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Distributed Data Fusion for Multi-robot Search

Geoffrey A. Hollinger, Member, IEEE, Srinivas Yerramalli, Member, IEEE, Sanjiv Singh, Senior Member, IEEE,
Urbashi Mitra, Fellow, IEEE, and Gaurav S. Sukhatme, Fellow, IEEE

Abstract—This paper presents novel data fusion methods
that enable teams of vehicles to perform target search tasks
without guaranteed communication. Techniques are introduced
for merging estimates of a target’s position from vehicles that
regain contact after long periods of time, and a fully distributed
team planning algorithm is proposed that utilizes limited shared
information as it becomes available. The proposed data fusion
techniques are shown to avoid overcounting information, which
ensures that combining data from different vehicles will not de-
crease the performance of the search. Motivated by the underwa-
ter search domain, a realistic underwater acoustic communication
channel is used to determine the probability of successful data
transfer between two locations. The channel model is integrated
into a simulation of multiple autonomous vehicles in both
open water and harbor environments. The results demonstrate
that the proposed distributed coordination techniques provide
performance competitive with full communication.

Index Terms—path planning for multiple mobile robot systems,
networked robots, distributed robot systems, marine robotics,
robotic search

I. INTRODUCTION

Communication between networked robotic vehicles is
rarely (if ever) perfect. One method for dealing with imperfect
communication is to constrain the movements of the vehicles
so that they remain within range, line-of-sight, or both. How-
ever, any method that depends on connectivity occurring at a
fixed time will be brittle if the model of the communication
system is inaccurate. For example, if a planning algorithm
requires two vehicles to be connected at given positions, a
failure would occur if communication is worse than planned.
In reality, communication between robots can be highly vari-
able due to environmental factors, particularly in underwater
domains with acoustic communication (see Figure 1) [1]. The
variability of communication in many real-world applications
motivates the development of algorithms capable of operating
with any level of shared information.
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Fig. 1. Communication can be highly variable, and it is often difficult to
predict whether two vehicles can share information at given locations without
knowing environmental factors. Calm wind and low shipping activity results
in a connected network of underwater vehicles (left), but high wind and high
shipping activity disconnects the same network of vehicles (right). Utilizing
such communication systems during multi-robot planning requires fully dis-
tributed algorithms capable of operating at any level of communication.

We explore the problem of multi-vehicle coordination with
limited shared information through analysis of the moving
target search domain. In this scenario, autonomous vehicles
need to locate a moving target using spatially-limited sensing.
In cases where disturbances in the environment (e.g., ocean
currents) affect plan execution, moving target search with
communication limitations requires fusing information when
vehicles reconnect after being disconnected. For instance, if a
vehicle makes a number of observations and then comes into
contact with a vehicle that was out of contact for a long time,
sharing the entire history would be costly both in terms of
communication and in terms of computation required to fold
the observations into each vehicles’s current information map.
Thus, solving this problem requires the development of data
fusion techniques and corresponding coordination methods.

The key novelty of this work is the introduction and analysis
of data fusion techniques for moving target search tasks. The
ability to fuse data from vehicles that have been disconnected
for long periods of time enables distributed path planning that
operates at varying levels of shared information.

II. RELATED WORK

The study of target search dates back to classical optimal
search theory [2]. In this early work, the goal was to perform
maritime search operations (e.g. to find a lost nuclear bomb,
submarines, shipwrecks, or people lost at sea). Many of these
algorithms improved search efficiency and were successfully
used by naval search teams. However, classical work in search
theory did not consider communication limitations imposed on
modern underwater vehicles.

A large body of multi-robot coordination research simplifies
the problem by assuming perfect communication. In many
cases, it is possible to show performance guarantees on decen-
tralized algorithms for multi-robot search tasks if perfect com-
munication is available [3]. In some domains, communication
may be good enough to allow for this simplifying assumption.



IEEE TRANSACTIONS ON ROBOTICS

However, many communication systems, such as underwater
acoustic modems, are extremely noisy and sensitive to a large
number of noise sources [4]. Thus, an assumption of perfect
communication is often unrealistic.

An alternative to assuming perfect communication is to as-
sume that an “on/off”” communication model is available. Such
a model assumes that certain configurations are guaranteed to
allow two robots to communicate, and other configurations
remove all possibility of communication [5], [6]. Algorithms
for on/off communication have been implemented on teams
of ground robots [7], and it is possible to develop fully dis-
tributed approaches [8]. However, these approaches rely on the
requirement that the configurations capable of communication
are known before execution.

In some cases, communication maps can be built online
to determine if connectivity is possible in a given configura-
tion [9]. However, such techniques require training data, which
is particularly problematic when environmental conditions are
changing. Recent work has also relaxed the requirements for
full connectivity by allowing vehicles to lose communication
for portions of the task [10]. This prior work still assumes
that communication between all vehicles is available at pre-
specified points in the plan.

Moving towards more realistic communication modeling,
researchers have examined end-to-end bit error rate met-
rics [11] and bandwidth limitations [12] for maintaining con-
nectivity in mobile robotic networks. Sophisticated communi-
cation models have also been utilized to improve teleoperation
methods [13]. In our own prior work, we adapted communi-
cation channel and transceiver models from the literature to
determine their effect on station keeping in a robotics applica-
tion [1]. We also applied similar models to data collection
in underwater robotic sensor networks [14]. In the current
paper, we derive a communication system approximation for
use in simulating multi-robot coordination in the moving target
search domain.

Combining information from team members that have been
disconnected requires a method for fusing data between them.
The distributed data fusion problem has been previously exam-
ined for estimation problems using Gaussian distributions [15].
Our work allows for arbitrary distributions, though we limit
the scope to target search problems.

