xP (h+V)

e erfc
0

p-Vt
2

- )--5-(h+V)
D D x-Vt 2D D VJr

=
erfc h+V b.-7V erfc 7 5

hVt+h2t Vx+2(h+)t
2

(114---Ti)e
erfc [ (h+1.)Nr-C

2 D
- erfc [
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The second integral expression is found, with the help of the last in-

tegral in (3. 29), to be

(3. 31)

s,0

x
p+Vterfc

(-2;71)t) dP

(3. 32)

U(x, t) = U(0, t

-x
D D x+Vt D V= - e erfc (-24Dt) +h erfc

hVt+h2t V
)tx+2(h+D D V rr 2e erfc [(h+-2-)N15] - erfc

2N/Dt

Combining both parts now gives

(h+V) -3-E(h+V) Uo x-Vt
- UoeD + erfc (24Dt)2

xV
U

x+Vto D UV 25-(h+V)
o D VNI-E-erfc+

(V+h)e erfc2h 2N/Dti - 2h e

x hVt ht V
v )-F x+2(h+')tiV

.
D D D V Nri-+ U (1+ e erfc[(h+-2) D1-erfc[,Dt20 2h

Now we must evaluate U(0, t). To do this we consider the real in-.

tegral representation of U(x, t) and pass to the limit i. e.:

to find U(0, t) which is then substituted into (3. 32). Let us now pro-

ceed to find the real integral representation for U(x, t). Recall that



(3.15) U(x, t) =

xV V2t

h+V ITT e
2D - 4D, epte D dp
2Tri 3Br2 h+v

1 V 2

P-75)(N1 P+775-- )

We deform Br into Br2 for the condition on the denominator at
1

the branch point p = 0 is satisfied. Note that in (3. 15) we have
V2a first order pole at p = and a branch point at the origin. Hence,
4D

we have U(x, t) given as the sum of 7 integrals.

fr.g

Figure 3. Bromwich two contour in the complex plane.

Define

Tr-E

Ix 2 )
NI .33 e

i(TrrPo eyte- e e-E)dy
I1 = Elm, arri J00 V

E --- 0 Tr --E h+--i
(ye yei(Tr-E) V2- M''' -i.('"`-"-- )

po--.-
0 - 2
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P

, 0
10 IP; 17tp e

c2Tr-6 e ° -x D e p e d0oi0e i
1

2n-i j 0 V
(Tr+ 6) 2 110 V

(Poe - --4-15)(N/7

2
h+--i

e +75 )

i.(27-E )
V2

i(2Tr-E ) - x
1

\FTY-- e 2

e e
yte D

ei.(2Tr-E )dy1
4D -1D

13 = lim c
2Tri ..) i(2Tr-E ) h+ y

E --. 0
Po i(2Tr-E ) V2 )(Nry7 2 2

p0.0 (ye
4D +

P 1--. 0

PI 10 V2
10 V2 -x --e

e ipt
(P 1 e

)e
4D

/0d01
11'-E

e
14

=iin
2111

2 h+ V
E - (1T-E

P10 10 10 V 2
1

(Ple )( Ple +715 Ti17)

(2Tr-E )

eyte-i(27-E)
2

e-i(2-E )dy
5 2Tri

I = lim -
E 0 2

-1(2-e ) h+V2 - i(2Tr-E ) V 2 2
)

4D ' 1
(ye - 4D

)(
Ye +

NJD

.0F
10 o 2

tpoe -x --e
s Tr- 5 D

i p oei
0

de1i6e e= lim --
2Tri

5 i-0 5 0 V
p0.0 10 V2 2

(Poe --4TD)(N-F17oe
2+

7170)
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IrtE.
-xN

-De,. 1 S'°° e"17 = urn
V

E h+-r
Po i(ir-E)... V2114-7e 2 NIDZ )p -.0 (ye

4D /I Y

Observe that in the limit po 0 both 12 and 16 vanish.

Also note that as E 0, 13 + 15 = 0 for the integrand of (3. 15) is

analytic along these,contours and the algebraic sign of 15
is oppo-

site that of I3' hence, they add to zero.
14

does not vanish but

contributes

V2t xV

I e
4D 2D I NrE")

4 h+V/'

Finally, we have the sum I + 17 which yields the real integral

Vh+ -

Il + 17 = - -I so° e-Yt 2

V

.cos (xJ)+ sin (xf--Y-D-)idy.V 2 D 4D
o 2 01+-2)

(Y-F-4D)CY+ )D

Thus, it is easily seen by adding 14 + I + 17 together and multi-

plying by the appropriate functions that the real integral expression

for UN, t) is given as
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xV V2t

e-yth+V e
2D 4D r 00

(3. 33) U(x, = U(-- )U
0 qD o Tr

2
(h+V 2

V
(Y+-4D)(Y+'

2
)

V
h+

X nry cos (x4 X )+ sin (x) .
D

Let x 0 and we have

V2t
h+V Uo

_ CO e-yt\r-y dy
4D(3. 34) U(0, t) = - e

Tr
0 V2 (h+-12:2)2

(Y+)(Y+ )4D

We decompose the integrand of (3.34) by partial fractions to find a

more convenient form for U(0, t)

2V tr- u
ND oe- 4D x -Ytry(3. 35) U(0, t) = U y e t dy
h Tr v2

V 2t
oo - vt

Uo - 4D e ' N y dy
h Tr e V 2(h+)

2

Y+ D

Again using the tables of Laplace transforms (Erdelyi et al., 1964) we

have

s CO e-yt47
(3. 36)

