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models. We show that for small scenarios with known system paramters, it is feasible 

to obtain the optimal solution for the finite horizon MDP using the backward induction 

algorithm. For larger scenarios and unknown system parameters, Q-learning is used to 

approximate the optimal solution/policy via simulations. For real-world scenarios with 

many system states, it is memory inefficient to represent the optimal policy using large 

tables. Instead, we also show how to compactly represent the optimal policy using sup­

port vector machine (SVM). The SVM representation also allows for the prediction of 
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vates us to explore more efficient solutions. Specifically, under some mild assumptions, 
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Chapter 1: Introduction 

1.1 The Problem 

Arguably, modern societies have been driven by forces of technological advances and 

economic models during the past century. Specifically, the digital revolution and market 

economies have been two of the hallmarks of the later part of the twentieth century and 

are likely to remain the dominant driving forces for years to come. At the center of the 

digital revolution is the proliferation of wireless technologies that promises connecting 

people to people, from anywhere, at anytime, encompassing different modalities from 

data and voice to streaming audio and video. The future of wireless communications, 

however, comes with a set of unique challenges. As the number of wireless devices grows, 

they will ultimately compete for the same finite resource: wireless spectrum. Unlike wired 

communications in which, theoretically, more fibers can be used to accommodate the 

increasing bandwidth demand, wireless spectrum cannot be arbitrarily increased due 

to the fundamental limitations imposed by the physical laws. In addition, regulatory 

policies may further limit the ability to allocate the spectrum efficiently. Thus, the 

proliferation of wireless communication depends critically not only on the technological 

advances, but also on its marriage to sound regulatory policies and economic incentives. 

That said, the current static spectrum allocation for licensed access, e.g., TV and 

cellular phones, which account for most of the usable wireless spectrum is far from 

efficient. According to the FCC’s Spectrum Policy Task Force, much of the usable 

spectrum is pre-allocated, but unused at a given time and location [5]. This observation is 

the basis for much recent research on the concept of Dynamic Spectrum Access (DSA) [20, 

1][7, 8][10, 17][11, 3]. DSA allows a device’s operating band to be allocated dynamically 

in both spatial and temporal dimensions in order to utilize spectrum more efficiently. 

From the technological perspective, future wireless devices, commonly known as cognitive 

radio devices, must be able to detect the presence of others and cooperate with each other 

in such a way to enhance the overall spectrum efficiency. However, wireless spectrum is 

not free. In addition, to build and maintain such a large-scale, distributed, and complex 
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DSA infrastructure requires multiple players from industries and goverments. Therefore, 

profit structure must be first established in order to provide incentives for companies to 

to build and operate such networks [6, 12, 19] . From the market economty perspective, 

a popular approach is to associate a price for spectrum. The spectrum owner can set up 

protocol that enable devices/users compete for spectrum access [9, 13]. The assumption 

is that with market competition is easy to implement in a distributed manner, and that 

it will eventually leads to efficienty operating point. 

1.2 Thesis Overview 

In the spirit of market economy, this thesis aims to enhance the spectrum efficiency 

through pricing for well-defined and limited settings. It does not address the overall 

goals of the DSA that involves technological advances, market forces, and governmental 

regulatory policies at a broader scope. In contrast, the thesis studies the feasibility 

and efficiency of incorporating priced-based wireless access protocols for small wireless 

network such as Wi-Fi hotspots or femto cell networks as shown in Fig. 1.1. In such 

networks, such a scenario, a spectrum owner is assumed to own the wireless access point. 

For a device/user to be granted access to the networks by the spectrum owner, it must 

pay the owner a certain price per spectrum unit per time unit. Based on the price the 

user is willing to pay, and the associated cost to operate the network, the owner can 

decide whether to grant or to deny the user access to the wireless spectrum. The goal 

of the owner is to maximize his/her profit. The goal of the user is to get the wireless 

service at a reasonable price according to his or her own need. The assumption is that 

market force will automatically drive the system to an efficient operating point. 

Our approach is based on the classic Markov Decision Process(MDP)[14], a well-

known framework for making decisions optimally under uncertainty. In particular, we 

investigate the performance of two MDP formulations: the finite-horizon and the dis­

counted infinite-horizon models. We show that for small scenarios with known system 

parameters, it is feasible to obtain the optimal solution for the finite horizon MDP using 

the backward induction algorithm. For larger scenarios and unknown system parame­

ters, Q-learning is used to approximate the optimal solution/policy via simulations. For 

real-world scenarios with many system states, it is memory inefficient to represent the 

optimal policy using large tables. Instead, we also show how to compactly represent 
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Figure 1.1: Network Access via a Wi-Fi hotspot 

the optimal policy using support vector machine (SVM). The SVM representation also 

allows for the prediction of the optimal actions based on the states that might not be 

explored during training. The existence of the compact structure of the optimal policies 

(SVM) for this problem motivates us to explore more efficient solutions. Specifically, 

under some mild assumptions, we are able to give a threshold policy, which is not only 

optimal but also very efficient to implement. 

1.3 Thesis Organization 

In Chapter 2, we will give an overview of the Markov Decision Process. In Chapter 3, we 

present the finite-horizon MDP model used to find the optimal policy for settings that 

involve a small number of wireless users/devices. In this model, the owner considers 

short-term profit or revenue and has accurate estimation of the MDP parameters (which 

are usually not known in real-world scenarios). In Chapter 4, we present the infinite-

horizon MDP model used to find the optimal policy for larger wireless networks. The 

setup aims to maximize the long-term revenue profit for the spectrum owner. We will 

describe how Q-learning is employed to obtain the approximately optimal policy. We 

will also show empirically that SVM can be used to represent, and in some cases, predict 

the optimal policies. Finally, in 5, we derive the optimality conditions for a policy for 

the proposed problem under some mild conditions. 
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Chapter 2: Markov Decision Process 

2.1 Overview of MDP 

The MDP[14] framework is used to study the optimal decision making processes under 

uncertainty. Typically, MDP is used to model a dynamical process that involves: 1) a 

controller who acts based on his or her current observations of the environment; 2) a 

reward associated with the controller’s action; 3) the environment which changes prob­

abilistically under the controller’s actions. The goal of MDP is to derive the optimal 

policy, i.e., which action to take given the current observations in order to maximize 

the expected cumulative reward. There are a number of definitions for expected cumu­

lative rewards. The two most are are to be defined shortly for the finite and infinite 

horizon models. In addition, In this thesis, our focus will be on discrete-time MDP. In a 

discrete-time MDP, the all observations and all actions are taken in discrete time steps. 

Formally, an MDP system is characterized by following: 

•	 a finite set of states S, which represents the possible states of the system that can 

be observed by the controller, 

•	 a set of control actions A by the controller, 

•	 a transition probability P which models the changes of the environment induced 

by the controller’s actions, 

•	 and a reward function r given to the controller for taking a particular action in a 

particular state. 

A bit more precisely, the transition probability characterize the dynamics of the system. 

