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Abstract
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short

interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or tar-

get loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing

response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has
ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antivi-

ral defense. A genetic analysis was used to identify and characterize the roles of AGO pro-

teins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2

and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2

providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects

in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues

after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted

for only a minor amount of the overall antiviral activity. By combining AGO protein immuno-

precipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10,

and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing

suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type

TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs

broadly associated with wild-type HC-Pro during TuMV infection. These results support the

hypothesis that suppression of antiviral silencing during TuMV infection, at least in part,
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occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by

HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules,

and provide a molecular explanation for the silencing suppressor activity of HC-Pro.

Author Summary

RNA silencing is a primary, adaptive defense system against viruses in plants. Viruses
have evolved counter-defensive mechanisms that inhibit RNA silencing through the activi-
ty of silencing suppressor proteins. Understanding how antiviral silencing is controlled,
and how suppressor proteins function, is essential for understanding how plants normally
resist viruses, why some viruses are highly virulent in different hosts, and how sustainable
antiviral resistance strategies can be deployed in agricultural settings. We used a mutant
version of Turnip mosaic virus lacking a functional silencing suppressor (HC-Pro) to un-
derstand the genetic requirements for resistance in the model plant Arabidopsis thaliana.
We focused on ARGONAUTE proteins, which have long been hypothesized to bind short
interfering RNAs (siRNAs) derived from virus genomes for use as sequence-specific
guides to recognize and target viral RNA for degradation or repression. We demonstrated
specialized antiviral roles for specific ARGONAUTES and showed that several can bind
viral siRNAs from across the entire viral genome. However, ARGONAUTE proteins are
only loaded with virus-derived siRNAs in the absence of HC-Pro, which we showed binds
siRNAs from the viral genome. This indicates that several AGO proteins, which collective-
ly are necessary for full anti-TuMV defense, need to properly load virus-derived siRNAs to
execute their antiviral roles.

Introduction
In plants, RNA silencing is a highly specific and adaptive defense mechanism against viruses
[1, 2]. Factors involved in antiviral silencing overlap with those of endogenous small RNA
pathways, and include i) small RNA biogenesis components such as Dicer-like ribonucleases
(DCLs), RNA-dependent RNA polymerases (RDRs), and double-stranded RNA (dsRNA)
binding proteins, and ii) ARGONAUTE (AGO) proteins, which function as small RNA-
binding effectors [3–6].

RNA-based silencing is triggered by dsRNA that is processed by DCLs into 21- to 24-nt
short interfering RNAs (siRNAs), which subsequently associated with AGO proteins to form
the RNA-induced silencing complex (RISC) [7, 8]. Inhibition of target RNA can occur by en-
donucleolytic cleavage (“slicing”), translational repression, or delivery of chromatin-modifying
complexes to a locus [9–11, 12]. In some cases, amplification of the silencing response occurs
by triggering dsRNA synthesis and secondary siRNA accumulation [13].

Viruses are inducers of RNA silencing; infected plants accumulate large amounts of siRNAs
derived from viral RNAs [1]. Most plant viruses encode one or more silencing suppressor pro-
teins that interfere with antiviral RNA silencing [13, 14]. One mechanism of silencing suppres-
sion by viral suppressors is through sequestration of siRNA duplexes [1], preventing assembly
of the RISC effector complex. Other viral silencing suppressors promote AGO degradation
[15–19], prevent slicing or degradation of target RNAs by associating with AGOs [20, 21], or
use other mechanisms (for a recent review see Nakahara and Masuta 2014 [22]). In effect, viral

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 2 / 27

Research Fellowship (DGE-1143954) to JSH Japan
Society for the Promotion of Science (www.jsps.go.jp)
Postdoctoral Fellowship to AT. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exits.

http://www.jsps.go.jp


suppressors mask the effects of antiviral silencing, making genetic analysis of antiviral silencing
factors in host plants dependent on the use of suppressor-deficient viruses [3, 4, 6, 23].

A. thaliana has ten AGO genes [24], of which AGO1, AGO2 and AGO7 have been implicat-
ed in antiviral defense against various viruses by genetic and biochemical criteria [6, 25–31].
Antiviral roles for AGO3 and AGO5 have also been suggested based on virus-derived siRNA
association and/or in vitro analyses [8, 32]. One model for AGO antiviral activity states that
AGO proteins bind virus-derived siRNAs and directly repress viral RNA through slicing, trans-
lational repression, or other mechanisms [2, 8, 33]. Given that AGO-dependent regulation of
gene expression affects numerous biological processes, including DNA repair [34], AGO pro-
teins might also affect virus replication indirectly through regulation of genes with roles in de-
fense. For example, AGO2-miR393� complexes regulate the expression ofMEMBRIN 12
(MEMB12), which is required for resistance to Pseudomonas syringae in A. thaliana [35].
Moreover, some AGO proteins are known to modulate the activity of other AGO proteins
[36, 37], which could affect AGOs with roles in antiviral defense.

Potyviral HC-Pro is a suppressor of RNA silencing. As shown using potyviruses like Turnip
mosaic virus (TuMV) [23, 38], the counter-defensive function of HC-Pro is necessary for estab-
lishment of infection or systemic spread. HC-Pro has been proposed to function through se-
questration of virus-derived siRNAs [39–44]. HC-Pro may also function through physical
interaction with factors like the transcription factor RAV2 [45], translation initiation factors
eIF(iso)4E and eIF4E [46], calmodulin-related protein (CaM) [47], auxiliary proteins like Heat
Shock Protein 90 (HSP90) [48], and/or through effects on downstream defense or silencing fac-
tors [49, 50]. Here, the role of several A. thaliana AGOs in antiviral defense against TuMV was
analyzed in various organs of systemically infected plants. The impact of HC-Pro on the load-
ing of antiviral AGOs with virus-derived siRNAs was also studied.

Results

AGO2 has a strong antiviral effect in leaves
Three of the ten A. thaliana AGO genes have been implicated in antiviral defense: AGO1 against
Cucumber mosaic virus (CMV) [25], Turnip crinkle virus (TCV) [6, 33], and Brome mosaic virus
(BMV) [30]; AGO2 against TCV [26], Potato virus X (PVX) [27], CMV [26, 28, 29], and TuMV
[31]; and AGO7 against TCV [6]. To identify the complete set of AGOs required for antiviral de-
fense against TuMV in A. thaliana, single, double, and triple agomutants were inoculated with a
GFP-expressing form of parental TuMV (TuMV-GFP) and HC-Pro-deficient TuMV-AS9-GFP
[23]. The GFP sequence was inserted between P1 and HC-Pro sequences (Fig. 1A). Both TuMV
and TuMV-GFP require translation factor eIF(iso)4E [51], and lead to similar virus-derived
siRNA profiles in wild-type and dicer-likemutant A. thaliana [23]. To determine if AGOs have
spatially distinct functions, TuMV-GFP and TuMV-AS9-GFP accumulation was analyzed in in-
oculated rosette leaves, and in noninoculated cauline leaves and inflorescences. Establishment of
local and systemic infection was monitored using GFP fluorescence, and virus accumulation in
inoculated and noninoculated tissues was measured by immunoblotting assays (coat protein) as
described [23].

Parental TuMV-GFP was detected in inoculated leaves and noninoculated inflorescences of
all single agomutants analyzed (Table 1 and Fig. 1B). Local infection of single ago1mutants
was significantly lower than that of wild-type Col-0 (Fig. 1B), but this was likely due to the dif-
ficulty of inoculating the smaller leaves of hypomorphic mutants containing ago1 alleles.

As described for A. thaliana rdr and dclmutants [23], suppressor-deficient TuMV-AS9-GFP
was expected to infect only those plants lacking one or more AGOs with a role in antiviral de-
fense. No infection foci were detected in wild-type Col-0 plants (Fig. 1B and Table 1). Local
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Fig 1. Local and systemic infection of A. thaliana single agomutants by TuMV-GFP and
TuMV-AS9-GFP. (A) Schematic representation of the TuMV and TuMV-GFP genomes showing insertion of
GFP between P1 and HC-Pro, and the AS9 mutation on HC-Pro. (B) Visualization of local infection of
inoculated rosette leaves. Pictures were taken at 7 days post inoculation (dpi). Col-0 infected by TuMV-GFP
is shown for comparison. The histogram shows average (+ SE) infection efficiency of 14 plants, each with
four inoculated leaves. Infection efficiency by TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0
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infection foci of suppressor-deficient TuMV-AS9-GFP were readily visible at 7 days post inocu-
lation (dpi) in ago2–1mutant plants (Fig. 1B and Table 1), and infection efficiency was not sig-
nificantly different than that of the dcl2–1 dcl3–1 dcl4–2 triple mutant, which served as the
hypersusceptible, silencing-deficient control (Fig. 1B) [23]. Low numbers of infection foci were
also detected in single ago5–2, zip-1 (ago7), and ago10–5mutant plants (Fig. 1B and Table 1).
Systemic movement of TuMV-AS9-GFP into cauline leaves was detected at 15 dpi in ago2–1
plants, and also in ago5–2, zip-1, and ago10–5 plants though at significantly lower levels (Fig. 1C

(9.8 ± 2 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2 (3.5 ± 1.4 foci per leaf), respectively. For each virus, bars with
the same letter are not statistically different (Tukey’s test with α = 0.05). (C) TuMV-AS9-GFP coat protein
(CP) accumulation in noninoculated cauline leaves and in inflorescence at 15 dpi is determined by
immunoblotting and expressed relative to dcl2–1 dcl3–1 dcl4–2. The histogram shows average (+ SE) of four
biological replicates. Bars with the same letter are not statistically different (Tukey’s test with α = 0.05). The
experiment was repeated twice with similar results.

doi:10.1371/journal.ppat.1004755.g001

Table 1. TuMV-GFP and TuMV-AS9-GFP infection in single ago mutants a.

Virus Arabidopsis genotype Plants inoculated Local infection Cauline leaves Inflorescence

TuMV-GFP

Col-0 14 14 14 14

ago1–25 14 14 14 14

ago1–27 14 14 14 14

ago2–1 14 14 14 14

ago3–2 14 14 14 14

ago4–2 14 14 14 14

ago5–2 14 14 14 14

ago6–3 14 14 14 14

zip-1 14 14 14 14

ago8–1 14 14 14 14

ago9–5 14 14 14 14

ago10–5 14 14 14 14

dcl2–1 dcl3–1 dcl4–2 14 14 14 14

TuMV-AS9-GFP

Col-0 14 0 0 0

ago1–25 14 0 0 0

ago1–27 14 0 0 0

ago2–1 14 14 14 0

ago3–2 14 0 0 0

ago4–2 14 0 0 0

ago5–2 14 6 6 0

ago6–3 14 0 0 0

zip-1 14 5 5 0

ago8–1 14 0 0 0

ago9–5 14 0 0 0

ago10–5 14 7 7 0

dcl2–1 dcl3–1 dcl4–2 14 14 14 14

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7

days post-inoculation (dpi). All other data is from plants at 15 dpi.

doi:10.1371/journal.ppat.1004755.t001
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and Table 1). In cauline leaves from single ago2–1mutant plants, TuMV-AS9-GFP accumulated
to approximately 60% of the level measured in dcl2–1 dcl3–1 dcl4–2 plants, while ago5–2, zip-1,
and ago10–5 plants accumulated TuMV-AS9-GFP to approximately 10% of the levels measured
in the hypersusceptible control (Fig. 1C). In contrast to dcl2–1 dcl3–1 dcl4–2 plants, systemic in-
fection by TuMV-AS9-GFP did not reach inflorescence tissues in any of the single agomutant
or Col-0 plants (Fig. 1C and Table 1). Systemic infection did not reach cauline leaves in any of
the other single agomutants or Col-0 plants (Fig. 1C and Table 1).