0
y+a

rrry = N -t- - a eat erfc (NraA) .
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Substituting this definition into (3. 35) we obtain after some algebra

UoV V Nrr(3. 37) U(0, t) = Uo + Th- erfc )

Vht h2t
V V t,

= U (1+)eD D erfc [(h+-)I .
o 2h 2 D

This is the result we have been seeking, for now we substitute this

result into (3. 32) and after some algebra we arrive at

(3. 38)
xV xV

UN, t) = erfc(-1+Uof x-Vt D 4, fX+Vt 0 eD erfc IX+VtU V

24Dt' e eric 24Dt' 24Dt'

V- U (1+-2h
o

hVt h2t V
(h+V)+T-3. -+ D x+2(h+-)t

erfc [
24Dt2

39

It is a laborious but straight forward computation to check that (3.28)

does in fact satisfy the original partial differential equation in Q.

Also it can be shown that for x 0, U(x, t) U(, 0) = 0 as t 0.

Lastly the two boundary conditions can be checked by formal differ-

entiation of (3. 38), for t > 0, letting x 0 and substituting the

results into (3. 9 ii) to obtain equality. Hence, the claim is made that

(3. 38) is a solution to (3. 8) subject to the conditions in (3. 9). We now

discuss two limiting cases of (3. 38): (1) no hydrodynamic flux V = 0)

and (2) large hydrodynamic flux V >> h.



Limiting Cases

Case 1: Let V 0 in (3. 38), h 0.

The limit as V 0 in (3. 38),yie1ds

xh h2t
(3. 39) U(x,t) = Uo[erfc ( D +

24Dt) e Derfc 2051 + )}.

This limit gives exactly the expression one would find for the diffusion

of a material under the Neumann (or radiative transport) boundary

condition at the plane x = 0 of a semi-infinite slab of porous medi-

um originally at zero concentration of diffusant. That this type of

system should arise is evident when we consider that Equation (3. 8)

reduces to

DUxx = tie all x, t in Q,

and the boundary condition (3. 9 ii) reduces to

-DU (0, t) = h(Uo-U(0, t)), 0 < t < oo.

The other conditions remain unchanged. Also, we see that as

in Equation (3.15) we have
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(3. 40)

xV V2t

e2D 4D
. h+VU(x, t) = )UqD 27riV--- 0

h 1 C
- NOD o 2.Tri

JBr1

pt D dp

0\7+,7/5)

epte D dp

VBr r_
1 V2

(1)-4D +

This complex integral is found in the tables (Erdely et al., 1964) as

2h t hxxI (7
.U(x, t) = Ujerfc ( DDerfc ( 24Dt+ h D

Case 2: Let h 0 in (3. 38), V # 0

Note! This case corresponds to allowing large hydrodynamic

flux into the porous medium so that any molecular diffusion into the

medium is negligible by comparison. We find

, xV
u

erfc
2

x-Vt
2o e

D erfc (x+VtU(x, t) =
214Dt '2N/Dt

xV hx hVt h2tUV +D + x+(2h+V)toDDD erfc (x+Vtlj
_ lim e e erfc (

2h2,4Dt 203ti.
0

41

To compute this limit we expand the exponential to obtain



U(x,t)

Thus, we finally obtain

(x-Vt)2
Uo x-Vt(3. 41) U(x, t) = erfc (

' 2N/Dt) v - TrD e
4Dt

xV
V D -D x+Vt- i5 (x+vt+v ) e erfc ( -Nat'l

as the limiting solution to (3. 8) subject to (2. 9) with h 0. Equa-

tion (3. 41) was arrived at earlier by Lindstrom et al., (1967) in con-

junction with the work done on setting up a model to predict chemical

a
av

xV
uo_2_1erfc (x-Vt D erfc (x+Vt 1.1

2 14Dti ' 24Dt'

xV
U

,x+ teD (l+h( )+ 0(h2 )) erfc (x+(2h+V)t)
2h 24Dt

erfc (x+Vt24Dt'j

Note that the term

- erfc (x+Vterfc( x+(2h+V)t
24Dt '24Dti

2h

is the definition of

erfc (x+Vt
2N/Dti)
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movement in saturated soil under a hydrodynamic driving force.

For several theoretical plots of Equation (3.41) (V >> h in

3. 38) subject to various values of the parameters, refer to Appendix

C.



IV. ONE DIMENSIONAL MODEL FOR MASS TRANSPORT:
NON-ZERO INITIAL DISTRIBUTION

Introduction

As previously discussed in Chapter III, we shall base the dis-

cussion in this chapter upon Equation (3. 8); however, we now assume

a non-zero initial distribution and a no chemical flux boundary condi-

tion at the surface x 0. Refer to Figure 2 for a schematic dia-

gram of the physical system.

Mass Transport Model

Assuming that Equation (3. 8) holds in the voids of the porous

medium let us change our model now to the case of a non-zero initial

distrubition and the top boundary condition to no chemical flow. This

type of system is commonly called "leaching" as found in the agricul-

tural and mining engineering literature and "dispersion" or "convec-

tion" in the chemical engineering literature.

The chemical mass in the voids moves according to the equation

(3.8) DU -VU =Utxx x

44

and is subject to the initial condition

(4. 1) U(x, 0) = U01(x), U0 constant.



f(x) is assumed integrable in the strip "a-, where

= {(x, 01 0 < x < co, 0 < t < oo

The top boundary condition is assumed to be

(4. 2) -DUx(0, t) V(U(0, t) = 0

for all time t > 0 (note! we assume h negligible compared to V).

