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DESIGN OF AN ELECTRICAL ANALOG FOR SPHERICAL 
WAVE PROPAGATION IN SOLID ELASTIC MEDIA 

INTRODUCTION 

The study of seismic wave propagation is of great interest in 

seismology. However, the complexity of the analytical expressions 

for the characteristic constants, (velocity, Poisson's ratio, density), 

of the medium in which the waves propagate as well as complex 

excitation functions make this study very difficult. Proposed mathe- 

matical models encounter obstacles because either the solutions are 

not in a feasible form, or they are arrived at only after tedious 

mathematical computations. In general a solution of the wave equa- 

tion can be arrived at rather easily if certain simplifying restrictions 

about the problem are made. These restrictions will involve approxi- 

mations such as infinite medium, homogeneity and isotropicity of the 

medium, character of the source, and shape of the excitation function. 

Recently,with the data from underground testings, the different 

solutions of the wave equation can be checked with well -known detailed 

observations. The plot of these solutions will normally require the 

use of computers. An electrical analog circuit can, however, be 

built to simulate the displacement resulting from the solution of the 

wave equation, and at the same time make feasible the study of the 

effects of variations in the characteristic constants of the medium 



upon the displacement wave propagation. The proposed analogs will 

be builtusing the ratio of the output response to the input excitation 

of the system thus giving a representation of the medium in terms of 

its characteristic constants. Such a ;.simulation will permit the study 

of variations in radiator size, effects of distance from the radiator 

and variations of the characteristic constants of the medium to be 

imposed upon the displacement wave propagation; but it will be limit- 

ed to non -dispersive waves generated from any type of excitation 

applied to the walls of a spherical radiator. 

Simulation of variations in radiator size and distance from 

radiator will be accomplished by changes in the elements in the cir- 

cuit, while the simulation of variations in velocity, Poisson's ratio 

and density of the medium will be accomplished by cascading single 

networks corresponding to a lumped parameter representation of a 

layer of any specified thickness where all the above parameters are 

constant. 

2 
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TRANSFER FUNCTION 

One convenient method of describing a physical system is in 

terms of its transfer function. A transfer function is defined as the 

output response divided by the input excitation. 

The above definition does not imply that a transfer function is 

a dimensionless quantity; a transfer function may or may not have 

dimensions depending on how the input and output are specified. Usu- 

ally a transfer function is expressed as a function of the Laplace trans- 

form variable s = o- + jw, otherwise related to the frequency re- 

sponse of the system. 

Transfer function = 
Laplace transform of output 
Laplace transform of input 

Moreover, for a lumped and finite system, the transfer function will 

be a rational function of the complex variable s and may be written 

as the ratio of two polynomials. 

Transfer function = K 

n n-1 a0 + als + . .. + aln 

bsm+ b sm 1+ . ..+ bm 
0 

If the system is stable, that is, when the input is removed the output 

dies out with time, the polynomial of the denominator in the above 

expression must be of the class of Hurwitz. A polynomial is of the 

class of Hurwitz if all its zeros lie on the left half of the s- plane. 
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For every rational transfer function there corresponds an 

electrical network composed of linear elements. Such networks can 

be found using known methods of network synthesis. 

The configuration, the number of elements and the element 

values of such networks will not be unique; but will depend on the 

method used for their synthesis. Generally, we can classify transfer 

functions as either immittance transfer functions or gain transfer 

functions. With existing methods these functions can be synthesized 

in the form of an RL, RC, or RLC network. 
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PHYSICAL CONSIDERATIONS 

The methods used in constructing electrical analogs are char- 

acterized by the fact that the analog has to be described by equations 

similar to that of the physical system. Generally a mechanical 

analog is sought first, then the electrical analog is constructed from 

it in accordance with the basic system of electro- mechanical analogs. 

In this work, no mechanical analog is necessary because the 

electrical analog is derived directly from the transfer function of the 

system. 

If we assume an infinite, elastic, homogeneous, and isotopic 

medium, the equation governing the wave propagation is: 

a 
20 

a 2 a 
2 

+ + 

ax2 8 y 8z2 

where 4 = potential function, 

1 a24) 
2 8t2 2 

c = compressional wave propagational velocity 

(1) 

With the existing methods for modeling a system described by 

equation (1), a three -dimensional analog has to be devised. B. D. 