AGO1 and AGO10 have modest antiviral effects in inflorescences
To determine if the major effect of AGO2 was additive with the minor effects of AGO5, AGO7
and AGO10, and to examine if AGO1 possessed redundant or masked activities, double and
triple agomutant plants were inoculated with TuMV-GFP or TuMV-AS9-GFP, and virus ac-
cumulation was measured in inoculated and noninoculated organs as described above. To re-
duce the effect of differences in leaf size, we planted mutant lines with the ago1–27 allele one
week earlier than the other mutant lines inoculated at the same time. Parental TuMV-GFP in-
fected locally (Fig. 2A panels I and II) and moved systemically into the inflorescence of all dou-
ble and triple agomutants analyzed (Tables 2 and 3), with no significant differences in
infection efficiency.

In double mutants harboring the ago2–1 allele and one of ago5–2, zip-1, or ago10–5 alleles,
no significant differences in number of infection foci were detected at 7 dpi in rosette leaves in-
oculated with TuMV-AS9-GFP (Fig. 2A panel I and Table 2). Similarly, no significant differ-
ences were detected in TuMV-AS9-GFP coat protein accumulation in cauline leaves at 15 dpi
(Fig. 2B panel I). As observed for the ago single mutants, TuMV-AS9-GFP was not detected in
inflorescences from double mutant plants containing the ago2–1 allele (Fig. 2B panel I). These
results indicate that the minor activities of AGO5, AGO7 and AGO10 are not additive with the
major antiviral activity of AGO2. Double and triple mutants harboring the ago1–27 allele were
generated and inoculated with parental TuMV-GFP or suppressor-deficient TuMV-AS9-GFP.
Col-0 plants and ago1–27, ago2–1 and ago10–5 single mutant lines were included as controls.
Local TuMV-AS9-GFP infection foci were observed in inoculated rosette leaves, and virus was
detected in noninoculated cauline leaves, from ago1–27 ago2–1 double mutant plants, but
ago1–27 had no enhancing or suppressing effects when combined with ago2–1 (panel II in
Fig. 2A and 2B, Table 3). Combining ago1–27 with ago10–5, or with ago2–1 and ago10–5 in a
triple mutant, had no effects on local TuMV-AS9-GFP infection foci (Fig. 2A panel II) or accu-
mulation in cauline leaves beyond those measured in the single ago2 or double ago2 ago10mu-
tants (Fig. 2B panels I and II, and Table 3). However, combining ago1–27 with ago10–5
resulted in an increase in TuMV-AS9-GFP CP accumulation in cauline leaves relative to single
ago10–5mutants (Fig. 2B panel II). Infection efficiency of ago1 single, double or triple mutants
by TuMV-GFP was similar to that of wild type plants (Fig. 2A panels II and III), and infection
efficiency of ago1–27 ago2–1 double and ago1–27 ago2–1 ago10–5 triple mutants by TuM-
V-AS9-GFP was similar to that of dcl2–1 dcl3–1 dcl4–2 plants used as susceptible control
(Fig. 2A panel II). Thus, both the lack of TuMV-AS9-GFP infection in single ago1mutants and
the lack of systemic infection of inflorescence in ago1–27 ago2–1 double mutants were not due
to pleiotropic effects.

Surprisingly, systemic infection of inflorescence tissue was detected in the ago1–27 ago10–5
double mutant and ago1–27 ago2–1 ago10–5 triple mutant plants (Fig. 2B panel III and
Table 3). Among all single and combination agomutants tested, only those containing both
ago1 and ago10 defects exhibited movement to, and accumulation in, inflorescences. However,
while TuMV-AS9-GFP was detected in all inflorescence clusters of the dcl2–1 dcl3–1 dcl4–2
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triple mutant reference, in ago1–27 ago10–5 and in ago1–27 ago2–1 ago10–5 TuMV-AS9-GFP
was detected only in 4% and 14% of the inflorescence clusters, respectively (Table 3). In inflo-
rescences of ago1–27 ago10–5 and ago1–27 ago2–1 ago10–5 plants with visible GFP fluores-
cence, TuMV-AS9-GFP CP accumulated to 5% and 10% relative to the dcl2–1 dcl3–1 dcl4–2
triple mutant (Fig. 2B panel III).

Collectively, the genetic analysis of local and systemic infection using TuMV-AS9-GFP re-
vealed two sets of AGOs that limit infection. In inoculated rosette and noninoculated cauline
leaves, AGO2 plays a major antiviral role, while AGO5, AGO7 and AGO10 play minor roles
that are non-additive with AGO2. In noninoculated inflorescence tissues, AGO1 and AGO10
play overlapping or redundant antiviral roles, but these functions likely account for only a frac-
tion of the RNA-mediated antiviral activity. It is possible that other factors, including AGO

Fig 2. Local and systemic infection of a selected group of double and triple agomutants by TuMV-GFP and TuMV-AS9-GFP. (A) Local infection
efficiency. Panel I: infection efficiency of TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0 (19.6 ± 3.3 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2
(2.2 ± 0.7 foci per leaf), respectively. The histogram shows the average (+ SE) of 10 plants, each with four inoculated leaves. Panel II: local infection of
inoculated rosette leaves for a selected group of mutants harboring ago1–27. The histogram shows average (+ SE) infection efficiency of 14 plants, each with
four inoculated leaves. Infection efficiency of TuMV-GFP or TuMV-AS9-GFP is expressed relative to Col-0 (4.1 ± 1.2 foci per leaf) or to dcl2–1 dcl3–1 dcl4–2
(2.8 ± 1.1 foci per leaf), respectively. Panel III: Representative leaves of ago1–27 single and ago1–27 ago2–1 double mutants showing TuMV-GFP local
infection foci. ago1–27 ago2–1, but not ago1–27, was infected by TuMV-AS9-GFP. Col-0 is shown for comparison. Pictures were taken at 7 dpi under UV
light. (B) Systemic infection. TuMV-AS9-GFP coat protein accumulation in noninoculated cauline leaves and in inflorescence at 15 dpi. Panel I: double
mutants harboring ago2–1. Panel II: double and triple mutants harboring ago1–27 and ago10–5. The histograms show average (+ SE) of four biological
replicates, expressed relative to dcl2–1 dcl3–1 dcl4–2. Bars with the same letter are not statistically different (Tukey’s test with α = 0.05). Panel III: in double
and triple mutants harboring ago1–27, inflorescence samples were collected only from clusters showing systemic GFP.

doi:10.1371/journal.ppat.1004755.g002
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Table 2. TuMV-GFP and TuMV-AS9-GFP infection in selected ago2–1 based double mutantsa.

Virus Arabidopsis Plants Local Cauline Inflorescence
genotype inoculated infection leaves

TuMV-GFP

Col-0 10 10 10 10

ago2–1 10 10 10 10

ago2–1 ago5–2 10 10 10 10

ago2–1 zip-1 10 10 10 10

ago2–1 ago10–5 10 10 10 10

dcl2–1 dcl3–1 dcl4–2 10 10 10 10

TuMV-AS9-GFP

Col-0 10 0 0 0

ago2–1 10 10 10 0

ago2–1 ago5–2 10 10 10 0

ago2–1 zip-1 10 10 10 0

ago2–1 ago10–5 10 10 10 0

dcl2–1 dcl3–1 dcl4–2 10 10 10 10

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7

days post-inoculation (dpi). All other data is from plants at 15 dpi.

doi:10.1371/journal.ppat.1004755.t002

Table 3. TuMV-GFP and TuMV-AS9-GFP infection in selected ago1–27 based combination mutants a.

Virus Arabidopsis Plants Local Cauline Inflorescence Percent b

genotype inoculated infection leaves

TuMV-GFP

Col-0 14 14 14 14 100

ago1–27 14 14 14 14 100

ago2–1 14 14 14 14 100

ago10–5 14 14 14 14 100

ago1–27 ago2–1 14 14 14 14 100

ago1–27 ago10–5 14 14 14 14 100

ago1–27 ago2–1 ago10–5 14 14 14 14 100

dcl2–1 dcl3–1 dcl4–2 14 14 14 14 100

TuMV-AS9-GFP

Col-0 14 0 0 0 0

ago1–27 14 0 0 0 0

ago2–1 14 14 14 0 0

ago10–5 14 8 6 0 0

ago1–27 ago2–1 14 14 14 0 0

ago1–27 ago10–5 14 14 14 3 4 ±1

ago1–27 ago2–1 ago10–5 14 14 14 8 14 ±2

dcl2–1 dcl3–1 dcl4–2 14 14 14 14 100

a Number of plants showing local and systemic infections were scored by GFP fluorescence under UV illumination. Local infection foci were counted at 7

days post-inoculation. All other data is from plants at 15 dpi.
b Proportion (%) of inflorescence clusters showing GFP with respect to the total number of clusters on each plant with inflorescence GFP fluorescence.

doi:10.1371/journal.ppat.1004755.t003
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proteins not analyzed here, have a role in protecting inflorescence tissue from virus infection.
The scope of subsequent AGO analyses was restricted to the functions of AGO1, AGO2 and
AGO10 in the presence and absence of functional HC-Pro.

Differential association of AGO2 with viral siRNAs in the presence and
absence of functional HC-Pro
We hypothesized that AGO proteins with anti-TuMV activity associate with TuMV-derived
siRNAs. This idea was tested first with epitope-tagged AGO2 in plants inoculated with parental
TuMV or HC-Pro-defective TuMV-AS9 (lacking GFP) [23]. AGO2 immunoprecipitation and
small RNA sequence analyses were done using transgenic A. thaliana expressing a triple-hem-
agglutinin (HA) epitope-tagged, catalytically inactive form of AGO2 (HA-AGO2DAD). The sec-
ond of three aspartic acid residues of AGO2 was substituted with alanine; this substitution
eliminates antiviral activity of AGO2, but preserves both the siRNA-binding and target RNA-
binding functions [31]. These experiments require the use of plants lacking AGO2-mediated
antiviral functions, as infection by TuMV-AS9 would otherwise be blocked (Figs. 1 and 2) [31].

Small RNAs from the input (pre-immunoprecipitated) and HA-AGO2DAD co-immunopre-
cipitated fractions from inoculated rosette leaves and noninoculated inflorescences of TuMV-
infected plants were analyzed from duplicate biological samples. Only reads that matched to ei-
ther the A. thaliana or TuMV genomes without mismatches were analyzed (S1 Table). For
each individual sample, read counts were scaled with respect to the total number of adaptor-
parsed reads (reads per million) for the corresponding flow cell (eight individual samples). In
mock-inoculated plants, a small number of reads from the input fractions mapped to TuMV
(S1–S4 Tables, and S1 Fig). The source of these reads could be contamination, sequencing
error, or portions of the A. thaliana genome. Based on the number of reads from mock-inocu-
lated plants mapping to the TuMV genome, the false positive rate (proportion of parsed reads
artifactually mapping to TuMV) was estimated to be between 9.8X10-6 and 1.0X10-4, which
should not have affected subsequent analyses.

In input fractions from TuMV-infected plants expressing HA-AGO2DAD, the proportion of
reads mapping to the A. thaliana genome, as opposed to TuMV, varied from 77% (averaged
across replicates) to 84% for different tissues (S1A Fig). Sequences mapping to TuMVwere main-
ly 21-nt and 22-nt (S1A Fig). Accordingly, the detailed analyses for HA-AGO2DAD and other
proteins (discussed below) were focused on 21-nt (Figs 3–6) and 22-nt sequences (S3–S7) Figs.