Since the boundary condition at the top surface, as given by (4. 2), is

a no chemical mass flow condition and the mass in the column at any

time t > 0 must remain constant, we have that

(4. 3) lim Ux(x,
t) = 0

X' 00

is equivalent to

L'
(4. 4) Mc (0) = lirn Aed(l+aty)s U(x, t)dx

oo 0

We shall show this by construction.

Assume as before that U(x, t) is twice continuously differ-

entiable with respect to x and once with respect to t. Applying

Laplace transforms to (3. 8) first with respect to t and then with

respect to x we find (3. 8) transforms into
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(4. 5)

Dp2u(p, s) - Dp (0, s) - Dux(0, s) - Vpu(p, s) +Vu(0, s) = su(p, s) - Uof(p).

Transforming (4. 2) and substituting the results into (4. 5) we find upon

simplification

U f(p)
o(4.6) u(p, s) - Pu:s(°'

1
.

2 D
V

2
2 s VV 2 s V

43-25) - (15+-2) (13- "275) - ("5 +-2)
4D 4D
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Define

(4.7)
A = - 2D and B = (-s + V22 1 2

V
D

4D

then upon substitution of (4.7) into (4. 6) and with subsequent inversion

being found in the tables (Erdelyi et al., 1964) we have

(4. 8) u(x, s

(4. 9)

u(0, s) e-Ax {(B-A)eBx+ (B+A)e-BA}
2B

yxf(T) -A(x-T)
ZED

B(x-T)..e-B(x-T)
}dT.

0

Applying our equivalent condition we ask for the mass to be conserved;

hence, require that lim u = 0. This condition is satisfied if
x-o-oo

u(0, s) - 1 if(T)D(B-A) 0
A- B)TaT
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Substitution of (4. 9) into (4. 8) and reducing (4. 8) to a more tractable

form gives

1 - (B+A)(
+

x- ) 1 C (B-A)(x-T),
2DI3 f e'T' 2751-3,) f(Ile CLT(4.10) u(x, s) ( )

co
B+ A f(T)e-A(x- -r) e- B(x+T)

"&r.
2DB(B-A) Jo

Resubstitution of the definitions of A and B into (4. 10) permits

one to use the tables again. We have, upon inversion with respect to

time

v V2t (x+-02 (x- T)2
Uo

co 2D 'x-T 4D 4Dt 4Dt
CL(4. 11) U(x,t) TrDtS f (T)e + e T

xV
--D-f(T)e erfc ,x+T+Vt

k Dt

This equation is a solution to (3. 8). It can be shown that (4. 11) also

satisfies the initial condition (4.1) and the two boundary conditions

(4. 2) and (4. 3) respectively.

Justification of Equivalent Conditions

In obtaining (4.11) we used a very convenient form of the con-

servation equation. Now we will proceed to justify using this equa-

tion.

di-
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Beginning with Equation (4. 8), we have upon substitution of this

equation into the transformed conservation of mass equation

L'
-2- = A Ed(1 + fa'y ) u x, s)dx

0

the following equation

(4.12)

Mo u(0, s) -(A-B)xAE (1+a1y) (BA) e dx
d 2B

0

L'u(0, s) e- (A+B)x
AEd(1+a'y (B+A) dx2B

0

U L' x
o C C

f(T)le
A- B)(x-

e
- (A+B)(x- -r)}d-rdx.

Ac (14-a5Y)-airi
0 0

Carrying out the indicated integration in the first part of (4.12) and

with subsequent reduction of terms obtains

(4.13)

Mo
= AE (B-A)L1- e-(B+A)L1d(l+aty)u(0, s) e

AEd(l+a'y)

2DB U

L' x
f (T)-t

(3-A)(x... T) _ (B+A)(x-e -e
0 0

Consider the iterated integral in (4.13). As f(x) is integrable,

0 < x < oo, we find upon inversion of the order of integration



or with further integration and subsequent reduction

(4. 14)
AE al-WY)Mo d u(0, s )(e - e- (B+A)L1)

213

UoL'f(T)(e (B-A)(L'-x)-1)dTD (B-A)
0

Uo CL'f(T)(e(B+A)(T-L1)
D(B+A)

JO

Solving for u(0, s) in (4. 14) obtains

(4. 15)

u(0, s)

Mo U0AEd(l+aty)

i0
sLI (B_ A )(LI- T)._ 1 ) (B-L')-1.41)- 1)

f (T2DB B-A B+A

syxf(T )e (B - A )() L'

f(r) - (BA)TS'dTdx
0 0 0

A
Ed

(1+aiy)

2B
B-A)L' e- (B+A)L1

A)1.41

e- (B-A)1_41 L'2BMoe f (T)(e
(B-A)(1)-

-
lsAEd(

-key) D (BA )
0

B-A)x
dx}dT,

-(B-A)141Multiplying both numerator and denominator in (4. 15) by e

and reducing gives

-1)dT

e-(BA)L' L'
(1-ef(T)(e

(B+A)(T- L' )
D(B+A)

0

- 1 )d
- 2L1B
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(4. 16)

u(0, s)



As B is positive for 0 < t < co, I B

have as LI-- co

r _ (B-A)T dTurn u(0, s) - D(BA) Jo
00

which is identical to Equation (4. 9).

