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This work introduces a new methodology to design transportation fuels offering improved efficiency

and reduced emissions, aimed to complement both traditional and emerging engine technologies.

Many of these emerging technologies are centered around exploiting low temperature combustion

(LTC) strategies that offer improved efficiency and reduced emissions. However, a standardized fuel

does not exist to effectively operate in a LTC mode. Through engine simulations, supervised machine

learning, and multivariate optimization, this work provides a tool to create fuels tailored to a specific

LTC engine application. Engine simulations in this work characterize the LTC performance for

hundreds of fuel samples, quantified by a fuel performance metric called the LTC index. Supervised

machine learning provides correlations between measured fuel infrared absorbance spectra to various

fuel performance metrics: the LTC index, Research Octane Number (RON) and Motor Octane

Number (MON). The predictive models of these metrics circumvent the need for costly and time

consuming engine experiments to explore the performance of uncharacterized fuels.

The success of this work is heavily reliant on the ability of the models to make accurate predic-

tions of the fuel performance metrics, viz. the LTC index, which is assessed through two efforts. The

first effort is generating a robust validation data set to benchmark model predictive performance.

Here, multivariate optimization is also used to create surrogates for the FACE gasolines. These

surrogates are paired with engine simulations to determine the true LTC index and compare to pre-

dicted values. LTC indices of most FACE gasolines are found to be accurately predicted within 3

units, and at worst within 6. The second effort toward predictive model validation is a novel exper-

imental campaign, measuring first and second-stage fuel-spray ignition delays in a constant volume



combustion chamber (CVCC). The novelty comes by using ultra-short injections to enhance mixing

prior to ignition phenomena, quantified by a state-of-the-art optical diagnostic—developed in this

work—that images spatiotemporal fuel-spray concentrations. The mixture data are compared to

a spray-ignition model with simplified fluid mechanics, found to capture spray mixing exceedingly

well. The validated spray physical model is paired with a comprehensive chemical mechanism to

predict and compare to experimentally-obtained spray-ignition onsets, thereby establishing a novel

way to assess the accuracy of chemical mechanisms and surrogate fuels.

The validated LTC index predictive model is finally paired with multivariate optimization tech-

niques to design a fuel tailored to a dual mode engine. In theory, this engine would operate in LTC

mode where possible for efficiency improvements, and switch to traditional spark-ignition where

needed. The tools developed in this work simultaneously point fuel and vehicle technology in a

unique direction for designing high efficiency, next-generation combustion systems.
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Chapter 1: Introduction

1.1 Background and Motivation
Combustion of hydrocarbon fuels will maintain their status as the United States’s leading source of

energy between now and 2040, supplying 80 percent of the nation’s energy needs by 2040 (increasing

dependence) [1]. Society continues to rely on internal combustion engines (ICEs) for transportation,

commerce, and power generation. As a result, the demands to reduce emissions and improve

efficiency in these systems are significant to lessen the growing environmental and economic impacts.

Therefore, there is motivation to seek out alternative, eco-friendly fuels and to move away from

traditional combustion strategies in favor of advanced, next-generation systems that are cleaner

and more efficient. This work answers this call to action by providing a tool that can rationally

design high efficiency fuels tailored to next-generation combustion systems.

Since the inception of the ICE, harmful pollutants such as particulate matter, nitrogen ox-

ides, unburned hydrocarbons, and carbon dioxide have been expelled into the atmosphere. These

pollutants can cause serious adverse health effects and negatively impact the environment [2, 3].

Emissions have been managed by exhaust after-treatment strategies and by inherently improving

the efficiency of the combustion process within the engine. Fuel efficiency steadily improved over the

years due to increasing compression ratios, downsizing, and turbo-charging resulting in increased

thermal efficiency [4]; in addition, increased electric hybridization led to reduction in overall fuel

use [5]. Recent governmental regulations including the CAFE 2025 standards mandate reaching 54.5

mpg within the next 10 years—a significant engineering effort to accomplish in such a short time

frame. Solving this challenge will be aided by continued electric hybridization, but it is projected

that by 2025 only 11% of total vehicles in the U.S. will be registered as a hybrid vehicle [5]. Clearly,

there is motivation to further improve upon the reciprocating internal combustion engine for public

transportation to meet increasingly stringent standards.

Low temperature combustion (LTC) engines implement a non-traditional combustion strategy,

and offer higher efficiencies and lower emissions that could satisfy CAFE standards. This engine



2

operation strategy is still of current research interest and requires further development to become

a viable option. LTC engine research and development has many facets, but this work focuses on

designing a fuel to operate in this environment—LTC is highly fuel sensitive (e.g., gasoline, diesel,

etc.).

Fuel performance metrics provide insight to how a fuel will perform in ICEs. Traditional metrics

require time consuming and expensive physical experiments to determine, and have had little success

in describing how a fuel will perform in a LTC engine. In order to facilitate fuel design for LTC

engines, a fuel performance metric characterizing LTC performance is needed. Additionally, the

parameter space demanded for fuel design is immense, so a means to determine such a metric

rapidly would accelerate the process. This body of work is a parallel effort to address these issues.

The author reviews traditional and newly proposed fuel metrics, and select a metric that best

indicates how a fuel will perform in a LTC engine.

1.2 Core Principles
First, a brief overview of the workings of the classic reciprocating ICEs will be introduced, along

with a discussion of current areas for improvement and where past and current research efforts bring

us. Second, next-generation engine concepts will be introduced with a discussion on the benefits

they offer over the classic ICE strategies. Third, fuel performance metrics will be discussed that give

useful insight into how particular fuels will perform in their respective ICEs, and will be a primary

topic of this work as it is mostly concerned with fuel design. Fourth, with a given LTC engine fuel

performance metric, the methodology to rapidly predict this metric is introduced through supervised

machine learning techniques. A reader familiarized with the four aforementioned topics can skip

the following subsections without any loss in continuity.

1.2.1 CI and SI operation
Diesel engines are capable of operating at high thermal efficiencies due to high compression ratios,

lean mixtures (therefore higher isentropic exponent), and unthrottled operation (i.e., high volumetric

efficiency). However, due to the complex heterogeneous combustion of the high molecular weight

diesel fuel, large amounts of soot form. Therefore, diesel engines are thermodynamically efficient

but not considered clean. On the other hand, SI engines combust a homogeneous, stoichiometric
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charge of reactants and thus produce low amounts of soot. At the same time, the higher combustion

temperatures produce NOx, requiring three-way catalysts to reduce the pollutant emissions. Thus,

SI engines are considered clean but not as efficient as diesel engines. Advanced combustion engines

are an attempt to operate in a regime that both minimizes emissions and increases efficiency by

reducing the combustion temperatures. This idea is called low temperature combustion (LTC), and

is the topic of the next section.

1.2.2 Low Temperature Combustion Engines
LTC engines are an attempt to unify the benefits of SI and CI engines, using a lean fuel-air mixture

(to keep temperatures low and isentropic exponent high) in the piston-cylinder chamber and ignited

through compression [6]. High fuel concentrations (fuel rich) are avoided due to significant, and

potentially damaging, in-cylinder pressure rise rates. Homogeneous charge compression ignition

(HCCI) engines implement the LTC concept with a lean, well-mixed (homogeneous) charge of fuel

(e.g., gasoline, diesel, or viable hydrocarbons) and air. This cycle is thermodynamically similar to

the Otto cycle, but offers higher compression ratios. With this, it is possible to offer the efficiency

closer to that of or higher than a diesel engine, but with low emissions of particulates, CO2, and

NOx without the need for expensive exhaust after-treatment [7]. However, the homogeneous charge

coupled with compression ignition leads to control issues (e.g., rapid heat-release, ignition timing)

due to the fuel-air mixture igniting all at once, coupled with ignition timing being chemistry con-

trolled and not by a physical process. Other methods, such as reactivity controlled compression

ignition (RCCI), leverage multiple fuels and injection strategies to operate in the LTC regime with

fewer control issues than HCCI [6]. There are other variants of LTC engines, and interested readers

are guided to Yao et al. [8] for a more comprehensive survey.

1.2.3 Fuel Performance Metrics

1.2.3.1 Gasoline Spark Ignition (SI) Engines
In ICEs, the higher the geometric compression ratio used, the higher the thermal efficiency achieved

for an Otto cycle [9]. The limitation on the compression ratio for SI engines is dictated by the onset of

engine knock that is itself influenced by the combination of fuel chemistry and operating conditions—

higher compression ratios in general increase the propensity for knock. Knock is the result of rapid
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chemical heat release, and can cause engine damage. Since particular fuels are more resistant to

withstanding knock higher compression ratios can be achieved. It is therefore useful to define the

ignition quality of gasoline fuels as the propensity to withstand knock (e.g., octane requirement).

The Anti Knock Index (AKI)—the value at the gas pump—assigns a performance metric to the

gasoline auto-ignition quality, and is defined by the arithmetic average of the Research Octane

Number (RON) and Motored Octane Number (MON). The two octane numbers are determined

in an experimental facility using a Cooperative Fuels Research (CFR) engine via the ASTM-CFR

standard testing procedures D2700-14 and D2699-13b [10, 11]. Fuels are combusted in the engine

while the compression ratio is increased, until the fuel starts to exhibit significant cyclic variation

(instability) or auto-ignition. Each test has specific operating points, the primary difference being

air-fuel charge temperature regulation and engine speed [10, 11].

1.2.3.2 Diesel Compression Ignition (CI) Engines
Diesel engines are capable of operating at higher thermal efficiencies due to the high compression

ratios, lean mixtures (therefore higher isentropic exponent), and unthrottled operation (i.e., high

volumetric efficiency). High compression ratios are achievable because the diesel fuel is introduced

into the piston-cylinder chamber when it is desirable to ignite the fuel, and not along with the air

during the intake stroke as is done with SI engines (with the exception of direct injected SI—also

known as stratified SI, which is not yet widely adopted). When the diesel is injected, there is a finite

time delay until auto-ignition occurs. Since knowing the delay time is significant to ensure optimal

combustion timing, and therefore efficiency, the cetane number (CN) corresponds to this ignition

delay. CN can be thought of as the antithesis of sorts to AKI. That is, resistance to autoignition

results in a high AKI, but low CN. The values are determined in a similar manner to that of RON

and MON with a Cooperative Fuels Research (CFR) engine, where instead the compression ratio is

increased until a set ignition delay time is achieved [12].

1.2.3.3 LTC Engines
LTC engines currently do not have any sort of accepted standard to quantify fuel performance,

although some significant efforts focused in this area can be found in the work of Kalghagti et

al. [13], Urushihara et al. [14], Rapp et al. [15], and Truedsson et al. [16–20]. These efforts, while
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partially successful at describing combustion behavior for gasoline-like fuels, have little relation to

realistic engine performance such as fuel economy. It would be helpful if a metric could rank the

performance of fuels in such a way that gave insight to potential performance gains from use in

LTC engines, in addition to identifying how the fuel will chemically behave in the LTC engine. A

LTC fuel performance metric should be able to help designers avoid potentially damaging auto-

ignition/knock, but also indicate how efficient the fuel is in HCCI. This metric could then also be

used to identify attractive fuels for LTC engine operation based on the potential performance gain

associated by using that fuel in addition to containing information on combustion behavior.

A novel LTC index which rates fuels by their potential fuel savings in order to capture useful

engine performance from HCCI operation was developed. Niemeyer et al. [21] introduced this index

(OSU-Chevron LTC index) based on operating envelopes—engine speeds and loads that can be

achieved with a given fuel governed by attributes such as auto ignition timing, knock constraints,

fuel conversion efficiency, etc.—and comparing the HCCI results to useful operating conditions. The

definition of the OSU-Chevron LTC-index is as follows:

ILTC =
mf,SI ε(HCCI)

mf,SI
∗ 100% (1.1)

where mf presents the mass of fuel used, and subscripts SI and HCCI refer to the IC modes.

The numerator represents the mass of fuel that HCCI operation could potentially replace, and the

denominator that of the entire driving cycle: the ratio of the two is a mass weighting of sorts that

encapsulates potential fuel savings achieved using bi-modal operation of HCCI-SI over its 100% SI

counterpart. The (useful) operating envelopes are those required for realistic operating and driving

conditions, determined from transient driving cycle simulations. A fuel with poor performance

has an operating envelope that is not within realistic conditions. If a fuel cannot achieve realistic

operating conditions via HCCI, governed by combustion constraints, then there are no potential

fuel savings and therefore a low LTC index assigned. This LTC index is distinct from prior efforts

in developing a fuel rating index for HCCI due to the real-world impact on fuel economy that is

represented within the index, in addition to the combustion constraints that are held to define viable

HCCI operation.



6

1.2.4 Machine Learning
Machine learning is a broad field that uses statistical techniques to “learn” a specified task. This

work uses supervised learning, a machine learning technique that maps an input to an output by

inferring a linear or non-linear function. For this work, the inferred function maps a vector “X” to a

scalar “Y”, mathematically similar to standard regression procedures. A matrix of X examples and

corresponding Y values, referred to as training data, are fed into a supervised learning algorithm.

The algorithm uses the training data to “learn” the best mapping function, i.e., solving for the

best function that minimizes prediction errors of Y provided X. The model training procedure also

entails ensuring the model is robust, meaning the function can be applied to new examples outside

the training data set. A separate test data set with X and corresponding Ys—not used to train

the model—are fed into the model; the predicted Y values are compared to the true Y values and

the model error is assessed. A robust mapping function can then take unseen X values to predict a

corresponding Y.

1.3 Chapter and Document Organization
Utilizing machine learning, this work showcases a correlation between measured fuel infrared spectra

to the LTC index: a fuel performance metric characterizing low temperature combustion perfor-

mance. The predictive model validity is assessed through two efforts. The first is generating a robust

validation data set to benchmark model predictive performance. Second, a novel experimental cam-

paign measures various combustion parameters in a constant volume combustion chamber (CVCC)

apparatus for an array of fuels, using state-of-the-art optical diagnostics. With the accuracy of the

LTC index predictive model assessed, LTC indices of fuel mixtures are rapidly predicted using pro-

cured fuel infrared spectra, mitigating the need for costly and time-consuming engine experiments.

The predictive model is paired with multivariate optimization techniques to design a novel fuel.

This work delivers a fuel offering improved efficiency and reduced emissions for a specific vehicle

platform and LTC engine. The following sections outline each chapters structure, as well as key

contributions in the order of document appearance.
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1.3.1 Chapter Layout
The core body of work is organized into six chapters, five of which contain a published or in

preparation manuscript. Information presented in the first five chapters stand alone, and serve as

building blocks towards the overall goal of this work. The goal is to develop a tool to rationally

design a next-generation fuel promising increased efficiency; this is outlined in the sixth chapter, not

containing a manuscript. Chapters with manuscripts are preceded with introductory remarks as to

how the manuscript ties into the overall body work, highlighting contributions toward rational fuel

design. These prefaces provide the logical progression of this work and summarize key findings. This

allows you to skip over the detailed manuscripts while retaining readership, yet gain an in-depth

understanding by reading the manuscripts if desired.

1.3.2 Document Layout
Chapter 2 demonstrates that chemical functional groups, represented by infrared absorbance spectra,

can be related to fuel octane rating (SI engine fuel performance metric) with machine learning. Neat

hydrocarbons and simple fuel mixtures (a combination of up to six neat hydrocarbon components)

are shown to sufficiently train a model to accurately predict the octane rating of complex fuels that

comprise thousands of components.

Machine learning requires a large data set for predictive model training, testing, and validation.

Developing a computational tool to aid data-set generation preceded creating the predictive model

for LTC fuel performance. This was required for cascading reasons. The LTC performance metric in

this work is a computationally determined metric (LTC index), and validating the model to predict

complex refinery-grade samples requires simulating “true” values. However, it is not yet possible

to directly simulate refinery-grade fuels in combustion models. Instead, simple fuel mixtures are

designed to emulate the thermochemical attributes of the complex fuels, known as “fuel surrogates”.

Surrogates can be used in engine simulations to establish “true” LTC fuel performance for the

complex fuel sample they represent. Chapter 3 presents the formulated computational tool to

design fuel surrogates.

Chapter 4 builds upon the data and tools created in Chapters 2 and 3 to create a predictive

model for LTC index. The validation data-set (true LTC index values of complex fuels) is created
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from the surrogate fuel compositions from Chapter 3. The LTC index predictive model is created

using the same methodology as Chapter 2.

The engine simulations used in determining LTC index are simplistic, potentially giving incor-

rect trends between fuel mixtures. If the developed predictive model for LTC index were founded

on an erroneous data set then non-physical trends are predicted. In an effort to validate the LTC

index data set, a novel experimental campaign is conducted to measure various combustion param-

eters in a constant volume combustion chamber (CVCC) apparatus. The experimental campaign is

split into three parts. The first part develops a novel optical diagnostic to quantify spatiotemporal

spray mixing in a high pressure and temperature environment, outlined in Chapter 5. The second

part, outlined in appendix D, uses the developed diagnostic in a brief study to quantify spray mix-

ing. Using an ultra-short injection duration is found to reduce unfavorable concentration gradients

within the fuel spray, serving to reduce physical complexity. Simplistic 1-D modeling efforts are

shown to accurately represent spray-mixing processes. The third and final part in the experimental

campaign is outlined in chapter 6. Here, a short-injection spray-ignition study optically resolves

low- and high-temperature ignition phenomena for fuels with varying thermochemical properties.

The experimental results are compared to a 1-D spray-ignition model, where large errors are found

at a few thermodynamic conditions. This lead to the conclusion that there are errors in the chemical

mechanism used in the simulations. These findings provide an indirect measure to the accuracy of

the training, test, and validation LTC index data-sets used for predictive model development.

Chapter 7 embeds the fuel performance predictive models developed in Chapters 2 and 4 into

the multivariate optimization routine from chapter 3. The tool automates the design of novel

fuels tailored to a specific vehicle application. The author attempts to design a single fuel that

can potentially operate in a hybrid SI/HCCI engine. Portions of the engine operation that can be

achieved with HCCI are leveraged for efficiency improvements, and where not possible supplemented

with traditional SI—offering improvements in fuel efficiency and emissions. The tool designed in

this work could stimulate market production of LTC engine strategies. Lastly, the body of work is

summarized in Chapter 8.
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Chapter 2: Machine Learning to Predict SI Engine Fuel Performance

This chapter creates a correlation between measured fuel infrared spectra to the Research Octane

Number (RON) fuel performance metric. With this tool, RON is rapidly and accurately predicted

using procured fuel infrared spectra, mitigating the need for costly engine experiments to do so.

The model developed in this work is novel since the training methodology is historically different

from literature.

RON values for a wide array of hydrocarbons and complex fuel mixtures are available in lit-

erature, providing an expansive data set to create a robust predictive model. On the other hand,

LTC index values are not provided in literature and must be simulated through exhaustive time-

consuming simulations. Creating a LTC index data set large enough to inform a predictive model

is computationally expensive. This RON study establishes the efficacy of using fuel infrared (IR)

spectra to correlate and predict fuel performance. The study is low-risk, since the training, test,

and validation data, i.e., RON for many fuels, are available in literature. The IR spectra of these

fuels are experimentally obtained by the author.

The RON correlation study proves two concepts: (1) chemical functional groups, represented by

infrared absorbance spectra, can be related to fuel performance; and (2), neat hydrocarbons and

simple fuel mixtures (a combination of up to six neat hydrocarbon components) are sufficient to

train a model that accurately predicts the performance of complex fuels comprising thousands of

components. Proving these points informed and motivated the development of a LTC index data

set to create a robust LTC index predictive model. The following sections outline the novel RON

correlation work, adapted from:

Daly, Shane R., Kyle E. Niemeyer, William J. Cannella, and Christopher L. Hagen. “Predicting fuel

research octane number using Fourier-transform infrared absorption spectra of neat hydrocarbons.”

Fuel 183 (2016): 359-365.
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Predicting fuel research octane number using

Fourier-transform infrared absorption spectra of neat

hydrocarbons

Shane R. Daly, Kyle E. Niemeyer, William J. Cannella, Christopher L. Hagen

Fuel

https://www.journals.elsevier.com/fuel

183 (2016): 359-365.
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2.1 Introduction
Research octane number (RON), determined by ASTM-CFR standard testing procedure D2699-

15 [22], indicates a fuels’ resistance to autoignition under specific engine operating conditions. RON

and the other ASTM 4814 fuel specifications dictate several attributes necessary to operate in

the installed fleet of vehicles. In 2014, 136.78 billion gallons of gasoline were consumed in the

US [23]—all of which need to meet those quality specifications. Determining the RON of fuels using

a Cooperative Fuels Research (CFR) engine costs over $200,000 for the capital investment (among

considerable lab modifications) takes 20 minutes, and also requires trained technicians/operators.

In an effort to reduce this testing burden, researchers sought out more cost-effective and faster

noninvasive optical techniques for determining RON, among other fuel specifications, by way of

statistical analysis. Vibrational spectroscopy, such as infrared absorption (IR) and Raman spec-

troscopy, has proved to be a reliable method for fuel characterization. The work of Kiefer [24]

highlights current technical advances in the context of fuel characterization, overviews fundamental

theory, and discusses advantages/ disadvantages of the various techniques currently in use today.

Now, a brief sequential overview of literature utilizing vibrational spectroscopy in conjunction with

statistical analysis will be discussed.

Kelly et al. [25] determined 10 ASTM specifications including RON, Motor Octane Number

(MON), vapor pressure, specific gravity, bromine number, and contents of aromatic, alkene, saturate,

sulfur, and lead using a short wavelength near infrared (SW-NIR) scanning spectrophotometer (660–

1215 nm) and multivariate analysis to correlate the spectra to the performance metrics. For example,

the group showed that RON of gasolines can be predicted to a standard error within 0.4–0.5 [25],

which is better than the ASTM RON test itself at ±0.7 [22]. The original work of Kelly et al. [25]

inspired other investigations to enhance their technique, consider alternate fuels, or to predict other

fuel performance metrics. To briefly touch on these alternate studies, Williams et al. [26] instead

leveraged FT-Raman spectra (3200–600 cm−1) to predict cetane index and cetane number to ±1.22

and 2.19, respectively. Cooper et al. [27] applied a similar methodology as Williams et al. (using

Raman spectra at wavenumber ranges of 2510–3278 cm−1 and 196–1851 cm−1) to predict MON,

RON, and pump octane number to within ±0.415, 0.535, and 0.410, respectively. Litani atmzilai

et al. [28] combined near-IR (700–1000 nm) and laser-induced fluorescence (250–500 nm third and
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fourth harmonic) spectra to predict 10 physical specifications; e.g., RON and MON were predicted

to within ±0.33 and 0.27, respectively. The more recent work of Kardamakis and Pasadakis [29]

presents an efficient multivariate analysis technique that predicts RON within ±0.26 using a limited

data set in comparison to previous studies; this work also provides a succinct history of efforts in this

field. There are many additional studies to the short list previously mentioned that consider various

optical and multivariate analysis techniques to predict performance parameters of fuels [30–38].

Various commercial devices utilize these principles to rapidly predict relevant properties of gaso-

line and diesel fuels based on optical characteristics. For example, the Zeltex ZX 101C octane an-

alyzer [39] passes radiation from light emitting diodes through optical filters and gasoline samples

(14 static wavelengths ranging from 893–1045 nm). The light is collected on a photodetector and

processed for absorbance at the wavelengths of interest, with a total measurement time of 20 s and

accuracy of ±0.5 RON units [39]. The IROX Miniscan IRXpert gasoline/diesel analyzer takes a

similar approach based on FTIR spectroscopy, collecting a broad absorption spectrum and generat-

ing information at 12,900 wavelengths. This allows the prediction of 16 total ASTM specifications,

and predicts RON with an accuracy of ±0.5 within 80 s [40]. This equipment costs less than half of

a CFR engine and does not require expert technicians/operators.

All the previous approaches using multivariate analysis to predict fuel attributes [25–38] used

existing, real-world fuel samples (i.e., existing gasoline, diesel, jet fuels) as the training data set

to predict performance attributes of those specific fuels. This work used hydrocarbons—neat or

combined as mixtures for gasoline surrogate fuels including up to five neat components—to provide

model input for predicting RON of the Fuels for Advanced Combustion Engines (FACE) gaso-

lines designed by the Coordinating Research Council (CRC) and manufactured by ChevronPhillips

Chemical Co [41]. With this novel approach, a sensitivity analysis can then target neat hydro-

carbons and classes (i.e., functional groups) to develop and optimize spectroscopic surrogates for

the FACE gasolines. These spectroscopic surrogates most simply represent the bulk auto-ignition

behavior (through statistics) of the FACE gasolines. Researchers and industry alike can then pre-

dict RON for future fuels (e.g., new, alternative, regarding advanced engines) that may otherwise

not be accurately represented spectroscopically by traditional fuels used today. Here, the statistical

models created are robust in that they are informed on a fundamental level. This mitigates the

issue of creating a model informed by existing fuels that may be physically and spectroscopically
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different to future fuels—inaccurate prediction of the future fuel would result.

This work uses the FACE gasoline for the fuel and RON to represent the fuel performance pa-

rameter. RON is readily obtained for neat hydrocarbons, surrogate and research-grade gasolines,

and has previously been shown extensively in literature to correlate well with optical data of quan-

tified gasoline samples. We test our model by predicting RON for the 10 FACE gasolines and 12

additional blends with ethanol; these represent candidate fuels for advanced internal combustion

engines (i.e., future fuels) [41].

The structure of the paper is as follows. Section 6.2 presents the methodology of the approach.

This section includes the neat hydrocarbons and surrogate gasoline mixtures considered in this

work, the FTIR spectra collection method, and the development of the statistical model. Section 6.3

provides the results and discussion of the predicted RON values of FACE gasoline samples from the

developed statistical model. Lastly, Section 6.4 summarizes the findings of this study.

2.2 Methodology
In the current approach, hydrocarbon components (neat or mixtures of up to five components)

informed a statistical model rather than characterized gasoline samples as in prior efforts. First,

the training data set—i.e., the pure hydrocarbon components and mixtures considered to train

the statistical model—is discussed. Second, IR absorbance spectra collection methods and the

statistical methodology used in this work are covered. Lastly, with the statistical model created,

the methodology to validate the model is discussed.

2.2.1 Neat hydrocarbons considered
Promoted by the literature [19, 42, 43] as components most relevant to simple fuel surrogates, we

primarily considered mixtures of n-heptane, isooctane, toluene, ethanol, methylcyclohexane, and

1-hexene. These six hydrocarbons will be referred to as the “primary” hydrocarbons used in this

study. In brief, the first two components are used to measure RON (also called the primary reference

fuels, or PRFs) and represent the straight and branched alkane functional groups, respectively.

Toluene and ethanol represent aromatics and oxygenates, while methylcyclohexane and 1-hexene

represent cycloalkane (naphthene) and alkene (olefin) classes, respectively. This study used the

aforementioned neat hydrocarbons in addition to the 134 blends taken from the literature [19, 20,
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42, 43]. These blends are mixtures of the six hydrocarbons in various combinations ranging from

two to five components, primarily consisting of isooctane, n-heptane, and a third component; see

the supplemental material for the full list.

In addition to the six primary neat hydrocarbons, we also considered hydrocarbons found within

the FACE gasolines via detailed hydrocarbon analysis [41]. Table 2.1 lists these additional 28

pure components, referred to as the “additional” hydrocarbons in this work; they will be used to

supplement the “primary” hydrocarbons. The hydrocarbon classes of these additional species overlap

with the classes from the primary set. However, an outcome of this study demonstrated that the

primary set—common components in gasoline surrogate mixtures [19, 42, 43]—was not sufficient to

physically and spectroscopically represent the FACE gasolines, and species from the additional set

were needed (see Section 6.3).

2.2.2 IR absorbance spectra collection
Absorption spectra were collected using a ThermoFisher Nicolet iS10 FTIR with a single-bounce,

Attenuated Total Reflectance (ATR) smart accessory (650–4500 cm−1 at 2 cm−1 resolution, crystal

type: diamond with ZnSe lens, part number: 222-24700). A Norm-ject 1mL latex-free (VWR-53548-

001) disposable syringe was used to transfer a few drops of the liquid sample directly onto the ATR

crystal. Prior to spectrum collection of the sample, the FTIR was purged with nitrogen to remove

any water vapor contamination. With the collected light intensity, absorbance was calculated with

the following relation (the Beer-Lambert law shown for completeness [52]):

A(ν) = ln

(
Io
I

)
ν

= σνcL , (2.1)

where Io and I are reference and measured light intensity, respectively, σν is molar absorption

coefficient (mol−1cm2), c is concentration (mol cm−3), and L is path length of the attenuating

medium (cm). No path length or dispersion effects were accounted for in the ATR absorbance

results; we found correcting ATR spectra made no difference for the statistical model performance,

as discussed next.

Measurements were also made using a more involved transmission approach by way of a Spectra-

Tech EZ-fill™ precision path length optical cell with 3mm KBr optical slides. These data were
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Fuel name Formula RON Class

n-heptane nC7H16 0 straight alkane
isooctane C8H18 100 branched alkane
toluene C6H5CH3 113 [19] aromatic
ethanol C2H5OH 108.5∗ [43–45] alcohol
methylcyclohexane C7H14 74.1 [42] cycloalkane
1-hexene C6H12 74.9 [42] alkene
2-methylbutane C5H12 92 [46] branched alkane
2-methylpentane C6H14 73.4 [47] branched alkane
3-methylpentane C6H14 74.5 [47] branched alkane
2-methylhexane C7H16 42∗ [47, 48] branched alkane
3-methylhexane C7H16 52∗ [47, 48] branched alkane
2,4-dimethylpentane C7H16 83.1∗ [47, 48] branched alkane
2,3-dimethylpentane C7H16 91.1∗ [47, 48] branched alkane
2,5-dimethylhexane C8H18 55.3∗ [47, 48] branched alkane
2,4-dimethylhexane C8H18 65.2∗ [47, 48] branched alkane
3-ethyl-2-methylpentane C8H18 87.3∗ [47, 48] branched alkane
xylene C8H10 114 [49] aromatic
1,2,3-trimethylbenzene C9H12 100.5 [47] aromatic
4-ethyl-m-xylene C10H14 100.6 [47] aromatic
2-ethyl-p-xylene C10H14 100.6 [47] aromatic
1,2,4-trimethylbenzene C9H12 101.4 [47] aromatic
cumene C9H12 102.1 [47] aromatic
1,3,5-trimethylbenzene C9H12 106 [47] aromatic
1,2,3,4-tetrahydronaphthalene C10H12 96.4 [47] aromatic
2-propyltoluene C10H14 100.3 [47] aromatic
1,2,3,4-tetramethylbenzene C10H14 100.5 [47] aromatic
cyclopentane C5H10 100.1 [47] cycloalkane
cyclohexane C6H12 80.7 [10] cycloalkane
butylcyclohexane C10H20 63.8 [50] cycloalkane
1-pentene C5H10 90 [49] alkene
2-methyl-2-butene C5H10 97.3 [47] alkene
2-pentene C5H10 98 [46] alkene
2-methyl-1-butene C5H10 100.2 [47] alkene
diisobutylene C8H16 103.8 [51] alkene

Table 2.1: Pure hydrocarbon species considered in this work. Infrared absorption spectra for all
species were acquired via Attenuated Total Reflectance FTIR spectroscopy. ∗ indicates average of
multiple values.
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Figure 2.1: FTIR-ATR absorbance spectra of n-heptane, isooctane, and their mixtures (PRFX,
where X indicates volume % of isooctane). The two axes show subsets of the optical frequencies
considered where these samples absorb strongly.

post-processed via the Beer-Lambert law and baseline corrected with the optical constant method

guided by literature [53–57]. We found that when using the same FTIR, no difference resulted

in the performance of our approach between using uncorrected ATR (qualitative) or corrected

transmission (quantitative) data. The use of ATR appeared to introduce an instrument function

to the data which cancelled when ratioing the incident and transmitted light; as a result, this did

not affect the statistical post processing. Spectra can be collected via ATR an order of magnitude

faster than by transmission, in addition to simpler post processing, and thus we chose ATR over

transmission-based methods for the current application. Figure 2.1 shows a representative subset

of the collected ATR absorption spectra, for mixtures of n-heptane and isooctane.

2.2.3 RON model development
The IR absorbance spectra were correlated to RON by way of principle component regression (PCR).

PCR identifies patterns in multi-dimensional data and correlates these to an explanatory variable,

i.e., a variable that may correlate to the patterns found in the chemical data [58]. The authors

used PCR as the statistical method, and implemented it via MATLAB software with the built-in
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Figure 2.2: Flowchart depicting the multivariate analysis process.

function pca. All principal components were used for each training data set. Figure 2.2 shows a

diagram illustrating this process.

