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Sulfite is a normal, but potentially toxic metabolite, in S. cerevisiae and other 

organisms, produced as an intermediate during reductive sulfate assimilation. S. 

cerevisiae has a basal tolerance to sulfite, presumably due to formation of a non-toxic 

adduct with acetaldehyde and reduction by sulfite reductase. The present study was 

undertaken to explore the existence of additional mechanisms for sulfite detoxification in 

S. cerevisiae using genetics and molecular biology methods. Consequently, a novel 

regulatory pathway for sulfite detoxification was found, in which Ssul, a plasma 

membrane protein with 9 or 10 membrane-spanning domains, and no significant 

similarity to proteins present to date in public databases, is the putative effector. Ssulp 

resembles a transporter that may function in sulfite efflux rather than import, since ssul 

mutants as well as mutants in genes situated upstream of SSU/ in the pathway were 

found to be sensitive rather than resistant to sulfite. SSU/ was placed downstream of 

FZF1 based on multicopy suppression analysis. FZFI encodes a putative C2H2-type 

zinc finger transcription factor, previously implicated in sulfite tolerance. The SSU/ 

promoter -lacZ fusion analysis defined Fzflp as a transcriptional activator of SSU/, 

confirming a role for the Fzf 1 protein in transcriptional regulation, previously suggested 

solely on the basis of sequence analysis. Transcription from the SSU/ promoter was 
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lower in an fzfl background, and it was strongly activated in wild-type when FZF I was 

expressed in multicopy. Another protein, Ssu3, may be required for Fzfl-induced 

activation, since transcription from the SSU/ promoter was lower in an ssu3 

background. The SSU3 gene was previously related to sulfite tolerance, but its function 

is unknown. The Fzfl protein was shown to bind directly and specifically to the SSU/ 

promoter. The first zinc finger region appeared to be essential for DNA binding, while 

deletion of the fourth and the fifth zinc fingers did not affect it. Another gene, GRR1, 

earlier implicated in glucose repression and cell cycle regulation in yeast, was also found 

to cause sulfite sensitivity when mutated. Based on multicopy suppression analysis, 

GRR1 was placed in the pathway upstream of SSU/ and FZF 1 , and is presumed to be 

involved in the regulation of both, and in additional routes of sulfite detoxification. 
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Genetic Aspects of Sulfite Tolerance in Saccharomyces
cerevisiae 

Chapter 1 

Literature Review 

1.1. Introduction 

The sequencing of the S. cerevisiae genome was completed in 1996. As a 

result, the scientific community of yeast researchers is now directing intensive efforts 

towards understanding the role of some 3,000 genes whose functions are unknown and 

whose sequences are not informative (Goffeau et al., 1996). In this effort, analysis of 

traits related to environmental conditions or traits developed in industrial strains of S. 

cerevisiae may bring some light into understanding certain functions. Tolerance to 

sulfite is a trait that has been developed in wine strains by exploiting the basal tolerance 

of S. cerevisiae and that has been taken advantage of since ancient times in wine 

making. Sulfite is a potentially toxic metabolite in the reductive sulfate assimilation 

pathway (Fig. 1), which is similar in yeast, bacteria and molds. S. cerevisiae can 

tolerate it at concentrations that will kill the others. An important means of protection 

against sulfite appears to be the formation of an adduct with acetaldehyde (Taylor et al., 

1986). Sulfite consumption by sulfite reductase also minimizes its cellular levels 

(Thomas et al., 1992a). The present study was undertaken to explore the existence of 

additional mechanisms involved in sulfite tolerance, using genetics and molecular 

biology methods. In the literature review, the reductive sulfate assimilation in S. 

cerevisiae and its regulation are analyzed since sulfite is a metabolite in this pathway. 

Then the effects of sulfite on yeast metabolism are reviewed. The next subchapter 
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analyzes yeast plasma membrane proteins, since one of the cloned genes involved in 

sulfite tolerance, SSU1, encodes a plasma membrane protein, presumably a transporter. 

The last subchapter describes C2H2-type zinc finger proteins, which are transcriptional 

regulators, since another cloned gene, FZF1, was found to be such a zinc finger protein 

and to regulate the expression of SSU1. 

1.2. Reductive sulfate assimilation 

1.2.1. Sulfite formation in yeast 

Sulfite is formed during reductive sulfate assimilation, which in general outline 

is similar in plants, fungi and bacteria, organisms that can use sulfate as a source for 

methionine biosynthesis (Fig. 1). 

S. cerevisiae demand for sulfur can be satisfied by uptake of inorganic sulfur or 

sulfur-containing amino acids. Kinetic studies have revealed at least one high-affinity 

sulfate transport system in yeast (Mc Read and Din, 1974). Sequencing of the yeast 

genome unveiled two ORFs that belong to the Sul family of sulfate transporters. One 

of the ORFs is located on chromosome II, YBR294w (SFP) (Feldman et al., 1994), 

and has similarity to sulfate permease II of Neurospora crassa (Cys-14), soy bean 

Gmak170 nodulin, human colon mucosa protein, and a putative ORF downstream of E. 

coli phosphoribosyl pyrophosphate synthetase gene (Jin et al., 1995). The second 

ORF is positioned on chromosome XVI, P9723.03c, and has similarity to the first one 

(Barrel et al., unpublished). 

Once inside the cell, sulfate must undergo a series of enzymatic conversions 

before being incorporated into the sulfur-containing amino acids. Sulfate is first 

activated by ATP sulfurylase to form adenosine 5'-phosphosulfate (APS), which is then 

phosphorylated by APS kinase to produce 3'-phosphoadenosine 5'-phosphosulfate 
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Fig. 1. The reductive sulfate assimilation in Saccharomyces cerevisiae. 
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(PAPS). PAPS is then reduced to sulfite and adenosine-3',5'-bisphosphate (PAP) in a 

thioredoxin-dependent reaction catalyzed by PAPS reductase (Schwenn et al., 1988) 

(Fig. 1). Inactivation of the two genes for thioredoxin (TRX1 and TRX2 ) rendered 

yeast unable to utilize inorganic sulfate as sulfur source (Muller, 1991). Glutaredoxin 

seems to be unable to substitute for thioredoxin in PAPS reduction in yeast (Muller, 

1991), in contrast to the situation in E. coli (Tsang, 1981). As a model for the 

reduction of PAPS, Schwenn et al. (1988) suggested that PAPS reductase is first 

reduced by thioredoxin, then PAPS reacts with the reduced enzyme and eventually PAP 

and free sulfite are liberated. There have been indications that PAPS in high 

endogenous concentration is toxic. Mutants of Salmonella typhimurium that were 

unable to metabolize PAPS, would tend to accumulate mutations in genes leading to the 

formation of PAPS, and those without such additional mutations would die during 

storage (Gillespe et al., 1968). Thomas et al. (1992b) showed that S. cerevisiae 

without PAPS reductase activity are also devoid of sulfate permease activity. This 

suggests the existence of a tight control of the ratio between the production and removal 

of PAPS (Hansen, 1995). 

The gene encoding ATP sulfurylase in yeast, MET3, has been cloned and it 

encodes a putative polypeptide of 521 amino acids (Cherest et al., 1985). A region of 

14 amino acids in the N-terminal part of the yeast ATP sulfurylase is identical to the 

ATP sulfurylases from Penicillium crysogenum and from a bacterial endosymbiont of 

Riftia pachyptyla (Laue and Nelson, 1994; Foster et al., 1994). A 25 amino acid 

region, 58 amino acids upstream of the carboxyl terminus, is also conserved among the 

three proteins. Both conserved regions are rich in basic amino acids, indicating 

potential binding sites for MgATP and sulfate (Foster et al., 1994). APS kinase is a 50 

kDa homodimer, encoded by MET14 gene (Schriek and Schwenn, 1986), whose 

expression is repressed by methionine (Korch et al., 1991). The structural gene for 
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PAPS reductase, MET16, was also cloned and it encodes an ORF of 256 amino acids 

(Thomas et al., 1990). PAPS reductase activity and MET16 transcription are repressed 

by addition of L-methionine or SAM (Thomas et al., 1990). 

It appears that this part of sulfur assimilation pathway in yeast is highly 

regulated and coordinated, first because of the possible toxicity of accumulated PAPS 

intermediate, and second because APS synthesis is energetically unfavorable (Hansen, 

1995). 

1.2.2.	 Reduction of sulfite 

Sulfite reduction to sulfide involves the transfer of six electrons, as expressed in 

the equation: 

6 NADPH + 6 H+ + S032- -> 6 NADP+ + 3 H2O + S2­

There are six complementation groups ascribed to the enzymatic step of sulfite 

reduction: metl, metS, met8, met10, met18 and met20. Mutants of each of these 

groups accumulate intracellular sulfite and none have measurable sulfite reductase 

activity (Thomas et al., 1992a). The genes complementing metS (Mountain et al., 

1991), met8 (Cherest et al., 1990) and met10 (Hansen et al., 1994) have been cloned. 

While for the first two the function could not be assigned based on sequence analysis, 

MET10 ORF has been found to encode the a subunit of yeast sulfite reductase (Hansen 

et al., 1994). MetlOp has FAD- and NADPH-binding regions which are similar to 

those of E.coli sulfite reductase flavoprotein subunit (Ostrovski et al., 1989) and to 

several other flavoproteins (Hansen et al., 1994). 

met] and met20 may be mutant alleles of the ORF encoded by YKR069w 

(Hansen, 1995), which is localized on chromosome XI (Dujon et al., 1994). This ORF 

has been found to have 36.6% identity in the 238 amino acid overlap with the 

Salmonella typhimurium cysG ORF (Hansen, 1995), which encodes a 

uroporphyrinogen III methylase, involved in the biosynthesis of siroheme (Wu et al., 
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1991). Further supporting evidence for homology comes from the fact that the 5'­

noncoding region of YKR069w contains DNA elements homologous to those of other 

MET genes, believed to take part in the regulation of the whole pathway (Hansen, 

1995). MET8, METS and MET18 ORFs' functions are unknown (Hansen et al., 

1994). 

1.2.3. Assimilation of sulfide into homocysteine and methionine 

The condensation of O- acetylhomoserine with sulfide to form homocysteine is 

one of the crucial points in methionine biosynthesis. O- acetylhomoserine is derived 

from homoserine, a precursor of threonine. Homoserine is acetylated by homoserine 

acetyltransferase, using acetyl-CoA as cosubstrate (Fig. 1). met2 mutants were found 

to be defective in this activity (Masse lot and Robinchon-Szulmajster, 1975). The MET2 

gene has been cloned (Baroni et al., 1986) and its 5'-untranslated region contains motifs 

known to be involved in methionine-specific regulation (Thomas et al., 1989). 

O- acetylhomoserine sulfhydrylase catalyzes the sulfhydrylation of 0­

acetylhomoserine to form homocysteine (Fig. 1). met25 mutant was found to lack the 

enzymatic activity (Masse lot and de Robinchon-Szulmajster, 1975) and the gene has 

been cloned and it encodes an ORF of 444 amino acids (Sangsoda et al., 1985) whose 

expression was shown to be regulated by methionine (Kerjan et al., 1986). 

Homocysteine can also be derived from cysteine and 0-acetylhomoserine, via 

the intermediate cystathionine, in the transsulfuration pathway, and it can also be formed 

via SAM demethylation, followed by hydrolysis of S-adenosylhomocysteine (Fig. 1). 

Methionine is formed from homocysteine and 5-methyltetrahydropteroyl­

glutamate by a transmethylation reaction, catalyzed by homocysteine methyltransferase 

(Fig. 1). meth mutants lack this activity and are unable to utilize homocysteine, cysteine 
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or any inorganic sulfur compound for methionine biosynthesis (Masse lot and Robichon-

Szulmajster, 1975). 

1.2.4. Cysteine biosynthesis: the transsulfuration pathway 

Cysteine biosynthesis in yeast is still controversial, but it is generally agreed that 

there is a C4 to C3 transsulfuration pathway. In this pathway, cystathionine can be 

formed by the condensation of homocysteine and serine, catalyzed by cystathionine (3­

synthetase and by the condensation of cysteine and O- acetylhomoserine catalyzed by 

cystathionine y-synthase. Cystathionine can be deaminated and cleaved by cystathionine 

y-lyase to form a-ketobutyrate and cysteine and by cystathionine 0-lyase to form 

pyruvate and homocysteine (Fig. 1). 

The gene for cystathionine P-synthase, STR4 (CYS4) encodes an ORF of 507 

amino acids (Cherest et al., 1993) and was found to have similarity with the rat 

cystathionine P-synthase gene (Ono et al., 1992). Yeast cystathionine y-lyase is 

encoded by STR1 (CYS3) and has similarity with the rat and bacterial enzymes and with 

O- acetylhomoserine sulfhydrylase (Barton et al., 1993 and Cherest et al., 1993). STR2 

may be the gene for cystathionine y-synthase (Cherest and Surdin-Kerjan, 1992). 

1.2.5. S-adenosylmethionine 

S-adenosylmethionine (SAM) is synthesized by the transfer of an adenosyl 

group from ATP to the sulfur atom of methionine, catalyzed by SAM synthetase. The 

methyl group of SAM is activated by the positive charge of the adjacent sulfur atom, and 

SAM is able to donate this group in a vast number of biosyntheses. Demethylation of 

SAM leaves S-adenosylhomocysteine, which can be further converted to homocysteine. 

Methylation of homocysteine will reconstitute methionine. This circuit is called the 

activated methyl cycle, and constitutes an important salvage pathway in yeast through 
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which organic sulfur can be reused preferentially to de novo sulfur assimilation 

(Hansen, 1995). 

There are two isozymes of SAM synthetase in S. cerevisiae (Chiang and 

Cantoni, 1977). The genes encoding them have been cloned and the two polypeptides 

share 92% identity (Thomas and Surdin-Kerjan, 1987; Thomas et al., 1988). The 5'­

noncoding regions of both SAM genes contain DNA elements presumably involved in 

methionine-specific repression (Thomas and Surdin-Kerjan, 1991). 

Faroqui et al. (1983) showed the existence of labile cytosolic and stable 

vacuolar SAM pools, leading Thomas and Surdin-Kerjan (1991) to hypothesize that the 

SAW-encoded enzyme is cytosolic, while the SAM2-encoded enzyme has a vacuolar 

location. Indeed, some vps mutants of class "C" are methionine auxotrophs 

(Jaxquemin-Faure et al., 1994). VPS33 encodes a protein involved in vacuolar 

biogenesis and protein sorting, and has been shown to be the same as MET27. When 

mutated, this gene caused the repression of the MET25 promoter under normally 

derepressing conditions (Jacquemin-Faure et al., 1994). This suggests the importance 

of proper compartmentalization of SAM for the regulation of sulfur metabolism. 

1.2.6. Regulation of sulfur assimilation 

Sulfate uptake and assimilation are repressed by organic sulfur which means that 

methionine will preferentially be used if both sulfate and methionine are present in the 

habitat. This would appear to be the preferred route of uptake since inorganic sulfur 

assimilation requires high energy expenditure. SAM rather than methionine appears to 

be the compound that represses the genes of sulfur assimilation and methionine 

biosynthesis. A yeast strain with disruptions in SAM] and SAM2 genes showed no 

repression for O- acetylhomoserine sulfhydrylase when methionine was supplied, 

whereas the addition of SAM restored the repression (Thomas et al., 1988). Whether 
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SAM induces the formation of a repressor protein or works as a corepressor with a 

constitutively expressed repressor is not known. Repression of transcription by 

addition of methionine and/or SAM has been confirmed for MET3 (Cherest et al., 

1985, Mountain et al., 1991), MET14 (Korch et al., 1991, Mountain et al., 1991), 

MET16 (Thomas et al., 1990), MET2 (Baroni et al., 1986, Langin et al., 1986), 

MET25 (Sangsoda et al., 1985), METS (Mountain et al., 1991) and MET10 (Hansen 

et al., 1994). 

To date, the products of three genes are known to be involved in the 

transcriptional regulation of the sulfur metabolic network (Kuras and Thomas, 1995). 

One, encoded by CBF1 and belonging to the basic region-helix-loop-helix protein 

family, recognizes the DNA motif RCACGTG (where R is a purine) (Mellor et al., 

1990), which is present in one or two copies upstream of nearly all known sulfur genes. 

CBF1 is involved in the transcriptional activation of the sulfur network (Thomas et al., 

1989) and also is the CDE1 element of all the centromeres of S. cerevisiae (Hieter et 

al., 1985). Cbflp lacks a transcriptional activation domain and it is likely involved in 

aiding local reconfiguration of the chromatin structure in the transcription initiation 

region, rather than in direct transcriptional activation (Thomas et al., 1995). 

MET4 encodes another known protein mediating transcriptional control of the 

sulfur network and is a basic region-leucine zipper protein (bZIP) (Thomas et al., 

1992b). The MET25 promoter contains a motif (TGGCAAATG) which is recognized 

directly or indirectly by Met4p, but this element could not be found in the promoter of 

other MET genes, the expression of which is dependent on Met4p (Thomas et al., 

1992b). 

Kuras and Thomas (1995) showed that the transcriptional activation function of 

Met4p is negatively controlled by the elevation of intracellular SAM. They identified 

two distinct domains of Met4p: an activation domain, located at its N-terminus which 
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functions in a constitutive manner, and an inhibitory domain, responding to high levels 

of SAM. Negative transcriptional regulation of the sulfur network therefore consists of 

a mechanism preventing the Met4 activation function. Met4 contains another distinct 

functional domain that appears to function as an antagonist of the inhibitory region when 

intracellular SAM is low, though allowing the activation domain to function (Kuras and 

Thomas, 1995). The third protein implicated in transcriptional regulation of MET 

genes, Met30, contains WD40 repeats, interacts with Met 4p and, impairs SAM-

mediated repression of the sulfur network when mutated (Thomas et al., 1995). 

1.3. Effects of sulfite on S. cerevisiae 

Macris and Markakis (1974) and Stratford and Rose (1986) proved that sulfite 

transport into the yeast cell is pH dependent and only the undissociated sulfurous acid is 

transported. This form is present at significant concentrations only at low pH. The first 

authors tried to demonstrate that sulfite is transported by a carrier, while the former 

brought evidence for simple diffusion and against carrier-mediated transport. The 

following are the facts that argue for simple diffusion: 

lack of saturability 

inability of potential inhibitors to affect initial rates of transport 

omission of glucose from reaction mixtures had no effect on initial rates of 

uptake 

- inability of 2-deoxyglucose to affect initial rates 

temperature increase to 390C did not cause an overall decrease of sulfite 

uptake. 

Analysis of metabolic changes in yeast cells treated with sulfite (5mM) revealed 

an immediate depletion of intracellular ATP (Schimz and Holzer, 1979). This is 

believed to be mainly due to the inactivation of glyceraldehyde-3-phosphate 
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dehydrogenase (Hinze and Holzer, 1986; Maier et al., 1986). As a result the glycolytic 

pathway is blocked and the two ATPs consumed earlier in the pathway cannot be 

recovered. 