This theory is currently being tested in the laboratory. For

plots of Equation (4. 11) for various values of the parameters and

three different initial distributions refer to Appendix D.

co

, and 51 f(T)dT < 00,
0
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V. ONE-TWO MIXED DIMENSIONAL MASS TRANSPORT:
NON-ZERO INITIAL DISTRIBUTION

Introduction

A model system for mass transport of chemicals in saturated

porous medium will be considered by assuming a two component sys-

tem. The first component to be considered is that of mass transport

in the porous medium dead spaces (see Appendix A). The second

component will be that of mass transport in the more or less open

channels direction of the porous medium (see Appendix A). A non-

zero initial distribution will be used and as in Chapter IV a no-flux of

chemical boundary condition at x = 0 is assumed. Also, conserva-

tion of mass will be assumed throughout. The resulting partial differ-

ential equation of interest will be solved by using the well-known

Crank-Nicholson Finite Difference Method (Douglas and Jones, 1962).

Mass Transport Model

Consider the physical model shown in Figure 4. Chemical mass

can be transported in two directions:

U = U(x, t) as the open channel chemical concentration

U = U(x, y, t) as the chemical concentration in the inter-

particle (dead spaces) voids of the porous medium.

Let the physical phenomena of mass transport in the porous medium
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be represented by the following system of equations:

Vz.z

ReSehVOIM

Figure 4. Sketch of semi-infinite medium for third model.

(i) open channels;

(5. 1) (a) DU -VU = (1+a-Y)U + X-11 (0, t),o xx o x
Ecl t

0 < x < oo, 0 < t < oo, 0 < y < L

(5. 2) (b) -D U (0, + VU(0, t) = 0, (no flux at x = 0)ox o

(5.3) (c) lim Ux(x, t) = 0, (conservation of mass),
X 00

(5. 4) (d) U(x, +0) = U0f(x), f integrable[0, 00),

where the parameter X, defined as a coupling coefficient, couples

the open channel flow system to the dead space transport system be-

low,
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(ii) dead space transport system;

(5.5) (a) D (TT- +TT- ) = (1+ ) TT-ol xx yy E t

0 < x < oo, 0 < y < L, 0 < t < 00

(5.6) (b) (x, L, t) 0, y, t) = 0,

(5. 7) (c) DolTly(x, 0, t) = f3 (U(x, t)_11-(x, 0, t),

where p is defined as the mass transfer coefficient (see Nomencla-

ture),

(5. 8) (d) x, y, 0) = U(x, 0) = Uof(x).

For the remainder of this paper the approximation is made that

diffusion in the x direction in the dead spaces can be neglected in

comparison with mass transport in the x direction in the open chan-

nels. Equation (5. 5) then reduced to

(5. 5') Dol yy = (1+
Eo

and the boundary condition, U(0, y, t) = 0, is dropped. Define

D
o 1

1

0

Now we are ready to begin the analysis of the system.
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(5.10)

(5. 9) (1)

Solution Technique: y Dimension

Assuming that both U and U are Laplace transformable

with respect to time, we transform Equations (5. 5'), (5. 6), (5.7), an

(5. 8). The resulting system is given as

2d u = su - u(x, y, 0),
dy

0 < x < 00, 0 < y < L, < s < 00.

u (x, L, s) = 0,

-D1uy(x, 0, s) = 13;(u(x, s )-u(x, 0, s),

u(x, y, 0) = U(x, 0) U f(x).

The solution to (5. 9 i) subject to the other three conditions is

PUof(x)coshNi=s2(L-y) Uof(x)1

skais sin h(irs:L L)+Pcosh(nri L)]
1 1

13u(x, s) cosh Nrirs., (L-y)

417 sinh(Nr-r-L)+13cosh(frr-L) --
1

1 1

Notice that the zeros of the denominator occur at s = 0, and

1,

1
57 sinh L) + p cosh el-71W = 0.n

D1 D1
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Define

(5. 11)

Using the residue theorem and (5.11) we find

(5.12)

y, t) = 2B2Uof(x)

PIT
= L'

2yn Dit
oo cos[yn(1- fj)]exp[-

2
L

n=1

2

2B

t ynD

+

1

D
yncos yn ,

I:.
f..),s U(x, Pr)exp[- , (t- -r)1d-r

2 1 0

L sin y (y2+ B(B+1)2

n=1 n n

where
Yn

is the n-th zero of the trancendental equation

yn tan yn =

and where

2
yn sin yn(yn + B (B+1)

n = 1, 2, 3

55

Equation (5.12) solves Equation (5. 5') subject to the modified boundary

condition u (x, L, t) = 0 and the mass transport type boundary con-

dition (5.7).

Returning now to the equation of more interest to us i. e. , Equa-

tion (5. 1))we make the following definitions. Define



=

vo

1+
ca..

Ed

1+21--
Ed

Substituting (5. 12) into (5. 1) yields

2
(5.13) r YnDlti

2B2UoTf(x) ex131-- L2
DUxx -VU = Ut + L Li y2+ B(B+1)n=1 n

2B D X2
2 Su T)exp[-y2n --2 (t...T),1d7

n1

D1

L3 yn+B(B+1)
2

We now discuss the solution of this linear integro-differential equa-

tion for mass transport subject to initial condition (5. 4) and boundary

conditions (5. 2) and (5. 3), respectively.