Endogenous A. thaliana 21-nt small RNAs were enriched in HA-AGO2DAD immunoprecipi-
tates from leaves or inflorescence of mock-inoculated (4.5 to 10 fold) or TuMV-infected samples
(2.7 to 6.3 fold) (S2A Fig). Enriched sequences in HA-AGO2DAD immunoprecipitates had pre-
dominantly a 5’A nucleotide, as previously reported for AGO2-associated small RNAs [52, 53],
or a 5’U nucleotide (S2A Fig). Specific miRNA, miRNA� and trans-acting siRNA (tasiRNA) pop-
ulations were enriched in HA-AGO2DAD immunoprecipitates from both mock-inoculated (2.3
to 31 fold), and to a lesser extent, TuMV-infected (1.8 to 16 fold) rosette leaves (S8A Fig). Micro-
RNA read counts for input and immunoprecipitates from this and subsequent analyses are pro-
vided in S1 Dataset. MiR390 and miR393� were shown previously to co-immunoprecipitate with
AGO2 [35, 52]. In mock-inoculated and TuMV-infected rosette leaves, the number of miR390
reads in HA-AGO2DAD immunoprecipitates was 260 and 65 fold higher, respectively, than in
the corresponding input samples. Similarly, miR393� reads were enriched 125 and 60 fold in
HA-AGO2DAD immunoprecipitates frommock-inoculated and TuMV-infected rosette leaves,
respectively. Therefore, enrichment of A. thaliana small RNA populations that are known to be
associated with AGO2 occurred as expected.
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Fig 3. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO2DAD in an ago2–1 background. Values are average and SE
from two biological replicates normalized to reads per million. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and
15 dpi, respectively. Inflorescence samples were collected at 10 dpi. (A) Panel I: number of reads by size, class, and polarity, for TuMV-derived siRNAs in
input and HA-AGO2DAD IP. Panel II: for 21 and 22 nt TuMV-derived siRNAs, enrichment in HA-AGO2DAD IP. Enrichment is defined as immunoprecipitate (IP)
reads/ input reads, expressed on a log2 scale. Panel III: proportion (in percentage) of 5’ nt in 21 nt and 22 nt TuMV-derived siRNAs by fraction. Numbers were
rounded to the nearest integer. (B) and (C) TuMV genome-wide distribution of 21 nt TuMV-derived siRNAs in input (B) and HA-AGO2DAD IP (C). Panel I:
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In TuMV-inoculated rosette leaves, and systemically infected inflorescence, virus-derived
siRNAs were abundant, representing 17% and 23%, respectively, of mapped reads in input
samples (S1A Fig). Reads mapped to both sense (genomic strand) and antisense strands across
the entire TuMV genome. However, both 21- and 22-nt TuMV-derived siRNAs were depleted
in HA-AGO2DAD immunoprecipitates (Fig. 3A panels I and II, Fig. 3B and 3C panels I and II,

TuMV-infected inflorescence. Panel II: TuMV-inoculated rosette leaves. Panel III: rosette leaves inoculated with TuMV-AS9. Panel IV: cauline leaves
systemically infected with TuMV-AS9. Reads were plotted for each 1 nt position. The scale was capped at 150 reads.

doi:10.1371/journal.ppat.1004755.g003

Fig 4. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO1DAH in an ago2–1 background. Labels are as in Fig. 3.
Inflorescence samples were collected at 10 dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15
dpi, respectively.

doi:10.1371/journal.ppat.1004755.g004
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and S3 Fig); only a small number of individual TuMV-derived siRNAs were
marginally enriched.

In leaves of TuMV-AS9-infected plants, endogenous A. thaliana small RNAs were again en-
riched (2.7 to 4.6 fold) in HA-AGO2DAD immunoprecipitates, with patterns expected of
AGO2-associated small RNAs (S2A Fig). Virus-derived siRNAs represented 7% or 16% of
mapped reads in input samples from inoculated rosette leaves or systemically infected cauline
leaves, respectively (S1A Fig). However, in striking contrast to TuMV-infected samples, both
21- and 22-nt TuMV-AS9-derived siRNAs were highly enriched relative to TuMV-derived

Fig 5. Profile of endogenous and TuMV-derived siRNAs in plants expressing HA-AGO10. Labels are as in Fig. 3. Catalytically active HA-AGO10DDH
and catalytic mutant HA-AGO10DAH were expressed in a wild-type Col-0 (AGO2) or ago2–1 background, respectively. Inflorescence samples were collected
at 10 dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi, respectively.

doi:10.1371/journal.ppat.1004755.g005
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Fig 6. Profile of TuMV-derived siRNAs in plants infected with TuMV-HIS or TuMV-HIS-AS9. (A) Panel I: schematic representation of the TuMV genome
and modified clones with an AS9 mutation and a 6xHIS tag (TuMV-HIS). Coordinates correspond to wild-type TuMV. The 6xHIS tag fused in frame to HC-Pro
is underlined. Panel II: representative blot CP and HC-Pro accumulation in inflorescence of Col-0 at 10 dpi. (B) CP and HC-Pro accumulation in input and
HC-Pro (wild-type and AS9) immunoprecipitation from cauline leaves of ago2–1 plants. Samples from plants infected with TuMV-HIS or TuMV-HIS-AS9 were
collected at 10 and 15 dpi, respectively. 6.25 μg of total protein or 10 μl of immunoprecipitate (IP) were loaded for TuMV-HIS input and IP samples,
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siRNAs in HA-AGO2DAD immunoprecipitates from both inoculated rosette leaves and system-
ically infected cauline leaves (Fig. 3A panels I and II, Fig. 3B and 3C panels III and IV, and
S3 Fig). Among co-immunoprecipitated siRNAs, those containing a 5’A were overrepresented
(Fig. 3A panel III). Association of AGO2 with siRNAs derived from TuMV-AS9, but not from
TuMV, was verified by small RNA northern blot assays (S9 Fig). These results indicate that
programming of AGO2 with TuMV-derived siRNAs is inhibited in the presence of active
HC-Pro.

Differential association of AGO1 and AGO10 with viral siRNAs in the
presence and absence of functional HC-Pro
A similar experimental design was used to test the association of tagged AGO1 and AGO10
with TuMV and TuMV-AS9-derived siRNAs. To enable infection by suppressor-deficient
TuMV-AS9, transgenic A. thaliana plants expressing catalytically defective HA-AGO1DAH
[31] or HA-AGO10DAH were produced in the TuMV-AS9-permissive ago2–1 background.
Phenotypic defects associated to catalytic mutant HA-AGO1DAH were more severe in an ago1–
25mutant that in a wild-type (AGO1) background [31]. Effects of catalytically defective
HA-AGO10DAH on plant phenotype were not known, so transgenic A. thaliana plants express-
ing catalytically active HA-AGO10DDH in a wild-type Col-0 background were also generated.
Transgenic lines were inoculated with TuMV or TuMV-AS9 and samples from inoculated ro-
sette leaves and systemically infected cauline leaves or inflorescences were collected from bio-
logical replicates. Small RNAs from input samples and immunoprecipitated fractions were
sequenced, and reads were mapped and counts were scaled as described above. Tagged versions
of AGO1 and AGO10 associated with small RNAs with a 5’U, as expected (S2B and S2C Fig
panel II) [36, 52–54], and the proportion of A. thaliana and TuMV-derived siRNAs (S1B and
S1C Fig) was similar to the observed in plants expressing HA-AGO2 (S1A Fig).

In mock-inoculated samples, endogenous A. thaliana 21-nt small RNAs were enriched 5 to
15 fold, and 5 to 7 fold, in HA-AGO1DAH and HA-AGO10DAH immunoprecipitates, respec-
tively. In TuMV- and TuMV-AS9-infected samples, A. thaliana 21-nt small RNAs were en-
riched 5 and 15 fold, respectively, in HA-AGO1DAH immunoprecipitates (S2B Fig panel I). In
TuMV-infected samples, A. thaliana 21-nt small RNAs were enriched 1.5 and 2.5 fold in
HA-AGO10DDH immunoprecipitates from inflorescences and rosette leaves, respectively
(S2C Fig panel I). In TuMV-AS9-infected samples, A. thaliana 21-nt small RNAs were en-
riched 7 fold in HA-AGO10DAH immunoprecipitates from cauline leaves (S2C Fig panel I). Se-
quences with a 5’U were enriched with both AGOs (panel II in S2B and S2C Fig), as expected
[36, 52–54]. MiRNAs were enriched in HA-AGO1DAH and HA-AGO10DAH immunoprecipi-
tates from both mock-inoculated (7 to 50 fold) and TuMV-infected (3 to 25 fold) samples,
while miRNA� and tasiRNA populations were variable (S8B and S8C Fig). For example,
miR166 reads were enriched 30 and 45 fold in HA-AGO1DAH immunoprecipitates from inflo-
rescences of mock-inoculated and TuMV-infected plants, respectively. MiR168 reads were like-
wise enriched 20 and 12 fold. MiR166 reads were enriched 900 and 60 fold in HA-AGO10DAH
immunoprecipitates from mock-inoculated and TuMV-infected plants, respectively, in agree-
ment with previous observations [36].

respectively. Amounts were doubled for TuMV-HIS-AS9 input and IP. (C) Panel I: number of reads by size, class, and polarity, for TuMV-derived siRNAs in
input and wild-type or AS9 HC-Pro IP. Panel II: enrichment in HC-Pro IP as in Fig. 3. Panel III: proportion (in percentage) of 5’ nt in 21 nt and 22 nt TuMV-
derived siRNAs by fraction. Panel IV: bars show the enrichment of TuMV-derived siRNAs by 5’ nt and polarity. (D) and (E) TuMV genome-wide distribution of
21 nt TuMV-derived siRNAs in input (D) and HC-Pro IP (E). Reads were plotted for each 1 nt position. The scale was capped at 150 reads.

doi:10.1371/journal.ppat.1004755.g006
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In rosette and inflorescence tissues from each of the transgenic lines, TuMV infection trig-
gered abundant 21- and 22-nt siRNAs that originated from sense and antisense strands across
the entire viral genome (Figs. 4B and 5B). However, as with HA-AGO2DAD immunoprecipi-
tates, TuMV-derived siRNAs were depleted in both HA-AGO1DAH (Fig. 4A-4C panels I and
II, and S4 Fig) and HA-AGO10DDH (Fig. 5A-5C panels I and II, and S5 Fig) immunoprecipi-
tates. By contrast, in plants infected with suppressor-deficient TuMV-AS9, virus-derived siR-
NAs were enriched in HA-AGO10DAH immunoprecipitates (Fig. 5A panels I and II, Fig. 5B
and 5C panels III, and S5 Fig), and had predominantly a 5’U nucleotide (Fig. 5A panel III). In-
dividual highly enriched sequences were distributed across the TuMV-AS9 genome (Fig. 5C
panel III and S5 Fig), suggesting that AGO10 may target all regions of TuMV-AS9 genome.
TuMV-AS9-derived siRNAs were present in HA-AGO1DAH immunoprecipitates at a higher
level than in immunoprecipitates from plants infected with parental TuMV, although the over-
all population of TuMV-AS9-derived siRNAs was depleted relative to the input fraction
(Fig. 4A panels I and II, Fig. 4B and 4C panel III, and S4 Fig). Only a few individual sequences
were enriched; these sequences had predominantly a 5’U nucleotide (Fig. 4A panel III). Be-
cause depletion of TuMV-AS9-derived siRNAs in HA-AGO1DAH immunoprecipitates was 60
to 1,200 fold lower than in TuMV-infected samples, we reasoned that AGO1 does interact with
virus-derived siRNAs, but to a lesser extent than both AGO2 and AGO10.