On the other hand, sulfite also reacts with acetaldehyde to form 1-hydroxyethane 

sulfonate, which is a non-toxic compound (Stratford et a/., 1987) and this has been 

found to be one of the major routes of detoxification (Nordlov, 1985; Stratford et al., 

1987; Pilkington and Rose, 1988; Casalone et a/., 1992). In the presence of sulfite 

alcohol dehydrogenase and ethanol formation are inhibited (Maier et a/., 1986). 

Casalone et al. (1992) found that yeast mutants resistant to sulfite (below 3.6 mM) 

produced a higher level of acetaldehyde than did the wild-type, but Xu et a/. (1994) 

reported that a resistant strain showed a lower level than the parental one. Probably 

other mechanisms than acetaldehyde production, involved in sulfite tolerance, are 

enhanced in the second case. In any case, a sulfite sensitive mutant, which was later 

shown to have a nonfunctional GRRI gene, (Avram and Bakalinsky, 1996) produced a 

lower level of acetaldehyde than the parental strain (Xu et al., 1994). 

In the presence of sulfite glycerol production is also increased. Sulfite reaction 

with acetaldehyde blocks ethanol formation and regeneration of NAD+ (Gancedo et al., 

1968). Under these conditions, dihydroxyacetone phosphate is reduced to glycerol 

phosphate to regenerate the oxidized cofactor. Free glycerol is formed following the 

enzymatic hydrolysis of the phosphate group and consequently, glycerol production is 

stimulated (Gancedo et al., 1968). 

As mentioned before, metabolic and genetic studies suggested that the main 

routes for sulfite detoxification in yeast cells are the consumption by sulfite reductase 

(Thomas et al., 1992a) and non-toxic adduct formation with acetaldehyde (Taylor et al., 

1986). A new regulatory pathway for sulfite detoxification was found based on 

multicopy suppression analysis (Avram and Bakalinsky, 1996b). In this pathway, 
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Ssulp, a plasma membrane protein, presumably a transporter involved in sulfite 

extrusion from the cell, is likely the effector. The expression of SSU/ gene is activated 

by FZF 1p, a five zinc finger transcription factor, which was earlier implicated in sulfite 

tolerance (Cassalone et al., 1994). Deletion of SSU/ and FZF1 genes resulted in 

sensitivity to sulfite, confirming their involvement in the protection against sulfite. 

Overexpression of these genes resulted in tolerance to higher level of sulfite, supporting 

the previous results (Avram and Bakalinsky, 1996a; Avram and Bakalinsky, 1996b). 

The activation of SSU/ promoter in an ssu3 background by multicopy FZF I was 

lower, suggesting that a functional SSU3 gene may be required for full activation. The 

ssu3 mutant was previously shown to be sensitive to sulfite and was only partially 

suppressed by multicopy FZFI (Xu et al., 1994; Avram and Bakalinsky, 1996a). A 

fourth gene, GRR1, earlier implicated in glucose repression and cell cycle regulation, 

appeared to be also involved in this pathway, being positioned upstream of the above-

mentioned genes by multicopy suppression analysis, and probably responsible for their 

regulation (Avram and Bakalinsky, 1996a; Avram and Bakalinsky, 1996b). 

1.4. Transport systems in the plasma membrane of
Saccharomyces cerevisiae 

All eukaryotic cells contain a wide variety of proteins embedded in the plasma 

and internal membranes, which ensure transmembrane solute transport. A large 

proportion of these proteins can be grouped into families and share high sequence 

similarity with proteins found in other organisms, ranging from bacteria to humans. 

Most transport proteins characterized to date catalyze the uptake of solutes across the 

plasma membrane or mediate extrusion of different compounds into the medium. Other 

membrane proteins, localized into intracellular membranes, catalyze efflux from or 

compartmentalization within the mitochondria, vacuole, peroxisomes or secretory 

organelles. At least 5% of the total yeast genome encodes plasma membrane proteins 
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(Garrels, 1995), most of them presumably involved in catalyzing the transport of 

solutes across membrane. This number does not take into consideration uncharacterized 

transport proteins which share no significant similarities with known transport systems. 

Membrane transport proteins are generally classified in three main categories: pumps 

(ATPases), channels, and facilitators (also named transporters, permeases or carriers) 

(Andre, 1995). 

1.4.1 ATP-driven transport systems (Primary transport proteins) 

ATPases are involved in primary active transport (Fig. 2) (Van Der Rest et al., 

1995) which is coupled to ATP hydrolysis, enabling them to operate against (electro-) 

chemical gradients. In S. cerevisiae, there are two types of plasma membrane ATPases: 

P-type and ABC transporters (Andre, 1995). 

1.4,1,1, P-type ATPases 

The principal plasma membrane ATPase, the proton ATPase, Pmal, accounts 

for 50% of the plasma membrane protein content of exponentially grown cells (Serrano, 

1991). This protein forms a covalent acyl phosphate intermediate as part of the reaction 

cycle and has two forms, El and E2, which differ in conformation (Goffeau and 

Slayman, 1981). This type of enzyme is therefore called El E2- or P-type ATPase. 

The catalytic mechanism of P-type ATPase is distinct from that F-type ATPase of the 

mitochondria and V-type ATPase of the vacuolar membrane (Van Der Rest et al., 1995). 

Pmalp hydrolyzes ATP and generates an electro-chemical gradient of protons, Op, 

which is used to drive membrane-associated processes, such as solute transport. 

Isolation of the PMA1 gene encoding the plasma membrane ATPase (Serano et 

al., 1986) has permitted the molecular analysis of the enzyme. In contrast to 

mitochondrial F-type and vacuolar V-type ATPases, composed of multiple different 
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subunits, Pmalp only contains one. The protein has 8 to 12 putative membrane-

spanning segments with the N and C termini located in the cytoplasm (Serrano, 1991). 

Amino acid sequence motifs which are highly conserved among P-type ATPases have 

been detected and mutagenesis of the residues in these regions has established their roles 

in the ATPase function (Serrano, 1991). 

Another P-type plasma membrane ATPases has been described, Pma2 ATPase. 

It is 90% identical to the Pmal enzyme, but has distinct enzymatic properties (Schlesser 

et al., 1988). The high affinity for MgATP may indicate that Pma2p is a glucose-

regulated ATPase that plays a role under starvation conditions, when the ATP levels are 

low (Supply et al., 1993). 

Three other subfamilies of P-type ATPases exist in yeast. Subfamily 1 

comprises ion pumps related to Ca++-transporting ATPases (Fagan and Saier, 1994). 

The PMR1ISSC1 gene encodes a Ca++-pump with a potential Ca++-binding site in its 

N-terminal region and appears to contribute to calcium homeostasis. The PMR2IENA1 

gene encodes a protein which has 20% similarity to Pmal and may be involved in 

transport of monovalent cations (Na+, Li+ and K+) (Rodriguez-Navaro et al., 1994). 

Deletion of this gene results in sensitivity to high Na+ concentrations and elevated pH. 

The PMR2IENA1 gene is a part of a cluster of four contiguous genes, PMR2IENA1, 

ENA2, ENA3, and ENA4, located on chromosome IV (Rodriguez-Navaro et al., 

1994). These genes encode nearly identical proteins and likely arose by duplication. 

Sub-family 2 is composed of proteins most closely related to Cu++-pumps, like 

the human gene products defective in patients with Wilson and Menkes diseases (Fu et 

al., 1995), while the third subfamily includes proteins of unknown function (Van Der 

Rest, et al., 1995). 
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Fig. 2. Transport systems in yeast. Modified from Van der Rest et al. (1995). 
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1.4.1.2. ABC transporters 

The members of this family contain a highly conserved domain of about 200 

amino acids, the ATP-binding cassette (ABC) or the nucleotide-binding fold (NBF), 

which confers the ability to bind and hydrolyze ATP (Higgings, 1992). The structural 

unit of the ABC transporter typically consists of six transmembrane domains (TM6) 

preceded or followed by the conserved cytosolic ATPase domain. Many ABC 

transporters have a duplicate of TM6-NBF. 

The Ste6 protein, required for the secretion of a factor, is a representative of 

ABC transporters (Kutch ler et al., 1992). Other members are the proteins involved in 

pleiotropic drug resistance, similar to the multiple drug resistance proteins from higher 

eukaryotes (Balzi and Goffeau, 1994). Others are located in the membranes of 

intracellular compartments, such as vacuole, peroxisomes and mitochondria and are 

presumed to mediate solute import in these organelles (Van Der Rest et al., 1995). 

1.4.2. Passive and facilitated diffusion across the plasma membrane 

1.4.2.1. Passive diffusion 

Passive diffusion of solutes also occurs in S. cerevisiae and is governed in part 

by the physical properties of the membrane such as the acyl chain length, degree of 

saturation of the fatty acids, membrane fluidity and other factors (Van Der Rest et al., 

1995). A variety of sugar-alcohols such as arabinitol, erythritol, galactitol, mannitol, 

ribitol, sorbitol, and xylitol are thought to cross the membrane by passive diffusion only 

(Canh et al., 1975). Although specific transporter systems have not yet been found for 

these molecules, the relatively hydrophilic nature of the sugar-alcohols makes it unlikely 

and the rate of diffusion is very high (Van Der Rest et al., 1995). More-lipophilic 

compounds such as fatty acids, alkanols and hydrocarbons are more likely to diffuse 
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into the plasma membrane (Cartwright et al., 1989). Most likely, sulfite is also 

transported by passive diffusion (Stratford and Rose, 1986). 

1.4.2.2. Ion Channels 

Ion channels are complexes of membrane proteins that allow the downhill flux 

of solutes across the plasma membrane by forming an aqueous diffusion pore (Fig. 2). 

Two properties distinguish them from the transporters that mediate solute-facilitated 

diffusion: 

1. ion flow is extremely fast (more than 106 ions/sec.) 

2. ion channels are gated; their opening frequency is regulated by changes in 

membrane potential, by binding of a specific ligand or by mechanical constrains such as 

membrane stretching (Andre, 1995). 

The predominant plasma membrane channel (Ypkl) is an outward rectifying K+ 

channel (i.e. mediating K+ efflux), activated by membrane depolarization and by high 

cytoplasmic Ca++ concentration. The function of this channel is probably to balance 

charge displacement during proton-coupled substrate uptake. Gustin et al. (1988) have 

shown that stretching the plasma membrane activates another channel conducting both 

cations and anions. This mechano-sensitive channel may play a role in osmoregulation. 

The predominant vacuolar channel (Yvcl) is a cation selective inward rectifier 

(i.e. transferring ions from the vacuole into the cytoplasm), conducting Na+, K+ and 

Ca++ (Wada et al., 1987) and may play a role in adjusting the cytosolic Ca++ 

concentration from the vacuolar reservoir. 

The channels proteins of the MIP family comprise proteins found in bacteria, 

fungi, plants and animals whose sequences are highly related to that of the Major 

Intrinsic Protein (MIP) of the bovine lens fiber cell membrane (Gorin et al., 1984). All 

these proteins have a predicted topology of six transmembrane segments flanked by 
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hydrophilic termini facing the cytoplasm. They have been implicated in the diffusion of 

diverse substrates, including ions, water, glycerol, etc. (Andre, 1995). 

Sequencing of the yeast genome has revealed several genes likely to encode ion 

channels: GEF1(CLC1), having similarity to voltage-gated channel, and J0911 with 

similarity to voltage-gated K+ channels (Andre, 1995). Other proteins have sequence 

similarity with channel proteins from other organisms (Garrels, 1995), but only 

functional analysis will prove that they are really involved in processes for which their 

"relatives" are responsible. 

1.4.2.3. Facilitators/Transporters 

In the secondary transport, the energy for translocation of the solute is supplied 

by (electro-) chemical gradients of other solutes, which are often generated by primary 

transport systems (Fig. 2). Three general categories of secondary transport systems can 

be distinguished: uniport, symport and antiport (Fig. 2). Transport of a single solute 

which is facilitated by a carrier protein without the movement of a coupling solute is 

termed uniport. When transport involves the coupled movement of two (or more) 

solutes in the same direction, the transport process is referred to as symport. Antiport 

refers to the coupled movement of solutes in opposite directions (Van Der Rest et al., 

1995). 

Many solute-transporting proteins identified in bacteria, fungi, plants, and 

animals possess a common structural topology: a central hydrophobic core of 10-12 

membrane spanning domains (with an optional, large cytoplasmic loop between two 

transmembrane segments) flanked by hydrophilic domains which presumably face the 

cytoplasm (Andre, 1995). In contrast to a channel, a transporter is assumed to transfer 

the solute across the membrane by undergoing reversible conformational changes that 

expose its solute binding site alternatively on each side of the membrane. Furthermore, 



19 

transporters lack both the nucleotide-binding sequence typical of ABC transporters and 

the conserved amino acid stretches which contribute to the formation of the catalytic site 

of P-type ATPases. Many facilitators/trasnporters have been identified in yeast and they 

can be grouped into several families on the basis of sequence similarities (Andre, 1995). 

Some of these families belong to the Major Facilitator Super-family (MFS) (Marger and 

Saier, 1993). 

1.4.2.3.1. The HXT family of hexose transporters and related proteins 

This family of yeast proteins belongs to the MFS and the proteins display 

similarity to the large family of sugar transporters described in mammalian cells (Glut 

family) and bacteria (Andre, 1995). A large variety of high affinity and low affinity 

glucose transporters have been identified, as well as proteins with strong similarity to 

the previous ones, but with unknown function (Andre, 1995; Ozcan and Johnston, 

1995). Two glucose transporters (Snf3p and Rgt2p) were found to be glucose 

receptors also, that generate an intracellular glucose signal, suggesting that glucose 

signaling in yeast is a receptor-mediated process (Ozcan et al., 1996). 

Proteins involved in transport of other sugars have similarities to Hxts: Ga12, 

which is both involved in galactose and glucose transport, a transporter for trehalose 

(Crowe et al., 1991) and one for methylglucoside (Broklehurst et al., 1977). Some 

proteins, which are not sugar transporters, have also significant similarities to Hxt 

proteins, such as Pho84, which is an inorganic phosphate transport component 

repressed by high intracellular Pi levels (Bun Ya et al., 1991), and the Itrl and Itr2 

proteins, involved in inositol transport (Nikawa et al., 1991). 
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1.4.2.3.2. The AAP family of amino acid permeases 

One general amino acid permease has been identified (GAP1), which is sensitive 

to nitrogen repression (Grenson et al., 1970), along with several more specific transport 

systems (Grenson, 1992). All these proteins show high similarity and they are assumed 

to function as H+-symporters (Grenson, 1992). They are also similar to amino acid 

permeases from other fungi and bacteria (Andre, 1995) and distantly related to other 

transport proteins, such as the animal y(+)-type cationic amino acid transporters that act 

as cell surface receptors for ecotropic murine retroviruses (ecoR) (Kim et al., 1991), 

and an amino acid transporter from Arabidopsis thaliana (Alexandraki and Tzemia, 

1994). 

1.4.2.3.3. The MFS drug-resistance proteins and similar proteins 

Several yeast membrane proteins have been found to have sequence similarity 

with the bacterial drug-resistance-conferring MFS proteins (Andre, 1995). This group 

includes bacterial antiporters conferring resistance to various compounds by exporting 

them from the cell. The driving force for the export is provided by the electrochemical 

H+ gradient, generated by the respiratory chain across the plasma membrane (Marger 

and Saier, 1993). Among the yeast proteins, only two, Atrlp and Sgelp, have been 

characterized. Atrip confers resistance to amino-triazole and 4-nitroquinoline N-oxide 

(Kanazawa et al., 1988), while Sgelp confers resistance to crystal violet (Ehrenhofer-

Murray et al., 1994). 

1.4.2.3.4. The Fur and Fcy families: transporters of purines, pyrimidines 
and derivatives 

This family comprises uracil permease (Fur4) and allantoin permease (Da14) 

which share 68% identity. A uridine permease, also similar to these two proteins, has 

been found (Andre, 1995). FCY2 gene encodes a transport system for purine bases 
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(adenine, guanine and hypoxanthine) and cytosine which do not share similarity with 

Fur family (Weber et al., 1990). 

1.4.2.3.5. The Dal family - carboxylic acid transporters and other
transporters of organic compounds 

DAL5 gene encodes a nitrogen-repressible permease for ureidosuccinate and 

allantoate (Greth et al., 1977). Several other genes of unknown function have been 

found in the yeast genome encoding proteins with significant similarity to Da15 (Andre, 

1995). 

Some characterized transporters do not share high sequence similarity with any 

other yeast proteins. One is urea permease, encoded by DUR3 gene (El Berry et al., 

1993). Dur3p displays similarity to the Na+-proline symporter (putP) of E. coli and to 

the mammalian Na+-nucleoside co-transporter which belongs to the recently defined 

family of Na+-solute symporters (SSF) (sodium-solute symporter super-family) (Reizer 

et al., 1994). 

1.4.2.3.6. Transporters of inorganic phosphate and sulfate 

An interesting and well characterized system for inorganic ions is the phosphate 

transport system. One of the components is encoded by the PH084 gene and is a 

derepressible high affinity transporter mediating H+-phosphate symport. As mentioned 

before, it has high sequence similarity to the Hxt family (Bun Ya et al., 1991). 

Two ORFs which may be involved in sulfate transport have been identified: one 

located on chromosome II, YBR294w (SFP), (Feldman et al., 1994), which has 

similarity to sulfate permease II of Neurospora crassa (Cys-14), soy bean Gmak170 

nodulin, human colon mucosa protein and a putative ORF downstream of E.coli 

phosphoribosyl pyrophosphate synthetase gene (Jin et al., 1995), and another on 
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chromosome XVI, P9723.03c, which has similarity to the first one (Barrel et al., 1995, 

unpublished). 

1.4.2.3.7. Metal transporters 

Iron and copper transport systems are interconnected in yeast. Fe(III) 

reductases, which are plasma membrane proteins, catalyze the reduction of extracellular 

Fe(III) to Fe(II), which is then taken up by the cell (Klausner and Dancis, 1994). FET3 

gene encodes a high affinity Fe(II) transporter and is a copper-containing ferro-oxidase 

(Askwitt et al., 1994). FET4 gene, a multicopy suppressor of fet3 mutants, encodes a 

low affinity Fe(II) transporter (Dix et al., 1994). CTRL gene encodes a plasma 

membrane protein required for high affinity copper uptake. ctrl mutants are severely 

deficient in Fe(II) uptake, because the ferro-oxidase, Fet3p, is a copper-dependent 

enzyme (Askwith et al., 1994). 