Ivakin [ 7, p. 481] gives a two- dimensional analog of the two- dimen- 

sional wave equation 

8 24h a24) 1 8 24) + 

8x2 2 8y2 c 2 8t2 2 

This analog is shown in Figure 

c 

1. 

= 



Figure 1 

Two dimensional analog for an elastic medium 

rn 
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Ivakin used this analog for modeling some geophysical phenom- 

ena such as, transmission and propagation processes of seismic 

waves, modeling of earthquake focus, and modeling shotpoint areas. 

A three -dimensional analog similar to the one of Figure 1 can be con- 

structed, In an analog of this type the problems associated with 

electric analogs will be more profound because the number of com- 

ponents will increase and the effect of inductive coupling and stray 

capacitance will be more difficult to handle. In addition, since the 

analog will have three dimensions its construction and measure- 

ments on it may constitute a problem. 

In the proposed model we avoid some of these difficulties 

because of the simplicity of its construction. 

The solution of equation (1) in spherical coordinates, for a 

pulsating cavity of radius a will be of the form: 

= 
A 

f (T) 

where A is a complex constant, r is the range and T is a para- 

meter which is a function of time and the radius of cavity. 

F. G. Blake [ 2, p. 212] has carried out the solution of this 

equation subjected to the boundary condition that the pressure in the 

cavity is equal to the radial stress within the cavity walls. This can 

be expressed mathematically as: 

(1) 



P(t) = - pc 2 
Ou 
ar 

where, u is the displacement, p in the density of the medium, and 

is the Poisson's ratio for the medium. 

For a step pressure function of the form: 

P(t) = PO 

P(t) = 0 

the displacement potential is 

where 

PO a 

pr(u) 2+ 
0.2) 

- 1 + e-aOT 

t > 0 

t < 

a0 
cos WOT - tan -1 

w 
O -) 
0 

t- (r - a) c 

WO aOK 
(4K - 1)2 , 

a 0 

K = 

2a OK 

1-0- 
2(1 - 20-) 

The displacement, u, can be obtained by direct differentiation 

of the displacement potential with respect to range (See Appendix I). 

U 

POa 

p r (w + aÓ 

"a 0T 1+e 0 (- cos wT+ 

2 2 
wO r+aOr -c a0 

wO c 
sin co T) 

The transfer function of the system can be obtained from the 

ratio of the displacement to the input pressure function. In terms of 

8 

(2'\ u 
+ 1-a- r r=a 

0 

c ' 

2 i z a0 
1 + = 

"0 

T - 
= 

c 

_ 

0 



the Laplace variable s it will be of the form (See Appendix II), 

a a 
rpcs + pc 2 pr Transfer Function = G12 = 2 . 

s 2a0 
2+ 

+ 3a2 
(2) 

9 
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SYNTHESIS OF THE ANALOG 

The transfer function derived in the preceding section may 

be represented by an electrical circuit. The process of obtaining a 

particular electrical circuit from the transfer function is called syn- 

thesis and as mentioned before it will result in a network the form of 

which will depend upon the method used for its synthesis. 

The method used below results in an open circuit symmetrical 

lattice network. This method was chosen primarily for two reasons; 

(1) it is straightforward in application and (2) it yields a simple net- 

work that may be decomposed into an unbalanced network. 

An open- circuit synthesis of the transfer function is justified 

in this case because terminations have been taken into account in 

the solution of the wave equation. Since the equation is solved for 

an infinite medium, a lumped parameter representation of any 

section of specified thickness, when synthesized with any type of 

termination, will give a correct representation of the medium. 

For a symmetrical lattice network as shown in Figure 2, we 

have: 

ZbVl Za.Vl 
V = Za+Zb Za+Zb 



Figure 2 

Symmetrical lattice network 



V2 Zb - Za 

V1 Zb+Za 

If our transfer function represents the voltage ratio, we have: 

Solving for the ratio 

G12 

Z 
a 

Zb 

Zb -Za 
Zb+Za 

we obtain: 

Za 1 -G12 
Zb 1 +G12 

If p(s) and q(s) represent the numerator and denominator poly- 

nomials of our transfer function, equation (2) can be re- written as: 

Z 
a q(s) - p(s) 

Zb q(s) + p(s) 

12 

(3) 

(4) 

from which the forms of Za and Zb can be selected directly. 