HC-Pro associates with siRNAs derived from the entire TuMV genome
Results described above show that AGO1, AGO2 and AGO10 associate at low levels with pa-
rental TuMV-derived siRNAs. In contrast, AGO2 and AGO10, and to a much lesser extent
AGO1, associate with siRNAs derived from the suppressor-deficient TuMV-AS9 genome.
Only two residues (R238A and V240A) in HC-Pro differ between TuMV and TuMV-AS9
(Fig. 6A panel I) [23, 38]. We hypothesized that i) HC-Pro associates with siRNAs-derived
from the entire TuMV genome and sequesters them from AGO proteins, and ii) the AS9 muta-
tion in HC-Pro reduces siRNA-binding activity. HC-Pro is known to have small RNA-binding
activity [39, 43, 44, 55], but the extent to which it binds siRNAs in the context of TuMV infec-
tion has not been described. To measure the extent to which HC-Pro binds small RNA using
the immunoprecipitation assay, we introduced an N-terminal 6xHistidine tag (HIS6) in the
context of the TuMV (TuMV-HIS) and TuMV-AS9 (TuMV-HIS-AS9) genomes (Fig. 6A
panel I). The addition of HIS6 to HC-Pro did not affect viral coat protein accumulation
(Fig. 6A panel II), but enabled specific immunoprecipitation of HC-Pro from plants infected
with TuMV-HIS and TuMV-HIS-AS9 (Fig. 6B).

Small RNAs from input and immunoprecipitated fractions obtained from plants inoculated
with TuMV-HIS and TuMV-HIS-AS9 were sequenced. Because TuMV-HIS-AS9 accumulated
more slowly than TuMV-HIS, TuMV-HIS samples were collected earlier than TuMV-HIS-AS9
samples (10 and 15 dpi, respectively), and twice as much input and immunoprecipitate materi-
als for TuMV-HIS-AS9 samples were analyzed. The longer infection time and doubling of ma-
terials for TuMV-HIS-AS9 resulted in similar protein levels for HIS-HC-Pro and
HIS-HC-Pro-AS9 input and immunoprecipitate fractions (Fig. 6B).

Endogenous A. thaliana small RNAs were depleted in suppressor-deficient HC-Pro-AS9
immunoprecipitates. Similarly, 22-, 23- and 24-nt A. thaliana endogenous small RNAs were
depleted in wild-type HC-Pro immunoprecipitates (S6A Fig). In samples from systemically in-
fected inflorescence or cauline leaves, A. thaliana endogenous 21-nt small RNAs were margin-
ally enriched (2 fold) or depleted, respectively, in wild-type HC-Pro immunoprecipitates
(S6A Fig). While miRNAs were depleted, miRNA� and tasiRNAs were enriched in HC-Pro im-
munoprecipitates (S6B–S6C Fig). Specifically, reads corresponding to miR390 and miR390�
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were enriched 8 and 64 fold, respectively, in wild-type HC-Pro immunoprecipitates. MiR166
reads were depleted 5 fold, whereas miR166� reads were enriched 16 fold in wild-type
HC-Pro immunoprecipitates.

In contrast with results obtained for HA-AGO1DAH, HA-AGO2DAD and HA-AGO10DDH
from TuMV-infected plants (compare panel I in Fig. 3C-5C to Fig. 6E), TuMV-derived siRNAs
were highly enriched in HIS-HC-Pro immunoprecipitates from cauline leaves and inflores-
cence (Fig. 6C panels I and II, and Fig. 6D and 6E panels I and II). No 5’ nt preference was evi-
dent (Fig. 6C panels III and IV). HIS-HC-Pro associated preferentially with 21-nt over 22-nt
siRNAs in samples from both cauline leaves and inflorescences (Fig. 6C, 6D-E panels I and II,
and S7 Fig). In contrast, TuMV-HIS-AS9-derived siRNAs from across the genome were deplet-
ed in the HIS-HC-Pro-AS9 immunoprecipitates from systemically infected cauline leaves; only
a few individual sequences were enriched (Fig. 6C panels I and II, 6D and 6E panel III, and
S7 Fig). These results indicate that wild-type HC-Pro associates with TuMV-derived siRNAs,
and that the AS9 mutation disrupts this association. We concluded that HC-Pro interferes with
antiviral silencing, at least in part, by sequestering TuMV-derived siRNAs and preventing their
association with antiviral AGO proteins. Suppression activity of HC-Pro is not tissue specific
and affects AGO1, AGO2, AGO10 and possibly other AGO proteins.

Discussion
Genetic and co-immunoprecipitation analyses were combined to reveal that i) several AGOs
function as anti-TuMV defense modules in A. thaliana, ii) viral siRNAs generally fail to load
into AGO proteins with antiviral functions during wild-type TuMV infection, and iii) HC-Pro
sequesters viral siRNA away from AGOs with antiviral functions.

Functions of AGO-small RNA complexes in anti-TuMV defense
AGO proteins target endogenous transcripts to regulate plant development and innate immu-
nity [2, 56], which may indirectly affect susceptibility to viruses. It is likely, however, that at
least some AGO proteins with an antiviral role are programmed with virus-derived siRNA to
directly target viral RNA [8, 10, 57, 58]. The genetic analysis described here revealed several
AGO proteins that participate in modular fashion during anti-TuMV defense (Fig. 7). AGO2
has the most influential role in protecting inoculated rosette and cauline leaves (Fig. 1), while
AGO1 and AGO10 have genetically redundant roles in protecting inflorescence tissues. A larg-
er proportion of ago1 ago2 ago10 triple mutants than ago1 ago10 double mutants were systemi-
cally infected (Table 3), perhaps suggesting that AGO2 also contributes to restricting virus
spread to inflorescences.

The antiviral effects of different AGO proteins in different tissues may depend on a number
of factors, including expression patterns, AGO-interacting partners, small RNA binding prefer-
ences, or subcellular localization. Microarray data suggest that AGO10 and AGO1 are expressed
more strongly than AGO2 in flowers and meristems [59]. However, AGO1 and AGO10 tran-
script levels are also higher than AGO2 transcript levels in rosette leaves. Therefore, expression
levels alone do not explain the effectiveness of individual AGOs in different organs. It is con-
ceivable that modular, tissue-specific functionality is controlled by AGO-interacting or AGO-
promoting factors that are tissue-specific. In ago1 ago10 double mutants, systemic infection of
inflorescences could be partially restricted because AGO2 limits virus accumulation in leaves,
acts directly in inflorescences, or functions in both of these tissues.

Direct down-regulation of viral RNA requires that AGOs bind virus-derived siRNAs (or en-
dogenous small RNAs complementary to a given viral genome) and then viral RNA, followed
by slicing of the viral RNA, repression of translation, and/or recruitment of factors for silencing
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amplification. Results described here show that AGO2, AGO10 and at much lower levels
AGO1 associate with TuMV-AS9-derived siRNA in the absence of HC-Pro (Fig. 3C panels III
and IV, and Figs. 4C and 5C panel III). AGO2-mediated slicing of viral RNAs could be a signif-
icant anti-viral mechanism, as catalytically defective forms of AGO2 lack anti-TuMV activity
[31]. Evidence of direct targeting of TuMV RNA by AGO1 and AGO10 is lacking. In other
studies, AGO1 was reported to bind small RNAs derived from Turnip yellow mosaic virus and
CMV strains Fny and NT9 [20], but not CMV strain I17F or Crucifer-infecting tobamovirus
[60]. The basis for differential interaction of TuMV-derived siRNAs and AGO1, AGO2 and
AGO10 is not clear. It is possible that different AGOs have privileged access to viral siRNAs. In
this context, AGO1 pools may have limited access to viral siRNAs during TuMV infection.

In inoculated rosette leaves of ago2mutant and dcl2 dcl3 dcl4 triple mutant plants, TuM-
V-AS9 accumulated to comparable levels (Figs. 1 and 2). In contrast, accumulation of TuM-
V-AS9 was consistently lower in cauline leaves and inflorescences of all agomutants tested,

Fig 7. A model for direct action of A. thaliana AGO proteins in anti-TuMV defense. AGO-mediated antiviral silencing is suppressed through
sequestration of TuMV-derived siRNAs by silencing suppressor HC-Pro (left panels), in both inoculated leaves and inflorescences. In the absence of active
HC-Pro (right panels), AGO2, AGO10 and, to a lesser extent AGO1, associate with TuMV-AS9-derived siRNAs to potentially repress TuMV RNAs through
slicing or translational repression. AGO2 protects leaves from TuMV infection and movement, with non-additive contributions by AGO10, AGO5 and AGO7.
Redundant activities of AGO10 and AGO1 protect inflorescence from TuMV infection, with an additive contribution by AGO2.

doi:10.1371/journal.ppat.1004755.g007
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including the ago1 ago2 ago10 triple mutant, compared to the respective tissues in dcl2 dcl3 dcl4
mutant plants. If it is assumed that all small RNA-mediated antiviral activity is lost in the dcl tri-
ple mutant, then it is reasonable to conclude that all antiviral silencing in inoculated rosette
leaves is mediated by AGO2. The far greater effect of the dclmutations, relative to the agomuta-
tions, in systemic tissues, especially inflorescences, argues that the combined effects of AGO1,
AGO2 and AGO10 account for only a small proportion of overall anti-TuMV silencing activity.
This could indicate that other AGO proteins that were not tested here, or that were not tested in
the right genetic combinations, play specific roles in systemic tissues. It could also mean that
DCL proteins play a more dominant, direct antiviral role in systemic tissues, as suggested by ge-
netic analyses with CMV [4, 29], BMV [30], PVX [27], Tobacco rattle virus [61], TCV [3, 6, 33,
62], Cauliflower mosaic virus, Cabbage leaf curl virus, and Oil rape mosaic virus [63].

Different antiviral AGO proteins may also have distinct effects on amplification of second-
ary, virus-derived siRNAs, which may be important for production of systemic signals [2, 7, 13,
64]. Full anti-TuMV silencing requires both RDR1 and RDR6 [23], presumably for production
of dsRNA from viral RNA. If this occurs like dsRNA formation during tasiRNA biogenesis,
then RDR proteins may be recruited to viral RNA after targeting by AGO-small RNA com-
plexes [52, 65–68]. Given the role of AGO1-small RNA complexes in triggering formation of
several families of tasiRNA, AGO1 could conceivably play a trigger role for secondary viral
siRNA.

The interpretation of ago1mutant susceptibility experiments is challenging because of the
pleiotropic developmental phenotypes of ago1 hypomorphic mutants and the large number of
genes that are dysregulated when AGO1 is disrupted. In particular, disruption of AGO1-miR403
activity increases AGO2mRNA and protein levels [26, 69], which could result in a net increase
in virus resistance, even if AGO1 directly targets viral RNA.

Other AGOs might also have indirect roles in anti-TuMV defense, perhaps by affecting ex-
pression of defense-related genes [35, 56, 70]. Expression of potyviral HC-Pro [45], infection
with TCV [26], and infection with Pseudomonas syringae [35] result in increased AGO2 ex-
pression; AGO2 regulates expression ofMEMB12 [35] and possibly other genes. AGO2 also as-
sociates with virus-activated endogenous siRNAs [56]. The significance of AGO2-dependent
gene regulation for virus infection, if any, is not yet clear.

Suppression of antiviral silencing by HC-Pro
Multiple virus-encoded suppressors of RNA silencing target AGO1 [16, 17, 20, 21, 33, 60], and
P25 from PVX interact with AGO2, AGO3 and AGO4 [17] although the biological significance
of this interaction remains to be elucidated. During TuMV infection, no evidence was obtained
to indicate that AGO1, AGO2 or AGO10 were destabilized or otherwise down-regulated. Each
AGO accumulated to normal levels.