1.5. C2H2-type zinc finger transcription factors 

The first discovery of a zinc metalloprotein that controls transcription of a 

specific gene was made in 1983 by Hanas et al., who showed that transcription factor 

TFIIIA from Xenopus oocytes, necessary for the transcription of the 5S RNA gene by 

RNA polymerase III, was a zinc protein. When the nucleotide sequence of the gene 

became available in 1985, it was noticed that the amino acid sequence of the translated 

product could be arranged so that a pair of conserved C residues and a pair of conserved 

H residues separated by a 12- to 13-residue spacer defined a series of 9 repeated amino 

acid sequences of ca. 30 residues as follows: -C-X2_5-C-X12_13-H-X3_4-H- (Miller et 

al., 1985) (Fig. 3). Within the X12_13 spacers there was an additional pair of 

conserved residues, an aromatic amino acid, F or Y, and a branched aliphatic amino 

acid, usually L, so that the conserved sequence becomes -C-X3-F-X5-L-X2_3-H- (Fig. 
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3 and Fig. 4). The pairs of C and H residues appeared to be excellent candidates for 

ligands to form the tetrahedral zinc complex (Coleman, 1992). Miller et al. (1985) 

called the repeated structure "zinc finger". 

The number of transcription factors reported to contain the zinc finger motifs has 

increased rapidly. Besides the C2H2 type pair found in TFIIIA, other structural motifs 

have been found, such as C2C2 ligand pairs which have been divided into two groups. 

One is the large family of hormone receptors which contain two isolated zinc domains at 

either end of a DNA-binding helix loop, and the second is the family of yeast 

transcription factors in which six C residues form a Zn2C6 binuclear cluster within their 

DNA-binding domains (Coleman, 1992). 

Because Fzflp, a transcription factor involved in sulfite tolerance, is a C2H2 

type zinc finger protein, this group will be described in more detail. 2D NMR and 

crystallography studies on single zinc fingers of C2H2-type were summarized by 

Coleman (1992). The finger consists of an N-terminal antiparallel 13-sheet of 9 to 11 

residues, including the 13-turn of C- X2.4 -C group, followed by an a-helix (Fig. 3 and 

Fig. 4). The zinc is held in a tetrahedral complex by the two -S- ligands from the C 

residues and the N3 nitrogens of the imidazole side chains of the H- X2.5 -H sequence. 

The two conserved aromatic residues, Y (or F) and L, are in contact, forming a 

hydrophobic interaction, important for stabilizing the distal portion of the finger. This 

fold of the finger was predicted on theoretical grounds by Berg (1988) prior to the 

completion of the solution structures. 

Determination of the X-ray crystallographic structures of the zinc finger peptides 

derived from Zif268 (Pavletich and Pabo, 1991) and Gli (Pavletich and Pabo, 1993) 

complexed with their respective DNA binding sites indicated that the amino acids within 

the a-helix of the zinc fingers provide the majority of the contacts to the DNA bases in 

the major groove (Fig. 3 and Fig. 4). In the case of Zif268 all three zinc fingers contact 
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the DNA in a similar pattern with that observed in the case of single zinc fingers and 

wrap around the double helix (Pavletich and Pabo, 1991). Conversely, Gli zinc fingers 

have very different roles in the interaction with the DNA: some make base contacts, 

some touch phosphates, others do not contact the DNA at all (Pavletich and Pabo, 

1993). Fingers 2 to 5 fit in the major groove and wrap around the DNA for a full helical 

turn. Fingers 4 and 5 appear to be the most important for recognition. These fingers 

make extensive base contacts in a 9-bp region that is conserved in the binding sites. 

Finger 2 and 3 make a set of contacts with the DNA backbone, while finger 1 does not 

contact the DNA, but instead makes extensive protein-protein contacts with finger 2. 

In the case of TFIIIA the majority of energetically important contacts required 

for DNA binding are formed between the first three zinc fingers and base pairs in the 

box C promoter element (Christensen et al., 1991). Mutation analysis indicated a 

unique property of the a-helix of finger 3 of MIA which is involved in the interaction 

with the DNA (Zang et al., 1995). For other zinc fingers proteins studied so far, it 

appeared that the a-helix of the finger is situated in the major groove of the DNA so that 

only the amino acids from the start of the a-helix up to the first zinc-coordinating 

histidine residue are positioned to form contacts with the DNA. Contrasting, 

mutagenesis results indicated that the a-helix of finger 3 of TFIIIA is positioned in the 

major groove of the DNA in such a way that residues along the entire a-helix, including 

those between the two-zinc coordinating histidine residues, are involved in making 

direct contacts to the DNA bases (Zang et al., 1995) (Fig. 4). 

It is clear that these proteins can recognize a diverse set of DNA sequences due 

to variations of certain key amino acids, though the general pattern of interaction is 

similar. For example, the Drosophila Hunchback protein recognizes a site that includes 

the sequence AAAAA (Stanojevic et al., 1989), the human Spl recognizes a site which 

includes the sequence GGGGGC (Kadonaga et al., 1988), and the human glioblastoma 
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protein (Gli) (Kinzler et al., 1988; Roberts et al., 1989) recognizes a site that includes 

the sequence TGGGTGGTC (Kinzler and Vogelstein, 1990). 

Fig. 3. The C2H2-type zinc motif. Circled residues are conserved. DNA-contacting 
residues, X, J, Z, are boxed. Modified from Klevit (1991). 
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Protein Finger Sequence 

n-sheet a-helix 

human Gli 4 YMCEHEGCRKS___FSNASDRAISHONRT HSNE 

5 YVCKLPGCTKR YTDPa3LREHVKTVHGPD 

Zif268 YRCPVES CDRR ____FSgSDELTBHIRI HTGQ1 

2 FQCRI CMRN ___FSBSLULTTLIIRT HTGE 

3 FACDI CGRK ___FABSDERKBHTKI_ HLRQ 

TFIIIA 2 FPCKEEGCEKG FTSLHHLTBHSLT_ HTGE 

3 FTCDSDGCDLR___ FTTKANMgEHENBFHNIKI 

Fzfl YKCSFDGCEKV YNRPSLLQQHQNS_HTNQ1 

2 YHCDEPGCGKK FIRPCHLRVHKWT_HSQI 

3 KACTL CQKR FVTNQQLRRHLNS_HERK 

4 LQCPYKS CQKV TSFNDDLINHMLQ_HHIA 

5 NRCKHSDCQEL___SPFASVFDLIDHYDHTHAFI 

13-sheet a-helix 

Fig. 4. Alignment of Fzfl zinc fingers with other C2H2 fingers. C and H residues 
known to interact with the zinc ion are in bold. Residues known to interact with DNA 
are underlined. Protein- DNA contacts were identified by X-ray crystallography for Gli 
(Pavletich and Pabo, 1993) and Zif268 (Pavletich and Pabo, 1991), and with 
mutagenesis for TFIIIA (Zang et al., 1995). 
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Some zinc fingers seem to be closer relatives to the Zif protein, if the DNA 

sequence they bind is taken into consideration, such as Krox-20 (Chavrier et al., 1989), 

WT-1 and Spl (Pavletich and Pabo, 1993), while others are closer to the Gli protein, 

such as Gli3 (Ruppert et a/., 1990), tra-1 (Zarkower and Hodgkin, 1992) and ciD 

(Orenic et a/., 1990). There is an amazing diversity of zinc finger proteins in nature, 

though the pattern of the main design is similar. The fact that Gli interacts differently 

than Zif, and TFIIIA different than both of them, shows us that the models that we 

imagine should not be constrained by rigid rules. The possibilities for zinc finger-DNA 

interactions are richer and more complex than one may assume (Pavletich and Pabo, 

1993). 
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2.1. Abstract 

An ssu2 mutation in Sacccharomyces cerevisiae, previously shown to cause 

sulfite sensitivity, was found to be allelic to GRR1, a gene previously implicated in 

glucose repression. The suppressor rgtl, which suppresses the growth defects of grrl 

strains on glucose did not fully suppress the sensitivity on glucose or non-glucose 

carbon sources, indicating that it is not strictly linked to a defect in glucose metabolism. 

Because the Clnl protein was previously shown to be elevated in grrl mutants, the 

effect of CLN1 overexpression on sulfite sensitivity was investigated. Overexpression 

in GRR1 cells resulted in sulfite sensitivity, suggesting a connection between CLIV1 and 

sulfite metabolism. Multicopy FZFl, a putative transcription factor, was found to 

suppress the sulfite sensitive phenotype of grrl strains, but not the glucose derepression 

or aberrant cell morphology. Multicopy FZF I was also found to suppress the 

sensitivity of a number of other unrelated sulfite-sensitive mutants, but not that of ssul 

or met20, implying that FZF1 may act through Ssulp and Met20p. Disruption of FZFI 

resulted in sulfite sensitivity when the construct was introduced in single copy at the 

FZF1 locus in a GRR1 strain, providing evidence that FZF I is involved in sulfite 

metabolism. 

2.2. Introduction 

Sulfite is a potentially toxic metabolite in Saccharomyces cerevisiae and other 

organisms in which it occurs naturally as an intermediate in the reductive sulfate 

assimilation pathway or as a product of the catabolism of sulfur-containing amino acids. 

In yeast, sulfite is formed by reduction of 3'-phosphoadenosine phosphosulfate (PAPS) 

through the action of PAPS reductase. It is then reduced to hydrogen sulfide in a six-

electron transfer catalyzed by sulfite reductase. Hydrogen sulfide condenses with 0­

acetylhomoserine to form homocysteine leading directly to methionine, or to cysteine via 
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cystathionine (Cherest and Surdin-Kerjan, 1992; Thomas et al., 1992). Catabolic 

formation in mammals occurs through the oxidation of cysteine leading to 13-sulfinyl 

pyruvate that spontaneously hydrolyzes to form sulfite and pyruvate. The sulfite 

formed is oxidized to sulfate in mitochondria by sulfite oxidase (Huxtable, 1986). 

Because sulfite is toxic to many organisms, those that produce it are presumed to 

have evolved mechanisms to prevent deleterious reactions from occurring in vivo. 

While yeast has a basal tolerance for sulfite, we previously isolated mutants with 

heightened sensitivity or resistance in expectation that sulfite-protective mechanisms 

may be impaired in the former and enhanced in the latter (Xu et al., 1994). The 

differences in levels of sulfite tolerated among the mutants were found to be small. The 

resistant mutant RSUl, was found to tolerate a three-fold greater concentration of sulfite 

than wild-type, which in turn was tolerant of a two-fold higher level than the most 

sensitive mutants. One of the sensitive mutants, ssu2, was found to have an elongated 

cell morphology, enhanced sensitivity to the reducing agents DTT, nitrite, and 

thiosulfate, to excrete less acetaldehyde, and to contain a reduced amount of glutathione. 

While the lattter two compounds are reactive with sulfite and represent potential routes 

of detoxification, a mutant severely deficient in glutathione was found not to be sensitive 

(Xu et al., 1994). Casa lone et al., (1992) reported that a sulfite resistant mutant 

excreted significantly more acetaldehyde than wild-type, suggesting that the reaction 

between acetaldehyde and sulfite may be important in vivo. Stratford et al. (1987) 

found that exogenous sulfite induced excretion of acetaldehyde by wild-type strains of 

S. cerevisiae and Saccharomycodes ludwigii. 

Here we show that SSU2 is the same as GRR1, and identify a multicopy 

suppressor of the sulfite sensitivity, but not the glucose derepression or aberrant cell 

morphology previously observed in grrl strains. GRR1 encodes a 135 kDa weakly 

expressed protein that is presumed to play a regulatory role, but whose biochemical 

function(s) is unknown (Flick and Johnston, 1991). GRR1 has been implicated in a 
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variety of functions: glucose repression (Bailey and Woodward, 1984; Flick and 

Johnston, 1991), glucose transport (Ozcan et al., 1994; Vallier et al., 1994), SUC2 

gene expression (Vanier and Carlson, 1991), divalent cation transport (Conklin et al., 

1993), turn-over of Gi cyclins (Barral et al., 1995), and suppression of bem2 

mutations involved in cellular morphogenesis (Kim et al., 1994). We add sensitivity to 

sulfite to a growing list of phenotypes associated with mutations in GRR1, provide 

evidence for a link between sulfite sensitivity and CLN1 overexpression, and implicate 

FZF1 in sulfite metabolism. 

2.3. Materials and Methods 

2.3.1. Yeast strains, media, growth conditions, and genetic

techniques
 

Yeast strains are listed in Table 1. Standard yeast genetic techniques were used 

(Rose et al., 1990). Yeast transformations were performed using the method of Gietz et 

al., 1992. Yeast media and plates used to test sulfite sensitivity are described elsewhere 

(Xu et al., 1994). SM is glucose-based synthetic complete medium (SD plus required 

amino acids and bases at the prescribed concentrations, except for uracil, which was 

added to a final concentration of 10 .tg/ml). Drop-out media are SM lacking the 

indicated amino acid or base (Rose et al., 1990). Sulfite sensitivity on different carbon 

sources was determined on: YEP (1% yeast extract, 2% peptone) containing: 2% 

glucose (YEPD); 2% galactose (YEPga1); 2% maltose (YEPmal); 2% ethanol (YEPE); 

3% glycerol (YEPgly); and 0.5% acetate (YEPac). All media containing sulfite were 

buffered at pH 3.5 with 75 mM L(+)tartaric acid (Xu et al., 1994), with the exception of 

YEPac, which was buffered at pH 4.8, to avoid a precipitate that formed at the lower 

pH. 5-fluoro-orotic acid (5 -FOA) plates, for selection of ura3 segregants, were 
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TABLE 1. Yeast strains. 

Strain Genotype Source 

2757-4d-T4 a MATa LEU2::pRY181 ura3-52 ade2 this study 

3090-9d MATaura3-52 leu2-3, 112 this study 

3118-19c MATa ssu2-6 ura3-52 leu2-3, 112 arg4 this study 

3118-27d MATa ssu2-6 ura3-52 leu2-3, 112 arg4 lys9 this study 

3118-27d-T1 MATa LEU2::pRY181 ssu2-6 ura3-52 arg4 lys9 this study 

3089-1d MATa ssu3-7 ura3-52 leu2-3, 112 this study 

3100-5b MATa ssu4-11ura3-52 leu2-3, 112 pet this study 

3149-1a MATa LEU2::pRY181 his3 trp1-1 ura3-52 ade2 this study 

3150-14 MATa LEU2:.pRY181ssu2-6 ura3-52 this study 

3154-2b MATa grr1::URA3 ade2 leu2-3, 112 lys2-801 

ura3-52 this study 

3090-9d-T6 MATa ura3 -52 leu2-3, 112 grrld::URA3 this study 

3090- 9d-T6-L1 MATa ura3 -52 leu2-3, 112 grr1A6-1 this study 

3090-9d-T4 MATa ssuld::URA3 leu2-3, 112 ura3-52 this study 

3090-9d-T10 MATafzflA99-182::URA3 leu2-3, 112 ura3-52 this study 

3090-9d-T6-L1-T10 MATa grr1A6-1 fzflA99-182::URA3 leu2-3, this study 

112 ura3-52 

3152 MATaIMATaLEU2:.pRY18111eu2-3, 112 this study 

ura3- 52/ura3 -52 ssu2-6 Igrrld::URA3 

HIS3lhis3A- 200 ADE2lade2-101 LYS2/ 

lys2-801 MET /met arg4 /ARG4 

YM2061 MATa LEU2::pRY181ura3-52 his3A- 200 M. Johnston 

ade2-101 lys2-801 met 
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TABLE 1 (Continued) 

YM3499 MATa LEU2:.pRY181 ura3-52 M. Johnston 

grrlA::URA3 his3A- 200 ade2-101 lys2-801 met M. Johnston 

YM3502b MATa LEU2::pRY 181 ura3-52 grrlA::URA3 M. Johnston 

his3A- 200 ade2-101 lys2-801 met 

YM2957 MATa grad- 1829 ura3-52 his3A- 200 M. Johnston 

ade2-101 lys2-801 ga180ALEU2::pRY181 

YM3378 MATa grrld- 1829 rgtl -101 ura3-52 his3A- 200 M. Johnston
 

ade2 -101 lys2 -801 ga180A LEU2::pRY181
 

YM3478 MATa rgtl -101 ura3-52 his3A- 200 ade2-101 M. Johnston
 

lys2-801 ga180A LEU2::pRY 181 

YPH499 MATa ura3-52 his3A- 200 ade2-101 lys2-801 C. Mann 

leu2Al trpl A63 

CC359-0L2 MATa leu2 ura3 his3 Y. Surdin-

Kerjan 

CC363-20B MATa ura3 leu2 met18 Y. Surdin-

Kerjan 

CC370-8C MATa leu2 ura3 met20 Y. Surdin-

Kerjan 

a pRY181 contains a GALL -lacZ fusion (Yocum et al., 1984). 
b Strains YM3502-T1 and YM3502-T2 are YM3502 transformed with YEplac195 and
YEplac195::FZF1, respectively. 
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prepared as described (Boeke et a/., 1984). An in vivo assay for hydrogen sulfide 

formation was performed on "BiGGY" agar (Nickerson medium, Difco Laboratories, 

Detroit, Michigan) according to the manufacturer's instructions. 

j3- galactosidase activity was assayed as described by Kippert (1995). 

2.3.2. Sulfite chemistry 

As used in this paper, sulfite is an inclusive term referring to all species and salts 

of sulfurous acid, including sulfur dioxide, its anhydride. Free sulfite includes all 

unbound species of sulfurous acid: H2S03, HS03- , and S03- 2. All species are 

reactive with carbonyl groups present in ingredients commonly found in microbiological 

media or produced during fermentation, such as sugars, acetaldehyde, and pyruvate. 

The resultant sulfonates (bound forms of sulfite) are not inhibitory to yeast growth, but 

their formation reduces the effective free sulfite concentration. The only species of 

sulfite that is inhibitory to yeast is undissociated sulfurous acid, H2S03, as it freely 

traverses the cell membrane whereas the other free forms apparently cannot (Stratford et 

al., 1987). Because the concentration of the various sulfite species of sulfite is pH-

dependent (pKal and pKa2 are 1.77 and 7.2, respectively (King et al., 1981) media 

containing sulfite were buffered. 