The transition probability denotes as P (sn+1|sn, a) denotes the probability of the system 

moving to state sn+1 at time n + 1 after taking action a in the current state sn at time 

n. The dynamics are Markovian in the sense that the probability of the next state sn+1 

depends only on the current state sn and action a, and not on any previous history. The 

reward function r(sn, an) is typically a real-valued function of the current state sn and 
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the action an. Now, a policy π is a sequence of decisions (actions) a1, a2, . . . an taken by 

the controller with t denotes the time index. Formally, a policy specifies a mapping from 

states to actions at each time step πn : S → A . The policy π that is called stationary if 

its actions depends only on the state s, independent of time index. For infinite-horizontal 

MDP model, there exists an optimal stationary policy. Furthermore, a stationary policy 

induces a time-invariant transition probability matrix. 

Every policy π is associated with a value function V π such that V π(s) gives the 

expected cumulative reward achieved by Π when starting in state s0. The solution to an 

MDP problem is the optimal policy π∗ that maximizes the expected cumulative reward 

over some finite or infinite number of time steps. 

We give the detail discussion of finite-horizon and infinite-horizon MDP in the next 

section. Here, we briefly show the value functions for both settings: the former and later 

are termed finite-horizon MDP and discounted infinite-horizon MDP respectively. 

N −1 
VN

π(s) = Eπ rn(sn, an) + rN (sN ) , (2.1)s 
n=1 

∞ 
V π(s) = Eπ βn rn(sn, an) , (2.2)s 

n=1 

where 0 ≤ β < 1 denotes a given discount factor which provides convergence of V π(s), 

but also carries the notion of discounting the future reward, i.e., putting less emphasis 

on the rewards in the far future than those in the near future. In the following sections, 

we give a brief introduction to both finite-horizon MDP and infinite-horizon MDP. The 

detail solution approaches are given in Chapter 3, Chapter 4 and Chap 5. 

2.2 Finite-Horizon MDP 

The finite-Horizon MDP model [14] aims to maximize the reward in a given finite number 

of time steps, which can be viewed as an average short-term based reward. Therefore, 

for the finite-horizon MDP, the primarily concern is to determine a policy π∗ ∈ Π with 

the largest expected total reward. As in (2.1), in the finite-horizon MDP, we use the 
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expected total reward criterion. That is to say we need a policy π∗, such that 

V π
∗ 
(s) ≥ VN

π(s), s ∈ S N 

for all π ∈ Π, such policy is called an optimal policy. However, in some finite-horizon 

MDP, there might not exist an optimal policy. As a result, in stead of seeking an optimal 

policy, we look for an E-optimal policy, which means for an E > 0, a policy π;
∗ with the 

property that 
:V π
∗
(s) + E > V N

π(s), s ∈ S N 

∗for all π ∈ Π. Therefore, we define the characterization of value of the MDP, vN as 

VN 
∗ (s) ≡ sup VN

π(s) s ∈ S (2.3) 
π∈Π 

and when the supremum in (2.3) is attained, by 

VN 
∗ (s) = max VN

π(s), s ∈ S. 
π∈Π 

Now it is easy to see that, the expected total reward of an optimal policy π∗ satisfies 

V π
∗ 
(s) = VN 

∗ (s), s ∈ S N 

and the value of an E-optimal policy π;
∗ satisfies 

π:
∗

V (s) + E > V ∗ s ∈ S.N N (s), 

By the definition of the supremum, such a policy exists for any E > 0. 

2.3 Infinite-Horizon MDP 

Unlike the finite-horizon model, the infinite-horizon MDP[14] needs to evaluate an infi­

nite sequence of rewards at all states in S. Consequently, we need a pointwise convergent 

function on S, whose limits are defined separately for each s in S. There are a few meth­

ods that can return an convergent function in S, such the discounted reward criterion. 
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For average reward model, the value function can be defined as: 

∞ 

V π(s) = Es
π βn rn(sn, an) . 

n=1 

Under certain conditions V π(s) can be bounded, but often it is not. Therefore, to 

guarantee convergence for V π(s), a discounted factor, 0 ≤ β < 1, is introduced into the 

infinite horizon MDP. Such a model is termed discounted infinite horizon MDP. 

For a discounted model, (2.2) shows the value function of infinite-horizon discounted 

MDP. Similarly to finite-horizon MDP, we say that a policy π∗ is total reward optimal 

whenever 

V π
∗ 
(s) ≥ V π(s) for each s ∈ S and all π ∈ Π. 

Define the value of the MDP by 

V ∗ (s) ≡ sup V π(s) 
π∈Π 

An optimal policy π∗ ∈ Π exists whenever 

V π
∗ 
(s) = V ∗ (s) ∀s ∈ S 

We use 0 ≤ β < 0 to denote the discounted factor and for a policy π∗ is discount optimal, 

if for fixed β, whenever 

V π
∗ 

β (s) ≥ Vβ
π(s) for eachs ∈ S and all π ∈ Π 

As a result, the value of the MDP, V π(s) is defined as below: β 

Vβ 
∗ (s) ≡ sup Vβ

π(s) 
π∈Π 

Consequently, we can say that a discount optimal policy π ∈ Π exists whenever 

V π
∗ 

β (s) = Vβ 
∗ (s) ∀s ∈ S 

Note that the discount model, there exist an optimal and stationary policy. 
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There are many algorithmic solutions for finding the optimal policy for the finite-

horizon MDP such as Backward Induction and infinite-horizon MDP such as policy and 

value iterations. 
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Chapter 3: Revenue Based Pricing Protocol using finite-horizon
 

MDP
 

In this chapter, we describe the optimal pricing scheme based on the finite-horizon MDP 

model. 

3.1 System Model 

In this section, we consider an approach for designing spectrum access mechanisms that 

maximize the revenue for a spectrum operator. Specifically, we consider the model 

in which radio bands are allocated dynamically for exclusive use. Furthermore, the 

spectrum allocation is done at the time scale of the application duration that can lead 

to higher spectrum efficiency than those resulting from the larger time scale allocation. 

We assume all devices to be cognitive radio devices, i.e., they can operate on different 

radio bands. We assume the following protocol for regulating the wireless access of a 

device: 

1. A device sends a message to the spectrum operator requesting for access and the 

price it is willing to pay for the transmission. 

2. The spectrum operator decides to accept the request or not based on the current 

system state and the cost of maintaining the transmission. 

3. If the user/device is accepted, the device will be granted exclusive use of a radio 

band, and the spectrum operator will receive an amount of revenue proportional 

to time the device using the band. 

4. If the offer is not accepted, the spectrum operator will not get	 any additional 

revenue. The device can try to access the spectrum again. 

The goal of the spectrum operator is to maximize its expected revenue over some finite 

number or infinite number of time steps. To do so, whenever there is an joining request 
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from a device, the spectrum operator will make a decision on whether or not to accept 

the offer from a joining device, based on various factors including the current spectrum 

demand, the price a device is willing to pay, its the application classes, its environmental 

factors such as Signal-to-Noise Ratio (SNR). 