A training data set informed the statistical model, which included a set of IR absorbance spectra

and RON. Figure 2.1 shows a representative subset of the collected ATR-IR absorbance spectra used

with the training data set; shown are isooctane and n-heptane neat and as mixtures (PRFX). The

training data set limits the predictive capabilities of the model: the larger and more varied it is,

typically the better the model. The final result is a regression equation, which uses IR absorption

spectra as an input and returns a prediction for RON.

To validate the created statistical models, RON was predicted for gasoline samples with known

RON. The fuels studied are the 10 FACE gasolines and 12 FACE gasoline mixtures blended with

ethanol [41]. These include 22 well-documented fuels statistically designed with chemical and ASTM

performance variations for researchers to investigate in advanced internal combustion engines. This

bounded the task of creating a model to predict real gasoline fuels that contain hundreds of various

hydrocarbons.
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2.3 Results and discussion
In order to test how subsets of the fuels considered in this work affect the model predictive

performance—i.e., the RON prediction of FACE gasolines, not that of the fuels used to inform

the model—we selectively and additively included neat hydrocarbons and surrogate fuels in the

model and observed the effect on the residual (residual = actual RON − predicted RON, where the

average, max, and min were analyzed). A limited sensitivity analysis with the neat hydrocarbons

was performed first by selectively including them in the model.

The sensitivity study first informed a model with a baseline data set consisting of the six primary

neat hydrocarbons and the 134 mixtures, then a prediction of RON for all FACE gasolines. Next,

we selectively included one new neat hydrocarbon in the model (i.e., baseline fuels plus one hydro-

carbon) from the additional neat hydrocarbons and observed how the predicted RON of the FACE

gasolines were affected. Here it was learned definitively that the branched alkane and aromatic

classes were not satisfactorily represented by isooctane and toluene. When the model was informed

with more neat hydrocarbons representing these classes, the predictive performance changed by up

to 40 RON for many of the FACE gasolines. When including alkanes or aromatics, the average

residual improved by 9.0 and 9.7 RON units, respectively. However, the alkene and cycloalkane

classes were sufficiently represented by 1-hexene and methylcyclohexane, respectively; species in

these classes respectively improved the residual by 0.4 and 0.7 on average.

Following the sensitivity study, fuels were additively included to inform the model. Figure 2.3

shows the performance of the model as a function of fuels considered in the training data set.

Moving along the horizontal axis indicates fuels (or fuel sets) additively included in the model (e.g.,

at the third horizontal axis location, the model includes six neat hydrocarbons plus the Truedsson et

al. [19] n-heptane, isooctane, toluene, and ethanol fuel blends). The vertical axis indicates the RON

residual, where a box-and-whisker plot shows the distribution of RON predicted by each training

data set—the magnitudes of the maximum and minimum residuals are indicated with error bars

(“whiskers”), with outliers beyond a normal distribution indicated with symbols.

First, only four neat hydrocarbons were used: n-heptane, isooctane, toluene, and ethanol. This

attempt at modeling resulted in predictions of RON within 22.7±24.8 (residual average ±standard

deviation), and with an error of 48.5 RON in the worst case. Next, neat hydrocarbons methyl-
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Figure 2.3: Model performance indicated by average residual for prediction of FACE gasoline RONs
as a function of training data set. For each data set, the middle line (red) indicates the median,
the circle is the mean, the edges of the box the 25th and 75th percentiles, the whiskers extend to
minimum and maximum values not considered outliers, and the outliers are indicated with plus
signs. “Pure” indicates that the spectra of the pure individual components were used, and “Hep,”
“Oct,” “Tol,” “EtOH,” “Hex,” and “MCH” refer to n-heptane, isooctane, toluene, ethanol, 1-hexene,
and methylcyclohexane, respectively.
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cyclohexane and 1-hexene were added—Perez et al. [42] considered these as components in fuel

surrogates—which resulted in prediction within 28.8±29.4 RON, with a worst-case error of 39.5

RON. Following this, we investigated the effect of adding mixtures to the model performance,

meaning the absorption spectra and published RONs from literature [19, 42, 43]. We learned that

mixtures affected model predictions of RON for many of the FACE gasolines. Residuals still reached

50 for many of the fuels. Subsequently, two additional neat hydrocarbons were added—indicated by

the sensitivity study to have the largest impact on model performance—representing the branched

alkane (2,3-dimethylpentane) and aromatic (xylenes) classes. The performance of the RON model

for all research gasolines converged with the addition of these, resulting in predictions within 0.3±4.4

RON, with a maximum error of 7.9. Adding additional neat hydrocarbons—whether they represent

alkanes, aromatics, cycloalkanes, or alkenes—did not improve the model further. This indicates

that only a few hydrocarbons representing the branched alkane and aromatic classes are required to

improve the model, and further inclusion of hydrocarbons resulted in diminishing returns with little

effect. All the additional neat hydrocarbons (see Table 2.1) were included in the model yielding

0.1±4.8 and 9.7 RON in the worst case. Figure 2.4 illustrates the first (only four of the primary neat

hydrocarbons) and the final model performance (all six primary neat hydrocarbons, 28 additional

neat hydrocarbons, and the 134 mixtures considered).

The first training data set (recall this included four of the primary neat hydrocarbons) is believed

to poorly inform the model as they do not represent the many spectral attributes seen in the FACE

gasolines. Figure 2.5b depicts FTIR-ATR absorbance spectra (650–950 cm−1) of these four neat

hydrocarbons and the FACE gasolines. It is evident that additional functional groups need to be

included to better represent the FACE gasolines spectroscopically. In particular, none of the neat

hydrocarbons exhibit the absorption peaks of the FACE gasolines at 741, 768, 805, and 909 cm−1

(shown by the arrows in Figure 2.5a).

The effect of changing the order in which hydrocarbons were additively included in the model was

also investigated, as seen in Figure 2.6. For example, 2-methylbutane was investigated as a candidate

to replace 2,3-dimethylpentane—recall this was originally added as the first neat hydrocarbon to the

study in Fig. 2.3 after the baseline (which yielded 5.1±9.5, max residual = 22.3). 2-Methylbutane

improves the model (7.2±9.6, max residual = 18.1) in nearly the same way that 2,3-dimethylpentane

originally had. Following that, we added 1,2,3,4-tetrahydronaphthalene to the model guided by
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Figure 2.4: Statistically predicted RON compared with actual RON for the first model (four neat
hydrocarbons) and the final model (all neat hydrocarbons and the 134 mixtures considered in this
work). Predicted RON values shown are for the FACE gasolines and blends with ethanol. Example
residual indicated in figure is actual RON − predicted RON.

the sensitivity study—recall that this highlighted hydrocarbons with the most impact on model

performance. This hydrocarbon represents the aromatics class, and its addition results in improved

model performance (3.1±5.6, max residual = 13.1). However, this addition is not as significant as

that provided by xylene, the second pure component added to the model (0.3±4.4, max residual

= 7.9). Moving to the right in Fig. 2.6, the addition of 2,3-dimethylpentane or xylene no longer

dramatically affects the model performance when added after other hydrocarbons; albeit, the model

does improve with its addition.

Here we demonstrated that adding pure components from one class can affect the model sen-

sitivity to hydrocarbons from others, and that alternative hydrocarbons representing the branched

alkane and aromatic class may be used in lieu of the original 2,3-dimenthylpentane and xylenes

considered. This could be due to shared IR absorbance features at particular optical frequencies.

For example, the fundamental C−H stretch frequency from one class overlapping with hydrocar-

bons from other classes. This results in spectroscopically redundant information being added to the

model, and may explain why some hydrocarbons classes can somewhat inform the statistical model



22

FACE Gasolines

Frequency [cm−1]
650 700 750 800 850 900 950

A
(ν
)

0

0.1

0.2

(a)

Frequency [cm−1]
650 700 750 800 850 900 950

A
(ν
)

0

0.1

0.2

0.3

0

0.5

1
n-heptane

isooctane

ethanol

toluene

(b)

Figure 2.5: (a) FTIR-ATR absorption spectra for the 10 FACE gasolines and 12 FACE gasoline
mixtures blended with ethanol, and (b) initial set of four neat hydrocarbons. Arrows in (a) indicate
absorbing frequencies not found in the pure components shown. Right vertical axis in (b) indicates
toluene absorbance.
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Figure 2.6: RON residual for all FACE gasolines and blends as a function of neat hydrocarbons
added into the model (in a different order than in Fig. 2.3. “Baseline” indicates all species added in
Fig. 2.3 up to the Perez et al. [42] fuels. For each dataset, red line indicates the median, blue circle
the mean, the edges of the box the 25th and 75th percentiles, the whiskers extend to minimum and
maximum values not considered outliers, and the outliers are indicated with red plus signs.
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in the same way as other hydrocarbons classes. Further parametric investigation is needed to fully

optimize component choice.

We also explored removing the 134 mixtures from the training data set to observe the effect of

only leveraging neat hydrocarbons. The previously determined (best) performance (0.3±4.4, max

residual = 7.9 RON) could not be achieved with pure components alone; the maximum residuals

reached 25 RON for many of the predicted FACE gasolines. We believe mixtures are necessary to

inform the model due to non-linear blending effects of RON and the IR spectra with mixtures—

this may be attributable to solvation effects. For example, ethanol particularly introduces these

non-linear blending effects for RON [43] and the absorbance spectra [59]. In general, it is suggested

that alcohols interact with hydrocarbons in various ways by means of van der Walls forces, and

the molecular structures formed (e.g., double-bonded dimer, linear polymer, water-like structure,

etc.) are a function of the alcohol concentration. These various interactions thereby alter the

original molecular structure of the hydrocarbons and therefore their absorbing characteristics [60,

61]. This highlighted that mixtures are equally as important as the neat components alone for

model robustness. This may indicate the possibility of increasing model performance further by

including mixtures containing additional branched alkane and aromatics which improved the model

alone.

2.4 Conclusions
The approaches of Kelly et al. [25] and other work in this area [26–38] used real-world fuel samples to

inform the optics-based statistical models. This work instead used neat hydrocarbons—six of them

are primarily utilized as constituents in gasoline surrogates, and 28 being the primary constituents in

the FACE gasolines—as well as mixtures that contain the primary six components. The six primary

pure components and 134 mixtures of these pure components predicted RON poorly (34.8±36.1 on

average and 51.2 RON in the worst case). However, the addition of two neat hydrocarbons, one

to each represent the branched alkane and aromatic classes, resulted in model improvement: pre-

dicted RON within 0.3±4.4 and 7.9 RON in the worst case, respectively. This performance could

be achieved with various neat hydrocarbons representing these classes. Additional parametric in-

vestigation is required for ideal fuel selection. This, however, would be difficult to determine due to

the many possible combinations and results to likely change when considering additional hydrocar-
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bons. More importantly and simpler to implement, mixtures containing these two additional pure

components should be investigated for their effect on the model, primarily because the six primary

neat hydrocarbons proved to be important in mixtures as they are individually.

This work shows that the ignition quality of gasolines can be represented by as few as eight

hydrocarbon spectra. With this information, the most impactful fuels (neat or otherwise) can be

targeted to inform spectroscopic surrogates to predict performance of complex fuels, in this case

the FACE gasolines. We developed a model informed by simple fuel surrogates and neat hydro-

carbons to predict RON of the FACE gasolines. Therefore, this work builds upon previous efforts

by creating models that are irrespective of the fuels we wish to predict performance attributes of.

The primary benefit being predicting fuel performance without the need to gather a training data

set that uses those particular fuels to inform the model—e.g., using ATR-FTIR spectra and known

RONs of characterized gasolines to inform the model to predict RON for an unknown gasoline

sample from its measured ATR-FTIR spectra. In addition, the results may support using computa-

tionally determined performance metrics for the training data set. This is to say, fuel performance

metrics of real fuels—burdensome to accurately model due to complex chemical mechanisms—can

be predicted with a computationally modeled data set of neat-hydrocarbons and surrogate fuels,

which are relatively simple and computationally more efficient to model. This model would predict

real fuel performance (e.g., RON or alternative metrics) informed by computational simulations and

FTIR-ATR absorption spectroscopy.
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Chapter 3: Emulating Complex Fuel Thermochemical Attributes

The previous chapter outlined techniques demonstrating that fuel infrared spectra can be correlated

to RON. The RON model was informed by pure hydrocarbons and fuel mixtures containing few

hydrocarbon components. The model is simple by nature, yet it is capable of predicting complex

refinery grade gasoline samples, reinforcing that infrared spectra correlate well to fuel performance.

The complex fuel samples predicted are the FACE gasolines (Fuels for Advanced Combustion En-

gines), well-characterized gasoline fuels used in the research community. Predicting RON of the

FACE gasolines and comparing to their true RON values from literature served as a robust valida-

tion procedure.

In order to validate a LTC index predictive model in the same manner as the RON model, the

LTC indices of the FACE gasolines must be known. Since the LTC-index is computationally based,

the FACE gasoline LTC indices then have to be simulated to create the validation data set. How-

ever, due to the FACE gasolines comprising hundreds of hydrocarbon species, and therefore highly

complex, it is not yet possible to directly simulate at this time. Instead, researchers create simpler

fuels that are a mixture of a few pure hydrocarbon components that emulate the theromchemical

properties of the complex fuels. These simple fuels are known as “surrogates”, and serve as a means

to represent and benchmark the performance of the complex fuel in combustion simulations.

At the time of this work there were only surrogates available for 2/10 of the FACE gasolines

(”A“ and ”C“) in literature [62, 63]. The remaining surrogates had yet to be created. Surrogate fuel

creation for the FACE gasolines is the topic of this chapter. This chapter outlines an automated

procedure to numerically blend pure hydrocarbon components into a surrogate fuel. This work has

a novel aspect to it, in that the methodology leverages the developed predictive RON model from

Chapter 2. The following sections outline the work to create the FACE gasoline surrogates, adapted

from:

Daly, Shane R., Kyle E. Niemeyer, William J. Cannella, and Christopher L. Hagen. “FACE gasoline

surrogates formulated by an enhanced multivariate optimization framework.” In review with Energy

and Fuels.
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3.1 Introduction
Combustion of hydrocarbon-based fuels accounted for approximately 84% of US energy consump-

tion in April 2017 [64], and some projections show this remaining at 82–84% through 2050 [65].

Society continues to rely on internal combustion engines for transportation, commerce, and power

generation. Vehicle fuel economy has steadily improved over the years due to increasing compres-

sion ratios, downsizing, and turbocharging, resulting in increased thermal efficiency [4]; in addition,

increased electric hybridization has helped reduce overall fuel consumption. However, simultane-

ously evolving fuel compositions and combustion strategies challenge further improvements to ICE

performance—both are being adapted to meet high efficiency, low emission government mandates.

These recent governmental regulations, namely the Corporate Average Fuel Economy 2025 stan-

dards, propose reaching 54.5 mpg within the next eight years, although they are currently under

review. Continued electric hybridization will help solve this challenge, but projections suggest per-

sonal and fleet hybrid vehicles will comprise only 4.6% of on-road vehicles in the United States

by 2025 [66]. Reducing the environmental impact of these systems motivates research into further

reduction of emissions and improvements in efficiency.

The chemical composition of a fuel significantly affects engine-out emissions and performance [20,

67–69]. Gasoline presents challenges to studying the influence of fuel composition since it contains

hundreds of various hydrocarbon species [70]. The methodology proposed in this work will accel-

erate the process of studying complex gasoline samples by formulating fuel surrogates. Surrogates

blend a small number of well-characterized hydrocarbons to represent real fuels (like refinery-grade

gasolines) by emulating their thermophysical and chemical kinetics properties. By representing

these real fuels—comprised of near-continuous spectra of component hydrocarbons—as discrete

mixtures of components, surrogates can be modeled with validated chemical kinetic models and

enable simulations of combustion technology. Additionally, experiments with surrogate fuels can

provide insight into fuel-composition effects on engine-out performance and emissions. Experimental

and computational research using surrogates designed with the proposed algorithm will help inform

researchers to effects of fuel composition and thermochemical properties on internal combustion

engine performance.

Our work builds upon the diesel surrogate formulation framework developed by Mueller et
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al. [71]. They demonstrated that physical properties and fuel performance metrics relevant to

internal combustion engine performance—composition based on carbon nuclear magnetic resonance

spectra, distillation curve, cetane number, and density—can be targeted to formulate surrogates

that mimic the behavior of the real diesel fuel properties. Their work helped overcome the challenge

of automating the design of a mixture containing a small number of hydrocarbon species (eight, in

this case) to broadly represent the performance of complex fuels. Their method weights individual

fuel properties and combines these into a single objective function, then designs a surrogate by

minimizing this objective via changing the relative component amounts.

Ahmed et al. [72] extended the diesel surrogate formulation framework to gasoline fuels: Fuels

for Advanced Combustion Engines (FACE) gasolines A and C. The FACE gasolines are a matrix

of research gasolines designed by the Coordinating Research Council (CRC) and manufactured by

ChevronPhillips Chemical Co. [41]. Ahmed et al. efforts incorporated fuel performance metrics

more relevant to gasoline fuels; e.g., research octane number (RON) in lieu of cetane number.

Later, Sarathy et al. [73] presented multiple surrogates for FACE gasolines F and G, using the

method of Ahmed et al. [72] with additional target properties like motor octane number (MON).

Multiple surrogates were presented for FACE gasolines F and G based on species palette selection

restrictions and a RON/MON calculation methodology. After which, Javed et al. [74] used the

refined methodology of Sarathy et al. [73] to formulate surrogates for FACE I and J. Shankar et

al. [75] also formulated surrogates for low octane sensitivity gasolines FACE A, C, I and J, mainly to

investigate the application of using primary reference fuels as surrogates specifically for pre-mixed,

low-temperature combustion engine applications.

3.1.1 Octane model review
Here, we outline the various methodologies to develop surrogates whose RON and MON attempt to

match those of the target gasoline in the aforementioned efforts [72–74], while highlighting the chal-

lenges and areas for improvement. Following that, we present an alternative approach to calculate

RON and MON.

Ahmed et al. [72] correlated RON to simulated constant-volume ignition delay times. Their

approach requires an autoignition simulation for every iteration in the surrogate formulation frame-

work. This step can be time-consuming, especially with detailed chemical models containing thou-
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sands of species, since the computational time increases exponentially with the number of component

species considered for the surrogate—and hundreds of iterations may be required to formulate a sur-

rogate. Ahmed et al. also considered a simpler linear-by-mole correlation and formulated alternate

surrogates based on this less-expensive computational approach [72].

Sarathy et al. [73] added octane sensitivity (S = RON-MON) as a target parameter when

formulating surrogates for FACE gasolines F and G [73]. They correlated octane sensitivity to the

slope of the negative temperature coefficient (NTC) region of simulated constant volume ignition

delays—a significant computational hurdle, compared with a single ignition delay calculation (see

Mehl et al. [76] for more detail on this correlation). To alleviate computational effort, Sarathy et

al. also formed alternative surrogates for FACE gasolines F and G based on another linear-by-mole

blending formula [73]. The linear-by-mole equation, while simple, was developed and verified only

for toluene reference fuels (TRFs: mixtures of toluene, n-heptane, and isooctane). Sarathy et al.

extended the application to non-TRF mixtures by replacing toluene, n-heptane, and isooctane as

the aromatic, n-paraffin, and isoparaffin species in the linear-by-mole equation with other species

being considered. This is to say, predicting RON or MON of a fuel mixture containing 1,2,4-

trimethylbenzene, n-butane, and 2-methylbutane, would be achieved by using the respective mole

fractions directly in the equation originally developed for only TRFs. As such, errors using the

equation in this manner may be significant. Despite this, Sarathy et al. did this to investigate an

approach requiring minimal computational effort in comparison to the other, computationally-heavy

method.

Javed et al. replaced the TRF linear-by-mole relationship with the more detailed octane blending

model of Gosh et al. [77] in formulating FACE J. This relation accounts for non-linear blending effects

at the level of the total paraffins, total olefins, total naphthenes, etc., but not at the individual

molecule level [77]. Here, model interaction parameters that represent blending effects between

hydrocarbon classes were trained using gasoline samples. After, the trained model was validated

against other refinery-grade gasoline samples, and proved to produce excellent results. While this

octane model does return individual pure component octane ratings for neat hydrocarbons, it is

not validated toward simpler surrogate mixtures where molecule-molecule interactions can be more

prominent.

The RON/MON calculation approaches used in previous gasoline surrogate formulation ef-
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forts [72, 73, 78] are either not very accurate (the TRF linear-by-mole relationship), do not ac-

count for molecule-molecule octane blending, or computationally expensive (the NTC-sensitivity

correlation based on multiple autoignition simulations). In the current study, we explored improved

options that require less computational effort and are capable of predicting quantities for a wide

array of hydrocarbons. Initially, we attempted to extend the correlation of simulated ignition delay

approach of Ahmed et al. [72] to calculate MON, since they only developed a correlation for RON.

The coefficient of fit for our MON model was sufficient, but the RON and MON models in combina-

tion could not accurately capture sensitivity. More recently, Singh et al. [79] used regression tools

to find the initial temperature and pressure conditions at which RON and MON best correlate with

the simulated ignition delay times; it is applicable to mixtures of n-heptane, isooctane, toluene,

1-hexene, and 1,2,4-trimethylbenzene.

We instead implemented novel models that correlate attenuated total reflectance, Fourier-transform

infrared (ATR-FTIR) spectra of a fuel to RON and MON. These models alleviate the extensive

computational effort of auto-ignition simulations—decoupling the need for complex chemical ki-

netic models—and provide accurate predictions for robust mixtures of various hydrocarbons, as

well as more complex fuels like the FACE gasolines. Daly et al. [80] provide such a model developed

through principal component regression (PCR), informed by neat hydrocarbons and low-component

fuel mixtures. The model can predict RON for various pure components and their mixtures, as well

as the higher-complexity FACE gasolines. The model takes a fuel’s IR spectra, whether it is a pure

component, mixture of pure components, or a refinery-grade gasoline sample, and predicts the RON.

Here, we use this technique to create a separate MON correlation, and also improve the predictive

capability of the original RON correlation provided by Daly et al. [80].

The surrogate formulation algorithm, updated with the IR-octane models, is used to generate

surrogates for the 10 FACE gasolines A–J. Table 3.1 list the measured properties of these fuels [41].

We next describe the IR-octane models and the surrogate formulation algorithm.

3.2 Methodology
We first discuss the general workings of the IR-RON model from Daly et al. [80]. Following that,

we outline how the current work improves upon the existing model and create a new MON cor-

relation. The predictive capability of these models are presented thereafter. Next, we discuss the
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FACE gasolines

Target property A B C D E F G H I J

RON 83.9 95.8 84.3 94.2 87.4 94.4 96.8 86.9 70.2 73.8
MON 83.5 92.4 83.0 87.0 81.1 88.8 85.8 79.8 69.5 70.1
Density [kg/m3] 685 697 690 743 725 707 760 759 697 742
H/C ratio 2.29 2.21 2.27 1.88 2.04 2.13 1.83 1.72 2.26 1.92

% Volume distilled Temperature [K]

10 329 337 331 338 335 346 350 334 343 346
20 344 352 341 354 342 351 363 349 354 368
30 357 364 350 366 348 357 378 363 359 376
40 365 371 359 374 354 363 394 373 362 380
50 368 374 366 379 359 370 411 382 364 384
60 370 376 372 384 365 376 426 390 366 390
70 372 378 376 390 371 382 439 401 368 401
80 374 381 382 413 379 387 447 417 371 417

Carbon type Fractional %

1 54.5 56.4 53.1 41.3 33.2 43.2 35.4 27.5 46.1 32.8
2 22.7 15.2 24.6 18.4 19.1 18.2 13 22.4 32.3 32.8
3 16.6 16.6 14.6 5.2 8.2 12.1 6.5 3 13.4 4.5
4 0.8 0 0 0.2 21.7 11.5 10.5 9.5 1.8 1.1
5 0.4 0 0 0 1 0.1 0.8 0.8 0.7 0.6
6 0 0 0 0 0 0 0 0 0 0
7 0.5 4.1 2 20.7 8.3 5.3 18.4 24.8 1.1 18.1
8 0.1 1.8 1.3 9.3 2.7 2.3 10.8 9.1 0.2 9.9
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0.2 0.3 0 0.5 0.5 0 0.1
11 4.4 5.8 4.4 4.7 1.9 4.2 1.8 0.5 2.3 0
12 0 0 0 0 1.3 1.5 0.3 0.3 1 0
13 0 0 0 0 1.9 1.5 1.3 1.1 1 0
14 0 0 0 0 0.4 0 0.6 0.6 0 0.1

Table 3.1: FACE gasoline target properties [41], including carbon bond (C–C) type relative amounts
(rounded to nearest tenth); nomenclature for C–C is defined in the Methodology section.
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gasoline surrogate formulation framework of Ahmed et al. [72], and introduce some alterations to

their methodology, including the performance parameter evaluation and additional considerations

for determination of final surrogate mixtures. Lastly, we list the neat hydrocarbon components

considered for the surrogate palette.

3.2.1 ATR-FTIR octane model
Here, our work improves upon the predictive capability of the RON correlation developed by Daly

et al. [80]. We also present a new MON correlation, created by following the same methodology as

the new RON model, using PCR to correlate fuel ATR-FTIR spectra to octane ratings. The models

were further improved by extending the original training dataset to include the FACE gasolines.

Because of this addition, the performance of the model cannot be judged by how well the FACE

gasolines are predicted, as originally done by Daly et al. [80].

Instead, model performance (foresight) will be measured by its ability to predict 25 TRF fuel

mixtures from Knop et al. [81]. We also provide a comparison of the IR model’s predictive capability

to seven octane correlations (specific to TRF mixtures) proposed in the literature [81]. We performed

this extra step to show that the IR-RON model of Daly et al., although not made specifically for

TRF mixtures, can predict octane numbers of TRF mixtures at least as well as the TRF-specific

correlations used by Sarathy et al. [73]. We now outline the calculation methodology with the

updated IR-octane models.

In this approach, PCR assigns a weighting coefficient to each absorbance value (for all wavenum-

bers), and the dot product of these weightings with a fuel’s ATR-FTIR absorbance spectra, plus a

constant offset factor, yields the octane rating. In equation form, this is given by

ON =
∑
ν

WνAν + b , (3.1)

where: ON = RON or MON; Wν and Aν are the weighting coefficients and absorbance spectra

associated with a particular wavenumber ν, respectively; and b is an offset. The summation is

performed over the applicable wavenumber range. The spectral weightings and offset for the RON

and MON correlations can be found as supplemental material. The absorbance spectra of a gasoline,
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neat hydrocarbons, or mixtures of neat hydrocarbons may be attained by using an ATR-FTIR1,

with ν ranging 650–3580 cm−1 in increments of 1 cm−1 (See Daly et al. [80] for more details on

spectra collection methodology). Mixtures of neat fuels are assigned an IR spectra based on the

molar-weighted sum of the individual components:

Ab =
∑
ν

n∑
j=1

XjAj,ν , (3.2)

where Ab is the resulting linearly blended spectra of mixture b, Xj is the mole fraction of each

component j, Aj is component js spectra, and the summation is performed over the n components

in the mixture. The mole-weighted summation is carried out over all wavenumbers ν. In this manner,

a small database of neat hydrocarbon spectra can be used to numerically create fuel spectra.2

We evaluate the newly developed models by their ability to predict the octane numbers of the

TRF mixtures referenced in Knop et al. [81]. Our updated RON and new MON correlations predicts

RON, MON, and sensitivity of the TRF dataset as well as TRF model (designated here as “K-3”)

and better than the other six correlations investigated by Knop et al. [81] Figure 3.1 shows the

global error for RON, MON, and S for Knop et al. models (“K-1” to “K-7”) and our models (“IR”).

The global error measures the average root-sum-square error of RON, MON, and sensitivity (S)

over all 25 TRFs—lower values are better.

The IR correlations accurately predict quantities of TRF fuel mixtures as well or better than

other proposed TRF-specific correlations in the literature [81]. As of now, the model is proven

for TRF fuel mixtures, the 34 pure hydrocarbon components outlined in Daly et al. [80], fuel

mixtures with various proportions of n-heptane, isooctane, toluene, methylcyclohexane, 1-hexene,

and ethanol [16, 42, 43], and the FACE gasolines [41]. Based on this evidence, we believe the IR

models to be valid for the hydrocarbons (and mixtures thereof) studied in this work.

In the next section, we incorporate these RON and MON models into the surrogate formulation

framework and develop surrogates for the 10 FACE gasolines. At the time of writing this, surrogates

for four of these have not yet been published by any researchers. The surrogates are benchmarked
1Here we used a ThermoFisher Nicolet iS10 FTIR with a single-bounce, Attenuated Total Reflectance (ATR)

smart accessory (650–4500 /cm−1 at 2 cm−1 resolution, nitrogen purged, and crystal type: diamond with ZnSe lens,
part number: 222-24700).

2Alcohols, such as ethanol, exhibit nonlinear IR blending due to solvation effects, [60, 61] so precautions are needed
to include alcohols. See the work of Corsetti et al. [59] for a relevant analysis of this phenomena.
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Figure 3.1: Global error of the Knop et al. [81] and current correlations for RON, MON, and
sensitivity for the TRF dataset.
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by their ability to match the measured properties of the FACE gasolines (see Table 3.1). We then

compare formulated FACE gasoline surrogates A, C, F, G, I and J with established surrogates from

the literature [72–74, 78] (found in Tables 3.6–3.11).

3.2.2 Framework for formulating surrogate fuels
The framework for formulating surrogate fuels builds on that of Ahmed et al. [72], although our

approach uses an open-source software stack based on Python. We used Cantera [82] to handle

all chemical Kinetic property evaluations and as the basis for simulating autoignition delay (used

for the preliminary ignition delay-octane correlation study). Our approach does still rely on NISTs

non-open REFPROP [83] software for evaluation liquid density and distillation curves. We accessed

REFPROP via Python using an established interface developed by Thelen [84]. We now outline the

objective function, and the methodology to calculate various performance parameters for it.

We use the objective function, the performance variables, and each variable’s respective weight-

ing factor given by Ahmed et al. [72], which Table 3.2 shows. However, we add MON to our

objective function, with the same weight as RON. Again, these are calculated based on the FTIR-

octane models, as outlined in the previous subsection. The objective function, f , sums weighted

errors in performance variables of a given surrogate with respect to the target fuel:

f =

n∑
j=1

βjEj , (3.3)

where βj is the weight of parameter j, Ej is the relative error in parameter j between the surrogate

and the target fuel, and n is the number of performance parameters (six, in this case). Ahmed et

al. chose weighting factors according to each optimization parameter sensitivity, which signifies the

respective reduction of error per unit increment of the weighting factor. High sensitivity parameters,

such as RON, require a larger weight to minimize surrogate error.

RON MON Density Distillation C–C H/C

Weight (β) 104 104 103 102 102 1

Table 3.2: Weights for each performance parameter considered in the objective function, taken from
Ahmed et al. [72] (except MON, which matches RON here).

In addition to RON and MON, the objective function requires four additional performance
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parameters: hydrogen-to-carbon (H/C) ratio, distillation points (temperature at 10-80% volume

recovered), density, and carbon–carbon (C–C) bond types. Ahmed et al. [72] provide more details

on the calculation methodology for these parameters, though we briefly describe them here for

completeness.

H/C ratio, the overall proportion of hydrogen to carbon atoms in the mixture, is calculated

via the molar-weighted sum of each component species’s ratio. The distillation curves and fluid

density calculations are determined in the same manner as Ahmed et al. [72]. For a given fuel

mixture, REFPROP approximates the mixture fluid density and determines the distillation curve

by simulating thermodynamic vapor-liquid equilibrium states, described in detail by Mueller et

al. [71] We consider neat hydrocarbons not represented in default REFPROP database; as such, they

were incorporated into the software with guidance from the developers. [85] This required creating

reference files containing thermodynamic properties for these species, which REFPROP uses in

evaluating the Peng–Robinson equation of state, as well as polynomial fits for specific heat with

temperature [83]. These hydrocarbons not included in REFPROP are summarized in Table 3.3, and

the associated thermodynamic files are available openly [86]. Our distillation calculations produce

advanced distillation curves (ADC), known to be quantitatively different from those produced from

typical ASTM-D86 experimental procedures, as laid out by the works of Bruno et al. [87–89].

Advanced distillation curves are only available for six of the ten FACE gasolines [90]. For consistency

between formulating all ten FACE surrogates, we use the complete ASTM-D86 distillation data [41]

for our study. Future efforts will address sensitivity in formulated surrogate compositions to using

ADC versus ASTM-D86 data. Lastly, we assigned the 14 C–C bond types in the same manner as

Sarathy et al. [73], including their nomenclature for numbering the types:

1 n-CH3 - primary carbon

2 n-CH2 - secondary carbon

3 iso-CH - tertiary carbon

4 naphthene - CH2 - secondary carbon

5 naphthene to alkyl - tertiary carbon

6 naphthene to naphthene - tertiary carbon

7 aromatic CH - tertiary carbon

8 aromatic to alkyl C - quaternary carbon

9 aromatic to naphthene C - quaternary carbon

10 aromatic to aromatic C- quaternary carbon

11 aliphatic C - quaternary carbon

12 primary C−−C double bond

13 secondary C−−C double bond

14 tertiary C−−C double bond
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Table 3.1 lists the amounts of each C–C bond type for the FACE gasolines, based on the detailed

hydrocarbon analysis (DHA) by gas chromatography-flame ionization detector [41]. The general

gasoline formulation framework approach will now be explained.