2.3.3. Hydrogen sulfide, sulfite, and protein determinations 

Intracellular hydrogen sulfide and sulfite were assayed as fluorescent adducts of 

monobromobimane (Calbiochem, La Jolla, CA) following separation by HPLC (Fahey 

and Newton, 1987) as modified by Vetter et al., 1989. Briefly, cells were grown to 

about 1 x 107 cells/ml in 100 ml of SM-met, pelleted by centrifugation, washed twice in 

20 mM HEPES, pH 8.0, and resuspended in 100 pl of the same buffer to which was 

added 10 pl of 50 mM monobromobimane in acetonitrile. A volume of acid-washed 

glass beads equal to the cell pellet was added, the mixture was vortexed six times at high 
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speed in 30 second bursts, and a fresh 110 IA of the HEPES-monobromobimane 

mixture was added. The liquid fraction was then centrifuged at 12,000 x g for five 

minutes at 40C. A portion of the supernatant (10 Ill) was removed for protein 

determination and the remainder was held 10 minutes in the dark at room temperature to 

allow the monobromobimane to react completely with thiols. Per 110 IA of supernatant, 

100 p.1 of acetonitrile were added, the mixture was incubated at 60° for 10 minutes, and 

300 p1 of 25 mM methane sulfonic acid were then added. The samples were centrifuged 

at 12,000 x g at room temperature for five minutes to pellet precipitated protein, the 

supernatants were filtered through 0.45 µm PTFE membranes (VWR), and held at 

-80 °C until HPLC analysis on a Beckman C18 reversed phase column, #235329, (via 

Rainin Instrument Co., Inc., Ridgefield, NJ) using an integrator and gradient maker 

from OMS Tech (Miami, FL), and an Alltech 325 HPLC pump (Alltech Associates, 

Inc., Deerfield, IL). 

Protein was measured by the Bradford method using ovalbumin as a standard 

(Bradford, 1976). 

2.3.4. Subcloning, plasmids, DNA sequencing, and PCR 

Standard procedures for the manipulation of plasmid DNA and bacterial 

transformation were used (Sambrook et al., 1989). Subcloning involved YCplac and 

YEplac, centromeric and episomal vectors, respectively (Gietz and Sugino, 1988), and 

pBluescript KS II (Stratagene, La Jolla, CA). pDR1 (Barral et al., 1995) was obtained 

from C. Mann. pRY181 (Yocum et al., 1984), used to introduce a GALL -lacZ fusion 

in order to monitor glucose derepression, and pBM2101, which contains a null allele of 

GRR1 (Flick and Johnston, 1991) were obtained from M. Johnston. pDIS vectors 

(personal communication, 1994) were obtained from C. Marcireau. 

DNA was sequenced using the dideoxy dye terminator method on an ABI Model 

373A sequencer (Applied Biosystems, Inc., Foster City, CA) at the Central Services 
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Laboratory of the Oregon State University Center for Gene Research and 

Biotechnology. 

Escherichia coli strain DH5a was used in all subcloning experiments (Hanahan, 

1983). 

PCR was performed using Taq polymerase (Promega, Madison, WA) in an 

Easycycler (Ericomp, Inc., New Haven, CT) or a Robocycler 40 (Stratagene, La Jolla, 

CA) thermal cycler. 

2.3.5. Cloning of SSU2 

SSU2 was cloned by complementation of the sulfite sensitivity of mutant 3118­

27d (ssu2-6) by transformation with a yeast genomic library in the centromeric vector 

p366 (F. Spencer and P. Hieter, unpublished data, 1989). Transformants were selected 

on SM-leu and screened on YEPD containing 2 mM sulfite. One positive clone was 

isolated from 11,323 transformants. The complementing clone, 6-6-2, contained an 

insert of about 10 kb (Fig. 5). Subclone BBC4 was constructed by deleting an internal 

2.5 kb NrullSmaI fragment. Subclone BX1 was derived from BBC4 by deletion of a 

1.6 kb BamHI fragment. The remaining subclones were derived from BX1: Delta H3 

as a 5.0 kb BamHI/Hindll fragment; Delta HP as a 4.0 kb fragment with a 1.9 kb Hpal 

deletion spanning all three sites; SH1 as a 2.6 kb SacIlHind111 fragment; and Delta BG 

as a fragment with a 3.6 kb Bg111 deletion. SH1 was subcloned into YCplac33 cut with 

Sad and HindIII, and sequenced at both ends, using YCplac33 primers 

5 'TTAGGCACCCCAGGCTTTACACTTT 3 and 

5'GCTGGCGAAAGGGGGATGTG3'. 

Null alleles of SSU2 were obtained by transforming 2757-4d-T4 and 3090-9d 

with BamHI-digested pBM206 (Flick and Johnston, 1991), which contained a 

grr1::URA3 disruption to direct integration to the GRR1 locus. The null allele was 

confirmed by PCR (Sathe et al., 1991) with the GRR1 primers 
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Br 
Complementation

Sral Nr,ul X /joI
6-6-2 

(10 kb) 

BamHI By III Sid Hirai Pitt BstEll 101
 
BBC4
 

(7.5 kb) BamHI Hpal HpaI Bgll I HindIII 

BX1 Br Ell 

(5.9 kb) 

stop GRR1 GUA
 
BamH1 HindIII
 

Delta H3 1.200 by
 

(5.0 kb) stop 3,452 by 

296 by 100 by
 

AyG
 

1,661 by
 

ORF 089W
 

BatnH1 IXhol
 
Delta HP
 

(4.0 kb) 

Sad HindlIl
 
SH1
 

(2.6 kb) 

Bamfil HindlIl
 
Delta BG
 

(2.3 kb) 

Fig. 5. Restriction map of the primary SSU2 -containing fragment and derived 
subclones (not drawn to scale). The primary clone was designated 6-6-2. Subclone 
BBC4 was derived by removal of a 2.5 SmallNruI fragment. Subclone BX1 was 
derived from BBC4 by deletion of a 1.6 kb Bam1-11 fragment. The remaining subclones 
were derived from BX1: Delta H3 as a 5.0 kb BamHIIHind111 fragment. 
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5'CGAGATATTCAAGGCAGTTC3' and 5'TACAGCACGCAAAGTCCAC3', and 

5'CTAAACTCACAAATTAGAGCTTC3', a URA3 primer. 

2.3.6. Cloning of FZF1 

A yeast genomic library in the episomal vector pGAD (Chien et al., 1991) was 

screened to isolate multicopy suppressors of the sulfite-sensitivity of 3154-2b 

(grr1::URA3). Three positive clones were isolated from 3,025 transformants plated on 

SM-leu, containing 1.5 mM sulfite. Two contained vector sequences only. The third 

contained an insert of about 5 kb which was shown not to be GRR1 by PCR using the 

GRR1 primers given above. The ends of the insert were sequenced using pGAD 

primers. 

Subclones were constructed as follows (Fig.6): ORFJ was subcloned as a 2.2 

kb HindIII fragment in the HindER site of YEplac195; FZF1 was subcloned as a 1.4 kb 

HpallEel136II fragment in the Ec113611 site of YEplac195; and HXK2 was subcloned 

as a 2.0 kb Ec1136II/SmaI fragment in the Ec113611 site of YEplac195. The subclones 

were confirmed by restriction analysis and PCR, using FZF 1 primers: 

5'GGACAATAAATACGCTAAAG3' and 5'CACATGAGTAGAGGACGGAA 3'. 

2.3.7. Disruption of FZF1 

FZF1 was disrupted using the one-step gene replacement method (Rothstein, 

1983). The 1.4 kb HpallEc113611 FZF1 fragment was subcloned into BamHI1Sall­

digested Bluescript KS II that had been pretreated with Klenow polymerase. A HindIII 

fragment, encoding amino acids 99 to 182 was replaced by the disruption cassette of 

pDIS3, containing URA3 flanked by two direct repeated sequences, DRS, (C. 

Marcireau, personal communication, 1994) (Fig. 6). The final construct was digested 

with Kpnl which cuts once in non-coding sequences adjacent to the 5' end of FZF1 and 

once in the vector within 30 by of the 3' end of FZFl. The digest was then used to 
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transform 3090-9d (GRR1 ura3) and 3090-9d-T6-L1 (grrlA6 -1 ura3) to yield 3090­

9d-T10 (fzfl A99 -182:: URA3) and 3090-9d-T6-L1-T10 (fzf1A:99-182:URA3 grr1A6 

1), respectively. Integration of the disruption construct at the FZFI locus was 

confirmed by PCR (Sathe et al., 1991) using the two FZF1 primers and the URA3 

primer given above. 

Kpnl 
Hind!!! Ec113611Hpa! Hind!!! 

4.6 kb 

ORFI FZF1 HXK2 

Hind!!! Hind!!! 
I2.2 kb 

ORFI subclone Hind!!!
Hparr Hindi!! Ei/13611I 

I 
1.4 kb 

FZFI subclone 

Ec/7611 Smal
2.0 kb 

HXK2 subclone 

Kpn 
Hind!!! Hindi!! 

3.7 kb 

FZFI DRS URA3 DRS FZFI
 
FZFI disruption
 

Fig. 6. Restriction map and subcloning of FZFI. Unshaded regions in the initial 4.6 
kb clone refer to non-coding sequences of ORF1,FZFl, and HXK2. DRS in the 3.7 
kb subclone refers to a direct repeated sequence from pDIS3. Shaded regions 
designated FZFI in this clone refer to both coding and adjacent non-coding FZF1 
sequences. 
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2.4. Results 

2.4.1. SSU2 is identical to GRRI 

A sulfite-sensitive mutant, ssu2-6, was previously shown to have an elongated 

cell morphology, to excrete less acetaldehyde than wild-type, and to have 50% of the 

wild-type level of glutathione (Xu et al., 1994). The one positive clone obtained by 

transformation with DNA from a centromeric wild-type genomic library grew on 

selective media, YEPD containing 2 mM sulfite, and exhibited wild-type cell 

morphology. The transforming plasmid was rescued from yeast, amplified in E. coli, 

and subcloned (Fig. 5). Subclone Delta H3, the smallest complementing fragment, was 

presumed to contain the intact gene. Three smaller subclones derived from Delta H3 

(Delta BG, Delta HP, and SH1) failed to complement the sulfite sensitivity of ssu2-6, 

indicating that sequences necessary for function had been deleted. The ends of one of 

these, SH1, were partially sequenced. Analysis of 218 and 231 by of non-contiguous 

terminal sequences, showed identity to sequences 412 to 629 and 2931 to 3161, 

respectively of GRRI (Flick and Johnston, 1991). Once GRRI sequences were 

localized, we were able to determine that subclone Delta H3 contained the intact GRRI 

open reading frame and a promoterless 1.2 kb carboxyl terminal fragment of ORF 

089W (Galibert et al., 1995). 

To confirm that SSU2 was identical to GRR1, 3118-19c (ssu2-6) was crossed 

with YM3502 (grrlA::URA3) to yield the diploid 3152, which was found to be 

sensitive to sulfite indicating non-complementation (Fig. 7). To establish allelism, 24 

tetrads were dissected of which 12 produced four viable spores (overall spore viability 

was 85%). All progeny in these 12 tetrads were tested and shown to be sensitive to 

sulfite, confirming that ssu2-6 is an allele of GRR1. Mutant ssu2-6 was also found to 
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Strain 

3118-I9c 

Relevant genotype 

ssu2 -6 

0 0.5 

Sulfite (mM) 

0.75 1.0 1.5 2 2.5 

YM2957 grrl d -1829 

YM3378 ,grrl A -1829 rgtl -101 

YM3478 rgtl -101 

3152 ssu2- 6 /grrl A:: URA 3 

3090-9d-T6-L I grrl d6-1 

YM2061 

3090-9d 

GRR / 

GRR1 

3090-9d-T10 fzfl A 99-182 GRRI 

3090-9d-T6-L I -T10 grrl46-1 fzfl 4 99-182 

Fig. 7. Growth of grrl (ssu2) mutants on YEPD containing sulfite. Cells were grown 
overnight in liquid YEPD, washed once, and resuspended in distilled water to yield 2 x 
109 cells/ml. Aliquots of 5 ml (107) cells were plated and scored after 2 days at 30° C. 
Growth of strain YM 3502, not tabulated above, was identical to that of YM 2957. 
rgtl-101 was originally isolated as a suppressor of grrl (Erickson and Johnston, 1994). 
+ normal growth, - no growth, +/- poorer than normal growth, -/+ very poor growth. 
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TABLE 2. Expression of 0ga1actosidase in GALl -lacZ fusion strains grown under 
inducing or repressing conditionsa. 

Strain Relevant genotype 2% gal	 2% gal + Level of 
2% glu repression 

3150-14 ssu2-6 LEU2::GALl-lacZ 637 ± 42 145 ± 10 4.4 

2757-4d-4T SSU2 LEU2::GALl-lacZ 592 ± 55 2.8 ± 0.5 211 

YM3502-Tlgrr/A LEU2::GALl-lacZI 682 ± 39 277 ± 12.8 2.5 

YEplac195 

YM3502-T2grr1A LEU2::GALI-lacZI 768 ± 44 361 ± 4.2 2.1 

YEplac195::FZF1 

Values are means ± standard deviations for three experiments.
 
a 0galactosidase activity is expressed as OD420 normalized to cell number (Kippert,
 
1995).
 

exhibit glucose derepression, a key phenotype of grrl strains, as measured in a GAL1­

lacZ fusion construct (strain 3150-14 in Table 2). 

2.4.2. grrl mutants are sensitive to sulfite and are partially defective
in hydrogen sulfide formation 

A number of grrl mutants, isolated or constructed on the basis of their glucose 

derepression phenotype (Flick and Johnston, 1991) were tested for sensitivity to sulfite. 

All were found to be sensitive, with the null mutants YM3502 and YM2957 exhibiting 

the greatest sensitivity (Fig. 7). A grrl null mutant was constructed in the same genetic 

background in which the ssu2-6 allele had originally been isolated by transforming 

strain 3090-9d with BamH1-digested pBM206. The null mutant obtained, 3090-9d-T6­

L1, was found to be sulfite-sensitive (Fig. 7). 
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Because an inability to reduce sulfite to hydrogen sulfide via the reductive sulfate 

assimilation pathway would explain potential accumulation of the compound and 

sensitivity to exogenous sulfite, a qualitative estimate of intracellular hydrogen sulfide 

was made on BiGGY agar. This medium allows a qualitative, visual estimate of 

hydrogen sulfide formation, an obligate intermediate in methionine biosynthesis, by its 

intracellular precipitation as brown bismuth sulfide. Relative to wild-type, the grrlA 

mutants 3090-9d-T6 and 3154-2b exhibited a weak ability to form hydrogen sulfide in 

vivo on BiGGY agar (data not shown). The fact that grrl mutants are not methionine 

auxotrophs indicates that enzymatic formation of hydrogen sulfide by sulfite reductase is 

operative, but apparently not at wild-type levels. Measurement of intracellular hydrogen 

sulfide by reaction with monobromobimane confirmed that significantly less (p = 0.05, 

Student's t-test) was formed in a grrlA mutant than in a GRR1 strain: 0.61 ± 0.22 vs. 

2.56 ± 0.67 pmoles/14 protein, respectively (n = 3). Free sulfite could not be detected 

in either strain. 

2.4.3. The sulfite-sensitivity caused by grrl and partially
suppressed by rgtl is independent of carbon source 

grrl mutants grow poorly on glucose as a result of reduced glucose uptake 

caused by a significant decrease in expression of genes encoding hexose transporters 

( Ozcan and Johnston, 1995; Ozcan et al., 1994). The Grrl protein is thought to be a 

negative regulator of the product of the RGT1 gene, which itself negatively regulates 

glucose transporters (Erickson and Johnston, 1994). Mutations in RGT1 suppress the 

slow growth of grrl mutants on glucose (Erickson and Johnston, 1994). In order to 

determine if the sulfite-sensitivity of grrl mutants was related to the defect in transport 

and resultant slow growth on glucose, grrl mutants and a grrl rgtl double mutant 

(YM3378) were tested for sensitivity during growth on glucose and non-glucose carbon 

sources. On glucose, the double mutant was more sulfite-tolerant than the grrl mutant-­



52 

poor growth on 1.0 mM sulfite relative to no growth by the grrl strain although wild-

type tolerance was not observed, indicating partial suppression of the sensitivity 

(Fig.7). On non-glucose carbon sources, where the absolute sulfite levels tolerated 

varied slightly, grrl strains were consistently sensitive relative to wildtype (Table 3). 

While the rgtl strain by itself exhibited mild sensitivity to sulfite when grown on 

glucose (Fig. 7), and greater sensitivity on acetate and maltose, it partially suppressed 

the sensitivity of the grrl mutant on all the non-glucose carbon sources tested: galactose, 

maltose, glycerol, ethanol, and acetate (Table 3). Taken together, these data indicate 

that the sulfite sensitivity of grrl is not strictly linked to the growth defect on glucose 

and that rgtl is mediating suppression through a route likely unrelated to its role as a 

negative regulator of glucose transporters. 

An interesting observation was made relative to RGT1 that is clearly unrelated to 

sulfite. In the absence of added sulfite, the rgtl mutant was found to grow on acetate, 

to grow very poorly on ethanol, and not to grow at all on glycerol. However, the rgtl 

grrl double mutant grew on glycerol and grew well on ethanol, indicating that grrl was 

able to suppress the rgtl- specific growth defect (Table 3). 

The acetate plates (YEPac) were buffered at pH 4.8 rather than at 3.5 to avoid a 

precipitate that formed at the lower pH. At pH 4.8, wild-type was expected to tolerate 

an approximate 20-fold greater concentration than in the medium buffered at pH 3.5 for 

the following reasons. 1) The concentration of the toxic form of sulfite, H2SO3, is pH 

dependent and is 20-times lower at pH 4.8 than at 3.5 (pKai = 1.77). 2) Acetate is not 

known to react with and detoxify sulfite. The observation that wild-type failed to grow 

in the presence of significantly higher total sulfite in acetate suggests significantly 

greater sensitivity under these conditions. This conclusion assumes that H2SO3 is the 

only species that freely traverses the cell membrane (Stratford et al., 1987). 

Acetaldehyde is not an obligate intermediate of acetate catabolism, whereas it is likely 

formed during metabolism of the other carbon sources tested (Fraenkel, 1982). These 
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TABLE 3. Growth of grrl mutants on different carbon sources containing sulfitea. 

Mediumc GRR I grrl d -1829 grrl A-1829 rgt1-101 rgtl -101 ssu2-6 

YEPga1 

0 mM sulfite + + + + + 

0.125 " + + + + + 

0.25 + + + + + 

0.5 + + + 

0.75 + 

1.0 tt - _ 

YEPmal 

0 mM sulfite + + + + + 

0.125 " + + + + + 

0.25 " + + + +/­ + 

0.5 " + + -1+ 

0.75 " + 

1.0 " _ 

YEPE 

0 mM sulfite + + + -1+ + 

0.125 " + + + + 

0.25 + + + + 

0.5 + +/­

0.75 + 

1.0 
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TABLE 3 (Continued) 

YEPg1y 

0 mM sulfite + + +	 + 

0.125 " + + +	 + 

0.25 " +	 + 

0.5 " + 

0.75 " 

YEPac 

0 mM sulfite + + +	 + + 

0.125 " + + +	 + + 

0.25 + + +	 + + 

0.5 + + +	 + + 

0.75 +	 + +/­

1.0 +	 + -/+ 

1.5	 + 

-2.0	 ­

a + normal growth, no growth, +1- poorer growth than normal, -/+ very poor growth. 
Refer to Figure 3 for a visual indication of these scores.
 
b Growth of strain grrlA, not tabulated above, was identical to that of grr1A-1829.
 
c YEPac plates were buffered at pH 4.8, all others at 3.5.
 

results suggest that the detoxification reaction that occurs non-enzymatically between 

sulfite and acetaldehyde--and which does not occur during growth on acetate--is an 

important mechanism in mediating the basal sulfite tolerance of Saccharomyces. 
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2.4.4. Overexpression of CLN1 causes a GRRI strain to become 
sulfite-sensitive 

Barral et al. (1995) showed that in grrl strains, Clnl and Cln2 proteins are 

stabilized and speculated that this might promote the characteristic change in cell 

morphology, from round to elongate (Barral et al., 1995). They also showed that 

overexpression of CLN1 in a GRRI background induced a similar change in cell shape. 