The spectrum operator is intended to be a device that manages the spectrum access 

using the protocol above. This protocol aims to model a number of scenarios including 

Wi-Fi hotspots, or micro cells, or femto cells. For example, let us consider a scenario of 

a wireless service provider providing Wi-Fi access for passengers at airports as shown in 

Fig. 1.1. The spectrum operator would be the AP that manages the channel access based 

on the current demand of passengers, their types of traffic/applications, their willingness 

to pay for the wireless service. Importantly, the above model allows for the payment on 

the scale of application duration, i.e., on the order of seconds, minutes, or hours. The 

goal is to implement an automatic scheme on whether or not to accept a price from 

a device/users requesting to join the network in such a way to maximize the expected 

revenue for the wireless service provider. 

By using the model above, we assume that the spectrum operator has M available 

bands which it can sell to a requesting user/device. A request includes an amount of 

bandwidth, an application class, the price the user is willing to pay, the user’s envi­

ronmental factors SNR which can directly affect the cost of delivering the bits to the 

users. For example, for application class, a user may request 2 Mbps for video streaming 

(streaming application class) or 96 Kbps for IP-telephony (interactive application class). 

Regarding the price, a user is willing to pay with 10 cents per second per Mbps for 

streaming class, but only 1 cent per second per Mbps for browsing the web. Further­

more, a user might be located far away from the AP, or has other interference such that 

its receiving SNR is 15 dB. In this case, the AP might have to increase its transmission 

power in order to achieve the requested bandwidth. Thus, the cost of operating the AP 

for this user is higher than than other users that are located closer to the AP or have less 

interference that result in a larger SNR, e.g., 25 dB. Intuitively, the spectrum operator, 

or the AP in this case, should take this these information into account in order to make 

decisions that maximize its overall revenue. 

In addition to the user requests, to make the optimal decision, the AP should also 

rely on the past statistics of requesting users. Specifically, at every time step, there is a 

probability qi that an existing user of application class i will be leaving the system and 
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a probability βj that the new user of application class j will request an access. The AP 

should also keep track of the current available spectrum. These information will help 

the AP devising a scheme of whether or not to accepting a current request in order to 

maximize its expected revenue over time. 

Given the assumption above, it is not clear what the optimal strategy for the spectrum 

operator should be based on the information it has. For example, let us consider a 

strategy for the spectrum operator that always accepts every requests regardless of the 

offered prices, in a first come first server manner. This strategy will ensure that the AP 

will have more users in the network with the intuition that more users implies higher 

revenue. However, this strategy does not necessarily maximize the revenue. In fact, by 

accepting every requesting users even ones with lower prices, until the spectrum owner 

has no more spectrum left, on the average, the spectrum owner will have lower revenue 

per second. Intuitively, this strategy takes away the opportunities to generate higher 

revenue by waiting for users who are willing to pay at higher prices at a later time. 

The situations are further made more complex by considering other factors including 

application classes, SNR, and statistics of how frequent the users requests to join and 

leave the networks. 

In summary, an optimal strategy should consider the current access demand for 

different application classes, the available spectrum, the characteristic of the current 

request, e.g., prices per Hz per second, user’s environmental characteristics, e.g., SNR 

to make a decision on whether or not to accept the current request. In what follows, we 

present a precise MDP model that takes into account all of these points. 

3.2 MDP Formulation 

The first step in applying the MDP framework to a specific scenario is to model the 

appropriate components of the abstract MDP: namely, the action space A, the state 

space S, the reward r, and system dynamics via the transition probability matrix P . 

In a real-world scenario, the action space is limited by what can be done without too 

much overhead. The state space is also restricted to what can be observed by the 

MDP controller. The reward is used to model the objective of the system. Finally, the 

transition probabilities are the properties of the environments. Also, in many scenarios, 

state and action spaces are intentionally restricted to smaller sizes in order to make 
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the solutions tractable. To that end, we model the MDP components for the spectrum 

management problem as follows: 

State space. A system state sn at time n includes the current request and the 

system status. Specifically, the current request is a vector that includes the application 

class ci,n, the associated requested bandwidth bn, an the price user/device is willing to 

pay, whose unit is $ per Mhz per second, and its SNR value. The system status is an 

M × 2 matrix. The M rows of the matrix represent the M radio band. The first column 

of the matrix represents the class of users/applications i currently in the system ci,n. The 

second column shows the corresponding revenue vi,n obtained by from user i at time step 

n per Mhz per second. vi,n for are calculated by multiplying the price per bandwidth 

per second with the number of bands requested by the user i, then subtracting it from 

the power cost of transmit the data to user i. This cost is based on the user i’s SNR. 

Finally, a row (0, 0) in the status matrix implies the corresponding band is idle, i.e., not 

yet assigned.
 ⎤⎞⎛⎡ 

sn = 

⎢⎢⎢⎢⎣
 
(ci,n, bn, an, snrn) ,
 

⎜⎜⎜⎜⎝
 

c1,n v1,n 

c2,n v2,n 

... ... 

cM,n vM,n 

⎥⎥⎥⎥⎦
 

⎟⎟⎟⎟⎠
 

Control action space. After receiving a request of a device, the spectrum operator 

(MDP controller) will decide whether or not it accepts the request. As discussed pre­

viously, the request includes the information on the price the requested user is willing 

to pay, the amount of bandwidth, the SNR, and the application class. Based on these 

information, the spectrum operator will have only two options: to accept or to reject the 

request. The decision by the spectrum operator will induce a probability of the system 

state to transition to a some other state sn+1 in the next time step n +1. This transition 

probability is characterized next. 

Transition probability. We assume that a user only quits at the end of a time slot, 

and a new user only joins at the beginning of the time slot. Given this, the transition 

probability from state sn = s to sn = s' at time step n can be computed as the product 

of three different probabilities: qi,n the probability of a certain user of class i leaving 

the system, 1 − qi,n the probability of a user of class i remaining in the system, the 

probability of a new user of class i requesting access βi,n at time step n. Given the two 
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's sstates sn = s to sn = s ' , and let c and c be specified as in the state space above m,n m,n 

for the states s and s ' , then the four probabilities can be computed as follows: 

 
Pquit = qcs 

i,n 

s s'c >0,c =0i,n i,n 
Premain = [1 − qcs ]

i,n 

s s'c >0i,n =ci,n

1 
Passign = _ _ 

M 

1 's + 1 
c =0i,n

i=1 

Prequest = βj,n 

' The transition probability from state s to state s is then ⎧ ⎨PquitPremainPrequest if a = 0 
ps'|s,a = ⎩PquitPremainPrequestPassign if a = 0  

Reward. Since the goal of the spectrum operator is to maximize the expected 

reward, a natural way to achieve this goal is to set the immediate reward to the revenue 

that the operator earns per time step. This amount depends on to the number of users 

and the type of users/application currently in the system. A higher number of use rs and 

high priority applications leads to higher revenue per time step. Formally, if vi,n denotes 

the price the operator sets for the user i (and is accepted) minus the transmission cost 