TuMV-infected plants accumulate large amounts of virus-derived siRNAs that map across
the entire genome (Figs. 3B, 4B, 5B, 6B, and S3–S5 Figs) [23], and co-immunoprecipitation
and high-throughput sequencing showed that HC-Pro associates with viral siRNAs in leaf and
inflorescence tissue (Fig. 6E panels I and II). Viral siRNAs associate with HC-Pro without a 5’
nt preference (Fig. 6C panels III and IV). Importantly, HC-Pro was shown to sequester viral
siRNAs away from AGO1, AGO2 and AGO10 (Figs. 3C, 4C and 5C panels I and II), leading to
the obvious proposal that HC-Pro interferes with antiviral silencing by preventing AGOs from
loading with virus-derived siRNAs (Fig. 7). Mutant HC-Pro-AS9 is deficient in associating
with viral siRNAs (Fig. 6C-E panels III, and S6 Fig), and concomitantly loses silencing
suppression activity.
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The basis for sequestration of siRNAs by HC-Pro is not yet clear. HC-Pro may outcompete
AGOs for siRNAs. Alternatively, HC-Pro may intercept viral siRNAs prior to AGO loading,
perhaps due to subcellular localization properties. Further analyses will be necessary to resolve
this issue.

Materials and Methods

DNA plasmids
Recombinant plasmids were made as follows.

pCB-TuMV-HIS and pCB-TuMV-HIS-AS9. To introduce a 6xHIS (HIS6) tag on HC-Pro,
two PCR fragments were amplified from pCB-TUMV [16] using two sets of primers:
TuMV764 d(AGGACGGTGCACAGAATATGC) and E101-B2Rev d(CCAGAAGTTGG
CTCCTGCTGCGTGATGGTGATGGTGATGACCTGCCTGGTGATAGACACAGCTAGC
ACTAAAGTGCAC); and E101-B2For d(GTGCACTTTAGTGCTAGCTGTGTCTATCACC
AGGCAGGTCATCACCATCACCATCACGCAGCAGGAGCCAACTTCTGG) and
TuMV-GFP-2873 d(CGCCTGATTCTGTTGTGACAC). The two PCR fragments were
stitched into a final PCR product using primers TuMV764 and TuMV-GFP-2873. The final
PCR product was digested with StuI-AgeI and used to replace the StuI-AgeI fragment in
pCB-TuMV, creating pCB-TuMV-HIS. The same insert was used to replace the StuI-AgeI frag-
ment in pCB-TuMV-AS9 [16], to generate pCB-TuMV-HIS-AS9. Both HIS6-tagged clones
have a NIa cleavage site between P1 and the HIS6-tag on HC-Pro.

pMDC99-pAGO10:3xHA-AGO10DDH and pMDC99-pAGO10:3xHA-AGO10DAH. For
in-frame N-terminal 3xHA-tagging of wild-type AGO10DDH in its natural genomic context, a
9072 bp genomic region was TOPO cloned into pENTR (Invitrogen) in two pieces: an up-
stream region (with primers caccGATTTCTATAAAAAATAcattcc and CTCGAGGCG
GCCGCCCATGGTTTTTGTTGTTTGGATTTTC) and the coding and downstream regions
(with HA-containing forward primer caccATGGCCTATCCTTATGATGTACCTGATTATG
CCTACCCATACGACGTTCCAGACTACGCTTACCCATACGACGTTCCAGACTACG
CTCCGATTAGGCAAATGAAAGATAG and reverse primer cctagaattgacgggtttagatcg). The
first piece was ligated upstream of the second using a NotI site in pENTR and a NcoI site creat-
ed by the cloning primers, producing pENTR-pAGO10–3xHA-AGO10DDH. To disrupt the
AGO10 PIWI domain catalytic triad, A2384 in the coding sequence of pENTR-pAGO10:3x-
HA-AGO10DDH was mutated to G by GENEWIZ Inc., causing amino acid substitution D795A
to generate pENTR-pAGO10–3xHA-AGO10DAH. Transgenes from pENTR-pAGO10–
3xHA-AGO10DDH and pENTR-pAGO10–3xHA-AGO10DAH were LR recombined into binary
vector pMDC99 [71], producing pMDC99-pAGO10:3xHA-AGO10DDH and
pMDC99-pAGO10:3xHA-AGO10DAH, respectively.

Plant materials
All Arabidopsis thaliana plants used in this study (including mutant lines and transgenic lines)
descended from the Columbia-0 (Col-0) accession, and were grown under long day (16 h light/
8 h dark) at 22°C. The following single mutant lines were described before: ago1–25 and ago1–
27 [25], ago2–1 [72], ago3–2 [32], ago4–2 [73], ago5–2 [32], ago6–3 [32], zip-1 [74], ago8–1
[32], and ago9–5 (SALK_126176). T-DNA insertion mutant GABI_818H06 (ago10–5) was ob-
tained from The GABI KAT project [75]. Homozygous mutants were confirmed by PCR-based
genotyping using a three-primer reaction: one on the left border, one in the flanking DNA, and
one in the T-DNA insertion site [76]. Lack of AGO10 expression in homozygous plants was
confirmed by RT-PCR using oligos AGO10_qF (GGTATTCAGGGAACAAGCAG) and
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AGO10_qR (GCTGGAGGAACTATAGAGACCG). Double and triple agomutants were gen-
erated by crossing. dcl2–1 dcl3–1 dcl4–2 triple mutants have been described [3].

Transgenic A. thaliana plants expressing HA-tagged AGO1 or AGO2 catalytic mutants
from their native promoters have been described [31]. Transgenic A. thaliana plants expressing
HA-tagged wild-type or catalytic mutant AGO10 from its native promoter were made by dip-
ping Col-0 plants in Agrobacterium tumefaciens GV3101 carrying the pMDC99-pAGO10:3x-
HA-AGO10DDH or pMDC99-pAGO10:3xHA-AGO10DAH constructs as described [77].
Transgenic plants were grown on MS medium containing hygromycin (50 mg/ml) for 7 days,
transferred to soil, and maintained in greenhouse conditions. Catalytic mutant HA-AGO1DAH,
HA-AGO2DAD and HA-AGO10DAH and wild-type HA-AGO10DDH transgenes were intro-
duced into ago2–1 by crossing.

Virus infection assays
A. thaliana plants were inoculated with TuMV-GFP, TuMV-AS9-GFP, wild-type TuMV,
TuMV-AS9, TuMV-HIS, or TuMV-HIS-AS9 as described previously [23]. Local and systemic
infection by TuMV-GFP or TuMV-AS9-GFP was determined by GFP fluorescence under UV
illumination. To measure coat protein (CP) or HIS6-tagged HC-Pro (HIS-HC-Pro) accumula-
tion, at 15 days post inoculation (dpi), four noninoculated cauline leaves or five inflorescence
clusters per plant were randomly collected and pooled into a single sample. Four biological rep-
licates were randomly collected per virus-plant genotype combination. Samples were ground in
glycine buffer [78] at a ratio of 0.5 mL per 1g of leaf, or 0.25 mL per five inflorescence clusters.
Protein extracts were normalized to 0.5 mg/mL. For western blot assays, 6.25 μg or 1.5 μg of
total protein were used for leaf or inflorescence samples, respectively. Immunoblotting and
chemiluminescence detection were done as described [23]. TuMV CP was detected using anti-
body PVAS-134 (1:40,000) and HIS-HC-Pro was detected using anti-HIS antibody 27E8-HRP
(Cell Signaling) at a 1:5,000 dilution. Ponceau staining of the large subunit of rubisco was used
as a loading control. Unless otherwise indicated, CP and HIS-HC-Pro were detected simulta-
neously on the same blot. In experiments involving HA-tagged AGOs, HA-AGO, CP and
HIS-HC-Pro were detected on the same blot. The top part of the blot, containing proteins larg-
er than 70 kDA was incubated with anti-HA antibodies, to detect HA-AGOs. The part of the
blot containing proteins between 70 and 27 kDa was probed for CP and HIS-HC-Pro.

Immunoprecipitation of HA-tagged ARGONAUTES and HIS-tagged
HC-Pro
Immunoprecipitation of epitope tagged proteins was performed as described [31] with minor
adjustments. Briefly, one gram of leaf or inflorescence tissue was ground in 6 ml of lysis buffer.
Lysates were pre-cleared by incubating with protein A agarose (Roche) beads (0.8 mL per 1g of
tissue) for 30 min at 4°C, and beads were not treated with P1 nuclease. For immunoblot detec-
tion of proteins (CP, HA-AGOs or HIS-HC-Pro), 6.25 μg or 1.5 μg of total protein from leaf or
inflorescence samples were used, respective. From the immunoprecipitated beads 5% of the
samples was diluted with 38 μl of 2x protein dissociation buffer, and 5 to 15 μL used for immu-
noblotting. For small RNA northern blotting, 15 μg were used from the input fractions and
25% of the RNA immunoprecipitate fraction (HA or HIS).

Small RNA library construction for high-throughput sequencing
Small RNA libraries from mock-inoculated or TuMV-infected plants, input or immunoprecip-
itate (HA or HIS) fractions were generated using sequencing-by synthesis technology (Illumina
High Seq 2000) as described [31, 79]. For input fractions, 50 μg of total RNA were fractionated
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by electrophoresis. The area from 16 to 26 nt was sliced and used for small RNA purification.
30 ng of small RNAs were used to make the libraries from total fraction. 50% of the immuno-
precipitated RNA was used without fractionation to make libraries from immunoprecipitate
fractions. For each treatment, small RNA libraries were made independently from two biologi-
cal replicates. Bar-coded PCR amplification primers were used for multiplexing purposes.
Eight individual samples were multiplexed and run in a single flow cell.

Bioinformatic analysis of small RNA libraries
Bioinformatic analysis of endogenous and TuMV-derived siRNAs was as described [23, 31, 80].
After removing 5’ and 3’ adaptors, sequences were aligned to the A. thaliana genome and to the
TuMV genome. Only sequences with a perfect match were used for downstream analysis. For
each sample, reads were normalized per 1,000,000 total reads (RPM), including all size classes.
Enrichment with respect to the immunoprecipitate was calculated as the ratio of reads in the im-
munoprecipitate to reads in the input, and expressed on a log2 scale.

Accession numbers
Sequence data from this article can be found in Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo) accession number GSE64911.

Supporting Information
S1 Fig. Proportion of A. thaliana endogenous and TuMV-derived small RNAs in mock-
inoculated and in TuMV-infected plants. Samples for immunoprecipitation were collected
from inflorescence 10 (dpi), rosette leaves (7 dpi), or cauline leaves (15 dpi). Numbers are the
relative abundance, in percentage, of reads mapping to A. thaliana or to TuMV with respect to
the total number of reads with a perfect match to either genome. Proportion of TuMV-derived
siRNAs by size class is indicated by numbers (percentage) in color pie charts. Numbers were
rounded to the nearest integer. Plants expressing (A) HA-AGO2DAD, (B) HA-AGO1DAH
from an ago2–1 background and were inoculated with wild-type TuMV or TuMV-AS9.
(C) HA-AGO10DDH or HA-AGO10DAD were expressed from a AGO2 or ago2–1 background,
respectively. (D) Wild-type Col-0 or single ago2–1mutant plants were inoculated with
TuMV-HIS or TuMV-HIS-AS9. Color codes are as in (A).
(TIF)

S2 Fig. Association of endogenous siRNAs with HA-tagged AGO1, AGO2 and AGO10.
Values are average and SE from two biological replicates normalized to reads per million. Inoc-
ulated rosette leaf, systemically infected cauline leaves or inflorescence samples were collected
at 7, 15 or 10 dpi, respectively. (A) HA-AGO2DAD in an ago2–1 background. Panel I: enrich-
ment [immunoprecipitate (IP) reads/ input reads, expressed in a log2 scale] of endogenous
(21 to 24 nt) small RNAs in mock-inoculated plants and in plants infected with wild-type
TuMV or TuMV-AS9. In the scale was capped at 4 and at-4. Panel II: proportion (in percent-
age) of 5’ nt in 21 nt and 22 nt small RNAs in input and in HA-AGO2DAD immunoprecipitated
(IP) fractions. Numbers were rounded to the nearest integer. (B) HA-AGO1DAH in an ago2–1
background. Labels for panels I and II are as in (A). (C) Catalytically active HA-AGO10DDH
and catalytic mutant HA-AGO10DAH were expressed in a wild-type Col-0 (AGO2) or ago2–1
background, respectively. Labels for panels I and II are as in (A).
(TIF)