In the related domain of simultaneous localization and
mapping (SLAM), researchers have examined the problem
of decentralized coordination and estimation [16]. In this
prior work, the robots share their history of measurements
and odometry, which grows over time as the robots are
disconnected. The authors show that a centralized-equivalent
estimate can be calculated by taking advantage of the Markov
Property in an Extended Kalman Filter. A similar technique
might be feasible in the moving target search domain given
sufficient communication and computation. As an alternative,
we propose a technique that shares belief states, which avoids
the communication requirements of sharing the entire knowl-
edge set as well as the computation required to calculate a
centralized-equivalent estimate. As a tradeoff, our technique
generates an approximation to the centralized-equivalent be-
lief, which we show to be effective in solving the moving

target search problem.

A preliminary treatment of this work appeared in a prior
conference paper [17]. The journal version includes additional
theoretical results, extended simulations and experiments, and
more detail on the proposed methods.

ITI. PROBLEM SETUP
A. Bayesian Data Fusion

To enable efficient information sharing, we present data fu-
sion techniques for moving target search. Our technique allows
vehicles that have been disconnected for a long period of time
to fuse information when they later become reconnected. The
proposed fusion rule extends prior work in decentralized data
fusion [15] by allowing the use of an objective function that
is not modeled as a Gaussian distribution.

The general decentralized data fusion framework estimates
some feature of interest (e.g., a target’s location) described
by a state vector x;, where t denotes the current time.
The feature is modeled using a probabilistic state transition
Pr(x¢|x:—1), which is assumed to be Markovian. Observations
z; are received that provide information about the state x;.
A model of the sensor likelihood function is also known that
provides L(z;|x;) given the state at the time of the observation.
The Bayesian filtering problem is to find a posterior estimate
Pr(x¢|Z!,xo) given observations up to and including time ¢
(denoted by Z!) and an initial state estimate xq. Using the
recursive Bayes’ rule, calculation of the posterior estimate
takes the following form:

Pr(x¢|Z,x0) =
nL(z¢|x:) Z Pr(x:|x;_1) Pr(x;_1]|Z" 1, x0), (1)

Xt—1

where 7) is a normalizing constant.

Equation (1) can be separated into a predictive component
in which Pr(x;|x;_1) is applied, and an information fusion
component in which L(z|x;) is applied. The calculation of (1)
becomes a decentralized data fusion problem when different
vehicles ¢ and j receive different measurement histories Z!
and Zz., and wish to reconcile them into a common estimate
Pr(x;|Z} ;). In this case, there is some redundant information
between the estimates Pr(x;|Z};). If the redundant informa-
tion is known, the fused estimate can be calculated in closed
form [15]. However, in many cases the redundant information
is not known because it has already been folded into the
estimate. Thus, recovering the true distribution can require
storing a large number of measurements and reapplying the
filtering steps. For increasingly large teams, the combinatorics
of such perfect fusion becomes infeasible.

In the case where the redundant information is not known,
it is desirable to develop an estimate of the fused distribution
that always avoids overcounting the redundant information
Pr(x¢|Z};). Such an estimate is known as a conservative
estimate because it will never become more sure of the
target’s position than is warranted by the measurements. For
the case of Gaussian distributions, it is possible to achieve
a conservative estimate using a weighted combination of the
disparate estimates and covariances [18]. However, particularly
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in target search applications, the distribution of interest cannot
be modeled using these assumptions. We present a method
below that provides a conservative fusion method for moving
target search using minimal computation.

B. Moving Target Search

Our specific goal is to locate a target of interest in a
known environment with a team of autonomous vehicles. This
formulation applies to locating a lost target (e.g., a subma-
rine) and to locating features of interest, such as an area of
scientific interest at an unknown location. We assume that the
environment has been discretized into N cells such that each
cell location represents a vertex on a graph, and traversable
connections between those locations represent edges (see [3]
for a discussion of discretization methods). We also assume
that this graphical representation of the environment is known
to the searchers.

For the purposes of this paper, we assume that a vehicle
located in a given cell has the same sensing capabilities
regardless of its exact position in the cell (e.g., it can sense
targets in its own cell and perhaps some adjacent cells). The
choice of the coarseness of discretization is determined by
the sensing capabilities of vehicles in addition to the available
computation. Our formulation allows for false negatives (i.e.,
a target may not be found even if it is in the same cell as
a searcher), but we assume that false positives are negligible
(i.e., a target will not be identified unless one actually exists
in the cell). This is often a reasonable assumption in ocean
search scenarios because any potential target can be inspected
more closely once it has been identified, and the time scale
of such additional inspection is substantially smaller than the
time it takes to move to a new location. We also assume that
the search game is over when a target is found (i.e., captured).

We are given K vehicles to search for a target that moves
between the cells in the graph. The target’s state at time ¢ is
represented as a belief vector b(t) = [bo(t),b1(t),...,bn(¢)],
where by (t) is the probability that the target has been found
prior to time ¢, and by (¢) through by (t) are the probabilities
that the target is in cells 1 through N respectively and has not
yet been found. We will refer to the state with belief by (¢) as
the capture state.

We note that the capture state represents the probability that
the target has been found in all possible worlds. For instance,
if one were to run the search game a large number of times, the
capture state would be equivalent to the number of times the
target was found prior to time ¢ divided by the total number
of trials. This is different from representing the probability
that the target is found in the current world, which, since
the false positive rate is considered to be negligible, would
always be either zero or one. A key aspect of the proposed
method is that the searchers optimize the capture probability
over all possible worlds rather than in the current instantiation
of the search game. This leads to high performance on average,
which is desirable when the search is run many times (e.g., in
the persistent underwater search domains of interest).

