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Soils have a critical role in global carbon (C) cycling, containing one of the largest 

fast-cycling carbon stocks on earth. Robust representation of soil organic matter 

dynamics in Earth System Models is critical for future climate prediction. Current C 

cycling models assume that all C cycling in non-hydric (i.e. ‘upland’) soils occurs 

solely via aerobic microbial metabolism. However for at least 30 years, it has been 

known that what may be a seemingly aerobic soil environment can in fact contain 

pockets of both aerobic and anaerobic metabolic processes. None of the modeling 

efforts to date have the capacity to estimate or include the spatial abundance of or 

contribution to C cycling from anaerobic microbial metabolic processes. What is 

missing is quantitative information detailing the division of ‘upland’ soils into aerobic 

or anaerobic environments on seasonal time scales. This thesis addresses the general 

question of how the division of an ‘upland’ soil into aerobic or anaerobic 

environments can be quantified and the driving mechanisms identified and 

parameterized. Platinum-based electrodes were used to measure changes in electron 

activities (reported as electromotive potential) as a method for distinguishing 



 

 

biogeochemically distinct soil environments. The first chapter details long-term field 

measurements of aerobic and anaerobic environments in three ‘upland’ Mollisols, all 

in close geographical proximity, but which formed a hydrologic gradient. The extent 

to which each of the soils was divided into biogeochemically distinct environments 

was measured using two-dimensional grids of Pt-electrodes. Variation in electron 

activity as a function of depth, horizontal position within the soil profile, and seasonal 

climatic drivers was recorded. The second chapter establishes a first-order 

mechanistic relationship between the volume, connectivity, and general shape of the 

soil pore system and the metabolic status of the soil (measured as electron activity) as 

a function of pore network architecture. X-ray computed tomography was used to 

parameterize three different pore network architectures; one native and two 

artificially generated using one of the soils from chapter one. The strength of the 

relationships between the resulting pore network metrics and electron activity 

dynamics were then established. This work demonstrates that diverse biogeochemical 

conditions can not only simultaneously coexist in ‘upland’ soils, but that the extent to 

which a soil is divided into heterogeneous environments is more a function of 

seasonal precipitation events than seasonal temperature changes. Furthermore, the 

pore network characteristics related to the formation of anaerobic environments are a 

function of the scale of observation as well as aggregate size.  
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1.  General Introduction 

Upland soils, or soils not falling within the definition of a hydric soil (Staff, 

2015), tend to be treated as completely aerobic. However, since at least the seminal 

work of Sexstone et al. (1985), it has been known that a soil can encompass 

heterogeneous environments that foster microbially mediated biogeochemical 

processes ranging from unrestricted aerobic metabolism to green house gas 

production (von Fischer et al., 2009). This invalidates the assumption that all reaction 

spaces within soil system can be treated as entirely aerobic. The presence of various 

biogeochemical processes functioning simultaneously in the soil pore network 

(Kuzyakov and Blagodatskaya, 2015) shifts the understanding of how soils process 

(or store) carbon and nutrients (Ball, 2013), and has yet to be integrated fully into the 

understanding of soil biological functioning in general (Nunan, 2017).  

Specifically, global carbon (C) cycling models are still designed around the 

assumption that C cycling in upland soils is entirely driven by oxygen-consuming 

aerobic respiration (Parton et al., 1998; Wieder et al., 2013). This becomes an issue 

when considering the fact that soils contain one of the largest fast-cycling C stocks on 

earth, about 3300 Pg is stored in the top 3 m, which is three to four times the C stored 

in the atmosphere (Batjes, 1996; Jobbagy and Jackson, 2000; Tarnocai et al., 2009). 

Despite mounting evidence in support of the formation and impact that less than well-

oxygenated pore spaces have on soil C cycling in seemingly aerobic soils (Ball, 2013; 

Keiluweit et al., 2016; Kleber, 2010; Kleber et al., 2011; Riley et al., 2011), it has 

gone mostly unaccounted for in existing C cycling models (Keiluweit et al., 2017). 

For example, the current Department of Energy sponsored Community Land Model 
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includes one scaling factor to retard aerobic C mineralization as a function of percent 

saturation of the pore network (Koven et al., 2013).  

Under conditions that may restrict oxygen resupply from the surface, such as 

partial to full saturation of the pore network (Chadwick and Chorover, 2001), 

microbes are required to switch from aerobic heterotrophic respiration to a diversity 

of less efficient anaerobic metabolic pathways (Arndt et al., 2013; Hansel et al., 2008; 

Wania et al., 2009). With oxygen lacking, these pathways utilize alternative terminal 

electron acceptors (aTEAs) and include, in order of decreasing energetic return, 

manganese (III and IV), iron (III), sulfate, or carbon dioxide (James and Brose, 2011). 

Carbon mineralization rates in anaerobic environments, as a function of aTEA 

utilization have been shown to dramatically decline compared to aerobic 

environments, frequently by 60-95% (Wania et al., 2009). 

Microsites can be delineated on a functional basis from the surrounding soil 

environment by the intensity (McClain et al., 2003) and type (Keiluweit et al., 2016; 

Sexstone et al., 1985) of the microbially mediated geochemical reactions they harbor. 

The vast majority of the geochemical reactions occurring in environmental systems 

such as soils are oxidation – reduction (redox) reactions, i.e., processes that involve 

the transfer of electrons from an electron donor (such as reduced soil organic matter) 

to an electron acceptor (such as ferric iron, Fe3+). Electrons can thus be treated as 

essential reactants in redox reactions (Bohn, 1971). A given redox couple has an 

inherent potential associated with the transfer of electrons (i.e. electromotive 

potential) from the reduced partner to the oxidized. The potential for this exchange to 

occur can be measured using a volt meter (Fiedler et al., 2007), and expressed as 
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electron activity (pe). The electron activity measurement functions similarly to that of 

the pH measurement (Stumm, 1966) (Appendix C). Following the IUPAC definition 

of reduction-oxidation reactions (variable = Eh), in order to be called a ‘redox 

potential’ it is assumed the reaction between an oxidized and reduced couple (i) is in 

a pure, pH balanced environment, (ii) that there is a single redox couple active, and 

(iii) that the reaction is at equilibrium. Such environments do not tend to exist in soils 

systems due to their complexity and inherent impurity (Young and Crawford, 2004). 

In a strict sense then, soils do not have ‘redox potentials’ and such specific 

measurements have been called into question (Bartlett and James, 1995; Peiffer, 

1992; Peiffer, 1999; Sposito, 2016), especially when used to predict the speciation 

and quantity of given redox couples in soil systems (Chapelle et al., 1996; Mansfeldt, 

2004; Stumm, 1966). Instead of the strict ‘redox’ measurement, the term platinum-

probe potentials (EPt) (Bartlett, 1998) has been proposed with the understanding that a 

specific redox couple is not being measured and no specific inference can be made to 

abundances of oxidized or reduced forms of said couple.  

If the division of ‘upland’ soils into aerobic and anaerobic volumes is to be 

included in larger scale nutrient and C cycling models, then (i) quantitative 

information about what part(s) of the soil are aerobic or anaerobic and when, and (ii) 

information about the ‘severity’ of the anaerobic conditions (i.e. which aTEAs are 

being utilized and when?) must be generated. Interpreting changes in electron activity 

in soils as EPt (i.e. no direct association with a single redox-active couple or 

equilibrium status) as opposed to Eh (single redox-active couple in equilibrium) 

should allow for the (i) robust delineation of biogeochemically distinct microsites 
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over seasonal time scales and (ii) estimation of the dominant active terminal electron 

acceptor and the likely byproducts of said microbial metabolism (e.g. formation of 

ferrous iron or NOx gases).  

The overarching question that is addressed in this thesis is: How can the 

division of a soil into aerobic and anaerobic volumes be quantified, and the driving 

factors behind the formation of anaerobic conditions be parameterized? This thesis 

explores the use of Pt-based electrodes as an affordable, high-resolution method to 

distinguish biogeochemical heterogeneity in soils via measurements of electron 

activity. The driving objective was to elucidate the process chain leading from (i) 

variation in climatic parameters (e.g. temperature or precipitation), to (ii) the 

regulatory effect(s) of the soil pore network architecture, and (iii) to the resulting 

variation in metabolic performance of the microbiota. 

 Chapter one of this thesis aims to develop a quantitative means to describe the 

extent to which a given soil may be subdivided into biogeochemically distinct 

microsites as a function of seasonal climatic events and position along the hydrologic 

gradient. It was assumed that the existence of said microsites would be expressed as 

differences in absolute magnitude of electron activity within a given volume of soil. It 

was also assumed that the degree to which the same volume of soil was divided into 

biogeochemically distinct microenvironments would be captured by variability in 

electron activity and captured with a geometrically fixed array of multiple Pt-

electrodes per depth.  

To constrain the effect of different climate parameters (i.e. precipitation and 

temperature), three geographically close Mollisols were monitored for changes in 
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electron activity over a period of 18 months. What must be considered here is that, 

though these soils had morphological differences, the texture profiles (percent 

sand/silt/clay) were similar from top to bottom (~100 cm). The similarity in texture 

and climate parameters, but differences in biogeochemical heterogeneity across the 

drainage gradient, prompted the consideration of what must be one of the main 

differences between all three soils: the structure of the pore network itself.  

The role of the pore network in regulation of water and gas movement is not a 

novel concept (e.g. Kravchenko, et al., 2017). Similarly, the pore network has been 

shown to have a tight regulation on organic matter cycling (Kravchenko et al., 2015) 

and the overall composition of the microbial community (Negassa et al., 2015). The 

focus of the second chapter however is a synthesis of these functions. The main 

question addressed is what is the role of the pore network architecture in the 

formation of anaerobic conditions? To address this question three different types of 

pore network architectures were created by sieving soil from a Mollisol A horizon to 

≤ 1 cm and ≤ 2 mm and comparing them to a control with intact soil structure. Three 

replicate mesocosms from each structural treatment were instrumented with three Pt-

electrodes each to record variations in electron activity while being subjected to 

varying saturation conditions (full saturation, drainage, and partial rewetting). 

A first-order analysis was made to establish a mechanistic relationship 

between the pore network architecture (parameterized using X-ray computed 

tomography), changes in pore network saturation status, and the resulting variations 

in electron activity.  
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2.1. Abstract 

Soils are increasingly perceived as complex systems with properties and 

biogeochemical functions that vary on millimeter scales. Quantitative information 

about the resulting biogeochemical heterogeneity is needed to improve process 

knowledge and to render biogeochemical models more mechanistic. Here we 

demonstrate how standardized arrays of Pt-electrodes can be used to quantify 

biogeochemical or ‘functional’ soil heterogeneity, defined as the extent to which the 

soil is subdivided into microenvironments. Our case study confirmed the validity of 

this approach for a soil sequence consisting of a well drained, a moderately well 

drained and a poorly drained Mollisol. We found that (i) variations in soil moisture 

content are the immediate cause for variations in functional heterogeneity, with (ii) 

soil porosity influencing rates and the magnitude of change. We posit that the 

deployment of standardized arrays of Pt-electrodes will offer an affordable option to 

monitor the general metabolic state of the soil system and simultaneously quantify the 

functional heterogeneity of underlying processes at any point in time. Such 

information should be useful to improve quantitative estimates of processes as diverse 

as trace gas emissions, trace gas consumption, reductive dehalogenation and 

mobilization of metals in the subsurface biosphere. We recommend that 

parameterization of functional soil heterogeneity be included in long-term soil 

monitoring programs such as Superfund Sites, Critical Zone Observatories, Long 

Term Ecological Research (LTER) and National Ecological Observatory Network 

(NEON) sites.  
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2.2. Introduction 

2.2.1. Soils are assemblies of functionally dissimilar microenvironments 
 

Soil is a porous medium necessary to support plant and animal life in the 

terrestrial biosphere. Soil borne fauna and flora of all sizes and lifestyles continuously 

rework the mineral-organic soil matrix, rendering its pore network highly random and 

inherently transitory. Because habitat form (pore size and morphology) affects 

(microbial) function, the resulting functional heterogeneity within "the most 

complicated biomaterial on the planet" (Young and Crawford, 2004) poses a problem 

when it becomes necessary to assess the direction and intensity of the processes that 

cycle biologically important elements such as C, N, P and S at a given site. Variations 

in soil structure induce variations in system behavior, with the consequence that a 

given biogeochemical reaction may be logistically and energetically possible in one 

pore while inhibited in the pore right next to it. For instance, Kravchenko et al. (2015)  

show that losses of particulate organic matter were 3–15 times higher from 

atmosphere-connected soil pores than in isolated pores, while Negassa et al. (2015) 

demonstrated a dependence of microbial community composition on physical pore 

characteristics. Recognition of functional heterogeneity has given rise to the concept 

of biogeochemical hot spots and hot moments (Kuzyakov and Blagodatskaya, 2015; 

McClain et al., 2003) and has prompted calls to develop means for the robust 

quantification of soil heterogeneity across scales (Groffman et al., 2009; Vereecken et 

al., 2016). 

Microenvironments can be functionally distinguished from the surrounding 

environment by the intensity (McClain et al., 2003) and type (Keiluweit et al., 2016; 
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Sexstone et al., 1985) of the microbially mediated geochemical reactions they harbor. 

Here it is useful to remember that the vast majority of the chemical reactions 

occurring in environmental systems are oxidation - reduction reactions, i.e., processes 

that involve the transfer of electrons from an electron donor (such as reduced organic 

matter) to an electron acceptor (such as ferric iron, Fe3+). Electrons can thus be 

considered as essential reactants in oxidation-reduction reactions (Bohn, 1971). Here 

we propose to quantify functional heterogeneity in soil environments by leveraging 

information on the electrochemical potential of a given microenvironment.  

Our overarching goal is to develop a quantitative means to describe the extent 

to which a given soil volume may be subdivided into biogeochemically distinct 

microsites. We assumed that functional heterogeneity would express itself as a 

variation in the electron activity within a given soil volume that can be captured with 

a geometrically fixed array of multiple electrodes. We then develop a numerical 

indicator value for the extent to which a given soil volume is subdivided into 

biogeochemically distinct microsites. Our objectives were to demonstrate the validity 

of our assumptions for a set of hydrologically different soils and to explore the 

importance of external controls (precipitation, temperature and height of the water 

table) for the formation of functionally distinct microenvironments. To this end, we 

examined functional heterogeneity along a gradient extending from well drained over 

moderately well drained to poorly drained soils.  

Specifically, we hypothesized that 

(i) functional heterogeneity increases along a drainage gradient with increasingly 

wetter soil moisture regime,  



 

 

10 

(ii) functional heterogeneity decreases with soil depth and  

(iii) functional heterogeneity in soil systems is a function of external environmental 

drivers and hence not constant over time. 

 

2.2.2 Measuring electron activities: the Pt-electrode approach  

Contemporary methods to characterize soil three-dimensional structure are 

increasingly allowing us to observe variations in microbial metabolism at the 

submicron scale, but there is a lack of robust, quantitative information about the 

spatial and temporal distribution of physiologically diverse microenvironments at the 

mm to cm (meso-)scale. A microscale observation requiring that a sample be taken to 

an elaborate research facility such as a synchrotron and there examined for several 

hours cannot easily be replicated at the frequency necessary to make valid inference 

about a watershed or a landscape. While we can observe processes at the submicron 

scale as well as at the much larger watershed or landscape scale, we still lack the 

ability to express the latter as a function of the former, mainly because we do not yet 

have a practical means to enter a parameter "soil heterogeneity" into testable scaling 

laws that would allow us to bridge the scale gap. 

Our suggestion to use Pt-electrode potentials for the identification of 

functionally different soil microsites stems from early observations that replicate Pt-

electrodes deployed in the same soil horizon do not typically return the same 

electromotive potential but may deviate by more than 300 mV (McKeague, 1965). 

While sometimes attributed to technical deficiencies of the Pt-electrode as discussed 

below, the phenomenon was further examined by Cogger et al. (1992) and Fiedler 
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(1999 Figure 7.1 therein). Fiedler installed replicate Pt-probes at a distance of 10 mm 

in the topsoil (5cm depth) of a Humaquept and found the potentials returned to be 

close during summer but to deviate up to 800 mV during periods of high rainfall and 

snowmelt. Corroborating the assessment of Cogger et al. (1992), Fiedler (1999) 

concluded that soil microsites are the primary source of variability among properly 

constructed and maintained electrodes. The operational consequence of these findings 

was the practice of subsequent workers to install multiple electrodes per same depth, 

thereby obtaining a more robust indicator for the general redox state of the soil 

horizon or soil depth of interest (Austin and Huddleston, 1999; Dorau and Mansfeldt, 

2016; Dwire et al., 2006; Faulkner and Patrick, 1992; Faulkner et al., 1989; Fiedler 

and Kalbitz, 2003; Mansfeldt, 2003; Mansfeldt, 2004; Megonigal et al., 1993; 

Seybold et al., 2002; Vepraskas and Faulkner, 2001; Yu et al., 2006).  

With the work presented here, we take the insight that Pt-electrodes are able to 

sense the existence of functionally different soil microsites as an opportunity to 

quantitatively assess the biogeochemical or ‘functional’ heterogeneity of soil. We 

argue that, if related to an array of geometrically related observation points, the 

heterogeneity of metabolic conditions within the soil volume defined by such an array 

can be conveniently expressed using descriptive statistics, effectively providing us 

with a metric for functional diversity within that soil volume. 