(related to SNR) then the immediate reward at time step n can be computed as: 

M 

rn = vi,n (3.1) 
i=1 

3.3 Solution Approach: Backward Induction 

In this section, we give a basic algorithm for evaluating the policy of finite-horizon 

MDP and we give the proof of its optimality in Appendix A. As stated in Chapter 
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3, the finite-horizon MDP aims to maximize the reward in a given finite number of 

time steps. For a problem with limited state and action spaces, the classic backward 

induction (BI) algorithm is an efficient method for finding the optimal policy, i.e., pricing 

schemes. The BI algorithm starts from the last time step, moves backward, explores all 

the possible policies at the previous time step for each state and stores the “best” one 

in the optimal policy table. It always returns the optimal policy. Let the optimal policy 

π∗ = (d∗(s1), d
∗(s2), ..., d∗(sN )), where d(si)denotes the optimal action in state s at time 

i, then the pseudo-code for the BI algorithm is shown below: 

1. Set n = N and U∗ (sN ) = rN (sN ) for all sN ∈ S,N 

2. Substitute n − 1 for n and compute U∗(sn) for each sn ∈ S by n ⎫⎬ 
⎧⎨ 

U ∗ 
n(sn) = max 

a∈A 
rn(sn, a) + p(j|sn, a)U ∗ 

n+1(j)⎭ 
. ⎩ 

j∈S 

Set 

d ∗ (sn

⎫⎬ 
⎧⎨ 

) = arg max 
a∈A 

rn(sn, a) + p(j|sn, a)U ∗ 
n+1(j)⎭ 

. ⎩ 
j∈S 

3. If n = 1, stop. Otherwise return to step 2. 

In Section 3.2, we already showed how to compute rn and p(j|sn, an) based on the 

assumption that we know the statistics of spectrum demand (probabilities of users with 

different application classes requesting access) . Thus, the optimal policy can be easily 

computed. 

3.4 Simulation Results 

We consider a Wi-Fi scenario in which the AP is assumed to be the spectrum operator 

who manages a total of M radio bands of equal bandwidth. Before sending data, each 

wireless user must send a message to the AP, requesting for transmission of a certain of 

application class ,the associated bandwidth requirements and the price it is willing to 

pay. Application class specifies the priority of their transmissions which can translate 

to interactive, streaming, or web-browsing traffic. For simplicity, we assume that the 

requested amount of bandwidth is always an integer number of bands. Based on the 
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Table 3.1: Parameters for the finite-horizon model
 

Number of application classes 3 
Capacity (number of radio bands M) 3 
Price user pays ( cents/sec· Mhz) {1, 3, 5}
Cost to maintain transmission {1, 1, 2}

Quit rate {0.1, 0.15, 0.2} 

request and current system state, the AP decides to accept the request or not. If the 

offer is accepted, the spectrum operator will gain a revenue equal to the product of the 

price and the time the user staying in the system. Otherwise, the spectrum operator 

receives no additional revenue. The average time of a user staying in the system depends 

on the user’s application. For example, the average time for a video application tend to 

be longer than a web transaction. Thus, we model the average time of an application by 

assuming that there is a probability qi that a user having application class i will quit and 

leave the system at any time step. Specific values for these parameters in the simulations 

are shown in Table 3.1. For simplicity, we assume the cost of transmissions take on three 

possible discrete values. These are computed and normalized based on typical SNR of 

Wi-Fi networks. 

In this simulation, we assume there are five different classes, denoted by number 

1 to 3. There is a total of three radio bands, and thus that there are at most three 

simultaneously active users. For simplicity, every user pays a fixed price throughout 

time, which unit is cent per second per Mhz. For simplicity, we also assume that same 

classes of user cost same amount of profit for AP to maintain the transmission. This 

assignment makes sense since as the user has a better price offer stays in system shorter, 

the AP should pick up this property by accepting more that kind of class of users to 

maximize the revenue. 

Figure 3.1(a) shows the revenue of the spectrum operator over 200 time steps as a 

function of rates of request arrivals for the BI and greedy algorithms. Using the greedy 

algorithm, the AP greedily accepts the request if the system is not fully occupied. As 

seen, when the requesting rates are low, the greedy algorithm aiming to utilize as many 

bands as possible, performs similar to the optimal algorithm due to the fact that there 

are always many available bands anyway. In other words, optimization does not matter 
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Figure 3.1: Finite Horizon with Backward Induction
 

in this case. However, when the requesting rate increases, a more careful optimization 

is needed to avoid accepting low revenue users and filling up the spectrum. Thus in this 
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case, the optimal policy outperforms the greedy policy significantly. We also note that 

the larger requesting rates are, the larger the revenue gaps between the optimal and 

greedy algorithms. 

Figure 3.1(b) shows the revenue per time step as a function of the size of the opti­

mization horizon, assuming a fixed requesting rate at 0.8. For the optimization horizon 

of size one, the greedy and optimal algorithms are identical, and thus they produce 

the same revenue. However, as the optimization horizon increases, the optimal policy 

performs much better due to having more opportunities for optimization. 
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Chapter 4: Revenue Based Pricing Protocol via Q-Learning 

In previous chapter, we study the pricing scheme problem assuming that the system 

parameters such as the transition probability matrix are known. In the real-world, this 

is often not the case. Therefore, in this chapter, we propose a Q-learning[18] approach 

to learn the optimal policy directly from the simulations. Q-learning approach is useful 

where it is complex to analytically derive the system parameters. In addition, we will 

assume a discount infinite-horizon MDP model for our study. The infinite-horizon model 

aims to model the long-term revenue with future discount. 

To do so, we also simplify the state of the MDP. Such simplification no longer allows 

us to analytically derive the transition probability. On the other hand, we no longer need 

the system parameters since the optimal policy can be found directly through simulations 

using Q-learning. 

Also, as a preview of our result, we show that the policy will have a special structure 

that can be compactly represented via Support Vector Machine (SVM)[16] which will 

be discussed subsequently. This result is also a precursor to our theoretical analysis on 

the conditions for optimality of a thresholding policy for our pricing scheme model in 

Chapter 5. 

4.1 System Model 

The setting used in this section is identical to the model that we state in Chapter 3. 

The difference only lies in the state modeling, the cumulative reward function, and the 

solution approach. 

4.2 MDP Formulation 

We note that the immediate reward rn is observed at every time step and is given to 

the agent by environment. The action an at every time step is typically selected in a 

greedy manner. Importantly, for our spectrum management the observations (states) 
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are intentionally reduced significantly. Specifically, instead of using the detail states as 

described in Section 3.2, we simplify the states to be: 

sn = [(cn, snrn), un, vn], 

where sn denotes the state, (cn, snrn) denotes the application/user request type and its 

SNR value, un denotes the amount of spectrum being used, and vn denotes the total 

revenue paid by all users in system, at time step n. This simplification is necessary in 

order to handle a system having large capacity. To see why, assuming a finite-horizon 

model with M radio bands for access, then the number of possible states is O(NM ), on 

the contrary, if we keep track of just the used radio bands, then the number of states is 

only O(M). 