S3 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO2DAD in an ago2–1 background. Values are average and SE
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from two biological replicates normalized to reads per million. Scale was capped at 150. Inocu-
lated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi,
respectively. Inflorescence samples were collected at 10 dpi. (A) and (B) TuMV genome-wide
distribution of 22 nt TuMV-derived siRNAs in input (A) and in HA-AGO2DAD immunopre-
cipitated (IP) fractions (B). Scale was capped at 150.
(TIF)

S4 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO1DAH in an ago2–1 background. Values are average and SE
from two replicates normalized to reads per million. Inflorescence samples were collected at 10
dpi. Inoculated rosette leaf and systemically infected cauline leaf samples were collected at 7
and 15 dpi, respectively. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived
siRNAs in input (A) and in HA-AGO1DAH immunoprecipitated fractions (IP) (B). Scale was
capped at 150.
(TIF)

S5 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in plants expressing HA-AGO10DDH or HA-AGO10DAH. Values are average and SE from
two replicates normalized to reads per million. Inflorescence samples were collected at 10 dpi. In-
oculated rosette leaf and systemically infected cauline leaf samples were collected at 7 and 15 dpi,
respectively. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived siRNAs in
input (A) and in HA-AGO10 immunoprecipitated (IP) fractions (B). Scale was capped at 150.
(TIF)

S6 Fig. Association of endogenous siRNAs (21–24-nt) with HC-Pro in plants infected with
TuMV-HIS or TuMV-HIS-AS9. Values are average and SE from two biological replicates
normalized to reads per million. Inflorescence and cauline leaf samples from plants infected
with TuMV-HIS were collected at 10 dpi. Cauline leaf samples from plants infected with
TuMV-HIS-AS9 were collected at 15 dpi. (A) Number of reads of endogenous A. thaliana siR-
NAs by size class in input and HC-Pro immunoprecipitated (IP) fractions from inflorescence
and cauline leaves. (B) Number of reads for miRNAs, miRNA� and tasiRNAs in input and
mock or HC-Pro IP. (C) Enrichment (IP reads/ Input reads, expressed in a log2 scale) of miR-
NAs, miRNA� and tasiRNAs (TAS) in mock or HC-Pro IP. Scales was capped at 3 and -3.
(TIF)

S7 Fig. TuMV genome-wide distribution and enrichment of 22-nt TuMV-derived siRNAs
in Col-0 or ago2–1 plants infected with TuMV-HIS or TuMV-HIS-AS9. Values are average
and SE from two biological replicates normalized to reads per million. Scale was capped at 500.
Inflorescence samples were from Col-0 plants at 10 dpi. Cauline leaf samples were from single
ago2–1mutant plants infected with TuMV-HIS or TuMV-HIS-AS9 at 10 or 15 dpi, respective-
ly. (A) and (B) TuMV genome-wide distribution of 22 nt TuMV-derived siRNAs in input
(A) or immunoprecipitated (IP) fractions of wild-type or AS9 HC-Pro.
(TIF)

S8 Fig. Association of A. thalianamiRNAs, miRNA� and tasiRNAs with HA-tagged
AGO2DAD, AGO1DAH, AGO10DDH or AGO10DAH. Transgenic HA-AGO1DAH and
HA-AGO2 DAD were expressed from an ago2–1 background. Transgenic HA-AGO10DDH and
HA-AGO10DAH were expressed from a wild-type Col-0 (AGO2) or an ago2–1 background, re-
spectively. Plants were mock-inoculated or infected with TuMV or with TuMV-AS9. Rosette
leaf and samples were collected at 7 dpi. Cauline leaf and inflorescence samples were collected
at 15 and 10 dpi, respectively. Values are average and SE from two biological replicates. The
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histograms show average fold enrichment in AGO IP (IP reads/ input reads, expressed in log2
scale) of miRNAs, miRNA� and tasiRNAs. A) HA-AGO2DAD IP. B) HA-AGO1DAH IP, and C)
HA-AGO10DDH or HA-AGO10DAH IP.
(TIF)

S9 Fig. Association of HA-AGO1DAH and HA-AGO2DAD with endogenous and virus-de-
rived siRNAs. Blots show accumulation of CP, HA-AGO, and virus-derived small RNAs in
immunoprecipitation (IP) fractions of HA-AGO1DAH and HA-AGO2DAD from cauline leaves
(1g) at 15 dpi. HA-AGO1DAH and HA-AGO2DAD were expressed from transgenic ago2–1
plants. Mock-inoculated plants and non-trangenic single ago2–1mutants were used as con-
trols. Representative blots showing accumulation of HA-AGOs, CP, TuMV-derived siRNAs
(CI) and selected miRNAs in input and HA-AGO immunoprecipitation fractions (IPs). TuMV
CP and HA-AGO were detected by immunoblotting in input and IP fractions. TuMV-derived
siRNAs were detected with a DIG-labeled probe made by random priming of cDNA corre-
sponding to CI. miR390 and miR168 were used as IP controls, and U6 as loading control. En-
dogenous siRNAs were detected with DIG-labeled oligonucleotides. Duplicated blots were
stripped and re-probed. A) IP of HA-AGO1DAH and HA-AGO2DAD from cauline leaves of
plants infected with wt TuMV. Panel I: protein accumulation in input samples. Panel II: pro-
tein accumulation in IP fractions. B) IP of HA-AGO1DAH and HA-AGO2DAD from cauline
leaves of plants infected with suppressor-deficient TuMV-AS9. Panels I and II are as in (A).
(TIF)

S1 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and HA-AGO2 immunoprecipitation fractions.
(DOCX)

S2 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and AGO1 immunoprecipitation fractions.
(DOCX)

S3 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and AGO10 immunoprecipitation fractions.
(DOCX)

S4 Table. Abundance of endogenous A. thaliana and TuMV-derived small RNAs of all size
classes in input and HC-Pro immunoprecipitation fractions.
(DOCX)

S1 Dataset. MicroRNA read counts for input and immunoprecipitates of HA-AGO2,
AGO1, AGO10 and HC-Pro.
(XLSX)

Acknowledgments
We thank Goretti Nguyen and Robyn Stevens for excellent technical assistance. We thank
Pablo Vera, the Salk Institute Genomic Analysis Laboratory, the Arabidopsis Biological Re-
source Center, and the GABI-KAT project for generating and distributing mutant seed.

Author Contributions
Conceived and designed the experiments: HGR JCC. Performed the experiments: HGR JSH
AT AGMTGRMGMNLMTMB. Analyzed the data: HGR NF AC JSH JCC. Contributed

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 23 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004755.s014


reagents/materials/analysis tools: HGR AT AC NF JSH KBG JCC. Wrote the paper: HGR AC
NF JSH JCC.

References
1. Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007; 130(3):413–26. doi: 10.

1016/j.cell.2007.07.039 PMID: 17693253

2. Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter- defence and
counter-counter-defence. Nat Rev Microbiol. 2013; 11(11):745–60. doi: 10.1038/nrmicro3120. PMID:
24129510

3. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O.Hierarchical action
and inhibition of plant Dicer-like proteins in antiviral defense. Science. 2006; 313(5783):68–71. doi: 10.
1126/science.1128214. PMID: 16741077

4. Diaz-Pendon JA, Li F, Li WX, Ding SW. Suppression of antiviral silencing by cucumber mosaic virus 2b
protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small
interfering RNAs. Plant Cell. 2007; 19(6):2053–63. doi: 10.1105/tpc.106.047449 PMID: 17586651

5. Curtin SJ, Watson JM, Smith NA, Eamens AL, Blanchard CL, Waterhouse PM. The roles of plant
dsRNA-binding proteins in RNAi-like pathways. FEBS Lett. 2008; 582(18):2753–60. doi: 10.1016/j.
febslet.2008.07.004 PMID: 18625233

6. Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated anti-
viral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A. 2008; 105
(38):14732–7. doi: 10.1073/pnas.0805760105 PMID: 18799732

7. Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs
in Arabidopsis. Annu Rev Plant Biol. 2014; 65:473–503. 10.1146/annurev- arplant-050213–035728
PMID: 24579988

8. Schuck J, Gursinsky T, Pantaleo V, Burgyan J, Behrens SE. AGO/RISC-mediated antiviral RNA silenc-
ing in a plant in vitro system. Nucleic Acids Res. 2013; 41(9):5090–103. 10.1093/nar/gkt193 PMID:
23535144

9. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L,
et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008; 320
(5880):1185–90. 10.1126/science.1159151 PMID: 18483398

10. Ciomperlik JJ, Omarov RT, Scholthof HB. An antiviral RISC isolated from Tobacco rattle virus-infected
plants. Virology. 2011; 412(1):117–24. 10.1016/j.virol.2010.12.018 PMID: 21272908

11. Iwakawa HO, Tomari Y. Molecular Insights into microRNA-Mediated Translational Repression in
Plants. Mol Cell. 2013; 52(4):591–601. Epub 2013/11/26. 10.1016/j.molcel.2013.10.033 PMID:
24267452

12. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and
mRNA decay. Nature reviews Genetics. 2011; 12(2):99–110. 10.1038/nrg2936 PMID: 21245828

13. Szittya G, Burgyan J. RNA interference-mediated intrinsic antiviral immunity in plants. Current topics in
microbiology and immunology. 2013; 371:153–81. 10.1007/978–3- 642–37765–5_6 PMID: 23686235

14. Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses.
Trends Plant Sci. 2013; 18(7):382–92. 10.1016/j.tplants.2013.04.001 PMID: 23684690

15. Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC. The Polerovirus silencing suppressor P0
targets ARGONAUTE proteins for degradation. Curr Biol. 2007; 17(18):1609–14. 10.1016/j.cub.2007.
08.039 PMID: 17869110

16. Bortolamiol D, PazhouhandehM, Marrocco K, Genschik P, Ziegler-Graff V. The Polerovirus F
box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol. 2007; 17(18):1615–21.
10.1016/j.cub.2007.07.061 PMID: 17869109

17. Chiu MH, Chen IH, Baulcombe DC, Tsai CH. The silencing suppressor P25 of Potato virus X interacts
with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol.
2010; 11(5):641–9. 10.1111/j.1364–3703.2010.00634.x PMID: 20696002

18. Csorba T, Lozsa R, Hutvagner G, Burgyan J. Polerovirus protein P0 prevents the assembly of small
RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J. 2010; 62
(3):463–72. 10.1111/j.1365–313X.2010.04163.x PMID: 20128884

19. Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, et al. Degradation of
the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci U S A. 2012;
109(39):15942–6. 10.1073/pnas.1209487109 PMID: 23019378