It must be emphasized that the electromotive potentials thus obtained are not 

accurate predictors for the speciation of given redox couples in the soil system 

(Chapelle et al., 1996; Mansfeldt, 2004; Stumm, 1966). This limitation arises from 

both, (i) systemic issues related to the chemical complexity of the soil system and (ii) 
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restrictions resulting from the properties of the electrodes used to measure the 

potential. Briefly, measurements of electromotive potentials in soils are complicated 

by the simultaneous presence of multiple redox couples in the soil system giving rise 

to 'mixed potentials', by a dependence on soil pH, by slow kinetics of important 

potential-determining redox couples at the electrode and by the lack of chemical 

equilibrium among various redox couples (Sigg, 1999; Stumm, 1966). These systemic 

constraints are further complicated by the propensity of the Pt-electrode to chemically 

react with oxygen, to exhibit voltage drift and to experience fouling under conditions 

as reviewed by James and Brose (2011). As a result, a comparison of published data 

for natural environments (Figure 1) suggests measurements of electromotive 

potentials in soil can certainly indicate a general disposition of a soil system towards 

given redox reactions but no clear delineations between different soil redox states. 

For instance (Figure 1), the first appearance of Mn2+ in a cohort of 9 independent 

investigations carried out in different soils and settings occurred at an apparent Pt-

probe potential of +700 mV in one study but ranged all the way down to +200 mV in 

another report. 
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Figure 1. Disparity between specific redox potentials for common redox couples and 
the experimentally observed range for the first appearance of the reduced species in 
soils as a function of increasing electron activity following inundation. N = 9 
independent studies all using platinum electrodes (Brümmer, 1974; Gotoh and 
Yamashita, 1966; Kofod, 1999; Mansfeldt 2004; Patrick and Jugsujinda, 1992; 
Patrick and Mahapatra, 1968; Patrick and Turner, 1968; Wang et al., 1993; Yu et al., 
2007). For the oxygen/water couple, the range of values below which O2 was no 
longer detectable is given and n = 3). Oxygen data from Patrick and Turner (1968), 
Patrick and Jugsujinda (1992), and Yu et al. (2006). All studies were either conducted 
at pH values close to 7 or the data were published including a correction to pH 7. 
Specific redox potentials from James and Brose (2011) representing conditions of 
pH=7, [red] = [ox] = 10-4 M, 0.21 atm for O2, 0.78 atm for N2, and 0.00032 atm for 
CO2. 
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Clearly, this prevents the user from making robust predictions about the 

speciation of Mn in soils returning potentials above +200 mV. The scientific 

community has long been engaged in a debate as to the value of such information. 

While some question the usefulness of Pt-electrodes for electromotive potential 

measurements in soil altogether (Bartlett and James, 1995; Peiffer, 1992; Peiffer, 

1999; Sposito, 2016), others point at obvious correlations of Pt-electrode derived 

electromotive potentials with soil morphology (Chadwick and Chorover, 2001; 

Fiedler and Sommer, 2004; Patrick et al., 1996), element distributions (Fiedler and 

Sommer, 2004; Mansfeldt, 2004; Masscheleyn et al., 1990) pedogenic thresholds of 

Fe, P and S (Chacon et al., 2006; Dorau and Mansfeldt, 2016; Gomez et al., 1999), 

methane production (Fiedler and Sommer, 2000; Wang et al., 1993; Yu et al., 2007) 

and even suggest the use of Pt-probe potentials as agricultural planning tools 

(Husson, 2012; Husson et al., 2016). For the purpose of this study, we refrain from 

any specific inference regarding the abundance of certain chemical species or from 

inference for microbial ecology in the sense of Baas Becking et al. (1960), but use 

electromotive potentials solely as unspecific proxies to establish the existence and the 

magnitude of functional differences between soil microenvironments. 

To parameterize functional heterogeneity, we installed linear arrays of five 

equidistant (10 cm) Pt-electrodes at four depths (10, 20, 50 and 100 cm) in each soil. 

The magnitude of the standard deviation of the mean (n=5) electromotive potential 

among the electrodes at a given observation instance then represents the 

beiogeochemical heterogeneity of the soil along a horizontal distance of 40 cm.  The 

electrode tips (Figure A.4) were hypothesized to probe a microenvironment of the 
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size of a few mm3 (Fiedler et al., 2007). To capture seasonal variations, electromotive 

potentials were recorded several times a week for a period of 18 months, including 

two wet winter seasons.  

2.3. Methods 

2.3.1. Site and soil properties  

Our conceptual approach consisted of selecting three soils in a way that they 

were derived from the same parent material, belonged to the same taxonomic soil 

order (Mollisols), were spatially close enough to be considered as being under the 

exact same climate regime but represented a gradient in soil moisture regime between 

soils. The drainage classes used by NRCS-USDA (Schoeneberger et al., 2012) refer 

to the frequency and duration of wet periods under conditions similar to those under 

which the soil developed. A soil is classified as well drained when water is removed 

readily and the soil is free of redoximorphic features. In a moderately well drained 

soil, water is removed somewhat slowly during some periods of the year, allowing for 

weak hydromorphic features to develop. Hydraulic conductivity is lower than in a 

well-drained soil. As a result of very low saturated hydraulic conductivity, poorly 

drained soils are wet at shallow depths periodically or for extended periods, allowing 

for the development of prominent hydromorphic features. 

The three research sites were located in the central part of the Willamette 

Valley, 7 miles north east of the Oregon State University campus in Corvallis, 

Oregon (Figure A.1). The Willamette Valley is a broad level plain in western Oregon 

that lies to the east of the Coast Range Mountains. Complex soil stratigraphy related 

to interfingering of Late Pleistocene glacial flood deposits (Balster and Parsons, 
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1968) combined with postglacial pedogenic clay translocation results in physical 

discontinuities within the solum that strongly influence transmission or lack of 

transmission of water (Austin and Huddleston, 1999; Boersma et al., 1972). The rain 

shadow of the Coast Range allows for an average of 900 mm of precipitation between 

October and May (Fall/Winter/Spring), and only 80 mm during June, July, August, 

and September. Mean air temperature averages 4°C in January and 19°C in July. 

Two of the sites (Willamette and Amity) were on a USDA managed research 

farm and the third immediately adjacent on Hyslop Research Farm (Woodburn), 

which is part of the Oregon State University College of Agricultural Sciences – 

Corvallis Farm Unit. The Willamette soil is a well-drained Pachic Ultic Argixeroll, 

the Woodburn is a moderately well drained Aquultic Argixeroll and the Amity is 

classified as a poorly drained Argiaquic Xeric Argialboll (Soil Survey Staff, 2015). 

The three sites were about one and a half miles apart, were situated on spots adjacent 

to but outside of active research fields, had been unmanaged for more than 10 years 

with the exception of biannual mowing, and all had a largely constant grassland 

vegetation mix dominated by agrostis capillaris, agrostis stolonifera and hypochaeris 

radicata. Soil reaction across the profiles was similar with a gradient from pH 5.5 ± 

0.07 in the topsoil to pH 6.3 ± 0.28 at 100 cm depth (mean ± SD from all three soils). 

All three series share a similar overall texture class (silt-loam), but bulk density was 

variable with a trend towards denser horizons from Willamette over Woodburn 

towards Amity. Basic soil properties are given in Table A.2.  
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2.3.2. Measurement of electromotive potentials  

Two types of Pt-electrodes were used in this study. Woodburn and Amity 

were instrumented first, with electrodes similar to those described by Fiedler et al. 

(2007). The need to obtain 20 additional probes for the monitoring of the Willamette 

soil was taken as an opportunity to miniaturize the Pt-probes for the purpose of lesser 

soil disturbance while maintaining the same functionality and durability as the larger 

electrodes. Briefly, 1.5 cm lengths of 16 ga. 99.95% pure platinum wire (Surepure 

Chemetals, Florham Park, NJ USA) were soldered, using light duty rosin core solder 

(Radio Shack, Fort Worth, TX USA), to two meter lengths of insulated 16 ga. copper 

wire. The Pt – Cu junction was then encased in low conductivity, clear epoxy casting 

resin (Alumilite Corp., Kalamazoo, MI USA) for increased stability and protection. 

Prior to installation in the field, each Pt-electrode was tested against a quinhydrone 

solution (0.1 g quinhydrone per 50 ml deionized water) buffered to pH 7. If the 

measured potential was more than +/- 10 mV outside of the ideal potential at 20 oC 

(92 mV), the probe was cleaned and retested (Austin and Huddleston, 1999; Jones, 

1966) After successful testing, Pt-electrodes were installed at depths of 10, 20, 50 and 

100 cm in linear arrays of 5 Pt-electrodes each. Electrode arrays had a horizontal 

extension of 40 cm and a distance between individual Pt-electrodes of 10 cm. The tip 

of each Pt-electrode was inserted horizontally into the pit wall to a distance of 10 cm 

from the wall face. Once installed in the field, the electrode leads were gathered and 

protected in a closable junction box. All electrodes were given two weeks to 

equilibrate in situ prior to the start of data collection. EPt data was collected manually 

every other day beginning in January 2015 through April 2016.  
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Potentials were collected manually using a Fluke 27 digital multi-meter 

(DMM, Fluke Corporation, Everett, WA USA), a custom-built resistance amplifier 

(detailed below), and a 3M Ag/AgCl InLab reference electrode (Mettler and Toledo, 

Columbus, OH USA). Field measurements were normalized relative to the standard 

hydrogen electrode by adding a correction factor calculated for each measurement 

and depth using daily soil temperature data (Nordstrom and Wilde, 2005). EPt data are 

reported based on actual soil pH as reported in Table A.2. Inexpensive DMMs have 

low input resistance (~106 ohms), which makes measurements of electromotive 

potentials in low voltage systems such as soils unreliable (Fiedler et al., 2007; 

Rabenhorst, 2009) as an unpredictable drop in voltage can occur when current flows 

from the soil microenvironment through the DMM. To remedy this issue, Wanzek 

built a one-off resistance amplifier to increase the input resistance of the hand held 

DMM from 106 ohms to >1013 ohms (Figure A.2) following the design proposed by 

Rabenhorst (2009). The resistance amplifier was designed to be self-contained and 

utilized a TLE2426 precision virtual ground operational amplifier from Texas 

Instruments (Dallas, TX USA), one 9V battery, and an on/off switch (to preserve 

battery life). Functionality of the resistance amplifier was tested and asserted in a 6-

week test campaign by plotting corrected (plus amplifier) versus raw (minus 

amplifier) data to find the same magnitude of deviations as in Rabenhorst (2009; data 

not shown) 
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2.3.3. Soil moisture content and soil temperature 

Volumetric water content and soil temperature was monitored at each depth in 

the Woodburn and Amity soils using Decagon 5TE soil moisture sensors (n=1, with 

the exception of Woodburn 10, Woodburn 20, Amity 20 and Amity 50, where n=2). 

Data were recorded every six hours on Decagon EM50 data-loggers (Decagon 

Devices, Pullman, WA USA).  Water filled pore space was then calculated for each 

depth in the Woodburn and Amity soils using volumetric water content (VWC) and 

percent porosity, which was calculated using bulk density data.  

Pt-electrodes and Decagon sensors were installed in the Woodburn and Amity 

soils in January 2015. A total absence of any redoximorphic features in the 

Willamette soil prompted us to initially focus our resources on the wetter soils of our 

sequence. Hence instrumentation of the Willamette soil was delayed until the 

beginning of the 2015/16 wet season. 

 

2.3.4. Climate data 

Climate data were recorded daily by a weather station installed at Hyslop 

Farm and managed by the National Oceanic and Atmospheric Administration 

(NOAA) as a part of their Global Historical Climatology Network (Menne et al., 

2012). Data were downloaded through the National Climatic Data Center’s Climate 

Data Online tool. The depth to standing water in the Amity soil pit was measured 

from ground level at each EPt data collection event. There was no standing water at 

the level of the electrodes in the Woodburn and Willamette at any point in time. 
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2.3.5. Soil pH  

Soil samples for pH measurement were collected once per month from each 

soil and depth from January 2015 through May 2015. Using a 5 cm by 10 cm bucket 

auger, about 200 cm3 of soil was removed at each sampling event (n=5 sampling 

events for the Woodburn and Amity and n=4 for the Willamette). Samples were 

manually homogenized and large root matter was removed. A slurry was prepared at 

a 2:1 water/soil ratio and pH was measured using an Accumet AB15 pH meter and 

gel probe (Fisher Scientific, Waltham, MA USA). Monthly pH measurements were 

discontinued when no significant change over time was observed. 

2.4. Results 

2.4.1. Environmental drivers and electron activities 

2.4.1.1. Precipitation  

Cumulative rainfall data comparing the wet season of 2015 with the wet 

season of 2016 is given in Table A.3, showing that winter 2015 was much drier (378 

mm for the period from January - April) than winter 2016 (601 mm for the same 

period). With a total pore space in the order of 500 L m-2 m-1 (Table A.2), the 

precipitation values indicate a potential for whole profile saturation in the year 2016 

but not for the winter of 2015. The highest monthly precipitation total was observed 

in December 2015 (354.9 mm) and the lowest in July 2015 (0 mm). While there were 

fewer precipitation events in winter 2015 than in 2016, the proportion of intense 

rainfall events (> 30 l m-2) was greater. Overall, on six occasions (Figure 2, panel a), 

daily rainfall reached or exceeded 30 liters per m2. Two of these events occurred in 

the first wet season: one in mid January 2015 (41.1 mm) and one in mid March 2015 
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(44.5 mm). The remaining four events preceded the second wet season: one occurred 

in late October 2015 (30.5 mm) and three in December 2015 (30.2 mm, 42.4 mm, and 

49.8 mm).  

2.4.1.2. Water Filled Pore Space  

 The fluctuation of water filled pore space (WFPS, given as % of total pore 

space) over time is presented in Figure 2 panels b (Woodburn) and c (Amity) together 

with precipitation (Figure 2 panel a). Panels b and c have a horizontal dashed line to 

indicate 60% water filled pore space, a value considered as optimal for aerobic 

microbial activity, with higher WFPS values indicative of restricted oxygen supply 

(Linn and Doran, 1984). During the dry season, WFPS dropped well below the 60% 

mark in all soils and at all depths. During wet seasons WFPS exceeded this 60% 

optimum threshold very briefly at the 10 and 20 cm depths of the Woodburn and 

extended periods of time in the Amity, reaching full saturation in the Amity during 

the second wet season. At the 50 and 100 cm depths, the 60% WFPS mark was 

exceeded throughout the wet seasons, with the distinction that saturation was reached 

in the Amity but not in the Woodburn. 
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Figure 2. Time series of precipitation (panel a); and water filled pore space (WFPS) at the 
Woodburn (Panel b) and Amity (Panel c) soils for the observation period. Shaded area 
indicates periods where electrodes were submerged. Depths labeled in the Woodburn panel 
are the same for the Amity panel. Percent water filled pore space was calculated using 
volumetric water content data (measured using Decagon 5TE electrodes and recorded every 
six hours) and bulk density for each depth. Replicate volumetric water content measurements 
and subsequent WFPS calculations were made at the Woodburn 10 and 20 cm depths and 
Amity 20 and 50 cm depths: WFPS calculated from probe 1 = solid and probe 2 = dashed. 
The horizontal dashed line in each WFPS panel indicates 60% water filled pore space. 
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2.4.1.3. Soil Temperature  

Soil temperature for the Woodburn and Amity soils is given in Figure A.3 b 

and c as a function of time on the same timescale as precipitation (Figure A.3 a). In 

both the Woodburn and Amity, soil temperature increased from February to 

maximum values in mid-July with a subsequent decline towards seasonal minima in 

early December, coincident with peaks in precipitation. Changes in temperature from 

day to day were similar between the two soils, but during periods when the Amity soil 

was inundated with water, the soil temperature oscillated much less compared to the 

non-saturated Woodburn, likely owing to the high heat capacity of H2O. During the 

relatively dry 2015 winter season, topsoil (10 - 50 cm) temperatures in the Amity 

were about 2 degrees C lower than in the Woodburn. Both soils were at the same 10.4 

degrees C at 100 cm. During the much wetter 2016 winter season, both soils had 

nearly identical and slightly warmer temperatures than in 2015 at all depths. 