Given this formulation of the capture state, we can math-
ematically represent a capture event on the belief vector by

defining a matrix that moves probability from all cells visible
from searcher k’s current cell sj(t) to the capture state. Let
37 be the probability that a target is found in cell n given that
a searcher is in cell j. When a searcher is located in cell j,
the belief update is given by:!

bu(t +1) = (1= B))ba(t) = bu(t) = Biba(t), ()
bo(t+1) = }: xﬁb()+b() 3)

ne{l,..

This belief update can be encoded into a capture matrix C},
which is applied at time ¢ as b(¢t + 1) = C,;b(t). For example,
if it is assumed that the searcher has perfect sensing and can
only see within the cell it is located, the capture matrix for a
searcher in cell one would be the (N + 1) x (N + 1) identity
matrix with the second row unity value shifted to the first row.

Similarly, we can define dispersion matrices to represent
the expected motion of the target in the environment. The
discretization of the environment yields an undirected graph
of possible target movements between cells. Let «;; be the
probability that a target moves from cell ¢ to cell j (note that
> jCij = 1, for all 7). The dispersion matrix is defined as the
matrix that applies the following rule to each cell n:

We note that utilizing a dispersion matrix assumes that
the target’s motion model obeys the Markov Property. The
dispersion matrix D at time ¢ can be applied to yield a
new target state vector at time t + 1 as b(t + 1) = Db(t).
Finally, we can apply both the dispersion and capture ma-
trices to yield an updated belief vector at the next time as
b(t+1) = [[;c0 C;Db(t), where O is the set of cells occupied
by searchers.

The objective function J(S) takes a set of planned paths
from K vehicles S = {S51,S5%,...,5k} and returns the
expected utility gained. A commonly used objective function
for moving target search is the discounted probability of
locating the target2 or feature of interest [3], [19]:

T
=D 'ho(t), (5)
t=0

where S(0),...,S(T) are the vehicles’ planned paths, ~ is a
discount factor, and by(t) is the the probability that the target
had been found prior to time ¢, and 1" is some arbitrary end
time. The vehicles’ planned paths determine the /3] values
applied by the capture matrices (Equation 3), which fully
define the value of the capture state.

It is important to note that in the application domains of
interest (e.g., underwater search) the planned paths cannot be
executed exactly because of disturbances (e.g., wind, ocean
currents, etc.), and the vehicles may visit unplanned locations

J(S(0), ..., S(T

IReadjusting the belief distribution to sum to one (Equation 7) could be
used in place of Equation 3 for the capture matrix update. However, Equation 3
provides additional intuition about the role of capture events and is also used
in the theoretical analysis in Section IV-A.

’Note that the discounted probability of capture objective function pos-
sesses useful theoretical properties, including submodularity, which lead to
approximation guarantees on a number of efficient algorithms and generally
relate to high performance of distributed algorithms [3].
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or execute the path more quickly or more slowly than expected.
In these cases, the function J(S) provides an estimate of
the utility provided by a planned path. Imperfect prediction
of future actions limits the performance of a pre-planned
coordination method where the vehicles determine their paths
beforehand and then simply execute them without requiring
additional communication (see Section V-B).

We assume that the target is found (and reward received)
regardless of whether that information has been communicated
to the entire team. With imperfect communication, the vehicles
will not have updated paths for all vehicles, and hence will
not be able to compute the objective exactly. Instead, they
must approximate the objective based on their own limited
information.

In our moving target search formulation, a capture event
is an observation of the target’s state and corresponds to a
measurement z;. The dispersion matrices apply the motion
model Pr(x;|x;_1). In fact, when false positives are not con-
sidered, the application of the dispersion matrices and capture
matrices becomes equivalent to the Bayesian update [3]. Thus,
we have a Bayesian information fusion problem similar to
those presented in the literature.

IV. DISTRIBUTED DATA FUSION AND COORDINATION
A. Data Fusion for Moving Target Search

We now present data fusion rules for locating a moving
target. Given the objective function above, we can formulate
a data fusion problem for moving target search. The belief
vector b(t) describes the probability that the target is in each
possible state of x; in the decentralized data fusion framework.

We examine a class of fusion rules characterized by
element-wise modifications of the probabilities at each cell. At
a given time ¢, a vehicle k is fusing data from I other vehicles.
We define a class of fusion rules where for each cell n, we
update the belief as b (t) = vob0 (t) +v1bk () +. .. +vrbL(t).
The fusion rule is defined by the vy,...,v; values, which
weight the belief estimates from the different vehicles. Once
this update rule has been applied to all beliefs, the capture
state is renormalized as in Equation 7. This class of fusion
rules is useful to examine because the fused value of each cell
n only depends on the corresponding beliefs for that same
cell. This property allows for partial beliefs to be transmitted
without affecting the fusion rule.

1) Minimum Fusion Rule: Before introducing our proposed
fusion rule, we will require some additional notation. When
vehicles become disconnected, it is assumed that each of them
maintains its own belief vector based on the application of its
own capture matrices and the capture matrices of other vehi-
cles with which it is in contact. Each vehicle k’s local belief
vector will be referred to as b*(t). The belief vector that would
result if all capture matrices were applied will be referred to as
b*(t). If the vehicles have perfect communication, b*(¢) will
be equal to b*(¢) for all k.