We can see that the reward and control action space remain the same as in previous 

chapter. However, by using such model, we are not able to track the transition probability 

any more since we have lost the information from the original states. Therefore, we 

need an algorithm such that it can learn the approximate optimal policy through the 

simulation without knowing the transition probability. Reinforcement learning(RL)[4, 

15] is one of such learning algorithms. 

4.3 Solution Approach: Q-Learning 

Reinforcement learning (RL)[15] approach allows one to learn the optimal policy directly 

via simulations. In addition to learning the optimal policy without knowing the transition 

probability, RL algorithms also employ simulations which enable them to consider only 

the probable states, reducing the need of exploring all the possible states as required by 

the BI algorithm. Q-Learning[18] is one of the most well-known reinforcement learning 

algorithm, and is the algorithm under investigation in this paper. 

Q-learning model consists of an agent who acts on the environment based on its ob­

servations. For each agent’s action, a reward is given to the agent, and the environment 

is changed based on its action. The goal of the agent is to maximize the total reward 

by taking an appropriate action based on its current observation. Often, the transition 

probability that characterizes a complex environment is difficult to obtain analytically. 

Thus, the environment is typically simulated, and the reward from the simulator is given 

to the agent directly. This setup allows the Q-learning algorithm to find an optimal 
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policy in an off-line manner via simulations. Once the optimal policy is found via simu­

lations, it can be used online for the real world scenarios, providing that the real-world 

is similar to the simulations. In certain situations, the Q-learning algorithm can learn 

the approximately optimal policy quickly and directly from the real world without the 

need of running simulations offline. That said, the Q-learning algorithm finds the opti­

mal policy by iterative updating the Q function until it converges. Specifically, the Q 

function is updated according to: 

Q(sn, an) ← (1 − α)Q(sn, an) + α[rn+1 + γ(maxQ(s )], (4.1)n+1,an+1 an+1 

where α denotes the learning rate and γ denotes the discount factor. A larger α value 

allows the algorithm to learn the policy quickly, but might not be optimal. A larger 

discount factor γ weighs the future reward more importantly. 

We note that since the Q-learning algorithm is used to maximize the reward for the 

infinite-horizon model, after running the simulations sufficiently long, the update Equa­

tion (4.1) will produce the approximately maximum value of Q(sn, an) corresponding to 

the approximately optimal pair (sn, an), i.e., the approximately optimal price schemes. 

4.4 Simulation Results 

Table 4.1: Parameters for Infinite-Horizon MDP 

Number of Class 5 
Capacity 10 

Price user pays ( cents/sec· Mhz) {1, 3, 5, 7, 9}
Quit rate {0.1, 0.15, 0.2, 0.2, 0.3}

Cost to maintain transmission {1, 1, 2, 3, 4}
Learning Rate 1/# of states 
Discount Factor 0.99 

We now show the results for Q-learning algorithm as applied to the infinite-horizon 

MDP. The parameters for the simulations shown in Table 4.1 consists of all the param­

eters in the finite-horizon model, and two more parameters: discount rate and learning 

rate that are specific to the infinite-horizon MDP and Q-learning algorithm. Figure 4.1(a) 
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Figure 4.1: Infinite Horizon with Q-Learning and Greedy Algorithm
 

shows the revenue per time step generated by the Q-learning and greed algorithms as 

functions of the arrival rate of requests. As seen, the Q-learning algorithm outperforms 
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the greedy algorithm significantly when there is a high access demand which provides 

more opportunities for optimization. Figure 4.1(b) shows the revenue per time step as a 

function of the size of the optimization horizon, assuming a fixed requesting rate at 0.9. 

From the 4.1(a) we show that same as finite horizon case, when the request rate is 

low, the greedy algorithm is just the optimal policy, so that Q-learning algorithm can 

not out perform that. However when the request rate increases there is more ”space” for 

Q-learning to learn the optimized policy, as a result it out performs greedy algorithm. 

We note that as Q-learning is based on the simulations. The longer simulation time 

produces more accurate results. In Fig. 4.1(b), we show that the convergence of Q-

learning algorithm to the optimal solutions. We switch off the learning magnesium after 

every 100 iterations and evaluate the policy it learned. As seen, it is the result after 

100,000 iterations, Q-learning achieves reasonably good policies. 

Though this MDP has far fewer states than the one in the finite-horizon model, it 

still takes a long time to run due to simulations. In addition, as the number of user class 

and price range increases, the state table also increases. As a result, it takes a large 

amount of time to go through the table to obtain the action for each state. Therefore, 

one of challenges of using MDP policy is how represent the them compactly for real-

world scenarios. A naive approach would be a table-based representation which lists 

out all the possible states. Associated with each state is a correspond optimal action. 

As shown previously, our states are discretized and thus smaller quantization of can 

lead a large number of possible states. This approach requires much memory. Thus, 

we investigate a different approach in which the policies are represented implicitly via a 

function. Specifically, since our action space consists of only two possible actions: accept 

or reject, we will use support vector machine (SVM) [16] to compactly represent our 

policies. 

SVM is typically employed in machine learning to classify whether an instance is 

belonged to one class or the other based on its feature vector. It does so by determin­

ing a plane that separates between the instances that belong to different classes. The 

coefficients in the plane is determined via training using a set of labeled instances. 

To apply SVM to our problem, we obtained the optimal policies using Q-learning 

using a certain level quantization on the states, e.g., SNR, application classes. These 

quantization levels of the states, together with the resulted optimal actions are the 

labeled instances as inputs to the SVM. Using these inputs, SVM produces a plane that 
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separate the states that the spectrum owner would accept from those that would be 

rejected. Since the SVM plane can be compactly represented by its coefficient, there is 

no need to use a large table for storing the policy. Instead, the states can be directly input 

into the SVM plane. If the result is above the plane, the action is accept. Otherwise, 

the action is rejected. 

Importantly, the SVM approach can now be used to determine the actions for the 

cases where the states are not discretized. For example, during training phase, SVM 

uses discrete data for training, but during the real-time operational phase, the observed 

states can be directly input into the SVM. The result is to accept or to reject based on 

the classification of the observed state. In a way, SVM predicts the optimal actions for 

continuous states based on the discrete states based on the training phase. 

Fig. 4.2(a) shows that based on part of information from state, we are able to draw 

a line that separates states with policy accept and policy reject. Fig. 4.2(b) shows that 

the predicted performance of the SVM is not much different from that of Q-learning 

for different requesting rates. This implies that not only SVM allows us to represent 

the policies compactly, but it also allows us to predict the optimal policies based on the 

states that have not been used for training. 