The surrogate formulation framework’s task, given a user-defined species palette, is to determine

a set of optimal mole fractions that minimize the objective function; i.e., numerically blend species

to closely match the fuel properties of the target fuel. This requires iteration, where each iteration

is a new set of mole fractions that dictate the bulk fuel properties. For example, in the case of

calculating RON/MON, linear-blended spectra (by mole) based on each species in the palette is

first determined; then, the spectra is fed to the FTIR-octane models to calculate RON/MON. The

errors between the predicted RON/MON and the target fuel RON/MON contribute to the overall

objective function value. To find the global minimum of the objective function, we used a constrained

multiobjective optimization routine from the SciPy library (scipy.optimize.minimize()) [91],

with a constrained quasi-Newton method (L-BFGS-B) [92]. We also found, in agreement with

Ahmed et al. [72], that the optimization algorithm could get “stuck” in many local minima of

the objective function. To resolve this, we fed 100 randomized initial conditions (i.e., mixture

mole fractions) into the optimization routine, then chose as the final result the designed surrogate

(out of 100) with the lowest objective function value. We acknowledge that other optimization

routines may be more efficient than this ad-hoc solution, such as a basin-hopping routine (e.g.,

scipy.optimize.basinhopping()), but our approach requires minimal computational effort to

redundantly evaluate the objective function, so we did not see much reason to pursue alternatives.

In the optimization algorithm, we constrain the mole fractions for each constituent species in

the surrogate palette between zero and a species-dependent value less than one. The upper bound

of each species is dictated by its respective hydrocarbon class and the relative proportion of that

class within the target fuel, as per the DHA. For example, if the target fuel has 20% by mole

of n-paraffins, and the surrogate palette has two n-paraffins such as n-pentane and n-heptane,

then the upper mole-fraction bound of both species is 0.2. This seemed a reasonable bound to

expedite the surrogate design as opposed to setting the bound to one. However, if the algorithm

designs a final surrogate with a species at its upper bound, then the bound is increased and the

optimization repeated to (potentially) yield a better solution. We also ensured that species mole

fractions summed to one by applying a penalty function to the objective (multiplying by 108) when



39

violating this constraint.

We also imposed additional logic at the end of the optimization routine to further simplify

surrogates: if the number of species in the palette is greater than seven, and if any these species

are present at less than 4% by mole, then a new surrogate palette is generated without these minor

species. This threshold of 4% was arbitrary and deemed to quantify a “minor” amount. We recognize

that the threshold method could possibly cause any given hydrocarbon class containing only “minor”

species to be completely eliminated for the reduced palette. We did find that this does occur, but

with no penalty to the objective function score for the “reduced” formulated surrogate. We then

re-execute the surrogate formulation framework with this reduced palette, and again with 100 new

randomized fuel mixture initial conditions. We repeat this process until no minor species remain

in the final surrogate—we present this result as a “reduced” surrogate, versus the “full” surrogate

before this process is applied. This was performed in anticipation of future efforts that will require

reduced chemical kinetic models for these FACE surrogates; the kinetic model of Sarathy et al. [73],

which incorporates 2315 species and 10,079 reactions, is extensive—fewer components in the final

surrogate mixture will result in a simpler reduced kinetic model.

Table 3.3 shows the palette species chosen. We chose the species palette constrained to three

criteria. First, we utilize hydrocarbons included in prior surrogate research [72–74, 76, 78]. Next, we

only considered species available in comprehensive chemical kinetic models, so that surrogates may

be readily used for computational studies; the comprehensive model of Sarathy et al. [73] includes

a wide array of species. This kinetic model has additional species not included in past surrogate

research. Lastly, we selected species present in the training dataset of the IR-octane correlation

used in this work; i.e., the species that informed the PCR model and whose properties we expect to

be adequately predicted. See Daly et al. [80] for the complete list of fuels used in the training data

set. One exception to this is pure n-pentane, which is not present in the training dataset directly

as a pure component for the IR-octane models. The FACE gasolines themselves are included in the

training dataset in this work, and contain 0.06–15.06% by mole n-pentane as per the DHA. As such,

we expect fuels with less than 15% by mole of n-pentane to be adequately predicted; prediction error

may increase for fuels with more than 15% of n-pentane. The pure component spectra of n-pentane

was collected after the IR-RON/MON model training phase, and will be included in future efforts.

N -butane was not able to be included in the species palette, as with literature surrogates [72, 73],
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since we could not procure the ATR-FTIR spectra. This is primarily due to limitations in the

spectra collection methodology, which require the substance measured to be solid or liquid at room

conditions.

Based on our constraints, the final fuel palette extends previous efforts containing n-pentane, 2-

methylpentane, 1-pentene, cyclohexane, and o-xylene. These species broaden the range of molecular

weights and hydrogen to carbon ratios for each PIONA class, present to varying extents within the

FACE gasolines. Indeed, many of these species are not prevalent in most of the FACE gasolines

individually. However, guided by the work of Daly et al. [80], blended octane ratings are highly

sensitive and non-linear to additions of these species. As such, incorporating these species extends

the range of blended octane rating combinations, and we expect better convergence to target octane

ratings. We limit the parameterization of our current study by omitting some candidate species,

such as m-/p-xylenes or 2-pentene; these will be investigated in future efforts. Although, as we will

show, there are marginal benefits to leveraging an expansive species palette as opposed to a reduced

sub-set.

Palette species CAS # Formula Class Tb MW REFPROP
(PIONA) [K] [g/mol]

n-pentane 109-66-0 nC5H12 paraffin 309.2 72.14 X
n-heptane 142-82-5 nC7H16 paraffin 371.5 100.20 X
2-methylbutane 78-78-4 C5H12 isoparaffin 300.9 72.14 X
2-methylpentane 107-83-5 C6H14 isoparaffin 333.3 86.17 X
2-methylhexane 591-76-4 C7H16 isoparaffin 363.4 100.21 ×
2,2,4-trimethylpentane 540-84-1 C8H18 isoparaffin 372.3 114.22 X
1-pentene 109-67-1 C5H10 olefin 304.0 70.13 ×
1-hexene 592-41-6 C6H12 olefin 337.0 84.15 ×
cyclopentane 287-92-3 C5H10 naphthene 322.0 70.13 X
cyclohexane 110-82-7 C6H12 naphthene 353.8 84.15 X
toluene 108-88-3 C7H8 aromatic 383.7 92.13 X
o-xylene 95-47-6 C8H10 aromatic 417.5 106.16 X
1,2,4-trimethylbenzene 95-63-6 C9H12 aromatic 442.4 120.19 ×
1,3,5-trimethylbenzene 109-67-1 C9H12 aromatic 437.8 120.19 ×

Table 3.3: Species palette for FACE surrogates. Tb is the normal boiling point, and “REFPROP”
indicates whether the species was represented in the software. Species not included in the default
REFPROP database were manually added.
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3.3 Results and discussion
First, we present the surrogates developed here for FACE gasolines A–J. These surrogates were

generated from the full, original species palette with 8–13 species (depending on the target FACE

gasoline). We also developed simpler surrogates containing 4–7 species from a reduced species

palette. The supplemental material contains tables and figures comparing the full- and reduced-

palette surrogates, describing in detail how well the surrogate matches respective target properties.

Finally, we compare the surrogates for FACE gasolines A, C, F, G, I and J with other proposed

surrogates from the literature.

3.3.1 Full-palette FACE surrogates
Table 3.4 presents the full-palette FACE gasoline surrogates. A molar amount of zero indicates that

the species was considered but the algorithm converged on that value, while a blank entry indicates

the species was not considered.

The FACE gasoline surrogates, on average, match the array of target properties within 5%. This

demonstrates that our framework can create gasoline surrogates for the wide range of gasoline target

properties the FACE gasolines represent—given the species palette utilized. In contrast to the other

surrogates generated, the FACE G surrogate exhibits high prediction errors in density (5.3%) and

H/C ratio (16.8%). This may result from the relatively high weighting factors used to (successfully)

match RON and MON with low errors. At the same time, the species mole fractions were not strictly

constrained to enforce matching the target H/C, C−C types, or density; as a result, the algorithm

was free to depart from these target properties to minimize the objective function. To match the high

octane sensitivity of FACE G—11, the highest of the FACE gasolines—the optimization algorithm

selected large amounts of olefins (high sensitivity) and low amounts of n-paraffins (low sensitivity);

no other options were available based on the species present in the palette. We conclude that the

the IR-octane models should be updated with additional high-sensitivity fuel mixtures for greater

model robustness, as it should be possible to design a high sensitivity fuel with proper n-paraffin,

isoparaffin, olefin, naphthene, and aromatic proportions. This means the IR-octane model training

procedure revisited by including additional high-sensitivity fuel mixtures, potentially adding new

components to the surrogate species palette that the IR-octane model is updated with, followed
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by repeating the surrogate formulation. The surrogates for the remaining, lower-sensitivity FACE

gasolines (ranging 0–8) adequately capture the target properties; for example, the FACE D surrogate

matches all performance attributes within 3%.

3.3.2 Reduced-palette FACE surrogates
Table C.1 presents the simpler FACE surrogates, with four to seven species, designed using reduced

species palettes. Interestingly, though these surrogates contain fewer components, they capture

the properties of the target fuels better, or nearly as well as the larger, full-palette surrogates.

The minor species removed from the “full” palette did result in some hydrocarbon classes being

completely eliminated. For example “reduced” surrogates for FACE A and B no longer have n-

paraffins, and the objective function score was further minimized (indicating a better surrogate).

The reduced-palette surrogates, on average, predict RON, MON, and distillation curve slightly

better, and density and H/C ratio slightly worse than the full-palette surrogates. Overall, the

reduced-palette FACE surrogates achieved better objective function evaluations than their full-

palette counterparts—meaning they better-match the real gasoline. Based on the overall similarity

in performance between the two sets of surrogates, satisfactory surrogate fuels may be obtained

without requiring an ever-larger palette of potential components.

This result is counter intuitive. We expect that as components in the surrogate palette and

their relative proportions approaches that of the target fuel the objective function would be best-

minimized (approach zero). We suggest that modeling artifacts causes much of the “reduced” surro-

gates to outperform the “full”. The overall accuracy of predicted fuel properties could be reducing

as the species palettes grows. Larger species palettes also bring the increased possibility that the

optimization routine is not guaranteed to return a global minimum. Additionally, weighting factors

for the objective function may also need to be tuned on a per-surrogate basis, due to the large

variability in the species palette and therefore parameter sensitivity. These intricacies and their

impact on modeling results were not investigated in this work, but should be investigated in future

efforts.

Unfortunately, limiting the palette exacerbates some errors for the worse-performing full-palette

surrogates. For example, FACE G reduced-palette surrogate captures H/C ratio worse at 15.7%,

although density, RON, and MON still closely match those of the full-palette surrogate. The
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Parameter A B C D E F G H I J

RON 83.9 95.1 84.1 93.7 87.4 93.6 95.9 86.7 70.2 72.7
MON 83.6 93.2 83.2 87.7 81.2 88.2 86.7 80.1 69.5 71.0
Density (kg/m3) 697 709 703 762 734 734 803 771 716 748
H/C 2.23 2.15 2.16 1.83 2.00 2.03 1.57 1.76 2.12 1.90

% Volume distilled Temperature [K]

10 338 339 336 347 337 345 348 344 343 352
20 344 346 341 354 342 350 358 349 348 360
30 352 355 348 361 346 356 372 355 354 368
40 360 365 355 370 352 363 389 364 360 375
50 367 372 363 378 358 369 406 374 367 381
60 370 375 370 387 365 374 418 387 370 388
70 371 377 374 395 371 380 423 399 373 400
80 372 380 378 405 379 387 426 413 378 422

Carbon type Fractional %

1 54.8 55.4 51.8 38.9 33.3 42.5 24.1 27.5 41.4 33.6
2 21.5 14.9 21.5 14.3 18.9 15 14.8 17.4 27.9 25.8
3 11.9 12.1 11.4 7.4 6.7 8.5 0.3 2.8 7 3.1
4 0 0 0 3.1 19.4 11.9 6.6 14.2 7.9 7.2
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 3.4 6.9 6.7 23.6 9.4 9.5 28.1 23.3 7.3 13.2
8 1 3.1 2.8 10 4 4.7 17.1 10.8 3.3 9.9
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 7.4 7.7 5.8 2.7 3.1 5.6 0.3 1.2 4.2 2.5
12 0 0 0 0 2.6 1.2 4.4 1.3 0.5 2.4
13 0 0 0 0 2.6 1.2 4.4 1.3 0.5 2.4
14 0 0 0 0 0 0 0 0 0 0

Species Molar %

n-pentane 6.4 0.0 5.9 0.3 0.0 5.3 13.0 3.0
n-heptane 5.1 1.7 5.3 4.1 1.3 3.9 9.4 15.0 21.8
2-methylbutane 20.0 24.0 18.6 9.8 10.2 9.4 0.0 7.7 2.3
2-methylpentane 1.0 4.2 13.3 20.4 1.0 0.1 0.5 7.8 4.2 1.9
2-methylhexane 10.6 3.3 6.5 3.1 12.6 10.4 2.8 7.0
2,2,4-trimethylpentane 51.8 54.9 40.0 18.9 19.9 38.9 1.8 8.3 28.5 18.1
1-pentene 4.8 11.2 5.0 0.6 8.4
1-hexene 12.1 8.3 20.1 4.0 3.0 8.6
cyclopentane 4.3 15.6 16.5 9.3 18.6 0.0
cyclohexane 8.0 0.5 9.0 8.5
toluene 3.4 1.9 4.3 8.8 4.1 13.6 5.1 3.4
o-xylene 1.7 9.9 5.0 30.1 9.6 16.4 38.9 14.9 3.3 5.0
1,2,4-trimethylbenzene 1.5 0.3 14.4 9.8 3.7 15
1,3,5-trimethylbenzene 0.8

Objective Function 1.61 2.85 1.25 3.12 0.30 1.91 10.5 3.29 3.05 6.95

Table 3.4: Full palette, formulated FACE gasoline surrogates. A blank entry indicates that the
species was considered in the work, but was not included in the palette for the particular FACE
gasoline. A zero (0) indicates the species was in the palette, but not chosen by the optimizer.
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supplemental material contains surrogate-specific target property changes between the full- and

reduced-palette formulations. In general, the C−C bond types are the hardest properties to predict

with the reduced palette.

3.3.3 Comparison with literature surrogates
This section compares the surrogates developed in the current study with surrogates proposed in

the literature for FACE gasolines A [72, 78], C [72, 78], F [73], G [73], I [74] and J [74]. For now, we

omit comparing to the FACE A, C, I and J primary reference fuel (PRF) surrogates from Shankar

et al. [75], as they only considered RON/MON in their formulation methodology. While these PRF

surrogates are well-validated to emulate combustion behavior for these FACE gasolines at pre-mixed

conditions, the surrogates may not be applicable to more complex physical environments including

spray, mixing and diffusion. As such, we only consider the literature surrogates that targeted both

physical and chemical properties, specifically: hydrocarbon classes, C−C bond type proportions,

distillation characteristics, H/C ratios, density, and octane ratings. Tables 3.6–3.11 compare the

new surrogates with previous surrogates in terms of target properties.

3.3.3.1 FACE A
Table 3.6 compares the performances of the full-palette, eight-component and reduced-palette, four-

component surrogates developed in the current study for FACE gasoline A along with the five-

component surrogates developed by Sarathy et al. [78] and Ahmed et al. [72]. For clarity, Ahmed et

al. presents three FACE A surrogates; however, one of them is from Sarathy et al. [78] for compari-

son. Figure 3.2a shows that the full-palette surrogate well-matches the n-paraffins and isoparaffins

hydrocarbon classes in FACE gasoline A. The aromatic content of this surrogate surmounts to the

the combined content of olefins, naphthenes, and aromatics. The proposed surrogates from the liter-

ature match well, but do not account for the aromatics, olefins, or nephthenes. The reduced-palette

surrogate comprises only isoparaffins and aromatics, where the n-paraffin content has been replaced

by isoparaffins. Figure 3.2b shows the C−C bond type proportions; both surrogates developed in

the current study closely match FACE A in all groups, despite the differences in overall hydrocar-

bon class makeup. Our surrogates better match the distillation characteristics of FACE A, with a

higher Tb above 60% distillate than the literature surrogates as Figure 3.2c shows. We attribute
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Parameter A B C D E F G H I J

RON 83.8 95.1 84.4 93.9 87.4 94.4 96.3 86.9 70.1 73.2
MON 83.7 93.1 82.9 87.3 81.1 88.9 86.8 79.9 69.5 70.2
Density (kg/m3) 700 718 698 761 731 732 802 775 710 761
H/C 2.22 2.11 2.20 1.83 2.05 2.03 1.54 1.75 2.15 1.86

% Volume distilled T [K]

10 337 341 334 344 339 346 352 348 341 360
20 343 349 340 352 342 351 363 354 347 368
30 352 360 348 362 346 357 374 362 353 374
40 361 371 358 373 351 363 387 372 360 379
50 368 376 367 382 357 369 404 382 364 384
60 371 378 372 389 364 374 419 391 367 391
70 372 380 375 395 372 379 424 400 368 401
80 375 385 378 404 382 386 426 417 369 419

Carbon type Fractional %

1 54.4 54 53.7 38.6 35.4 43.1 23.7 27 44 30.8
2 21 14.3 21.7 13.9 18.4 15.5 17.7 16.4 28.4 24.6
3 13.5 11.8 11.5 6.6 7.8 8.4 0 2 9.1 2.3
4 0 0 0 4.9 20.9 10.3 0 16.6 4.2 10.2
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 3.4 8.4 4.3 23 7.3 9 28.6 22.8 8.4 14.6
8 1.7 4.2 2.1 9.8 3.6 4.5 17.4 10.9 1.7 10.5
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 6 7.3 6.6 3.2 3.5 5.9 0 2 4.2 2.3
12 0 0 0 0 1.6 1.7 6.3 1.2 0 2.4
13 0 0 0 0 1.6 1.7 6.3 1.2 0 2.4
14 0 0 0 0 0 0 0 0 0 0

Species palette Molar %

n-pentane 11.0
n-heptane 13.0 8.6 16.5 11.6 23.7
2-methylbutane 26.1 23.3 28.2 16.2 8.8 9.4 12.8
2-methylpentane 5.5 7.7
2-methylhexane 25.9 9.1 0.0 19.2 7.5 20.0
2,2,4-trimethylpentane 42.1 52.4 45.9 22.5 22.5 41.5 13.9 28.5 16.4
1-pentene 9.5 8.0 8.5
1-hexene 10.3 11.6 35.7 8.7
cyclopentane 6.9 27.3 14.3 22.8
cyclohexane 4.7 12.3
toluene 8.1 15.0 11.4
o-xylene 5.9 15.2 7.4 30.0 11.9 15.7 40.0 11.1 15.0
1,2,4-trimethylbenzene 14.8 12.7 15.4

Objective Function 1.21 2.11 0.60 2.19 0.48 0.66 12.2 2.98 1.87 4.02

Table 3.5: Reduced palette FACE gasoline surrogates. A blank entry indicates that the species
was considered, but was not included in the palette for the particular FACE gasoline. A zero (0)
indicates the species was in the palette, but not chosen by the optimizer. The reduced species
palette was generated using an iterative, auto-reduction strategy based on a low-amount species
threshold.
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Parameter FACE A[41] Full Reduced Sarathy[78] Ahmed[72]

RON 83.9 83.9 83.8 84.0 86.6 85.6
MON 83.5 83.6 83.6 84.0
Density [kg/m3) 685 697 699.8 686 694 691
H/C 2.29 2.22 2.22 2.28 2.28 2.26

% Volume distilled Temperature [K]

10 329 337 336 335 321 351
20 344 343 343 347 337 360
30 357 352 352 356 351 365
40 365 360 361 362 361 368
50 368 367 368 366 366 369
60 370 370 371 368 368 370
70 372 371 372 369 369 370
80 374 372 375 370 369 370

Species Molar %

n-butane 7.0 7.7 5.0
n-pentane 6.4 0
n-heptane 5.1 0 7.0 10.0 5.0
2-methylbutane 20.0 26.1 15.0 12.0 5.0
2-methylpentane 1.0 0
2-methylhexane 10.6 25.9 11.0 10.3 15.0
2,2,4-trimethylpentane 51.8 42.1 60.0 60.0 70.0
toluene 3.4 0 0 0 0
o-xylene 1.7 5.9
1,2,4-trimethylbenzene 0 0

Table 3.6: The full- and reduced-palette FACE gasoline A surrogates compared with literature
surrogates and the real FACE A properties. A blank entry indicates the species/parameter was not
considered. A zero (0) indicates the species was in the palette, but not chosen by the optimizer.
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this to the higher boiling components, which other proposed surrogates do not contain. We find

matching higher Tb comes at the expense of more error with formulated PIONA, since our aromatic

composition in the surrogate are larger than the combined aromatic, olefin, and naphthenes of the

target fuel. Future efforts will investigate if this is due to ADC modeling artifacts, discrepancies

in ADC to ASTM-86 methods, and if it is preferential to match PIONA versus higher Tb targets

in the surrogate formulations. Lastly, Figure 3.2d shows the error between the remaining target

properties—recall that the development of surrogates proposed by Ahmed et al. [72] for FACE A

did not consider MON. The current surrogates match RON better than the literature surrogates,

but at the expense of matching H/C and density. The full-palette surrogate slightly outperforms

the reduced-palette surrogate in these four final metrics.

3.3.3.2 FACE C

Parameter FACE C[41] Full Reduced Sarathy[78] Ahmed[72]

RON 84.7 84.1 84.4 84.0 85.3
MON 83.5 83.2 82.9 84.0
Density [kg/m3] 690 703 698 686 696
H/C 2.27 2.16 2.20 2.25 2.23

% Volume distilled Temperature [K]

10 331 336 334 325 329
20 341 341 340 341 344
30 350 348 348 354 357
40 359 355 358 363 365
50 366 363 367 367 368
60 372 370 372 369 370
70 376 374 375 370 372
80 382 378 378 370 374

Species Molar %

n-butane 17.0 18.4
n-pentane 5.6 0
n-heptane 5.2 13.0 11.0 12.5
2-methylbutane 18.6 28.2 8.0 7.0
2-methylpentane 13.3 5.5
2-methylhexane 6.5 0 5.0 4.7
2,2,4-trimethylpentane 40.0 45.9 56.0 54.6
toluene 4.3 0 3.0 4.8
o-xylene 5.0 7.4
1,2,4-trimethylbenzene 1.5 0

Table 3.7: The full- and reduced-palette FACE gasoline C surrogates compared with literature
surrogates and the real FACE C properties. A blank entry indicates the species/parameter was not
considered. A zero (0) indicates the species was in the palette, but not chosen by the optimizer.
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Figure 3.2: Target property comparisons for FACE A and surrogates. Shown are surrogates de-
veloped in this work and past literature efforts. Ahmed et al. [72] did not consider MON in their
surrogate formulations for FACE A
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Table 3.7 compares the FACE gasoline C surrogates with the six-component surrogates of

Sarathy et al. [78] and Ahmed et al. [72]. Again, Ahmed et al. presents two FACE C surrogates but

one of them is from Sarathy et al. [78] for comparison. Our full palette consists of a nine-component

surrogate, as well as a reduced four-component version. It can be seen in Figure 3.3a, that the full-

and reduced-palette surrogate has less n-paraffins and more aromatic content than those by Ahmed

et al. The reduced-palette surrogate, in comparison with the reduced surrogate for FACE A, re-

tains n-paraffins content. The C−C bond type proportions are again seen in Figure 3.3b, showing

a trade-off with all surrogates for the C−C groupings; no surrogate matches all groups perfectly.

The C−C proportions remain similar, with a small trade-off between bond groups such as 1 and

7, in congruence with PIONA. Figure 3.3c presents the distillation curves. The current surrogates

show higher Tb, relative to literature surrogates, above 60% distillate to better match FACE C. We

attribute this to higher compositions of the higher boiling components over the other surrogates.

Again, we find that matching higher Tb comes at the expense of an arguably less-optimal solution

for PIONA. As discussed with FACE A surrogates, future efforts aim to investigate these findings

in more detail. Interestingly, the reduced surrogate matches the target curve best at all distillate

percentages out of all surrogates (except at 10%). Lastly, Figure 3.3d shows the error between the

remaining target properties—recall surrogates proposed in Ahmed et al. [72] for C did not consider

MON. We can see that the RON are better-matched in both new surrogates, but at the expense of

H/C and density.

3.3.3.3 FACE F
FACE gasoline F surrogates are compared in Table 3.8 with those presented in Sarathy et al. [73],

which utilized eight and seven components. We present a seven-component surrogate with alter-

nate isoparaffins and additional aromatics to those in Sarathy et al. [73], as well as a reduced

six-component version. It can be seen in Figure 3.4a, that the full surrogate has no n-paraffins,

more aromatics, and similar olefinic and naphthenic content than FACE F. The PIONA of the full

surrogate are similar to that of Sarathy et al. [73], with the exception of n-paraffins. The surrogates

lacking n-paraffins are likely attributable to the IR-RON/MON correlation attempting to match

octane sensitivity. As found with the FACE C surrogates, Figure 3.4b shows a trade-off with all

surrogates for the C−C groupings, and no surrogate matches all groups completely. Once again, the
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Figure 3.3: Target property comparisons for FACE C and surrogates. Shown are surrogates de-
veloped in this work and past literature efforts. Ahmed et al. [72] did not consider MON in their
surrogate formulation for FACE C
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Parameter FACE F[41] Full Reduced KAUST[73] LLNL[73]

RON 94.4 93.6 94.3 93.6 93.8
MON 88.8 88.2 88.7 88.9 89.5
Density [kg/m3] 707 734 731.8 707 712
H/C 2.13 2.03 2.03 2.12 2.06

% Volume distilled Temperature [K]

10 346 345 346 350 353
20 351 350 351 356 356
30 357 356 357 361 358
40 363 363 363 366 361
50 370 367 369 370 364
60 376 375 374 374 366
70 382 380 379 378 369
80 387 387 386 383 371

Species Molar %

n-butane 6.9 0
n-pentane 0 0
n-heptane 0 0 0 7.0
2-methylbutane 9.4 9.4 9.8 0
2-methylpentane 0.1 0
2-methylhexane 10.4 7.5 7.0 0
2,2,4-trimethylpentane 38.9 41.5 43.7 53.0
1-pentene 0 0
1-hexene 8.3 11.6 8.4 14.0
cyclopentane 16.5 14.3 15.8 14.0
cyclohexane 0 0
toluene 0 0 0 12.0
o-xylene 16.4 15.7
1,2,4-trimethylbenzene 0 0 8.4 0

Table 3.8: The full- and reduced FACE F surrogates compared with literature surrogates and the
real FACE F properties. A blank entry indicates the species/parameter was not considered. A zero
(0) indicates the species was in the palette, but not chosen by the optimizer.
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C−C proportions remain similar in accordance with PIONA for both surrogates. Figure 3.4c shows

the Daly surrogates have higher Tb above 60% distillate to better match FACE F. We attribute this

to the increased amount of higher boiling components in comparison to the other surrogates. Both

full and reduced surrogates have nearly the same distillate curve with little error in comparison

to the target fuel. Lastly, Figure 3.4d shows the error between the remaining target properties—

Sarathy’s surrogates for [73] FACE F did consider MON. We can see that the reduced surrogate

outperforms the full surrogate across the board, and better-matches RON and MON in comparison

to all other surrogates. Both our full and reduced surrogates do not match H/C or density as well

as those from Sarathy et al. [73].

The octane ratings of the LLNL FACE F surrogate, as predicted by our FTIR-octane model,

surmount to a RON of 91.4 and MON of 86.0. These are not in agreement with the reported values

of 93.8 and 89.5 for RON and MON, respectively. Sarathy et al. did not perform auto-ignition or

RON/MON tests for the LLNL surrogates [73] (but did for KAUST surrogates), so at this time the

octane correlation discrepancies are left unresolved and a study for future efforts. As previously

discussed, we cannot evaluate the KAUST surrogates because our FTIR-octane model does not

incorporate n-butane.

3.3.3.4 FACE G
In Table 3.9, FACE gasoline G surrogates are compared with those presented in Sarathy et al. [73].

This work presents a full palette eight-component surrogate, as well as a reduced four-component

version. It can be seen in Figure 3.5a, that the full surrogate has more aromatics and olefins

than FACE G, with less naphthenes, isoparaffins and n-paraffins. PIONA of the full surrogate are

dissimilar to those proposed by Sarathy et al. [73], which match the PIONA of FACE G very well.

The reduced surrogate is composed only of olefins, naphthenes, and aromatics, with the olefinic

content mostly replacing the n-paraffins and isoparaffins. Figure 3.5b shows the C−C groupings

for the current surrogates being relatively large for carbon types 7 and 8, due to the high olefins

and aromatics, with a low amount of carbon type 1, from lack of n-paraffins and isoparaffins.

Figure 3.5c shows the new surrogates match FACE G Tb from 10 to 70% evaporated, better than

the other surrogates. However, all surrogates fail to capture the high Tb above 70%, as a result of all

surrogates lacking enough proportions of higher boiling components. Logically, it seems advisable to
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Figure 3.4: Target property comparisons for FACE F and surrogates. Shown are surrogates devel-
oped in this work and past literature efforts.
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Parameter FACE G[41] Full Reduced KAUST[73] LLNL[73]

RON 96.8 95.9 96.3 95.2 96.4
MON 85.8 86.7 86.8 87.9 85.5
Density [kg/m3] 760 803 802 742 751
H/C ratio 1.83 1.57 1.54 1.85 1.87

% Volume distilled Temperature [K]

10 350 348 352 345 361
20 363 358 363 351 366
30 378 372 374 359 371
40 394 389 387 367 378
50 411 406 404 376 385
60 426 418 419 386 393
70 439 423 424 397 405
80 447 426 426 417 426

Species Molar %

n-butane 7.6 0
n-pentane 0 0
n-heptane 3.9 0 0 8.0
2-methylbutane 0.0 0 9.5 0
2-methylpentane 0.5 0
2-methylhexane 0 0 9.8 0
2,2,4-trimethylpentane 1.8 0 18.0 38.0
1-pentene 12.1 9.5
1-hexene 20.1 35.7 8.1 9.0
cyclopentane 9.3 0 15.3 14.0
cyclohexane 0 0
toluene 0 0 10.6 0
o-xylene 38.9 40.0
1,2,4-trimethylbenzene 14.4 14.8 21.1 31.0

Table 3.9: The full- and reduced FACE G surrogates compared with literature surrogates and the
real FACE G properties. A blank entry indicates the species/parameter was not considered. A zero
(0) indicates the species was in the palette, but not chosen by the optimizer.
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reformulate these surrogates for FACE G with additional constraints to use the higher boiling 1,2,4-

trimethylbenzene, as opposed to o-xylene. However, it is seen that the other surrogates proposed

in literature, which do include 21-31% of this molecule, do not match this distillation region either.

We can see, in Figure 3.5d, that the current surrogates have high H/C and density errors, but low

errors for RON and MON.

FACE G was particularly challenging to formulate a surrogate for. The contributing factors are:

1) the optimization routine not being strictly constrained to follow hydrocarbon class proportions

to match the target fuel, 2) the IR-octane models converging to high olefinic contents in order to

formulate a high octane sensitivity fuel, and 3) the objective function highly weighting octane more-

so than H/C or density. In short, the optimization routine blended a high sensitivity fuel (by way

of high olefinic content), at the expense of properly matching H/C, density, and hydrocarbon class

proportions. To support this, we evaluated the LLNL FACE G surrogate with our FTIR-octane

model to ensure their surrogate would not provide a high octane sensitivity fuel. Indeed, we found

the RON to be 90.2 and MON of 89.9, in contradistinction to the reported values of 96.4 and 85.5.

We conclude that the formulation framework utilizing the IR-octane models, in their current state,

and the components chosen for the palette are inadequate to match fuels having S > 10, H/C >

1.8, and density <760 kg/m3—in other words, low olefinic content fuels with high octane sensitivity.

The flexibility in species bounds was found necessary to match octane of FACE G with the IR

models. Future efforts will involve improving the IR model so tighter species constraints can be

made to better-match PIONA and octane simultaneously.