As long as the vehicles remain connected, they can share
their locations, and the appropriate capture matrices can be
applied. If the vehicles are disconnected and then regain
connectivity, the following rule is introduced to merge any

number of vehicle estimates into a single merged estimate
bR (t):
by (1) = minbj, (1), (©6)

where min; is chosen over all vehicles within communication
range of vehicle k. Equation (6) is applied over all n €
{1,..., N}. After applying the rule in (6), the belief vector
must be renormalized. If a standard renormalization is applied
(i.e., divide all elements by the total probability), the value
of the capture state could be either increased or decreased.
This renormalization is undesirable because the capture state
encodes the probability that the target was found prior to time
t in all possible worlds. Clearly, this value can only increase
as more observations are made. An alternative that avoids this
drawback is to adjust the capture state directly to reflect the
estimates in each cell after the application of the minimum
rule:

N
bo(t) =1 bE(). (7)
n=1

If multi-hop communication is allowed, the resulting dis-
tribution b*(¢) will be shared by all vehicles connected to
vehicle k£ (perhaps after some delay due to communication
update rates). However, if only single-hop communication is
possible, different vehicles may maintain different estimates
even after a merge, due to having different neighbors. In this
case, each vehicle’s merged distribution contains the minimum
probability that a target is in each cell given its immediate
neighborhood. However, after several subsequent merges, the
multi-hop information will be propagated through the network,
and all indirectly connected vehicles will eventually share the
same distribution [18].

The intuition behind the minimum fusion rule is that each
observation will reduce the probability of the target being in
one or more cells, which necessarily increases the probability
in the capture state. The vehicles will want to regain lost
information from missed observations using a fusion rule that
decreases the probability in the environment and increases the
probability in the capture state. The next section will show
that the merged distribution has several desirable properties
relative to the true distribution.

2) Analysis of the Fusion Rule: It will now be shown that
the minimum fusion rule never overestimates the probability
that a target is captured, and it never underestimates the
probability that a target is in a cell. Overestimating capture
would lead to search schedules that avoid areas that would be
searched in the optimal schedule, which is undesirable. The
following assumptions are made for this analysis.

Assumption 1: The initial belief b?(0) equals &’ (0) for all
vehicles ¢ and j. That is, all vehicles start with the same belief
over the target’s state.

Assumption 2: The dispersion matrix D is known to all
vehicles. That is, all vehicles have the same model of the
target’s behavior.

Assumption 3: The false positive rate is negligible for all
vehicles and all cells. The false negative rate is incorporated
into each capture matrix C; using non-unity values in the
corresponding cells.
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We now show that the minimum fusion rule will never
underestimate the probability that a target is in a given cell.

Theorem 1: The value min; b (¢) is greater than or equal
to b3 (t) for any cell n € {1,..., N}, any time ¢, and any
number of vehicles included in min;.

Proof: The argument is that the capture matrices C; and
the dispersion matrix D are monotone on the appropriate
subvectors of the target’s belief (i.e., the capture state and
non-capture states respectively). Without loss of generality let
n be an arbitrary cell in the environment. The proof will be
by induction on b,,(t) (i.e., the belief at time ¢ for cell n). By
assumption, b%, (0) = b7 (0) for all vehicles i and cells n. We
now show that b} (1) > b%(1).

By assumption, each vehicle applies the same dispersion
matrix D to the belief vector. Let b (0) be the belief for
vehicle ¢ and cell n after the application of the dispersion
matrix to b (0) but before the application of any capture ma-
trices. Similarly, let b% (17) be the corresponding belief after
the application of the first capture matrix to b% (0"). Finally,
let b (1) be the corresponding belief after the application of
all capture matrices.

After the application of the dispersion matrices, we have
b:,(07) = b%(0F). If communication is perfect, all capture
matrices will be applied to b*(0") that are applied to b*(07),
which leads to b°(1) = b*(1). Due to imperfect communi-
cation, one or more capture matrices may not be applied.
Let capture matrix C; be the first capture matrix applied to
b*(07) that is not applied to b*(0"). Now, b, (17) = b (17)+
BIb:(17) > b5(17). For each subsequent capture matrix
applied or not applied, this inequality continues to hold. Thus,
after the application of all capture matrices, b, (1) > b (1).

We now continue with the induction on b7, (t). If bi (t) =
b (t), then the argument above holds for b¢ (t+1). If b (t) >
b%(t) for any o, then the application of the dispersion matrix
to b (t) is a linear combination of smaller values than those
used for b7, (¢). In this case b, (tT) > b7 (¢T). For each capture
matrix applied or not applied, the inequality continues to hold
as above. Thus, b% (t + 1) > b (t + 1) for all n. The same
argument can be applied to all vehicles <. ]

An immediate corollary is that no vehicle will ever overes-
timate the belief that the target is found.

Corollary 1: The value of bf(t) is less than or equal to
b (t) at any time ¢ and any vehicle k.

Proof: Tmmediate from b§(t) = 1 — ij:l b* (t), Equa-
tions 6 and 7, and Theorem 1. [ |

The analysis above shows that the vehicles will never over-
estimate the probability of capture due to using the minimum
merging strategy. In addition, the vehicles will never believe
that a target is not in a cell when it actually has a high
likelihood of being there. Thus, some areas may be searched
more often than they would be without the merging, but
no area will be neglected due to the merging. As described
above, such fusion rules are desirable and are referred to as
conservative in the distributed data fusion literature [15].

In addition, the minimum fusion rule can be utilized when
a partial map is received from another vehicle. For instance, a
vehicle may only share the portion of its belief near its prior
path to save communication cost. As long as the information

received is stamped with its location, the partial map can be
folded in using the minimum rule on whatever components
of the information map that are received. In the context of
realistic communication modeling, several packets may be lost,
which would correspond to sections of the map. These lost
sections would simply not be incorporated into the receiving
vehicle’s information map.