Lewis [ 9, p. 282] has shown an interesting synthesis procedure 

for the case where either the even or the odd parts of the polynomials 

q(s) - p(s) and q(s) + p(s) are proportional. Assume the odd parts 

are proportional and that m1 and n1 represent the even and odd 

part respectively of the polynomial q(s) - p(s) and m2 and n2 

represent the even and odd part of the polynomial q(s) + p(s). Equa- 

tion (4) will then take the form 

= 

- 



ml 
1 + Za ml + nl nl 

Zb m2 + n2 m2 
k+ - ni 

13 

(5) 

where k is the constant of proportionality of the odd parts of the 

above polynomials. 

From equation (5) we can make direct assignments for the ex- 

pressions of Za and Zb as: 

or 

Z = 1 + 
ml 

a ni 

Zb = k + 
ñ2 

1 

Z 
a 

1 

m2 
k + - ni 

1 
Z 

Yn 

1 + - 
n1 

(6) 

(7) 

Functions of the form m1 /n1 and m2 /n1 have been shown to be 

reactance functions. Hence they can be synthesized as one terminal - 

pair LC network. Za and Zb in equations (6) can be synthesized into 

impedances consisting of a resistor in series with an LC network, 

while the set of equations (7) can be synthesized into impedances con- 

sisting of a resistor in parallel with an LC network. 

- 

a 
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From our transfer function 

q(s) -P(s) = s2 + (2a0 - rp ) s 3a0 - 
a 

2 
pr 

q(s)+p(s) = s2+ (2a0+rp)s+3a + a2 pr 

The series and parallel branch impedances for the desired lattice 

network can be written directly from equations (6) as: 

2 a 3a0 - 
p 
pr2 

Z = 1+ 1 s+ r 1 

a a 
2a0 rcp 

2a0 - 
s 

a 3a2 
a 

0 

+ 
2a0 + per 1 pr2 1 - 

a a a b 
2a0 per 2a0 rcp 2a0 rcp 

These equations are of the form Z(s) = R + Ls + 
Cs 

. There- 

fore the branches of the network will consist of a resistor, a 

capacitor, and an inductor connected in series as shown in Figure 3. 

If Rs, C , Ls, and R , L , C correspond to the elements in the 
s p p p 

series and parallel branches respectively, their values will be given 

as: 

Rs = 1 

2a Cs 0 per 
s 2 a 3a0 - 

pr 

a 

ohm 

farads 

+ 

rcp 

s+ 
s 

- 

= 

s s 

Z 



Rs 
s s 

Figure 3 

Element configuration in the analog circuit 
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1 L - 
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2a - a 
0 per 

a 

R 
2a0 

+ per 
- P a 

2a per 

L = 

P 

C 
P 

1 

a 
2a0 

- per 

2a0 per 

3a + 
a2 

pr 

a 

henries 

ohms 

henries 

farads 

16 

= 
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LATTICE DECOMPOSITION 

Because of the absence of a common ground, the above circuit 

will create certain instrumentation problems. In certain cases, 

however, a lattice network can be decomposed into a ladder network. 

In Figure 4a the impedance of the two branches in the symmetrical 

lattice network is so arranged that an equal impedance Z appears 

in both branches. This impedance Z can be pulled out of the two 

branches as indicated in Figure 4b. The two networks have the same 

open -circuit input and output impedance and the same transfer im- 

pedance; hence, they are equivalent networks. 

Network (a) 

Z = Zout= [Za +Zb] = z[ 2Z + Z a+ Z b] = Z +i[Z + Z b] 

Ztrans Za - Zip] 

Network (b) 

Zin Zout - Z + z[Z "a + Z'b] 

= Z[ Z t ] Ztrans a+ Z 

For our network in Figure 3, the total impedance of the series 

branch can be pulled out, that is Z' 
a 

= O. 