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 24 / 27

http://dx.doi.org/10.1016/j.cell.2007.07.039
http://dx.doi.org/10.1016/j.cell.2007.07.039
http://www.ncbi.nlm.nih.gov/pubmed/17693253
http://dx.doi.org/10.1038/nrmicro3120.
http://www.ncbi.nlm.nih.gov/pubmed/24129510
http://dx.doi.org/10.1126/science.1128214.
http://dx.doi.org/10.1126/science.1128214.
http://www.ncbi.nlm.nih.gov/pubmed/16741077
http://dx.doi.org/10.1105/tpc.106.047449
http://www.ncbi.nlm.nih.gov/pubmed/17586651
http://dx.doi.org/10.1016/j.febslet.2008.07.004
http://dx.doi.org/10.1016/j.febslet.2008.07.004
http://www.ncbi.nlm.nih.gov/pubmed/18625233
http://dx.doi.org/10.1073/pnas.0805760105
http://www.ncbi.nlm.nih.gov/pubmed/18799732
http://dx.doi.org/10.1146/annurev- arplant-050213&ndash;035728
http://www.ncbi.nlm.nih.gov/pubmed/24579988
http://dx.doi.org/10.1093/nar/gkt193
http://www.ncbi.nlm.nih.gov/pubmed/23535144
http://dx.doi.org/10.1126/science.1159151
http://www.ncbi.nlm.nih.gov/pubmed/18483398
http://dx.doi.org/10.1016/j.virol.2010.12.018
http://www.ncbi.nlm.nih.gov/pubmed/21272908
http://dx.doi.org/10.1016/j.molcel.2013.10.033
http://www.ncbi.nlm.nih.gov/pubmed/24267452
http://dx.doi.org/10.1038/nrg2936
http://www.ncbi.nlm.nih.gov/pubmed/21245828
http://dx.doi.org/10.1007/978&ndash;3- 642&ndash;37765&ndash;5_6
http://www.ncbi.nlm.nih.gov/pubmed/23686235
http://dx.doi.org/10.1016/j.tplants.2013.04.001
http://www.ncbi.nlm.nih.gov/pubmed/23684690
http://dx.doi.org/10.1016/j.cub.2007.08.039
http://dx.doi.org/10.1016/j.cub.2007.08.039
http://www.ncbi.nlm.nih.gov/pubmed/17869110
http://dx.doi.org/10.1016/j.cub.2007.07.061
http://www.ncbi.nlm.nih.gov/pubmed/17869109
http://dx.doi.org/10.1111/j.1364&ndash;3703.2010.00634.x
http://www.ncbi.nlm.nih.gov/pubmed/20696002
http://dx.doi.org/10.1111/j.1365&ndash;313X.2010.04163.x
http://www.ncbi.nlm.nih.gov/pubmed/20128884
http://dx.doi.org/10.1073/pnas.1209487109
http://www.ncbi.nlm.nih.gov/pubmed/23019378


20. Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, et al. Cucumber mosaic virus- encoded 2b sup-
pressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 2006;
20(23):3255–68. 10.1101/gad.1495506 PMID: 17158744

21. Giner A, Lakatos L, Garcia-Chapa M, Lopez-Moya JJ, Burgyan J. Viral protein inhibits RISC activity by
argonaute binding through conservedWG/GWmotifs. PLoS Pathog. 2010; 6(7):e1000996. 10.1371/
journal.ppat.1000996 PMID: 20657820

22. Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant
immunity. Curr Opin Plant Biol. 2014; 20:88–95. 10.1016/j.pbi.2014.05.004 PMID: 24875766

23. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, et al. Arabidopsis
RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering
RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell. 2010; 22(2):481–96. 10.1105/tpc.
109.073056 PMID: 20190077

24. Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008; 13(7):350–8. Epub 2008/05/30. S1360–1385
(08)00138–6[pii] 10.1016/j.tplants.2008.04.007 PMID: 18508405

25. Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, et al. Fertile hypomorphic ARGO-
NAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell.
2002; 14(3):629–39. PMID: 11910010

26. Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstadt S, Carr JP, et al. An antiviral defense role of
AGO2 in plants. PLoS One. 2011; 6(1):e14639. 10.1371/journal.pone.0014639 PMID: 21305057

27. Jaubert MJ, Bhattacharjee S, Mello AF, Perry KL, Moffett P. AGO2 mediates RNA silencing anti-viral
defenses against Potato virus X in Arabidopsis. Plant physiology. 2011. Epub 2011/05/18. 10.1104/pp.
111.178012

28. Zhang X, Singh J, Li D, Qu F. Temperature-dependent survival of Turnip crinkle virus- infected arabi-
dopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. Journal
of virology. 2012; 86(12):6847–54. Epub 2012/04/13. 10.1128/JVI.00497–12 PMID: 22496240

29. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, et al. The 21-Nucleotide, but Not 22-Nucleo-
tide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argo-
nautes in Arabidopsis thaliana. The Plant cell. 2011; 23(4):1625–38. Epub 2011/04/07. 10.1105/tpc.
110.082305 PMID: 21467580

30. Dzianott A, Sztuba-Solinska J, Bujarski JJ. Mutations in the antiviral RNAi defense pathway modify
Brome mosaic virus RNA recombinant profiles. Molecular plant-microbe interactions: MPMI. 2012;
25(1):97–106. Epub 2011/09/23. 10.1094/MPMI-05–11- 0137 PMID: 21936664

31. Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, et al. Functional analy-
sis of three Arabidopsis ARGONAUTES using slicer-defective mutants. The Plant cell. 2012; 24
(9):3613–29. Epub 2012/10/02. 10.1105/tpc.112.099945 PMID: 23023169

32. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. The mechanism selecting the guide strand
from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 2008; 49
(4):493–500. 10.1093/pcp/pcn043 PMID: 18344228

33. Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, et al. Argonaute quenching and global
changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 2010;
24(9):904–15. 10.1101/gad.1908710 PMID: 20439431

34. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, et al. A role for small RNAs in DNA double- strand break
repair. Cell. 2012; 149(1):101–12. Epub 2012/03/27. 10.1016/j.cell.2012.03.002 PMID: 22445173

35. Zhang X, Zhao H, Gao S, WangWC, Katiyar-Agarwal S, Huang HD, et al. Arabidopsis Argonaute 2 reg-
ulates innate immunity via miRNA393 (*)-mediated silencing of a Golgi- localized SNARE gene,
MEMB12. Mol Cell. 2011; 42(3):356–66. 10.1016/j.molcel.2011.04.010 PMID: 21549312

36. Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, et al. Arabidopsis Argonaute10 specifically seques-
ters miR166/165 to regulate shoot apical meristem development. Cell. 2011; 145(2):242–56. 10.1016/
j.cell.2011.03.024 PMID: 21496644

37. Mallory AC, Hinze A, Tucker MR, Bouche N, Gasciolli V, Elmayan T, et al. Redundant and specific
roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene si-
lencing. PLoS Genet. 2009; 5(9):e1000646. 10.1371/journal.pgen.1000646 PMID: 19763164

38. Kasschau KD, Cronin S, Carrington JC. Genome amplification and long-distance movement functions
associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology.
1997; 228(2):251–62. 10.1006/viro.1996.8368 PMID: 9123832

39. Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, et al. Small RNA binding is a
common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 2006; 25
(12):2768–80. 10.1038/sj.emboj.7601164 PMID: 16724105

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 25 / 27

http://dx.doi.org/10.1101/gad.1495506
http://www.ncbi.nlm.nih.gov/pubmed/17158744
http://dx.doi.org/10.1371/journal.ppat.1000996
http://dx.doi.org/10.1371/journal.ppat.1000996
http://www.ncbi.nlm.nih.gov/pubmed/20657820
http://dx.doi.org/10.1016/j.pbi.2014.05.004
http://www.ncbi.nlm.nih.gov/pubmed/24875766
http://dx.doi.org/10.1105/tpc.109.073056
http://dx.doi.org/10.1105/tpc.109.073056
http://www.ncbi.nlm.nih.gov/pubmed/20190077
http://dx.doi.org/10.1016/j.tplants.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18508405
http://www.ncbi.nlm.nih.gov/pubmed/11910010
http://dx.doi.org/10.1371/journal.pone.0014639
http://www.ncbi.nlm.nih.gov/pubmed/21305057
http://dx.doi.org/10.1104/pp.111.178012
http://dx.doi.org/10.1104/pp.111.178012
http://dx.doi.org/10.1128/JVI.00497&ndash;12
http://www.ncbi.nlm.nih.gov/pubmed/22496240
http://dx.doi.org/10.1105/tpc.110.082305
http://dx.doi.org/10.1105/tpc.110.082305
http://www.ncbi.nlm.nih.gov/pubmed/21467580
http://dx.doi.org/10.1094/MPMI-05&ndash;11- 0137
http://www.ncbi.nlm.nih.gov/pubmed/21936664
http://dx.doi.org/10.1105/tpc.112.099945
http://www.ncbi.nlm.nih.gov/pubmed/23023169
http://dx.doi.org/10.1093/pcp/pcn043
http://www.ncbi.nlm.nih.gov/pubmed/18344228
http://dx.doi.org/10.1101/gad.1908710
http://www.ncbi.nlm.nih.gov/pubmed/20439431
http://dx.doi.org/10.1016/j.cell.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22445173
http://dx.doi.org/10.1016/j.molcel.2011.04.010
http://www.ncbi.nlm.nih.gov/pubmed/21549312
http://dx.doi.org/10.1016/j.cell.2011.03.024
http://dx.doi.org/10.1016/j.cell.2011.03.024
http://www.ncbi.nlm.nih.gov/pubmed/21496644
http://dx.doi.org/10.1371/journal.pgen.1000646
http://www.ncbi.nlm.nih.gov/pubmed/19763164
http://dx.doi.org/10.1006/viro.1996.8368
http://www.ncbi.nlm.nih.gov/pubmed/9123832
http://dx.doi.org/10.1038/sj.emboj.7601164
http://www.ncbi.nlm.nih.gov/pubmed/16724105


40. Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH. A viral suppressor of RNA silencing differ-
entially regulates the accumulation of short interfering RNAs and micro- RNAs in tobacco. Proc Natl
Acad Sci U S A. 2002; 99(23):15228–33. 10.1073/pnas.232434999 PMID: 12403829

41. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC. Viral RNA silencing suppressors
inhibit the microRNA pathway at an intermediate step. Genes Dev. 2004; 18(10):1179–86. 10.1101/
gad.1201204 PMID: 15131083

42. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, et al. P1/HC-Pro, a viral suppressor of
RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell. 2003; 4
(2):205–17. PMID: 12586064

43. Schott G, Mari-Ordonez A, Himber C, Alioua A, Voinnet O, Dunoyer P. Differential effects of viral silenc-
ing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of
ARGONAUTE1. The EMBO journal. 2012; 31(11):2553–65. Epub 2012/04/26. 10.1038/emboj.2012.
92 PMID: 22531783

44. Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, et al. Theconserved
FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and
mediates symptom development. J Virol. 2007; 81(23):13135–48. 10.1128/JVI.01031–07 PMID:
17898058

45. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, et al. Two plant viral suppressors of
silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS
Pathog. 2010; 6(1):e1000729. 10.1371/journal.ppat.1000729 PMID: 20084269

46. Ala-Poikela M, Goytia E, Haikonen T, Rajamaki ML, Valkonen JP. Helper component proteinase of the
genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and con-
tains a 4E binding motif. J Virol. 2011; 85(13):6784–94. 10.1128/JVI.00485–11 PMID: 21525344

47. Anandalakshmi R, Marathe R, Ge X, Herr JM Jr., Mau C, Mallory A, et al. A calmodulin- related protein
that suppresses posttranscriptional gene silencing in plants. Science. 2000; 290(5489):142–4. Epub
2000/10/06. PMID: 11021800

48. Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, et al. In vitro as-
sembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell.
2010; 39(2):282–91. 10.1016/j.molcel.2010.05.014 PMID: 20605502

49. Ballut L, Drucker M, Pugniere M, Cambon F, Blanc S, Roquet F, et al. HcPro, a multifunctional protein
encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. J Gen
Virol. 2005; 86(Pt 9):2595–603. 10.1099/vir.0.81107–0 PMID: 16099919

50. Soitamo AJ, Jada B, Lehto K. HC-Pro silencing suppressor significantly alters the gene expression pro-
file in tobacco leaves and flowers. BMC Plant Biol. 2011; 11:68. 10.1186/1471–2229–11–68 PMID:
21507209