3) Alternative Fusion Rules: The minimum fusion rule is
not the only fusion rule possible in this domain that avoids
overestimating the probability of the target in a given cell.
For instance, a rule that averages over the beliefs of all adja-
cent vehicles will also avoid overcounting the measurements.
However, we will show that the minimum rule provides a
more accurate estimate (relative to the L1 error) of the true
distribution than the averaging rule. To understand why, recall
from the analysis above that missed application of capture
matrices will always increase the amount of probability in a
given cell. Thus, the average rule throws out more information
about capture than the minimum fusion rule.

We now show that the minimum fusion rule provides a
smaller approximation error (versus the true belief) than any
fusion rule in this class.

Theorem 2: Given the class of fusion rules described by
bE(t) = vob(t) + vibk(t) + ... + vrbL(t)), the fusion rule
with v, = 1 for i,,;, = argmin, b} (¢) and v; = 0 for all
i # imin minimizes 30, oy |07 (8) — bk (t)|, where | - | is
the L1-norm.

Proof: The proof follows from the same property of the
capture matrices as used in the proof of Theorem 1 (i.e., the
capture matrices are monotone on the capture state). As above,
we begin with ¢ = 0 when by assumption b% (0) = b7 (0) for all
n and k. By construction, the belief b*(1) = [, C; Db*(0),
where O is the set of cells occupied by vehicles. Due to
imperfect communication, one or more capture matrices may
not be applied to b*(1) = [];c0,co CjDU*(0).

We start with the case where the vehicles become recon-
nected before t = 2. By assumption, the same dispersion ma-
trix has been applied by all vehicles at ¢ = 1. From Equation 2,
we see that the application of any C; at time ¢ = 1 will only
decrease the value of b%(1). Thus, the vehicle with minimal
b (1) yields the closest value to b% (1), since b (1) has applied
all relevant capture matrices. Applying this same argument

.....

is also minimized. Finally, since the capture state sums to one,
the value |b5(1) — b%(1)| is also minimized.

Now we deal with the case where the vehicles have been
disconnected for some time and become reconnected at time
T > 0. At time T, the value of b*(T') has been found by the re-
cursive application of b*(T") = Ijco: C;DV*(T —1). Sim-
ilarly, b*(T') would have been calculated through recursively
applying b*(T') = [[;co C;Db*(T'—1) if all information were
available. From Equation 2, we know that the failure to apply
any capture matrix C; yields an increase in the probability
at some subset of cells. From Equation 4, we know that the
dispersion matrix redistributes existing probability between
cells without moving probability to or from the capture state.
If more probability exists in a cell n, then more will be
redistributed by applying the matrix D one or more times.
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Algorithm 1 Distributed coordination with limited communi-
cation

1: Input: vehicles 1 to K, mobility graph ¥, objective J,

planning horizon 7', initial distribution b(0)

2: % Runs in parallel on each vehicle k € [K]

3: 1«0, tg < 0, bE(t) < b(0) for all k € [K]

4: while target not found do

5: % Process any transmissions waiting in the queue

6:  while queue is not empty do

7: Process received transmission from vehicle 7

8

9

Update b*(t) by fusing b*(t) and applying C, ()
Update path estimate S}, for vehicle 4

10:  end while

11:  if at replanning location then

12: to +—t

13: % Generate a subset of informative paths

14: f = Q(\Pk(to,to —+ T))

15: % Determine best path given current information
16: Sy« argmaxg, c¢ J (b (t), Sk, Sy, - -)

17:  end if

18:  Broadcast b*(t) and S (¢, to +T)
19:  Continue execution of S (¢,to + T')
20: bk(t +1)« Csk(t)Dbk (t)

21 t+t+1

22: end while

Thus, the same argument from the case above (where the
vehicles reconnect quickly) applies here. ]

B. Coordination with Limited Communication

We now present a distributed technique for coordinating
teams of vehicles to locate lost targets under limited com-
munication. Our approach is passive with respect to the
communication limitations, in that it does not directly utilize
the communication system approximation as part of planning.
Instead, our approach uses implicit coordination [3], where
vehicles share their plans and information maps to improve
the team plan. If information is not available due to communi-
cation limitations, each vehicle plans without that information.

We will denote Si as vehicle k’s current estimate of
vehicle ¢’s plan, and we will denote the set {1,...,K} as
[K]. All possible feasible paths for vehicle k from times tg
to time t; are denoted as Wy (to,t;). Algorithm 1 gives a
summary of the distributed planning approach. The vehicles
plan their own paths and broadcast both their intended plans
as well as their current estimate of the target’s position.
The vehicles use a path generation technique represented by
function Q(Wg(to,t1)) that takes as input a set of possible
paths and returns a subset of those paths. The function Q can
be deterministic (e.g., enumeration of all paths) or stochastic
(e.g., random selection of paths) or based on some heuristic.
We assume that low-level collision avoidance is used to
avoid inter-robot collisions, which is reasonable when the
maneuverable space is large relative to the density of the robots
(e.g., in ocean search scenarios).

Each vehicle incorporates the plans and estimates received
from teammates. If two vehicles are connected, they have

an updated estimate of each other’s state and can apply the
appropriate capture matrix. If they are not connected and later
become connected, they apply the minimum fusion rule as
described in Section IV-A. Plans and information maps that
are not available are simply not utilized, possibly decreasing
the effectiveness of the planned path. Thus, the algorithm can
operate at any level of communication. We note that the order
of processing transmissions waiting in the queue (line 7) does
not affect the outcome of the planner, due to the application
of the minimum fusion rule and the path planning being held
off until the entire queue is processed.