The resulted network is shown in Figure 5, and the values of 

the elements are: 

+ 

a a a 

- 

a b 



o 

(a) 

(b) 

Figure 4a, 4b 

Lattice decomposition 

o 

w 
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Decomposed analog network 
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Rs - 1 ohm 

1 henries 
- 

a 
Ls 

2a0 per 

C 
s 

a 
2a0 

^ p cr 
2 a 3a0- 

2 pr 

farads 

a 
= ohms a 

p cr(2a0 per 

4a 

pr (3a2 - a 
0 2 pr 

farads 

20 

= 

P 
) 

C = 
P pr2 

- 
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ANALOG FOR A LAYERED MEDIUM 

In the case where the variation of the characteristic constants 

of the medium with radial distance has to be considered a single - 

layer analog will not give an accurate representation of the physical 

system. If a stratified medium is assumed, such that different lay- 

ers of finite thickness have discrete characteristic constants, an 

analog can be constructed, composed of lumped parameter networks 

connected in tandem. Each network will then represent a particular 

layer and its elements will be a function of the characteristic con- 

stants of that layer. 

Networks similar to the one in Figure ''5', based on open -cir- 

cuit synthesis, cannot be used in this analog. Since the output of 

each stage is going to drive the following stage, the impedances at 

the input and output of each stage must be matched to avoid distortion 

of the waveform. On the other hand, since the transfer function 

derived is for a medium where no reflections are allowed, the net- 

works must be terminated in the acoustic radiation impedance of the 

medium they represent. Hence each of the networks representing a 

layer will be synthesized with an impedance termination at both input 

and output corresponding to the acoustic radiation impedance of the 

previous layer and the layer the network represents. 

The character of the impedance for the different layers, as 
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seen by a spherical propagating wave, is complex in character. For 

values of r » a the impedance will be that of a plane wave, which is 

resistive in character, and its value will be given by: 

Z = pc 

For the synthesis of this analog the problems will be restricted to the 

case where such an approximation can be made. 

The method chosen for the synthesis of the individual sections 

in this analog is given by E. C. Ho [ 6, p. 150] . This method has the 

advantage that it can synthesize transfer functions with complex poles 

without the requirement of ideal transformers. It is based on a new 

factorization of the ABCD matrix, see Appendix III, and if only the 

voltage transfer ratio A = E in is known, we can make the synthesis 
out 

directly from the following matrix equation, 

A 

C' 

B' 

D' 

1 

0 

1 

1 

0 

R1 

1 

R1 

R1 

1 

1 0 

1 
1 

) 

1 

1 (8) 

(B1A1- 2+ ) 1 
R 

1 2 2 

1 

1 1 
2 

R1 (Bn-1`n-1 + BnAn 

1 0 

R 
(BnAn- 1) - 

R 
1 2 

R2 

0 1 

o 

1 

1 

0 

1 

A 

11 11 
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The primes on the elements on the left -hand side of the equation indi- 

cate that these functions are not specified. A1, A2... An represent 

the non -minimum resistive positive real function to which A can be 

decomposed, and B1, B2, B3. Bn are constants to be chosen later. 

The values of the different B' s are chosen such that they will make 

each of the admittance functions synthesizable with real elements or, 

in other words, that they will make the admittance functions positive 

real. If the transfer function to be synthesized is not positive real, 

surplus factors can be added to make it positive real. 

In the construction of an individual stage for this analog, assum- 

ing a definition of the transfer function as the ratio of the displacement 

at any distance r to the input pressure, the output of one stage must 

be differentiated before being fed into the following stage since the 

transfer function is defined as pressure over displacement. 

The transfer function of equation (2) is positive real for values 

of a > -c . Since we are only interested in values of "a" in this 

domain, no surplus factors are needed in the synthesis of the analog. 

Applying equation (8) we then get, 

A 

C' 

B' 

D' 

1 

0 

R 
l 

1 
1 

R1'-1 

1 

s2+2a0s+3a 
1)- 

1 

+ s c /r R2 

1 0 

0 

1 

'. 
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which will result in the network of Figure 6. 