3.3.3.5 FACE I
In Table 3.10, FACE gasoline I surrogates are compared with those presented in Javed et al. [74].

This work presents a full palette twelve-component surrogate, as well as a reduced seven-component

version. It can be seen in Figure 3.6a, that the full surrogate has more textitn-paraffins, aromatics,

and naphthenes than FACE I, with less olefins and isoparaffins. The reduced surrogate is a closer

match for napthenes, still a relatively high proportion of aromatics, no olefins, but with a closer

match for n-paraffins and isoparaffins. PIONA of those proposed by Javed et al. [74] match the

PIONA of FACE I very well. Figure 3.5b shows the C−C groupings for the current surrogates being

relatively large for carbon types 7 and 8, due to the high napthenes and aromatics. Figure 3.6c
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Figure 3.5: Target property comparisons for FACE G and surrogates. Shown are surrogates devel-
oped in this work and past literature efforts.
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Parameter FACE I[41] Full Reduced Javed[74]

RON 70.2 70.2 70.1 70.7
MON 70.1 69.5 69.5 68.4
Density [kg/m3] 697 716 710 706
H/C ratio 1.92 2.12 2.15 2.22

% Volume distilled Temperature [K]

10 343 343 341 350
20 354 348 347 354
30 359 354 353 358
40 362 360 360 361
50 364 367 364 363
60 366 370 367 365
70 368 373 368 366
80 371 378 369 367

Species Molar %

n-butane
n-pentane 13.0 11.0
n-heptane 15.0 11.6 12.0
2-methylbutane 7.7 12.8 11.0
2-methylpentane 4.2
2-methylhexane 7.0 20.0 27.0
2,2,4-trimethylpentane 28.5 28.5 34.0
1-pentene 0.6
1-hexene 3.0 6.0
cyclopentane 0.0 6.0
cyclohexane 9.0 4.7
toluene 5.1 11.4
o-xylene 3.3
1,2,4-trimethylbenzene 3.7 4.0

Table 3.10: The full- and reduced FACE I surrogates compared with literature surrogates and the
real FACE I properties. A blank entry indicates the species/parameter was not considered. A zero
(0) indicates the species was in the palette, but not chosen by the optimizer.
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shows our surrogates are generally out-performed across the majority of distillate temperatures. We

can see, in Figure 3.6d, that our current surrogates have relatively high H/C and density errors,

with less errors for RON and MON.

Applying the FTIR-octane correlation to the Javed et al. FACE I surrogate, we predict a RON

of 70.0 and MON of 69.8. These values are in better agreement to the target values than reported

by Javed et al., who used the TRF linear-by-mol octane model. When using our FTIR-octane

model, the Javed et al. surrogate then outperforms our surrogates across all performance metrics.

Indeed, the objective function is further minimized (0.59) over our proposed full (3.05) and reduced

(1.8) surrogates. Clearly, our optimization routine did not find the global minimum of the objective

function, suggesting our framework could benefit from additional parameterization of the species

palette and initial mole fraction guesses—likely non-specific to FACE I. Fortunately, this finding

serves to validate the application of the FTIR-octane correlation, since the experimentally-validated

surrogate of Javed et al. returned an objective function of nearly zero.

3.3.3.6 FACE J
In Table 3.11, FACE gasoline J surrogates are compared with the surrogate of Javed et al. [74].

Our work presents a full palette eleven-component surrogate, as well as a reduced seven-component

version. It can be seen in Figure 3.7a, that the full surrogate has more olefins and napthenes than

FACE J, with less isoparaffins and n-paraffins; the reduced surrogate has similar PIONA to the full

surrogate. The Javed et al. [74] surrogate does not include the minor proportions of olefines and

napthenes, but matches the isoparaffins, n-paraffins, and aromatics. Figure 3.5b shows the C−C

groupings for the current surrogates being relatively large for carbon types 4, 12, and 13 due to

the high olefins and napthenes, with a low amount of carbon type 2, from lack of n-paraffins and

isoparaffins. Figure 3.7c shows our reduced surrogate for FACE J Tb from 20 to 80% evaporated

is similar to the Javed et al surrogate, which match the target characteristics very well. Our full

surrogate tends to under-predict values across this distillate range. We can see, in Figure 3.7d, that

our full component surrogate has lower H/C, RON, and MON errors, with higher density error. On

the other hand, our reduced surrogate has lower errors only for RON and MON.
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Figure 3.6: Target property comparisons for FACE I and surrogates. Shown are surrogates developed
in this work and past literature efforts.
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Parameter FACE J[41] Full Reduced Javed[74]

RON 73.8 72.7 73.2 70.6
MON 70.1 71.0 70.2 66.5
Density [kg/m3] 742 748 761 740
H/C ratio 1.92 1.90 1.86 1.95

% Volume distilled Temperature [K]

10 346 352 360 353
20 368 360 368 372
30 376 368 374 379
40 380 375 379 383
50 384 381 384 387
60 390 388 391 393
70 401 400 401 404
80 417 422 419 422

Species Molar %

n-butane 10.5
n-pentane 3.0
n-heptane 21.8 23.7 24.5
2-methylbutane 2.3
2-methylpentane 1.9
2-methylhexane 23.0
2,2,4-trimethylpentane 18.1 16.4 12.0
1-pentene 8.4 8.5
1-hexene 8.6 8.7
cyclopentane
cyclohexane 8.5 12.3
toluene 3.4
o-xylene 5.0 15.0
1,2,4-trimethylbenzene 15 15.4 30.0

Table 3.11: The full- and reduced FACE J surrogates compared with literature surrogates and the
real FACE J properties. A blank entry indicates the species/parameter was not considered. A zero
(0) indicates the species was in the palette, but not chosen by the optimizer.
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Figure 3.7: Target property comparisons for FACE J and surrogates. Shown are surrogates devel-
oped in this work and past literature efforts.
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3.4 Conclusions
An existing gasoline surrogate formulation algorithm was further enhanced by incorporating novel

chemometric models. These models use attenuated total reflectance, Fourier transform infrared

(ATR-FTIR) spectra of hydrocarbon fuels to predict research and motor octane numbers, alleviating

the need for time-consuming auto-ignition simulations. This work developed surrogates from a

palette of 14 hydrocarbon species for the Fuels for Advanced Combustion Engine (FACE) gasolines.

The palette includes candidate component species not previously considered in the literature: n-

pentane, 2-methylpentane, 1-pentene, cyclohexane, and o-xylene. Furthermore, reduction in the

number of components in surrogates was automated based on a mole fraction threshold. As such,

the ability to match the properties of the 10 FACE gasoline was evaluated.

This technique yields surrogates for gasoline fuels that accurately match target properties. On

average, our “full” (7–12 species) and “reduced” palette (4–7 species) surrogates match all the target

properties of the FACE gasolines within 5%. RON, MON, and distillation curves were matched

within 1%, with H/C and density within 2.5% and 4.8%, respectively. FACE G presented the only

challenge to create a surrogate for. This seems to be due to the high octane sensitivity (S=11)

coupled with low H/C (1.83) and high density (760 kg/m3), attributable to low olefins with high

aromatics and paraffins present in this fuel. This was a challenge due to three contributing factors:

1) the optimization routine not being strictly constrained to follow hydrocarbon class proportions

to match the target fuel, 2) the IR-octane models converging to high olefinic contents in order

to formulate a high octane sensitivity fuel, and 3) the objective function highly weighting octane

more-so than H/C or density. In short, the optimization routine blended a high sensitivity fuel (by

way of high olefinic content), at the expense of properly matching H/C, density, and hydrocarbon

class proportions. We conclude that the formulation framework utilizing the IR-octane models, in

their current state, are not completely adequate to match fuels having a combination of sensitivity

greater than 10, H/C ratio greater than 1.8, and density less than 760 kg/m3—in short, low olefinic-

content fuels with sensitivity over 10. With that said, the other nine FACE gasoline surrogates

adequately matched all target properties. We suggest using the “full” palette surrogates since

PIONA proportions are better met with these surrogates, in addition to the other target properties.

However, if a study requiring minimal computational expense is desired, the formulated “reduced”
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palette surrogates can be used (at the expense of matching PIONA).

In some cases, the “reduced” surrogates has a lower objective function value, indicating a more

optimal fuel mixture over the “full” surrogate. This result is counter intuitive. We expect the

objective function to be zero as the components in the surrogate palette approaches those contained

in target fuel, and also blended in the correct proportions by the optimization routine. We suggest

that modeling artifacts causes the “reduced” surrogates to outperform the “full”. The overall accuracy

of predicted fuel properties could be reducing as the species palettes grows. Larger species palettes

also bring the increased possibility that the optimization routine is not guaranteed to return a

global minimum. We found this to be the case with FACE I, where the established surrogate from

Javed et al. [74] provided a lower objective function value over both our formulated surrogates.

Because of this, the fuel palette selection logic should be revisited. Additionally, weighting factors

for the objective function may also need to be determined on a per-surrogate basis, due to the large

variability in the species palette that could influence parameter sensitivity. These intricacies and

their impact on modeling results were not investigated in this work, and should be considered in

future efforts.

The surrogates created in this work were compared to literature [72–74, 78]. Our surrogates, on

average, better-match RON, MON, and distillation characteristics at 0.46, 0.65, and 0.93% error,

respectively, with literature surrogates at 1.2, 1.1, and 1.8% error. Although, we worse-match

density and hydrogen-to-carbon ratio at 3.31 and 6.81% error with literature surrogates at 1.3 and

2.3%. We also find that our molar quantities of carbon–carbon bond types deviate at 2.66 molar%

with literature at 1.9 molar%.

Surrogates from the literature used vastly different approaches to predict RON, MON, or S.

Those approaches were either computationally expensive, not valid for the hydrocarbons considered

in this work, or not designed with the intent to predict fuels where molecule-molecule interactions

are more prevalent—the methodology in this work simultaneously minimized computational effort

and is applicable over the wide range of fuels considered. We evaluated the RON/MON with our

FTIR-octane models for three proposed surrogates from literature including FACE F, G and I;

these do not include n-butane in the species palette, a restriction our octane model requires. For

the LLNL FACE F and G surrogates [73], RON and MON were found to have large discrepancies

between our calculated values to those provided by the computationally-heavy, ignition delay to
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octane correlation. The FACE I surrogate of Javed et al., with RON and MON based on the

TRF linear-by-mol blending formula, agreed with our FTIR-octane predictions when evaluating

this surrogate. Further investigations are warranted to verify the foresight of our FTIR-octane

model more specific to low-component surrogate fuels seen during optimization. In this manner, a

definitive conclusion could be made as to which octane model performs best in predicting surrogate

mixtures.

The surrogates proposed in this work ultimately need to be validated by experimental efforts,

such as those in literature [72–74, 78]. Based on the attractive results for many of the generated

surrogates in this work, we aim to follow up with experimental validation efforts. The altered

gasoline surrogate formulation framework generates surrogates in an expedited, and possibly a

more accurate manner; it should be considered for further refinement and adoption. Alternately,

this methodology could be extended to formulating diesel and jet-fuel surrogates. It should be

possible to extend the methodology of Daly et al. [80] to create an IR-cetane number model to use

in conjunction with the formulation framework.
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Chapter 4: Machine Learning to Predict LTC Engine Fuel Performance

This chapter marries the two bodies of work outlined in Chapters 2 and 3. The methodology

presented in Ch. 2 is extended to instead predict the Low Temperature Combustion Index (LTC

index). Model robustness is validated by predicting the true values of LTC indices for the FACE

gasoline surrogates, developed in Ch. 3. Presented hereafter is a letter draft (three journal page

limit), presenting a model capable of predicting LTC index of complex fuel samples.
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4.1 Introduction
Low temperature combustion (LTC) engines are capable of offering low NOx and particulate emis-

sions and gross indicated thermal efficiencies reaching 60% in transportation engines. Indeed, re-

placing traditional spark-ignition engines with LTC engines promotes fuel economy improvement

efforts. However, research challenges currently prevent practical implementations of LTC strategies:

poor combustion efficiency at light loads, difficulty operating at high loads, issues with controlling

combustion phasing, and incomplete understanding of fuel composition effects [93]. In this work,

we primarily address the fuel composition aspect by introducing a method to rapidly predict fuel

LTC performance.

We describe an approach that couples our earlier techniques [68, 80, 94]. Niemeyer et al. [68,

94] introduced the LTC index, which quantifies the overall performance of a fuel in LTC engine

operation. Daly et al. [80] used multivariate analysis to correlate Fourier-transform infrared (FTIR)

spectra of a liquid fuel to its research octane number. We aim to predict the LTC index of fuels

based on their FTIR spectra.

In this letter we describe the model training and validation process, the objective being to

accurately predict LTC indices of refinery-grade gasoline samples. This work predicts LTC indices

of the FACE (Fuels for Advanced Combustion Engines) gasolines—ten fuels designed to encapsulate

the broad range of gasoline thermochemical properties [41]. By predicting the FACE gasolines we

establish the efficacy of the developed model.

4.2 Methodology
The techniques used to correlate fuel spectra to engine performance will first be discussed. Next, we

introduce the pure hydrocarbon components and mixtures considered to simulate for LTC index.

Lastly, the model validation methodology is discussed.

4.2.1 IR spectra to LTC index model development
This work uses support vector machine regression (SVMR) to correlate IR spectra to LTC index.

SVMR was implemented with a machine learning package scikit-learn [95] written in the Python

programming language. The SVMR model training procedure was guided by literature [96, 97]
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and the online scikit-learn documentation. We performed grid-search optimization studies for

selecting the best kernel function type, function constants, and spectra pre-processing strategies.

We imposed k-fold cross validation [98–100] to avoid model over-training; k was varied (3–20) and

selected based on minimizing prediction error of the validation data set. The Gaussian type function

with no data post-processing offered the best cross validation scores irrespective of k, with k = 20

yielding the best validation score (k > 20 did not improve model performance).

Our model is trained using 313 fuels relevant to advanced engines as guided by literature [16–

20, 42, 43, 80]. This includes mixtures containing n-heptane, 2-methylbutane, 2-methylhexane,

2,2,4-trimethylpentane, methylcyclohexane, toluene, xylene(s), and ethanol. There are two reasons

behind informing the model with neat hydrocarbons and simple mixtures as opposed to complex

gasoline samples. First, the resulting statistical models are believed to be robust because they are

informed on a fundamental level, namely, information from individual molecules and simple blends

are exclusively used. This mitigates the issue of creating a model trained using existing, complex

fuels that may be physically and spectroscopically different to future fuels, which could result in

inaccurate predictions. Second, the LTC index is determined computationally, thereby limiting the

number of hydrocarbon components that can be simulated due to chemical kinetic model size con-

straints. The full development and description of the procedure for determining LTC index is given

by Niemeyer et al. [68, 94].

Due to the complex nature of the FACE gasolines [41], at best only surrogate1 representations

can be simulated such as those provided in literature [72, 73, 101]. With these surrogates, “exact”

LTC index values were calculated for FACE gasoline surrogates A–J [101] using the kinetic model

of Sarathy et al. [73]. We predict LTC indices of FACEs A–J with their actual spectra, and com-

pare to the “exact” (surrogate) values to validate the model. The IR absorbance spectra collection

methodology was carried out in the same manner, and using the same equipment, as described by

Daly et al. [80]. See the appendices for additional SVMR and fuel details: fuel mixture compositions

and LTC indices with utilized chemical mechanisms [73, 102–106] are in Appendix C), and SVMR

model constants in Appendix E).
1Here, surrogate refers to a mixture of a few pure components that mimics performance attributes of the complex,

real fuel.
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4.3 Results and discussion
The IR-to-LTC index model has a coefficient of fit of 0.99 for the 313 fuels that trained the model.

Fig.4.1 shows the LTC index predictions for FACE gasolines A–J, with an inset box-and-whisker

plot of the residual errors.

Figure 4.1: IR-to-LTC-index model validation with FACE gasolines. Inset shows box and whisker
plot of residual errors.

Most FACE gasolines are predicted within 3 units (±0.67σ), and at worst within 6 (±2.7σ). The

moderate success could be due to the IR absorbance spectra being non-linearly related to the LTC

index, necessitated by the non-linear Gaussian kernel function. One possible reason for this finding

is most of our fuel mixtures create an LTC index vastly different than the sum of their individual

parts. The moderate prediction errors likely stem from spectral features that are present in the

FACE gasolines that are not represented within the simple training data set.

4.4 Conclusions
The IR-to-LTC index model can be readily applied to predict LTC indices of fuels closely resembling

those within our training data set. Predictions are reasonable for the FACE gasolines, indicating

the model is applicable to refinery-grade fuels. Future efforts will include fuels with spectral features

characteristic of the FACE gasolines that our current fuels lack [80], in an effort to improve model

foresight. The current tool can predict LTC index of surrogate gasoline fuels or investigate functional

groups that improve LTC index, providing researchers and practitioners with the means to design
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fuels tailored to evolving combustion technologies.
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Chapter 5: Spatiotemporal Fuel Mixture Fraction Measurements

The previous chapter delivered a predictive model for LTC index, founded upon a data set of

simple fuels and validated by the FACE gasoline surrogates. Each LTC index value is determined

by thousands of HCCI simulations. As such, the LTC index accuracy is dictated by the HCCI

simulation accuracy. With HCCI simulation inaccuracies, i.e. results not in agreement with reality,

then the generated LTC index data set is not informative of trends that would be observed in reality.

As a result, the IR-to-LTC index predictive model utility could be compromised. This work aims

to investigate the accuracy of low-fidelity combustion modeling in a novel way, which could in turn

be used to validate the utility of the LTC index predictive model if proved a viable strategy. This

process involves comparing combustion simulations to experimental results.

Ideally, one could compare simulated LTC index values to experimentally determined values.

Unfortunately, determining LTC index for fuels directly with engine experiments would be unrea-

sonable as the time invested to do so would be immense (possibly the span of a decade). Instead,

various various combustion parameters are measured in a constant volume, combustion chamber

(CVCC) apparatus for an array of fuels. Facilitating experiments in a vessel will take less time and

require a lower volume of fuel sample. In this manner, it is reasonable to perform a sizeable para-

metric study of ambient conditions and fuel mixtures in a controllable manner, while also facilitating

advanced experimental techniques that pose significant challenges to employ in an engine.

The experimental effort is organized into segmented studies. First, a simple one-dimensional

model is assessed in its ability to capture key spray-formation processes for direct fuel injection

conditions. The 1-D spray model is coupled with the same reaction chemistry used in the HCCI (LTC

index) simulations; although here, the 1-D combustion model is used to predict spray-ignition onsets.

As this work will show, the accuracy of this 1-D combustion model is found to vary with ambient

conditions and fuel composition, implicating potential inaccuracies from the chemical mechanism.

Prior to the main experimental campaign (outlined in Chapter 6), the feasibility of using the

combustion chamber apparatus to fundamentally study ignition phenomena of gasoline-like fuels

is investigated. CVCCs require directly injecting the fuel into a high pressure and temperature
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reactive gas mixture, a process that is high in thermal-fluid complexity. Fuel is subject to mass and

momentum exchange with the environment, potentially followed by low-temperature heat release

depending on the fuel, and subsequent ignition. That is, non-uniform fuel/air mixture compositions

and temperature distributions as the spray mixes at timings relevant to ignition. This poses some

challenges, primarily that any results derived from such experimental efforts could be too complex

to predict with simple combustion models.

Again, this work will investigate the accuracy of simplistic combustion models used in gener-

ating the LTC index data set. Because of this, if the spray formation process is too complex and

significantly influences ignition processes, a simplistic physical model to predict spray combustion

behavior will be inaccurate. To investigate spray-mixing processes and the possibility of using sim-

plified models to represent the mixing physics, the author develops a novel optical diagnostic to

quantitatively measure fuel concentration.

This chapter presents a manuscript that introduces and validates a novel line-of-sight optical

diagnostic towards quantifying air/fuel mixtures of a fuel spray in high temperature, high pressure

environments. Information presented hereafter is a building block towards the overall scope for

this body of work, but includes all pertinent information regarding the diagnostic. The following

sections outlining the diagnostic are adapted from: “Visualizing fuel mixture fraction via high-speed

extinction imaging of C70 Fullerene doped diesel sprays”, published in the Western States Section

of the Combustion Institute.
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5.1 Introduction
Direct-injection internal combustion and emissions performance is well Known to be affected by

the mixture preparation between fuel and oxidizer. Until recently, the high-pressure and high-

temperature conditions present within spray combustion applications posed unresolved challenges

for optical diagnostics to quantitatively image air/fuel mixing physics. In this work we measure

fuel-spray spatiotemporal concentrations with high-speed extinction imaging, made possible by dis-

solving optically-absorbent nanoparticles into the fuel. Manin et al. [107] provides a relevant history

of efforts on quantifying air/fuel mixing physics, along with the strengths and weaknesses of the

various experimental techniques used. Most reported attempts in the literature are either limited

in spatial resolution and quantitative certainty from beam-steering or noise inherent with the tech-

nique, or the techniques lack sufficient time resolution due to hardware constraints. Westlye et

al. [108] describes a diffuse back-illumination extinction imaging (DBIEI) setup for quantitative,

high-temporal resolution line-of-sight extinction imaging in high-pressure and high-temperature en-

vironments. The use of a specifically designed diffuse illumination source abates line-of-sight errors

caused by steep refractive index gradients, which alter perceived attenuation (i.e., beam steering).

This application has been successfully applied to diesel spray soot quantification [108], and has many

economical and performance benefits over those outlined in Manin et al. [107]. In this work, we ex-

tend the diagnostic towards spatiotemporal fuel-to-oxidizer mixture quantification. Hydrocarbons

are optically transparent within the visible and into the ultraviolet (UV) frequencies, and the DBIEI

technique is currently constrained to this range. As a result, fuel vapor imaged with DBIEI appears

transparent. In this work, we dissolve nanoparticles of fullerene-C70 into the fuel, being optically

absorbent in the visible-UV and soluble in many hydrocarbons. We present a work-in-progress,

omitting rectification of accurate optical absorption and scattering (extinction) properties—further

discussed in the Results and Discussion section. As such, derived fuel concentration maps qualitative

in their current state are compared to predictions from a 1-D spray model [109] to assess diagnostic

performance. We also investigate alleged extinction coefficients required to quantitatively match

the 1-D spray model results. This work demonstrates that the diagnostic technique shows promise

towards quantitative measurements of spatiotemporal fuel mixture fraction, with a nearly constant

factor increase required with fullerene-C70 extinction characteristics for model and experimental
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results to match.

5.2 Methodology / Experimental Setup

5.2.1 Vessel and injection system
Sprays of fuel doped with C70-fullerene were injected into an optically accessible constant-volume

combustion vessel. C70-fullerene is soluble in many hydrocarbons, with highest solubility in aro-

matic compounds such as toluene [110, 111]. For this effort we used toluene as the fuel/solvent, in

anticipation that we may require more fullerene than the solubility limits of diesel or n-dodecane.

The vessel creates a high-pressure and high-temperatures environment with a combustible gas mix-

ture tailored to provide the desired oxygen concentration after ignition. Heat transfer at the vessel

walls cools the gas mixture over time, and we injected fuel at a predetermined time based on the

vessel temperature/pressure history. In this case, an oxygen concentration of zero percent, a tem-

perature of 900 K, and a pressure of 60 bar (22.8 kg/m3). A detailed description of the facility

is available in Ref. [112]. We used a heavy-duty Bosch 3-22 injector with single-hole, axial orifice

belonging to the ECN family of “Spray D” injectors. The Spray D injector has a nominal orifice

diameter of 191 µm and a k-factor of 1.5. The injector was mounted in the fuel-tube “down” position

and a common rail was not used in our work. Omitting a common rail significantly reduces the

amount of fuel required to purge the system. A syringe pump supplied the fuels at 150 MPa prior

to injection. We supplied a 450 ramp 1050 µs hold electronic command with a Genotek driver to

achieve a 2.5 ms hydraulic injection duration.

5.2.2 C70-fullerene / toluene preparation and properties
We procured fullerene-C70 (115383-22-7) through Sigma Aldrich at 98 % purity in powder form.

Implementing proper safety precautions should be taken with fullerene, being an unbounded nano-

particle with unknown long-term health effects. Fullerene-C70 was transferred with a metal scoopula

to toluene contained in a 100 ml glass beaker. Taring the toluene and beaker prior to the adding

fullerene, and weighing the beaker and solution thereafter determine the mass of the fullerene.

The sample was ultrasonicated for five minutes to break up fullerene clusters and help dissolving

them in the fuel. For significant spray optical extinction at our vessel conditions, we found it was

necessary to add fullerene-C70 to toluene’s solubility limit of 1.406 g/L [110, 111], appearing as
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violet and opaque. We separately confirm optical properties of C70-fullerene in toluene, specific to

near-UV (406 nm, 17 nm FWHM) light emitting diode (LED) source (140 ns pulses) and the 400 nm

(25 nm FWHM) bandpass filter at standard room conditions. In this manner, we determined the

frequency-integrated absorption coefficient specific to our experimental arrangement. Future efforts

will aim at quantifying UV-visible optical properties of fullerene-C70 at elevated temperatures and

pressures, which at the time of writing are unavailable in the literature. Fullerene near-visible

spectra were collected at a concentration of 32.3 µg/ml in a 1 cm pathlength cuvette with a fiber

optic spectrometer (Thorlabs) at integration times of 140 ms. Fig. 5.1 shows the raw intensity

profile of the LED-filter-toluene-filled cuvette combination and after when fullerene is introduced.

The molar extinction coefficient (σ) spectrum integrated between 385 and 414 nm is 13834.7 L/mole

cm. For these preliminary efforts, we rely on these room-condition spectra for the upcoming signal

quantification.

Figure 5.1: LED illumination distribution through a 1 cm quartz cuvette with toluene (blue), and
with 32.3 µg/ml of fullerene added (red)

5.2.3 Diffuse Back-light Illumination Extinction Imaging (DBIEI)
The spatiotemporal spray-fullerene concentration is measured using a high-speed imaging extinction

method. The main components of the high-speed extinction imaging setup shown in Fig. 5.2 consist

of a high-output, ultra-fast LED (406 nm), a Fresnel lens, a large area (100 mm diameter) engineered

diffuser, and a high-speed camera equipped with the appropriate lenses and optical filters. The

illumination setup was designed to direct a bundle of diffused rays toward the object plane (central
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spray axis) resulting in minimal perceived attenuation by density gradients (i.e., beam steering,

schlieren effects). The engineered diffuser is 100 mm in diameter and converts collimated light

into rays of constant intensity over a 15 degree solid angle and was placed three millimeters from

the outer surface of the vessel window (75 mm optically from the central spray axis). The 150

mm diameter, f/1.0 Fresnel lens was placed 100 mm from the engineered diffuser and is used to

collect and partially collimate the LED light. By placing the LED 40 mm beyond the Fresnel lens

focal length, the light entering the diffuser slightly converges resulting in an angular profile in the

periphery of the image plane better suited to the cameraâĂŹs collection angle. The high-speed

camera is operated at 40,000 frames per second and is equipped with a 50 mm f/1.2 Nikkor lens, a

500D close-up lens, a 400 nm (25 nm FWHM) bandpass filter, and an OD 1.5 neutral density filter.

Figure 5.2: Schematic diagram of the combustion vessel and optical arrangement

The extinction images are converted into 2-D maps of optical thickness (KL) using the Beer-

Lambert Law, I/Io = exp(KL), where I and Io are the transmitted and incident illumination

intensities, respectively, K is the dimensional extinction coefficient of fullerene, and L is the path

length through the spray. KL images can be related to the volume fraction of fullerene in the

chamber at each time step with knowledge of the dimensional extinction coefficient. Assuming

an axisymmetric jet distribution, we used the Radon transform to convert the line-of-sight “KL”

to a position-specific dimensional extinction coefficient, offering a three-dimensional perspective

on mixing quantities. The molar extinction coefficient, σ, is used to solve (C=K/σ) for fullerene

concentration, C. Molar extinction is a combination of molecular absorption, σ, and scattering, ε,

components (σ = α + ε). The molar absorption is likely dependent on temperature and pressure,

and scattering contributions dependent on fullerene clustering to larger particles (if present). For

simplicity, we assume molar extinction is independent of the thermodynamic state with negligible
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scattering, which is later discussed and accounted for in future efforts. We also assume the fullerene

is distributed uniformly within the prepared fullerene/toluene solution such that we can calculate

the toluene concentration based on the optically-derived concentration of fullerene-C70.

5.3 Results and Discussion
Fig. 5.3 shows select timings of false-color KL images, scaled between 0 to 2 absorbance (log base

10 of transmittance), showing ensemble averages of 5 sprays and the last image showing the time-

average of the quasi steady period. The fullerene extinction map gives a clear representation of

classic spray attributes, such as a distinct spreading angle and liquid length. When the toluene spray

evaporates, the intermolecular forces binding the fullerene-C70 in solution vanish. Surrounded only

by vapor-phase species, fullerene-fullerene collisions may be more likely leading to clustering. These

clusters may remain as agglomerates or undergo aggregation. For example, Joutsensaari et al. [113]

observed 40 to 150 nm fullerene particles in evaporating sprays having similar molarity and at lower

ambient pressure conditions relative to the present work. In Ref. [113], in which fullerene-C60 was

used, average particle sizes were smaller when the ambient temperature exceeded C60s sublimation

temperature. Should clustering occur in the present work, these larger particles would remain as

solid nanoparticles within the jet given that fullerene-C70 has a vapor pressure on the order of tenths

of a Torr [114] at 900 K. Further discussion regarding the implications of fullerene-C70 clustering

on the diagnostic technique under development here will be provided later.

Fig. 5.4 shows quasi-steady radial concentrations of toluene sprays at select axial positions, de-

termined through tomographic reconstruction. The results are compared to a 1-D control-volume

jet model, extended to 2-D by assuming the radial distribution follows the profile proposed by

Abramovich, as discussed in Musculus et al. [109]. The experimental results (dashed lines) are

individually scaled for a best fit with the modeled results (solid lines). This is done by increasing

the extinction coefficient used in the high-pressure spray by a factor of 2.0 relative to the coefficient

previously determined at standard conditions. After scaling, some deviation between the exper-

imental and modeled radial profiles remains—with the largest difference observed at the farthest

location from the injector outlet (6 cm). Nevertheless, assuming the physical source of the required

scaling factor and the deviation in the radial profiles can be resolved, our methodology demonstrates

promise as a quantitative diagnostic. The source of the required scaling factor and the deviation
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Figure 5.3: Select timings of false color scale, ensemble average of 5 spray recordings of C70-
fullerene absorbance, “A”, in a toluene/C70 spray at 900 K, 60 bar, 0 % oxygen ambient. Images
scaled between 0 and 2 absorbance. Final image in sequence is a time-averaged image from 1.9 to
2.9 ms ASOI.
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in the radial profile may be related to differences in the extinction characteristics of fullerene in

a gaseous environment compared to that in solution, changes in α with temperature and pressure

(spectral broadening), and/or C70 clusters resulting in larger and potentially spatially non-uniform

particles influencing ε. Other sources of error in the radial profiles include insufficient averaging of

turbulent structures with only five repeated sprays, the spray emanating at a slight angle from the

injector causing asymmetric features, uncertainties with the one-dimensional Radon transform, or

imperfect boundary condition inputs to the jet model, as discussed by Pickett et al. [115].

While a handful of studies report UV-visible spectra of C70 in various solvents or in the vapor

phase at sub atmospheric and atmospheric pressure Refs [116–121], fullerene-C70 optical data in the

visible spectrum at our high-pressure, high-temperature conditions is unavailable. Coheur et al. [121]

investigated the effect of temperature on the gas-phase absorption spectra under high vacuum (10–

6 Torr) and found that as temperature increases the fullerene-C70 absorption increases. At these

conditions, the vapor fullerene-C70 absorption spectrum is double in magnitude and shifted to

shorter wavelengths in comparison to fullerene/n-hexane solution at room conditions. In the present

work, the influence of temperature may potentially be insignificant, illustrated by considering the

change in the required σ scaling along the spray centerline. Modeling results indicate the spray

centerline temperature varies from 625 K at 25 cm from the injector, to 750 K at 45 cm, yet the

required σ does not reflect any correlation.

Under the conditions of the present work, clusters of fullerene-C70 are expected to form after

toluene vaporization based on the results of Joutsensaari et al. [113]. As these clusters become larger,

the contribution of scattering to the observed extinction would increase. In their spray-drying study,

Joutsensaari et al. [113] found roughly spherical particles, averaging 100 nm in size at temperatures

below 600 K, and averaging 40 nm above 600 K. Albeit, they used a fullerene mixture comprised of

15 % C70 and 85 % C60, where C60 is more volatile than C70. At temperatures above 600 K, C60

sublimes and, when dried, condenses to form the ultra-fine 40 nm particles [113]. Particles for pure

C70 are likely normally distributed around 100 nm or larger, since C70 will not sublimate at these

spray conditions, which is required to form ultra-fine particles. Future efforts aim to resolve fullerene

clustering details specific to pure C70 at our thermodynamic conditions. To quantify the potential

scattering contribution due to clustering as a source for the discrepancies found in extinction signal

quantification, we performed Mie scattering calculations for spherical fullerene clusters of different



81

sizes. Scattering, absorption, and extinction cross-sections for fullerene C-70 particles ranging from

10 to 500 nm in diameter were computed, and the results are reported in Fig 5.5. The complex

refractive index used for these calculations is: n = 2.1 + i0.7 [120].