 

2.4.2. Variation of electromotive potentials within one 5-electrode array  

Figure 3 documents the response of individual Pt-probe potentials to 

variations in water filled pore space (WFPS). This is illustrated using data from the 

Pt-probe array installed at the 20 cm depth in the poorly drained Amity soil. During 

the 2015 dry season (Figure 3), with WFPS well below the 60% optimum value for 

aerobic microbial activity (dashed line in panel 2), the five probes of the array all 

show near identical potentials close to the theoretical value for the O2/H2O couple 

(805 mV for prevailing conditions, Figure 1). With the onset of sporadic rainfall 

events and the concomitant rise of water filled pore space towards the 60% optimum 
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level, potentials begin to drop slightly below 800 mV, but remain close together until 

the end of November. As the soil pore volume fills with water in early December of 

2015, water filled pore space rapidly rises towards full saturation and potentials start 

to move towards the 0 to -50 mV region (Figure 3 panels a, b). Reflecting the 

conditions in the microenvironments probed by individual electrode tips, individual 

probes follow separate trajectories, indicating that biogeochemical conditions at the 

probe tip became increasingly diverse among the 5 electrodes during this period. The 

biggest spread is reached after the soil begins to dry out again in early April, when 

two probes (P2 and P4, 20 cm apart) are still at negative potentials (-152 and -18 mV) 

while the three others (P1, P3, P5) are consistent with full aeration (+786, +695 and 

+706 mV). As WFPS returns to the 60% optimum value by the end of April 2016 

(Figure 3 panel b), the potentials at all 5 electrodes of the array reconverge towards a 

range between +700 and +800 mV. 
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Figure 3. Time series of platinum probe potentials within the linear array of n=5 
probes installed at a depth of 20 cm in the Amity soil. Panel a gives EPt data for each 
electrode. Inset shows position of electrodes within the array. Panel b gives water 
filled pore space as a fraction of total pore space (% WFPS). Continuous and dotted 
line are replicate Decagon 5TE moisture sensors (D1 and D2) as primary moisture 
data sources. The horizontal dashed line indicates optimum WFPS for microbial 
activity according to Linn and Doran (1984; 60% WFPS). Shaded area indicates time 
period where electrodes were submerged. Panel c presents daily precipitation. 
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2.4.3. General patterns of electromotive potentials  

Plotting time series of electromotive potentials (mean potential per array and 

observation point; J =164 observations for Woodburn and Amity; J = 37 observations 

for Willamette; Figure 4) reveals unique patterns for each of the three soils. At all 

depths of the well-drained Willamette soil (Figure 4, panel a), mean potentials 

remained close to the value for the O2/H2O couple throughout the wet season of 2016. 

Neither temperature nor precipitation events were able to generate significant 

oscillations of the mean. In the moderately well drained Woodburn soil, negative 

spikes in electromotive potentials occurred during April 2015 and in January 2016 

(Figure 4, panel b) in the topsoil (10 and 20 cm depth), both following periods of high 

rainfall. Mean potentials stayed above +400 mV at all depths, although individual 

probes in the topsoil registered values as low as 137 mV (10 cm) and 224 mV (20 

cm).  
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Figure 4. Time series of platinum electrode potentials (EPt) across the drainage 
gradient and for 4 depths (10 cm, 20 cm, 50 cm and 100 cm, labels are not repeated in 
panels b and c for clarity). Values are means per array (n=5 electrodes) and 
observation time point (Table 1). Panel a: well-drained Willamette soil series, Panel 
b:  moderately well drained Woodburn soil, Panel c: poorly drained Amity soil. 
Shaded area indicates time period where electrodes were submerged. 
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The largest dynamic of mean electromotive potentials was observed in the 

poorly drained Amity soil, which filled up with water for less than 2 weeks in the 

2014/15 wet season but was constantly inundated for a period of almost 4 months in 

the 2015/16 wet season (Figure 4, panel c, periods of water saturation are indicated by 

gray shading). In the 2015/16 wet season, mean electromotive potential decreased 

with depth and the lowest mean value was recorded at the 50 cm depth. To our 

surprise, the lowest electromotive potentials recorded by individual electrodes were 

not observed in the deepest depth (100 cm: -47 mV), but at a soil depth of 20 cm (-

152 mV), followed by the 10 cm depth (-141 mV) and the 50 cm depth (-129 mV). 

Similar observations were made by Hall et al. (2016), who report more intense 

microbial Fe reduction in tropical surface soil microsites compared to lesser Fe 

reduction at greater depths. The time series for the 10, 20 and 50 cm depths resemble 

each other in their general shape, while the potentials at 100 cm exhibit a distinctly 

different dynamic, indicating decoupling from any controls acting on the horizons 

above.  

2.4.4. Trends in functional heterogeneity  

Biogeochemical or ‘functional’ heterogeneity was parameterized as the 

standard deviation of the mean potential within each five-electrode array at each 

observation time point and plotted for all soils and depths in Figure 4. In the well 

drained Willamette soil (receiving the same amount of precipitation as the other two 

soils), functional heterogeneity was close to zero across all depths and throughout the 

2015/2016 wet season (Figure 5, panel a), despite the fact that rainfall (956 liters m-2, 

Table A.3) during this period amounted to about 1.9 times the volume of estimated 
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total porosity (500 liters m-2 m-1 of soil depth, Table A.2). In the Woodburn soil, 

heterogeneity within individual 5-probe arrays was near zero during the dry season, 

but reached peak values approaching ±231 mV at the end of March 2015 in the 

topsoil (10 cm depth) and in mid February 2016 at a depth of 50cm (±265 mV). Short 

term changes in soil heterogeneity in the Woodburn topsoil tended to be larger when 

rain events were more episodic as in the drier wet season of 2014/2015 compared to 

dampened amplitudes during the much wetter winter of 2015/2016. Heterogeneity in 

the Woodburn soil declined with depth during the "drier" 2014/2015 wet season, 

while it increased with depth down to 50 cm during the "wetter" 2015/2016 wet 

season (Figure 5, panel b).  

The largest measured functional heterogeneity was observed at the 20 cm 

depth of the poorly drained Amity soil, reaching a SD of ±450 mV (n = 5) in early 

April 2016 with a low extreme of -152 mV and a high extreme of + 786 mV 

measured simultaneously by two electrodes only 10 cm apart.  Heterogeneity in the 

Amity exhibited different patterns compared to the Woodburn between the 'dry' 

2014/2015 winter and the wetter 2015/2016 winter season. During the 2015 wet 

season, heterogeneity oscillated around a value of ±70 mV with occasional peaks and 

an isolated maximum near 300 mV at the 50 cm depth in late March 2015. There was 

no obvious trend with depth during that period. This was much different during the 

2016 wet season, when the Amity topsoil (10 and 20 cm) exhibited large functional 

heterogeneity over a period of more than five months (Figure 5, panel c). Both 

extreme values and amplitudes of heterogeneity declined with depth during that time.  
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Figure 5. Time series of metabolic heterogeneity index across the drainage gradient 
and for 4 depths (10 cm, 20 cm, 50 cm and 100 cm, labels are not repeated in panels b 
and c for clarity). Values are standard deviations per array (n=5 electrodes) and 
observation time point (Table 1). Panel a: well-drained Willamette soil series, Panel 
b: moderately well drained Woodburn soil, Panel c: poorly drained Amity soil. 
Shaded area indicates full water saturation with electrodes submerged. 
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Table 1. Symbols, definitions and associated equations 
Symbol Definition Equation/Unit 
xij Single data point; value 

returned by electrode i on 
day j 

mV 

a Number of electrodes per 
individual linear array. 

a = 5 = constant, distance between 
electrodes = 10 cm 

J 
 

Number of observations 
time points  

J = # of days and observations per 
observation period 

   

1.) Variability within one array, single observation point j 

µ(aj) 
(Figure 5) 

Mean electromotive 
potential among 5 
electrodes within one 
array on day j 
 

 

𝜇(!") =
𝑥!"
𝑎  

 

s(aj) 
(Figure 5) 

Standard deviation of the 
mean within one 
electrode array on day j 

 

𝑆(!") =
1
𝑎 (𝑥(!") − 𝜇(!"))!

!

!!!

 

 

2.) Variability within one array and depth  

µ(D) 
(Figure 6) 

Mean electromotive 
potential at depth D for J 
= 37 days 
 

 

𝜇(!) =
𝑥!"
𝐽  

 

s(D) 
(Figure 6) 

Standard deviation of the 
mean at depth D for J = 
37 days 

 

𝑠(!) =
1
𝐽 (𝑥(!") − 𝜇(!))!

!

!!!

 

 

3.) Dimension of and changes in variability 

µ[s(aj)] 
(Figure 7) 

Mean variability at a 
given depth D for J = 18 
days 

 

𝜇[!(!")] =
𝑠(!")
𝐽  

 

s[s(aj)] 
(Figure 7) 

Standard deviation of the 
variability at depth D for 
J = 18 days 

 

𝑠[𝑠(!")] =
1
𝐽 (𝑠(!") − 𝜇[!(!")])!

!

!!!
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A direct comparison of functional heterogeneity across the three soils is 

possible by plotting the Metabolic Heterogeneity Index (MHI) as a function of 

drainage gradient (Figure 6). This representation emphasizes the correlation between 

drainage regime and the extent to which soils are structured into biogeochemically 

distinct microsites. The transient nature of microsites is revealed by comparing 

metabolic heterogeneity between two wet seasons of different intensity. In the 2015 

wet season, MHI decreased with depth in the Woodburn soil (Figure 7, WO ‘15) and 

remained constant with depth in the Amity soil (Figure 7, AM ‘15). A completely 

different picture emerged for the much wetter 2016 winter: heterogeneity increased to 

a maximum at 50 cm depth in the Woodburn (Figure 7, WO ‘16) but had its 

maximum at the 10 and 20 cm depths in the Amity (Figure 7, AM ‘16).  
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Figure 6. Variation of metabolic heterogeneity index across the drainage gradient. 
Values are standard deviations per array (n=5 electrodes) and observation time point. 
Dots represent mean variability at a given depth for the same subset of matching 
observation time points from the 2016 wet season (J = 37 observations) across all 
three soils. Error bars represent the standard deviation of the mean (Table 1). Data are 
arranged going from well drained (WA) to poorly drained (AM): WA = Willamette, 
WO = Woodburn, and AM = Amity. 
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Figure 7. Variation of metabolic heterogeneity index as a function of intensity of the 
wet season. Bars represent the mean of the variability at a given depth for the same 
subset of matching observation time points (J = 18 observations, Table 1) across the 
2015 (gray bars) and 2016 (white bars) wet seasons. The error bars are one standard 
deviation of the mean variability at the given depth for the observation period J 
(Table 1). 

 

 

 

 

 

0

150

300 10 cm

20 cm

50 cm

100 cm

0

150

300
M

et
ab

ol
ic

 H
et

er
og

en
ei

ty
 In

de
x 

(m
V)

0

150

300

0

150

300

Woodburn Amity

 2015
 2016



 

 

35 

2.5. Discussion 

2.5.1. Extent and origin of functional heterogeneity in soils  

Prompted by the seminal work of Sexstone et al. (1985), and seconded by the 

growing availability of two- and three-dimensional imaging techniques (Tippkötter et 

al., 2009; Vereecken et al., 2016), the scientific community has increasingly become 

mindful of the fact that biogeochemical conditions in soil vary on very small spatial 

scales. Being able to parameterize the extent of such variation has implications for 

matter transformations including the biodegradation of carbon substrates (Keiluweit 

et al., 2016; Keiluweit et al., 2017; Vogel et al., 2015) as it may hold the key to 

explaining the experimental variability and observed non-linearities associated with 

these processes (Falconer et al., 2015; Ruamps et al., 2013). Consequently, 

quantitative information on functional soil heterogeneity, i.e. on the extent to which 

ongoing metabolic processes differ among microsites within the same soil horizon, is 

needed to achieve full mechanistic representation of biogeochemical cycling in soil. 

The observations we were able to make in the course of this research are in line with 

previous reports of increasing variability in electromotive potentials across transitions 

from dry to wet meadow soils, soils in alluvial planes, and soils on pond margins 

(Dwire et al., 2006; Fiedler and Sommer, 2004; Mansfeldt, 2003). Our observations 

also concur with previous communications reporting variations in electromotive 

potentials as a function of soil depth (Dorau and Mansfeldt, 2016; Fiedler and 

Sommer, 2004). Yang et al. (2006) recorded increasing heterogeneity in 

electromotive potentials as depth increased in a well-drained silt loam. Thomas et al. 

(2009) measured electromotive potentials in six different plots on Everglade wetland 
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soils. In all locations monitored, variability in electromotive potentials decreased with 

depth and they determined that most of the variability could be attributed to 

fluctuating water tables. Seybold et al. (2002) and Thomas et al. (2009) recorded 

rapid changes in redox potentials in response to changes in water-table levels in tidal 

marshes and Everglade wetland soils. However, previous studies did not deploy 

standardized electrode arrays and hence do not permit a direct parameterization of 

soil heterogeneity. Our work shows that, through the utilization of geometrically 

fixed arrays, heterogeneity can be parameterized for the soil volumes defined by the 

geometry of the array. Deployment of fixed electrode arrays allows the researcher to 

make comparisons between soil types, soil horizons and assess soil response over 

time. Doing so allowed us to make the following inference.  

a) The degree to which a soil system is divided into biogeochemically distinct 

microenvironments is not constant over time. The same soil horizon will 

exhibit vastly different patterns of biogeochemically distinct microsites in two 

consecutive seasons as a function of changing meteorological conditions.  

b) Functional heterogeneity increases with the decreasing hydraulic conductivity 

associated with the structural impediments to drainage as reflected in the 

taxonomic soil drainage class, allowing us to accept the hypothesis that 

functional soil heterogeneity follows the taxonomic drainage class. 

c) There is a strong causal link between soil moisture status and the occurrence, 

abundance and spatial distribution of biogeochemically distinct 

microenvironments and consequently, the occurrence of biogeochemical hot 

spots and hot moments.  
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d) In addition to depending on micro-pore structure and moisture, functional 

heterogeneity shows a threshold around 60 % water filled pore space, likely 

associated with the maximum of aerobic microbial activity often observed in 

that moisture range (Linn and Doran, 1984). Below that threshold moisture 

value, heterogeneity does not vary much regardless of soil texture or 

precipitation events. 

e) Pedological theory dictates that porosity will change with depth, but can be 

assumed to be constant over the 18-month time frame of our study. This 

means soil porosity plays an important, yet secondary role for the 

development of functional heterogeneity in soil.  

f) In the case of our soils and dissimilar to the observations of Seybold et al. (2002), 

variations in temperature did not seem to be as consequential for fluctuations 

in functional heterogeneity as were changes in water filled pore space.   

 

2.5.2. A role for Pt-probe arrays in monitoring metabolic heterogeneity 

Conventional Pt-electrode tips probe the electron activity resulting from 

chemical reactions and associated microbial activity within a sphere of a volume of 

just a few mm3 (Fiedler et al., 2007). Compared to lysimeters, trace gas measurement 

systems, or x-ray tomographic equipment, such Pt-based sensors are cheap, easy to 

assemble and able to survive deployment in challenging environments for extended 

times to provide real time information about the status of the soil system and any 

change thereof.  
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It is important to realize that the parameter chosen as an index of 

heterogeneity, the standard deviation of the mean of the probes deployed or 

Metabolic Heterogeneity Index, will depend on the geometric outline of the electrode 

array. In the case presented here, we arbitrarily chose a linear, horizontal arrangement 

of five electrodes spanning a distance of 40 cm, with 10 cm between each electrode 

tip. This geometric design was kept constant across all soils and depths. Installation 

will disturb the probed environment, however, interference can be contained by 

miniaturization of the sensors such as demonstrated in the course of this work (Figure 

A.4).  Through the utilization of geometrically fixed arrays, heterogeneity can be 

parameterized for the soil volumes defined by the geometry of the array. 

2.6. Conclusions 

With the work presented here, we establish the "Pt-probe array approach" as a 

practical means to pursue and further develop the science of biogeochemical soil 

heterogeneity. To this end, we demonstrate how fixed arrays of sensors capable of 

probing the electron activity in very small individual volumes can return quantitative 

information on the extent to which the soil is subdivided in functionally different 

microsites. The parameter "Metabolic Heterogeneity Index = the standard deviation 

of the mean electromotive potential within a fixed array of 5 probes" allowed us to 

obtain several insights. Within a horizontal distance of 40 cm and among five 

microenvironments probed, the functional state of an 'upland' soil may simultaneously 

include conditions of unrestricted aerobiosis as well as conditions allowing for sulfate 

reduction and even methane production (von Fischer et al., 2009). Functional soil 

heterogeneity is not constant over time, i.e., it cannot be predicted based on soil pore 
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metrics alone (which we assume to remain constant over the observation period). 

Maximum biogeochemical diversity is most likely to be encountered in organic 

matter rich topsoils (Hall et al., 2016) subject to large fluctuations in soil moisture. 

Rapid draining followed by the gradual drying out of the soil will generate greater 

functional heterogeneity than rapid rewetting, and will be more sensitive to moisture 

fluctuations than to temperature variations overall. This latter finding could mean that 

moisture changes associated with climate change could be much more consequential 

for the broader scale intensity of biogeochemical soil processes than temperature 

changes. Given the importance of soil heterogeneity for matter transformations in soil 

systems and the relative ease of technical implementation, we recommend that the 

standard deviation of mean electromotive Pt-probe potentials within fixed electrode 

arrays be further developed as a routine parameter for the characterization of soils in 

long-term monitoring programs such as Critical Zone Observatories, LTER and 

NEON sites. This may require standardization of electrode number and the geometry 

of arrays utilized.  

2.7. Acknowledgments  

This work was supported by the US Department of Energy, Office of Biological and 

Environmental Research, Terrestrial Ecosystem Program (Award Number DE-FG02-

13ER65542).   