As an example, consider an explosion of 1 kilo -ton of TNT at a 

depth of 16 km in a layered medium as shown in Figure 7a, with 

specified characteristic constants as given in the figure. The analog 

synthesized for this example using the above method will have the 

configuration and element values as shown in Figure 7b. 
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EXPERIMENTAL ANALYSIS 

To illustrate a typical experimental analysis of the previous 

designed analogs, the analog representing a single medium was built 

in the laboratory. 

The analog circuit constructed represents a section of 0.3 km 

of a single -layer medium for parameter values and characteristic 

constants as indicated in Figure (8). The circuit was synthesized 

within a constant multiplier a 
= 19. 8x10-8 sec -cm2 

p (rcp gm ) and it was 

frequency and amplitude scaled to achieve practical component 'values. 

Table I shows the value of the elements before scaling, after scaling, 

and actual values used. 

Figure 9 shows the wave displacement curve obtained from 

computer plotting of the wave equation at the distance of 0. 3 km, and 

the displacement curve obtained from the analog. The comparison is 

excellent. 

To check the sensitivity of the output response of the analog to 

variation of element values of the circuit components, a computer 

solution of the circuit response was performed assuming ± 10 percent 

variation of the circuit element values. The results obtained are 

shown in Figures l0a and 10b. 

From the above sensitivity analysis it can be concluded that the 
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o 

Figure 8 

Network representing a . 3 km range of a single layer medium, of 
velocity of 2. 44 km /sec, Poisson' s ratio of . 25 and density of 
1. gm /cm3. Radiator size a = . 145 km. 

Table I 

Elements Calculated 
Values 

Scaled Values 
=- C, = L , L, * R =bR 

Actual Values 
Used 

Rs 1. SZ 100. 98. 

Ls . 04644 h 4. 644 mh 4. 68 mh 

Cs . 0582 f . 582 µf . 58 µf 

R . 04663 á7 4. 663 SZ 4. 5 SZ 

P 
C 2. 63576 f 26. 3576 if 27. 3 µf 

P 

Where * corresponds to scaled values, a = 1000 is the frequency scaling factor and b = 100 is the 
amplitude scaling factor. 

o 

* 1 b 
C' 

fZ 

C 
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(a)

Analog output for single medium, for a = .145
p = 1. gm lcrl Poisson's ratio of. .25 and c =
voltage one volt step. Time scale . 5 sec /cm

krn, r=.3km,
2.44 km/sec. Input

Ito
d
C'

'U

o.
E

3 x 1o-8

-R2x 1O -

1 x 1o-8

. 15 .20 ,25 .30 .35
Time in sec.

(b)

Theoretical waveform obtained from plotting the solution of the wave
equation, for a = .145 km, T =.3 km, p = 1.0 g* /"rn3, Poissonr s
ratio of .25, c = 2.44 krn/sec. PO = I grn/crn se"Z

.40.10.05

Figure 9
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circuit response is not very sensitive to component variation and 

that within a good approximation components with 10 percent toler- 

ances can be used in the construction of such a model. 
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SUMMARY 

Each of the two types of analogs designed has its advantages 

and disadvantages in simulating propagation of displacement 

compressional waves generated from spherical radiators in solid 

media. 

The analog representing a single -layer medium will simulate 

the propagation of displacement waves at any distance from a 

spherical radiator. It allows the displacement wave to be subjected 

to variations of the characteristic constants of the medium and to 

variations in the size of the radiator and form of the excitation 

function. A typical analog of this type was built and the results 

obtained compared extremely well with results obtained from the 

solution of the wave equation with the same boundary conditions. 

One application of an analog of this type is that if it is built 

from two experimental displacement waveforms which are obtained 

at close -in recordings from an underground explosion, the pressure 

waveform at the walls of the elastic -inelastic boundary of the differ- 

ent mathematical models can be checked and the correct mathemati- 

cal model can thus be obtained. 
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The second analog, taking into consideration the effect of 

layering, was designed, but the simulation of displacement wave- 

forms obtained are restricted to the case for which the point of ob- 

servation is at a distance very large compared to the radius of the 

radiator. 