To begin, let us formally integrate once by parts the indicated

expression in (5.13). We find
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and



(5.14)

00

2B2K: 1DU - VUx = t Lxx + U(x, t
2

n=1 yn+ B(B+1)

2
prI n 21

TliCLT
y D

2B X 0

y2+ B(B+1)n=1

Observe that the coefficient of U(x, t) in (5.14) is bounded. We

show this in Appendix G. In particular from (G. 7) we have

00

Define

2B X

n=1

, B> 0,2B L1 2y +B(B+1)n=1 n

for this particular set of zeros yn. Thus, we can replace (5.14)

by the equation

(5.15)

BTDU -VU U + U(x, t)xx x t L

St
ynDi

U exp[-
2

(t- -1-)]d T
T

0 L
2

yn+ B(B+1)
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(5.16) g(t, T

and observe that

(5.17)

Hence, the solution of Equation (5.15) is bounded by the solution to an

equation of the form

(5.18) DU - VUx - C1U - Ut = f(x).xx

where D, V, Ci, are constants defined in the strip Ri x [0, T),

R1
is Euclidean 1-space. f(x) is defined and FrOlder continuous,

on the same strip. U is 2,1(0, T.
) e. , U is twice continu-

ously differentiable with respect to x and once continuously differ-

entiable with respect to t on the interior of the space-time d

main defined by the topological product Ri x (0, T). That a solution

to (5.18) exists in the afore mentioned space has been shown by

Guenther (1967) and a uniqueness theorem has been given by several

workers, one of which is Hopf (1950). Guenther mentions more who

have shown uniqueness.

Now that we know a solution to our problem exists and that it is

2 Dl
oo exp [- y (t- T)]

n L2
2

Nn+ B(B+1)

1max g(t, T) <
2B0< T< t
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unique we now move on to the problem of actually solving Equation

(5.15).

Solution Technique: x Dimension

The method of finding a solution to Equation (5.14) is that of

Finite Differences. That is, we replace the partial differential Equa-

tion (5.14) by a Finite difference equation and proceed to solve the

difference equation under suitable hypothesis on the domain and

U(x, t) defined on said domain. Following the notation of Douglas

and 'Jones (1962), define in the (x, t) plane

R = 1(x, t)I 0 x < L, 0 <± < T1

B= {(x, 0)1 0 < x<

B1 = {(0, t)I 0< t < T}

B2 = {(12,0 I 0 < t < T}

B=B B LIB.
1 2

We denote the closure of R by "K.

Let us now replace the continuous domain by a discrete one (lat-

tice work). Let N and M be positive integers. Let

L'
11 =

N
k 17-4
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= F

A 2U. -x I, n

60

hk = f(ih, nk), = 0, 1, 2, ... , N; n = 0, 1, 2, ...

a
Bh Ba rm hk a = 0, 1, 2

1
B2BBhk = Bhk hk hk

crm
= {ah, hk ) = 1, 2, 3, ... , N-1}

o-o = Cr {(Li, hk)},m m

and the reason for introducing L' will be explained later. Note

that for any function U defined on Rhk on Rhk we set

UU.= (ih, nk).n

Let us now introduce a Crank-Nicholson difference analog for 5. 14)

(5.19) 2

Ax ITT

2 `ji, n+1+Ui, n)

U. +U. (U. +U. )
1 i,n+1 1,n i,n+1 1,nih, (n+ ,
2 2 2 t i,n+1

ak(-2-g((n--2-)k g (n+-z -m)Ac , (ih, (44- 1 3,1c c Rhkt
m=2

(U= U. , ih, nk) E B
1, n hk

where

1+1, n- 2U. +U. }I, n 1-1, n



Tr 1

x n 2h i+1 n}5 =

A -u. =
1- {u. U. }n k I, n n-1

and g is the kernel in the integrand of (5.14). Define the following

norms on Rhk

(1) II U II: =

n

IIUII = {(I114110)2 + (116
-13.11h 2 1/2

where

-U . =
1

x I, n h n 1-1, n).

By using a Taylor series representation for U it can be shown that,

provided U E C42MX, t) satisfies the difference equation locally

to within the error of k0(h2+k2). By defining the error to be

z = U (ih, nk) E Tthk

where 1/ is the solution to the difference equation (5.19), Douglas

and Jones (1962) show that not only is the local error k0(h2+k2),

but that using the above definitions of the norms in Rhk the global

error i. e., the error at any net point (ih, nk), i = 0, 1, 2...N,

n = 0, 1, 2, ..., M, is of the form
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0(h2+k2).

The difference equation we then wish to solve is written as

(5. 20)
{u -2U. +U. +U -2U. +U. }

2h2 - 1+1, n+1 n+1 n+1 1+1, n n 1-1, n

-U. -. }1+1, n+1 1-1, n+1 U1+1, nU1-1,

BT.
= 1(U.

1
+U. ) + (

n+1 +U. )k n+ n 2L n 2

where

ffi-((n+1 )k, A -U
2 t n+1)

2

1 viD1 1
yt D2BI. 1

O 2 t 2
k{(p - LT1. )expL-

2
n+)k+ (At-Uidexp[- 2(n+7_rn)] }

2-X.

o
L L

L
m=1

=
y 2 + B(B+1)i 1 i

The no flux of chemical boundary condition at the surface x = 0 is

replaced by the three point formula

4U
(5. 21) 1, n+1-112, n+1) D

U0, n+1 2hV+ 3D

The error introduced here is still 0(h2), The initial condition is

given as

(5. 22) U. = U f. , i = 0, 1, 2, ... , N
0 01.

2
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Observe that L' do for the semi-infinite porous medium case;

however, it is possible to choose a sequence of Li(n) i. e., {L'(n)},

n 0, 1, 2, ... such that Ll(n) increases at each time step n to

maintain the accuracy 0(112+k2). Thus, we have a moving false

lower boundary which approximates the semi-infinite medium case.