 

 



 

 

40 

3.  The ability of pore network metrics to predict soil redox status is scale 

dependent 

Authors: Thomas Wanzek1*, Marco Keiluweit2, Tamas Varga3, Adam Lindsley1, 

Peter S. Nico4, Scott Fendorf5, and Markus Kleber1 

 

1 Department of Crop and Soil Science, Oregon State University, 3017 ALS Building, 

Corvallis, OR, USA 

2 Stockbridge School of Agriculture and School of Earth and Sustainability, 

University of Massachusetts, 411 Paige Lab, Amherst, MA, USA 

3 Environmental Molecular Sciences Lab, Pacific Northwest National Laboratory, 

Richland, WA, USA 

4 Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 

Building 85B, Berkeley, CA, USA 

5 Earth System Science Dept., Stanford University, Via Ortega 473, Stanford, CA, 

USA 

*Corresponding author: wanzekt@oregonstate.edu 

 

Manuscript in preparation for submission to Water Resources Research 

American Geophysical Union 
2000 Florida Ave. NW 
Washington D.C., 20009 
 

 

 

 



 

 

41 

3.1. Abstract 

Variations in microbial lifestyle and metabolic efficiency are governed by the 

presence or absence of water and oxygen, for this reason, the volume, connectivity 

and general shape of the soil pore system can be expected to be a relevant factor in 

the development of spatial metabolic diversity in soil. Here we show how sets of 

quantitative pore network metrics (PNM) derived from X-ray computed tomography 

(XCT) can be combined with measurements of electron activity (EA) to assess how 

the metabolic status of soil depends on variations of the overall pore network 

architecture (PNA). Three types of PNAs were created by sieving soil from a Mollisol 

– A horizon to ≤ 1 cm and ≤ 2 mm and comparing them to a control with intact soil 

structure. Three replicate mesocosms from each structural treatment were 

instrumented with three Pt-electrodes each to record variations in electron activity 

while subjected to a regimen of full saturation, drainage and rewetting. We found that 

void-based XCT – metrics were more frequently correlated with metrics describing 

changes in electron activity than skeleton based XCT – metrics. The abundance of 

significant correlations between PNMs and electron activity parameters was not only 

a function of pore network architecture, but also of the volume of interest (VoI) 

chosen for XCT analysis. PNMs had the greatest power to statistically explain 

changes in electron activities in the smallest VoI, corroborating previous assumptions 

that Pt-electrode tips probe a very limited soil volume immediately surrounding the 

probe tip. Our work underscores the importance of scale in observations of natural 

systems.  
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3.2 Introduction 

Reducing subsurface environments are important for the functioning of the 

biosphere on many levels, examples including processes as diverse as soil carbon and 

nitrogen mineralization, trace metal mobility and remediation of contamination with 

organo-chemicals. For instance, reducing conditions are among the most significant 

factors in the retardation of soil carbon decomposition, because anaerobic carbon 

cycling can be 60 to 95% slower than aerobic respiration (Wania et al., 2009) as a 

result of lower energy yields associated with the use of terminal electron acceptors 

other than oxygen (e.g. Fe3+ or CO2) (Arndt et al., 2013). Reducing conditions can 

further contribute to the contamination of groundwater systems with naturally 

occurring metalloids such as arsenic. Arsenic conversion from primary mineral 

sources to secondary forms that can contaminate ground water is the result of two 

reduction-oxidation dependent processes: 1) oxidative weathering causes As-

containing primary minerals (such as pyrite) to transition to secondary Fe-

oxyhydroxides with the ability to strongly adsorb co-weathered As5+, and 2) the 

microbial reduction of these Fe-oxides under anaerobic conditions causes arsenic to 

become vulnerable to microbial reduction to water soluble forms (As5+ à As3+) 

(Fendorf et al., 2010; Kumpiene et al., 2008; Polizzotto et al., 2008; Zheng et al., 

2004). Affected populations in East and Southeast Asia alone are estimated to be 100 

million and rising (Fendorf et al., 2010). An upside of reducing conditions in the 

subsurface biosphere is the facilitation of molecular transformations involved in the 

decontamination of toxic halogenated organic compounds. Polychlorinated biphenyls 

(PCBs) are an example of a widely used organic molecule turned subsurface 
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contaminant (Borja et al., 2005). PCBs are a synthetic family of lipid-like compounds 

consisting of two joined aromatic carbon rings and 10 locations for potential chlorine 

attachment. PCBs have a wide variety of industrial applications due to their low vapor 

pressures, low solubility in water, and excellent dielectric properties. Commonly 

believed to be “indestructible”, PCBs have been shown to be biodegradable via 

reductive dechlorination (Abramowicz, 1990). Reductive dechlorination is a naturally 

occurring process that can detoxify and completely destroy PCBs (Bedard, 2008; 

Borja et al., 2005). Under such anaerobic conditions where Mn4+ and Fe3+ are the 

primary terminal electron acceptors (Christ et al., 2004), detoxification is most 

efficient and the chlorine atoms are removed. The aromatic rings however, are left 

intact. If the PCBs are subsequently subjected to aerobic oxidation, the remaining 

benzene rings can be broken open (Abramowicz, 1990), thereby completing the 

detoxification process. These examples illustrate the importance of a robust 

representation of soil redox state in reactive transport models as well as in earth 

system models, yet large uncertainties exist regarding how, and to what extent, the 

potentially relevant mechanisms should be included in such models (Riley et al., 

2014).  

The historic approach to the problem of representing reducing conditions in 

models has been centered on the fact that O2 diffusion rates in liquid water are 

reduced by up to 4 orders of magnitude compared to diffusion rates in the atmosphere 

(Cussler, 1997) and led to the notion that the development of reducing conditions in 

soil can be understood based on three major assumptions (for critical discussion and 

pertinent references compare Keiluweit et al., 2016):  
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1. Oxygen diffusion within aggregate domains can be estimated based on porosity 

alone 

2. There is a single critical oxygen concentration at which heterotrophic 

respiration (the major energy yielding process in soil) ceases in all organisms 

3. Oxygen consumption is constant throughout "aerobic" aggregate domains  

But, despite a longstanding recognition of metabolic "hot spots" and "hot moments" 

in soils (Kuzyakov and Blagodatskaya, 2015; McClain et al., 2003), none of the 

modeling strategies explored to date have the capacity to isolate the effect of either 

diffusive domain size or spatial void pattern on O2 availability and, by extension, on 

the development of reducing conditions. The DOE sponsored Community Land 

Model (CLM), for instance, lacks features such as subgrid-scale hydrology, anaerobic 

microbial carbon metabolism, and aqueous chemistry (Riley et al., 2011). Current 

biogeochemical models (Davidson et al., 2012; Koven et al., 2013; Kuka et al., 2007) 

are thus resorting to rather general approaches to account for the formation and 

relative quantitative importance of (i) aerobic pore volumes with particularly efficient 

aerobic (O2-dependend) respiration versus (ii) anaerobic pore volumes with specific 

functionality (metal reduction, CH4 and N2O production). None of the existing 

models have provisions to estimate the spatial abundance of the metabolically diverse 

microenvironments that are increasingly observed in soil (Keiluweit et al., 2017). Yet 

we know now that form and function of the soil microbial community involved in 

transformations of matter and energy is tightly regulated by the pore network 

architecture (Negassa et al., 2015). The composition of the microbial community that 

resides in soil aggregates is more related to the characteristics of the intra-aggregate 



 

 

45 

pore structure (Kravchenko et al., 2014) than to the type of organic substrate available 

as an electron donor (Ruamps et al., 2011). These findings coincide with insights that, 

at the global scale, soil carbon stocks can be modeled with much greater confidence 

when the model includes a representation of microbial metabolic performance 

(Wieder et al., 2015; Wieder et al., 2013) and the postulate that ‘microbial 

metabolism is a less significant regulator of soil organic decomposition than are 

microbial habitat properties’ (quoted from Ruamps et al., 2013).  

At this point, the community has progressed to a state where the importance of 

reducing conditions for soil biogeochemistry has been recognized, but modeling 

concepts do not extend beyond a provision to limit oxygen availability. An example is 

the recent version of the Community Land Model (CLM4, Koven et al., 2013) where 

oxygen limitation rO is introduced as a scaling factor for the intrinsic turnover rate of 

each carbon pool: 

 

𝑘! =  𝑘!,!𝑟!𝑟!𝑟!𝑟!................................................................................................(1) 

 

where k0,i is the intrinsic (= substrate specific) turnover time for each pool (yr-1), rT is 

the temperature modifier, rW is the moisture modifier and rZ is a depth modifier. 

Current models are thus unable to account for the formation, spatial abundance and 

relative quantitative importance of aerobic pore volumes with particularly efficient 

aerobic (O2-dependent) respiration or anaerobic pore volumes with specific 

functionality (e.g. Fe3+ reduction, CH4 and N2O production). 
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Here we assess that the greatest obstacle towards a robust implementation of 

soil redox state in models is a lacking capability to fully represent the process chain 

leading from (i) variation in climatic parameters (e.g. temperature, precipitation), to 

(ii) soil structure, to (iii) variations in soil redox state, and (iv) to the resulting 

physiological disposition and subsequent metabolic performance of the microbiota. 

Consequently, the purpose of this manuscript is to offer an initial answer to the 

overarching question "How can pore network structure contribute to the propensity of 

soil systems to become reducing environments?". To achieve this goal, we pursued 

two major objectives: 

1.) Find quantitative, numerical indices of soil structure that can be used to test 

assumptions about causality regarding soil structure - electron activity 

relationships 

2.) Obtain robust information about the electron activity (i.e. redox state) within soil 

microenvironments 

Our conceptual approach consisted of comparing changes in electron activity 

within the pore network architecture of an intact, well-aggregated topsoil to the 

dynamics of electron activities in two artificially modified pore network architectures 

derived from the same soil material. In the resulting model systems, we focused on 

three aspects:   

1. Parameterization of soil structure using computed tomography. Diffusive domains 

and the surrounding spatial void pattern within a given soil volume (i.e. soil structure) 

are considered as quantifiable through X-ray Computed Tomography (XCT, Luo et 

al., 2008). Because we wanted to interrogate soil volumes of a physical size 
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(cylinders of 24 cm width x 18 cm height) that can be considered relevant for 

upscaling to the pedon and ultimately, landscape scale, we used a Nikon (Metris) 

XTH 320/225 kV X-ray Tomography (XCT) System available through a user 

proposal at the Environmental Molecular Science Laboratory (PNNL-EMSL). 

Nimmo and Perkins (2008) hypothesized that as the manipulation of a pore network 

increased, macroporosity would decrease. We assumed that, by manipulating 

saturation level and manipulating the geometry of the pore network while measuring 

concomitant changes in electron activity in multiple microenvironments, relationships 

between the XCT quantified pore network and electron activity could be determined. 

In doing so, we aimed to contribute to the development of parameters, procedures and 

concepts for the application of computed tomography to the investigation of structure 

- functionality relations in soil systems. 

2. Variation of electron activity in soil microenvironments. Our decision to use Pt-

electrode potentials for the identification of biogeochemically distinct soil microsites 

was based on previous reports that Pt-electrodes are capable of probing the electron 

activity in very small individual volumes in the order of few cubic millimeters 

(Cogger et al., 1992; Fiedler, 1999; Fiedler et al., 2007). To address uncertainties 

regarding the soil volume "seen' by the Pt-electrode tip, the relationships between 

strategically sub-sampled portions of the pore network (Volumes of Interest, VoI) and 

electron activity were examined. 

3. Variation in moisture content. To elucidate the relationship(s) between wet up and 

dry down events and the formation of reducing conditions we decided to focus on 

short-term time brackets where moisture conditions change how the resulting 
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variations in redox state are modulated/altered/controlled by XCT derived pore 

network metrics.  

Our experimental approach involved testing the following hypotheses:  

 

H1: Electromotive potentials sensed by platinum electrodes respond to changes in 

water saturation level in a predictable, non-random fashion. We hypothesize that 

for all electrodes probing the same network architecture type (PNA), the 

associated electron activity (EA) metrics (ΔEPt per time interval)  = ± constant  

Null: EA metrics compared between PVC rings (n = 3 per PNA) within a PNA are 

significantly different 

 

H2:  EA metrics are specific to pore network architectures. When subjected to the 

same moisture change, changes in EA metrics should be significantly different 

between pore network architectures. This hypothesis can be accepted if ΔEPt per 

time interval ≠ ΔEPt between pore network types 

Null: EA metrics are not significantly different for any two PNA comparisons 

 

H3: The ability of XCT-derived pore network metrics to predict EA metrics improves 

with decreasing average pore size, or Δ Pt,(a...j) = f(PNA), (PNM 1....18), where 

PNA = pore network architecture, (a...j) are a set of electron activity metrics, and 

(1...18) is a set of pore network metrics 

Null: The number of significant correlations between EA metrics and PNMs does not 

increase as aggregate size decreases 
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H4: The ability of XCT-derived pore network metrics to predict EA metrics improves 

when the volume of the observed pore network is small and immediately 

surrounds the platinum electrode tip, compared to larger soil volumes or “the 

power of XCT derived network metrics to predict change in redox state = f(VoI)”  

Null: The number of significant correlations between EA metrics and PNMs does not 

increase as VoI decreases. 
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3.3 Methods 

3.3.1 Experimental approach 

3.3.1.1 Soil description and sample collection 

 Soil was collected from the Ap horizon of a moderately well drained 

Woodburn soil series (Argixeroll) at Hyslop Farms in the Willamette Valley, Oregon. 

Basic soil characteristics were measured following protocols detailed in the Kellog 

Soil Survey Laboratory Methods Manual (Staff, 2014) and are provided in Table B1. 

The site had been unmanaged for more than 10 years with the exception of biannual 

mowing and had a grassland vegetation mix dominated by agrostis capillaris, 

agrostis stolonifera and hypochaeris radicata. Three intact, cylindrical cores with 

dimensions of 18 cm (height) by 25 cm (diameter) were taken by inserting PVC rings 

down to a depth of 20 cm (Figure B2). Bulk soil to create the two manipulated pore 

network architectures was removed from the same depth and sieved to ≤ 1 cm and to 

≤ 2 mm. Sieved soils were filled into n = 3 cores for each treatment, to yield a total of 

9 cores representing 3 different pore network architectures (PNAs):  “Random” PNA;  

“Large aggregate” PNA (sieved to ≤ 1 cm), and "Small aggregate" PNA (sieved to ≤ 

2 mm). 

 

3.3.1.2 Set up and instrumentation 

A fine plastic mesh (~1 mm openings) was glued to the bottom of each core to 

retain the soil and allow for water infiltration and drainage. Cores were stored at 10 

oC for seven days prior to the start of the experiment. A large fiberglass tub (125 cm x 

98 cm x 23 cm, Figure B1) was used to house all nine cores for simultaneous 
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manipulations of the water saturation level. The bottom of the tub was filled with 2 

cm of coarse, autoclaved sand to allow for unrestricted water infiltration in to and 

drainage out of the soil cores. To monitor structure dependent variations in electron 

activity, each core was equipped with an array of three Pt-electrodes (width = 5 mm; 

Pt wire tip length = 10 mm, overall electrode length including tip = 25 mm), each 

installed in one quadrant of the PVC ring such that the electrode tip was 9 cm above 

the base of the PVC ring. Electrodes were connected to a 3M Ag/AgCl InLab 

reference electrode (Mettler and Toledo, Columbus, OH USA) installed at the surface 

of the fourth ring quadrant (Figure B1). The electrodes were installed in a strict 

geometric array (one per quadrant) to ensure that each Pt-electrode accessed the same 

volume of soil. Prior to installation, Pt-electrodes were tested against a quinhydrone 

solution (0.1 g quinhydrone per 50 ml deionized water buffered to pH 7 (Austin and 

Huddleston, 1999; Jones, 1966). If the measured potential was more than  ±10 mV 

outside of the ideal potential at 20 oC (92 mV), the probe was cleaned and retested. 

Electromotive potential data were measured each minute and an average value was 

recorded every hour using a Campbell Scientific CR800 data logger and AM16/32B 

multiplexer (Campbell Scientific, Logan, UT, USA). The data logger and multiplexer 

were assembled by Dynamax Inc. (Houston, TX, USA). Electromotive potentials 

were normalized relative to the standard hydrogen electrode by adding an 

individualized, temperature adjusted correction factor for each measurement 

(Nordstrom and Wilde, 2005). 
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3.3.1.3 Experimental conditions  

 To investigate the effects of variations in pore network architecture on 

changes in electron activity, we subjected the cores to variations in water saturation 

levels. The first such event occurred on day 1.5 and was a rapid transition from near 

field capacity to full inundation (simulating phreatic conditions) of the electrode tips 

by flooding the tub to a water level just below the rim of the PVC cores (Figure A.2). 