When running the proposed algorithm, each vehicle op-
timizes its own plan given the information shared by its
teammates. This approach avoids planning in the joint space
of plans, represented by the cross product of all the vehicle’s
planning spaces, which grows exponentially in the size of the
team. Such decoupled planning techniques have been shown
to perform near-optimally in target search domains and to
outperform competing heuristics [3].

V. SIMULATIONS AND EXPERIMENTS
A. Ground Vehicle Search

Our first simulations test the effectiveness of the proposed
fusion rule using ground vehicle search scenarios. This domain
provides understanding of the basic behavior of the proposed
algorithm. Underwater search, the main focus of this paper,
appears in the following section. We ran ground vehicle search
simulations in three environments with range and/or line-of-
sight communication constraints. These simulations utilized a
multi-robot simulation environment implemented in C++ on
Ubuntu Linux running on a 3.2 GHz Intel i7 processor with
9 GB of RAM.

In the simulations, a team of autonomous ground vehicles
searched for a target that started in a random cell and moved
randomly to any adjacent cell at a speed of 0.1 m/s. To adjust
for different cell sizes in the dispersion matrices, the probabil-
ity of the target remaining in its current cell was increased for
larger cells (a target moving at a fixed speed would be more
likely to remain within the boundaries of a larger cell after any
given time step), and the remaining probability was distributed
evenly to adjacent cells. The ground vehicles started together
in a random cell (cells were big enough to accommodate
multiple vehicles) and moved with a constant speed of 1 m/s.
A factor of ten difference between the searchers’ speeds (1
m/s) and the target’s speed (0.1 m/s) was based on relevance
to urban search scenarios. Additional simulations (not shown)
demonstrated that the proposed methods provide improvement
at other relative speeds as well.

The environments were discretized as shown in Figure 2,
and the searchers were equipped with simulated sensors ca-
pable of detecting targets within the same discrete cell. For
these simulations, we used simple models of line-of-sight and
range communication that often appear in the literature. The
range constraints were set as 1/4 the diagonal of the map, and
the obstacles were set to impede line-of-sight communication.
In the next section, we will incorporate more sophisticated
communication modeling.
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The ground vehicles moved holonomically between the
centroids of the discretized cells in the environment. To model
possible disturbances in the environment (e.g., impassable ob-
jects or detours), a random probability (uniformly distributed
between 0 and 1) of moving to a cell adjacent to the intended
goal was added to the ground vehicle simulation. Complex
kinematics and dynamics were not modeled, since the goal
of these simulations was to evaluate the data fusion and
coordination techniques, but such constraints could be incor-
porated through the generation of feasible plans during the
path generation stage of the coordination algorithm. Conflicts
between vehicle paths were handled using low-level collision
avoidance.

The searchers utilized Algorithm 1 to plan paths that
maximize the discounted probability of finding the target.
The vehicles used a planning horizon of four steps and an
exhaustive enumeration to that horizon as the path generation
function Q. Searchers were allowed to coordinate with other
searchers within the communication constraints. Searchers that
could not communicate did not share beliefs and did not
integrate measurements received by team members outside of
their communication range. When a merging rule was used,
searchers that regained communication merged their estimates
using the minimum fusion rule proposed in Section IV. When
a merging rule was not used, searchers communicated their
measurements and paths when connected and incorporated
them into their current beliefs and plans. However, the “no
merging” case did not attempt to recover measurements from
periods of disconnection even after the searchers had recon-
nected.

Figure 3 shows the effectiveness of using the proposed
merging rule to locate a randomly moving target in the indoor
and outdoor environments shown in Figure 2. We note that the
path lengths and expected capture times are equivalent for a
fixed speed because the search game ends when the target is
captured. In all environments, the proposed minimum fusion
rule decreases the expected time to capture the target. In many
cases, the proposed technique yields expected capture times
nearly as low as if full communication were available.

Figure 3 also compares to a fusion rule that averages over
all available belief estimates for a given cell. This rule fits
within the class of fusion rules defined in Theorem 2. These
simulations confirm that the minimum fusion rule improves
the performance of the search task for line-of-sight and range-
limited communication models. The benefit from using the
minimum fusion rule over the average fusion rule is particu-
larly pronounced in the indoor environment, which is likely
due to infrequent reconnections between the team members in
this environment.

B. Underwater Search

In this section, we apply our techniques to underwater
search domains where communication is available through
acoustic modems. To properly evaluate the proposed approach
in these domains, we derive principled estimates of packet
error rate based on well-accepted models of acoustic channels,
and we validate these models using data from an autonomous

Fig. 2. Indoor and outdoor environments used for simulated coordinated
search with ground vehicles. The indoor 60 m X 60 m SDR (left) map was
discretized into 188 free cells using an orthogonal region growing method,
and the 200 m X 150 m outdoor MOUT (right) map was discretized into 227
free cells using a constrained Delaunay triangulation [20]. Green lines denote
discretization boundaries.

underwater vehicle (AUV) deployment. We then test the
proposed coordination and data fusion techniques through
simulations built off these communication models.

1) Acoustic Communication Modeling: Underwater acous-
tic channels are characterized by a path loss that depends
not only on the distance between the transmitter and receiver,
but also on the signal/carrier frequency. The carrier frequency
determines the absorption loss A(d, f) due to the transfer of
acoustic energy into heat in the medium. Relying on extensive
experimental data, an empirical formula for the path loss for
a distance d and frequency f (in kHz) is given in [4].