We define

(5.23)

Our problem is well-posed in the sense of Lax (Richtmyer and Morton,

1967) and possesses a unique solution which is stable. Define:

(5. 24) (i)

(ii)

A Dk Vk
"3" = 2h2 4. 4h

kBV. Dk
B =

U
= 0Ll(n),n

c Dk Vk
2h2 - 4h

Rewriting (5.20), we have the system of equations

(5. 25) AUi-1, n+1
+

BUJ, n+1
+ CU. = dn i = 1, 2, 3 , N.

1+1 n+1

where

d. = -AU.1-1, n

2Dk 13T1(
+ ((n+ )k, A U. ,U

, n-CU 2 t n-Fi(B+ i+1,n
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The resulting system is tri-diagaonal; hence, the Gaussian elimina-

tion scheme is used because of its ease in programming and it is the

most efficient method presently known.

Observe that the infinite sum indicated in the definition of

n+1) cannot be carried out on the computer. How-

ever, a reasonable approximation to the sum can be made. That is,

it is possible to truncate the series and preserve 0(h2 +k2 ). The

number of terms kept depends upon the parameters p, L, D and

in particular the set of zeros defined by equation

y tan yl =B. 12 = 1, 2,

For a solution to (5.25), subject to the stated boundary condi-

tions, calculated by arbitrarily choosing values for the parameters,

refer to Appendix E.



VI. CONCLUSION

The models heretofore mentioned have proved themselves to be

valuable in the preliminary investigation of mass transport of chemi-

cals in soils (a type of porous media). Future work based upon anal-

ysis of this type is currently being planeed in the Department of Agri-

cultural Chemistry at Oregon State University. It is hoped that future

analysis will include mass transport in unsaturated porous media.

There the equations of Darcy, Stokes, and others (Scheidegger, 1960)

will have to be brought into play in conjuction with the mass transport

of chemical equations.
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APPENDIX A

Definitions of special soil terms: Scheidegger, 1960)

Porous Medium;

A solid containing holes or voids, either connected or non-

connected, dispersed within it in either a regular or random

manner.

Bulk Porosity;

The ratio of the total pore volume to the total volume of the

sample (percent).

Effective Porosity;

The ratio of the total volume of the inter connecting pore spaces

to the total volume of the sample (percent).

Dead Space Voids;

Those pores which apparently do not transmit solutions through

them. They may contain solution but do not allow it to pass

through them.

Open Channels;

Those pores which are interconnected in such a way so as to

offer little resistance to a flowing fluid.

Lnput Flux of Solution;

Defined to be the volume of solution per unit time crossing a
cmunit area ( ).sec
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Definitions of special chemical terms: Hartley, 1964)

Herbicides and Pesticides;

The broad class of chemical compounts used in agriculture to

control the growth of undesirable plant and insect life.

Fertilizers;

The class of chemical compounds used in agriculture to pro-

mote or enhance high quality crop production.

DDT;

1, 1, 1-trichloro-2, 2-bis(p-chlorophenyl)ethane.

DDD;

1, 1- di chloro- 2, 2- bis (p- chlorophenyl )ethane.

Dieldrine;

1, 2, 3, 4, 10, 10-hexachloro 6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-

octahydro-1, 4- endro-exo- 5, 8- dimethanonapthalene.

Heptachlor;

4, 5,7,8, 8 -heptachlo ro-3a, 4,7, 7a-tetrahydro- 4, 7-methanoin.dene

2, 4-D;

4-dichlorophenoxy acetic acid.

Adsorption of Chemicals;

That observable phenomenon where by molecules of one sub-

stance are held on the surface of a second substance. The hold-

ing forces may be physical, electrical, or a combination of

both.



APPENDIX B

Laboratory experiments were conducted based upon a water

saturated soil column in contact with a large volume reservoir of

chemical solution. The diffusion time was three days and the condi-

tion stated in conjunction with Equation (2. 27) was fulfilled. Thus,

Equation (2, 27) was used to estimate the value of D (the reduced

diffusion coefficient).

Since the reservoir was large and the diffusion time was short,

a 10 cm, packed column approximated the semi-infinite media very

well. For, the maximum depth of measurable penetration was less

than 2 cm. Repeating the above diffusion experiment only letting the

transport process proceed to equilibrium we were able to use (2. 21)

to arrive at estimates on the retentive ability term. The above ex-

periment was carried out on nine different Oregon soils which repre-

sent several types of porous media.

Figure B-1 shows the sample curve obtained by experiment for

Jory soil and the chemical 2, 4-D.

Figure B-2 shows the plot of the retentive ability versus per-

cent organic matter found in the soil. Points one and seven are the

two standard soils so chosen for their similar major soil component

similarities except percent organic matter.

Table B-1 shows the physical and chemical properties of the

7 Z
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Figure B-I. Graph of relative void concentration versus depth at two days diffusion time into Jory soil.
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% ORGANIC MATTER

Figure B-2. Graph showing retentive ability of the nine soils used
in the experimental test as a function of the % organic
matter in the soils.



nine Oregon soils used in the experiments.

Table B-2 shows values for both the true and reduced diffusion

coefficient for 2, 4-D chemical in the nine water saturated Oregon

soils. The value of each ay product is also shown.

Table B-1. Physical and chemical properties of the nine soils for
which diffusion coefficients were determined.