Full saturation was maintained for 12.5 days until electron activity had reached a near 

equilibrium state in all PVC rings (Figure 1). Following day 14, the PVC rings were 

allowed to drain for 8 days until electron activities returned to values similar to those 

at the start of the experiment. At day 22, water was added to a level of 4.5 cm below 

the electrode tip to create conditions similar to partial saturation in a simulated vadose 

environment. These conditions were maintained for another 5.5 days, when the water 

was drained and the PVC rings monitored for another 3 days until electron activities 

returned again to levels close to starting conditions. Overall duration of the 

experiment was 30.5 days. During this time, the cores were kept in a greenhouse 

equipped with a climate control system allowing us to exclude precipitation while 

maintaining ambient diurnal temperature variation.  
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Figure 1. EPt curves for all three pore network architectures. Mean EPt curves (black) 
are shown for each pore network architecture (Random, Large aggregate, and Small 
aggregate). EPt data from each individual electrode per pore network architecture (n=9 
per pore network architecture) are also shown (gray). Timing and duration of 
complete saturation with water is represented by solid gray box “flooded” (day 1.5 to 
14) and partial saturation is represented by dashed gray box “partial” (day 22 to 27.5). 
 

-200

0

200

400

600

800

-200

0

200

400

600

800

0 4 8 12 16 20 24 28

-200

0

200

400

600

800

a PNA "Random"
E
Pt
(m
V
)

PNA "Large
aggregate"b

Day

c PNA "Small
aggregate"

flooded partial



 

 

54 

A set of ten parameters (Electron Activity metrics, EA) was developed to 

enable a numerical description of the response of electron activities to manipulations 

of soil moisture status. These metrics are illustrated and defined in Figure 2 (panels b 

and c). After samples were drained for the last time, they remained in the fiberglass 

tub for two more days until further processing. They were then carefully removed and 

packaged in individual containers in preparation for transport to the X-ray computed 

tomography (XCT) facility in the Environmental and Molecular Science (EMSL) 

division at the Pacific Northwest National Laboratory (PNNL; Richland, WA, USA).  
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Figure 2. Division of the EPt curve into electron activity metrics. The raw EPt curve 
(panel a) was divided into 10 different portions (panel b), defined as electron activity 
metrics (EA metrics; panel c). Panel c contains the description of each metric and its 
corresponding location on the curve in panel b. Timing and duration of complete 
saturation with water is represented by solid gray box “flooded” and partial saturation 
is represented by dashed gray box “partial”. 
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hours of inundation (blue dashed line). 
 

b) Rate of increase in electron activity from the start of 
inundation to maximum electron activity value (blue 
dashed line). 

 

c) Maximum electron activity value (orange circle). 
 

d) Time elapsed at which maximum electron activity 
(minimum EPt) occurs (green vertical line). 

 

e) Time elapsed from first draining to the inflection point 
where the electron activity decreased by at least 50 mV 
from the potential at draining (red hashed box). 
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(green vertical line). 
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3.2.2 Pore network quantification using X-ray computed tomography 

3.2.2.1. XCT theory and scan conditions 

X-ray computed tomography (XCT) is a non-destructive technique for 

determining the internal structure of an object (Taina et al., 2008) and has been used 

for nearly two decades (Tippkötter et al., 2009) to quantify the 3D architecture of 

pore spaces in natural soils (Perret et al., 1999; Pierret et al., 2002). XCT techniques 

are based on deriving an image using the quantity of applied x-rays that pass or do not 

pass through the object of interest. The effective atomic number and the density of the 

sample material being x-rayed determine the linear attenuation coefficient 

representing the quantity of x-rays that pass through the sample. The denser the 

sample material, the fewer x-rays can penetrate and the higher its linear attenuation 

coefficient (Taina et al., 2008; Tippkötter et al., 2009). When using conventional two-

dimensional x-ray techniques, depth information is lost, but when x-ray attenuation 

information is obtained from multiple radiographic images, scanned at different 

angles, called projections, a complete three-dimensional image can be constructed 

(Wildenschild et al., 2002). 

Each sample was scanned on the Nikon (Metris) XTH 320/225 kV X-ray 

Computed Tomography (XCT) System at PNNL’s EMSL division. This equipment 

allows for the investigation of large samples of up to bucket-size. However, proof of 

concept work we carried out using the same soil and sample containers, revealed that 

the entire PVC rings would absorb too much radiation to achieve satisfactory image 

quality. We thus decided to sub-section the PVC to allow for sufficient beam 

penetration. Following the original layout of Pt-electrodes, each PVC core was 
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physically divided into four quadrants (Figure B3), with the Pt-electrode at the center; 

and additional acrylic glass panels added to contain individual sub-samples. With 3 

Pt-electrodes deployed per PVC ring, this amounted to n = 3 quadrants per individual 

ring and a total of N = 27 samples for CT-image analysis. The poly-chromatic beam 

conditions were set at 130 kV and 200 µA, and a Mo target with a 0.25mm Al filter 

were used to reduce beam hardening. A total of 2146 projections, with four frames 

per projection, were taken of each PVC quadrant. Together with the reduced 

specimen size (now 18 x 12.5 cm), these settings allowed us to achieve a final image 

resolution of 110 µm. 

 

3.2.2.2. Image pre-processing 

The pre-processing workflow was the same for all analyzed image files. The 

entire 16-bit raw image file was imported in to the open-source image analysis 

software, Fiji (Schindelin et al., 2012), and converted to an 8-bit image stack. For 

image analysis, we identified volumes of interest (VoI, Figure 3) to test three 

assumptions:  

a) the electron activity sensed by the Pt-electrode tip represents the state of the 

soil solution in the pore system connecting the soil surface and the electrode tip. The 

resulting Volume of Interest (VoI100) was of cylindrical shape centered around the 

electrode with a height of approximately 8 cm (minor variations between individual 

cylinders), a diameter of 4 cm and an average volume of 100 ml 

b) the potential sensed represents a more constrained but still sizable region 

right below the electrode tip. This VoI had a diameter of 4 cm and extended 2 cm 
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down from the bottom of the probe tip, resulting in a volume of approximately 25ml 

(VoI25).  

c) testing the suggestion of Fiedler (1999) that Pt-electrodes are only sensitive to the 

conditions in a space of few cubic mm immediately surrounding and connected to the 

platinum tip, we finally selected a volume of interest surrounding the platinum wire in 

the fashion of a cylindrical sleeve with a height of 7 mm, an inner diameter of 5 mm 

and a wall thickness of 0.84 mm, yielding a volume of 190 mm3 or approximately 0.2 

ml (VoI0.2) . The dimensions of the inner core were chosen to avoid image artifacts 

created by the metal of the probe tip. Figure 4 demonstrates how the respective 

images varied as a function of pore network structure. Representative curves are 

added to reiterate significant differences in electron activity dynamics. For each sub-

sampled VoI the contrast was set using Fiji’s auto brightness/contrast setting. The 

binary threshold was then set manually by comparing pore edges in four different 

images to the same pore edges in the corresponding images from the 8-bit image 

stack prior to thresholding. A 3D median filter of dimension 2 x 2 x 2 pixels was then 

applied to each binary stack which reduced noise, but preserved pore edges (Jassogne 

et al., 2007). Because each of these processing steps were destructive processes, a 

version of the image stack was saved prior to each subsequent step should a 

reprocessing be necessary. 
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Figure 3. Location three of volume of interest (VoI) sub-samples. Three digital sub 
samples (n = 81) were created from the image file for each soil sample (N = 27) using 
Fiji image analysis software. In relation to the location of the Pt-electrode the 
locations of the VoI sub-samples are as follows: the VoI100 (purple, r = 2 cm, h = ~8 
cm) sample extended from the electrode tip to the soil surface, the VoI25 sample 
(blue, r = 2 cm, h = 2 cm) extended from just below, but not including the electrode 
tip downward, and the VoI0.2 sample (red, r1 = 5 mm, r2 = 5.84 mm, h = 7 mm) 
immediately surrounded the Pt-tip it self. The PVC quadrant (black) was 18 cm high 
and the Pt-electrode was inserted to the halfway point (9 cm; black line through 
VoIs). 
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Figure 4. Examples of XCT images generated in the course of this work. Each 
column represents a quadrant with a single electrode from a given pore network 
architecture: “Random” (left column) is the undisturbed soil, “Large aggregate” 
(center column) represents the treatment that was sieved to ≤ 1 cm, while “Small 
aggregate” (right column) shows the pore network architecture created by sieving to ≤ 
2 mm. Rows represent the three different volumes of interest. Pore space is realized in 
gray (intact pore) and white (pore that has been sliced). The associated electromotive 
potential curves from the Pt-electrode specific to the pictured PNA are in the bottom 
row. All PNA images are oriented such that the Pt-electrode is at the bottom with the 
Cu wire extending out the top. 
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3.2.2.3 Image analyses  

To quantify the pore space architecture, each thresholded sub-sample was 

analyzed with the help of two sets of metrics (pore network metrics, PNM). One set 

of metrics (skeleton-based metrics, # 1-9 in Table 1; Figure 3) was used to describe 

the interconnectedness and complexity of the pore network in the VoI, while a second 

set (void-based metrics, # 10-18 in Table 1; Figure 3) was used to characterize the 

three-dimensional reaction space that the pores occupied. The skeleton network of the 

pore space is generated by eroding the voxels defined as pores in each image down to 

their single voxel width medial axes. A skeleton network is defined as all 

interconnected medial axes, and a single image stack can be comprised of multiple 

skeleton networks. The medial axes for each image stack were generated using the 

Skeletonize3D plugin (Arganda-Carreras, 2014; Lee et al., 1994). Analysis of the 

medial axes of each sample using the AnalyzeSkeleton plugin (Arganda-Carreras et 

al., 2010) generated the skeleton-based pore network metrics (Table 1; Figure 5). The 

void-based metrics (Table 1; Figure 5) were calculated using the Particle Analyzer 

function of the BoneJ plugin as well as the Bone Volume to Total Volume plugin to 

calculate the image based percent porosity (Doube et al., 2010). All pore network 

metrics generated by the above plugins as well as the metrics calculated using the 

output from the above plugins are visualized in Figure 5. 
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Table 1. Pore network metrics and associated descriptions 

  

Table 1. Pore network metrics and associated descriptions. 
Metric 
number 

Pore network metric  
(PNM) Unit Metric description 

1 Number of branches Count The number of slab segments (composites of 
slab voxels) in a VoI 
 

2 Total number of junctions Count The total number of voxels in the VoI with more 
than two neighbor voxels 
 

3 Mean branch length mm Average length of a branch in the VoI; 
calculated using all branches in the VoI 
 

4 Maximum branch length mm Length of the longest branch in the VoI 
 

5 Number of triple points Count The number of junctions in the VoI with exactly 
three branches 
 

6 Number of quadruple points Count The number of junctions in the VoI with exactly 
four branches 
 

7 Total number of skeletons Count Number of individual (non-connected) skeleton 
(centerline) networks in the VoI 
 

8 Number of skeletons with 
branches>1 

Count The number of skeleton networks that contain at 
least one junction and branch 
 

9 Mean tortuosity n/a Mean convolution of all pores in the VoI. 
Calculated as the sum of all total branch lengths 
in the sample divided by the sum of the straight-
line distances of all branches in the VoI. (Luo et 
al, 2010a) 
 

10 Image based void volume mm3 Volume occupied by an individual pore. 
Reported as average pore volume for each 
sample. Calculated by counting the number of 
voxels contained within a given void 
 

11 Void surface area mm2 Calculated by fitting a triangular surface mesh 
(via marching cubes) to the interior of each 
individual void 
 

12 Enclosed void volume mm3 Volume of an individual void enclosed by 
triangular surface mesh (0 if no mesh could be 
fit) 
 

13 Mean pore diameter mm Calculated at several points as the diameter of 
the greatest sphere that fits within the void and 
which contains the point 
 

14 Standard deviation of mean 
pore diameter 

mm Standard deviation of sphere diameters used in 
mean pore diameter calculation 
 

15 Surface area to volume ratio mm-1 Surface area divided by image based void 
volume 
 

16 Total number of individual 
voids 

Count Number of individual voids identified in the VoI 
 

17 Number of individual voids 
with enclosed volume>0 

Count The number of voids to which a triangular 
surface mesh was fit in the VoI 
 

18 Image based porosity % Number of void voxels in the VoI divided by the 
total number of voxels in the VoI 
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3.2.3 Statistics 

Statistics were performed using OriginPro (Version X, OriginLab, 

Northampton, MA) or RStudio for Mac version 1.0.136 (RStudio, 2015). All PNMs 

were normalized to a unit per mm3 basis. Linear regression was carried out between 

the mean value for each pore network metric (PNM; explanatory) and the value for 

each electron activity metric (EA metric; response). A relationship between a PNM 

and an EA metric was deemed significant at the p < 0.05 level when the r2 value from 

a given regression was greater than or equal to 0.44 (n = 9 VoI's, each representing 

one quadrant as illustrated in Figure B3, d.f. = 8, f-value = 5.59). Tukey’s honest 

significant difference test in RStudio was used to determine if there were significant 

differences between the mean values (n = 9) from each PNA for (i) the electron 

activity metrics and (ii) the pore network metrics for each volume of interest. A two-

tailed t-test was used to determine if there were significant differences between 

electron activity metrics within a given pore network architecture. 

  



 

 

64 

 

Figure 5. Illustrations depicting each pore network metric. Generalized versions of 
pore network metrics 1 through 18 are shown. Descriptions are in Table 1. 
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3.4 Results and Discussion 

3.4.1 Pt-electrodes provide robust and reliable information about electron activity 

There have been concerns about the ability of platinum electrodes to describe 

the electron activity (pe) status of soils (Bartlett, 1998; Bartlett and James, 1995). 

These concerns are based on limitations of the Pt-electrode system and on the 

multispecies, non-equilibrium nature of the soil solution (James and Brose, 2011). 

Thus, when early researchers (McKeague, 1965) noted deviations of more than 300 

mV among replicate Pt-electrodes installed in the same soil horizon, they attributed 

such variability to the technical deficiencies of the Pt-electrode. An alternative 

explanation for variation among replicate electrodes installed in the same soil horizon 

would be that they are probing biogeochemically distinct microenvironments (Cogger 

et al., 1992; Fiedler, 1999). In our setting, 27 soil-electrode systems were subjected to 

the same changes in moisture content and hence, to a very similar biogeochemical 

stimulus. All electrodes showed the same general response to changes in moisture 

content, with modifications specific to the respective pore network architectures 

(Figure 1). For instance, in the PNA "Large Aggregate" (Figure 1, panel b), all 9 

electrodes registered the same rapid initial increase in electron activity (= EA metric 

a, Figure 2). This response is nearly identical in the PNA "Small Aggregate” (Figure 

1, panel c) while the 9 electrodes installed in the PNA "Random" with its native soil 

structure showed a much wider range of trajectories and associated slopes of the EA 

parameter "a" (Figure 1, panel a). We take these observations as supporting the view 

of Cogger et al. (1992) and Fiedler (1999) that variations among the potentials 

registered by multiple, well calibrated Pt-electrodes installed in the same soil horizon 
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indicate corresponding variations in the biogeochemical states of the 

microenvironments probed by the respective electrodes. Figure 1 further suggests the 

existence of a complex link between pore network architecture and moisture state. 

During the first inundation phase and while completely saturated, the potential 

registered by the n = 9 electrodes in the “Large Aggregate” and “Small Aggregate” 

PNAs behave very similarly in terms of timing of and absolute value of the mean 

minimum electromotive potentials achieved (about -150 mV). (Figure 1, panels b and 

c). However the mean minimum electromotive potential in the “Random” PNA 

continued to decrease over the entire period of complete inundation, only reaching a 

minimum value near 0 mV (Figure 1, panel a). Following the second, partial 

inundation (days 22 – 27.5, Figure 1) however, biogeochemical conditions in the 

PNA "Random" (Figure 1, panel a) begin to diverge widely while they stay relatively 

similar (with outliers) in the PNA's "Large Aggregate" and "Small Aggregate" 

(Figure 1, Panels b and c). These findings allow us to accept hypothesis 1 (electron 

activity metrics are ± constant within the same pore network) with the qualification 

that over time, the “Random” PNA (Figure 1, panel a; Table A.2) offer a greater 

opportunity for diverse biogeochemical conditions to evolve independently in 

individual microenvironments. 

 

3.4.2 The absolute magnitude of pore network metrics (PNMs) depends on the 

observed soil volume 

The values of the metrics (PNM) chosen to quantify variations in pore 

network architecture varied as a function of both network architecture and volume of 
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interest. This is illustrated in Table 2 using PNM # 11: "Average Void Surface Area", 

as an example (for definition and illustration of PNM 11 see Table 1 and Figure 5). 