By the observation of SVM, we consider a more efficient MDP model for real-life 

scenarios with monotone policy. 
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Figure 4.2: Support vector machine result
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Chapter 5: Optimal Monotone Policy for Pricing Protocol 

Based on the existence of the structured optimal policy via SVM as empirically supported 

by SVM, we investigate the conditions for which one obtain the optimal policy. Specif­

ically, we show that under some mild conditions, the optimal pricing protocol will have 

thresholding structure. Thresholding policy is a special case of the class of monotone 

policies which are well explored in existing literature. Our contribution is the recognition 

of the thresholding policy for the proposed pricing protocol under a certain assumption. 

It is noted the thresholding policy lends itself to much more efficient implementation of 

algorithmic solutions, e.g., as compare to the standard solutions such as policy or value 

iteration algorithms. 

5.1 Monotone Policy 

A monotone policy is defined as follows. Let dt(s) be the decision rule at time t with 

state s, then the decision rules has the form of ⎧ ⎨a1 s < s ∗ 

dt(s) = ⎩ ∗ a2 s ≥ s , 

∗where a1 and a2 are distinct actions and s is a control limit. Monotone policy[14, 2] 

allows immediate feed back in real life scenarios with just calculation of a function instead 

of searching through the whole policy table. Therefore, it gives a very efficient way for 

implementing the MDP with large state space. A thresholding policy, as will be described 

later, is a type of monotone policy that when all the state variables except one are fixed, 

the optimal policy is monotone with respect to that remaining state variable. 

5.2 System Model 

This system model is similar to the ones defined in Chapter 3 and 4, but we make a few 

assumptions in order to meet the requirement for optimal monotonic policy. 
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•	 There are N class of users shares Mhz bandwidth and we assume that N and M 

are large enough, if necessary. 

•	 The class j user pays price R(j)/hz·second for transmitting and R(j) is non­

decreasing in j. Also we use class 0 denote there is no user, hence R(0) = 0. 

•	 There is a cost function C(i) related to occupancy i, where i ∈ [0,M ], which is 

Strictly increase in i. We assume that C(0) = 0 and C(∞) = ∞, if necessary. 

•	 For arrival, it follows a Bernoulli process, with parameter Γ and once there is a 

arrival, the probability for it is a class j request is γj and γj = 0. Then we have 

N 

γj = Γ and γ0 = 1 − Γ 
j=1 

•	 For departure(quit), it also follows a Bernoulli process with parameter q, which 

is same for all the user in the system. In order to avoid trivial solution, we can 

assume that q is a function of occupancy, denote as q(j), if necessary. 

5.3 MDP Formulation 

•	 State: we only two elements in our state, that is 

j 
s = 

i 

where j is the requesting user class and i is the occupancy. We assume that system 

knows the function R(j), which allows system to have the knowledge that the price 

is paid by requesting user j. 

•	 Action Set: A = {0, 1}, where 0 is reject and 1 is accept. We assume that, if there 

is no request or system is full, we can only take action 0. 

•	 Decision Epoch: Since we run on a discrete time scale, a decision needs to be made 

on every time slot. 
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•	 Transition Probability: We denote [j1, i1] as the current state and [j2, i2] as the 

new state. Then we have the transition probability from current state to new state 

by taking action a we have 

 
⎧⎨
  
i1+a |i1−i2+a|· q · (1 − q)i2 · γj2 i2 ≤ i1 + ai1−i2+ap([j2, i2]|[j1, i1], a) = ⎩
0	 otherwise
 

•	 Since every user in the current has same departure property, we can use expectation 

criterion to calculate the reward. At time t, state s with occupancy i and arrival 

user class j, by taking action a. Also if we also can assume that q is a function of 

price j, then we can have below: 

rt([j, i], a) =

⎧⎨ ⎩
 

1[R(j) − (C(i + 1) − C(i))] · if a = 1 q(j) 

0	 if a = 0
 

where q(j) is non-increasing in j. Such model focuses on average reward during 

one user’s transmission, in which a user either pays higher price to stay longer or 

offers a lower price for transmitting a small amount of time. 

•	 Total reward through out the time is 

E[R] = rt(s, a) 
t 

5.4 Solution Approach 

In [14], gives conditions for a MDP has an optimal monotone policy. In this section, we 

list all the conditions of optimal monotone policy for finite-horizon problems and give 

proof that our model meet all such requirements, hence it has an optimal monotone 

policy. In Appendix B, we show the proof that such conditions guarantee monotone 

policy is optimal for certain MDPs. 
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First we give the notations and definitions for MDP used in this section. 

i. S is the state space and it is partially ordered, 

ii. A is the action space and Ast be the actions is valid for state s at time t, 

iii. p(s2|s1, a) is the one-step transition probability from s1 to s2 by taking action a, 

iv. rt(s, a) is the one-step reward in state s if action a is taken at time t. 

Condition for Optimal Monotone Policy 

Now we give the condition for a MDP has an optimal monotone policy, proof of its 

correctness is given in Appendix B 

Theorem 1. Suppose for t = 1, ..., N − 1 that 

1. rt(s, a) is non-decreasing in s for all a ∈ Ast , 

2. qt(k|s, a) is non-decreasing in s for all k ∈ S and a ∈ Ast , 

3. rt(s, a) is superadditive(subadditive) function on S × Ast . 

4. qt(k|s, a) is superadditive(subadditive) function on S × Ast for all k ∈ S, and 

5. rN (s) is non-decreasing in s. 

Then there exist optimal decision rules dt(s) which are non-decreasing(non-increasing) 

in s for t = 1, ..., N − 1. 
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Proof of Existing Optimal Monotone Policy 

Here we give the proof that proposed MDP in Section 5.3 has an optimal monotone 

policy. We first prove the condition related with rt(x, a), which is condition 1, 3, 5; then 

we show the condition related with transition probability, which is condition 2, 4. Here 

we denote our fixed i as i∗ . 

Condition 1 rt(s, a) needs to be non-decreasing in s. As stated before 

1 
rt([j, i 

∗ ], a) = a · {R(j) − [C(i ∗ + 1) − C(i ∗ )]} · , where a ∈ A 
q(j)

•	 If a = 0, rt([j, i∗], a) = 0, ∀[j, i] ∈ S, so it is non-decreasing. 

•	 If a = 1, since we fix i, the state space is immediately ordered in terms of j. Also 

R(j) is non-decreasing and and q(j) is non-increasing in j. Therefore {R(j) − 
1[C(i∗ + 1) − C(i∗)]} · is non-decreasing in j. q(j) 

Condition 3 rt(x, a) needs to be super-additive. Since super-additive means that for 

x+ ≥ x− and y+ ≥ y−, we need to have that 

+ + − − g(x , y +) − g(x , y −) ≥ g(x , y +) − g(x , y −) 

Since for us we only have two actions in A, therefore we just need to prove that 

rt(s, 1) − rt(s, 0) 

is non-decreasing in s. This should be straight forward, because we have that rt([j, i∗], 0) = 

0. Suppose that [j1, i∗] � [j2, i∗], we have 

R(j1) R(j2) 
rt([j1, i 

∗ ], 1) − rt([j1, i 
∗ ], 0) − [rt([j2, i 

∗ ], 1) − rt([j2, i 
∗ ], 0)] = − ≤ 0 

q(j1) q(j2) 

Therefore we have that rt([j, i∗], a) is super-additive. 
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Condition 5 rT (s) needs to be non-decreasing in s, where T is the total horizon(the 

last time slot of MDP). Since this is the last second of MDP, we just let 

rT ([j, i 
∗ ]) = 0, ∀j 

Hence it is immediately non-decreasing. 