Some problems that are of interest to the person pursuing this 

type of work might be considered from the viewpoint of adapting the 

transfer -function synthesis approach described in this paper to the 

particular problem. For example, several suggested lines of fur- 

ther research are the adoption of this method to: 

1. Synthesis of an analog for a cylindrical, or a line, radiator 

instead of a spherical radiator. A typical use of such a 

radiator would be the simulation of waves generated from 

earthquakes. 

2. Synthesis of an analog which will simulate spherical wave 

propagation in a layered medium. This will require syn- 

thesis of the transfer function with complex impedance 

terminations. 

3. Pursuit of synthesis of a transmission line, for spherical 

or cylindrical waves, which will allow the construction of 

theoretical seismograms. 
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APPENDIX I 

To obtain the displacement function we have to take the first 

space derivative of the displacement potential. 

For a step input the displacement potential 4 is [ 2, p. 213] 

2 

POa -aOT a0 i -1 
a0 

= 2 2 -l+e (1+ 2) cos(wOT - tan ) 

pr(w0 +a0) w0 O - 
Treating 4 as a product, its partial derivative with respect 

to r will be: 
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where T = t - (r -a) /c and 
a 

= - 1/c . 

If the following substitutions are made in the above equation, 
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the displacement function u, after collecting terms, will be written 

as: 
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APPENDIX II 

Let U be the output of our analog and U, its input out in 

corresponding to the wave displacement at any distance r and to the 

pressure at the walls of a radiator of radius "a'; respectively. From 

Reference 1 we have: 

the n 

P a w2r+a r2-ca 
out 2 2 2 

1 +e-a0T(- cos wOT+ 0 
w 0 

O sinwOT 
pr (a0 

+(j0) I 0 
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2r wr + ar - ca 
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Uout = POA [1 + e 
-"T (- cos wOT + B sin wOT)] 

The Laplace transform of the above function will be: 
n 
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The transfer ratio G12, defined as the ratio of the Laplace 

transform of the output response to the Laplace transform of the 

input excitation, will take the form: 

and 

G12 = 

POA 
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APPENDIX III 

A finite RLC two -terminal -pair network is completely specified 

by a two -by -two matrix. referred to as the ABCD matrix, which 

relates the voltages and the currents at the input and output terminals 

by the following relationship (see Figure lla). 

El 

I 

1 

A B 

C 

E2 

If the RLC network is a simple ladder network (see Figure 11b), 

terms of the ABCD matrix specification, the over -all network matrix 

may be obtained from the following matrix equation. 

A B 1 Z1 1 0 Z3 

C D 0 1 y2 1 0 1 

x 

1 Z n-1 1 0 

0 1 yn 

It may be noted that the right -hand side of the above equation is 

a simple product of n- matrices each specifying a two- terminal pair 

network containing either a series or a shunt impedance. Based on 

this analysis E. C. Ho performed a realization of a ladder network by 

a reverse process. For a more detailed explanation see reference 

10, p. 134. 

D I 
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RLC Network 

I2 

E2 

(a) 

RLC network showing input and output 
voltages and currents 

(b) 

Simple ladder network 

Figure 11 
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APPENDIX IV 

TABLE OF SYMBOLS 

p density 

c velocity of propagation of a compressional elastic wave 

a radius of spherical cavity 

t time 

pressure amplitude (real) 

Scalar displacement potential 

r distance from center of cavity 

T t - (r - a) /c 

Poisson's ratio, ratio of resultant lateral contraction to 
the longitudinal extension 

u radial particle displacement 

k 1/2(1 - 0)(1 - 2U)-1 

a0 radiation damping factor 

natural frequency of oscillating cavity 

s Laplace transform variable 

Z complex impedance 

L inductor 

C capacitor 

R resistor 

Ls impedance associated with inductor 

Po 

$ 

Cr 

0 



1 /Cs impedance associated with capacitor 

V voltage 

I current 

Z. open -circuit driving -point impedance, 

Z trans 

G12 

V. 
in 

I, 
in 

lout 0 

open -circuit transfer impedance, 

V out 
I. 
in 

I =0 out 

open -circuit transfer voltage ratio, 

Z trans 
in 
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