Figure 5.5: Scattering, absorption, and extinction cross-sections for fullerene C-70 as function of
particle size

The cross-sections in Fig. 5.5 show, as expected, that absorption dominates extinction for small

particles up to 80 nm. For larger particles on the other hand, scattering contributes to extinction,

up to being of the same magnitude as absorption for above 150 nm in diameter. This means that

if fullerene clusters when in the jet, while it does not in solution, then the extinction cross-section

may increase by up to a factor two, over the simulated size range. It must be noted that these

results are informative only, as fullerene is unlikely to exclusively cluster into sphere-like particles,

which is one parameter of the Mie scattering calculation results presented in Fig. 5.5. Future work

will consider more appropriate optical models to simulate the impact of scattering on measured

extinction under agglomeration. In addition to the effect of scattering on extinction, the absorption

coefficient may be different under the operating conditions: 900 K, 60 atm. We plan to measure the

extinction coefficient of fullerene C-70 under the thermodynamic conditions and potential scattering

of our experiments. As this requires the design of a dedicated optically-accessible high-pressure and

high-temperature chamber with metered fuel delivery, it is an endeavor which will be completed

during the next phase of this project.
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5.4 Conclusions
We doped toluene with fullerene-C70, a nanoparticle being highly absorbent in the UV-visible

spectrum and readily soluble in many hydrocarbons. Diffuse back-illumination extinction imaging

was applied to record the line-of-sight extinction of the nanoparticles with high spatiotemporal

resolution at high pressure and temperature. Quasi-steady vaporized fuel concentrations, derived

from the extinction diagnostic, qualitatively match numerical results from a simple jet model, but

do not quantitatively agree. We attribute disagreement to unresolved molar absorption coefficient

dependence to the thermodynamic state, currently not available in the literature, as well as to

different scattering efficiencies due to fullerene clustering. We find that the extinction coefficient

required to quantitatively match the experimental results at various axial positions is 2 times greater

than the quantity at room conditions. Future efforts will focus on characterizing the photo-physics

of fullerene-C70 at engine relevant conditions to prove quantitative capability. If later proved

quantitative, with the application of simultaneous camera views the diagnostic can resolve the

entire spatiotemporal fuel spray distribution, which would be crucial in validating high-fidelity

computational fluid dynamic data. Pending success, we aim to also investigate any influence on

ignition characteristics the nanoparticles may have; in this manner, the diagnostic may be utilized

directly with combusting sprays.



83

Chapter 6: Quantifying Spray-Ignition Toward Chemical Mechanism

Development

The LTC-index predictive model is built upon a data-set informed by computational modeling. The

utility of the predictive model therefore relies heavily on the accuracy of the HCCI (LTC index)

simulations. A 0-D control volume has been shown to adequately represents the HCCI engine

environment physics due to the reactive air/fuel charge being homegenous in reality; Niemeyer et

al. provides a summary of literature on this subject [94]. With that said, 0-D modeling efforts are

by no means a perfect representation of the complexities within an ICE, so errors are expected to be

introduced, e.g., ignoring spatial thermal stratification that alters heat release rates [122]. Albeit,

errors from the HCCI simulation are expected to be most influenced by the accuracy of the chemical

mechanisms and surrogate fuels used, due to the established high sensitivity of LTC index to fuel

composition.

This chapter outlines a novel experimental procedure to evaluate chemical mechanism accuracy

and surrogate fuel performance. The works aims to encourage the many facilities around the world

that have combustion vessels, traditionally developed to inform heavy-duty diesel applications,

to participate in fundamental, ongoing data generation efforts. Namely, these data will serve to

supplement ignition delay datasets by which modern combustion models are founded on, while

simultaneously visualizing the spray formation process and its impact on the combustion behavior;

the latter having practical implications for engines employing direct injection strategies. Success of

this work will provide a methodology that could markedly expedite the study for many combustion

technologies. The findings of the study will tie into this body of work by informing the accuracy

of the chemical mechanism used in previous simulation efforts, performed to create the LTC index

data set. If the methodology reveals promising results, the data could later be used to improve

the reaction kinetics. With reaction kinetics more representative of reality, LTC index values could

then be re-simulated and produce higher accuracy trends.

Using the diagnostic developed in Chapter 5, Appendix D outlines a brief quantitative spray
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mixing study to investigate the applicability of using simpler zero- and one-dimensional modeling

efforts to represent actual spray mixing. These simplified models assume homogenous distributions

to some extent and ignore turbulence-chemistry interactions. The author hypothesized that a re-

duced injection duration would reduce fuel concentration and temperature gradients in the radial

direction of the spray, serving to minimize complex turbulence-chemistry interactions, and poten-

tially leading to homogeneous air/fuel mixture conditions prior to first stage ignition. When using

ultra-short injections, featuring minimal spray penetration and prolonged mixing prior to ignition,

concentration profiles in the radial direction are found to be fairly uniform at extended residence

times (>1 ms after start of injection) while large gradients persist in the axial. Short-injections

are expected to react uniformly in the radial, with significant stratification in the axial. Therefore,

using 0-D modeling to predict and compare to experimentally derived ignition behavior would likely

yield significant discrepancies, since spatiotemporal mixing is unaccounted for. The one-dimensional

spray model of Knox et al [123] was found to accurately model the experimental fuel/air mixture

distributions. A simple 1-D model can be efficiently paired with a detailed chemical mechanism.

With trust in the spray-mixing model, the chemical mechanism accuracy can be benchmarked from

reacting spray simulation—the topic of this chapter.

The author performs short-injection spray-ignition studies to resolve low- and high-temperature

ignition phenomena. The experimental ignition results are compared to 1-D spray modeling efforts.

In comparing these results it is possible to ascertain surrogate fuel and/or chemical mechanism

performance. The study concludes that the chemical mechanism, the same mechanism used in LTC

index simulations, may be a contributing factor to the observed spray-ignition simulation errors.

Further spray-ignition studies with higher fidelity models should be conducted to ensure errors found

in this effort are not from the simplified fluid mechanics of the 1-D spray model.

The following sections represent a manuscript covering the spray-ignition study, currently under

Sandia National Laboratory internal review.
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6.1 Introduction
Combustion strategies and fuel compositions are simultaneously evolving to meet high efficiency,

low emission government mandates [124]. Researchers expedite these parallel efforts with compu-

tational modeling in the development of next-generation combustion systems. Models isolate key

physical and chemical attributes of combustion systems. The physical portion includes the defining

thermal-fluid-heat transfer physics intrinsic to the system—be it for traditional spark or compression

ignition engines, low temperature combustion strategies such as HCCI engines, gas turbines, etc.—

and the chemical portion describes fuel decomposition, energy release, and by-product formation.

The chemical portion is fuel-specific, and the information contained in a “chemical mechanism”.

Computationally modeling refinery grade fuels, such as gasoline, is challenging since it contains

hundreds of various hydrocarbon species [70]. Instead of trying to resolve the reaction kinetics of a

mixture containing hundreds of various hydrocarbons, researchers typically characterize pure hydro-

carbons. These well-characterized hydrocarbons are used individually or in combined mixtures to

represent real fuels (like refinery-grade gasolines) by emulating their thermophysical and chemical

kinetics properties into simpler fuels called surrogates. To summarize, real fuels are simplified to

surrogates with reaction chemistry embedded in chemical mechanisms, and combined with a tailored

physical model to permit timely simulations of combustion technology.

As we will show, chemical mechanisms and surrogate fuels require significant experimental and

modeling efforts in their development. This work introduces an experimental methodology that

can be used to characterize ignition behavior for a wide range of fuels used in conventional diesel-

type compression ignition engines as well as gasoline compression-ignition operation. We then

correlate and compare experimental results with a model that uses simplified fluid mechanics and

mixing but full complex reaction chemistry. First, a brief introduction highlights challenges and

reviews traditional and emerging approaches pertaining to fuel surrogate and combustion model

development. Following, we extend on these efforts and explain potential benefits.

Accurate kinetic models are first founded for individual hydrocarbon components at application-

relevant thermodynamic conditions. Multiple component kinetic models for surrogates are then

founded as combinations of the single-component models, including any effect on kinetics as rela-

tive proportions of these hydrocarbons shift. Metrics such as ignition delay must be characterized
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over a wide range of temperatures, pressures, hydrocarbon/oxidizer and hydrocarbon/hydrocarbon

mixtures. Indeed, for this size of parametric study immense experimental efforts are required to ob-

tain the necessary data to support chemical mechanism development. Separately, multi-component

surrogates are computationally generated or leverage simplified computational models to some ca-

pacity in their design [71–73, 78]. Similar experimental efforts are used with fuel surrogates to

ensure they represent the key ignition attributes of the actual fuel. As such, rapidly generated

ignition quality of fuels and their surrogates along with modeling validation will expedite surrogate

fuel design and their supporting chemical mechanisms. Historically, the combustion community

has largely relied on fundamental homogeneous gas-phase ignition delay data from shock tubes,

rapid compression machines, and jet stirred reactors for model assessment. Ultimately, these data

are compared to simplified computational models that capture the key thermal-fluid-heat transfer

physics at play, while using comprehensive, detailed chemical mechanisms. Holding the parameters

of the physical model constant, the detailed reaction kinetics can be quantitatively tuned to match

the experimentally obtained ignition characteristics, or vice-versa. In the same way, fuel surrogates

are tested to validate its representation of the actual fuel, both experimentally and computationally.

Obtaining a single value of ignition delay with many shock-tube and RCMs require substantial

time. Sequential tests can be cumbersome, and thus difficult to acquire statistically significant data

sets. Results are further complicated from experimental uncertainties inherent in the methodology.

For example, the work of Sarathy et al. [73] reported estimated uncertainties in their shock tube

ignition delay measurements at 20% and rapid compression machine uncertainties at 10%; although,

lower uncertainties have been achieved [125]. Newer methods that reduce experimental effort and

time, while outperforming reported uncertainties will benefit the community. We first outline a few

fundamental investigations proposing alternative methodologies that aim to address these issues.

To extend on traditional efforts, Fischer et al. [126] proposed using ignition data derived from

a commercially available direct-injection constant-volume combustion chamber, similar to that of

an ignition quality tester (IQT). This approach is different from traditional methods in that fuel is

directly injected into an elevated temperature and pressure ambient. In this manner, the ignition

quality of fuels can be rapidly tested with minimal amounts. They considered conditions around

660–770 K, 1–10 atm, and a global equivalence ratio of 0.63 for n-heptane. Here, the ignition delays

were thought to be long relative to the spray fluid breakup and vaporization. They hypothesized that
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the fuel/air mixture distribution reached homogenous conditions for most of the residence time prior

to ignition. As such, the data were compared to modeled ignition delays from a constant-volume,

adiabatic, perfectly stirred reactor. Unfortunately, in most cases the predicted ignition delay errors

were unacceptable both quantitatively and qualitatively. They thought this to be from significant

spray impingement on the vessel wall introducing physical complexities not represented in the simple

0-D modeling approach. The combustion model predictions and experimental data significantly

mismatched, even when leveraging validated n-heptane kinetics, hindering the application as a

chemical kinetic design tool. As a surrogate fuel validation tool, it is possible to compare ignition

quality of the surrogate to actual fuel, but the fuel surrogates’ representative chemical mechanism

cannot be validated with the outlined modeling approach.

Alfazazi et al. proposed leveraging fuel spray ignition data from IQTs and constant volume

combustion chambers (CVCC) of pre-burn type [127]. Unlike the approach of Fischer et al., the spray

formation processes are highly complex for the CVCC conditions, where ignition delays occur during

fuel injection. Despite the added physical complexity, Alfazazi et al. demonstrated that a 0-D, two-

stage Lagrangian model can predict the CVCC ignition delays for n-dodecane and n-heptane across

many conditions, highlighting that high-fidelity CFD simulations may not be required. However,

their modeling approach yielded high errors for the IQT data in similar fashion to Fischer et al.,

though not as significant in magnitude. The long residence times within the IQT likely resulted in

spray-wall interactions, and may again be the culprit for the challenges associated with predicting

IQT data with simplified physical models. Their work demonstrated the feasibility of using pre-burn

CVCC data for neat hydrocarbon or surrogate fuel chemical mechanism design, or in surrogate fuel

validation.

Similarities between the study here and the previous work are investigating spray ignition behav-

ior and assessing the feasibility of predicting it with a simplified model leveraging detailed reaction

kinetics. We experimentally obtain first- and second-stage ignition delay timings with an optically

accessible direct-injection CVCC of pre-burn type. We study ten fuels comprising neat n-heptane,

and binary mixtures of n-heptane with isooctane, toluene, and ethanol. To the authors knowledge

this is the first-time these lower-reactivity fuels have been investigated in a pre-burn CVCC. We

subject the fuels to temperatures of 850 to 1300 K and a pressure of 40 atm, indicative of conditions

in next-generation engines such as those employing LTC strategies.
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Conventional direct fuel injections into the CVCC is high in fluid-thermal complexity as opposed

to a pre-mixed experiment. Fuel is subject to mass and momentum exchange with the environment,

potentially followed by low-temperature heat release depending on the fuel, and subsequent ignition.

That is, non-uniform fuel/air mixture fractions and temperature distributions as the spray mixes

and at timings relevant to ignition. Additionally, low-reactivity fuels will certainly impinge on the

vessel walls prior to ignition, suffering from the issues present in an IQT. To further increase com-

plexity, typical sprays are turbulent in nature, presenting steep species and temperature gradients

which accelerate spray-ignition processes. According to R.N. Dahms et al. [128], these “turbulence-

chemistry” interactions transport higher-temperature reactive species from the outer-edge of the

spray—a result of low temperature reactions—radially inward to unreactive, high fuel concentra-

tion zones. The phenomenon dubbed the “cool-flame wave”, stimulates low-temperature reactions

in the core of the spray, serving to advance second-stage ignition. As a result, spray combustion

simulations not incorporating turbulence-chemistry reactions, if present, may hugely overestimate

ignition delays. The subsequent discussion offers a partial solution to this issue, and highlights

practical limitations of our proposed approach.

We attempt to reduce the complexity associated with the spray formation process by favorably

tailoring it to be simpler in nature. Ultra-short injections (200–250 µs) are employed, featuring

minimal spray penetration and prolonged mixing after the end of injection and prior to ignition.

We believe this reduces fuel concentration and temperature gradients within the radial direction

of the spray, serving to minimize complex turbulence-chemistry interactions. Simpler zero- and

one-dimensional modeling efforts—which assume homogenous distributions to some extent—should

also be more representative of the actual conditions. Minimal spray penetration contains the fuel

distribution within our optical diagnostics field of view for long residence times, key to study low-

reactivity fuels with long ignition delays. The sprays also avoid wall impingement within the vessel,

reducing unnecessary physical complexity. Furthermore, the ultra-short injections aim to minimize

the physical ignition delay—the time required after the start of injection for the spray to sufficiently

mix and reach elevated temperatures—to be small relative to the chemical ignition delay. Physical

ignition delay timescales are expected to briefly outlast the length of the injection duration, leading

to residence times of at least 250 µs prior to the spray reaching elevated temperatures, depending

on mixing rates. Lastly, short injections minimize the fuel sample required for each experimental
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run; 150-ml of fuel is sufficient to purge our fuel system and perform hundreds of injections.

A straightforward comparison to existing homogeneous ignition studies is unresolved. Spray

physical ignition delay precedes chemical ignition delay and potentially in significant proportion, in

contradistinction to homogenous studies which preclude physical ignition delays. As a result, mea-

sured ignition delays in this work are expected to be a combination of physical and chemical; even

though our short injections aim to minimize physical ignition delay, chemical time scales for ignition

can still be small relative to the physical. Subjecting fuels to high pressures and temperatures to

force kinetic rates to be sufficiently high relative to physical mixing processes could resolve the phys-

ical ignition delay. Additionally, homogenous studies are at constant fuel/air mixture concentration,

where sprays vary spatiotemporally, introducing more complexity. Analogous comparison of spray

to homogenous ignition delays are left for future efforts. We direct our attention to comparing spray

experimental to modeled results.

For modeling, we investigate the 1-D reactive spray model of Knox et al. [123], which allows the

use of large, comprehensive chemical mechanisms. The reactive spray model proved to adequately

replicate key combustion parameters for the Engine Combustion Network spray-H experimental

data [123]. Predictions of vapor penetration, axial mixture fraction distribution, ignition delay,

axial location of cool-flame reaction, and end-of-injection combustion recession agree reasonably well

with experimental measurements. Knox et al. found the best agreement between experimental and

modeled second-stage ignition delay oxygen concentrations of 15% and below, reasoned to be related

to more-uniform mixture fraction distributions from prolonged mixing. Based on this, experiments

at 15% oxygen concentration were performed, in conjunction with our ultra-short injections to

further increase mixing times prior to ignition.

We aim to encourage the many facilities around the world that have combustion vessels, tradi-

tionally developed to inform heavy-duty diesel applications, to participate in fundamental, ongoing

data generation efforts. Namely, these data will serve to supplement ignition delay datasets by which

modern combustion models are founded on, while simultaneously visualizing the spray formation

process and its impact on the combustion behavior; the latter having practical implications for

engines employing direct injection strategies. Also, fuels and corresponding surrogates for computa-

tional modeling may be rapidly tested in a CVCC for surrogate fuel validation purposes. Similarly,

as the combustion community begins to target novel alternative fuels and subject them to more
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extreme operating conditions, CVCC can rapidly do so at potential ranges of 450 K to 1400 K,

densities from 1 Kg/m3 to 60 Kg/m3, and pressures up to 350 atm—extending the limits of many

homogenous facilities. Success of this work will provide a methodology that could markedly expedite

the study for many combustion technologies.

Within the Methodology section we first present the fuels and select properties, the CVCC

facility, and explain the optical diagnostics used to characterize the spray formation and ignition

processes. We also provide example post-processed signals which define ignition behavior. After, the

computational modeling strategy is further discussed; implementing proper boundary conditions are

emphasized and a parametric study is outlined. Spray vapor penetration results are also presented

here as they are used as boundary conditions for the modeling efforts. Next, the Results and

Discussion section show time-sequenced images of spray formation and combustion for n-heptane

at 900 K, 40 atm, and 15 % O2. Following, we present the optically derived first- (if any) and

second-stage ignition delays for the ten fuel mixtures at temperatures ranging 850-1300 K at a

constant pressure of 40 atm, 15 % O2. Lastly, the modeled ignition delay results are compared to

the experimentally obtained values. Throughout the Result and Discussion section, we highlight

the performance of our proposed methodology and compare to aforementioned works.

6.2 Methodology

6.2.1 Fuels
Fuels were selected to span a wide range of chemical attributes. These include pure n-heptane, and

binary mixtures of n-heptane/isooctane (primary reference fuels, PRFs), n-heptane/toluene (HTs),

and n-heptane/ethanol (HEs). Fuel composition and select chemical properties are presented in

Table 6.1. The fuels considered here have various RON and stoichiometry, which will impact the

residence time within the vessel prior to ignition. It is expected that high RON, low stoichiometric

AFR fuels could over-mix and become too fuel-lean to ignite, even at 40 atm and the temperature

conditions considered. As such, the selected fuels should benchmark methodology robustness at

the desired ambient conditions as we move from reactive, fuel-rich mixtures to unreactive, fuel-lean

mixtures.
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ID n-heptane isooctane toluene ethanol RON Stoichiometric
(vol./mol. %) (vol./mol. %) (vol./mol. %) (vol./mol. %) AFR (g/g)

H100 100/100 0.0 15.07
PRF20 80/81.88 20/18.12 20 15.06
PRF40 60/62.89 40/37.11 40 15.05
PRF70 30/32.63 70/67.37 70 15.04
H90T10 90/86.72 10/13.28 14.1 14.78
H80T20 80/74.37 20/25.63 27.7 14.51
H70T30 70/62.86 30/37.13 43.0* 14.27
H80E20 80/61.45 20/38.55 42.0* 12.71
H60E40 60/37.42 40/62.58 71.4 11.23
H40E60 40/20.99 60/79.01 94.4 10.23

Table 6.1: Fuels investigated in this effort: pure n-heptane, along with binary blends of n-heptane/
isooctane (PRFs), n-heptane/toluene (HTs), and n-heptane/ethanol (HEs). The “*” indicates RON
values were estimated with the correlation of Daly et al. [80]

6.2.2 Facility
To supplement traditional approaches that study the impact of fuel chemistry on combustion per-

formance, n-heptane, PRFs, HTs, and HEs were injected into a high-pressure and high-temperature

environment within a constant-volume, pre-burn type combustion vessel. A combustible gas mix-

ture tailored to provide the desired oxygen concentration after the pre-burn event, in this case

fifteen percent, was ignited to generate 850—1300 K, 40 atm. Heat transfer at the vessel walls

cools the gas mixture over time, and we injected fuel at a predetermined time based on the vessel

temperature/pressure history. A detailed description of the facility is available in Siebers [129].

6.2.3 Injection Characteristics
We used a heavy-duty Bosch 3-22 injector with single-hole, axial orifice belonging to the ECN family

of “Spray D” injectors. The Spray D injector has a nominal orifice diameter of 191-µm and a k-factor

of 1.5. The injector was mounted in the fuel-tube “down” position and a common rail was not used

in our work. The short injections employed are thought to not be influenced by pressure dynamics

which a common rail dampens, and omitting it also significantly reduces the amount of fuel required

to purge the system. A Teledyne 30D syringe pump supplied the fuels at 50 MPa prior to injection.

We supplied an electronic command (ramp only) of 300±25 µs (11 to 21-A) to achieve the desired

pilot-like injections of 250 µs. The electronic command had to be varied with differing fuels and
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thermodynamic conditions. Although, this was probably due to random susceptibility of injector

performance to the commanded ultra-short durations.

6.2.4 Optical Diagnostics
We used three high-speed cameras, simultaneously capturing Schlieren, natural luminosity, and

OH* chemiluminescense. These diagnostics provide temporal- and spatially-resolved spray forma-

tion, along with first- and second-stage ignition processes, respectively. Formaldehyde planar laser

induced fluorescence was originally utilized, but the measurement technique was not sensitive enough

to resolve formaldehyde signal for the short injections in this work, and opted for natural luminosity

measurements. The following sections outline diagnostic-specific details. Each section first provides

relevant camera, lens, and filter specifications. Following, we explain the post-processing details for

vapor penetration, first- and second-stage ignition—executed with MATLAB 2016b.

6.2.4.1 Schlieren
Transient spray penetration, low-temperature heat release (first-stage ignition) and second-stage

ignition events for the entirety of the vessel field of view was provided by Z-type Schlieren imaging.

A Phantom v2512 high-speed CMOS camera was used to capture the schlieren images (768 x 352

resolution, 80,000 fps, 1.2 µs exposure). The camera was outfitted with a 200 mm (f/4) Nikkor

219266 lens, with a 628 nm band pass (32 nm FWHM) and a neutral 0.1 OD filter, housed in a 52

mm Edmond optics 83340 filter holder. A custom 4-dye red (635 nm, 15 nm FWHM) LED operating

at 11.5-V and 3-ns pulses, was synchronized with the high-speed camera to provide illumination

for the schlieren setup. Using a short LED pulse further enhanced temporal resolution. A 50

mm condensing lens collected the LED emission and directed it through a 3 mm aperture prior to

collimation by a 115 mm diameter, f/8 parabolic mirror. After passing through the combustion

vessel, the collimated beam passed through a 70/30 beam splitter, and was then re-focused using

a second parabolic mirror and a series of flat folding mirrors. The high-speed camera imaged the

light source approximately 420 mm after the focal point, where a schlieren stop aperture of 12 mm

diameter was placed to yield the desired contrast to density gradients. Similar to Pastor et al. [130],

we sized aperture dimensions for best diagnostic performance. This reduces unwanted background

schlieren caused by temperature gradients at the windows, and maximizes the contrast of softening
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gradients during the low-temperature ignition event. Spray penetration is defined as the furthest

downstream point of the spray head. We isolated the spray vapor signal by taking the standard

deviation of three time-sequenced frames (i-1, i, i+1). The edge of the vapor as it propagates in

the vessel provides a large standard deviation signal relative to the ambient and core of the spray.

The MATLAB bwmorph function provides dilation and erosion filtering on this signal to provide

a more-continuous spray border. Following, the filtered standard deviation signal is passed to the

bwboundaries function, which finds a closed boundary of the spray border–the max position of

this border is the penetration distance. Schlieren spray signal is dependent on the local refractive

index, and mainly influenced by temperature and fuel particle size within the spray. Cool-flame

activity, i.e., low temperature heat release (LTHR), causes the parent fuel to break down and slightly

raises the local temperature. Picket et al. [131] demonstrated that cool-flame activity causes the

refractive index to closely match the ambient, resulting in the spray schlieren signal to “vanish”. As

a result, the onset of LTHR can be visualized as the spray suddenly vanishing. LTHR we solely rely

on natural luminosity measurements, discussed later.

6.2.4.2 OH* Chemiluminescence
OH* chemiluminescence can provide the onset and location of high-temperature reaction zones,

i.e., second-stage ignition. We used a Photron SA-X2 camera, outfitted with a Lambert instrument

HiCatt s20 lens-coupled intensifier (896 x 440 resolution, 20,000–60,000 fps, 8–43.5 µs exposure).

Isolating the OH signal was achieved with a 312 nm band pass (16 nm FWHM, F16-213-UNB un-

blocked filter). The intensifier was operated at a gain of 850V for the entirety of the parametric

study; only the intensifier gate time was altered as needed to increase or decrease the OH* signal.

We targeted the lowest shutter timing necessary to maximize the recording framerate. Framer-

ates between 20,000 fps and 60,000 fps were achieved depending on the fuel reactivity and vessel

conditions. We evaluated the image-integrated signal to produce a spray-integrated ignition delay.

The integrated signal over time prior to any ignition event was processed to find the mean and

standard deviation of the background noise. The time at which the OH* signal exceeded the mean

plus ten times the standard deviation marked the onset of ignition, which is atypical of standard

ECN procedure. Established routines focus to quantify axial-resolved ignition onsets from long fuel

injections providing ample signal. In our work featuring ultra-short injections, the signal is low and
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ignition is nearly homogenous. As such, we found our methodology better-characterized our ignition

processes, and especially evident when compared to modeled results in comparison to traditional

approaches. An example signal trace used to detect ignition can be found in Figure 6.1.

6.2.4.3 Natural Luminosity
Broadband luminosity images (hereafter referred to as natural luminosity) can visualize the onset

and location of low temperature heat release (first-stage ignition). A Phantom v2512 high-speed

CMOS camera captured the natural luminosity images (384 x 208 resolution, 20,000 fps, 43.5 µs

exposure). We used a 50 mm (f/12) Nikkor 37540 with a 52 mm canon close-up 500-D lens. A

315–715 nm band pass (KG-3), 550 nm short pass (64664), and a 600 nm short pass 64665 filter

were used to limit soot incandescence and schlieren light. We note the schlieren back-lighting is

still present in the natural luminosity images, but is below the intensity originating from the low

temperature heat release.

Limited by the optimum between camera framerate and exposure time, axially-resolving first-

stage ignition was not feasible; as such, we provide spray-averaged first-stage ignition. With this

experimental setup, the radiation caused by first-stage ignition was a mere 100 counts greater than

the background noise, and in some cases a mere 10 counts higher than the Schlieren back-light

penetrating the optical filters (dynamic range of camera is 3600 counts). Because of this, coupled

with the background noise rising over time, the images were converted to binary based on an

intensity threshold. We determined a threshold higher than the schlieren bleed-through and rising

background, but less than the first-stage ignition signal. We finally arrive at a cropped-image signal

of zeros (less than threshold) and ones (greater than threshold) integrated for each frame.

The onset of first-stage ignition is defined as the maximum peak ASOI and prior to saturated,

second-stage ignition signal. The processed signal traces of OH* and luminosity from the images

are presented in Figure 6.1 for a select run of n-heptane at 900 K, 40 atm, and 15 % O2. The

natural luminosity imaging, for most of the ambient conditions studied, provides a clear signal

of the first-stage ignition event. Based on our processing routine, the spray-averaged first-stage

ignition is determined to be 0.71 ms. This is in accordance with the disappearance of the majority

of schlieren spray signal at the core and head of the spray, and partial reasoning behind using the

maximum of the luminosity signal as the onset of first-stage ignition. At higher temperatures or
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reduced two-stage chemistry, the luminosity signal duration and magnitude decreases—the peak of

the signal becomes the only distinguishing factor relative to the noise in these cases.
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Figure 6.1: Processed signal traces of OH* and luminosity for a select run of n-heptane at 900 K,
40 atm, and 15 % O2

6.2.5 Modeling
We implement the 1-D reactive spray model of Knox et al.; details and equations governing the model

are found in Ref. [123]. The proceeding discussion covers the importance of various model boundary

conditions specific to our efforts. We focus attention to a few boundary conditions that influence

spray formation—discharge coefficient, injection duration, and spreading angle. As outlined below,

due to uncertainty in these values, we decide to perform a sensitivity study of modeled ignition

delay to these boundary conditions. Following, we touch on chemical mechanism considerations.

Pickett and coworkers [115] demonstrated that when models capture experimental axial spray

penetration, the mixture field was also well matched within the experimental uncertainty [115, 132,

133]. Because spray penetration is more easily quantified experimentally than fuel mixture fraction,

it is convenient to rely entirely on penetration data to validate models. Prior to implementing

reaction chemistry, we tuned/adjusted the model spreading angle to replicate the experimental

vapor penetration. An iterative procedure was performed until we converge within two-standard
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deviations of the mean.

The mean experimental penetration profiles for n-heptane are seen in Figure 6.2, with mean

ignition delay onsets (squares) overlaid on respective profiles. The penetration rate during injection

increases with ambient temperature, attributable to the reduction in ambient density to hold pres-

sure constant. Penetration after 500 µs and prior to respective ignition events (square markers) do

not follow this same trend. We attribute this to fluctuations in the hydraulic duration from shot-to-

shot and between temperature cases upwards of 50 µs. Ignition seems to occur almost at the exact

same penetration distance across the different temperatures. Sprays require time to adequately mix

to ignitable conditions, hence a physical ignition delay, after which the chemical kinetics governs the

total ignition delay. When the spray has reached roughly 4 cm, the mixing processes have completed

their natural development and the spray is nearly stagnant, resulting in similar locational onsets

regardless of the varying kinetic rates. The 1000 K case has a reduced penetration relative to the

others at the time of ignition, a result of a shorter injection duration that randomly occurred during

these runs.
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Figure 6.2: n-heptane experimental mean penetration trends at 850–1200 K, 40 atm, 15 % O2.
Squares superimposed on the penetration curves indicate the mean, experimental ignition delay.

We found the task of matching the 1-D model to experimental penetration elusive for two

reasons; the first reason is associated with our uncertainty in discharge coefficient. With our short

injection durations, the injector may not be achieving steady-state flow performance, attributable to
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transients required to fully-open (~100 µs) as well as close (~10 µs) as indicated by hydraulic force

measurements [134]. This is a significant portion of the total injection duration (50 %), in addition to

Spray D injectors requiring time (>250 µs) to reach steady-state performance [134, 135], attributable

to the needle requiring time to fully open. As such, this casts doubt on using the reported value of

0.88, as it is derived from a long, quasi-steady injection relative opening and closing transients.

Figure 6.3 presents modeled penetration for n-heptane at 900 K and two discharge coefficients

compared to the mean experimental penetration. We illustrate that when using the 0.88 value

in literature the spreading angle must be 22-deg, which is greater than the actual spray (about

18-deg in this case). Musculus et al. claim that a reduced spreading angle, when compared to

observed values, serves as a correction factor when assuming a constant velocity profile in modeling

efforts [109]. The reduction in model spreading angle is typically around 0.66 of the experiential;

e.g., knox et al. used a spreading angle of 15.5-deg to represent the experimental spreading angle of

23.0-deg [123]. In other words, when the experimental penetration is matched the model spreading

angle should be smaller than reality—an experimental spreading angle of 18-deg informs the model

spreading angle to be around 12.0-deg. In this work, using a discharge coefficient of 0.88 requires

no correction factor to match penetration trends. Because of this and the latter reasoning, we

decide to investigate significantly reduced discharge coefficients (Cd) of 0.66 and 0.5. For a Cd of

0.66, the model spreading angle is 15-deg to match penetration trends, which is only 0.83 of the

experimental spreading angle, but a correction factor is still in place nonetheless. For a Cd of 0.5,

the resulting spreading angle is 11-deg, which is 0.61 of the experimental spreading angle. Typical

correction factors from literature, while a useful guideline, are also based on quasi-steady sprays.