Condition 2 qt(k|s, a) needs to be non-decreasing in x for all k ∈ S and a ∈ A, where 

qt(k|s, a) is the probability that in state s by taking action a, it exceeds k. 

∞ 

qt(k|s, a) = pt(m|s, a) 
m=k 

For a fixed i∗, the order only depends on j. That is, it orders j from lowest to highest, 

since R(j) is strictly increasing in j and q(j) is non-increasing in j. Suppose that we 

have [j1, i∗] [j2, i
∗] and k = [jk, ik] ∈ S. Then we can have that 

  ∞ N 
i∗ |i∗−ik|qt([jk, ik]|[j1, i ∗ ], 0) = pt(m|[j1, i ∗ ], 0) = γl · · q · (1 − q)ik 

i∗ − ik
m=k l=jk 

= q([jk, ik]|[j2, i ∗ ], 0)   ∞ N 
i∗ + 1 

qt([jk, ik]|[j1, i ∗ ], 1) = pt(m|[j1, i ∗ ], 1) = γl · · q|i∗+1−ik| · (1 − q)ik 

i∗ + 1 − ik
m=k l=jk 

= q([jk, ik]|[j2, i ∗ ], 1)
 

we can see that qt(k|x, a) is non-decreasing in x for all k ∈ X and a ∈ A.
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Condition 4 qt(k|s, a) needs to be super-additive function on S × A for all k ∈ S, 
which means 

qt(k|s, 1) − qt(k|s, 0) 

needs to be non-decreasing in x. By following condition 2, we can easily reached 

conclusion, since 

qt([jk, ik]|[j1, i ∗ ], 1) − qt([jk, ik]|[j1, i ∗ ], 0) 

− [qt([jk, ik]|[j2, i ∗ ], 1) − qt([jk, ik]|[j2, i ∗ ], 0)] = 0 ∀[j1, i ∗ ], [j2, i 
∗ ] ∈ S 

Therefore we proved condition 4 for a fixed i∗ . 

Conclusion: From above we can see that for a fixed i∗ we can have an optimal mono­

tone policy in j. Therefore for the space [0,M ] × [0, N ] we are able to curve the space 

into two parts to obtain the threshold curve. 
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5.5 Simulation Results 

We first use backward induction to find the optimal policy for the MDP we defined in 

Section 5.3. In simulation we have 5 class of users and 4hz bandwidth for share, which 

means M = 4 and N = 5. We set R(j) = j and C(i) = 1.2i, therefore they both strictly 

increase and C(j) increase faster than R(j). The arrival rate is 0.8 and it is uniformly 

distributed among all the users. Also departure rate for each user in the system is 0.1. 

In Fig. 5.1, we can see there is a control limit for every occupancy. The users greater 

than such limit is accepted while users less than the limit is rejected. By linking, all 

those threshold together, we can the whole state space is divided into two parts. The 

upper part takes action accept and the lower part takes action reject. Since this policy 

is returned by backward induction, it is must be optimal(see Appendix A). Therefore, it 

also proves that there exists an optimal policy that is monotone. We also show that for 

different arrival and departure rate setup, the threshold holds. Additionally, we show a 

graph that, if the service rate is a function of price, the control limit changes accordingly. 

Such change meets our assumption in the first place, which is the system favors higher 

average reward during one user’s transmission. 

In Fig. 5.2, we compare the monotone policy obtained by backward induction to the 

greedy policy. It shows that our policy is much better than the greedy policy and also 

as fast as greedy policy. Because we only need to compare the user with the control 

limit, which gives almost instant feedback. We also show that the threshold policy 

exceeds greedy policy in different scenarios. In Fig. 5.2, we can see that as the arrival 

rate decreases, the improvement from greedy policy to threshold policy also decreases. 

Because, there are more available transmitting resource than the request from users. 

http:C(i)=1.2i
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Chapter 6: Conclusion 

In this work, we study the problem on how a spectrum operator can optimally allocate 

its limited spectrum resources by managing spectrum among different classes of users. 

We show that the problem of maximizing the revenue for the spectrum operator can be 

cast as an MDP problem. 

We investigate two formulations of MDP: the finite-horizon and discounted infinite 

horizon models. We show that for small scenarios, the backward induction algorithm 

is feasible and produces the optimal solution for the finite horizon MDP. For larger 

scenarios, Q-learning is used to approximate the optimal solution for the discounted 

infinite horizon. We also show how to use SVM to compactly represent and predict good 

policies. For real-life condition, which needs efficient policy determination, we establish 

a model that has an optimal monotone(threshold) policy. Such model returns policy just 

by comparing the request and control limit, as a result, it gives almost immediate feed 

back on policy. 

Our simulation results show that the obtained MDP-based schemes are able to gen­

erate more revenue than that of the greedy algorithm, especially when there is a high 

demand for wireless access for all three scenarios that we discuss in this work. 
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Appendix A: Proof for Optimality of Backward Induction 

In the appendix, we show that the policy returned by backward induction in optimal. 

There are two main kinds of policy in MDP, deterministic and random. Since in this 

work, the system proposed uses a deterministic policy, the proof given here assumes 

policy is deterministic. Readers who are interested in random policies can refer to [14] 

for details. 

Definition 1. Let Ht be the history at time t and ⎫⎬ 
⎧⎨ 

ut(ht) = sup 
a∈Ast 
⎩
 
rt(st, a) + pt(j|st, a)ut+1(ht, a, j)⎭


(A.1)
 
j∈S 

for t = 1, ..., N − 1 and ht = (ht−1, at−1, st) ∈ Ht be the optimal function. For t = N , 

we add the boundary condition 

uN (hN ) = rN (sN ) 

for hN = (hN −1, aN−1, sN ) ∈ HN . If the supremum in (A.1) is attained, it can be 

replaced by “max”, that is ⎫⎬ 
⎧⎨ 

ut(ht) = max 
a∈Ast⎩
 

rt(st, a) + pt(j|st, a)ut+1(ht, a, j)⎭
 
j∈S 
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Lemma 1. Let w be a real-valued function on an arbitrary discrete set W and let q(·) 
be a probability distribution on W . Then 

sup w(u) ≥ q(u)w(u) 
u∈W u∈W 

∗Proof. Let w = sup w(u). Then 
u∈W 

∗ ∗ w = q(u)w ≥ q(u)w(u) 
u∈W u∈W 

The theorem below shows the optimality properties of solutions of the optimal equa­

tion. 