Depending on the VoI considered, PNM values can be near identical across PNAs 

(VoI0.2, Table 2), or significantly different (VoI25, Table 2).  
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Table 2. Variation in Pore Network Metric 11 "Average Void Surface Area" across Pore 
Network Architectures and Volumes of Interest 

Table 2. Variation in Pore Network Metric 11 "Average Void Surface Area" across Pore 
Network Architectures and Volumes of Interest. Unit: mm2, values in brackets are 
coefficients of variation with n = 9 
 PNA type Significant differences between PNAs 

 
"Random" 

(R) 

"Large 
Aggregate" 

(LA) 

"Small 
Aggregate" 

(SA) 
R : LA R : SA SA : LA 

       

VoI100 
5.1 
(57) 

6.3 
(89) 

2.4 
(130) 

--- --- --- 

       

VoI25 
9.2 
(35) 

5.0 
(52) 

0.9 
(70) 

p < 0.01 p < 0.001 p < 0.01 

       

VoI0.2 
1.0 
(82) 

1.4 
(63) 

1.3 
(92) 

--- --- --- 

Tukey’s honest significant difference test (n=9 per PNA; p-values adjusted for multiple 
comparisons) was used to determine significant differences between electron activity metrics. 
Random  = Random PNA, LA = Large aggregate PNA (≤ 1 cm) and SA = Small aggregate 
PNA (≤ 2 mm). Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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An analysis including all 18 PNMs (Tables A.3 - A.5) reveals that the 

occurrence of significant differences between PNAs is greatest in the 25 ml VoI (30 

significant differences), followed by the 100 ml VoI (15 significant differences), 

while PNMs in the 0.2 ml  

VoIs were largely constant across PNAs with only 2 significant differences 

observed. This trend is consistent with the fact that the selection of a small VoI will 

necessarily limit the abundance of larger sized, ore complex pores within the 

observed VoI.  To the best of our knowledge, a systematic study of different volumes 

of interest within the same sample has so far not been reported for soils investigated 

with CT-base methods. The choice of VoI in CT-based work so far is typically based 

on aggregate or container size, with authors typically virtually sub sampling down to 

a smaller region of interest (RoI) or VoI simply to exclude edge effects (e.g. Katuwal 

et al., 2015b; Luo et al., 2010a). Table 3 compiles the container volumes, volumes of 

soil analyzed, and minimum pore diameters measured in related work. Of the six 

other studies cited, our research falls roughly in the middle in terms of volume of soil 

analyzed and minimum pore diameter measured. The closest scaled XCT analysis of 

the soil pore network to this work was carried out by (Köhne et al., 2011), who 

sampled two soils of contrasting texture using three different sample container sizes. 

Where possible, the resulting images were merged using a concept called ‘Scale 

fusion’ in an effort to capture both the larger interaggregate pores and the smaller 

intraaggregate pores. Though assessing the role of the pore network in regulating 

contaminant movement in soils as a function of scale of observation, their results 



 

 

70 

suggest an intimate relationship between the pore network structure and function for 

physical transport processes.  
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Table 3. Overview of container volume, volume of soil subsection for X-ray computed 
tomography analysis, and minimum diameter of soil pores analyzed. 

Table 3. Overview of container volume, volume of soil subsection for X-ray computed 
tomography analysis, and minimum diameter of soil pores analyzed.  

Author Minimum pore 
diameter Volume analyzed Container volume 

 µm (mL) (L) 

Peth et al., 2008 ≥ 6 
Between 0.00213 

and 
0.01 

Variable 
(d = ~5 mm) 

Köhne et al., 2011 > 10 Not specified 0.8 to 2 

This work ≥ 220 
0.2, 
25, 
100 

8.8  
(one quadrant) 

Luo et al., 2008 ≥ 750 Not specified 2.4 

Luo et al., 2010a ≥ 750 2400 2.7 

Katuwal et al., 2015a ≥ 1200 4325 5.7 

Sammartino et al., 2012 ≥ 1500 Variable 2.0 
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3.4.3 Pore network architecture modifies electron activities  

The pore network has been thought to play a role in redox dynamics in soils 

for nearly 70 years (Grable and Siemer, 1968; Quispel, 1947; Vepraskas and Wilding, 

1983). The extent to which the mechanisms relating the redox status of the soil and 

the pore network however usually ends at differentiating between macro and micro 

pores (e.g. Horn and Smucker, 2005) or changes in porosity overall (e.g. 

Zimmermann et al., 2016). Most major models of aerobic or anaerobic microsite 

formation depend on estimating water-filled porosity or air-filled porosity to calculate 

diffusing coefficients (of gases or dissolved organic carbon) and generally ignore 

pore network structure (Keiluweit et al., 2016). X-ray computed tomography provides 

a method to more directly measure the structure of the pore network and its impacts 

on soil processes. However, most applications focus on quantification of water fluxes 

(Or et al., 2007), saturated hydraulic conductivity (Luo et al., 2010b; Paradelo et al., 

2016), air fluxes (Katuwal et al., 2015b; Naveed et al., 2013; Rappoldt and Crawford, 

1999), or pore space genesis as a function of microbial activity (Helliwell et al., 

2014), and not directly on the formation (or location) of microbial ‘hotspots’ (i.e. 

anaerobic soil volumes) (Kuzyakov and Blagodatskaya, 2015). Part of this may be 

due to the complex relationship between the pore network and microbial activity; 

even studies specifically designed to generate contrasting results, have note 

necessarily produced conclusive results (Negassa et al., 2015). To the best of our 

knowledge, very little attention has been paid to purposefully manipulating the pore 

network and quantifying the resulting changes in electromotive potential dynamics 

(e.g. Keller et al., 2017). 
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To test the null-hypothesis "the dynamics of electron activities are 

independent of pore network architecture", we evaluated the extent to which electron 

activity (EA) metrics (Figure 2) differed between individual PNAs. To do so, Tukey’s 

honest significant differences test (Tukey’s HSD) was used to compare the means of 

n = 9 EA metrics from each PNA. This was done for all of the 10 EA metrics 

developed to describe the dynamics of electron activities during the duration of the 

experiment (Table 4). The greatest number of significant differences, six in total, was 

registered comparing the PNA "Random" with the PNA "Large Aggregate". The 

significant differences occurred between EA metrics a, b, c, d, f, and i (Table 4). Only 

one EA metric had a borderline significant p-value (p = 0.073) in the Random – Large 

Aggregate comparison (EA metric j). There were two significant differences and one 

borderline significant difference in EA metrics when the Random and Small 

Aggregate PNAs were compared (significant: c and d; borderline b, p-value = 0.053). 

The EA metrics for the Large and Small Aggregate PNAs were very similar, with 

only one borderline significant difference identified between the EA metrics (EA 

metric d, p-value = 0.066). We refute the null hypothesis that electron activities are 

independent of pore network architecture based on the clear differences noted in the 

comparison between the random (or native soil structure) and artificially created 

structures. To our surprise, variations in electron activity were not significantly 

different between the two artificially created PNAs, indicating that aggregate size is 

not likely to be the sole controlling factor in the dynamics of electron activities.   
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Table 4. Significant differences in Electron Activity metrics across Pore Network 
Architectures and Volumes of Interest 

Table 4. Significant differences in Electron Activity metrics across Pore Network 
Architectures and Volumes of Interest, values are mean and (coefficients of variation) with n 
= 9 

   Pore network architecture 
(PNA)  Significant differences 

between PNAs 
EA 

metric Parameter Unit R LA SA  R : 
LA 

R : 
SA 

SA : 
LA 

   𝑥 (CV) 𝑥 (CV) 𝑥 (CV)     

a - slope mV/hr -10.4 
(42) 

-18.0 
(18) 

-14.5 
(33)  ** --- --- 

b - slope mV/hr -3.5 
(66) 

-24.8 
(53) 

-18.3 
(96)  ** (p = 

0.053) --- 

c min mV -48.0 
(195) 

-166.1 
(17) 

-156.6 
(17)  *** ** --- 

d time hr 292.4 
(26) 59.4 (22) 154.6 

(82)  *** ** (p = 
0.066) 

e elapsed 
time hr 22.8 

(51) 
12.0 
(154) 22.6 (98)  --- --- --- 

f + slope mV/hr 4.2 (24) 2.3 (25) 3.5 (61)  * --- --- 

g max mV 709.3 
(16) 

669.4 
(23) 

614.4 
(21)  --- --- --- 

h elapsed 
time hr 480.8 

(6) 
437.1 
(14) 

440.2 
(17)  --- --- --- 

i - slope mV/hr -2.8 
(76) 

-0.5 
(242) -1.1 (93)  * --- --- 

j + slope mV/hr 2.3 
(133) 0.2 (148) 0.6 (196)  (p = 

0.073) --- --- 

Tukey’s honest significant difference test (n = 9 per pore network architecture) was used to 
determine significant differences between curve part means. P-values were adjusted for 
multiple comparisons. R = Random PNA, LA = Large aggregate PNA (≤ 1 cm) and SA = 
Small aggregate PNA (≤ 2 mm). Significance levels: * = p < 0.05; ** = p < 0.01; *** = p < 
0.001. 
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3.4.4 Pore network metrics have differential power to explain electron activity 

metrics  

The pore network architecture is traditionally parameterized by generating 

moisture release functions, a method that has been extensively used in the soil physics 

community.  However, these functions are typically obtained using soil samples in the 

3 to 10 cm size range and the resulting information provided on pore characteristics is 

an average across the entire sample (Kravchenko and Guber, 2017). For example, 

basic physical soil properties were not significant predictors of saturated hydraulic 

conductivity when compared to XCT derived macropore characteristics (Luo et al., 

2010b).  

The use of 3D X-ray computed tomography to quantify the structure of the 

soil pore network has become almost ubiquitous in recent years. Because of this, the 

associated parameters have become equally broad ranging. These parameters can be 

broken down in to two major categories: 1) parameters that describe the reaction 

space (i.e. the 3D pore space it self) and 2) parameters that describe the complexity of 

the pore network (i.e. the number of pore connections per unit volume).  

Variables that belong to the first category are: total porosity (Kravchenko et 

al., 2015; Larsbo et al., 2016; Negassa et al., 2015; Paradelo et al., 2016; Rabbi et al., 

2016; Toosi et al., 2017), pore size distribution (Kravchenko et al., 2015; Luo et al., 

2010a; Peth et al., 2008; Toosi et al., 2017), pore surface area (Li et al., 2016; Naveed 

et al., 2016; Sammartino et al., 2015), pore thickness (i.e. diameter) (Jarvis et al., 

2017; Larsbo et al., 2016; Naveed et al., 2016), and total pore volume (Dong and 

Blunt, 2009; Luo et al., 2010a; Perret et al., 1999).  
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Variables that fall in the second category rely largely on what is referred to as 

the skeleton, or single voxel width medial axes, of the pore network (Arganda-

Carreras, 2014; Lee et al., 1994). Examples here include: tortuosity calculated as total 

pore length/Euclidean distance (Jassogne et al., 2007; Katuwal et al., 2015a; Luo et 

al., 2010a; Perret et al., 1999) or using the Euler number (Köhne et al., 2011; Larsbo 

et al., 2014; Peth et al., 2008), pore connectivity calculated using (i) Euler number 

(Rabot et al., 2015; Sammartino et al., 2015), or (ii) node density (Katuwal et al., 

2015b; Luo et al., 2010a), and macropore length (Luo et al., 2010a; Perret et al., 

1999). 

Nine correlation matrices (three pore network architectures versus three 

volumes of interest, Figure 6) were constructed to explore the existence of linear 

correlations between electron activity metrics (EA, dependent variable) and pore 

network metrics (PNMs, predictor variable). In these matrices (Figure 6), the ability 

of each pore network metric (1.....18) to predict any of the electron activity metrics 

(a...j) is represented by either a plus (positive correlation) or a minus symbol 

(negative correlation). The existence of a significant correlation was assumed if the 

coefficient of determination (r2) for the relationship between the respective PNM and 

a given EA metric (n = 9 for each combination of PNA and VoI) was ≥ 0.44 (f-value 

= 5.59, d.f. = 8).  
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Figure 6. Significant correlations between the electron activity metrics (Figure 2; a – 
j; vertical axis) and pore network metrics (Figure 3, 1 – 18; horizontal axis) are shown 
for each treatment and volume of interest (VoI) (p < 0.05, d.f. = 8). Significant 
correlations are marked by a grey box; + indicates a positive relationship between the 
pore network metric and electron activity metric, and – indicates a negative 
relationship. The vertical black line in each panel indicates the transition from 
skeleton based metrics to void based metrics. 
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Examination of the entire cohort of nine correlation matrices allows the 

assessment of the ability of somewhat arbitrarily chosen metrics to quantify the 

relationship between soil structure and electron activity dynamics. Figure 7a 

compares the 'efficiency' of individual EA metrics as descriptor variables and shows 

that variables f, a, and e were much more often correlated with a pore network metric 

than any of the other EA metrics. Figure 7a also illustrates the abundance of positive 

versus negative correlations. For instance, the rate of EPt increase (i.e. electron 

activity decrease) after the first drainage (EA metric "f") was mainly positively 

correlated with pore network metrics (PNMs), while the subsequent decline in EPt 

(i.e. electron activity increase) following partial inundation (EA metric "i") was 

always negatively correlated with PNMs. A similar analysis can be conducted for the 

PNMs. Here we find that void-base metrics (Figure 7c) tend to appear more 

frequently in significant correlations with EA metrics than skeleton-based metrics 

(Figure 7b), with particularly high scores noted for PNMs 14 (seven instances), 11, 

and 12 (five and six instances respectively). Overall, void-based pore network metrics 

correlate on a total of 38 occasions compared to 28 total correlations observed for 

skeleton-based metrics (Figure 7b and c). Considering subtotals for the three different 

PNAs we find a trend of increasing number of correlations going from PNA 

"Random" with 7 total correlations, 20 correlations for the PNA "Large Aggregate", 

to 39 correlations in the PNA "Small Aggregate" (Figure 8a).   
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Figure 7. Frequency of correlation with electron activity metrics. Frequency of 
correlations with electron activity metrics as a function of pore network metrics (a), 
skeleton-based pore network metrics (b), and void-based pore network metrics (c). 
Positive correlations are diagonal-hatched, negative correlations in gray. PNA = pore 
network architecture, EA = electron activity. 
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We found that the void-based pore network metrics tended to have statistically 

stronger relationships with EA metrics, evidenced by way of a greater total number of 

significant correlations compared to the skeleton-based metrics.   
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Figure 8. Incidence of correlations between electron activity metrics and pore 
network metrics as a function of pore network architecture (a), and volume of soil 
observed (i.e. VoI; b). Skeleton-based metrics are diagonal-hatched, void-based 
metrics are in gray. PNA = pore network architecture. 
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As the shape, size, or layout of the pore network changes, so must the 

relationship with electron activity, and subsequently the existence or lack of 

statistically significant correlations. We decided to investigate four categories of EA 

metrics, each representing different functionalities of the pore network: (i) Decreasing 

EPt (negative slopes) – represents water movement into the pore network, an 

increasing restriction on the resupply of atmospheric oxygen, and a facilitation of 

nutrient diffusion and advection; (ii) Extreme EPt values (maximums or minimums) – 

are seen as capacitive indicators, potentially useful to parameterize boundary 

conditions for the system studied. A soil not returning to fully aerobic state (high EPt) 

after rewetting may have a pore system with poor connectivity, while a soil unable to 

achieve high electron activities (low EPt) may lack electron donors such as reduced 

organic matter; (iii) Timing of minimum or maximum potentials – along with the 

pore characteristics necessary for point (ii) above, the timing of the extreme values 

depends on the rate at which water can flow in or out as well as the rate at which 

nutrients or gases can move through the pore network; (iv) Increasing EPt – requires 

that water flow out of the pore network in an unrestricted fashion, but more 

importantly the uninhibited reentry of oxygen in to the pore network.  

The relationship between the void-based and skeleton-based metrics and the 

electron activity metrics is scale dependent. At larger scales void-based metrics are 

likely to be more important in regulating water infiltration, nutrient, and gas 

movement (e.g. increasing electron activity), while skeleton-based metrics are likely 

to be more important at smaller scales, influencing nutrient and gas diffusion, as well 

as water retention in the pores immediately the Pt-electrode (e.g. timing of extreme 
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values). Void-based metrics are more likely to capture the surface topology (or 

roughness) of the pores. As pore roughness increases, the ability (and likelihood) of 

pockets of water storage on the pore face it self increases, maintaining optimal 

air/water conditions (Linn and Doran, 1984) for longer periods of time (Kravchenko 

and Guber, 2017).  

Though the void-based PNMs incurred a higher total number of correlations 

compared to the skeleton-based PNMs, the correlation of a void-based or skeleton-

based PNM with an EA metric was always a function of VoI and PNA. In the “Small 

Aggregate” PNA, as the VoI decreased the number of significant correlations with 

skeleton-based metrics increased while they decreased in the void-based metrics. This 

suggests that the reactions occurring in immediate proximity to the Pt-electrode tip 

are more dependent on the connectivity of the pore network as opposed to the 

reaction space provided by the pores. The formation of anaerobic conditions (or 

‘hotspots’) at scales beyond the immediate vicinity of the Pt-electrode tip is likely 

more dependent on advective movement of gases (e.g. oxygen) and solutes (e.g. 

nutrients and DOC) through macropores (Kuzyakov and Blagodatskaya, 2015) as 

opposed to diffusion-based transport, which has been thought to be the dominant 

mechanism in micropores (Keiluweit et al., 2016; Negassa et al., 2015). We 

summarize that our exploratory analysis of the relationship between pore network 

parameters and parameters across different pore network architectures and volumes of 

interest suggests the existence of a set of parameters with the potential to be 

particularly useful for the investigation of structure – functionality relationships in 

soils. 
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3.4.5 The explanatory power of PNMs depends on pore network architecture 

This picture becomes more differentiated when correlations between PNMs 

and EA metrics are examined separately for each individual pore network architecture 

(PNA) and volume of interest (Figure 6 and Figure 8a and b). Within the native pore 

structure (aka PNA "Random") none of the skeleton-based pore network metrics 

correlate with any of the EA metrics (Figure 6). The void-based metrics show one, 

two, and four correlations going from VoI100, to VoI25, to VoI0.2, respectively. Of the 

three PNAs and across all VoIs, the PNA "Random" had the fewest total number of 

correlations (7; Figure 8a). 