As such, there is no guarantee it is a physically reasonable value for the short injection sprays

in this work. For now, we investigate the three mentioned discharge coefficients to quantify the

impact on modeled ignition delay. We now continue to the next difficulty associated with matching

experimental penetration.

In our short-duration sprays, penetration notably decelerates after the end of injection. Tradi-

tionally, forces acting on the spray head such as drag are small relative to the spray momentum

during injection and are ignored in modeling efforts for typical sprays [123]. However, in our case

of very short injections axial pressure gradients and shear stresses may be more significant and

lead to this observed deceleration after the end of injection and prior to ignition. Guided by op-
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Figure 6.3: Simulated and experimental penetration for n-heptane, 900 K, 40 atm, 15 % O2. The
transparent bands indicate two standard deviations about the mean for the 10 experimental repeat
studies. The two discharge coefficients presented here illustrate the difference in spreading angle
required to best-match experimental penetration. The discharge coefficient value of 0.5 is omitted
here for brevity, but capable of having the same penetration trends with a reduced spreading angle.

tical observations of sprays expanding in a non-ideal fashion, published 1-D modeling efforts have

implemented variable spray radial profiles which serve to accelerate or decelerate the spray as it

progresses downstream [134]. In our case, this would give the desired result of achieving reduced

downstream penetration velocities by enlarging downstream control volumes. In fact, at the head of

the spray we do observe the spray width significantly enlarging after the end of injection. Executing

this approach in the model may be a viable candidate to account for the spray head decelerating

after the end of injection. The model of Knox et al. would need to be modified to incorporate

this feature. For now, we model the spray with an ideal conical expansion, omit shear and axial

pressure gradients, and best match experimental penetration with the current model. Like the pre-

vious discussion with uncertainties associated with discharge coefficient, we also have experimental

uncertainty with injection duration of up to 50 µs between repeat studies. This significantly alters

the total mass injected between injections, and evident in the differing penetration trends between

repeat studies, visualized by the large uncertainty band in Figure 6.3. We choose to model two

injection durations of 200 and 250 µs.

We settle on a parametric study of five cases between the three discharge coefficients and two
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injection durations. This will bound the ignition delay sensitivity with our uncertainty in these

two boundary conditions, and emphasize the attention to detail required when imposing boundary

conditions. We constrain the five individual cases to have the same or as close as possible penetration

curves. The values used in this study are found in Table 6.2.

Inj Dur Cd 850 900 1000 1100 1200
(µs) (-) (K) (K) (K) (K) (K)

250 0.5 13 11 11 10 9
200 0.66 16 15 15 14 12
250 0.66 18 16 16 15 13
200 0.88 22 20 20 19 17
250 0.88 24 22 21 21 18

Table 6.2: Spreading angle (in degrees) required to match experimental penetration as a function
of injection duration (Inj Dur) and discharge coefficient (Cd) for each vessel ambient temperature.
We assigned priority to matching penetration around the time of experimentally-observed ignition

Knox et al. investigated two chemical mechanisms—one detailed and the other reduced—and

found major discrepancy’s in modeled ignition delays (at 15 % O2, spray-H conditions) of 10 and 100

percent error, respectively [123]. Utilizing a detailed chemical mechanism is evidently key. We limit

the scope of our study to leveraging two detailed chemical mechanisms to evaluate the sensitivity on

modeling results. The first being the comprehensive chemical mechanism of Princeton et al. [136–

139], valid for n-heptane, iso-octane, toluene, and ethanol. The mechanism has been validated at

various conditions which do depend on the relative proportions of species. For pure n-heptane,

shock-tube experiments at temperatures between 750 to 1200 K and under 50 atm at stoichiometric

equivalence ratios were validated [137], among other various validation techniques. We also use the

detailed n-heptane mechanism (3.1) of Mehl et al. [140]. The mechanism of Mehl et al. has been

extensively validated with shock tubes and rapid compression machines with conditions ranging

from pressures of 3 to 50 atm, temperature from 650 to 1200 K, and equivalence ratios from 0.3 to

1.0 [140]. We define modeled ignition delays in this work by the temperature exceeding 400 K of

the initial ambient temperature. Any portion of the spray exceeding this criterion marks the onset

of second-stage ignition.
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6.3 Results and discussion
Time-sequenced images for all diagnostics first illustrate n-heptane two-stage ignition, highlighting

attributes of the short-injection spray events. After which, we summarize key findings regarding first-

(if present) and second-stage ignition phenomenon. Lastly, we compare experimentally obtained

second-stage ignition delays to our 1-D modeling efforts, and emphasize the success and limitations

of our overall methodology toward chemical mechanism and surrogate fuel validation.

6.3.1 Reacting Sprays
As a representative example of the entire experimental set, schlieren, OH* chemiluminescence, and

natural luminosity images are presented at select timings for n-heptane in a 900 K, 40 atm, 15 %

O2 ambient in Figure 6.4. The first column is the schlieren imaging, the second natural luminosity,

and third OH* chemiluminescence. The top left corner of each image shows the timings after start

of injection, and the bottom right the image dynamic range.

As the fuel spray mixes with the ambient, the temperature of the mixture increases. By 0.49 ms,

the schlieren reveals a softening of the spray, attributed to mixing with the ambient. However, by

0.69 ms, the spray rapidly begins to disappear—faster than that expected by mixing alone. Com-

parisons to non-reacting (0 % O2) sprays at this condition corroborate this. The natural luminosity

indicates that there are low-temperature reactions taking place at this same time. By 0.89 ms,

there is no longer any indication of LTHR with the natural luminosity; now, the spray is completely

transparent in the schlieren. In support that the disappearance of luminosity and schlieren signals

are evidence of LTHR, Curran et al. showed that first-stage ignition ends when increased tempera-

tures shift the equilibrium of reactions until paths are shut-off [141]. At 1 ms the first evidence of

second-stage ignition appears, as indicated by the faint darkening of the schlieren, and signal from

OH* and natural luminosity. Significant heat release begins to take place immediately following

this onset, as indicated by the rise in OH* signal. At these ambient conditions, all three diagnostics

are synchronized for timings of first- and second-stage ignition events.

Indeed, we find that the schlieren signal for this n-heptane case provides spray penetration

and, evidently, the onset of first- and second-stage ignition events. The schlieren reveals in high

sensitivity that ignition occurs nearly everywhere in the spray radial at a given axial position.
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This supports our hypothesis that the short injections enhance mixing to reduce concentration and

temperature gradients in the radial—though gradients still exist in the axial direction, with evidence

being ignition stratification occurring over a 300 µs period. Although, we find no significant ignition

progression into the upstream portion, i.e., “tail”, of the spray.

Combustion recession is not observed for the n-heptane case at 900 K, i.e., the spay tail does not

ignite following the bulk of the spray. In typical long-injection sprays, ignition occurs downstream

during fuel injection, manifesting to a quasi-steady flame lift-off position. After fuel injection, the

spray tail section then mixes with the ambient and is engulfed by the pre-existing flame. In our

short-injection sprays, the opportunity for ignition occurs after the end of injection. We believe the

spray tail mixes rapidly relative to the downstream portion of the spray, which can cause unfavor-

able conditions for ignition depending on ambient conditions. Generally, as the fuel spray entrains

hot ambient gases the mixture temperature favorably increases, and fuel concentration unfavor-

ably decreases. During rapid mixing in the tail, the fuel has minimal residence time at favorable

conditions that result in highest kinetic rates; instead, favorable conditions quickly transition to

fuel-lean and near-ambient temperatures. Here, reaction rates are minimal, but heat is released

nonetheless. Temperatures then typically rise from the minimal heat release, increase kinetic rates,

in turn accelerating heat release. However, high inert ambient concentrations inhibit any sort of

thermal runaway: where heat transfer losses and energy storage capacity of the inert ambient gasses

combat the local heat release, serving to suppress temperature rises and therefore any chance for

increasing reaction rates. As a result, over-mixed conditions can lead to undetectable ignition. We

return to the ambient conditions and fuel combinations that lead to over-mixing in the bulk of the

spray within the Ignition subsection.
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Figure 6.4: Select run of n-heptane at 900 K, 40 atm, 15% O2. Schlieren images are normalized by
the first frame prior to the start of injection. OH* Chemiluminescence shown with dynamic range
between 0 and 1000, with natural luminosity between 245 and 300. First-stage ignition initiates
around 700 µs, with second-stage at 1000 µs.
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6.3.2 Ignition Delay

6.3.2.1 n-heptane/isooctane fuels
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Figure 6.5: Ignition delays for first- and second-stage ignition for n-heptane and PRF fuels. First
stage indicated by natural luminosity images, and second stage by OH* chemiluminescence.

Figure 6.5a portrays first-stage ignition delay for n-heptane and PRF40, with the inset axis being

a single experimental run of luminosity signal at 900 K, also for n-heptane and PRF40. As can

be seen, PRF40 first-stage ignition is delayed at 100 µs relative to n-heptane across all comparable

temperatures. The luminosity signal decreases with increased iso-octane concentration, evidence of

diminishing LTHR. PRF70 first-stage ignition is not detected due to limited diagnostic sensitivity to

resolve the (expected) reduced LTHR, but likely present and with onset delayed relative to PRF40.

Resolving first-stage ignition for PRF40 at 1300 K was also not possible due to insufficient camera

framerate to distinguish first-stage from second-stage ignition.

Figure 6.5b shows second-stage ignition is delayed with increased isooctane concentration, in

accordance to our first-stage ignition trends and to results derived from homogeneous gas-phase

studies [79, 142]. The mean ignition delay of PRF70 disproportionately increases with octane rating

at lower temperatures, e.g., 200 % longer ignition delays relative to PRF40 at 900 K, but only 30 %

higher at 1200 K. Ignition delays are known to increase significantly at higher octane ratings at low-

temperature ambient conditions [72], but may not exclusively explain trends. Increasing residence

times with our sprays directly prolongs mixing, in turn reducing fuel concentrations. Reduced fuel
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concentrations also increase chemical ignition delays [] or may inhibit ignition entirely if over-lean;

we therefore expect further increases in ignition delays with lower reactivity fuels beyond that

indicated by octane rating.

The inset axis of Fig. 6.5b shows select runs of OH* signal at 1000 K, corrected to account for

differences in intensifier gate timings between fuel studies. To visualize the weak PRF70 signal we

also scaled the values by 150. At this condition, peak OH* signal ranks in descending order with

increasing fuel octane rating. Between these fuels, the fuel density and available energy contents

are roughly equivalent, with penetration trends also nearly identical—combined, these indicate the

total injected mass and therefore energy availability is similar and a non-contributing factor in

decreasing OH* signal. Instead, decreasing OH* signal is attributable to combustion efficiency

decreasing. As octane ratings increase, the residence time required within the vessel increases,

and therefore prolonged mixing; again, this creates fuel-lean conditions that reduce kinetic rates

and potentially inhibit thermal runaway if ambient dilution levels are high enough. Based on our

observations with PRF70, residence times greater than 2 ms (prior to ignition) may be a practical

limitation before over-mixing begins to occur; we return to more practical limitations later.

In addition to fuel-lean conditions from over-mixing, we also observe fuel-rich conditions at

elevated temperatures. The inset axis reveals that n-heptane OH* signal lingers after the initial

spike at 1000 K ambient. This is indicative of under-mixed conditions (fuel-rich) at the time of

primary ignition, i.e., ambient entrainment for sufficient oxygen does not occur to completely burn

the available fuel. Instead, additional mixing and entrainment of ambient oxygen after ignition is

required to progress oxidation at these early ignition timings. We refer to this additional mixing

time required as “burn-out”; to further illustrate the so-called “burn-out” period of OH*, n-heptane

OH* traces for the temperatures tested are presented in Fig. 6.6a. As temperature increases, and

residence times prior to ignition become less than 1 ms, OH* burn-out propensity and duration

increases. Not visualized here, this also occurs for fuels of lower reactivity when the residence times

are below 1 ms, such as PRF70 at 1300 K. Fig. 6.6b presents false-color images at select timings of n-

heptane at 1200 K. Primary ignition is nearly homogenous throughout the spray periphery, stemmed

from multiple ignition kernels. The OH* burn-out magnitude is near the local minimum at 1 ms,

with minimal OH* signal in the spray tail and prolonged in the core and head of the spray. Around

1.3 and 1.5 ms as the spray minimally penetrates downstream, the head exhibits a recirculation
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zone, induced from the primary ignition event. This recirculation zone of incomplete combustion

products entrains the ambient, resulting in increased OH* signal until eventually quenched around

3 ms. Ignition delays prior to 1 ms occur in a fuel rich mixture; at around 1 ms ignition timings,

ignition evidently occurs at more ideal compositions; ignition takes place in the fuel-lean at timings

above 2 ms. Future efforts aim to resolve spatiotemporal fuel mixture fractions at these ignition

timings to corroborate these hypotheses.
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Figure 6.6: Ignition delays for first- and second-stage ignition for n-heptane and PRF fuels. First
stage indicated by natural luminosity images, and second stage by OH* chemiluminescence.

For confounding reasons our experimental conditions made it difficult to quantitatively assess

heat release propensity via pressure transducer measurements, be it during primary ignition or

burn-out period. Primarily, the amount of injected mass is uncertain—required for quantitative

assessment of combustion efficiency and for comparisons of heat release—due to uncharacterized

injector performance at our short injections. Additionally, ignition occurring prior to 1 ms are vio-

lent, generating intense shock-waves registering as noise the same order of magnitude as perceived

signals from heat release. With injected mass and combustion efficiency unknown, as well as large

uncertainty in pressure transducer signals, only qualitative comparisons can be made. Although, we

can analyze primary ignition versus burn-out heat release magnitudes for a specific case. Fig. 6.7

provides derived heat release profiles for the 1200 K n-heptane case, after applying extensive mea-

sures to filter noise. At this condition about 70 % of the heat is released from the primary ignition

event, with remaining 30 % during the burn-out period. Extending this analysis to 1000 K, 80/20
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Figure 6.7: Heat release rates, derived from pressure transducer measurements, for the ten repeat
studies of n-heptane at 1200 K, 40 atm. The rapid heat released from the primary ignition event
is roughly 70 % of the total, with the slow-burning remainder from continued mixing (burn-out
period)

% is split between primary and burn-out period, respectively, in similar trend to OH* findings.

Continuing to 900 K, with residence times approaching 1 ms, the heat release nears 100 % from

the primary ignition event, indicating well-mixed conditions. At residence times greater than 1

ms, combustion efficiency declines due to over-mixing, evidence from reduced OH* in Fig. 6.6a and

derived heat release (not depicted).

6.3.2.2 n-heptane/toluene fuels
Within experimental repeatability, the onset of first-stage ignition is nearly the same as the concen-

tration of toluene increases from 0 to 30 % by volume across all temperatures, as seen in Figure 6.8a.

Toluene does not participate in first-stage chemistry, so as n-heptane proportions decrease we expect
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Figure 6.8: Ignition delays for first- and second-stage ignition for n-heptane and TRF fuels. First
stage indicated by natural luminosity images, and second stage by OH* chemiluminescence.

the ignition delay to remain the same. Ignoring uncertainty bands, mean values provide unexpected

trends. We believe the Ignition delay is very sensitive to mixing processes, varying shot-to-shot,

potentially a dominate factor over the 10-30% additions of toluene. Separately, increasing toluene

reduces the magnitude of heat release, as pointed out by the inset plot highlighting sequential

decreases of luminosity signal. The duration of LTHR is also found to be constant across fuels.

Figure 6.8b shows second-stage ignition delay increases as toluene concentration increases, in

agreement with increased octane ratings. Di Sante et al. also observed similar first- and second-

stage behavior as toluene was added to n-heptane, in their RCM study at 10 atm, 710—780 K

and [143]. They attribute this to the lack of two-stage chemistry for toluene, as to not alter

the first-stage ignition delay, but being less reactive in nature caused the second-stage ignition to

increase. In our case, the H70T30 second-stage ignition delay is disproportionately longer than the

other n-heptane/toluene mixtures. As mentioned with PRF70, the disproportionate ignition delay

increase is from prolonged mixing. H70T30 ignition delays are also longer at lower temperatures

than PRF40, and vice-versa at higher temperatures. This is surprising since octane ratings are

within a few units for H70T30 and PRF40. In addition to mixing and fuel reactivity considerations,

toluene requires less oxygen for stoichiometric proportions. As toluene content increases the mixture

therefore becomes more fuel-lean holding injection and ambient parameters constant. Because of

this, H70T30 being more fuel-lean than PRF40 could explain the further increase in ignition delay
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at low temperatures and shorter ignition delays at elevated temperatures from relatively fuel-rich

conditions. However, we return to this topic in our discussion of oxygenated fuels which we expect

to exacerbate this effect and do not find. As a result, the non-linear kinetics of n-heptane/toluene

mixtures may be the sole explanation for observed trends.

Peak OH* signals at 1000 K decrease with octane ratings, in agreement with PRF trends.

We note this finding is sensitive to the injection duration, as more fuel mass into the system would

cause larger OH* signals and vice-versa. Indeed, H90T10 has cases where the spray plume translates

further downstream of the injector prior to ignition at 1000 K relative to n-heptane, indicative of a

longer injection event; in these cases, peak OH* signals are larger than n-heptane.

6.3.2.3 n-heptane/ethanol fuels
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Figure 6.9: Ignition delays for first- and second-stage ignition for n-heptane and ERF fuels. First
stage indicated by natural luminosity images, and second stage by OH* chemiluminescence.

Figure 6.9a shows first-stage ignition is delayed between 100 and 200 µs with H80E20 relative

to n-heptane, with no detectable first-stage ignition for H60E40 or H40E60. The 20 % by volume

addition of ethanol increased the first-stage ignition delay more than the 40 % addition of isooctane

or 30 % addition of toluene, evidence of ethanol suppressing first-stage chemistry. This is expected

as small additions of ethanol in n-heptane has been shown to delay the onset and significantly reduce

the magnitude of LTHR [144]. Our luminosity traces corroborate these trends; as a result, resolving

the event optically for H60E40 or H40E60 with the current set-up was not possible.
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As the concentration of ethanol increases so does second-stage ignition delay (except for 1300

K), in agreement with octane ratings, as seen in Figure 6.9b. The ignition delays for H60E40 and

H40E60 increase significantly past those of PRF70 below 1200 K, expected since octane ratings (71.4

and 94.4) are above 70. Ignition onsets are unclear below 1000 K. Again, the longer ignition delays

(or no ignition) is believed to be from over-mixing in conjunction with the unfavorable stoichiometry,

causing low fuel to air concentrations relative to the other fuels tested, in turn inhibiting thermal

runaway. This is represented in the inset axis, where the OH* rapidly drops at the 1100 K condition

with increased ethanol content.

H80E20 and PRF40 have nearly identical second-stage ignition delay trends within certainty,

and partially expected from similar octane ratings. Recall the interpreted ignition trends from

comparison of H70T30 to PRF40, where lower stoichiometric proportion fuels result in longer ig-

nition delays at lower ambient temperatures, and vice versa. H80E20 has a lower stoichiometric

requirement over H70T30, expected to exacerbate perceived trends—albeit was not observed. Fuel

stoichiometry may minimally impact ignition trends at residence times below 2 ms; fuel mixture

concentrations could be large relative to the decrease from stoichiometric requirements, resulting

in a minimal change in kinetic rates. At ignition delays past 2 ms, when the spray is beginning to

reach over-mixed conditions, a reduction in stoichiometric requirement becomes a significant factor,

evident in the previously discussed H60E40 and H40E60 trends at lower temperatures.

6.3.2.4 Practical Implications
First-stage ignition delay variability proved adequate for the fuels and conditions where optically-

resolved. Between all cases (fuels, temperatures) we found an average standard deviation of 75 µs,

or error relative to the absolute ignition delay at 13 %. Second-stage ignition delays proved very

repeatable across all low fuels and temperatures at residence times below 2 ms. Here, the average

standard deviation in ignition delay amounted to 125 µs. On average, the relative error is at an

acceptable 12 %. However, for ignition delays at longer residence times we observed a corresponding

increase in errors, averaging 541 µs, or 21 % relative. Interestingly, the best-case repeatability was

achieved with n-heptane at 1000 K, having a standard deviation of 16 µs, or 2 % relative error;

this case had the most repeatable spray penetration profiles up until ignition, suggesting that errors

could be correlated to injector performance.
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We believe discrepancies in mixing characteristics shot-to-shot are the major cause of the ignition

delay repeatability. As the ignition delay increases, and therefore the time allotted for mixing to

take place creating low fuel concentrations, the impact on ignition delay is thought to be more

dominant. As a result, spray mixing discrepancies for each repeated run is subjecting the fuel to

more or less reactive conditions, leading to variance in observed ignition delays. Spray variability

is likely caused by our injector being operated at its limits. Alternative injectors or more than ten

repeat studies per condition should be considered in future efforts to minimize errors.

The H40E60 case at long residence times (>2 ms) did not demonstrate high ignition delay

variability, perhaps from repeated runs randomly being more similar. While penetration trends

could be analyzed for repeatability differences, we believe that without quantitative spatiotemporal

fuel concentration data we can’t make a definitive conclusion. This will be left as an investigation

for future efforts.

The high-temperature convergence point observed for the fuels tested in this work, i.e., ignition

delays being nearly the same across all fuels around 1300 K, is dictated by a mixing-limited process.

At this elevated temperature, chemical reaction rates are sufficiently large relative to convective

mixing rates, i.e., a high Damkhöler number. As a result, the residence time for the spray to

adequately mix, reach elevated temperatures and ignitable fuel/air concentrations governs the total

ignition delay. In other words, the physical ignition delay is large relative to the chemical. For our

injection events at all fuels tested, we find this physical ignition delay is around 500 µs. This datum

for all fuels can be used in ensuring reacting spray models, such as that employed in this work or

even higher-fidelity CFD models, are accurately representing the physical ignition delay.

High RON and low stoichiometric AFR fuels are more difficult to study with our proposed

methodology. For example, H60E40 and H40E60 cannot be studied at temperatures below 1000 K

(at 40 atm, 15% O2) because they do not ignite: high octane ratings necessitate long residence times,

which prolongs mixing, inhibiting thermal runaway. We expect lower ambient oxygen-concentrations

in the vessel to exacerbate this problem regardless of fuel reactivity, and vice-versa. At ignition

delays close to the spray physical ignition delay, the spray mixture is fuel rich. This is evident from

the burn-out period, where a significant portion of the heat release occurs long after the onset of

ignition. To avoid fuel-rich conditions at higher temperature or pressure conditions, shorter injection

durations would allow for longer mixing times relative to the onset of ignition. However, shorter
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injections would complicate matters with high octane and low stoichiometric AFR fuels at lower

temperature and pressure conditions, since prolonged mixing will lead to fuel-lean conditions. Ideal

well-mixed conditions appeared to occur at ignition delays around 1 ms for the wide array of fuels,

occurring at different ambient temperatures depending on fuel reactivity—again, being specific to

the 250 µs injection duration. Future efforts could sweep injection durations to alter spray mixing

and therefore bulk mixture concentrations at the time of ignition for a given fuel and ambient

condition, providing fuel ignition delay sensitivity versus fuel concentration (in similar fashion to

traditional, homogenous investigations). Future efforts aim to provide spatiotemporal measurements

of spray fuel concentration at various injection durations to investigate this potential.

6.3.3 Reactive Spray Modeling
To demonstrate the feasibility of using spray-ignition data for chemical mechanism and surrogate

fuel validation, we use a simple 1-D fuel spray model coupled with detailed reaction chemistry

to predict the experimentally-obtained second-stage ignition delays. The results demonstrate the

importance of injector, hydraulic, and control volume boundary conditions specific to our modeling

efforts. To assess modeled ignition delay sensitivity to uncertainties in spray physical boundary

conditions, we varied discharge coefficient, injection duration, and spreading angle.
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Figure 6.10: Modeled second-stage ignition delay, and sensitivity to the parametric study of imposed
boundary conditions and chemical mechanisms.

Figure 6.10a shows modeled second-stage ignition delay for the parametric study of imposed
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boundary conditions using the Princeton et al. mechanism. The experimental ignition delays for

n-heptane are accompanied with error bands representing one standard deviation about the mean.

Modeled values not presented, such as the 0.88 discharge coefficient cases at 900 K, were omitted

due to the lack of ignition (simulation limited at 3 ms). We find as injection duration increases

and discharge coefficient decreases, the predictive error decreases. The lower discharge coefficient

value of 0.5, coupled with the 250 µs injection duration, results in better ignition delay predictions

for all temperatures. We attribute this to the increased fuel concentrations as the spray forms,

and likely is more representative of experiments. The lower discharge coefficient results in lower

injection velocities; this necessitates a reduced spreading angle, constraining the fuel to a smaller

control volume at any axial location. The 250 µs injection duration, while requiring a slightly larger

spreading angle over the 200 µs injection duration, favorably extends the residence time for high

mixture concentrations. At temperatures below 1000 K, this expectedly reduces ignition delays

with increased equivalence ratio. At 1100 K and above we find the opposite trend, where 1000 K

marks the cross-over points between trends. High Damkholer numbers at elevated temperatures are

believed to explain the reversal of modeling trends, i.e., physical ignition delay dictates the modeled

ignition. The coarse ignition delay trends are captured, but relative errors do exist. We now

present results utilizing the n-heptane-specific chemical mechanism of Mehl et al. [140] and compare

with the previous results at a finer simulated resolution in Fig. 6.10b. Here, we use the 250 µs

injection duration and discharge coefficient of 0.5, which gave the best results with the Princeton et

al. mechanism. As can be seen in Fig. 6.10b, modeled ignition using the Princeton et al. mechanism

remarkably matches the experimental data at 900 K and above, demonstrating at most 12 % error

with the majority under 5 %. However, at the 850 K condition there is significant error of 79 %.

The mechanism of Mehl et al. outperforms at 850 K, overpredicting by only 44 %. Unfortunately,

this comes at the cost of increased errors at most other temperatures, but with similar performance

between 1100 and 1200 K where physical ignition delays dictate ignition. Spray-model tuning with

the Mehl et al. mechanism could potentially reduce errors, as was done previously with the Princeton

et al. mechanism, but may not be physically reasonable.

Alfazazi et al. predicted n-heptane ignition delays at 850 K, 50 atm, 21 % O2 ambient conditions

with a 0-D spray modeling approach and comprehensive gasoline mechanism of LLNL [145]. They

also found large errors in modeled ignition delay of 75 %. Alfazazi et al. attributed this to n-alkanes
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not being rigorously tested at 850 K, 50 atm conditions; truly, there are no reference data utilized

below 900 K at 50 atm for n-heptane [140]. Albeit, our study is at 40 atm conditions where reference

data do exist. If we trust the accuracy of the 1-D physical spray model used, it leads to questioning

the chemical mechanism; however, the chemical mechanism is validated at 40 atm—it could be that

both simplified spray models are not adequately capturing mixing at residence times greater than

1 ms.

The Princeton and Mehl et al. mechanisms are both founded on the same shock-tube reference

data [146] for n-heptane at 40 atm, stoichiometric conditions. Comparing their reference data to

shock-tube simulations leveraging each chemical mechanism, at 850 K the Princeton et al. mecha-

nism under-predicts the shock tube reference ignition delays roughly by 25 % [137], but accurately

predict temperatures less than 850 K. The Mehl et al. mechanism over-predicts by roughly 25

% [140] at 850 K, featuring much less negative temperature coefficient behavior, and over-predicts

at temperatures less than 850 K. Interestingly, this is opposite to our modeled spray-ignition trends

at 850 K, but in accordance with spray-ignition trends above 850 K. Investigating the reasoning for

this is beyond the scope of this effort, but may be attributed to differences in kinetic sensitivity to

fuel concentration. We cannot ascertain that the chemical mechanism or failure of the spray model

to adequately represent mixing causes large errors at the 850 K condition. To be certain, future

investigation comparing experimental and modeled spray fuel/air mixture fraction distributions are

warranted to ensure the 1-D model is adequately representing spray mixture physics. For now, we

offer comparisons of experimental and predicted ignition delays for additional fuels, utilizing the

comprehensive Princeton et al. mechanism.

Figure 6.11 presents second-stage ignition for PRF40, H70T30, and PRF70, with model results

using the same boundary conditions as the n-heptane study to isolate kinetic effects. General trends

across all fuels are captured, but large quantitative errors are present at most temperatures, and

reasoning behind not simulating the remainder of fuels. Many intricate trends are not captured

with the model results: H70T30 ignition being delayed relative to PRF40 at lower temperatures

and vice-versa at higher temperatures, PRF40 and PRF70 being delayed at 1100 and 1200 K,

among overpredictions for all fuels below 1000 K. Interestingly, ignition for all fuels are reasonably

predicted at 1000 K and 1300 K. On the other hand, 1000 K results may be a fortuitous cross-over

point between over-predictions of trends at lower temperatures and under-predictions at higher
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temperatures. Tailoring model boundary conditions to best match vapor penetration profiles specific

to each fuel and case did not improve our results.
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Figure 6.11: Modeled second-stage ignition delay for n-heptane, PRF40, H70T30, and PRF70,
overlaid with our experimental results

Observed discrepancies at temperatures below 1300 K lead us to believe the 1-D model is not

capturing mixing physics well beyond the physical ignition delay. As previously discussed in the

Methodology section, matching experimental vapor penetration—the criterion to ensure relatable

mixing between experiments and the model—proved challenging. Neglecting shear stress, axial

pressure gradients, and assuming a perfect conical expanding spray profile are potentially the culprits

for vapor penetration and mixing discrepancies. It may also be possible that the model boundary

conditions, tuned to match n-heptane ignition characteristics, are invalid and should be revisited.

Furthermore, in the models’ current state, ignition always occurs at the head of the spray, followed

by ignition stratification toward the core of the spray nearing up to 500 µs to complete. This

may invalidate the ignition delay from the modeling efforts to some degree, defined to occur when

any location in the spray exceeds 400 K of the ambient. The definition of ignition delay could be

spray-averaged to some degree and delay ignition at all temperatures, but would not alleviate our

observed discrepancies. Since the 1-D model is predicting high stratification in the axial direction,

not observed in experiments, mixing may be too simplified and could benefit from improvement.

Based on our findings, future efforts are warranted to investigate a solution for the 1-D model to
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accurately represent true mixing characteristics.

6.4 Conclusions
N-heptane, including binary mixtures of n-heptane/isooctane, n-heptane/toluene, and n-heptane/ethanol

were injected into a high pressure (40 atm) and temperature (850 to 1300 K) environment (15% O2)

within a constant-volume, pre-burn type combustion vessel, to supplement traditional approaches

that study the impact of fuel chemistry on combustion performance. We used high-speed image

analysis, simultaneously capturing Schlieren, OH* chemiluminescence, and broadband luminosity.

These diagnostics provide temporal- and spatially-resolved spray formation, along with first- and

second-stage ignition processes. We employed short-injections ranging between 200–250 µs (subject

to repeatability) at 500 atm with a heavy-duty injector with single-hole, axial orifice belonging to the

ECN family of “Spray D” injectors. We achieved a quiescent spray mixture after the end of injection

within the field of view to optically study autoignition phenomena of low or high reactivity fuels,

while avoiding any spray-wall impingement. The long residence times prior to ignition served to

enhance mixing, believe to create a more uniform fuel/air distribution—ideal for simplified modeling

efforts. We found qualitative ignition delay results were in accordance with established trends in

literature derived from traditional, homogenous studies. In most cases, our reported experimental

uncertainties are better than those found with homogenous-ignition delay measurements (20 %).

Between all cases we found relative error (to the absolute ignition delay) at 13 %. Second-stage

ignition delays less than 2 ms are at 12 %, where at longer ignition delays the errors were larger

at 21 % relative, thought to be from increased sensitivity to mixing from shot-to-shot variability.

Our technique produces repeatable results over a wide range of fuel reactivity and stoichiometric re-

quirements, but the repeatability is subject to injector performance. Future studies should consider

a different injector than that used in this work which performs better at ultra-short injections.

The 1-D spray modeling of second-stage ignition delay for n-heptane at 850 to 1200 K, 40 atm,

15 % O2 proved successful. Although, accurate predictions of ignition delay for the 850 K case

proved elusive, regardless of the two chemical mechanisms investigated. The ignition delays at

ambient temperatures above 850 K are predicted within 13 % of the experimental mean value,

lying within experimental repeatability. The ignition delay at 850 K unreasonably matched the

experimental mean value regardless of the model boundary conditions, indicating a potential issue



117

with the chemical mechanism itself. Corroborating our findings, literature suggests reaction kinetics

for n-alkanes lack accuracy at high-pressure, low-temperature conditions. In contradistinction,

our modeling results for PRF40, H70T30, and PRF70 demonstrated significant quantitative errors

across all temperatures. This evidence suggests mixing may not be not well-represented in the 1-

D modeling efforts and could benefit from improvement. Incorporating shear stress, axial pressure

gradients, or altering the spray boundary in the 1-D model could improve results; that, or leverage a

higher-fidelity model. With a computationally efficient model that captures mixing characteristics of

short-injection sprays, we believe the methodology outlined in this work demonstrates an attractive

method to study two-stage ignition quality for a wide array of fuels, aimed to develop corresponding

chemical mechanisms and surrogates.