Noise in underwater acoustic channels is determined by
several factors, such as turbulence, the shipping activity in
the surrounding region, the surface motion caused by wind-
driven waves, and finally thermal noise. The constant surface
motion due to wind driven waves are a significant factor
contributing to the noise at the operating frequencies of interest
for underwater systems (100 Hz - 100 kHz). This noise can
be modeled for a given frequency as N(f) using equations
from prior work [4].

Overall, the acoustic channel is noise limited at very low
frequencies and attenuation limited at high frequencies. For
moderate signaling bandwidths B and transmitted power P,
the average signal to noise ratio (SNR) at the receiver at a
distance d and frequency f is then

P
SNR, f) = —+——+—.
D= A N B
For a Rayleigh fading sub-channel, the probability of error
for a moderate to large SNR’s can be approximated as

1
Pe) = m

The probability of symbol error on one sub-channel, P(e),
is a function of the transmitted power, the frequency of
transmission, wind speed, shipping factor, the distance and
the bandwidth used. For an uncoded packet with symbols over
M sub-channels, the probability of packet error can then be
computed as

®)

€))

Ppacket =1- (1 - P(e))M

Given the system approximation described above, we can
calculate the probability of error for transmitting an estimate
of the target’s distribution (i.e., transmitting b*(¢) from vehicle

(10)
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Fig. 4. Modeled data error rates for varying wind speeds. The curve gives
the probability that an error will occur when transmitting the probability
distribution of the target’s estimated position.

i to vehicle j), given the distance between the vehicles and
an estimate of the wind speed and shipping activity. Figure 4
shows the data error rates with the system parameters in Table I
and varying wind speeds.

2) Experimental Validation of Model: We have validated
the model above using data from the SeaBED-class AUV
Lucille [21], which was equipped with a WHOI Micro-
Modem [22] for acoustic communications. In September of
2010, Lucille assisted in mapping the submerged portion of the
San Andreas Fault off Northern California, at approximately
39°50'N, 124°W. During this survey, the AUV’s onboard

networking stack periodically transmitted packets to a surface
vessel. The experimental results demonstrate the robustness
and accuracy of the proposed model. Details on the model
validation are available in [14].

3) Underwater Search Simulations: We next test our al-
gorithms in a simulated underwater domain that utilizes the
acoustic communication models described in the previous
section. The simulated underwater vehicles moved at 5 km/hr
and had a detection radius of 200 m (motivated by the swath
width for a side scan sonar). As in the ground vehicles
simulations, we did not impose complex kinematic or dynamic
constraints on the underwater vehicles. Such constraints could
be incorporated into the coordination algorithm through the
generation of feasible paths during each individual vehicle’s
path optimization stage. As before, the target started in a
random cell and moved at 0.5 km/hr to any adjacent cell;
the searchers started together in a random cell.

Table 1 gives the communication system specifications.
In these simulations, the vehicles broadcasted their plans,
current location, and estimated target distribution when they
arrived at each replanning point. The model described above,
which incorporates distance, line-of-sight, wind, and shipping
activity, determined the probability that each vehicle received
the broadcast. Wind and shipping activity were set to vary
randomly throughout the map. The wind also affected the
vehicles’ movement. Higher wind corresponded to a higher
probability of being blown off course and searching an area
adjacent to the one intended. It was assumed the searchers
knew they were blown of course and could adjust their belief
update accordingly. Wind speed of 10 m/s caused a 100%
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TABLE 1
PARAMETERS FOR UNDERWATER ACOUSTIC SIMULATIONS

Parameter Value
Transmission Frequency 13 kHz
Transmission Power 1w
Bandwidth 1 kHz
Packet Size 256 symbols
Wind speed 1 m/s - 10 m/s

chance of moving to a cell adjacent to the one intended, and
this probability was scaled down linearly to zero with decreas-
ing wind speed. Such disturbances are typical when operating
autonomous underwater vehicles, which often surface several
kilometers from their intended goals [23].

The proposed coordination and data fusion techniques were
validated using a search problem at a fixed depth. A non-
adversarial target existed in the environment, and the underwa-
ter vehicles searched for its location. The proposed framework
allows for both moving and stationary targets. In these simula-
tions, the target was assumed to move randomly. The target’s
depth was assumed to be known a priori (e.g., it existed on
the ocean floor). Known depth reduces the planning problem
to 2D; however, the same algorithms could be applied to a 3D
problem with an expanded environment graph. Figure 5 shows
surface maps of island and harbor environments of varying
sizes used for simulated testing. The land masses served as
obstacles that prevented both communication and movement.
It was assumed that any target that left the map was considered
lost (i.e., it could never be captured). Lost targets were not
considered in the cost function.

The traversable ocean portions of the maps were discretized
into 200 m x 200 m regular grid cells, and the distributed
planning algorithm from Section IV-B was run with perfect
communication and then with the communication system
model from Section V-B1. In both the perfect communication
case and the limited communication case, the underwater
vehicles used a planning horizon of 7' = 1 for ease of
comparison to less scalable methods. Additional simulations
(not shown) showed a small (less than 10%) reduction in
capture time for increased horizon lengths. An exhaustive
enumeration to the horizon was used as the path generation
function Q. We note that with perfect communication, capture
matrices from all vehicles were applied at each time step, and
data fusion was not required to estimate the belief vectors.

For comparison, an algorithm was also implemented that
maintains full connectivity at all times. The algorithm looks
one step in the future and chooses the next location with the
highest probability of capture for the team that also ensures
that no vehicle is disconnected from the rest of the team. The
advantage of this technique is that the searchers can maintain
the same belief distribution at all times; however, they must re-
main connected to do so. The continual connectivity technique
requires planning in the joint space, which is exponential in
the number of vehicles. Thus, longer planning horizons are not
computationally feasible, and the one-step horizon was used
for comparison. Based on a worst-case assumption of wind
speed and shipping activity, the threshold that would guarantee

connectivity was set to 2 km.