The total number of correlations increased to 20 for the PNA "Large 

Aggregate", with 6 contributed by skeleton-based metrics and 14 involving void-

based metrics (Figure 8a). In this PNA there was no trend with VoI: 10 correlations 

were found for the large VoI100, zero for the intermediate VoI25, and 10 for the small 

VoI0.2 (Figure 6 and 8b). The correlations observed for the VoI100 were generally not 

the same as the ones observed for the VoI0.2. There was one combination of metrics 

(EA "a" as a function of PNM "10") that showed a significant negative correlation in 

both the VoI100 and VoI0.2  (Figure 6).  

In the "Small Aggregate" pore network architecture (PNA), where the soil had 

been sieved to ≤ 2 mm, 39 correlations between EA metrics and PNMs were found. 

Within this PNA, correlations involving skeleton-based metrics increased from 2, to 

5, to 15 with decreasing VoI size (Figure 6), while correlations involving void-based 

metrics remained nearly constant as the VoI changed. Considering both skeleton and 

void-based metrics together, we observed a progression from 8, to 10, to 21 
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correlations going down in VoI size from VoI100, to VoI25, to VoI0.2, respectively 

(Figure 6). Out of 39 correlations observed for PNA "Small Aggregate", only 2 

combinations occurred in more than one of the VoIs, and both involved electron 

activity metric "e": this metric correlated negatively with PNM 6 in VoI100 and 

positively in VoI0.2. It also correlated positively with PNM 18 in both, VoI100 and 

VoI0.2. We observed only one incidence of correlation occurring between the same 

parameter pair across pore network architectures: EA "c" was negatively correlated 

with PNM "12" in PNA "Large Aggregate" and in the PNA "Small Aggregate" 

(Figure 6). 

The observed effects of manipulating the pore network varied as a function of 

VoI. We assumed that the pore network would become more homogeneous in terms 

of both void and skeleton-based metrics as aggregate size decreased (reflected as 

smaller coefficients of variation). While this trend was somewhat evident in VoI0.2 

(coefficient of variation is similar across all PNMs, Table A.5), most of the pore 

network metrics from the “Large Aggregate” PNA tended to be more variable than 

those from the “Random” or “Small Aggregate” pore network architectures in the two 

larger VoIs (coefficients of variation in Tables A.3 and A.4). What we ended up 

doing by sieving the soil to ≤ 1 cm for the “Large Aggregate” PNA was to effectively 

increase the pore network heterogeneity per unit volume. However, following Nimmo 

and Perkins (2008), the average void volume (i.e. macroporosity) did decrease as 

aggregate size decreased in the 100 ml and 25 ml VoIs, but stayed statistically the 

same in the 0.2 ml VoI (Tables A.3, A.4, and A.5) 
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An outcome of manipulating the pore network architecture (PNA) and varying 

the scale of observation were contrasting results in terms of the types of relationships 

between EA metrics and PNMs. An example of VoI changing the relationship was in 

the “Small Aggregate” PNA. EA metric "e” (Figure 2) correlated negatively with 

PNM 6 (number of junctions with four branches; Figure 4 and Table 1) in VoI100 and 

positively in VoI0.2 (Figure 6). In VoI100 as the number of junctions with four 

branches increased, the lag time from the first drain to an EPt increase of at least 50 

mV became shorter. Because the 100 ml VoI was connected to the surface, as the 

number of pore connections from the electrode tip to the soil surface increased, 

oxygen was able to reach the electrode more quickly (Kawamoto et al., 2006; 

Moldrup et al., 2001; Tuli and Hopmans, 2004) thus decreasing the time required for 

the electromotive potential to change. In VoI0.2 the opposite occurred, as the number 

of quadruple points increased, the lag time also increased. A large number of 

connections implies that there are many branches/pores in the immediate vicinity of 

the Pt-electrode. As the number of branches/pores increases the pore volume able to 

be occupied with water increases, it would then take longer for the pore network to 

drain and oxygen to reach the electrode tip (Tracy et al., 2015). 

An example of the type of a change in relationship between EA metrics as a 

function of PNA occurred in the “Random” and “Large Aggregate” PNAs and pore 

network metric "12" (Figure 5 and Table 1; average enclosed void volume). In the 

same VoI (VoI0.2) PNM “12” correlated negatively with EA metric  “a” (Figure 2; 

rate of electron activity increase over the first 72 hours after inundation) in the 

“Random” PNA, while the same PNM correlated positively with EA metric "c" 
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(Figure 2; maximum electron activity during pore network inundation) in the “Large 

Aggregate” PNA. In the “Random” PNA, as the enclosed void volume increased, the 

rate at which electron activity increased over the first 72 hours after flooding became 

increasingly negative (the rate of change became larger). In the “Large Aggregate” 

PNA, as the enclosed void volume increased, the maximum electron activity 

decreased (EPt became less negative). These results suggest that the relationship 

between pore network metrics and electron activity dynamics is a function of 

aggregate size, and by extension the pore network architecture of the system as a 

whole. Therefore the establishment and scaling of such a relationship must take in to 

account the pore network architecture across a sufficiently sized representative 

elementary volume so as to capture the majority of aggregate sizes. 

 

3.4.6 Utility of electron activity and pore network metrics 

 Not all electron activity or pore network metrics were equally useful in 

describing the electron activity dynamics over the course of this work. Of the 66 total 

correlations between EA metrics and PNMs, Figure 7a shows that three out of the ten 

EA metrics accounted for over half of those correlations (41 in total). Those EA 

metrics (defined in Figure 2) were: “a” (rate of increase in electron activity during the 

first 72 hours after inundation), “e” (time elapsed from first draining to the inflection 

point where the electron activity decreased by at least 50 mV from the potential at 

draining), and “f” (rate of decrease in electron activity from the maximum value 

during inundation to the minimum value occurring after first draining).  
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 Similarly, there were certain pore network metrics (described in Table 1 and 

Figure 5) that correlated more often with EA metrics than others. The top three 

skeleton-based metrics (Figure 7b) were all concerning the number of pore junctions: 

“2” (total number of junctions), “5” (the number of junctions with exactly three 

branches), and “6” (the number of junctions with exactly four branches). The top 

three void-based metrics (Figure 7c) were: “11” (void surface area), “12” (enclosed 

void volume), and “14” (the standard deviation of the mean pore diameter). 

 These results indicate that specific portions of electron activity 

dynamics are likely more closely regulated by the pore network compared to others. 

Similarly the pore network metrics that were most often correlated with changes in 

electron activity were those that have been directly tied to gas (Katuwal et al., 2015a; 

Katuwal et al., 2015b) and water movement (Larsbo et al., 2014; Sammartino et al., 

2015) through the pore network. 

 

3.4.7 The explanatory power of PNMs is greatest for a small soil volume immediately 

surrounding the electrode tip 

Size and placement of the soil volume observed were found to have a 

profound influence on the ability of PNM's to statistically explain variations in 

electron activity metrics (Figure 8b). In VoI100, pore network metrics were mostly 

correlated with EA parameters "f " (6 incidences, all positive) and "e" (5 incidences, 4 

negative, 1 positive). Out of 19 total correlations observed for this volume, only one 

occurred in the PNA "Random" (Figure 6). In VoI25, 7 PNM's correlated with EA 

metric "i", all of these correlations occurred in PNA "Small Aggregate" and all of 
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them were negative. More than half (35 out of 66 total) of all observed correlations 

occurred in VoI0.2; with EA variable "a" showing 9 correlations while variables "c", 

"e" and "f" had 7 correlations each. Correlations with EA variable "a" occurred 

overwhelmingly in PNA "Large Aggregate", while correlations with variables "c", "e" 

and "f" mostly occurred in the PNA "Small Aggregate". This finding can be seen as 

supportive of the hypothesis that the Pt-electrode is most sensitive to the 

electrochemical conditions immediately surrounding the platinum wire tip, as 

proposed by Fiedler (1999).   

EA metric “i” is the rate at which electron activity increases during the 

second, partial fill, with water. Water movement to the electrode tip during this 

portion of the experiment is dependent entirely on capillary rise. It stands to reason 

then that the portion of the pore network that is most related to these dynamics would 

be the portion of the pore network immediately below the Pt tip. This assessment 

partially breaks down on one other occasion in the “Random” PNA where EA metric 

“i” significantly correlates (again in a negative fashion) with PNM 14 (SD of mean 

pore diameter), but this time in VoI100. Though the 100 ml VoI does not quantify the 

pores directly responsible for capillary movement of water, it does capture the pores 

surrounding the electrode tip. These pores will still be responsible for movement of 

water from the ‘water table’ (water level during the second, partial inundation) to the 

electrode tip. 

Significant differences in EA metrics between pore network architectures do 

not always mean that there will be significant correlations between those EA metrics 

and pore network metrics. For example, EA metrics “c” and “d” (the time elapsed at 
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which the maximum electron activity occurs) were significantly different between the 

“Random” and “Large Aggregate” (p < 0.001), and “Random” and “Small 

Aggregate” (p < 0.01) pore network architectures Table 4). But EA metric “d” only 

had one total significant correlation across all VoIs and pore network architectures 

(Random VoI25, PNM = 16) where EA metric “c” had a total of seven: “Large 

Aggregate” VoI0.2, PNM = 12 (positive) and “Small Aggregate” VoI0.2, PNMs = 2, 5, 

6, 11, 12, 15 (all positive) (Figure 6). 

 EA metric “b” only had one significant correlation in all VoIs and pore 

network architectures (VoI0.2, PNA = “Large Aggregate”, PNM = 16) (Figure 6). The 

lack of correlations could be explained by the fact that we completely flooded the 

pore networks, so the electromotive potential was left no choice but to decrease, and 

the pore network had little to no opportunity to influence the decrease. If this were the 

explanation, then there should have been no significant difference in rate of 

electromotive potential decline. However, EA metric “b” was significantly different 

between the “Random” and “Large Aggregate” pore network architectures (p < 0.05) 

and nearly significant between the “Random” and “Small Aggregate” pore network 

architectures (p = 0.053; Table 4).  

We measured the strongest statistical relationship between electron activity 

and the pore network when examining the pores immediately surrounding the Pt-

electrode. One possible explanation for the increased number of significant 

correlations between EA metrics and PNMs in the smallest VoI and PNA with the 

smallest pores is: As aggregate size decreased, large biopores, with smooth, 

potentially hydrophobic surfaces (Bachmann et al., 2008) were increasingly 
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destroyed. This lead to redistributed (i.e. more easily accessible) electron sources 

(Negassa et al., 2015) and the generation of rough pore surfaces (Ananyeva et al., 

2013; Kravchenko et al., 2015; San José Martínez et al., 2015). Rough pore surfaces 

have been shown to collect small pools of water, provide more attachment points and 

habitable niches for microbes (Massol-Deya et al., 1995; Or et al., 2007; Vandevivere 

and Baveye, 1992), along with increased diffusion of nutrients in the pore water (Or 

and Tuller, 2000). This result is also inline with the assessment made by Fiedler 

(1999) that the Pt-electrode is most sensitive to the soil volumes and biogeochemical 

processes that are in immediate, direct contact.  

We summarize that the mechanisms that regulate gas and nutrient transport 

(which ultimately control electron activity) are different across scales. At larger scales 

water, gases, and nutrients are dominantly moved by advection, while at smaller 

scales diffusive movement dominates. The PNMs that more tightly regulate diffusion 

(e.g. pore tortuosity or the number/class of pore connections) will correlate at the 

small VoI, while the PNMs that are more involved in advective movement (e.g. SD of 

mean pore diameter or void surface area) will correlate more often at larger VoIs, or 

in the pore network architectures with larger aggregates/pores. 

3.5 Conclusions 

To the best of our knowledge, there has so far not been a report of an attempt 

to investigate variations in electron activity or redox status of soil environments with 

the help of metrics from three-dimensional imaging methods such as computed 

tomography. Similarly, we are not aware of investigations that would have 

manipulated soil structure with the intent to explore resulting effects on the dynamics 
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of soil redox status. We were able to demonstrate that the pore network and the 

dynamics of electron activities in soils are indeed correlated, but we did not expect 

the extent to which these correlations depended on both, (i) the type of pore network 

architecture and (ii) the soil volume chosen for imaging analysis. We recognize an 

overall trend of increasing predictability as both, aggregate sizes and volumes of 

interest get smaller, but there were exceptions to the trend that prevent us from 

making generalizing statements at this time. But our work showed: the fact that a 

given CT-derived pore network metric does not have much predictive power in a 

certain type of structural environment and at a certain scale of observation does not 

necessarily mean that this would be the same in a different environment and at 

another scale of observation. Our findings suggest that future investigations of 

physiological processes in porous soil and subsurface systems should involve 

preliminary activities to determine the scale of observation (volume of interest) and 

the associated kind of pore network metric best suited to generate the answer sought.  

 

3.6 Acknowledgments 

This work was supported by the US Department of Energy, Office of 

Biological and Environmental Research, Terrestrial Ecosystem Program (Award 

Number DE-FG02-13ER65542). We were also supported through instrument time 

grants provided by the Environmental Molecular Sciences Laboratory (EMSL), a user 

facility at the Pacific Northwest National Laboratory at Richland, WA through 

proposals ,48704 (Kleber); 48750 (Kleber) and 48910 (Fendorf). 

  



 

 

93 

4.  Summary and Conclusions 

This thesis highlighted a robust method for the quantification of 

biogeochemical heterogeneity, measured as electron activity, in a non-hydric soil and 

the existence of a mechanistic relationship between electron activity and soil 

structure.  

The first chapter showed that Pt-based electrodes can return robust, 

quantitative information concerning the division of three non-hydric Mollisols in to 

biogeochemically distinct microsites. The utilization of a fixed grid of Pt-electrodes 

also allowed for the establishment of a metric, termed the Metabolic Heterogeneity 

Index, capable of quantifying the degree to which a soil was divided in to 

biogeochemically distinct microsites on seasonal time scales. These soils contained 

microenvironments that included conditions of (i) unrestricted aerobiosis immediately 

adjacent to (ii) conditions allowing for sulfate reduction or methane production. The 

variation in electron activities was mainly a function of changes in precipitation 

patterns as opposed to seasonal fluctuations in temperature. Interestingly, variability 

in the measured electron activities was insensitive to precipitation events until the 

water filled pore space exceeded 60%. Finally, saturation of the pore network does 

not immediately equate the existence of reducing conditions.  

The second chapter demonstrated able that the pore network and the dynamics 

of electron activities in soils are indeed correlated. A linear relationship between 

electron activity and pore network architecture of a soil as measured using Pt-based 

electrodes and x-ray computed tomography (XCT) was established. The statistical 

strength of the relationship between the pore network architecture and electron 
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activity is a function of (i) aggregate size and (ii) the volume of interest investigated 

using XCT. As aggregate size decreased the linear relationship between the electron 

activity and pore network architecture became stronger. 

Taken together, the results of this thesis allowed the following insights to be 

drawn. (i) The writing of models to describe the formation of biogeochemical 

heterogeneity at cm to m scales could be made more robust by including void-based 

metrics to parameterize the pore network. With the impetus on more accurately 

representing the reaction space the pore network provides (e.g. pore volume and pore 

surface area) and the shape of the pores overall (e.g. variability of pore diameter). (ii) 

Changes in precipitation patters or sub-surface water flow should be weighted more 

heavily compared to shifts in temperature. (iii) The influence of thick films on rough 

pore surfaces should likely be accounted for when considering gas and solute 

(re)distribution and impacts on biogeochemical heterogeneity, especially in soils that 

have undergone recent disturbance or destruction of carbon-coated biopores. 
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6.  Appendices 

6.1 Appendix A (Supplementary Information for Chapter One) 

 
Figure A.1. Willamette, Woodburn and Amity sites and position of weather station at 
the Hyslop Crop Science Field Research Laboratory, 3455 NE Granger Rd., 
Corvallis, OR 97330. Oregon Agricultural Experiment Station and College of 
Agricultural Sciences, Oregon State University. 
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Figure A.2. Schematic for the resistance amplifier used to increase the input 
resistance of a hand held digital multimeter (DMM). The effective input resistance 
was increased from 106 ohms to >1013 ohms using a TLE2426 precision virtual 
ground operational amplifier from Texas Instruments and a single 9V battery. The 
amplifier was packaged in a watertight enclosure and designed to plug directly in to 
the positive and negative ports of the DMM.  The corresponding polarity leads would 
then connect directly to the amplifier. 
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Figure A.3. Time series of precipitation (panel a); and soil temperature per depth for 
Woodburn (panel b) and Amity (panel b) soils. Shaded area indicates full water 
saturation with electrodes submerged. Soil temperature (b and c) was measured using 
Decagon 5TE electrodes at 10, 20, 50, and 100 cm depths in the Woodburn and 
Amity soils (n=1, with the exception of Woodburn 10, Woodburn 20, Amity 20 and 
Amity 50, where n=2). Data from replicate electrodes are indicated by a solid (probe 
1) and dashed (probe 2) lines. Depths labeled in the Woodburn panel are the same for 
the Amity panel. Temperature data were recorded every six hours and then the 
average temperature per day was calculated and shown here. 
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Figure A.4. Size comparison between Pt-electrodes used in Amity and Woodburn 
soils. The Fiedler model is at the top and was installed at the Woodburn and 
Amity soils. The miniaturized Baham/Wanzek model is at the bottom and was 
deployed at the Willamette site. The larger electrodes were roughly 2 cm in 
diameter and 10 cm in length (Pt tip to end of epoxy body). Contrastingly the 
smaller electrodes were roughly 1 cm in diameter and 2 cm in length (Pt tip to end 
of epoxy body). 
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Table A.1. Redox couples, associated reduction half – reactions, and specific redox 
potentials (Eh) for pH = 7; [red] = [ox] = 10-4 M, 0.21 atm for O2, 0.78 atm for N2 and 
0.00032 atm for CO2. 