We encourage the community to leverage and add to this dataset, improve upon our injection

technique and simplified modeling efforts, and investigate the other fuels studied. The CVCC in

this work rapidly provides fundamental data over most traditional methods, allowing the generation

of statistically significant datasets. These fundamental data will serve to supplement ignition delay

datasets by which modern combustion models are founded on. Also, surrogate fuels may be rapidly

tested in a CVCC and validated against the actual fuel and surrogate-modeled results, as outlined

in our methodology. Similarly, as the combustion community begins to target novel alternative fuels

and subject them to more extreme operating conditions, a CVCC can do so quickly with minimal

fuel sample. As little as 100-ml of fuel sample is required to purge the system and provide hundreds

of data-points at ambient conditions potentially ranging 450 to 1400 K, densities from 1 Kg/m3 to

60 Kg/m3, and pressures up to 350 atm—extending the limits of many homogenous facilities. In

addition to rapidly providing data for combustion model and surrogate/alternative fuel development,

we simultaneously visualize the spray formation process and its impact on the combustion behavior.

Short-injection spray formation and its impact on combustion performance has practical implications

for engines employing pilot direct injection strategies. Practitioners considering these strategies for

commercial applications will benefit from the optical diagnostic findings that are too expensive

or difficult to attain themselves. The 1-D modeling techniques adequately predict spray-ignition

performance for pilot-like injections of n-heptane—a simple diesel fuel surrogate—and may prove

useful in practice for combustion technology optimization.
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Chapter 7: Rational LTC Engine Fuel Design

7.1 Introduction
The previous chapter quantified the disagreement between modeled and experimental spray-ignition

onsets, concluding the prediction error varied with ambient conditions and the fuel composition.

The spray-ignition model, simply put, is made of two components, one representing simplified

spray mixing physics and the other detailed reaction chemistry. The body of experimental work in

chapters 5, 6, and appendix D demonstrate that the 1-D spray model captures the spray mixing

processes well. However, our spray-ignition results and comparisons to literature findings both

suggest that mixing may not be not well-represented in the 1-D modeling efforts for some conditions

and could benefit from improvement; that, or to leverage a higher fidelity spray model. Since the

1-D spray model is not perfectly representative of the true spray mixing, errors in the modeled

spray-ignition results cannot be entirely deduced to be from inaccuracies in the reaction chemistry.

With that said, it is possible that the model inaccuracies are partially due to inaccuracies in the

reaction chemistry.

The chemical mechanism used in the spray-ignition study was also used for generating the

LTC index training/test data set. Assuming the previous study had quantitatively established the

ignition timing errors from the chemical mechanism, then LTC index sensitivity to this error could

be investigated. Quantifying the sensitivity of LTC index to ignition delay variations would require

an exhaustive effort. Potentially, the spray-ignition data set generated in Chapter 6 could be used to

update chemical reaction rates to improve model ignition delay predictions. The updated chemical

mechanism can then be used to repeat LTC index calculations, allowing a comparison of the updated

to previous LTC index values to establish sensitivity. Alternatively, reduced chemical mechanisms

could be generated for each fuel, targeted to have global ignition delay errors, then used in the LTC

index simulations. Moving forward, the author acknowledges the potential errors present in the

LTC index data set and use the IR-to-LTC index predictive models, knowing predictions may not

coincide with reality.
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This chapter explores thousands of fuel mixtures to find a fuel that provides high LTC engine

fuel performance. The computational tools developed in this body of work are all leveraged to

automate this process. The LTC index predictive model is used to rapidly evaluate the LTC indices

for these fuel mixtures, allowing each case to be evaluated with minimal computational effort; this

way, it is possible to efficiently explore the large parameter space to design an optimal fuel. This

study demonstrates the process of designing a novel fuel with tailored properties to work with high

efficiency LTC engine strategies.

7.1.1 Methodology
This study combines the tools developed in Chapters 2–4 to rationally design high performing fuels

for LTC engine applications. Recall in Chapter 3, the author introduced numerically blending

hydrocarbon species together into a fuel that emulates the thermochemical attributes of complex

refinery grade gasolines. In that effort the IR-RON predictive model from Chapter 2 was embedded

into the fuel design algorithm, rapidly determining RON of the hydrocarbon mixtures. The final

stage of this work now incorporates the IR-LTC index model into the fuel formulation algorithm.

As detailed in chapter 3, the framework linearly blends hydrocarbon species together to best-

match the desired target parameters. At each iteration of fuel composition, the fuel property models

are evaluated and return values to the objective function. The optimizer attempts to find a global

minimum of the objective function, and in doing so designs a fuel tailored to the user-specified

target fuel properties. Recall to use the predictive models for RON or LTC index, knowledge of

the fuel IR spectra is required, since The models are a correlation between fuel IR spectra and the

fuel engine performance value. Here, fuel IR spectra are estimated by the molar weighted sum of

each individual hydrocarbon spectrum. This approximation is used as the input to the IR-RON

and IR-LTC index predictive models.

Using linear blened spectra with the IR-LTC index models developed in Ch. 4 is problematic.

The IR-LTC index model is trained with hundreds of actual fuel mixture spectra collected by the

author. In many cases, real fuel IR spectra are not the same as linearly blended spectra—especially

for oxygenated fuel mixtures. As such, inputting an approximated spectrum into the existing IR-

LTC index model would yield significant errors for many fuel mixtures. To resolve this issue a

new IR-LTC index model is created, trained in the same manner and with the same fuel data as



120

chapter 4, but instead using linearly blended IR spectra.

A fuel solely designed to maximize LTC index is likely impractical for emerging LTC transporta-

tion engines, such as HCCI. For the vehicle parameters studied, as indicated by the LTC index data

set, it does not appear technically feasible to have a fuel that can provide the entirety of demanded

engine operating conditions. Because of this limitation, in order for HCCI to come to production it

would need to be employed with sophisticated engine controls to operate with both spark ignition

(SI) and HCCI cycles. This way, portions of the engine operation that can be achieved with HCCI

are leveraged for efficiency improvements, and where not possible supplemented with traditional SI.

For SI operation, a fuel must have high octane ratings, and for HCCI a high LTC index. Based

on this, a fuel is formulated to maximize both parameters. To constrain the optimization problem,

a RON of 91.0 and LTC index of 40.0 are selected, both representing large and realistic values to

target. Based on the results, some practical directions for hybrid engine cycles are suggested, includ-

ing the use of direct-injection compression ignition (DICI) engines in lieu of SI for next-generation

engine strategies.

7.1.2 Results/Discussion

7.1.2.1 IR-LTC Model
The IR-LTC index model, trained with linearly blended IR spectra, is shown here for performance

assessment. General model performance is visualized in Figure 7.1. Perfect LTC index model

predictions lie on the linear trend line, below the line indicates the LTC index is under-predicted

and above the line over-predicted. The predictions here are the training/test/and validation data

set. Here, the validation data set is ten samples randomly pulled from the train/test data set in

chapter 4. Model parameters can be found in Appendix E The box-and-whisker plot, shown in

Figure 7.2, quantifies the residual (predicted - actual) distributions. As can be seen, The red line

indicates the median, red square the mean, the edges of the box the first and third quartiles (25th

and 75th percentiles), the whiskers extend to 1.5 times the inter-quartile range (IQR), and potential

outliers indicated with plus signs (greater than 1.5 IQR). The mean and median are centered on

zero, with the majority of predictions within ±5, but as worse as ±10 for outliers. The large errors

with some fuels could be attributed to the support vector machine algorithm failing to generalize the



121

problem. To potentially improve predictive performance, alternative machine learning algorithms

such as artificial neural networks should be investigated. Errors could also be an artifact caused by

the uncertainty of the “true” values within the LTC index data set, previously discussed to stem

from chemical mechanism uncertainty used in the HCCI modeling efforts. Despite the errors in the

IR-LTC index model presented here, it predicts most fuels within 6 units (whisker span). The tool

should be able to guide the fuel design tool in correct directions.
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Figure 7.1: True versus predicted LTC index results. The predictive model has a coefficient of fit,
R2, of 0.76 for the complete training/test/validation data set

7.1.2.2 SI-HCCI Fuel
A fuel designed to potentially operate in a hybrid HCCI/SI engine is presented in Table 7.1. The

IR-RON and IR-LTC index predictive models are paired with multivariate optimization to design

a fuel (linear combination of various hydrocarbons), targeted to have a RON of 92.0 and LTC

index of 40.0. As can be seen, the predicted LTC index and RON values match the targeted

values well. The algorithm blended the eleven components shown in Table 7.1, and converged to an

optimal fuel containing five of them. The fuel comprises roughly 20.5 % 2-methylhexane (paraffin),

15.2 % isooctane (isoparaffin), 11.6 % cyclopentane and 20.4 % cyclohexane (naphthenes), and the

remainder aromatic (o-xylene).

To validate the LTC index of this fuel it was directly simulated. The actual LTC index sur-

mounted to 15.5, roughly a factor of two less than desired. The large error between the predicted and
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Figure 7.2: Residual (true-predicted) boxplot for LTC index predictions. The red line indicates
the median, red square the mean, the edges of the box the first and third quartiles (25th and 75th
percentiles), the whiskers extend to 1.5 times the inter-quartile range (IQR), and potential outliers
indicated with plus signs (greater than 1.5 IQR).

actual value is likely attributed to the inclusion of cyclopentane and cyclohexane in the fuel palette,

which are not within the training data set. The spectral features from these fuels are thought to be

inflating the LTC index predictions. Hydrocarbons have many overlapping IR functional groups.

In this case, the model is weighting these overlapping features with positive influence towards LTC

index as learned from the training data set, when it evidently should be to a lesser extent. To

alleviate this issue, the IR-LTC index predictive model should be trained with each fuel present

in the fuel formulation algorithm species palette. Moving forward, since the true LTC index value

of this fuel is found to be minimal, it is therefore not an attractive option for a hybrid HCCI/SI

engine. Because of this, there is little motivation to validate the predicted RON of this fuel through

experimental procedures.

The predictive model utility is evidently limited to mixtures of hydrocarbons used to create

the model. The fuel formulation procedure is repeated with a species palette only including hy-

drocarbons present in the training/test/validation data set. The author also removes species that

converged to zero in the prior study. The updated results are presented in Table 7.2.

The fuel target values are not achieved, surmounting to a RON of 79.7 and LTC index of 24.6,

but the results are expected. For the vehicle and powertrain the LTC index is based on in this work,
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Parameter Target Predicted Actual

RON 91.0 89.1
LTC index 40.0 39.7 15.5

Species Molar %

n-heptane 0.0
2-methylbutane 0.0
2-methylhexane 20.49
1-pentene 0.0
1-hexene 0.0
2,2,4-trimethylpentane 15.18
cyclopentane 11.57
cyclohexane 20.37
o-xylene 32.39
1,2,4-trimethylbenzene 0.0
toluene 0.0

Table 7.1: Fuel optimization results for a fuel tailored to a SI-HCCI hybrid engine, allowing species
not present in the training/test/validation data set. Predicted properties evaluated through IR-
fuel property correlations are shown, with comparison to calculated LTC index. Species with “0.0”
entries indicates they were included in the optimization species palette, but converged to zero.

Parameter Target Predicted

RON 91.0 79.7
LTC index 40.0 24.6

Species Molar %

n-heptane 15.7
2-methylhexane 7.9
2,2,4-trimethylpentane 75.7
toluene 0.0
ethanol 0.7

Table 7.2: Fuel optimization results for a fuel tailored to a SI-HCCI hybrid engine, removing species
not present in the training/test/validation data set. Predicted properties evaluated through IR-fuel
property correlations are shown, with comparison to calculated LTC index. Species with “0.0”
entries indicates they were included in the optimization species palette, but converged to zero.
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higher LTC index fuels can be formulated but the RON value decreases rapidly, and vice-versa. In

general, the LTC index training data set show that fuels with a RON less than 80.0 can provide

a wide range of LTC index values, depending on fuel composition, but with a RON greater than

85.0 guarantees the LTC index to be at or less than 25.0. Therefore, the RON and LTC index of

the formulated fuel are seemingly the best balance for the two metrics to have the highest values.

Calculating the actual RON and LTC index values for this fuel is not pursued due to the low

predicted LTC index value.

A fuel with a RON of 85.0 or less is going to be knock-prone within most SI engine configurations.

Using direct injection strategies could potentially eliminate engine knock with mid-octane fuels (~80-

85), due to the latent heat of vaporization acting to reduce in-cylinder temperatures and pressures

to decrease chemical reactivity. To investigate further, fuel TRF4 from Truedsson et al. [16, 17],

having an LTC index of 34.1 but a RON of 82.8 and MON of 80.7, could be a promising candidate

to test in such an engine.

The author suggests investigating LTC index trends at higher compression ratios or boosted

(e.g., turbocharged) conditions. It is hypothesized that as in-cylinder pressures and temperatures

increase, the fuel reactivity must also decrease to offer successful HCCI combustion phasing. Because

of this, high LTC index values could potentially correspond to higher octane ratings. However,

further increasing compression ratios past 13.0 and intake charge pressure past atmospheric levels

would require increasing the octane requirement near or above 100.0 to combat engine knock. The

study should therefore investigate high oxygenate, iso-alkane, and aromatic fuel mixtures that offer

large octane ratings to operate at extreme conditions in an SI cycle. The study could potentially

reveal a high RON, high LTC index fuel that is not able to be formulated at the CR of 13.0 and

atmospheric intake charge pressure. However, it is expected that LTC heat release rates (HRR)

will be too rapid causing engine knock, even when favorable ignition onsets occur. An attempt

to mitigate accelerated HRR in the simulations will be required. This could entail introducing

thermal in-cylinder stratification, shown to reduce HRR [122], but would require moving towards a

multi-zone HCCI model.

At the conditions investigated in this work, fuels offering the highest scoring LTC indices have

very low RON values (less than 30.0). These fuels are therefore more like a diesel fuel, which are

highly reactive in comparison to gasoline. Because of this, it is recommended that the low RON
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and high LTC index fuels be paired with direct injection compression ignition (DICI) strategies in

lieu of SI.

7.1.2.3 DICI-HCCI Fuel
Of all the fuels investigated to create the LTC index data set, fuel H80T20, having 80 % n-heptane

and 20 % toluene by volume, provides the highest LTC index of 41.6. Because of the low octane

rating and high LTC index, this fuel could be a candidate for hybrid HCCI/DICI cycle. HCCI could

be leveraged at lower engine loads, and DICI to achieve high engine loads. In chapter 6, n-heptane

and H80T20 were found to have nearly identical spray-ignition behavior across the conditions tested.

Since H80T20 is found to have similar spray-ignition behavior to n-heptane, and n-heptane is often

used as a surrogate for diesel in DICI environments, H80T20 could potentially offer similar DICI

performance to most diesels.

Again, the LTC index in this work is based on a compression ratio of 13.0, a low value for

DICI applications. Despite a low CR of 13.0, operating a DICI cycle with fuel H80T20 should

be technically feasible. Chapter 6 investigated conditions emulating a non-boosted engine with

a compression ratio of 13.0 at moderate exhaust gas recirculation (15 % O2). The conditions

investigated were conducive to low temperature combustion (40 atm, 850 to 900 K) finding H80T20

auto-igniting within 1.0–1.5 ms. This is a short enough residence time to react in a reciprocating

engine, even at low RPM. The work also investigated higher temperature conditions mimicking

more conventional DICI conditions (40 atm, 1000 to 1200 K), where ignition delays of n-heptane

and H80T20 are nearly identical, with both decreasing to 400 ms by 1200 K.

A CR of 13.0 would unfavorably decrease the thermodynamic efficiency over a typical DICI cycle

having a much higher CR. However, potentially supplementing much of the DICI cycle with HCCI

would serve to increase the overall cycle efficiency and also reduce emissions. In-cylinder tempera-

tures and pressures would be much lower than typical DICI operation at higher CRs, thereby in-

creasing ignition delays. This results in prolonged mixing of the fuel spray, which may in-turn reduce

soot emissions for the DICI cycle with a proper injection strategy. Overall, a hybrid HCCI/DICI

cycle at a CR of 13.0 with fuel H80T20 could potentially offer reduced emissions and increased fuel

economy over traditional SI and CI engines leveraging gasoline and diesel. Future efforts should

experimentally investigate this potential.
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7.1.2.4 Fuel Design Directions
The fuel design methodology outlined in this work can be extended to other vehicle and powertrain

technologies. A new LTC index data set could be generated as a function of vehicle and engine

parameters, such as engine CR, to investigate LTC index sensitivity. This information could be

used to train, test, and validate new LTC index predictive models. Cloud computing resources are

getting significantly faster and less expensive to use, so the time investment for LTC index data

set generation could be reduced. Further data generation speed-ups could potentially be achieved

as graphics processing units (GPU) become supported for combustion simulation purposes, but at

this time is still an active research topic. Strenuous machine learning computations, yet another

time investment hurdle, are receiving GPU support not used in this effort. Python tools, such as

Keras and the TensorFlow back-end, provide artificial neural network GPU routines that should

be explored. Regardless of the computational burden of creating LTC index predictive models,

extending the methodology of this work to new vehicle parameters would reveal changes in optimal

fuel compositions and their resulting performance. Through this, the fuel and engine parameters

yielding utmost performance can be simultaneously discovered.

7.1.3 Conclusions
Based on the LTC index data set, no single fuel can provide all the necessary engine operating points

for a typical vehicle application. As a result, the author attempted to blend a fuel with a high LTC

index—for the benefits of increased fuel efficiency and reduced emissions—and also a high RON,

such that traditional spark-ignition (SI) could be used where HCCI cannot. As this work showed,

the fuel formulation algorithm was not able to do so. The result partly stems from the IR-to-LTC

index predictive model being limited in predictive scope to a handful of candidate hydrocarbons,

thus being limited in the parameter space to investigate. More-so, the engine parameters used in

generating the LTC index data set appears to be the limiting factor, as it does not seem feasible to

simultaneously have high RON and LTC index at a compression ratio (CR) of 13.0 with atmospheric

intake charge pressure. At these engine parameters, however, there is motivation to further study

fuel H80T20 (high LTC index, low RON) in a hybrid low temperature combustion / direct-injection

compression ignition engine to achieve significant economy improvements.
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To further explore the possibility of tailoring a fuel to HCCI, hybrid HCCI-SI, or hybrid HCCI-

DICI applications, the author suggests investigating LTC index trends at alternative engine param-

eters such as increased compression ratios or boosted conditions. This would entail re-calculating

the LTC index data set and developing new IR-LTC index predictive models, then used to repeat

the fuel design process outlined in this chapter. An alternative low temperature combustion per-

formance metric could also be used in lieu of the LTC index—the same concept applies to fuel

formulation, where the alternative metric and its corresponding “ideal” value would be targeted. In

general, a sensitivity study of LTC fuel performance trends versus varying engine parameters could

simultaneously reveal an optimal fuel and engine combination.
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Chapter 8: Conclusions

This work developed models that can rapidly predict fuel performance metrics for spark ignition

(SI) and low temperature combustion (LTC) engines, circumventing the need for costly and time-

consuming experiments. Spcifically, the models can predict Research Octane Number (RON), Motor

Octane Number (MON), and the OSU-Chevron Low Temperature Combustion Index (LTC index).

The models were developed through various supervised machine learning techniques. Fuel infrared

absorbance spectra trained these models to predict the fuel performance ratings. In this manner,

fuel performance ratings can be determined with only knowledge of a fuels’ infrared absorbance

spectrum. The fuels used to train the models were neat hydrocarbons and mixtures containing up

to six neat hydrocarbon components, yet the models can accurately predict the fuel performance

ratings of complex fuel mixtures that contain hundreds of hydrocarbons.

This work contained two significant efforts specifically aimed to validate the LTC index predictive

model, the LTC index being a metric that characterizes fuel homogeneous charge compression

ignition (HCCI) performance. The first effort outlined a computational tool to formulate specially

designed simple fuel mixtures that emulate the thermochemical properties of complex fuels, known

as fuel “surrogates”. The fuel surrogate is paired with HCCI simulations to determine the LTC index

for a complex fuel sample. This was required as the LTC index is a computationally determined

metric, posing unmanageable challenges to directly simulate a fuel of high complexity. Creating and

simulating these surrogate fuels generated the needed data set to validate the LTC index predictive

model.

The LTC index is a simulated metric, so the accuracy of the LTC index data set used to

inform the predictive model is subject to the combustion model accuracy. As such, the second

validation effort evaluated the performance of simplistic combustion modeling efforts, serving to

inform the degree of accuracy of the LTC index data set. Various combustion parameters in a

constant volume combustion chamber (CVCC) apparatus were measured for an array of fuels.

The author first quantified direct-injection spray mixing with a novel line-of-sight, extinction-based

optical diagnostic, developed specifically for this work. The diagnostic showed that using ultra-short
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injection durations reduced unfavorable concentration gradients within the fuel spray, serving to

reducing physical complexity. With the physical complexity of the spray process reduced, simplistic

1-D modeling efforts proved to accurately represent the spray formation process. Based on this,

a short-injection spray ignition study was conducted, optically measuring first- and second-stage

ignition onsets. The experimental results are compared to those from a 1-D spray-ignition model.

Comparing experimental to modeling spray-ignitions concluded that there are likely errors in the

chemical mechanism. The chemical mechanism used for the spray-igntion study was also used

for the LTC index simulations. This indicates the LTC index training, test, and validation data-

sets must also have errors, but the magnitude of which is unresolved. A more in-depth study is

warranted to establish the sensitivity of LTC indices to ignition delay uncertainty. The study would

be an exhaustive effort, first requiring updating the chemical mechanism to reflect corrections for

simulated ignition delays, then used to re-calculate LTC index trends. This study is left for future

efforts. Since all sources of error within the LTC index data set are not yet fully quantified, any

predicted LTC index results should be treated with caution.

Moving forward, the RON and LTC index predictive models were paired with multivariate

optimization. This combination can design novel fuels tailored to specific vehicle and powertrain

applications. The tool produces a single fuel that can potentially operate in a hybrid SI/HCCI

engine, having a predicted RON of 89.1 and an LTC index of 39.7. This means the fuel can operate

at many engine operating points via HCCI, and at engine operating points not attained by HCCI

could be supplemented with traditional SI, offering a 39.7 % savings in burned fuel mass over solely

using SI. However, the LTC index of this fuel was directly evaluated and found to be 15.5, indicating

the predictive model is not accurate for this fuel composition. The result here stems from the IR-

to-LTC index predictive model being limited in scope to predict a handful of hydrocarbons, and

in this case was applied to design a fuel containing hydrocarbons not within the training data set.

The author removed species from the formulation algorithm to rid of these predictive errors, and

designed a fuel with a maximized RON of 79.7 and LTC index of 24.6. This result is expected from

trends presents within the LTC index data set, where the highest scoring LTC index fuels have

a RON less than 30.0. Therefore the RON of 79.7 and LTC index of 24.6 was the best balance

that could be achieved. This result is intrinsic to the compression ratio (CR = 13.0), among other

engine and vehicle parameters used in this investigation, which would change if the engine and
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vehicle parameters were altered. The result is also influenced by the current state of the LTC index

data set and the developed predictive models, which could be improved upon.

Future efforts should extend the fuel design methodology outlined in this work to other vehicle

and powertrain technologies. To further explore the possibility of tailoring a fuel to HCCI, hybrid

HCCI-SI, or hybrid HCCI-DICI applications, the author suggests investigating LTC index trends

at alternative engine parameters such as increased compression ratios or boosted conditions. In-

vestigating the impact of varying compression ratio, or other parameters, would require calculating

a new LTC index data set, used to train/test and validate a new LTC index predictive model.

Creating this data set was a time-consuming and challenging step in this work. However, with

cloud computing resources getting faster and less expensive to use, along with increasing support

for using graphic processing units for expedited research calculations, the time investment for LTC

index data set generation could be reduced. Extending the LTC index to new vehicle parameters

would reveal changes in optimal fuel compositions and their resulting performance. Through this,

the fuel and vehicle yielding utmost performance could be simultaneously discovered. Future efforts

could also improve upon the LTC index data sets. This could be done by simulating more fuels to

add to the training/test/validation data sets, as well as improving the chemical mechanism used

in the simulations. Moving towards multi-zone HCCI simulations to account for thermal stratifica-

tion, a well known parameter to favorably smooth heat release rates in HCCI applications, in turn

extending the achievable high load limits and increase LTC index values.

Through engine simulations, developing predictive models, and pairing the efficient models with

multivariate optimization techniques provided the means to efficiently explore the huge parameter

space demanded by fuel design. The work in this thesis has laid a foundation for a novel approach

to fuel design, resulting in a suggested formulation for a specific vehicle and powertrain application.

These tools simultaneously point fuel and vehicle technology in a unique direction for designing

high efficiency, next-generation combustion systems.
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Appendix A: Chapter 2 Supporting Material

A.1 Lists of fuel mixtures
This study considered a total of 134 fuel blends consisting of various mixtures n-heptane, isooc-
tane, methylcyclohexane, toluene, 1-hexene, and ethanol taken from the literature [19, 20, 42, 43].
Tables A.1–A.5 provide the makeup of these mixtures in terms of volume fraction, as well as the
RONs measured experimentally by the sources.

ID n-heptane isooctane MCH toluene 1-hexene RON
(vol. %) (vol. %) (vol. %) (vol. %) (vol. %)

2 60 10 10 10 10 41.0
3 50 50 48.3
4 50 50 43.8
5 50 50 64.1
6 50 50 40.3
7 20 20 20 20 20 75.0
8 10 60 10 10 10 87.1
10 10 10 60 10 10 74.4
11 50 50 86.4
13 10 10 10 60 10 95.7
14 50 50 110.5
15 50 50 91.5
16 10 10 10 10 60 75.8
18 50 50 88.2
19 50 50 74.2
20 50 50 92.5

Table A.1: Blends of n-heptane, isooctane, methylcyclohexane (MCH), toluene, and 1-hexene con-
sidered in this work taken from Perez et al. [42].
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ID n-heptane isooctane toluene ethanol RON
(vol. %) (vol. %) (vol. %) (vol. %)

PRF20 80 20 20
PRF40 60 40 40
PRF55 45 55 55
PRF85 15 85 85
H20T10 20 70 10 82.8
H20T20 20 60 20 84.9
H20T40 20 40 40 89.8
H20T60 20 20 60 93.9
PRF80 80 20 80
H20E1 20 79 1 80.5
H20E5 20 75 5 84.4
H20E10 20 70 10 87.9
H20E20 20 60 20 94.1
PRF70 70 30 70
H30E1 30 69 1 70.6
H30E5 30 65 5 73.2
H30E10 30 60 10 78.7
H60E20 30 50 20 85.1
H60E40 60 40 71.4
H55E45 55 45 78
H50E50 50 50 84.7
H45E55 45 55 89.7
H40E60 40 60 94.4
T1 40 45 10 5 67.1
T2 20 50 10 20 94.7
T3 20 30 30 20 97
T4 40 10 30 20 80.8
T5 30 45 20 5 79.6
T6 30 27.5 30 12.5 85.3
T7 30 37.5 20 12.5 83.8
T8 40 25 30 5 71.8
T9 30 47.5 10 12.5 81.6
T10 20 45 30 5 90.2
T11 30 37.5 20 12.5 83.8
T12 40 30 10 20 78.3
T13 20 65 10 5 86.1
T14 40 27.5 20 12.5 74.8
T15 20 47.5 20 12.5 92.3
T16 30 30 20 20 87.9
T17 30 37.5 20 12.5 83.8

Table A.2: Blends of n-heptane/isooctane (PRFs), n-heptane/isooctane/toluene, n-heptane/
isooctane/ethanol, n-heptane/ethanol, and n-heptane/isooctane/toluene/ethanol considered in this
work taken from Truedsson et al. [19, 20].
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ID n-heptane isooctane toluene ethanol RON
(vol. %) (vol. %) (vol. %) (vol. %)

TE10 90 10 112.8
TE20 80 20 110.9
TE40 60 40 108.6
TE60 40 60 108.1
TE80 20 80 107.9
TRF91-15 12.4 72.6 15 91.0
TRF91-30 17 53.2 29.8 91.3
TRF91-45 20.3 34.7 45 91.1

Table A.3: Blends of toluene/ethanol and n-heptane/isooctane/toluene (TRF) considered in this
work taken from Foong et al. [43].
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ID n-heptane isooctane ethanol RON
(vol. %) (vol. %) (vol. %)

PRF0-E30 70 30 54.3
PRF0-E40 60 40 69.7
PRF0-E50 50 50 83.8
PRF0-E60 40 60 94.7
PRF0-E70 30 70 101.6
PRF0-E80 20 80 104.7
PRF0-E90 10 90 106.5
PRF10-E20 72 8 20 45.9
PRF10-E30 63 7 30 61.1
PRF10-E40 54 6 40 75.6
PRF10-E50 45 5 50 87.6
PRF10-E60 36 4 60 96.6
PRF20-E20 64 16 20 53.3
PRF20-E30 56 14 30 67.4
PRF20-E40 48 12 40 80.7
PRF20-E50 40 10 50 91.5
PRF20-E60 32 8 60 99.1
PRF20-E80 16 4 80 105.8
PRF30-E10 63 27 10 46.5
PRF30-E20 56 24 20 60.8
PRF30-E30 49 21 30 74.2
PRF30-E40 42 18 40 85.5
PRF30-E50 35 15 50 94.7
PRF40-E10 54 36 10 55
PRF40-E20 48 32 20 68.5
PRF40-E30 42 28 30 80.6
PRF40-E40 36 24 40 90.4
PRF40-E50 30 20 50 97.9
PRF40-E60 24 16 60 102.7
PRF40-E80 12 8 80 106.6
PRF50-E10 45 45 10 63.8
PRF50-E20 40 40 20 75.8
PRF50-E30 35 35 30 86.4
PRF50-E40 30 30 40 94.5
PRF60-E10 36 54 10 72.6
PRF60-E20 32 48 20 83.5
PRF60-E30 28 42 30 92
PRF60-E40 24 36 40 98.9
PRF60-E60 16 24 60 105.5
PRF60-E80 8 12 80 107.6
PRF70-E10 27 63 10 80.9
PRF70-E20 24 56 20 90.3
PRF70-E30 21 49 30 97.4
PRF80-E10 18 72 10 89.5
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PRF80-E20 16 64 20 97
PRF80-E40 12 48 40 105.7
PRF80-E60 8 32 60 107.7
PRF80-E80 4 16 80 108.3
PRF90-E5 9.5 85.5 5 94.1
PRF90-E10 9 81 10 97.6
PRF90-E20 8 72 20 103.6
PRF100-E10 90 10 106.8
PRF100-E20 80 20 109.4
PRF100-E40 60 40 110.2
PRF100-E60 40 60 109.6
PRF100-E80 20 80 109

Table A.4: Blends of n-heptane, isooctane, and ethanol considered in this work taken from Foong
et al. [43].

ID n-heptane isooctane toluene ethanol RON
(vol. %) (vol. %) (vol. %) (vol. %)

TRF91-15-E10 11.16 65.34 13.5 10 97.8
TRF91-15-E20 9.92 58.08 12 20 102.6
TRF91-15-E40 7.44 43.56 9 40 107.1
TRF91-15-E60 4.96 29.04 6 60 107.7
TRF91-15-E80 2.48 14.52 3 80 107.8
TRF91-30-E10 15.3 47.88 26.82 10 97
TRF91-30-E20 13.6 42.56 23.84 20 101.4
TRF91-30-E40 10.2 31.92 17.88 40 106
TRF91-30-E60 6.8 21.28 11.92 60 107.1
TRF91-30-E80 3.4 10.64 5.96 80 107.5
TRF91-45-E10 18.27 31.23 40.5 10 96
TRF91-45-E20 16.24 27.76 36 20 100.2
TRF91-45-E40 12.18 20.82 27 40 104.6
TRF91-45-E60 8.12 13.88 18 60 106.3
TRF91-45-E80 4.06 6.94 9 80 107.1

Table A.5: Blends of n-heptane, isooctane, toluene, and ethanol considered in this work taken from
Foong et al. [43].
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Appendix B: Chapter 3 Supporting Material

B.1 FACE Gasoline Surrogates
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Figure B.1: Target property comparisons for FACE A and surrogates developed in this work.