In order to determine if overexpression of CLN1 in a GRRI strain would cause sulfite 

sensitivity, 2757-4d-T4 was transformed with a vector containing the CLN1 gene under 

the control of the GAL10 promoter (pDR1) and grown on galactose. Transformants 

overexpressing CLN1 became twice as sensitive to sulfite as wild-type, suggesting a 

connection between the sensitive phenotype and CLN1 expression (Table 4). 

Expression of GAL/O-driven CLN1 in a grrl strain resulted in such slow growth that 

assessment of sulfite sensitivity was difficult. 

TABLE 4. Growth of GRRI cells carrying multicopy CLNI a. 

Sulfite (mM)
Relevant genotype 0 0.5 1 1.5 2.0 

GRRI + + + 

GRR1, GAL10 -driven CLN1, YEplac195 + 

GRR1, GAL/O-driven CLNI, YEplac195::FZFI + + + 

The parental strain (GRRI) is 2757-4d-T4. GAL/O-driven CLN1 was introduced by
transformation with plasmid pDR1, and FZF1 was introduced on plasmid 
YEplac195::FZFl. All strains were grown on galactose-based SM plates buffered at pH 
3.5, under selective conditions (no uracil or leucine) if necessary to maintain plasmids. 
The apparent increased sensitivity to sulfite on galactose relative to glucose (compare 
with GRRI grown on YEPD, Fig. 7) is an artifact due to a lack of a chemical 
detoxification reaction between the added sulfite and galactose. In glucose-based media, 
a portion of the added sulfite is always quenched in a chemical reaction with glucose. 
a + growth, no growth. Refer to Fig. 7 for a visual indication of these scores. 



56 

2.4.5. Mu lticopy FZFlISUL1 suppresses the sulfite sensitivity, but
not the glucose derepression or aberrant cell morphology of a grrl 
mutant 

In order to identify proteins that might be functionally related to Grrl, multicopy 

genes were sought that would suppress the sulfite sensitivity of a grrl mutant. A null 

grrl mutant was transformed with DNA from a multicopy genomic library and a single 

clone containing an insert of about 4.6 kb was identified. The ends of the suppressing 

DNA were sequenced and indicated identity with sequences 1292 to 1592 of HXK2 and 

sequences 109 to 409 upstream of ORF1. The intact DNA contained a part of the 

HXK2 gene (lacking the carboxy terminal end), the entire FZF1 ORF, identified on the 

basis of restriction analysis and PCR using FZF/-specific primers (Breitwieser et al., 

1993), and an open reading frame whose identity is unknown, ORF1 (Fig. 6). 

The three fragments were subcloned separately in YEplac195 and tested for 

suppressing activity. FZFl, encoding a putative transcription factor containing five zinc 

fingers, was the only DNA to suppress the sulfite sensitivity of the grrl mutant. Others 

have shown that substitution of glutamic acid for histidine in position 180 of the Fzfl 

protein conferred a sulfite-resistant phenotype (Casa lone et al., 1994). FZF1 failed to 

suppress the aberrant cell morphology and weak ability to form hydrogen sulfide (data 

not shown). Furthermore, FZF1 did not suppress the glucose derepression phenotype 

of grrl. A null mutant of grrl carrying an integrated GAL1 -lacZ fusion construct 

(YM3502) transformed with multicopy FZF1 (TM3502-T2) or vector alone (YM3502­

T1) exhibited the same level of derepression as a grrl strain (ssu2-6) (Table 2). 

2.4.6. Sulfite sensitivity caused by mutations not allelic to grrl and
by CLN1 overexpression is suppressed by multicopy FZF1 

To determine if multicopy FZF/-mediated suppression of sulfite sensitivity was 

specific to grrl, a number of other sulfite-sensitive mutants were examined. The 

growth of the strains in the presence and absence of multicopy FZF1 as a function of 
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sulfite concentration is shown in Table 5. ssul, ssu3, and ssu4 were previously 

isolated on the basis of their sulfite sensitivity (Xu et al., 1994). SSU/ has since been 

cloned and sequenced and does not share significant similarity with any other gene in 

public data banks, Gen Bank accession number U20254 (D. Avram and A. T. 

Bakalinsky, unpublished data, 1995). The sulfite sensitivity of ssul and met20 was not 

suppressed by multicopy FZF1. However, the sensitivity of ssu4 and met18 was 

suppressed and that of ssu3 was partially suppressed. The petite character of ssu4 

which co-segregates with its sulfite sensitivity was not suppressed. met20 mutants are 

defective, and met18 mutants are partially defective in sulfite reductase, and both 

accumulate sulfite intracellularly (Thomas et al., 1992). Interestingly, multicopy FZF1 

in a GRR1 strain caused a modest increase in its sulfite tolerance (3090-9d in Table 5). 

TABLE 5. Suppression of sulfite sensitivity by FZF1 in high copy numbera. 

Sulfite Concentration (mM) 
Strain Relevant 0 1 1 . 5 2 2 . 5 

mutation 

3090-9d wild-type +(+) +(+) +(+) +(+) +/-(-) 

YM3502 grrl +(+) +(-) +(-) + / -( -) -(-) 

3090-9d-T4 ssul +(+) -(-) -(-) -(-) -(-) 

3089-1d ssu3 +(+) +(-) +(-) -(-) -(-) 

3100-5b ssu4 +(+) +( - / +) +(-) + / -( -) -(-) 

CC370-8C met20 +(+) +(+) -(-) -(-) -(-) 

CC363-20B met18 +(+) +(-) +(-) +(-) -(-) 

The values in parentheses indicate the level of tolerance of strains not carrying multicopy
 
FZF1 and are preceeded by values for the same strains transformed with the multicopy
 
FZF1 construct. Cells were grown on SM-ura buffered at pH 3.5. Strains not carrying
 
multicopy FZF1 carried the vector alone, YEplac195.
 
a + normal growth, no growth, +/- poorer growth than normal, -/+ very poor growth.
 
Refer to Fig. 7 for a visual indication of these scores.
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As noted above, overexpression of CLN1 in a GRR1 strain was found to cause 

sulfite sensitivity (Table 4). Transformation of such a strain (2757-4d-T4/pDR1) with 

multicopy FZF1 suppressed the sensitive phenotype. 

2.4.7. Disruption of FZF1 causes sulfite sensitivity in a GRR1 strain 

A deletion allele of FZF1 was constructed by replacing sequences corresponding 

to amino acids 99 to 182, which includes the fourth zinc finger and most of the bipartite 

motif, with the disruption cassette from pDIS3, and integrating the construct at the 

FZFI locus into a GRRI strain (Fig. 6). The disruptant strain, 3090-9d-T10, exhibited 

sensitivity to sulfite, whereas in a grrl background (strain 3090-9d-T6-L1-T10), the 

disruption caused significantly greater sensitivity (Fig. 7). 

2.5. Discussion 

A mutation causing sulfite sensitivity, ssu2-6, was identified as an allele of 

GRR1. grrl mutants were also found to be partially deficient in the formation of 

hydrogen sulfide, but not to the extent that methionine auxotrophy was evident. Sulfite 

sensitivity was observed during growth on glucose, galactose, maltose, acetate, ethanol, 

and glycerol, indicating that it is not strictly associated with a defect in glucose 

metabolism. The suppressor rgtl, which restores the transport and derepression defects 

of grrl mutants on glucose was found to partially suppress the sulfite sensitive 

phenotype on glucose and other carbon sources. Overexpression of CLN1 in GRR1 

cells resulted in sulfite sensitivity, and an elongated cell morphology characteristic of 

grrl strains. Multicopy FZF1 , encoding a putative zinc finger protein, was found to 

suppress the sulfite sensitive phenotype of grrl strains, but not the glucose 

derepression, aberrant cell morphology, or partial deficiency in hydrogen sulfide 

formation. Multicopy FZF1 was also found to suppress the sensitivity of a number of 
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unrelated sulfite-sensitive mutants: a CLN/ -overexpressing strain, ssu3, ssu4, and 

met18, but not that of ssul or met20. Disruption of FZFI resulted in sulfite sensitivity 

when the construct was introduced in single copy at the FZF1 locus in a GRR1 strain. 

Different functions have been attributed to Grrl, a weakly expressed, putative 

regulatory protein of 135 kDa: involvement in glucose repression (Bailey and 

Woodward, 1984; Flick and Johnston, 1991), positive regulation of glucose transport 

(Ozcan and Johnston, 1995; Ozcan et al., 1994; Vanier et al., 1994), SUC2 gene 

expression (Vanier and Carlson, 1991), regulation of divalent cation transport (Conklin 

et al., 1993), involvement in turn-over of Gi cyclins (Barral et al., 1995), and 

suppression of bem2 mutations (Kim et al., 1994). grrl mutants grow slowly on 

glucose apparently due to impaired high affinity glucose uptake (Vallier et al., 1994). 

The sulfite sensitivity of grrl may, in part, be related to this defect. Xu et al. (1994) 

previously found that a grrl (ssu2-6) mutant excreted a reduced amount of acetaldehyde 

relative to wild-type during growth on glucose. Because acetaldehyde can react with 

and detoxify sulfite, it is reasonable that the mutant has a reduced capacity to tolerate 

added sulfite. Casalone et al., (1992) reported that a sulfite resistant mutant excreted 

more acetaldehyde than wild-type. The sulfite-sensitivity of grrl mutants is likely due 

in part to distinct consequences of defective glucose uptake. One is slow growth on 

glucose leading to the reduction in acetaldehyde production. The other is a possible 

impairment in a glucose-dependent process, such as transport, which may slow or 

abolish a hypothetical sulfite-efflux pump, or other sulfite-detoxifying pathway. 

However, the observation that grrl mutants are sensitive to sulfite on carbon sources 

other than glucose, requiring other transporters (i.e., maltose) (Lagunas, 1993), or on 

which growth defects are restored (galactose) (Flick and Johnston, 1991), or on non-

fermentable carbon sources (glycerol and ethanol), indicates that sensitivity is not only 

caused by growth defects on glucose. The poor growth of grrl mutants on glucose is 

suppressed by a mutation in RGTI (Erickson and Johnston, 1994). The Rgtl protein is 
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thought to be a negative regulator of glucose transporters and has been proposed to be 

negatively regulated by Grrl (Erickson and Johnston, 1994). A slight suppression of 

sulfite sensitivity was observed in the double mutant grrl rgtl, not only on glucose but 

on all other carbon sources tested, providing further indirect evidence that the defect in 

glucose transport cannot account entirely for the sensitive phenotype. These data 

together with the observation that grrl was able to suppress the poor growth and lack of 

growth of an rgtl mutant on ethanol and glycerol, respectively, suggest that RGTI may 

interact with GRR1 in functions unrelated to glucose metabolism. 

grrl mutants were found to produce a reduced amount of hydrogen sulfide, but 

were not methionine auxotrophs, indicating a functional sulfite reductase. One 

explanation is a defective sulfite reductase that produces an adequate but limiting amount 

of hydrogen sulfide sufficient to avoid methionine auxotrophy, but insufficient to form a 

prominent precipitate with the bismuth indicator on "BiGGY" agar. It is also possible 

that flux through the reductive sulfate assimilation pathway is slowed in grrl strains, so 

that intermediates such as hydrogen sulfide do not accumulate significantly. 

Banal et al. (1995) showed that in grrl mutants, Clnl and Cln2 proteins are 

stabilized and suggested that this might cause the change in cell morphology. When 

CLIVI was overexpressed in a GRR1 strain, cells became sensitive to sulfite and also 

acquired the elongated morphology characteristic of grrl mutants. These workers 

postulated that in a grrl mutant, the high level of Clnl and Cln2 proteins would advance 

the time at which START is executed. The execution of START results in the 

expression of functions required for DNA replication. Among these, the reduction of 

ribonucleotides to deoxyribonucleotides requires NADPH as does sulfite reduction to 

sulfide. Premature execution of START may result in a deficit of NADPH, inadequate 

for reduction of exogenous sulfite, leading to the observed sensitivity. 

We found that multicopy FZF1, encoding a putative transcription factor 

(Breitwieser et al., 1993), suppressed the sulfite sensitivity of grrl mutants, but not the 
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aberrant cell morphology, glucose derepression, or partial deficiency in hydrogen 

sulfide formation. Casa lone et al. (1994) found that replacement of histidine with 

glutamic acid in position 180 of Fzfl resulted in a dominant sulfite resistant phenotype, 

characterized by a reduced accumulation of sulfite ( Casalone et al., 1992), consistent 

with diminished uptake or enhanced efflux. The dominant nature of the resistant 

phenotype suggests possible hyperactivation. Breitwieser et al. (1993), who cloned 

FZF1 in a search for cell-cycle regulated genes having a five zinc finger motif, proposed 

that histidine in position 179 is the second histidine involved in tetrahedral coordination 

of the zinc atom. Pavletich and Pabo (1993) suggested that the fourth zinc fmger of Gli 

protein is important for interactions with DNA. Our finding that disruption of FZF1 

resulted in sensitivity to sulfite suggests that the Fzfl protein plays a role in sulfite 

metabolism. The observation that multicopy FZF1 suppressed the sulfite sensitivity of 

several sensitive mutants but not that of ssul or met20 is consistent with a role as a 

positive regulator of Ssulp and Met20p. The function of Ssulp is presently unknown 

but is the subject of investigation in this laboratory. However, Met2Op is required for 

sulfite reductase activity, and increased sulfite reduction is a reasonable route through 

which exogenous sulfite can be detoxified. 
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3.1. Abstract 

The SSU/ gene of S. cerevisiae was isolated based on its ability to complement 

a mutation causing sensitivity to sulfite, an intermediate in methionine biosynthesis. 

The gene encodes a novel deduced protein of 458 amino acids that does not share 

significant similarity to other proteins in public databases. The predicted protein 

contains 9 or 10 membrane-spanning domains and resembles the general structure of 

facilitators/transporters. A confocal microscopy study localized an Ssul-GFP fusion 

protein to the plasma membrane. Multicopy SSU/ conferred about a two-fold higher 

level of sulfite tolerance to wild-type cells. 

Multicopy suppression analysis was undertaken to explore possible relationships 

among genes previously implicated in sulfite metabolism. Multicopy SSU/ suppressed 

the sulfite sensitivity of grrl , fzfl , and ssu3 mutants. In contrast, multicopy GRR1 

was unable to suppress the sensitivity of ssul, fzfl, and ssu3 strains. Multicopy FZF1 

suppressed the sulfite sensitivity of a grrl mutant and partially suppressed that of ssu3, 

but was unable to suppress that of an ssul mutant. These data suggest a pathway in 

which SSU/ acts downstream of FZF1 and SSU3, which in turn are downstream of 

GRR1. In order to examine expression of the sulfite-proximal member of the pathway, 

SSU/ , a fusion of the lacZ ORF and the SSU/ promoter was constructed. Full 

expression of the SSUI promoter was found to require functional FZF 1 , SSU3, and 

GRR1 genes. The promoter was found to be activated by multicopy Fzflp, confirming 

a role for FZF1 in transcriptional regulation, previously suggested solely on the basis 

of sequence analysis. The activation of SSU/ promoter in an ssu3 background by 

multicopy FZF1 was lower, suggesting that a functional SSU3 gene may be required 

for full activation. 
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3.2. Introduction 

Sulfite is a normal, but potentially toxic metabolite produced as an intermediate 

during reductive sulfate assimilation in fungi, bacteria and plants. Its toxicity to 

microorganisms has been widely exploited through use as a preservative in foods, 

beverages, and pharmaceuticals (Taylor et al., 1986). The deleterious effects of sulfite 

on plants are evident in regions of the world where it is a significant component of air 

pollution (Ghisi et al., 1990). The fact that sulfite is also a normal metabolite in a large 

variety of organisms raises the question of how endogenous toxicity is avoided. 

Clearly, efficient regulation of the reductive sulfate assimilation pathway would 

minimize pools of intermediates, sulfite among them, and may be the major form of 

control. In S. cerevisiae, formation of acetaldehyde during fermentation appears to be 

another means of controlling sulfite levels because the two compounds react to form a 

stable and non-toxic product, 1-hydroxyethane sulfonate (Taylor et al., 1986). 

In order to study how toxicity is avoided, we previously isolated mutants of S. 

cerevisiae in expectation that sensitive mutants may be impaired in protective functions 

and resistant mutants may have enhanced protection. This analysis identified four genes 

involved in the sensitive phenotype, SSU1 , SSU2, SSU3, SSU4, and a single gene in 

resistance, RSU1 (Xu et al., 1994). One of the mutations conferring sensitivity (ssu2) 

was found to be an allele of GRR1 (Avram and Bakalinsky, 1996), which others have 

implicated in glucose repression (Bailey and Woodward, 1984; Flick and Johnston, 

1991; Gamo et al., 1994), glucose transport (Ozcan et al., 1994, Ozcan Jonston, 1995, 

Vallier et al., 1994), SUC2 gene expression (Vallier and Carlson, 1991), divalent cation 

transport (Conklin et al., 1993), turn-over of G1 cyclins (Barral et al., 1995), 

suppression of a bem2 mutation (Kim et al., 1994), and morphological differentiation 

(Blacketer et al., 1995). While the sulfite-sensitivity of a grrl mutant may be partly due 

to defective glucose metabolism, sensitivity was observed during growth on non­
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glucose carbon sources as well. Further, a suppressor of the glucose repression defect, 

rgtl, failed to completely suppress the sensitivity (Avram and Bakalinsky, 1996). We 

also previously showed that FZF1 is a multicopy suppressor of the sulfite sensitivity of 

a grrl mutant. FZF1 encodes a five zinc finger putative transcription factor 

(Breitwieser et al., 1993) and a particular allele was independently found to confer 

dominant resistance to sulfite (Casa lone et al., 1994). 