Couple Reaction Eh 
(mV) 

   
O!/H!O 1

4O! + e
! = 1

2H!O 805 
   

NO!!/N! 1
5NO!

! + e! + 6 5H
! = 1

10N! + 3 5H!O 704 
   

Mn!!/Mn!! 1
2MnO! + e

! + 2H! = 1
2Mn

!! + H!O 521 
   

SO!!!/H!S 1
8 SO!

!! + e! + 5 4H
! = 1

8H!S+
1
2H!O -207 

   
Fe!!/Fe!! 1

2 Fe!O! + e
! + 3H! = Fe!! + 3 2H!O -213 

   
Fe!!/Fe!! FeOOH+ e! + 3H! = Fe!! + 2H!O -236 

   
CO!/CH! 1

8CO! + e
! + H! = 1

8CH! +
1
8CO! -243 
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Table A2. Soil descriptions, profile information, and site locations
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Table A.3. Monthly precipitation totals for December 2014 through April 2016a, 
four-month totals for each wet season (December through April), and mean daily 
precipitation by month are provided to illustrate differences in precipitation amounts 
between wet seasons. 

Year Month Σ  
(mm) 

Daily Mean 
(mm/day) 

2014 December 200.7 6.5 
    

2015 January 93.5 3.0 
    
 February 130.2 4.7 
    
 March 114.4 3.7 
    
 April 39.9 1.3 
    
 Σ Dec – Apr 578.7  
    
 May 28.1 0.9 
    
 June 12.0 0.4 
    
 July 0.0 0.0 
    
 August 10.7 0.3 
    
 September 48.7 1.6 
    
 October 92.1 3.0 
    
 November 117.3 3.9 
    

2015 December 354.9 11.4 
    

2016 January 226.6 7.3 
    
 February 93.0 3.2 
    
 March 200.1 6.5 
    
 April 81.0 2.7 

    
 Σ Dec – Apr 955.6  
a Daily precipitation amounts were summed for each month.  Precipitation data collected 
daily from a National Oceanic and Atmospheric Administration Global Historical 
Climatology Network weather station on Hyslop Research Farm, Corvallis, Oregon. 
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6.2 Appendix B (Supplementary Information for Chapter Two) 

 

 
Figure B1. Experimental layout of PVC rings. All nine PVC rings were in the same 
fiberglass tub for the duration of the experiment. Each pore network architecture 
occupies one row: “Random” (top row), “Large aggregate” (middle), and “Small 
aggregate” (bottom). The tub was lined with a polyurethane tarp (blue) and filled with 
~ 2 cm of coarse, autoclaved sand to allow for water infiltration into and exfiltration 
out of the soil samples. 
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Figure B2. Visual timeline of experimental steps and water saturation conditions. 
Using an example XCT image, a time line of saturation conditions is shown (blue 
shading). Timing of changes in and duration of conditions are indicated.   
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a  

 

b  

 
Figure B3. Example images of PVC cylinder sub-sectioning. To achieve the 
sufficient penetration of the x-ray beams, each PVC cylinder was sub-sectioned into 
four equally sized quadrants. Wanzek (pictured) cut the PVC cylinder and used 
acrylic glass sheets to create each sub-sample container. 
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Table B1. Woodburn series characteristics for Ap horizon, 0 – 20 cm 
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 Table B2. Significant differences between electron activity metrics within the pore 
network architectures.  

  

 

Table B2. Significant differences between electron activity metrics within the pore network 
architectures.  

EA 
metric 

R1 
and 
R2 

R1 
and 
R3 

R2 
and 
R3 

LA1 
and 
LA2 

LA1 
and 
LA3 

LA2 
and 
LA3 

SA 1 
and  
SA2 

SA1 
and 
SA3 

SA2 
and 
SA3 

a --- --- --- --- --- --- --- --- * 
b --- --- --- --- --- --- --- --- *** 
c --- --- --- --- --- ** --- --- --- 
d --- --- --- --- --- --- --- --- ** 
e --- --- --- --- --- --- --- --- * 
f --- --- --- --- --- --- --- --- --- 
g --- --- --- * --- --- --- --- --- 
h --- --- --- --- --- --- --- --- --- 
i --- --- --- --- --- --- --- --- --- 
j --- --- --- --- --- --- --- --- --- 

A two-tailed t-test (n = 3 per sample) was used to test for significant differences in mean values 
for EA metrics within a pore network architecture (PNA). R1,2,3 = “Random” PNA with 3 PVC 
rings containing 3 Pt-electrodes each. LA1,2,3 = “Large aggregate” PNA with 3 PVC rings 
containing 3 Pt-electrodes each. SA1,2,3 = “Small aggregate” PNA with 3 PVC rings containing 
3 Pt-electrodes each. Significance levels: * = p < 0.05; ** = p < 0.01; *** = p < 0.001.  
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Table B3. Significant differences in pore network metrics across pore network 
architectures for VoI100 

Table B3. Significant differences in pore network metrics across pore network architectures for VoI100, 
values are mean and (coefficients of variation) with n = 9 
  Pore network architecture  Significant differences between 

PNAs 

PNM Units "Random" 
(R) 

"Large 
aggregate" 

(LA) 

"Small 
aggregate" 

(SA) 

 
R : LA R : SA SA : LA 

  ! (CV) ! (CV) ! (CV)     
1 count 3.8 (31) 5.0 (87) 3.9 (37)  --- --- --- 

2 count 1.5 (36) 2.0 (101) 1.5 (45) 
 

--- --- --- 

3 mm 0.03 (20) 0.04 (21) 0.04 (13) 
 

** ** --- 

4 mm 1.0 (41) 1.4 (92) 1.0 (40) 
 

--- --- --- 

5 count 0.3 (33) 0.5 (116) 0.4 (53) 
 

--- --- --- 

6 count 0.03 (22) 0.04 (20) 0.04 (14) 
 

* ** --- 

7 count 7987.8 (37) 10199.5 (25) 16586.7 (25) 
 

--- *** *** 

8 count 357.9 (30) 656.5 (34) 1158.4 (24) 
 

* *** *** 

9 --- 1.3 (10) 1.4 (26) 1.4 (14) 
 

--- --- --- 

10 mm3 1.6 (67) 1.6 (93) 0.8 (54) 
 

--- --- --- 

11 mm2 5.1 (57) 6.3 (89) 2.4 (130) 
 

--- --- --- 

12 mm3 1.5 (69) 1.4 (106) 0.3 (164) 
 

--- (p = 
0.076) --- 

13 mm 0.3 (11) 0.3 (23) 0.3 (13) 
 (p = 

0.053) --- --- 

14 mm 0.014 (29) 0.022 (19) 0.023 (18) 
 

** *** --- 

15 mm-1 3.2 (21) 4.5 (35) 2.3 (70) 
 

--- --- ** 

16 count 9015.9 (37) 12702.3 (31) 18581.7 (17) 
 

--- *** ** 

17 count 4414.5 (33) 8188.3 (34) 12215.3 (19)  ** *** ** 

18 % 12.8 (37) 13.6 (47) 12.7 (31) 
 

--- --- --- 

PNM = pore network metric. Tukey’s honest significant difference test (n=9 per PNA; p-values adjusted 
for multiple comparisons) was used to determine significant differences between electron activity metrics. 
Random  = Random PNA, LA = Large aggregate PNA (≤ 1 cm) and SA = Small aggregate PNA (≤ 2 
mm). Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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Table B4. Significant differences in pore network metrics across pore network 
architectures for VoI25 

  

 

 

Table B4. Significant differences in pore network metrics across pore network architectures for VoI25, 
values are mean and (coefficients of variation) with n = 9 
  Pore network architecture  Significant differences between 

PNAs 

PNM Units "Random" 
(R) 

"Large 
aggregate" 

(LA) 

"Small 
aggregate" 

(SA) 

 
R : LA R : SA SA : LA 

  x (CV) x (CV) x (CV)     

1 count 4.2 (38) 2.7 (48) 2.2 (74)  --- * --- 

2 count 1.7 (46) 1.0 (66) 0.7 (106) 
 

--- * --- 

3 mm 0.04 (17) 0.04 (18) 0.03 (13) 
 

--- (p = 
0.056) ** 

4 mm 1.2 (44) 0.7 (61) 0.5 (94) 
 

--- * --- 

5 count 0.3 (54) 0.2 (79) 0.1 (126) 
 

--- * --- 

6 count 0.05 (23) 0.05 (19) 0.04 (15) 
 

--- * * 

7 count 825.7 (37) 1786.3 (32) 4695.4 (26) 
 

* *** *** 

8 count 43.3 (45) 143.4 (43) 313.7 (37) 
 

* *** *** 

9 --- 1.3 (3) 1.3 (1) 1.3 (2) 
 

--- --- --- 

10 mm3 3.1 (46) 1.1 (71) 0.5 (84) 
 

*** *** --- 

11 mm2 9.2 (35) 5.0 (52) 0.9 (70) 
 

** *** ** 

12 mm3 3.0 (48) 1.0 (76) 0.1 (110) 
 

*** *** --- 

13 mm 0.3 (12) 0.4 (12) 0.3 (8) 
 

* --- * 

14 mm 0.022 (36) 0.030 (22) 0.023 (24) 
 

* --- (p = 
0.078) 

15 mm-1 3.2 (18) 4.7 (14) 2.3 (77) 
 

* --- *** 

16 count 1018.8 (53) 2095.6 (36) 5243.6 (27) 
 (p = 

0.067) *** *** 

17 count 566.5 (36) 1555.4 (32) 3457.9 (29)  ** *** *** 

18 % 9.8 (0.5) 8.7 (0.5) 8.7 (0.7) 
 

--- --- --- 

PNM = pore network metric. Tukey’s honest significant difference test (n=9 per PNA; p-values adjusted 
for multiple comparisons) was used to determine significant differences between electron activity metrics. 
Random  = Random PNA, LA = Large aggregate PNA (≤ 1 cm) and SA = Small aggregate PNA (≤ 2 
mm). Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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Table B5. Significant differences in pore network metrics across pore network 
architectures for VoI0.2 

 

Table B5. Significant differences in pore network metrics across pore network architectures for VoI0.2, 
values are mean and (coefficients of variation) with n = 9 
  Pore network architecture (PNA)  Significant differences between 

PNAs 

PNM Units "Random" 
(R) 

"Large 
aggregate" 

(LA) 

"Small 
aggregate" 

(SA) 

 
R : LA R : SA SA : LA 

  x (CV) x (CV) x (CV)     

1 count 2.1 (45) 2.4 (43) 1.6 (43) 
 

--- --- --- 

2 count 0.7 (58) 0.8 (61) 0.4 (70) 
 

--- --- --- 

3 mm 0.3 (31) 0.4 (32) 0.4 (29) 
 

* --- --- 

4 mm 0.5 (27) 0.7 (35) 0.6 (32) 
 (p = 

0.065) --- --- 

5 count 0.4 (82) 0.6 (68) 0.3 (61) 
 

--- --- (p = 
0.075) 

6 count 0.2 (81) 0.1 (55) 0.1 (110) 
 

--- --- --- 

7 count 60.6 (32) 64.2 (69) 69 (67) 
 

--- --- --- 

8 count 8.4 (29) 8.6 (58) 7.4 (58) 
 

--- --- --- 

9 --- 1.3 (8) 1.3 (7) 1.2 (6) 
 

--- --- --- 

10 mm3 0.4 (99) 0.6 (70) 0.5 (81) 
 

--- --- --- 

11 mm2 1.0 (82) 1.4 (63) 1.3 (92) 
 

--- --- --- 

12 mm3 0.1 (111) 0.2 (91) 0.2 (125) 
 

--- --- --- 

13 mm 0.2 (23) 0.3 (12) 0.3 (23) 
 

* --- --- 

14 mm 0.03 (38) 0.03 (30) 0.03 (38) 
 

--- --- --- 

15 mm-1 2.8 (73) 3.0 (75) 2.7 (74) 
 

--- --- --- 

16 count 68.4 (30) 60.5 (55) 75.9 (61) 
 

--- --- --- 

17 count 28.5 (21) 30.2 (41) 37.8 (21)  --- --- --- 

18 % 10.6 (61) 14.2 (34) 11.7 (49) 
 

--- --- --- 

PNM = pore network metric. Tukey’s honest significant difference test (n=9 per PNA; p-values adjusted 
for multiple comparisons) was used to determine significant differences between electron activity metrics. 
Random  = Random PNA, LA = Large aggregate PNA (≤ 1 cm) and SA = Small aggregate PNA (≤ 2 
mm). Significance levels * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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6.3 Appendix C (All EPt curves) 

 

 

  

 

Appendix	C.		Electromotive	potential	(mV;	left	axis)	curves	for	all	PVC	rings	and	quadrants.	Samples	are	grouped	by	
PVC	ring	(1	–	3)	and	quadrants	per	ring	(grouped 1 – 3, 4 – 6, and 7 – 9). Example groupings are outlined in red boxes. 
Pore	saturation	conditions	are	indicated	by	blue	bars	(right	axis).		
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6.4 Appendix D (VoI0.2 XCT images) 

 

 

 

 

Appendix D. Images from all quadrants and pore network architectures (PNAs) for VoI0.2. Three quadrants 
(grouped 1 – 3, 4 – 6, and 7 – 9) were imaged for each PVC ring (1 – 3) and PNA. Example groupings are outlined 
in red boxes. All images are oriented such that the Pt-electrode tip is in the center and the Cu wire is extending out 
of the top of the image. Dimensions:  r1  = 5 mm, r2 = 5.84 mm, h = 7 mm.	 
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6.5 Appendix E (VoI25 XCT images) 

 

  

	

Appendix E. Images from all quadrants and pore network architectures (PNAs) for VoI25. Three quadrants (grouped 1 – 3, 4 – 
6, and 7 – 9) were imaged for each PVC ring (1 – 3) and PNA. Example groupings are outlined in red boxes. All images are 
oriented such that the Pt-electrode tip is in the center, just out of the image frame, and the Cu wire is extending upward. 
Dimensions:  r = 2 cm, h = 2 cm.	
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6.6 Appendix F (VoI100 XCT images) 

 
 
  

Appendix F.  Images from all quadrants and pore network architectures (PNAs) for VoI100. Three quadrants 
(grouped 1 – 3, 4 – 6, and 7 – 9) were imaged for each PVC ring (1 – 3) and PNA. Example groupings are outlined 
in red boxes.  All images are oriented such that the Pt-electrode tip is in the bottom-center of the image, and the Cu 
wire is extending upward out the top. Dimensions:  r = 2 cm, h = ~8 cm.	
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6.7 Appendix G (Definitions of terms) 

1) A soil system is defined as a natural environment showing evidence of pedogenic 
processes such as accumulation of organic carbon, mineral alteration, translocation of 
organic and mineral matter and the subsequent development of mineral-organic 
colloids, aggregates and associated pore systems  
 
2) We consider a soil system to be a reducing environment when the electron acceptor 
O2 is absent from the majority of the pore system.    
 
3) Electron activity (EA) is defined according to Stumm (1966) as  pe = - log [e-] 
analogous to H+ activity (pH = - log [H+])  
 
4) EPt = is the electromotive potential (measured in mV or V) returned by a platinum 
electrode connected to a reference electrode and a Voltmeter 
 
5) pe and EPt are related by the expression: !"# (!)

!.!"#
= 𝑝e (James and Brose, 2011) 

 
6) Soil structure – Soil structure is defined as the physical arrangement of solids and 
voids in the soil system. At a bulk density of 1.3 kg L-1, a soil with standard 
mineralogy (containing feldspar and quartz as major mineral phases) will have a solid 
to void ratio of 1:1 (50%).  
 
7) Pore network architecture (PNA) – the term used to describe and delineate the 
physical arrangement of solids and voids in each structure type: 1) no-manipulation 
(“Random” PNA), 2) soil sieved to ≤ 1 cm (“Large Aggregate” PNA), and 3) soil 
sieved to ≤ 2 mm (“Small Aggregate” PNA). 
 
8) Volume of Interest (VoI) – Operationally defined as the volume to which each 
XCT image file was cropped before the pore network contained therein was analyzed.   
 
9) Pore network metric (PNM) – A variable describing a characteristic of the pore 
network architecture, derived using X-ray computed tomography and image analysis 
software (Fiji).



 

 

 
 
	