149

FACE B DalyF DalyR
Fuels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
o
le

 F
ra

ct
io

n
s

P

I

O

N

A

(a) Hydrocarbon class proportions

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Carbon Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
o
le

 F
ra

ct
io

n
s

FACE B

DalyF
DalyR

(b) C–C bond type proportions

10 20 30 40 50 60 70 80
% Volume Recovered as Distillate

330

340

350

360

370

380

390

T
e
m

p
e
ra

tu
re

 [
K

]

FACE B

DalyF
DalyR

(c) Distillation characteristics

H/C RON MON Density
Performance Variables

0

1

2

3

4

5

P
e
rc

e
n
t 

E
rr

o
r

DalyF
DalyR

(d) Percent error between H/C, RON, MON, and
density

Figure B.2: Target property comparisons for FACE B and surrogates developed in this work.
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Figure B.3: Target property comparisons for FACE C and surrogates developed in this work.
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Figure B.4: Target property comparisons for FACE D and surrogates developed in this work.
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Figure B.5: Target property comparisons for FACE E and surrogates developed in this work.
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Figure B.6: Target property comparisons for FACE F and surrogates developed in this work.
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Figure B.7: Target property comparisons for FACE G and surrogates developed in this work.
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Figure B.8: Target property comparisons for FACE H and surrogates developed in this work.
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Figure B.9: Target property comparisons for FACE I and surrogates developed in this work.
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Figure B.10: Target property comparisons for FACE J and surrogates developed in this work.
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Appendix C: Chapter 4 Supporting Material

Table C.1 presents the FACE gasoline [41] reduced-palette surrogates from Daly et al. [101], with corre-

sponding LTC indices. The 314 fuel blends consist of those from literature [19, 20, 43] and fuels generated

in this effort to extend upon those datasets. Tables C.2–?? provide the makeup of fuel mixtures in terms

of volume fraction as well as octane ratings if available. The chemical mechanisms utilized for calculating

LTC index depended on the species in the fuel mixture. For mixtures of n-heptane, isooctane, toluene,

and ethanol, we used the Chaos et al. [102–105] mechanism; for methylcyclohexane we used the Weber et

al. [106] mechanism; for everything else, including the FACE gasoline surrogates, we used the Sarathy et

al. [73] mechanism.

C.1 FACE Gasoline Surrogates

Parameter A B C D E F G H I J

LTC index 14.2 13.4 14.1 14.6 23.2 14.9 13.5 15.4 12.9 14.3
RON 83.8 95.1 84.4 93.9 87.4 94.4 96.3 86.9 70.1 73.2
MON 83.7 93.1 82.9 87.3 81.1 88.9 86.8 79.9 69.5 70.2
Density (kg/m3) 700 718 698 761 731 732 802 775 710 761
H/C 2.22 2.11 2.20 1.83 2.05 2.03 1.54 1.75 2.15 1.86

Species palette Molar %

n-heptane 13.0 8.6 16.5 11.6 23.7
2-methylbutane 26.1 23.3 28.2 16.2 8.8 9.4 12.8
2-methylpentane 5.5 7.7
2-methylhexane 25.9 9.1 19.2 7.5 20.0
2,2,4-trimethylpentane 42.1 52.4 45.9 22.5 22.5 41.5 13.9 28.5 16.4
1-pentene 9.5 8.0 8.5
1-hexene 10.3 11.6 35.7 8.7
cyclopentane 6.9 27.3 14.3 22.8
cyclohexane 4.7 12.3
toluene 8.1 15.0 11.4
o-xylene 5.9 15.2 7.4 30.0 11.9 15.7 40.0 11.1 15.0
1,2,4-trimethylbenzene 14.8 12.7 15.4

Table C.1: FACE gasoline surrogates from Daly et al. [101]

C.2 Fuel Mixtures
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ID RON MON LTC index

TRF1 39 37 35.2
TRF2 88.8 84.8 15.14
TRF3 76.2 70.9 17.46
TRF4 82.8 80.7 34.1
ERF1 78.7 76.7 23.22
H20T20 84.9 81.8 15.1
H20T40 89.8 82.9 14.93
H20T60 93.9 83.9 13.79
H20E1 80.5 80.4 14.75
H20E5 84.4 83.2 14.93
H20E10 87.9 85.6 14.13
H20E20 94.1 88.2 13.87
H30E1 70.6 70.2 23.05
H30E5 73.2 73.1 23.1
H30E10 78.7 76.7 22.01
H30E20 85.1 81.2 20.56
H40E60 94.4 82.8 21.92
H45E55 89.7 80.4 22.9
H50E50 84.7 76.8 25.46
H55E45 78 71.6 21.54
H90T10 14.1 12.6 37.72
H80T20 27.7 24.8 41.58
H60E40 71.4 65 35.57
TERF1 67.1 63.7 23.12
TERF2 94.7 88.5 14.95
TERF3 97 87.6 14.76
TERF4 80.8 73 24.21
TERF5 79.6 74.5 24.23
TERF6 85.3 78.6 15.24
TERF7 83.8 78.1 22.86
TERF8 71.8 65.8 27.24
TERF9 81.6 77.9 22.34
TERF10 90.2 84.1 14.83
TERF11 83.8 78.2 22.86
TERF12 78.3 74.3 25.95
TERF13 86.1 83.6 14.89
TERF14 74.8 68.9 27.31
TERF15 92.3 86.4 15.27
TERF16 87.9 81.4 23
TERF17 83.8 78.1 22.86

Table C.2: Blends of n-heptane/isooctane/toluene/ethanol taken from Truedsson et al. [19, 20].
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ID RON MON LTC index

TERF91-15 91 88.4 14.84
TERF91-15-10 97.8 91.7 6.61
TERF91-15-20 102.6 93.2 14.73
TERF91-15-40 107.1 93.6 14.88
TERF91-15-60 107.7 93.6 14.79
TERF91-15-80 1078 91.7 13.85
TERF91-30 91.3 86.1 14.83
TERF91-30-10 97 89.4 14.78
TERF91-30-20 101.4 91.1 14.92
TERF91-30-40 106 91.2 14.93
TERF91-30-60 107.1 92 14.88
TERF91-80 107.5 91.4 13.7
TERF91-40 91.1 86.5 14.75
TERF91-40-15 96 87.2 14.88
TERF91-40-20 100.2 89.1 14.08
TERF91-45-40 104.6 90.9 14.77

Table C.3: Blends of n-heptane/isooctane/toluene/ethanol taken from Foong et al. [43].

ID RON MON LTC index

n-heptane 0 0 15.02
isooctane 100 100 21.89
2-methylbutane 92 90 15.22
2-methylhexane 42.4 46.3 24.62
methylcyclohexane 74.1 74 11.44

Table C.4: Pure components
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ID n-heptane (vol %) isooctane (vol %) LTC Index

n-heptane 100 0 15.02
PRF2 98 2 19.83
PRF4 96 4 21.98
PRF6 94 6 25.39
PRF8 92 8 26.57
PRF10 90 10 27.32
PRF12 88 12 27.57
PRF14 86 14 28.89
PRF16 84 16 29.11
PRF18 82 18 34.62
PRF20 80 20 34.41
PRF22 78 22 34.92
PRF24 76 24 35.94
PRF26 74 26 36.73
PRF28 72 28 36.84
PRF30 70 30 35.9
PRF32 68 32 35.51
PRF34 66 34 33.67
PRF36 64 36 34.11
PRF38 62 38 33.39
PRF40 60 40 32.98
PRF45 55 45 29.18
PRF50 50 50 27.27
PRF55 45 55 28.02
PRF60 40 60 23.29
PRF65 35 65 30.21
PRF70 30 70 26.31
PRF75 25 75 23.57
PRF80 20 80 22.67
PRF85 15 85 23.23
PRF90 10 90 22.55
PRF95 5 95 23.06

Table C.5: n-heptane/isooctane mixtures (primary reference fuels).
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ID n-heptane isooctane toluene 2-methylbutane xylene(s) LTC index
(vol %) (vol %) (vol %) (vol %) (vol %)

S1 50 0 0 50 0 22.38
S2 30 20 0 50 0 28.61
S3 70 0 10 20 0 25.68
S4 50 20 20 10 0 22.08
X1 30 20 0 0 50 21.14
X2 30 20 5 0 45 23.34
X3 30 20 10 0 40 14.31
X4 30 0 20 0 50 19.18
X5 30 5 20 0 45 21.31
X6 30 10 20 0 40 22.00
X7 30 20 20 0 30 22.44
X8 30 10 10 0 50 21.50
X9 30 5 5 0 60 18.67
X10 30 0 0 0 70 9.65
X11 50 0 0 0 50 23.43
X12 50 20 0 0 30 26.99
X13 50 20 5 0 25 28.44
X14 50 20 10 0 20 21.56
X15 50 0 20 0 30 25.45
X16 50 5 20 0 25 26.03
X17 50 10 20 0 20 20.76
X18 50 20 20 0 10 21.80
X19 50 10 10 0 30 26.89
X20 50 5 5 0 40 25.53
X21 70 0 0 0 30 25.55
X22 70 20 0 0 10 29.36
X23 70 0 20 0 10 26.53
X24 70 10 0 0 20 27.05
X25 70 0 10 0 20 27.08
X26 70 10 10 0 10 28.97
X27 70 5 5 0 20 26.92
X28 70 5 0 0 25 26.99
X29 70 0 5 0 25 26.32
X30 90 0 0 0 10 24.06

Table C.6: n-heptane/isooctane /2-methylbutane & n-heptane/isooctane /xylene(s) mixtures.
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ID n-heptane (vol %) isooctane (vol %) ethanol (vol %) RON LTC Index

PRF0-E10 90 0 10 31.06
PRF0-E20 80 0 20 35.03
PRF0-E30 70 0 30 54.3 28.6
PRF0-E40 60 0 40 69.7 27.32
PRF0-E45 55 0 45 23.46
PRF0-E50 50 0 50 83.8 20.48
PRF0-E55 45 0 55 14.42
PRF10-E10 81 9 10 34.98
PRF10-E20 72 8 20 45.9 33.17
PRF10-E30 63 7 30 61.1 27.77
PRF10-E40 54 6 40 75.6 23.8
PRF10-E50 45 5 50 87.6 14.67
PRF10-E60 36 4 60 96.6 13.98
PRF10-E70 27 3 70 14.22
PRF10-E80 18 2 80 12.96
PRF10-E90 9 1 90 20.52
PRF20-E10 72 18 10 33.36
PRF20-E20 64 16 20 53.3 28.28
PRF20-E30 56 14 30 67.4 25.11
PRF20-E40 48 12 40 80.7 19.72
PRF20-E50 40 10 50 91.5 14.6
PRF20-E60 32 8 60 99.1 13.8
PRF20-E70 24 6 70 14.26
PRF20-E80 16 4 80 105.8 20.69
PRF20-E90 8 2 90 20.64
PRF30-E10 63 27 10 46.5 33.77
PRF30-E20 56 24 20 60.8 25.33
PRF30-E30 49 21 30 74.2 23.76
PRF30-E40 42 18 40 85.5 17.43
PRF30-E50 35 15 50 94.7 22.67
PRF30-E60 28 12 60 14.28
PRF30-E70 21 9 70 14.2
PRF30-E80 14 6 80 20.65
PRF30-E90 7 3 90 20.81
PRF40-E10 54 36 10 55 27
PRF40-E20 48 32 20 68.5 25.42
PRF40-E30 42 28 30 80.6 18.44
PRF40-E40 36 24 40 90.4 22.93
PRF40-E50 30 20 50 97.9 14.52
PRF40-E60 24 16 60 102.7 14.34
PRF40-E70 18 12 70 12.91
PRF40-E80 12 8 80 106.6 20.65
PRF40-E90 6 4 90 20.91

Table C.7: n-heptane/isooctane/ethanol mixtures taken from Foong et al.[43], with added resolution
mixtures (RON excluded).
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ID n-heptane (vol %) isooctane (vol %) ethanol (vol %) RON LTC Index

PRF50-E10 45 45 10 63.8 25.47
PRF50-E20 40 40 20 75.8 19.3
PRF50-E30 35 35 30 86.4 23.01
PRF50-E40 30 30 40 94.5 14.12
PRF50-E50 25 25 50 13.99
PRF50-E60 20 20 60 14.37
PRF50-E70 15 15 70 20.44
PRF50-E80 10 10 80 20.65
PRF50-E90 5 5 90 21.03
PRF60-E10 36 54 10 72.6 19.57
PRF60-E20 32 48 20 83.5 22.98
PRF60-E30 28 42 30 92 14.35
PRF60-E40 24 36 40 98.9 14.37
PRF60-E50 20 30 50 14.48
PRF60-E60 16 24 60 105.5 20.79
PRF60-E70 12 18 70 20.57
PRF60-E80 8 12 80 107.6 20.8
PRF60-E90 4 6 90 20.7
PRF70-E10 27 63 10 80.9 23.02
PRF70-E20 24 56 20 90.3 14.34
PRF70-E30 21 49 30 97.4 14.57
PRF70-E40 18 42 40 14.45
PRF70-E50 15 35 50 14.63
PRF70-E60 12 28 60 21.14
PRF70-E70 9 21 70 20.93
PRF80-E10 18 72 10 89.5 14.1
PRF80-E20 16 64 20 97.0 14.48
PRF80-E30 14 56 30 14.41
PRF80-E40 12 48 40 105.7 21.33
PRF80-E50 10 40 50 21.51
PRF80-E60 8 32 60 107.7 22.13
PRF80-E70 6 24 70 20.83
PRF80-E80 4 16 80 108.3 20.87
PRF80-E90 2 8 90 20.53

Table C.8: Continued n-heptane/isooctane/ethanol mixtures taken from Foong et al.[43], with
added resolution mixtures (RON excluded).
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ID n-heptane (vol %) isooctane (vol %) ethanol (vol %) RON LTC Index

PRF90-E5 9.5 85.5 5 94.1 21.52
PRF90-E10 9 81 10 97.6 21.64
PRF90-E20 8 72 20 103.6 21.3
PRF90-E30 7 63 30 21.72
PRF90-E40 6 54 40 22.3
PRF90-E50 5 45 50 22.31
PRF90-E60 4 36 60 22.56
PRF90-E70 3 27 70 20.92
PRF90-E80 2 18 80 20.69
PRF90-E90 1 9 90 20.76
PRF100-E10 0 90 10 106.8 22.01
PRF100-E20 0 80 20 109.4 21.8
PRF100-E30 0 70 30 21.47
PRF100-E40 0 60 40 110.2 21.91
PRF100-E50 0 50 50 22.54
PRF100-E60 0 40 60 109.6 20.94
PRF100-E70 0 30 70 20.83
PRF100-E80 0 20 80 109.0 20.63
PRF100-E90 0 10 90 20.88

Table C.9: Continued n-heptane/isooctane/ethanol mixtures taken from Foong et al.[43], with
added resolution mixtures (RON excluded).
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ID n-heptane (vol %) isooctane (vol %) toluene (vol %) LTC Index

H90T10 90 0 10 37.72
H80T20 80 0 20 41.58
H70T30 70 0 30 30.79
H60T40 60 0 40 22.99
H50T50 50 0 50 18.6
H40T60 40 0 60 24.06
H30T70 30 0 70 21.38
H20T80 20 0 80 12.84
H10T90 10 0 90 10.61
H10T10 10 80 10 15.56
H10T20 10 70 20 22.89
H10T30 10 60 30 23.2
H10T40 10 50 40 22.4
H10T50 10 40 50 21.08
H10T60 10 30 60 12.96
H10T70 10 20 70 13.14
H10T80 10 10 80 12.73
H20T2 20 78 2 23.15
H20T4 20 76 4 23.24
H20T6 20 74 6 23.79
H20T8 20 72 8 23.54
H20T10 20 70 10 34.1
H20T12 20 68 12 16.52
H20T14 20 66 14 15.21
H20T16 20 64 16 15
H20T18 20 62 18 16.11
H20T20 20 60 20 15.1
H20T30 20 50 30 22.44
H20T40 20 40 40 14.93
H20T50 20 30 50 22.51
H20T60 20 20 60 13.79
H20T70 20 10 70 14.04
H30T10 30 60 10 25.41
H30T20 30 50 20 23.88
H30T30 30 40 30 23.33
H30T40 30 30 40 23.09
H30T50 30 20 50 22.59
H30T60 30 10 60 22.5
H40T10 40 50 10 21.91
H40T20 40 40 20 20.48
H40T30 40 30 30 18.27
H40T40 40 20 40 18.17
H40T50 40 10 50 24.98
H50T10 50 40 10 26.3
H50T20 50 30 20 24.64
H50T30 50 20 30 24.62

Table C.10: n-heptane/isooctane/toluene mixtures
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ID n-heptane (vol %) isooctane (vol %) toluene (vol %) LTC Index

H50T40 50 10 40 21.39
H60T10 60 30 10 28.58
H60T20 60 20 20 27.62
H60T30 60 10 30 26.68
PRF10-T20 72 8 20 31.38
PRF10-T40 54 6 40 22.17
PRF10-T60 36 4 60 24.26
PRF10-T80 18 2 80 13.08
PRF20-T20 64 16 20 27.58
PRF20-T40 48 12 40 20.85
PRF20-T60 32 8 60 22.46
PRF30-T20 56 24 20 26.99
PRF30-T40 42 18 40 26.04
PRF30-T60 28 12 60 22.43
PRF30-T80 14 6 80 13.8
PRF40-T20 48 32 20 24.62
PRF40-T40 36 24 40 23.96
PRF40-T60 24 16 60 22.02
PRF40-T80 12 8 80 12.69
PRF60-T20 32 48 20 26.17
PRF60-T40 24 36 40 23.15
PRF60-T60 16 24 60 21.72
PRF60-T80 8 12 80 12.63
PRF70-T20 24 56 20 23.87
PRF70-T40 18 42 40 23.26
PRF70-T60 12 28 60 13.87
PRF70-T80 6 14 80 12.24
PRF80-T20 16 64 20 22.77
PRF80-T40 12 48 40 22.41
PRF80-T60 8 32 60 13.11
PRF80-T80 4 16 80 12.12
PRF90-T20 8 72 20 22.81
PRF90-T40 6 54 40 21.88
PRF90-T60 4 36 60 14.39
PRF90-T80 2 18 80 11.5
PRF100-T10 0 90 10 22.08
PRF100-T20 0 80 20 22.1
PRF100-T30 0 70 30 22.33
PRF100-T40 0 60 40 21.16
PRF100-T50 0 50 50 14.23
PRF100-T60 0 40 60 13.7
PRF100-T70 0 30 70 12.75

Table C.11: Continued n-heptane/isooctane/toluene mixtures
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ID n-heptane (vol %) isooctane (vol %) toluene (vol %) ethanol (vol %) LTC Index

H90T10E20 72 0 8 20 29.92
H90T10E40 54 0 6 40 24.06
H90T10E60 36 0 4 60 14.67
H90T10E80 18 0 2 80 14.47
H80T20E20 64 0 16 20 26.59
H0T10E20 0 72 8 20 21.89
H0T10E40 0 54 6 40 22.21
H0T10E60 0 36 4 60 22.25
H0T10E80 0 18 2 80 20.6
H0T20E20 0 64 16 20 22.89
H0T20E40 0 48 12 40 22.08
H0T20E60 0 32 8 60 22.18
H0T20E80 0 16 4 80 21.69

Table C.12: n-heptane/toluene/ethanol & isooctane/toluene/ethanol mixtures
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Appendix D: Short Injection Study

D.1 Introduction
This study determines the efficacy of using ultra-short injection durations to create homogenous conditions

throughout the spray prior to chemical ignition, since the fuel will have extendedtime to mix after the end

of injection. The end-goal is to then compare ignition characteristics to modeled results. With a more-

homogenous fuel/air mixture after the end of injection, it could be possible to use simplified fluid mechanics

in modeling the fuel/air mixture. This is a plus as these models are computationally efficient—a basic

necessity to use detailed comprehensive chemical mechanisms for large parametric studies. This brief study

establishes favorable fuel/air mixture conditions within 650 µs after the end of injection. With mixing

characteristics of ultra-short injections quantified, this effort paves the way for fundamental fuel-ignition

experiments in Chapter 6

D.2 Spatiotemporal Mixture Fraction Measurements
This study subjects 350 µs duration fuel sprays into an inert gas ambient at 1000 K, 40 atm. The experimental

apparatus and methodology is identical to Ch. 5. Fig. D.1 presents the line-of-sight extinction (Fig. D.1a)

and tomographic reconstructed, centerline fuel/air equivalence ratio (Fig. D.1b), both showing 2-D, spray

fuel/air mixing. It is apparent in Fig. D.1a that the spray “tail” (close to injector, starting at 5 mm) quickly

mixes after the end of injection and has lower signal at all times relative to the downstream portion of the

spray, indicating axial signal gradients. Fig. D.1b, the tomographic reconstruction of the spray centerline,

resolves radial and axial fuel concentration distributions. In general, both gradually reduce with time.

Fig. D.1b also indicates axial concentration gradients in similar fashion to Fig. D.1a, though trends are not

easily discernible in the radial.

Radial concentration profiles at select timings and axial positions are shown in Fig. D.2. At 400 µs ASOI,

concentration profiles are characteristic of typical long-injection sprays (as shown in Ch. 5), exhibiting large

gradients and a bell-shaped distribution. This is expected, where only 50 µs has passed for mixing to

take place after the end of injection (350- µs injection duration). As time (and mixing) progresses, radial

concentration gradients throughout all axial locations diminish. Radial profiles flatten as early as 1.5 ms

ASOI throughout the spray, and are nearly uniform by 2 ms ASOI—indicating well-mixed conditions.

Figure D.3 shows spray-head averaged equivalence ratio for the short-injection toluene spray. Fuel-air

ratio is converted to equivalence ratio, φ, by diving by the stoichiometric fuel/air ratio, so values less than
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(a) Line-of-sight absorbance

(b) Tomography-resolved centerline equivalence ratio

Figure D.1: Toluene doped with C70-fullerene, directly injected (350 µs at 500 atm) into 1000 K,
40 atm, non-reactive environment.
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Figure D.2: Radial concentrations at select timings (.4–3 ms, legend) at various axial positions
(subplots, 2–5 cm)
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Figure D.3: Spray-head-averaged equivalence ratio of C70-doped toluene. Other fuel trends (n-
heptane, ethanol) are estimations based on the fuel/air mixture fractions of the toluene experiment,
but instead applying the fuels’ respective stoichiometry



172

one indicate fuel-lean, and greater than one indicates fuel-rich. Toluene mixing results can be re-scaled to

show the impact of fuel stoichiometry, by instead using the stoichiometric fuel/air ratio of n-heptane and

ethanol as examples. As expected, increased time ASOI and with mixing progressing causes φ to decrease;

n-heptane and toluene have similar values as their stoichiometric proportions are also similar, with ethanol

being distinctly lower. Fig. D.3a shows φ reaching stoichiometric conditions for ethanol at 700 µs, toluene

at 950 µs, and n-heptane at 1 ms ASOI. Recall the radial profiles indicate well-mixed conditions in the

radial around 1.5 ms; at this time, fuels have φs of 0.3, 0.42, and 0.46, which are ignitable conditions and

relevant to LTC conditions. Eventual over-mixing will govern the maximum residence time a fuel spray can

be studied, as fuel-lean conditions (φ < 0.2) will suppress a significant ignition event. For ethanol, this is

as early as 2 ms, but toluene and n-heptane are extended to around 3 ms. If the fuel spray has not ignited

prior to these timings for respective fuels, significant ignition will not occur, especially as mixing continues

to progress (though at a reducing rate).

The findings of the mixing study guides the direction of future spray-ignition modeling efforts. For

example, assuming perfectly mixed conditions would omit the axial concentration gradients within the spray,

and neglect the fuel spray temperature-concentration dependence. In addition to concentration gradients

within the spray, average fuel concentrations decrease with time. Therefore, assuming a static fuel/air

concentration with a constant volume 0-D modeling approach would likely result in significant errors, likely

to under-predict ignition delays. to summarize, as soon as 1.5 ms, spray radial distributions indicate well-

mixed conditions, but axial gradients persist at all timings.

Hereafter, the author investigates using the 1-D spray modeling approach of Knox et al. [123] to predict

spray ignition. The model includes 1-D momentum exchange as the spray conically expands downstream,

thereby accounting for parameter axial gradients, but assumes radially averaged parameters. The radial-

averaged modeling approach should accurately represent the experimental mixing after 1.5 ms ASOI when

radial gradients are minimal. Timings before 1.5 ms may result in larger errors since radial concentration

gradients are present. In an effort to assess 1-D model performance, the following section compares the

experimental radial-averaged profiles as a function of axial position and time to results derived from the 1-D

model.

D.3 Model Investigation
The 1-D modeling approach of Knox et al. requires a spray-cone spreading angle boundary condition from the

user. This effort first investigates the spreading angle required for the experimental and model penetration

trends to best match (with no active chemistry); literature [123, 134, 147] suggests if models match the

experimental spray penetration, then the bulk mixing processes are well-represented. As will be shown,
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deviating from an ideal conical expansion is required to better-match experimental penetration trends, which

lead to improved fuel/air distribution predictions. following, ignition delay is demonstrated to be sensitive

to subtle alterations in fuel/air mixing.

D.3.1 Spray Mixing Predictions
Figure D.4 shows select line-of-sight absorbance images, converted to binary based on an absorbency thresh-

old of 0.003, done to emphasize the spray presence. Superimposed is the processed spray border, and an

ideal conically expanding spray border of a set spreading angle. The spray border illustrates the assumed

conically expanding spray border of knox et al. At 1 ms, when the spray has penetrated around 5 cm

downstream, the spray head begins to “plume”. This finding is exacerbated as time progresses, where the

downstream spray head border extends past the ideal conical expansion, yet the majority of the upstream

portion remains inside. The mechanism leading to the spray expanding in non-ideal fashion is believed to

be due to axial pressure gradients and shear stresses that become more prominent at low spray velocities.

Because of this, modeling spray penetration without accounting for these parameters proves challenging.

Guided by Daly et al. [134], this work uses experimentally derived radial profiles to define spray width as a

function of axial position, as opposed to an ideal conically expanding spray width. Again, this was performed

to account for the spray “pluming”, pseudo-accounting for axial pressure gradients and shear stresses not

accounted for. The radial width versus axial position is founded on the experimental spray-width, then

hard-coded in the Knox et al. 1-D spray model.

Figure D.5 shows two modelled results for spray penetration, one using the ideal constant spreading

angle (18 degrees), and the other with a variable radial width versus axial position. As can be seen, the

constant spreading angle approach poorly matches the experimental penetration; as such, errors are expected

in predicted mixture distributions. When the model of Knox et al. is modified to implement the variable

spray radial width, mixing results are closer to the experimental trends, but by no means perfect.

Fig. D.6 shows full-width half-max (FWHM) radial-averaged experimental fuel/air mass fraction as a

function of axial position and time, compared to the modeling results using a constant spreading angle. The

FWHM approach increases radial-average values for unmixed conditions (bell-shaped concentration profile),

performed to improve ignition delay predictions that are governed by higher (centerline) spray concentrations

(if present). The experimental results are overlaid with a shaded region, indicating one standard deviation

of the radial concentration about the mean. Surprisingly, great qualitative and quantitative agreement is

found between the model and experiment at most axial positions at all times. There is disagreement at the

spray head at early and later times, attributed to the model under-predicting spray penetration early, and

over-predicting at later times. Over-prediction is due to the model having a smaller spreading angle than
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Figure D.4: Saturated line-of-sight absorbance images at select timings, superimposed with the
processed spray border (green), and an ideal conically expanding spray border (magenta) of a set
spreading angle.
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Figure D.5: Spray penetration trends for experimental and modeling results. Using a variable spray
width profile in the model, based on the experimentally-observed spray width, converges closer to
the true values.
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reality after 5 cm axial, causing over-predicions spray penetration, and vice-versa at earlier timings. The

high fuel/air mass ratio spike at 500 µs and 8 mm axial position is not predicted.
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Figure D.6: Radial-averaged fuel/air ratio versus axial position at select timings. Model (constant
spreading angle) are compared to experimental results.

Fig. D.7 again shows the experimental results of Fig. D.6, but now compared to the modeling results

using a variable spray width versus axial position. Qualitative and quantitative agreement is improved,

mostly in the spray head from the better agreement in penetration trends. The spike at 500 µs and 8 mm

axial position is now predicted to some degree, but the axial location is shifted closer to the injector. Tuning

of the spray width boundary could potentially correct for this. Moving forward, the author investigates

whether the slight improvements in fuel/air mixing predictions impact fuel ignition predictions.

D.3.2 Ignition Delay Predictions
With chemistry activated in the simulations, the two models, one having a constant spreading angle bound-

ary condition (model #1) and the other a variable spray width (model #2) are compared. The chemical

mechanism of Princeton et al. [136–139] models the fuel in this work, being n-heptane. Following, this work

determines the sensitivity of chemical ignition to the subtle alterations of fuel/air mixture profiles between

model 1 and 2.

Figure D.8 presents ignition delays from modeling approaches 1 and 2; ignition delay is defined to be

the timing when any portion of the spray exceeds 400 K of the initial ambient temperature. At ambient
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Figure D.7: Radial-averaged fuel/air ratio versus axial position at select timings. Model (variable
spreading angle with axial position) are compared to experimental results.

temperatures greater than 1100 K, the two approaches yield similar results. However, as temperature

decreases, ignition delays diverge between the two models. For these sprays at all cases investigated, the

ignition onsets are exclusively predicted to occur at the leading edge of the spray head. Figure D.9 points

out that models 1 and 2 have nearly the same spray-head equivalence ratios prior to 550 µs, but above 550

µs model 2 has significantly lower values. This timing corroborates the point where ignition delays begin to

significantly diverge, where the lower equivalence ratio values of model 2 leads to delay the ignition onset.

For the 1-D model of Knox et al. [123], ignition delays are governed by the fuel/air mixtures at the leading

edge of the spray head. Matching the experimental radial-averaged axial fuel/air distributions may not be

needed after all for ignition delay calculations, due to onsets always occurring at the spray head.

D.4 Conclusions
Short-injections were shown to be radially well-mixed at extended residence times, potentially a good can-

didate for averaging this value to compare to the 1-D modeling efforts. However, this could lead to errors at

short residence times where the maximum spray centerline concentrations deviate from the mean. In reality,

short injection spray ignition will be mostly governed by the fuel-rich spray centerline. These fuel-rich zones

can serve to delay or advance ignition, dependant on being greater or less than stoichiometric proportions.

Therefore, even a FWHM radial-average approach on a bell-shaped concentration profile averages-out to a
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Figure D.8: Spray ignition delay versus temperature at 15 % O2, 40 atm for n-heptane. Model #1
(constant spreading angle) are compared to Model #2 (variable spreading angle with axial position)
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ideal)



179

leaner fuel/air mixture than the peak centerline value. If this is the case, then spray modeling efforts need

to have reduced spreading angles to increase the average fuel/air mixture closer to the centerline values.

To also match penetration trends, the injector discharge coefficient would have to be decreased to reduce

penetration velocities at the lower spray spreading angles.

Modeled ignition delays were found to be governed by the evolution of the air/fuel mixture at the leading

edge of the spray head, with some uncertainty in whether it is best to target the maximum or average of

the true radial profile. Moving forward towards accurate ignition delay predictions, the author proposes

performing a parametric study of model boundary conditions to best-match experimental ignition trends

for a given fuel and condition. Matching the experimental penetration trends could be held constant while

model spreading angle and injector discharge coefficient are varied. In this manner, the evolution of the

spray head fuel/air ratio can be tailored until the desired ignition trends are observed.
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Appendix E: IR-to-LTC Model Parameters

This work explored various kernel functions and corresponding hyperparameter constants for the Support

Vector Machine Regression (SVMR). The author investigated linear, polynomial, Sigmoid, and radial-basis

kernel functions. The radial-bases kernel yielded the best predictive performance for the IR-LTC index

predictive models. The hyperparameter constant, γ, and SVM meta constant, C, are tuned to achieve the

best model performance. A great explanation of these variables and how to tune them can be found on the

online scitkit-learn documentation, titled: RBF SVM parameters. Scikit-learn’s GridSearchCV() was used

to explore γ and C, exponentially spaced apart:

γ = 1e−5to1e10, C = 1e−5to1e15

In addition to the above constants, various data pre-processing and training/test splits were investi-

gated. Data pre-processing involved scaling the IR data to unit variance, and/or performing first or second

derivatives. The author found no pre-processing to yield the best performance. Training/test splits were

automated within the GridSearchCV() routine using k-fold cross-validation. This work investigated k-folds

varying between 2 and 20, finding that a k-fold of 3 to be the best value for model robustness.

Recall this work generated two IR-LTC index models. The first IR-LTC index model uses real fuel

IR spectra as the input, designed to predict real gasoline samples. The other model uses estimated IR

spectra from the linear combination of the fuels individual hydrocarbon species, used for the fuel formulation

algorithm.

The tuned values for both IR-LTC index SVMR models are as follows:

Real IR Spectra Model: γ = 0.1, C = 100000.0, kfolds = 3

Linear IR Spectra Model: γ = 0.1, C = 10000.0, kfolds = 3