51. Lellis AD, Kasschau KD, Whitham SA, Carrington JC. Loss-of-susceptibility mutants of Arabidopsis
thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol. 2002; 12
(12):1046–51. Epub 2002/07/19. PMID: 12123581

52. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, et al. Specificity of ARGO-
NAUTE7-miR390 interaction and dual functionality in TAS3 trans- acting siRNA formation. Cell. 2008;
133(1):128–41. Epub 2008/03/18. 10.1016/j.cell.2008.02.033 PMID: 18342362

53. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis argonaute
complexes is directed by the 5' terminal nucleotide. Cell. 2008; 133(1):116–27. 10.1016/j.cell.2008.02.
034 PMID: 18342361

54. Wang H, Zhang X, Liu J, Kiba T, Woo J, Ojo T, et al. Deep sequencing of small RNAs specifically asso-
ciated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant J. 2011; 67(2):292–304.
Epub 2011/04/05. 10.1111/j.1365–313X.2011.04594.x PMID: 21457371

55. Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, Silhavy D. Double-stranded RNA binding may be a
general plant RNA viral strategy to suppress RNA silencing. J Virol. 2006; 80(12):5747–56. 10.1128/
JVI.01963–05 PMID: 16731914

56. Cao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, et al. Virus infection triggers widespread silencing of host
genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A. 2014; 111
(40):14613–8. 10.1073/pnas.1407131111 PMID: 25201959

57. Omarov RT, Ciomperlik JJ, Scholthof HB. RNAi-associated ssRNA-specific ribonucleases in Tombus-
virus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc
Natl Acad Sci U S A. 2007; 104(5):1714–9. 10.1073/pnas.0608117104 PMID: 17244709

58. Pantaleo V, Szittya G, Burgyan J. Molecular bases of viral RNA targeting by viral small interfering RNA-
programmed RISC. J Virol. 2007; 81(8):3797–806. 10.1128/JVI.02383–06 PMID: 17267504

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 26 / 27

http://dx.doi.org/10.1073/pnas.232434999
http://www.ncbi.nlm.nih.gov/pubmed/12403829
http://dx.doi.org/10.1101/gad.1201204
http://dx.doi.org/10.1101/gad.1201204
http://www.ncbi.nlm.nih.gov/pubmed/15131083
http://www.ncbi.nlm.nih.gov/pubmed/12586064
http://dx.doi.org/10.1038/emboj.2012.92
http://dx.doi.org/10.1038/emboj.2012.92
http://www.ncbi.nlm.nih.gov/pubmed/22531783
http://dx.doi.org/10.1128/JVI.01031&ndash;07
http://www.ncbi.nlm.nih.gov/pubmed/17898058
http://dx.doi.org/10.1371/journal.ppat.1000729
http://www.ncbi.nlm.nih.gov/pubmed/20084269
http://dx.doi.org/10.1128/JVI.00485&ndash;11
http://www.ncbi.nlm.nih.gov/pubmed/21525344
http://www.ncbi.nlm.nih.gov/pubmed/11021800
http://dx.doi.org/10.1016/j.molcel.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/20605502
http://dx.doi.org/10.1099/vir.0.81107&ndash;0
http://www.ncbi.nlm.nih.gov/pubmed/16099919
http://dx.doi.org/10.1186/1471&ndash;2229&ndash;11&ndash;68
http://www.ncbi.nlm.nih.gov/pubmed/21507209
http://www.ncbi.nlm.nih.gov/pubmed/12123581
http://dx.doi.org/10.1016/j.cell.2008.02.033
http://www.ncbi.nlm.nih.gov/pubmed/18342362
http://dx.doi.org/10.1016/j.cell.2008.02.034
http://dx.doi.org/10.1016/j.cell.2008.02.034
http://www.ncbi.nlm.nih.gov/pubmed/18342361
http://dx.doi.org/10.1111/j.1365&ndash;313X.2011.04594.x
http://www.ncbi.nlm.nih.gov/pubmed/21457371
http://dx.doi.org/10.1128/JVI.01963&ndash;05
http://dx.doi.org/10.1128/JVI.01963&ndash;05
http://www.ncbi.nlm.nih.gov/pubmed/16731914
http://dx.doi.org/10.1073/pnas.1407131111
http://www.ncbi.nlm.nih.gov/pubmed/25201959
http://dx.doi.org/10.1073/pnas.0608117104
http://www.ncbi.nlm.nih.gov/pubmed/17244709
http://dx.doi.org/10.1128/JVI.02383&ndash;06
http://www.ncbi.nlm.nih.gov/pubmed/17267504


59. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, et al. A gene expression map of Ara-
bidopsis thaliana development. Nat Genet. 2005; 37(5):501–6. 10.1038/ng1543 PMID: 15806101

60. Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits
microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A. 2005; 102(33):11928–33. 10.1073/
pnas.0505461102 PMID: 16081530

61. Donaire L, Barajas D, Martinez-Garcia B, Martinez-Priego L, Pagan I, Llave C. Structural and genetic
requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol. 2008; 82
(11):5167–77. 10.1128/JVI.00272–08 PMID: 18353962

62. Cao M, Ye X, Willie K, Lin J, Zhang X, Redinbaugh MG, et al. The capsid protein of Turnip crinkle virus
overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis. J
Virol. 2010; 84(15):7793–802. 10.1128/JVI.02643–09 PMID: 20504923

63. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, et al. Four plant
Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;
34(21):6233–46. 10.1093/nar/gkl886 PMID: 17090584

64. Wang N, Zhang D, Wang Z, Xun H, Ma J, Wang H, et al. Mutation of the RDR1 gene caused genome-
wide changes in gene expression, regional variation in small RNA clusters and localized alteration in
DNAmethylation in rice. BMC Plant Biol. 2014; 14:177. 10.1186/1471–2229–14–177 PMID: 24980094

65. Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, et al. AGO1- miR173 com-
plex initiates phased siRNA formation in plants. Proc Natl Acad Sci U S A. 2008; 105(51):20055–62.
Epub 2008/12/11. 0810241105[pii]10.1073/pnas.0810241105 PMID: 19066226

66. Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, et al. Unique functionality of
22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis.
Nature structural & molecular biology. 2010; 17(8):997–1003. Epub 2010/06/22. 10.1038/nsmb.1866

67. Rajeswaran R, Aregger M, Zvereva AS, Borah BK, Gubaeva EG, Pooggin MM. Sequencing of RDR6-
dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis. Nucleic Acids
Res. 2012; 40(13):6241–54. 10.1093/nar/gks242 PMID: 22434877

68. Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary
siRNA biogenesis in plants. Proc Natl Acad Sci U S A. 2010; 107(34):15269–74. 10.1073/pnas.
1001738107 PMID: 20643946

69. Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans- acting siRNA
biogenesis in plants. Cell. 2005; 121(2):207–21. 10.1016/j.cell.2005.04.004 PMID: 15851028

70. Bhattacharjee S, Zamora A, Azhar MT, Sacco MA, Lambert LH, Moffett P. Virus resistance induced by
NB-LRR proteins involves Argonaute4-dependent translational control. The Plant journal: for cell and
molecular biology. 2009; 58(6):940–51. Epub 2009/02/18. 10.1111/j.1365–313X.2009.03832.x

71. Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of
genes in planta. Plant Physiol. 2003; 133(2):462–9. 10.1104/pp.103.027979 PMID: 14555774

72. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J. SERRATE: a new player on the plant micro-
RNA scene. EMBORep. 2006; 7(10):1052–8. 10.1038/sj.embor.7400806 PMID: 16977334

73. Agorio A, Vera P. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis.
Plant Cell. 2007; 19(11):3778–90. 10.1105/tpc.107.054494 PMID: 17993621

74. Hunter C, Sun H, Poethig RS. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family
member. Curr Biol. 2003; 13(19):1734–9. PMID: 14521841

75. Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: new fea-
tures of the Arabidopsis thaliana T-DNAmutant database. Nucleic Acids Res. 2012; 40(Database
issue):D1211–5. 10.1093/nar/gkr1047 PMID: 22080561

76. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional muta-
genesis of Arabidopsis thaliana. Science. 2003; 301(5633):653–7. 10.1126/science.1086391 PMID:
12893945

77. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Ara-
bidopsis thaliana. Plant J. 1998; 16(6):735–43. PMID: 10069079

78. Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z. Plant virus-mediated induction of miR168 is asso-
ciated with repression of ARGONAUTE1 accumulation. EMBO J. 2010; 29(20):3507–19. 10.1038/
emboj.2010.215 PMID: 20823831

79. Gilbert K, Faber N, Kasschau K, Chapman EJ, Carrington JC, Carbonell A. Preparation of Multiplexed
Small RNA Libraries From Plants. Bioprotocol. 2014; 4(21).

80. Fahlgren N, Sullivan CM, Kasschau KD, Chapman EJ, Cumbie JS, Montgomery TA, et al. Computa-
tional and analytical framework for small RNA profiling by high-throughput sequencing. RNA. 2009; 15
(5):992–1002. 10.1261/rna.1473809 PMID: 19307293

Restriction of TuMV by ARGONAUTES

PLOS Pathogens | DOI:10.1371/journal.ppat.1004755 March 25, 2015 27 / 27

http://dx.doi.org/10.1038/ng1543
http://www.ncbi.nlm.nih.gov/pubmed/15806101
http://dx.doi.org/10.1073/pnas.0505461102
http://dx.doi.org/10.1073/pnas.0505461102
http://www.ncbi.nlm.nih.gov/pubmed/16081530
http://dx.doi.org/10.1128/JVI.00272&ndash;08
http://www.ncbi.nlm.nih.gov/pubmed/18353962
http://dx.doi.org/10.1128/JVI.02643&ndash;09
http://www.ncbi.nlm.nih.gov/pubmed/20504923
http://dx.doi.org/10.1093/nar/gkl886
http://www.ncbi.nlm.nih.gov/pubmed/17090584
http://dx.doi.org/10.1186/1471&ndash;2229&ndash;14&ndash;177
http://www.ncbi.nlm.nih.gov/pubmed/24980094
http://dx.doi.org/0810241105[pii]10.1073/pnas.0810241105
http://www.ncbi.nlm.nih.gov/pubmed/19066226
http://dx.doi.org/10.1038/nsmb.1866
http://dx.doi.org/10.1093/nar/gks242
http://www.ncbi.nlm.nih.gov/pubmed/22434877
http://dx.doi.org/10.1073/pnas.1001738107
http://dx.doi.org/10.1073/pnas.1001738107
http://www.ncbi.nlm.nih.gov/pubmed/20643946
http://dx.doi.org/10.1016/j.cell.2005.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15851028
http://dx.doi.org/10.1111/j.1365&ndash;313X.2009.03832.x
http://dx.doi.org/10.1104/pp.103.027979
http://www.ncbi.nlm.nih.gov/pubmed/14555774
http://dx.doi.org/10.1038/sj.embor.7400806
http://www.ncbi.nlm.nih.gov/pubmed/16977334
http://dx.doi.org/10.1105/tpc.107.054494
http://www.ncbi.nlm.nih.gov/pubmed/17993621
http://www.ncbi.nlm.nih.gov/pubmed/14521841
http://dx.doi.org/10.1093/nar/gkr1047
http://www.ncbi.nlm.nih.gov/pubmed/22080561
http://dx.doi.org/10.1126/science.1086391
http://www.ncbi.nlm.nih.gov/pubmed/12893945
http://www.ncbi.nlm.nih.gov/pubmed/10069079
http://dx.doi.org/10.1038/emboj.2010.215
http://dx.doi.org/10.1038/emboj.2010.215
http://www.ncbi.nlm.nih.gov/pubmed/20823831
http://dx.doi.org/10.1261/rna.1473809
http://www.ncbi.nlm.nih.gov/pubmed/19307293