In the present study, we demonstrate that Ssulp is a plasma membrane protein 

and that its expression is activated by Fzflp in the presence of functional SSU3. We 

also propose potential relationships among four genes involved in protection against 

sulfite, SSU1 , FZF1 , SSU3, and GRR1. 

3.3. Materials and Methods 

3.3.1. Yeast strains, media, growth conditions, and genetic
techniques 

Yeast strains are listed in Table 6. Standard yeast genetic techniques were used 

(Rose et al., 1990). Yeast transformations were performed using the method of Gietz et 

al., 1992. Yeast media and plates used to test sulfite sensitivity are described elsewhere 

(Xu et al., 1994). Drop-out media are SM lacking the indicated amino acid or base 

(Rose et al., 1990). SM is glucose-based synthetic complete medium (SD plus required 

amino acids and bases at the prescribed concentrations, except for uracil, which was 

added to a final concentration of 10 mg/ml). 5-fluoroorotic acid (5 -FOA) plates, for 

selection of ura3 segregants, were prepared as described (Boeke et al., 1984). p­

galactosidase activity was assayed as described by Kippert (1995). 
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3.3.2. Subcloning, plasmids, DNA sequencing, and PCR 

Standard procedures for the manipulation of plasmid DNA and bacterial 

transformation were used (Sambrook et al., 1989). Escherichia coli DH5a (Hanahan, 

TABLE 6. Yeast strains. 

Strain Genotype Source 

3090-9d MATaura3-52 leu2-3, 112 this laboratory 

3088-6d MATa ssul -1 ura3-52 leu2-3, 112 this laboratory 

3089-1d MATa ssu3-7 ura3-52 leu2-3, 112 this laboratory 

3100-5b MATa ssu4-11 ura3-52 leu2-3, 112 pet this laboratory 

3090-9d-T6 MATa ura3 -52 leu2-3, 112 grr1A::URA3 this laboratory 

3090-9d-T6-L1 MATa ura3 -52 leu2-3, 112 grr1A6-1 this laboratory 

3090-9d-T4 MATa ssulA::URA3 leu2-3, 112 ura3-52 this laboratory 

3090-9d-T4-L1 MATa ssul A leu2-3, 112 ura3-52 this laboratory 

3090-9d-T10 MATafzflA99-182::URA3 leu2-3, 112 ura3-52 this laboratory 

3090-9d-T10-L1 MATafzflA99-182 leu2 -3, 112 ura3-52 this laboratory 

1983) or E. coli SURE (Stratagene, La Jolla, CA) were used in all subcloning 

experiments involving YCplac33, YEplac181 and 195, and YIplac211, centromeric, 

episomal, and integrating vectors, respectively (Gietz and Sugino, 1988), and pUC19 

(New England Biolabs, Beverly, MA). pDIS vectors as well as the "bright" S65T 
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mutant of GFP (Heim et al., 1995) were obtained from C. Marcireau (personal 

communication, 1994, 1995). 

DNA was sequenced using the dideoxy dye terminator method on an ABI Model 

373A sequencer (Applied Biosystems, Inc., Foster City, CA) at the Central Services 

Laboratory of the Oregon State University Center for Gene Research and 

Biotechnology. 

PCR was performed using Pfu (Stratagene, La Jolla, CA) and Taq polymerases 

(Promega, Madison, WA) in an Easycycler (Ericomp, Inc., New Haven, CT) or a 

Robocycler 40 (Stratagene, La Jolla, CA) thermal cycler. 

3.3.3. SSUI constructs 

SSU/ was cloned by complementation of the sulfite sensitivity of an ssul -1 

mutant (3088-6d) by transformation with a yeast genomic library in the centromeric 

vector p366 (F. Spencer and P. Hieter, unpublished data, 1989). A single 

complementing clone, pDA17, contained an insert of about 9.5 kb (Fig.8). A 3.6 kb 

BamHI fragment from pDA17 was subcloned in YCplac33 (pDA18), and in the 

integrating vector YIplac211 (pDA19, not shown). The latter construct was cut with 

M/uI, and integrated into the yeast genome in an ssul -1 mutant (3088-6d). Other 

subclones of pDA17 were generated in YCplac33 digested with the appropriate 

restriction enzymes to yield pDA21, containing the entire GLR1 ORF; pDA20, 

containing the SSU/ ORF, 1 kb of the 5' upstream region, and a DNA fragment 

corresponding to the first 48 N-terminal amino acids of the GLR1 ORF; pDA22, as a 

Sad fragment (the 5' Sad site is within vector sequences not shown in Fig. 8) 

containing a small ORF encoding 67 amino acids, located upstream of the SSU/ ORF; 

and pDA23, containing the SSU/ ORF. 
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Complementation 

BamHI BamH1 HindlIl 

pDA17 

Hpal BamH1BamHI Sad Xbal

I REMpDA18 

small ORF SSU/ ORF Mh1/1 pan of GLR1 ORF 

Xbal HindlIl 

pDA21
 
GLR1 ORF
 

BamH1 Hpal 

pDA20 I EEEi Bffintal 
small ORF SSU/ ORF part of GLR1 ORF 

BamH1 Sad 

1pDA22 I I-1 
small ORF 

Sad BarnH1 

pDA23 gel 
SSUI ORF part of GLR1 ORF 

BamH I Hpal
 
pDA24
 

DRS-URA3-DRS 

pDA42 

SSU/ ORF fused to GFP ORF 

Fig. 8. Restriction map of the primary SSU/ -containing fragment and derived 
subclones (not drawn to scale). The primary subclone was designated pDA17. pDA18 
contains a 3.6 kb BamHl fragment from pDA17 cloned in YCplac33 which includes the 
small ORF, the entire SSU/ ORF, and one third of the GLR1 ORF. pDA21 contains 
the entire GLR1 ORE pDA20 contains the small ORF and the SSU/ ORF, and pDA22 
contains only the small ORF. pDA23 contains the SSU/ ORF, and pDA24, the
disrupted SSU] ORF (consisting of the URA3 gene flanked by direct repeats, 
designated DRS). pDA42 contains the SSU/ ORF fused to the GFP ORF. 
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The SSUI gene was disrupted using the one-step gene replacement method 

(Rothstein, 1983). A BamHIIPstl fragment from pDA20, blunted by treatment with T4 

DNA polymerase was subcloned in pUC19, cut with Sphl andSacI, and blunted with 

the same enzyme to yield pDA32 (not shown). The SacIlXbal disruption cassette of 

pDIS4 (Marcireau, personal communication, 1994) was cloned in pDA32 digested with 

Sad and Xbal, replacing the SSUI ORF, except for the last 21 bases of the coding 

sequence. This construct, pDA24, was linearized with Dral and AatII and used to 

transform 3090-9d (SSUI ura3) to yield 3090-9d-T4 (SSULA::URA3). Integration of 

the disruption construct at the SSUI locus was confirmed by PCR (Sathe et al., 1991), 

using two SSUI primers: 5'-GATATTGGCTGAACAAATTCTCC-3' and 5'­

AGAAGCAAAAGCAGCAAA-3' and a URA3 primer (Avram and Bakalinsky, 1996). 

In order to obtain an Ssul-GFP fusion protein, the GFP ORF containing the 

S65T mutation (Heim et al., 1995) from pCM153 (Marcireau, personal 

communication, 1995) was cloned in YCplac33 as a BamHIISacl fragment to yield 

pDA8 (not shown). The SSUI ORF and 150 by upstream region were generated by 

PCR using the following primers: 5'-ACGCGTCGACACTTATTTCTAATCCTMTC­

3' and 5'-CGCGGATCCGTAAAATCTAGAGCCGAGTT-3' containing Sall and 

BarnHI sites to allow in-frame cloning with GFP in pDA8 digested with BamHI 

andSa/I, to yield pDA28. The rest of the SSUI upstream region was cloned by 

replacing the 427 by Hindu' fragment of pDA28 with a 1.3 by fragment from pDA19, 

to generate pDA42 (not shown). pDA42 was used to transform 3088-6d, and 3090-9d­

T4-L1, to check for complementation. The construct was then cut with BstXI to delete 

the CEN and ARS sequences and was integrated at the SSU] locus by digesting with 

Sfil. 

To study the SSUI promoter, a 1 kb region upstream of the SSUI ORF was 

generated by PCR, using the following primers: 5'­
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AAAACTGCAGGATCCAAGGCCGACAGG- 3 ' and 5'­

AAAACTGCAG ri-cm CTIGTACTTGICTT-3', and then cloned as a Pstl fragment 

upsteam of the LacZ ORF, previously cloned in YIplac181 (and designated pDA1, not 

shown) to generate pDA6. This construct, as well as pDA1, were integrated at the 

URA3 locus in the following strains: wild-type (3090-9d), fzfl A (3090-9d-T10-L1), 

ssu3-7 (3089-1d), grrl A (3090-9d-T6-L1), ssu4-1 (3100-5b), and ssulA (3090-9d­

T4-L1). 

3.3.4. Sequence analysis 

DNA Strider (Marck, 1988) was used to generate a Kyte-Doolittle hydropathy 

plot, and PSORT (Nakai and Kanehisa, 1992) and TMpred (Hoffman and Stoffel, 

1993) were employed for detecting transmembrane domains. 

3.3.5. Confocal microscopy. 

Confocal laser scanning microscopy was performed on a Leica TCS 4D 

microscope, using a 100x/1.4 oil-immersion lens. Images were acquired using the 488 

nm excitation line of an argon/krypton ion laser and an FT 490/520 dichroic mirror with 

a short bandpass filter of 510 nm. Fluorescence of the Ssul-GFP fusion protein was 

observed in living cells and the images were processed using Adobe Photoshop. Cells 

were grown in SM-based selective medium and harvested in log phase. Protoplasts 

were prepared from log phase cells by treatment with 2 mg/ml zymolyase in 50 mM 

Tris, pH 7.5, containing 0.9 M sorbitol, and 0.1% [3- mercaptoethanol for 1 hour at 37° 

C. Unwashed cells or protoplasts were adsorbed onto a polylysine-coated coverslip for 

viewing. 
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3.4. Results 

3.4.1. Isolation of SSU/ and DNA sequence analysis. 

A genomic clone of SSU/ was isolated from a centromeric library by 

complementation of the sulfite sensitivity of an ssu/-1 mutant, 3088-6d (Xu et al., 

1994). Approximately 3,460 transformants were selected on SM-leu and screened on 

YEPD containing 2 mM sulfite. A single complementing clone contained a plasmid with 

an insert of about 9.5 kb, designated pDA17 (Fig. 8). A complementing 3.6 kb 

BamHI fragment was subcloned in YCplac33 (pDA18) and in the integrating vector 

YIplac211 (pDA19) (Fig. 8). The latter construct was integrated into the yeast genome, 

in an ssu/-1 mutant (3088-6d). Transformants were able to grow on plates containing 2 

mM sulfite on which the mutant was unable to grow. All thirteen tetrads obtained from 

a cross between one of the transformants (BBI3) and an SSU1 ura3 strain produced 

spores resistant to sulfite and which segregated 2+:2- for URA3. This confirmed that 

pDA19 carried the wild-type SSU/ gene. Sequence analysis showed that pDA18 

contained two complete ORFs, one of 67 amino acids and one of 458 amino acids, and 

a part of of glutathione-oxidoreductase (GLR1) ORF, encoding the first 146 N-terminal 

amino acids which represent about one third of the protein (Fig. 8). Subcloning 

established that the centrally located ORF of 458 amino acids (YPL092W) possessed 

complementing activity, and therefore was SSU/ (Genbank accession no. U20254) 

(Fig. 9). 

The predicted protein sequence of SSU/ did not share significant similarity with 

proteins from public databases. Its hydrophobicity plot suggested ten hydrophobic 

regions (Fig. 10). A search at the PSORT server for predicting protein sorting signals 

(Nakai and Kanehisa, 1992; Goffeau et al., 1993) indicated that the protein did not have 

an N-terminal signal sequence. A search at TMpred (Hofmann and Stoffel, 1993) 
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showed nine or ten transmembrane domains. Two models for transmembrane topology 

were suggested: the first (strongly preferred) having ten transmembrane domains and an 

internal amino-terminal fragment, and a second with nine transmembrane domains and 

an amino terminus external to the plasma membrane. The carboxy-terminal end of the 

protein (49 amino acids) is hydrophilic and has 10 (20%) serine residues, some being 

putative phosphorylation sites. TMpred and PSORT suggested a cytoplasmic location 

for the carboxy terminus. 

SSUlp lacks the nucleotide binding sequence typical of ABC (ATP binding 

cassette) transporters (Higgins, 1992) and the conserved amino acid stretches which 

form the catalytic site of P-type ATPases (Fagan et al., 1994). Based on its topology 

(10 transmembrane domains surrounded by hydrophilic regions), Ssulp may be a 

facilitator/transporter. 

3.4.2. An Ssul-GFP fusion protein is localized to the plasma
membrane. 

The GFP ORF was fused in frame to the carboxy-terminal end of the SSU/ 

ORF. The construct contained the entire 5' upstream region of the SSU/ gene to insure 

expression under its own promoter. The SSUI-GFP construct complemented the 

sulfite sensitivity of an ssul null mutant, demonstrating that SSUI function was 

retained (Fig. 8). ARS and CEN sequences were deleted and the construct was 

integrated at the SSU/ locus. Examination of a wild-type strain expressing the Ssulp-

GFP fusion protein by laser scanning confocal microscopy revealed peripheral 

fluorescence (Fig. 11). Examination of protoplasts expressing the same fusion 

construct showed the same peripheral fluorescence (picture not shown), confirming a 

plasma membrane location. In another strain, in which the GFP ORF was expressed 

under the control of the GAL7 promoter during growth on galactose, fluorescence was 

observed throughout the cytoplasm (picture not shown). 
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GATCCAAGGCCGACAGGATGGCCAAGATGGAAAGAAGAGAAAGAAATAGACATGCCAAGCAAGGTGAAT 
CTGATAGACACAATGCTGTTTCCTTATCAAAGCATTTATTCAGTGGTAAGCGTGGTGTCGGTAAGACAG 
ATTTCCGGGGATTTCTCTACTTCTTATTCTTTCTGGGGCATGTACTTTAAAAAAAATATGAATATAAAA 
TGTGGATGTACGTACACGACATTCTAATCTTTGGGGGGCTGGTAGGATTACCATTTACATTTGATTATC 
TCTCTCACTATTAGTGGTTTCTTTTTCTTTCTTTCTCACTTTTTCTGTATCTTTTTTTTAAAAAAATTT 
TATTTAATCTGTATAATAATAATAAACCGATTTAAATTATCCAACAAGCCGACCCCTCCATGTTCTACT 
ATTTTTTTGTATGTCACTGGATGTATACAAATAATTAAGCATGTGGAAAAAGAAGGGGTGGGATAGCGT 
CAAGATGACACTTCTACTTTTTTGGTGACACATCATCATGCAACCTATCGAGTCTCCCACGAGGTTGAC 
AAATAAGAAATTGTTATCGTPTTTGGCAGCGTATCGTATAAGGCAACAATAGCGATGTCTCCCATCAAT 
TGACTGATAAATTCCTGCAAACTATCATGTTATTTTTTTCATCCTTGTGCCGCGTCTGTAGCCGAAAAT 
CTGAGAGTGCATGAATCTTAAAAAACAGAAGACTCATCGCCGTCTTTGGCACATTGGGGTTGCCTTTGA 
CTTCTTTTTGCGGGGCTTTGCTTATTTTACCTATTTAACTAGAGGTTCTAAAAGAATAGCCAACCAGCG 
TGTAGTACTTATTTCTAATCCTTGTCTTGTTAAGTTGAAACTTGTGATATTGGCTGAACAAATTCTCCG 
CATTTAGACAACACACAAATTACAGCTTTCCCCTAGTAACGATTGTTGATTGAGCTCAGACAATACGCG 
CAATTTAAAAACGTTTTATAGTGTAAGAGAAGACAAGTACAAGAAAAAAATGGTTGCCAATTGGGTACT 

MV A N W V L 
TGCTCTTACGAGGCAGTTTGACCCCTTCATGTTTATGATGGTCATGGGTGTCGGCATTTCATCGAATAT 

A L R QT T F DPFMFMMVMGVG I S SN I 
TCTATATAGCTTCCCATATCCTGCAAGGTGGCTAAGAATATGCTCCTACATCATGTTTGCTATCACTTG 

L Y S F P Y P ARWLR 
CCTTATTTTCATTGCTGTGCAGGCACTACAAATATTACATTTGATTGTCTATATTAAGGAGAAAAGCTT 

L I F I AVOALQILHL IVY IK E K SF 
CAGAGAATATTTTAATGACTTTTTCAGAAATATGAAGCACAATTTATTTTGGGGTACTTATCCCATGGG 

R E W G TY FNDF FRNMKHNL F Y PMG 
GTTAGTTACAATTATAAATTTCTTAGGAGCACTCTCGAAAGCGAACACGACGAAGAGCCCCACTAATGC
 

L V T I I N F L G A L S K A N T T K S P T N A
 

CAGAAATTTGATGATATTTGTTTACGTCTTGTGGTGGTATGATCTCGCAGTCTGTCTAGTAATAGCGTG
 
R N L MI F V YVLWWYDL AVCL V I A W 

GGGTATCTCGTTTCTCATCTGGCATGACTATTACCCTTTGGAAGGGATTGGGAATTATCCTTCATATAAG IS F L IWHDYYPLEGIGNY PS Y
 N 
TATCAAAATGGCATCCGAAAACATGAAAAGTGTATTGCTACTGGATATCATTCCGCTGGTTGTCGTCAC
IK M A S ENMK S V L L I I P V V V TL D L 

TTCAAGTTGTGGAACATTCACAATGTCAGAAATATTCTTCCATGCGTTTAATAGAAACATTCAACTGATS SCGTF TMSEIF F A FNRNIQL I
H 

AACGTTGGTCATATGTGCCTTAACGTGGCTGCATGCCATTATCTTCGTCTTCATACTGATTGCGATATA 
L V YI IC AL TWLHAIIF VF IL IA I 

CTTCTGGAGTCTTTATATTAATAAGATACCACCAATGACACAGG=CACCTTATTCCTGCTTTTGGG
 
F W S L Y I N K I P P M T O V F T L F L L L G
 

CCCGATGGGCCAAGGAAGTTTTGGAGTCTTATTGCTTACAGATAATATAAAAAAATATGCGGGCAAATA
P MGO GS F L TDNIK KG V L L Y A G K Y 

TTACCCAACAGATAACATTACAAGAGAACAAGAGATATTGACTATTGCAGTTCCATGGTGTTTCAAAAT 
Y W CP TDNI T R EQEILT I AV P F KI 

TCTAGGCATGGTTTCTGCTATGGCATTGCTCGCTATGGGCTATTTTTTCACCGTGATTTCTGTCGTTTCL GMVS AMALL AMGYF F V I V ST S V 
AATCCTGTCGTACTACAATAAAAAAGAGATTGAAAACGAGACAGGAAAAGTGAAGAGAGTTTATACCTTIL S Y YNKKEIENETGKVK R V Y T F 
CCACAAAGGTTTTTGGGGGATGACTTTCCCGATGGGTACTATGTCTTTAGGAAACGAAGAGTTATATGT 

H K G G N VF WGMTF PMGTMS L E EL Y 
GCAGTATAACCAGTACGTTCCCTTATATGCATTTAGAGTCCTAGGAACCATATACGGCGGTGTTTGCGTQ YNQYVPL Y AFRVLGT I G VC VY G 
TTGTTGGTCAATTCTATGCCTTTTATGCACATTGCATGAGTATTCTAAAAAGATGCTGCATGCTGCCCG 

C W S ILCLLCTLHEYSKKML H A AR 
TAAATCTTCATTATTTTCAGAGTCAGGTACGGAAAAGACGACAGTTTCTCCGTATAACAGCATTGAAAG 

K S S L F S E S G T E K S I RIRS 
CGTGGAAGAATCAAACTCGGCTCTAGATTTTACGCGTTTAGCATAAAATTGTTGGTTTTATACGTACAT 

E E S N S A L D F T R L A * 

AATTGGCAAGCATTTCATGTAGGAGTCTCAATA 

Fig. 9. The SSU/ gene sequence and predicted protein. Underlined amino acids 
represent the putative transmembrane helices, suggested by a TMpred search (prediction 
parameters: TM-helix length between 17 and 33 amino acids. 
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Fig. 10. Kyte-Doolittle hydropathy plot generated by the DNA Strider program for 
Ssulp. The area of hydrophobicity is above the horizontal line at y = 0, hydrophilicity 
beneath. The scale on the X-axis indicates the number of amino acids residues with the 
amino terminus at left. 