Figure 5 shows quantitative results from the simulations, and
Multimedia Extension #1 shows an animation of the search
strategy in the harbor environment. The results demonstrate
that distributed coordination with the proposed communication
model performs almost as well as coordination with perfect
communication on both maps. In contrast, constraining the
vehicles’ paths such that they need to continually maintain
connectivity increases the expected time to locate the target.
The difference is more significant in the cluttered Long Beach
Harbor map, where communication is more difficult to main-
tain. In this environment, it is beneficial for vehicles to break
connectivity, search for the target individually or as sub-teams,
and later share information. The distributed coordination and
data fusion techniques allow for this behavior, which leads
to improved performance. These results demonstrate that the
benefits of breaking connectivity outweigh the benefits of
maintaining a more accurate estimation of the target’s position
by constraining the search.

The results in Figure 5 also compare to a pre-planned
coordination method where the vehicles used a centralized
solver to simulate the target belief forward and generate
coordinated paths for the entire mission (using the same
algorithm as the full communication case). The vehicles then
attempted to execute these paths. Due to disturbances from
wind (see Table I), the vehicles were not able to execute those
paths exactly, which resulted in the vehicles moving more
quickly, more slowly, or searching unexpected regions. This
pre-planned coordination method did not provide competitive
performance with the proposed method, which highlights
the need for data fusion in this domain. The improvement
over the pre-planned method is more pronounced in the less
cluttered environment due to the more reliable communication
available to the proposed method to adjust the teams’ paths
appropriately.

Figure 6 shows a comparison between the estimate of the
capture state for the average fusion and the minimum fusion
rule. As predicted by the analysis in Theorem 2, the minimum
fusion rule provides an estimate that is closer to the one
achieved using full communication. The KL divergence of the
estimated belief distributions relative to full communication is
also shown in Figure 6. It is interesting to note that there is an
initial spike in the KL divergence after the team first becomes
disconnected. The KL divergence then settles quickly when
AUVs reconnect if the minimum fusion rule is used. This
settling takes substantially longer when the average fusion
rule is used. In addition, the average fusion rules can lead to a
decrease in the value of the capture state, which is undesirable
(see Section IV-A). It is also clear from these plots that the
benefit of the minimum fusion rule over the average fusion
rule increases as the size of the team grows.

The percentage of successful transmissions and percentage
of time that the team is fully connected is shown in Figure 7.
With two AUVs, nearly 80% of transmissions are successful,
and the team is fully connected for the majority of the time. As
the number of AUVs increases, the percentage of successful
transmissions decreases to near 40% as some vehicles break
away from the team. In addition, particularly in the harbor
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Fig. 6. Comparisons of the belief distribution for a single reference AUV to the belief distribution from full communication in the harbor environment. The
minimum fusion rule provides an estimate of the capture state closer to the one found using full communication, and it also achieves a lower KL divergence
when compared to the full distribution. The benefit of the minimum fusion rule over the average rule increases as the team size grows.

environment, the AUV team is rarely fully connected (less than
10% of the time in some cases). These results demonstrate that
the proposed algorithm yields high performance even when the
packet error rate is high and the team is disconnected for a
large percentage of the time.

We also examined the mean time the vehicles took to regain
full connectivity after becoming disconnected. This value rep-
resents the time each vehicle would typically go without a fully
updated belief map. We found that the time the team remained
disconnected was fairly constant for increasing numbers of
vehicles but varied between environments. The mean time
without full connectivity was found to be 23 minutes on the
Santa Barbara map and 84 minutes on the Long Island Harbor
map. Relative to the mission times of 1 to 4 hours on the Santa
Barbara map and 2 to 10 hours on the Long Island Harbor map,
these values represent substantial periods of time that the team

was not fully connected.

A somewhat surprising observation from these results is that
a small amount of opportunistic communication can achieve
search performance competitive with full communication. The
high performance of data fusion in these scenarios stems
from the nature of the search problem where vehicles must
coordinate if they are near each other, and hence more likely to
be able to communicate. As a result of this beneficial property
of the domain of interest, data fusion methods are able to avoid
active connectivity maintenance, which is computationally
costly and requires additional planning overhead.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a distributed data fusion ap-
proach for multi-robot planning with limited communication
in the moving target search domain. We proposed and analyzed
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Fig. 7. Percentage of successful transmissions and percentage of time that
the AUVs were fully connected when running the proposed solution. The
proposed algorithm is able to achieve high performance in the target search
task with high packet error rate and with a high percentage of the time
disconnected.

data fusion techniques that provide principled methods for
incorporating information from robotic vehicles that regain
connectivity. Our proposed distributed coordination algorithm
utilizes available information to provide solutions robust to
changes in communication. Simulated experiments with re-
alistic acoustic communication models demonstrated that it is
possible to achieve low average capture times without actively
maintaining connectivity between vehicles.

The techniques proposed in this paper move towards fully
distributed multi-robot coordination and data sharing. Future
work includes further theoretical analysis of performance
guarantees with communication limitations, the derivation of
more general data fusion techniques, and improved acoustic
communication system models. For tasks that require tighter
coordination between vehicles, it may be necessary to develop
more complex algorithms to remain robust to communication
failures. In addition, tasks that require the team to replan often
may require new methods to solve when communication is
imperfect. Ultimately, this line of research has the potential
to enable high-performing multi-vehicle coordination methods
that operate at any level of shared information.
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