Sand (O. 3- 0.5mm)

nd = not determined

75

Fe 0
Soil Type 2 3

Cation
Exchange
Capacity

Exchang. Extract
Aluminum Aluminum p1-1

Organic
Matter Clay

1. Dayton 1. 1 7.7 . 35 2. 1 5. 1 2. 6 14. 0
Silty -loam

2. Jory (Aiken) 7. 9 11. 9 0 6. 3 5. 9 6. 9 33. 3
Silty-clay

3. Hembre 3. 5 18.3 3. 3 16.8 5.0 29. 0 12. 6
Loam

4. Ken.utchen 1. 0 45.2 = 0 1. 0 6. 0 4.7 63.7
Clay

5. Deschutes 0.9 10.9 1= 0 0.7 6.7 0.9 7.2
Sandy-loam

6. La Grande O. 4 36. 4 .1. 0 . 3 8. 4 4. 1 ne
Silt

7. Mulkey nd nd nd nd 5. 0 15. 1 13. 1
Loam(10"-18" )

8. Nyssa 0.7 18.8 -
0 0.6 7.5 1.1 17.0

Silt

9. Quartz nd nd 7. 0 = 0 0



Table B-2. Values of the diffusion coefficient Do and the reduced
diffusion coefficient D for the nine soils used in the
experiments.

Soil type D X 1 0-6 -6
E Do X 1 0

76

cm2/sec

1. Dayton O. 8 ± 0. 3
Silty-loam

1. 2 ± O. 5 0. 48

2cm /sec

2. 64

2. Jory (Aiken) 0.3 th 0. 1 6. 1 ± 1.2 0.46 3.69
Silty- clay

3. Hembre 0. 15 04 12. 8 ±3. 1 0.49 3.91
Loam

4. Kenutchen 0. 4 ± 0. 1 1. 1 ± 0. 4 0. 48 1. 24
Clay

5. Deschutes 1. 0 0. 3 1.3 ± 0. 5 0.41 3.20
Sandy-loam

6. La Grande 0. 4 ± O. 1 4. 6 ± 0. 9 0. 50 4. 08
Silt

7. Mulkey O. 06 . 03 23. 0 5. 0 0. 51 2. 87
Loam (1 0"-18")

8. Nyssa 1. 2 0. 4 1. 5 ± . 6 0. 43 4. 32
Silt

9. Quartz 4.3 1. 1 0.4 ± 0.2 0. 375 7. 05
Sand (0.3- O. 5mm)



Table C-1. Values used for
Qo

and AG in Equation (3.41).

Curve No.

1

2

3
4
5

6

x0; E O. 4; D = 2 -cm a, = 10
od mo

( CM. )
0 MO

APPENDIX G

Equation (3. 41) was plotted for various values of the parameters.

Figure C-1 shows plots of the concentration ratio U(x, t)/ U0 at a

fixed depth x, chosen to be very near the surface of the soil, as a

function of time. The six curves represent different values of the in-

flux velocity with and without sorbtion.

The following values were used in the calculations:

8

8
4
4
1.6
1.6

2 -4

AG: Kcal/mole

6

6

6

Sorbtion

no
strong
no
strong
no
strong

77

The graphs indicate that the effect of rather strong sorbtion is

to prevent rapid increase of the chemical in the soil solution over a

period of time. When there is no sorbtion the concentration in the

soil solution near the surface quickly reaches the level of the input

concentration. It can also be seen in Figure C-1, that at higher veloc-

ities the surface layer soil void concentration comes quickly up to the

input concentration level.
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Figure C-1. Graph showing relative surface concentration in voids as a function of time
for values of other parameters listed in Table C-1.
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The concentration distributions to be expected in the soil solu-

tion at different depths after a given period of fluxing are shown in

Figure C-2.

Here graphs of the concentration ratio U(x, t)/Uo as a func-

tion of depth x, at the time t 0. 05 months are presented. The

five curves represent different values of the free energy A G. Values

of the parameters of Equation (3.41) used in the calculations were:

= 40 cm/mo;
Ed

= 0.4; Do = 2 in2 /mo; a = 1 0-4

Table C-2. Values used for AG in Equation (3. 41).

Curve No.

1

2

3
4

5

G Kcal/mole Sorbtion

0 no
2 weak
4 moderate
5 moderate

to strong
6 strong

Figure C-2 shows that with increasing sorbtion energy the rat11-

er sharp front of chemical progressing into the soil is retarded in its

rate of advance. To obtain these curves the value of AG varies

from 0 (no sorbtion to 6 Kcal/mole (strong sorbtion) and the value
_4

of a used was 10 ). The choice of this value was based on an ex-

periment with a sandy loam, hence the low value. For soils with

higher a values the chemical fronts would shift even more toward

the influx boundary.



Figure C- 2. Graph showing concentration distribution as a function of depth for a fixed
time t for values of the parameters listed in Table C-2.



APPENDIX D

Equation (4.11) was evaluated for three different initial distri-

butions. These distributions along with the other necessary informa-

tion for the calculation are given in Table D-1. Observe that the fig-

ures are also designed to show the effect of the effective porosity on

the chemical distribution for t> 0.

The initial distributions are:

a 5-function;

finite depth Heaviside;

an initially diffused distribution all of which represented

the same initial mass in the media.
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Table D-1. Showing values of parameters used in Equation 4.11)
to generate curves.

Effective pore Retention
Figure No. Curve Ed ay Initial dist.