3.4.3. An SSU1 null mutant is viable and sensitive to sulfite 

The null mutant constructed by replacing nearly the entire SSUJ ORF with the 

URA3 ORF (pDA24 in Fig. 8) was found to be viable but sensitive to sulfite. Growth 

requirements for amino acids or bases were not evident, nor was the strain UV- or 

temperature-sensitive at 37° C. Sporulation of a homozygous ssul Alssul A diploid was 

qualitatively indistinguishable from that of a wild-type diploid. 

3.4.4. Multicopy suppression analysis 

Multicopy suppression analysis was undertaken to uncover possible functional 

relationships among four genes implicated in the sulfite-sensitive phenotype, based on 

the premise that defects upstream in a regulatory pathway can be suppressed by 

overexpressed genes downstream, but not vice versa. Overexpression of the three 

cloned genes GRR I , FZF I , and SSU/ was performed reciprocally in each of the single 
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Fig. 11. Localization of the Ssul-GFP fusion protein. GFP fluorescence was 
observed in living cells visualized using a Leica TCS 4D confocal microscope with 
images processed using Adobe Photoshop. The five frames represent serial sections of 
the same cells. 
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TABLE 7. Multicopy suppression of the sulfite-sensitivity of various mutants. 

Mutant Multicopy gene	 Suppressing 
activitya 

grrl A	 FZF I 

grrl A SS U 1 

fzfl A GRR I 

fzfl A SS U I 

ssul A GRR I 

ssul A FZF I 

ssu3-7 GRR1 

ssu3-7 FZF1 +/­

ssu3-7 SS U 1 

a Suppressing activity was tested as growth on plates containing 1.5 mM sulfite. "+", 
"-", and "+/-" indicate wild-type growth, no growth, and slow growth, respectively. On 
this medium, mutants carrying the vector alone did not grow. In a wild-type 
background, multicopy SSU/ conferred resistance to 3 mM, while single copy SSU/ 
permitted growth on no more than 1.5 mM sulfite. 

mutants. Because SSU3 has not yet been isolated, its overexpression could not be 

evaluated. However, multicopy GRR1, FZF 1 , and SSU/ were tested individually in an 

ssu3 background. 

Analysis of multicopy suppression of GRR1, FZF 1 , and SSU/ gave internally 

consistent results suggesting that GRR1 acts upstream of FZF I which in turn acts 

upstream of SSU/ (Table 7). Overexpression of the three genes in an ssu3 background 

placed SSU3 downstream of GRR1 but upstream of SSU/. These results are in 

agreement with previous observations of multicopy FZF1 suppressing the sulfite­

sensitivity of a grrl mutant and partially suppressing that of an ssu3 mutant (Avram and 
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Bakalinsky, 1996). Independently, SSU/ was isolated from a high copy DNA library 

as a multicopy suppressor of the sulfite-sensitivity of an fzfl mutant (data not shown). 

One interpretation of the partial suppression of an ssu3 mutant by high copy FZF1 is 

that the two may be involved in the same step in the pathway, and overexpression of 

FZF1 cannot completely compensate for loss of SSU3 function. In summary, the 

overexpression data favor a single pathway in which Ssulp acts downstream of Fzflp 

and Ssu3p, which in turn, act downstream of Grrlp (Fig. 13). 

3.4.5. The SSU/ promoter is activated by Fzflp which requires a
functional SSU3 gene 

Fzflp is a putative five zinc finger transcription factor (Breitwieser et al., 1993), 

and in order to test the possibility that it regulates SSU/ as suggested by the multicopy 

suppression analysis, an SSU/ promoterlacZ fusion was constructed. The region 

(1016 bp) upstream of the first predicted ATG of the SSU/ ORF was cloned in front of 

the lacZ ORF and integrated at the URA3 locus in several strains. P-galactosidase 

activity was 3.7-fold lower in an fzfl mutant than in wild-type, suggesting that 

expression of the SSU/ promoter may be regulated by Fzflp (Fig. 12). 

P-galactosidase activity was also 2.4-fold lower in an ssu3 mutant suggesting 

that SSU3p may also regulate this promoter under the same conditions. In ssul and 

ssu4 mutants, the values were not significantly different from that in wild-type. In a 

grrl mutant, activity was 20-fold lower than in wild-type. Grrlp has been implicated 

in a variety of functions and exerts control over the G1 cyclins and certain proteins 

involved in glucose transport (Barral et al., 1995; Erickson and Johnston, 1993) but 

does not appear to be a transcription factor (Flick and Johnston, 1991; Barral et al., 

1995). Such a low level of expression in a grrl background may be due to the fact that 

among proteins controlled by Grrlp are some involved in the regulation of SSU/ 

promoter. When FZFI was expressed in high copy number in wild-type, P 
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galactosidase activity increased 27-fold relative to single-copy FZF1 (61.3 ± 3.8 versus 

2.8 ± 0.25). Activation of the SSU] promoter appeared to be specific since a CYCI 

promoter LacZ fusion (pLGA-132) (Guarente and Mason, 1983) was not activated in 

the presence of multicopy FZF1 (34.1 ± 4.8 versus 39.5 ± 4.17). 

wt fzfl grrl ssul ssu3 ssu4 

Fig. 12. SSU/ promoter expression in SM-leu in wild-type and different mutant 
strains. A 1 kb region upstream of the SSU/ ORF was generated by PCR and fused to 
the lacZ ORF, previously cloned in YIplac181. The construct was integrated at the 
URA3 locus in wildtype (3090-9d), fzflA (3090-9d-T10-L1), ssu3-7 (3089-1d), 
grrld (3090-9d-T6 L1), ssu4-1 (3100-5b), and ssuld (3090-9d-T4-L1). 
galactosidase activities were assayed in permeabilized cells (Kippert, 1995). Activities 
are given in Miller units and are the means of two to three assays of three independent 
transformants. Error bars are standard deviations. 
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In an ssu3 background, multicopy FZFI increased [3-galactosidase activity only 

3.8-fold (3.5 ± 0.1 versus 0.9 ± 0.1), suggesting that a functional SSU3 gene is 

required for full activation. 

3.5. Discussion 

A new gene, SSU/, was isolated on the basis of conferring sulfite tolerance to 

S. cerevisiae. It encodes a protein with 9 or 10 transmembrane domains, is located in 

the plasma membrane, and does not share significant similarity with other proteins in 

public databases. 

About 4% of the yeast genome encodes membrane proteins known to catalyze 

the transport of small solutes across the membrane or having sequence similarity to 

other characterized membrane proteins in yeast or other organisms (Andre, 1995). In 

addition, a number of uncharacterized proteins have been identified having 

transmembrane domains, but which do not share significant similarity with known 

transporters. 

Membrane proteins have been classified in three major categories: channels, 

facilitators/transporters, and pumps (P-type ATPases and ABC transporters) (Andre, 

1995). The predicted topology of Ssulp (Fig. 9 and Fig. 10) based on a TMpred 

analysis (Hofmann and Stoffel, 1993), indicates a central hydrophobic core of 10 

transmembrane domains, flanked by hydrophilic domains which presumably face the 

cytoplasm. This structure, together with the fact that Ssulp lacks the nucleotide binding 

sequence typical of ABC transporters (Higgins, 1992), and the conserved amino acid 

stretches which contribute to the formation of the catalytic site of P-type ATPases 

(Fagan et al. 1994), places this protein in the category of facilitators/transporters. 

Yeast transporters have been classified in five families based on sequence 

similarity and function: HXT (hexose) transporters, AAP (amino acid permeases), MFS 
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drug resistance proteins and similar proteins, transporters of purines, pyrimidines, and 

derivatives (FUR and FCX family), and carboxylic acid transporters (DAC family), 

which together form the Major Facilitator Superfamily (MFS) (Manger and Saier, 1993). 

Several additional facilitator families have not been classified as MFS members: some 

transporters of organic compounds, transporters of inorganic ions (TRK family of 

potassium transporters, MEP family of ammonium transporters, phosphate transporters, 

the SUL family of sulfate transporters), metal transporters (interconnected iron and 

copper uptake systems, and a family of metal detoxification transporters) (Andre, 

1995). Ssulp does not share significant similarity with proteins from these families and 

may belong to a distinct family of transporters with only one representative in S. 

cerevisiae. Progress in sequencing other genomes will likely identify "relatives" of this 

protein. 

Assuming that Ssulp is a transporter, we presume that it is involved in sulfite 

efflux rather than uptake because 1) an SSU/ null mutant is sulfite sensitive rather than 

resistant; 2) deletions or mutations of the genes upstream in the pathway that appear to 

regulate or are required for SSU/ function (GRR1, FZF I , and SSU3) also result in 

sulfite sensitivity rather than resistance. One exception is a particular mutant allele of 

FZF I which confers resistance, perhaps due to hyperactivation of SSU/ (Casalone et 

al., 1994); and 3) biochemical studies of sulfite uptake support passive diffusion of the 

undissociated form of sulfite, sulfurous acid-- H2S03- -and have not provided evidence 

for a sulfite permease (Stratford and Rose, 1986). This latter point is consistent with 

sulfite being a normal yeast metabolite, but an unusual source of exogenous sulfur. 

Sulfate is the major inorganic sulfur source. 

We envision sulfite detoxification to be a complex phenomenon mediated via 

different pathways. The primary route may be flux through the reductive sulfate 

assimilation pathway leading to formation of methionine and cysteine. Production of 
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acetaldehyde may be another because of its recognized affinity for sulfite and the non­

toxic nature of the reaction product, 1-hydroxyethanesulfonate. The present study has 

uncovered a regulatory pathway involved in sulfite metabolism and its relationship to the 

aforementioned routes of sulfite detoxification is unclear. Genes in this pathway were 

ordered based on analysis of multicopy suppression of sulfite sensitivity and point 

towards a possible role for SSU/ in sulfite efflux (Fig. 13). 

The member of the postulated pathway furthest from the target, Grrlp, has been 

implicated in the regulation of Clnlp and Cln2p (Barral et al., 1995) and possibly Rgtlp 

(Erickson and Johnston, 1994, and Barral et al., 1995). Multicopy suppression data 

suggests that Grrlp may be involved directly or indirectly in the regulation of Fzflp and 

possibly Ssulp. GRR1 may also be involved in a second pathway, independent of that 

shown in Fig. 13, because grrl mutants are more sulfite-sensitive than the other mutants 

(Avram and Bakalinsky, 1996). Fzflp is a five zinc finger protein (Breitwieser et al., 

1993) which has been shown independently to be involved in sulfite tolerance (Casalone 

et al., 1992; Casalone et al., 1994). The multicopy suppression data placed the FZF1 

gene upstream of SSU/, and consistent with this placement, the SSUI promoter-/acZ 

fusion analysis identified SSU/ as a target for transcriptional activation by Fzflp. 

Ssu3p appears to act upstream of SSU/, and is required for Fzflp-mediated activation 

of SSU/. It is possible that Ssu3p is a transcriptional regulator which cooperates 

withFzflp. Cloning of SSU3 gene is in progress in this laboratory. 

Of the four genes in which mutations confer sulfite sensitivity, GRR1, SSU3, 

FZF 1 , and SSU/, the latter appears to act closest to the target--sulfite-- and its 

membrane location is consistent with a possible role in sulfite efflux. 
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GRR1
 

SSU3 - FZF1 

SSU1 

SULFITE DETOXIFICATION 

Fig. 13. A regulatory model for sulfite detoxification in S. cerevisiae. The sulfite­
proximal member of this pathway is Ssulp, a putative transporter which when mutated 
causes sulfite sensitivity. Expression of SSU/ is controlled by Fzflp, independently 
shown to be involved in sulfite tolerance. Activation by Fzflp requires a functional 
SSU3 gene, which when mutated also causes sensitivity to sulfite. Expression of the 
SSU/ promoter also requires a functional GRR1 gene. The sulfite-sensitivity of grrl is 
suppressed by multicopy FZF1 and SSU/ and thus, Grrlp is presumed to regulate 
both. 
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4.1. Abstract 

The FZFI gene encodes a putative five zinc finger transcription factor involved 

in sulfite tolerance. Previous multicopy suppression analysis placed FZFI upstream of 

SSU/, which encodes a putative transporter also implicated in sulfite detoxification. 

SSU/ promoter -lacZ fusion analysis identified Fzflp as a transcriptional activator of 

SSU/ gene. Here we define the SSU/ promoter region involved in the activation by 

multicopy FZFI and show that Fzfl protein binds directly and specifically to it in vitro. 

We also report that deletion of the first zinc finger and the eleven N-terminal amino 

acids of Fzfl protein resulted in the loss of binding, while removal of the fourth and the 

fifth zinc fingers did not. These results indicate that the first zinc finger region is 

essential for DNA binding in vitro. 

4.2. Introduction 

Multicopy suppression analysis revealed a novel regulatory pathway for sulfite 

detoxification in S. cerevisiae (Avram and Bakalinsky, 1996, submitted). The putative 

effector of the pathway, SSU/, encodes a transmembrane protein with a possible role in 

sulfite efflux. SSU/ was placed in the pathway downstream of FZFI gene (Avram and 

Bakalinsky, 1996, submitted), which encodes a putative transcription factor 

(Breitweiser et al., 1993), previously implicated in sulfite tolerance (Casa lone et al., 

1992; Casa lone et al., 1994; Avram and Bakalinsky, 1996). Consistent with this 

placement, the SSU/ promoter-/acZ fusion analysis defined Fzflp as a transcriptional 

activator of SSU/ gene. The level of transcription from the SSU/ promoter was lower 

in an fzfl mutant than in wild-type, and was strongly activated in wild-type background 

when FZF1 was expressed in multicopy (Avram and Bakalinsky, 1996, submitted). 

The Fzfl protein contains five zinc fingers of the C2H2-type with striking 

similarity to the TFIIIA-like zinc finger motif (Breitwieser et al., 1993). Some C2H2­
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type zinc finger proteins have only one zinc finger (Pie ler and Bellefroid, 1994; Cook et 

al., 1994), while others have as many as 19 contiguous fingers (Cunliffe et al., 1990). 

In yet other transcription factors, the zinc fingers are grouped together and separated 

from other groups or individual zinc fingers in the protein (Hoffman et al., 1993; Keller 

and Maniatis, 1992; Svetlov and Cooper, 1995). In Fzfl protein the first three zinc 

fingers are clustered at the NH2-terminus of the protein (amino acids 12 to 94), each 

separated only by six amino acids, while the last two are isolated. The fourth zinc 

finger is 61 amino acids downstream from the third and the fifth is separated by 67 

amino acids from the fourth. The fourth zinc finger of another five zinc finger protein, 

glioblastoma protein (Glip), was found to be involved in DNA recognition (Pavlevitch 

and Pabo, 1993). Casalone et al. (1994) obtained a sulfite resistant mutant with a point 

mutation in the fourth zinc finger of Fzflp and speculated, based on similarity to Glip, 

that the point mutation may be responsible for some change in the protein structure 

leading to alterations in its interaction with DNA. 

Here we define by deletion analysis the region of SSUI promoter responsible 

for activation by multicopy FZFJ. We also show that Fzflp binds directly and 

specifically to the SSUJ promoter in vitro, that the first zinc finger region of the protein 

is essential for binding, and that the last two fingers are not. 

4.3. Materials and methods 

4.3.1. Cloning, DNA sequencing, and PCR 

Standard procedures for manipulation of plasmid DNA and bacterial 

transformation were used (Sambrook et al., 1989). Escherichia coli DH5a 

(Hanahan, 1983) or E. coli SURE (Stratagene, La Jolla, CA) were used in all 

subcloning experiments. DNA was sequenced using the dideoxy dye terminator 
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method on an ABI Model 373A sequencer (Applied Biosystems, Inc., Foster City, 

CA) at the Central Services Laboratory of the Oregon State University Center for 

Gene Research and Biotechnology. PCR was performed using Pfu (Stratagene, La 

Jolla, CA) and Taq polymerases (Promega, Madison, WA) in an Easycycler 

(Ericomp, Inc., New Haven, CT) or a Robocycler 40 (Stratagene, La Jolla, CA) 

thermal cycler. 

4.3.2.	 Promoter deletion analysis 

The SSU1 promoter -lacZ fusion (pDA6) has been described (Avram and 

Bakalinsky, 1996, submitted). pDA46 was obtained by digestion of pDA6 with 

BsaA and Sphl, followed by treatment with T4 DNA polymerase, and subsequent 

ligation (Fig. 14). pDA50 and pDA56 (Fig. 14) were obtained by digestion of pDA6 

with BsaA and SphI, followed by treatment with ExoIII, mung bean nuclease, T4 

DNA polymerase, and ligase, as recommended by Stratagene (La Jolla, CA) in the 

ExoIII/Mung Bean Nuclease deletion kit. Constructs were sequenced to determine 

the extent of the deletions. 

All constructs were integrated at the URA3 locus in S. cerevisiae 3090-9d 

(Avram and Bakalinsky, 1996). The resultant strains were transformed with pDA15 

which contains the FZFJ gene cloned in YEplac181 (Geitz and Sugino, 1988). 