D-1 Top .125 1

Center .25 I 6

Bottom . 33 1

D-2 Top .125 1

Center .25 1 Finite
Bottom 33 1

D-3 Top .125 1

Center . 25 1 Diffused
Bottom . 33 1

D-4 Top .25 0, 1, 2 8

Center .25 0, 1,2 Finte
Bottom .25 0,1, 2 Diffused

Special notes:

1. The values of the other parameters were held constant and
are given as follows:

(1) Vo = 1. 5 cm/day,

D O. 34 cm2 /day,

Eo = 0. 5,

T = 25°C.

2. In Figures D-1, D-2, D-3 the numbers (1), (2), (3) refer to
2, and 3 days Illeachingft time respectively.

3. In Figure D-4 the leaching time is fixed at 3 days for all
curves and the numbers (1), (2), (3) here represent
ay .= 0, 1, 2 respectively.
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Figure D-1. Comparison graphs for 6 function initial distribution.
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Figure D-2. Comparison graphs for step function initial
distribution.
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Figure 11-3. Comparison graphs for a diffused initial distribution.
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DEPTH IN CM

Figure D-4. Comparison graphs of all three initial distributions as
a function of adsorption strength (retentive ability).
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APPENDIX E

Figure E-1 shows a plot of the solution of the system of equa-

tions (5. 25) at n = 20 i. e. , t = 1 day ("leachingt1). The numeri_

cally integrated solution (4.11) for the same initial distribution (a one

day diffused type) is also shown. Observe that for the values of h

and k defined below the difference between curves (1) and (5) for

every point chosen along the depth coordinate is well within 0(h2+k2)

1. e., for p 0 Equation (4.11) is the limiting case of (5. 25).

The values of the parameters used in generating the curves are

listed in Table E-1.
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Figure E-1. Graph showing solution of Equation (5.25) at t = 1 day for four values of 1
using

a diffused type initial distribution.



Table E-1. Mass transport coefficient used in Equation
(5. 25).

Curve Number 13 (mass transfer coefficient)
1 0

2 0.1
3 0.2
4 0.3
5 formal solution of (4. 11)

Special notes:

The values of the other parameters used in (5. 25) are as
follows

2

= 0. 33CM-day

= 6. 0 day

ay = 1

E = . 5

2
D = 0.18CM--ol day

Ed
= . 25 cm

L = O. 25 cm

T 2. o E17.

Uo = 1 (mg/gm)

h = . 05 cm

k = 0.1 day
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(F. 2) f(x) = x =

Multiplying both sides by sin prxix and integrating 0, 1 gives

(F. 3)
1

APPENDIX F

Let {sin
Pnx},

0 < x < 1,
pn

being the n-th zero of the

equation

(F. 1) Pcot p+ B = 0,

be a complete orthogonal set which spans 11[0, 1]. We denote

H[O, 1] to be the completion of L2[0, 1] functions. The expansion

of f(x) = x, 0 < x < 1 in terms of {sin p is now to be deter-

mined. Let

oo

sin pnx
n=1

1

x sin p xdx = SI sin P X sin p xdx.
0 0

n=1

We know by the orthogonality property that

(F. 4)
1

dysin

P x sin x x =
Pn

0
1 sinPn cos pn , m=n

(3n
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Thus,

(F. 5)

As,

P cos p + B sin p = 0,

We obtain upon substitution,

(F. 6)

Carrying out the indicated integration in the above equation and after

some algebraic substitutions and manipulations yields

Hence,

(F. 8) x = -2B0 (B0+1 )

1 a cos 13n,
x sin Pnxclx = {1+ 3'

Bo

1 a sin Pn cos Pn,
x sin pnxd.x =- {1- I -2

Pn

2B (B +1)
o o

Pn[Pn2+Bo (B0+1 )1 cos Pn

sin
pnx

pn[P2n+Bo (B0+1 )1 cos pn
n=1

91

As the series representation in F. 8) is uniformly convergent we dif-

ferentiate term wise to find

(F. 7) an -



(F. 9) 1 = - 2B0 (B0+1 )

Rearrangement gives

(F. 10)

or

(F. 10')

00

.._ 2B1+Bo2Pn +Bo (B0+1) ] cos I3n=n

00

n=

cos13nx

2
Pn +So (B0+1)] cos (3n

cospnx
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00

1
(3n cos prix

1+So
2

n=1 n+So(B0+1)] sin
13n



H[O, 1] to be the completion of

mine the function f(x) = 1, 0< x e 1, in terms of {cos p x), let

(G. 2) f(x) = 1 =

(G. 3)

(G. 4)

Substituting into (G. 4

APPENDIX G

Let {cos p , 0< x< 1, pn
being the nth zero of the equa-

tion

(G. 1) 13 tan = B ,
Bo

> 0,

be a complete orthogonal set which spans H[O, 1]. We denote

2 sin p

[0, 1] functions. We now deter-

a cosx.
Pn

n=1

Multiplying both sides of (G. 2) by cos pnx and integration gives

2 sin
pna -n 13 + sin P cos p

where use of the orthogonal property of cos pn has been made.

Observe that we can also write (G. 3) as

2

13n(sin
13n+cos213 )+ sin 13n cos 13n

sin = Bo cos pn, from G. 1) yields
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(G. 5)

Substitution of

(0.6)

In particular we have at x = 1

1 1

2B 2p +B B +1)
n=1 n o

2B

, 2
lpn +Bo (Bo+1 ) ] cos Pn

in (G. 5) into (G. 2) gives

1 = 2B
2P +B (B +1)1 cos 13

n=1 n oo n

cos pnx
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