Yeast transformations were performed using the method of Gietz et al. (1992). 

4.3.3. (3 galactosidase assays 

Two ml of minimal medium (Rose et al., 1990) were inoculated with an overnight 

yeast culture and grown to an OD600 of 1.5 to 2. P-galactosidase activities were 

assayed in permeabilized cells (Kippert, 1995). 
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4.3.4. Preparation of purified Fzflp from bacteria 

Purified Fzflp and the derived mutants were expressed as fusions with 6X His 

tags in E. coli. In order to construct the Fzfl-6XHis variants, the complete open 

reading frame of FZF 1 gene was amplified by PCR using the following 

oligonucleotides: FZFl-N-U: 5'-CATGCCATGGCAGATATAGGGAGAACCAAG-3' 

and FZFI -B -L: 5 '-CGCGGATCCTCGAATAAATCCCAGACGTC-3'. The PCR 

products were digested with NcoI and BarnHI and cloned in NcoI/BamHI-digested 

pET-24d (Novagen, Madison, WI), to produce pDA57 which was introduced in E. coli 

HMS174 (DES) to ensure expression from the T7 promoter. LB medium was 

inoculated with fresh transformants and cultures were grown to an OD600 of 0.6-1, at 

which time expression was induced by addition of IPTG to a final concentration of 0.4 

mM. Cultures were grown for an additional three hours. Fzfl-6XHis tagged proteins 

were purified in batch, using Ni-NTA-resin, according to the manufacturer's 

instructions for purification of cytoplasmic proteins (Qiagen, Chatsworth, CA) . 

4.3.5. Construction of Fzflp mutants 

Mutants A1-68 and A1,2-69 were obtained by PCR using as upper primers 

FZF1-38: 5'- CATGCCATGGCCAATCAAAAGCCGTATCAT-3', and FZF1-68: 

5'-CATGCCATGGCACAAATCAAGCCCAAAGC-3', and FZFl-B-L as the lower 

primer. The PCR products were digested with NcoI and BamHI and cloned in 

NcoI/BamHI-digested pET-24d to produce pDA68 and pDA69, respectively. 

Mutants A4-58 and A4,5-59 were obtained taking advantage of the HindIII sites 

present in FZF1 and pET-24d. Mutant A4-58 has deleted the sequence from K99, 

where the first HindIH site is located, to A182, where the second site is located, and 

mutant A4,5-59 has all the amino acids downstream of K99 deleted. 
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4.3.6.	 Gel mobility retardation assays 

SSUI promoter fragments: -506 to -315, -506 to -455, -506 to -378 and 

-204 to -1 were generated by PCR, using combinations of the following primers: 

SSU1-520: 5 --GACACATCATCATGCAA-3', SSU1-545: 5"­

TTCTTATTTGTCAACCT-3 ', S SU1-621 : 5 '-CAGGAA'TTTATCAGTCA -3 ', 

SSU1-700: 5'-GCACTCTCAGATTTTCG-3', SSUl-Sall-UP: 5'­

ACGCGTCGACACTTATTTCTAATCCTTGTC-3', and S S Ul-PrmtL-Pstl : 5 '­

AAAACTGCAG 1'1 I'M CTTGTACTTGTCTTC-3 '. DNA fragments were labeled 

by incorporating [a- 32P]dTTP or [a- 32P]dCTP in the PCR reactions. The binding 

reactions contained, in a total volume of 10 111, 1-2 ng (10,000 to 20,000 cpm) of 

labeled probe, 1X reaction buffer (25 mM Hepes-KOH pH-7.5, 50 mM KC1, 1mM 

DTT, 0.1% Nonidet P-40, 10 mM Zn2SO4), 8% glycerol, 1 mM EDTA, 1 mg poly 

dI-dC, and 1-25 ng Fzfl protein. After incubation for 30 minutes at room 

temperature, the protein-DNA complexes were separated on a native 5% 

polyacrylamide gel in 0.5X TBE. 

4.4. RESULTS 

4.4.1. Deletion analysis of SSUI promoter defined a region
containing the sequence required for the activation by multicopy 
FZF1 

We previously showed that multicopy FZF1 activates the SSUI promoter using 

a construct containing the SSUI promoter fused to lacZ, pDA6 (Avram and Bakalinsky, 

1996, submitted). To identify the SSUI promoter region through which Fzflp activates 

SSUI expression, a deletion analysis of pDA6 was performed. Removal of the region 

between -1015 and -499 did not influence significantly the ability of multicopy FZF1 to 

activate the promoter (Fig. 14, pDA6, pDA46, and pDA50), while deletion of the 
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sequence between -499 and -318 resulted in a dramatical loss of activation (Fig. 14, 

pDA56). Based on this analysis we concluded that the activation sites are located 

between -499 and -318. 

4.4.2. FZF1p protein specifically binds the SSU/ upstream region 
implicated in activation 

To determine whether Fzflp activates the SSU/ promoter by direct binding we 

performed gel retardation assays. A 191 by fragment, covering the region between -506 

pDA56 - 318 by 
ATG 

pDA50 - 499 by 
ATG 

pDA46 - 800 by 
ATG 

pDA6 1016 by 
ATG 

8-galactosidase activity 

Fig. 14. Deletion analysis of the SSU/ promoter. The SSU/ promoter was fused to 
lacZ ORF in pDA6, as described (Avram and Bakalinsky, 1996, submitted). pDA46, 
pDA50 and pDA56 were constructed as described in Materials an Methods. 13­

galactosidase acitivities were assayed in permeabilized cells (Kippert, 1995). Activities 
are given in Miller units and are the means of three to five assays of three independent 
transformants. Error bars are standard deviations. FZF I was expressed in the 
multicopy vector YEplac181 (Geitz and Sugino, 1988). Control experiments with 
vector alone gave the following results: pDA6, 0.54 ± 0.07; pDA46, 0.51 ± 0.068; 
pDA50, 0.71 ± 0.16; and pDA56, 0.72 ± 0.1 
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1 2 3 4 5 6 7 8 9 10 

Fig. 15. Gel mobility retardation assays with an SSU/ promoter fragment from -506 to 
-315 as labeled probe (1 ng) and Fzflp purified from E. coli. Lane 1, no Fzflp added. 
Increasing amounts of Fzflp were used in lanes 2 through 6 (1, 2.5, 5, 10, and 25 ng, 
respectively). Poly dl-dC (3 [tg) was added as a nonspecific competitor in lane 7. 
Unlabeled fragment was added as a specific competitor (0.25, 1, and 2 ng, 
respectively) in lanes 8 through 10. The reactions in lanes 7 through 10 contained 2.5 
ng of Fzflp 



5 6
 

Fig. 16. Gel mobility retardation assays with different SSUJ promoter fragments as 
labeled probes and Fzflp purified from E. coli. Reactions loaded in the odd numbered 
lanes did not contain Fzflp; those in the even numbered lanes contained approximately 
2.5 ng. Lanes 1 and 2, fragment -506 to -315. Lanes 3 and 4, fragment -506 to -378. 
Lanes 5 and 6, fragment -506 to -455. Lanes 7 and 8, fragment -204 to -1. 

and -315, presumed to contain the activation site(s), was used as a probe. Purified 

Fzflp gave rise to one complex when lower amounts of protein were added (Fig. 15, 

lines 2 and 3), and to a second complex, when the amount of protein increased 2-, 4-, 

and 10-fold (Fig. 15, lanes 4 through 6). Binding of Fzflp to the fragment containing 

the promoter sequence between -506 and -315 was specific, because addition of 

unlabeled fragment (Fig. 15, lanes 8 through 10), but not of a non-specific competitor 

(Fig. 15, lane 7), competed for Fzflp. A fragment of the SSUI promoter containing 
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the sequence from -204 to -1, which is downstream of the presumed activating region, 

was not shifted by Fzflp (Fig. 16, lanes 7 and 8). A fragment containing the sequence 

from -506 to -455 also failed to be retarded (Fig. 16, lanes 5 and 6), while a fragment 

containing the sequence from -506 to -378 was shifted (Fig. 16, lanes 3 and 4). Taken 

together, these results localized the activating sites between -455 and -378. 

4.4.3. Deletion of the first zinc finger region of Fzflp resulted in the
loss of binding, while the fourth and the fifth fingers removal did not
affect it 

The zinc fingers of Fzflp are of the C2H2-type, with remarkable similarities to 

the TFIHA-like zinc finger motif (Breitwieser et al. 1993). The first three zinc fingers 

are clustered at the NH2-terminus of the protein, while the last two are isolated. Taking 

advantage of the HindlII sites present in FZF 1 gene, an in frame mutant, 04-58, was 

constructed, in which the whole fourth zinc finger and almost all the region which 

separates the third and the fourth zinc fingers were deleted. This mutant bound the -506 

to -315 promoter fragment (Fig. 17, lane 3) suggesting that the fourth zinc finger is not 

essential for binding. We also exploited the presence of a Hindlli site upstream of the 

6XHis tag, in pET-24d, and used it to construct an additional in-frame mutant (A4,5­

59) derived from 04-58, in which the fourth and fifth zinc fingers and intervening 

region (encoding 67 amino acids) were removed, to produce a variant containing the 

first three zinc fingers and preceeding eleven N-terminal amino acids. This protein still 

bound the DNA suggesting that the two separated fourth and fifth zinc fingers are not 

essential for DNA binding (Fig. 17, lane 4). Mutated proteins in which either the first 

zinc finger and eleven N-terminal amino acids were deleted (A1-68), or both the first 

zinc finger region and the second finger were deleted (A1,2-69) failed to bind the probe 

(Fig. 17, lanes 5 and 6, respectively), indicating that at least the first zinc finger region 

is essential for binding. 
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Fig. 17. Gel mobility retardation assays with different mutants of Fzflp. A labeled 
SSUI promoter fragment from -506 to -315, and 0.5 to 5 ng of protein were used in the 
binding reactions. Lane 1, no Fzflp added. Lane 2, wild-type Fzflp. Lane 3, mutated 
protein M-58. Lane 4, mutated protein A4,5-59. Lane 5, mutated protein A1-68. 

Lane 6, mutated protein M,2-69. 

4.5. Discussion 

A new regulatory pathway for sulfite tolerance in S. cerevisiae was previously 

uncovered by multicopy suppression analysis. Ssulp is a putative transporter in this 

pathway and may play a role in sulfite efflux from the cell (Avram and Bakalinsky, 

1996, submitted). FZF1 was presumed to act upstream of the SSUI gene. Consistent 

with this placement, SSUI promoter -lacZ fusion analysis showed Fzflp to be a 

transcriptional activator of SSUI (Avram and Bakalinsky, 1996, submitted). In the 

present study, SSUI promoter deletion analysis defined the region between -499 and 
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-318 as being responsive to activation by multicopy FZF I . Gel mobility retardation 

assays demonstrated that Fzflp binds specifically the SSU/ promoter in the region 

between -455 and -378. DNase I protection analysis will help to define the response 

element more precisely. 

Fzflp contains five zinc fingers of the C2H2-type with noticeable similarity to 

the TFIIIA-like zinc finger motif (Breitwieser et al., 1993) which shares the consensus 

sequence YxCx4(2)Cx2Y/(F)x5Lx2Hx3H (Berg, 1990). The number of zinc fingers in 

different C2H2-type zinc finger proteins is variable as is their distribution: some are 

grouped, while others are isolated (Keller and Maniatis, 1992; Svetlov and Cooper, 

1995). The first three zinc fingers of Fzflp are clustered at the NH2-terminus, while 

the last two are isolated. Such an organization of the protein suggests a possible 

functional division. Casa lone et al. (1994) obtained a sulfite resistant mutant with a 

point mutation in the fourth zinc finger of Fzflp and hypothesized that this mutation 

may be responsible for an alteration in protein structure with consequences on the 

interaction with DNA, based on the fact that the fourth zinc finger of the glioblastoma 

protein (Glip), another five zinc finger protein, was found to be involved in DNA 

binding (Pavlevitch and Pabo, 1993). Our results show that a mutated Fzflp, in which 

the fourth zinc finger was deleted, was still able to bind the SSU/ promoter in vitro. 

Moreover, an Fzflp variant missing the region downstream of the third zinc finger, 

representing about two thirds of the protein, still bound the DNA, suggesting that at 

least in vitro this region is not essential for binding. On the other hand, when the first 

zinc finger region was deleted, the protein lost the capacity to bind DNA, indicating that 

this domain is necessary for binding. 

There is a great diversity of C2H2-type zinc finger proteins in nature, though the 

pattern of design is similar. In this respect, Pavletich and Pabo (1993) showed by 

crystallography that in the case of Glip, only fingers four and five make main base 



101 

contact with the target sequence, while the first finger region does not have any contact 

with the DNA. This is quite different from Zif268, where all the zinc fingers were 

shown to interact with the DNA (Pavletich and Pabo, 1991). In the case of Fzflp, our 

data suggest a different situation: the first finger region is essential for binding, and the 

last two fingers are not. 
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Chapter 5
 

Conclusions and future directions
 

In an effort to explore additional mechanisms involved in sulfite tolerance in S. 

cerevisiae, a novel regulatory pathway was found by multicopy suppression analysis. 

Four genes have been identified so far as members of the pathway: GRR1,FZFl, 

SSUl, and SSU3. Mutations in any of the four genes result in sulfite sensitivity, 

confirming a role in protection against sulfite. Multicopy SSU/ suppressed the sulfite 

sensitivity of grrl , fzfl, and ssu3 mutants. In contrast, multicopy GRR1 was unable 

to suppress the sensitivity of ssul, fzfl, and ssu3 strains. Multicopy FZF1 suppressed 

the sulfite sensitivity of a grrl mutant and partially suppressed that of ssu3, but was 

unable to suppress that of ssul mutant. These data suggest that SSU/ acts downstream 

of FZFI and SSU3, which in turn are downstream of GRRI. 

The member of the postulated pathway, furthest from the target, Grrlp, has 

been implicated in the regulation of Clnl and Cln2 proteins (Barral et al., 1995), and 

possibly Rgtlp (Erickson and Johnston, 1994, and Barral et al., 1995). For future 

studies it would be informative to explore the possibility that Fzf 1 and Ssul proteins are 

also regulated by Grrlp by evaluating their levels in grrl mutants using lacZ fusions 

and pulse chase analysis. 

grrl mutants are known to grow slowly on glucose, apparently due to impaired 

high affinity glucose uptake (Val lier et al., 1994). The sulfite sensitivity observed in 

grrl mutants is likely due, in part, to consequences of defective glucose uptake, leading 

to the reduction in acetaldehyde production. Xu et al. (1994) previously found that a 
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grrl mutant excreted a reduced amount of acetaldehyde. The suppressor rgtl, which 

overcomes the growth defects of grrl strains on glucose (Erickson and Johnston, 

1994), did not fully suppress the sulfite sensitivity of a grrl mutant, indicating that the 

sensitivity is not strictly linked to a defect in glucose metabolism. Furthermore, grrl 

mutants are sensitive to sulfite on carbon sources other than glucose, requiring other 

transporters, like maltose (Lagunas, 1993), or on which growth defects are restored 

(galactose) (Hick and Johnston, 1991), or on non-fermentable carbon sources (glycerol 

and ethanol). These findings indicate that sensitivity is not caused solely by growth 

defects on glucose. Another piece of evidence supporting the involvement of 

mechanisms other than defects in glucose metabolism in sulfite sensitivity of grrl 

mutants is that multicopy FZFI suppressed the sulfite sensitive phenotype, but not the 

glucose derepression ( Avram and Bakalinsky, 1996a). It may be informative to explore 

if low acetaldehyde production on glucose as well as the sensitivity on other carbon 

sources are recovered when FZF1 is expressed in multicopy. 

The next member of the postulated pathway is the FZF1 gene which encodes a 

C2H2-type zinc finger transcriptional regulator. Multicopy suppression analysis placed 

it upstream of SSU/. SSU/ promoter -lacZ fusion analysis identified Fzflp as a 

transcriptional activator of the SSU/ gene, confirming a role for FZF1 in transcriptional 

regulation, previously suggested solely on the basis of sequence analysis. The 

activation of the SSU/ promoter in an ssu3 background by multicopy FZF1 was lower, 

suggesting that a functional SSU3 gene may be required for full activation. In addition, 

multicopy FZF1 only partially suppressed sulfite sensitivity of an ssu3 mutant, 

indicating that they may act in parallel (Avram and Bakalinsky, 1996b). Cloning of the 

SSU3 gene was unsuccessful, since all the positive clones obtained so far from a 

centromeric genomic library appeared to be revertants. Cloning SSU3 from a high 

copy library and screening at higher concentrations of sulfite may be a solution. 
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Another approach may be to transform grrl or fzfl null mutants with a high copy library 

to identify SSU3 as a multicopy suppressor of their sulfite sensitivity, and in this way 

to avoid ssu3 revertants. Further work might include one hybrid and two hybrid 

screening which may disclose other proteins involved in the regulation of SSU/ 

promoter. 

We also proved that Fzfl protein binds directly and specifically to a fragment of 

SSU/ promoter in vitro. Deletion of the first zinc finger and the eleven N-terminal 

amino acids of Fzfl protein resulted in the loss of binding, while removal of the fourth 

and the fifth zinc fingers did not affect binding. These results indicated that the first zinc 

finger region is essential for DNA binding in vitro. Substitution of the first zinc finger 

with zinc fingers from other proteins or with one of the other fingers of Fzfl may 

support these results. In addition, site-directed mutagenesis may reveal which amino 

acids are involved in DNA binding activity. The arginine residue at the N-terminus of 

the a-helix of finger 1 and the first histidine involved in the tetrahedral complex may be 

candidates, since basic amino acids are known to preferentially interact with the DNA. 

The putative effector of the pathway is Ssul, a plasma membrane protein with 9 

or 10 membrane-spanning domains. This protein does not share significant similarity 

with proteins present to date in public databases, and resembles the general structure of 

facilitators/transporters since it lacks the nucleotide binding sequence typical of ABC 

transporters and the conserved amino acid stretches which contribute to the formation of 

the catalytic site of P-type ATPases. It may be involved in sulfite efflux rather than 

uptake because ssul mutants and mutants of the genes situated upstream in the pathway 

that appear to regulate or are required for SSU/ function are sensitive to sulfite. One 

exception is a particular mutant allele of FZF1 gene which confers resistance, perhaps 

due to hyperactivation of SSU/ expression. For future studies it would be useful to 

determine which transmembrane domains are essential for Ssul protein function and 
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also to mutate the charged amino acids localized in the transmembrane domains which 

are putative sites for sulfite transport (K112, D136, D183, H226, K354, H410). A 

two-hybrid screen may reveal other proteins that interact with Ssul, and contribute to 

understanding its function in sulfite tolerance. 
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