Theorem 2. Suppose ut is a solution of (A.1) for t = 1, ..., N − 1, and uN satisfies the 

boundary condition. Then 

∗i. ut(ht) = u (ht) for all ht ∈ H, t = 1, ..., N, andt 

∗ii. u1(s1) = v (s1) for all s1 ∈ S N 

Proof. The author in [14] divides the proof into two parts. First, an induction for 
∗ un(hn) ≥ u (hn) for all hn ∈ Hn and n = 1, 2, ..., N is constructed. By the boundary n

condition, there is no decision is made, so that uN (hN ) = rN (sN ) = uπ (hN ) for all N 
∗and π ∈ Π. As a result, we have uN (hN ) = u (hN ) for all hN Now hN ∈ Hn N ∈ HN . 

∗assume that ut(ht) ≥ u (ht) for all ht ∈ Ht for t = n+1, ..., N . Let π ' = (d ' 1, d 2
' , ..., d ' )t N−1

be an arbitrary policy in Π. For t = n, the optimal equation is ⎫⎬ 
⎧⎨ 

un(hn) = rn(sn, a) + pn(j|sn, a)un+1(hn, a, j)
⎭

sup
 ⎩
a∈Asn j∈S 
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By the induction hypothesis, we have ⎫⎬ 
⎧⎨ 

∗ un(hn) ≥
 rn(sn, a) + pn(j|sn, a)u , a, j)n+1(hnsup
 ⎩
 ⎭
a∈Asn j∈S ⎧⎨
 
⎫⎬
 

π ' ≥ sup rn(sn, a) + pn n+1(hn(j|sn, a)u , a, j)
⎩
 ⎭
a∈Asn j∈S ⎧⎨
 
⎫⎬
 

π ' ≥ (sn, a) + qd ' (hn)(a) rn pn n+1(hnn
(j|sn, a)u , a, j)
⎩
 ⎭
 

j∈S 

π ' = u (hn)n 

The first inequality holds because of the induction hypothesis and the non-negativity of 

pn. The second inequality is based on Lemma 1, in which we let W = Asn and w equal 

to the expression in brackets. Since π ' is arbitrary, we have 

π un(hn) ≥ u (hn) ∀π ∈ Πn

∗Thus un(hn) ≥ u (hn) and the induction hypothesis holds. Now we establish that for n

any E > 0, there exists a π ' inΠfor which 

π ' u (hn) + (N − n)E ≥ un(hn) (A.2)n 

for all hn ∈ Hn and n = 1, 2, ..., N . In order to prove that we construct a policy 

π ' = (d1, d2, ..., dN−1) by choosing dn(hn) to satisfy 

π ' rn(sn, dn(hn)) + pn(j|sn, dn(hn))un+1(hn, dn(hn), j) + E ≥ un(hn) 
j∈S 

We show this by induction. Since uN
π ' = uN (hN ), the induction hypothesis holds for 
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π ' t = N . Assume that u (ht) + (N − t)E ≥ ut(ht) for t = n + 1, ..., N . Then we have t
 

π ' π '
 un (hn) = rn(sn, dn(hn)) + pn(j|sn, dn(hn))un+1(sn, dn(hn), j)
 
j∈S
 

≥ rn(sn, dn(hn)) + pn(j|sn, dn(hn))un+1(sn, dn(hn), j) − (N − n − 1)E 
j∈S 

≥ un(hn) − (N − n)E 

Thus the induction hypothesis is satisfied and (A.2) holds for n = 1, 2, ..., N . Therefore 

for any E > 0, there exists a π ' ∈ Π for which 

∗ π ' ∗ u (hn) + (N − n)E ≥ u (hn) + (N − n)E ≥ un(hn) ≥ u (hn)n n n

so that (i) follows and (ii) follows by the definition. 

Now we give the proof that the policy returned by backward induction is optimal 

∗Theorem 3. Suppose u , t = 1, ..., N are solutions of the optimality equations, which t 

supremum can be attained, subject to boundary condition and policy π∗ = (d1
∗, d∗ 

2, ..., d
∗ ) ∈N−1

Π satisfies 

∗ rt(st, d ∗ (ht)) + pt(j|st, d ∗ (ht))ut+1(ht, d ∗ (ht), j)t t t 
j∈S ⎧⎨
 

⎫⎬
 
∗ = max 

a∈Ast 

rt(st, a) + pt(j|st, a)ut+1(ht, a, j)⎩
 ⎭
 
j∈S 

for t = 1, ..., N − 1. Then 

1. For each t = 1, 2, ..., N 

u π
∗ 

t (ht) = u ∗ 
t (ht), ht ∈ Ht. 

2. π∗ is an optimal policy, and 

v π
∗ 

N (s) = v ∗ 
N (s), s ∈ S. 
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Proof. Here we prove (i), since (ii) follows from Theorem 2. We prove this theorem by 

induction. By definition, we have 

π∗ ∗ uN (hn) = uN (hn), hn ∈ Hn. 

Now assume the result holds for t = n +1, ..., N . Then, for hn = (hn−1, d
∗ 
n−1(hn−1), sn), 

we have ⎫⎬ 
⎧⎨ 

∗ ∗ u
n(hn) = rn(sn, a) + pn(j|sn, a)u , a, j)n+1(hn ⎭
 
max
 ⎩
a∈Asn 

j∈S 

π∗ 
, d ∗ )) + (j|sn, d ∗ ))u , d ∗ ), j)= rn(sn n(hn pn n(hn n+1(hn n(hn

j∈S 

π∗ 
= u (hn)n 

The second equality follows from the induction hypothesis and the condition assumed 

by theorem. Thus the induction hypothesis is satisfied and the result follows. 
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Appendix B: Proof for Optimality of Monotone Policy 

In this appendix, we gives proof of optimality of monotone policy for both finite-horizon 

and infinite-horizon. We use the notations that according to the original article, [14, 2]. 

B.1 Finite-Horizon 

From [14], we know that only MDP with certain properties has an optimal decision rules 

with monotone form. In this section we give the detailed proof that, if a MDP meets 

certain conditions it has an optimal monotone policy. 

Definition and Notation 

First we give the notations and definitions for the MDP. 

i. S is the state space and it is partially ordered, 

ii. A is the action space and Ast be the actions is valid for state s at time t, 

iii. p(s2|s1, a) is the one-step transition probability from s1 to s2 by taking action a, 

iv. rt(s, a) is the one-step reward in state s if action a is taken at time t. 

Proof for Optimality 

Definition 2. Let ⎫⎬ 
⎧⎨ 

∗ ∗ ut (st) = max 
a∈Ast⎩
 

rt(s, a) + 
j∈S 

pt(j|st, a)u ⎭t+1(j) 

be the optimal value function for finite-horizon MDP. 

We demonstrate optimality of monotone policies, by inductively showing that the 
∗optimal value functions from t onward, u (s), are non-decreasing or non-increasing in S.t 
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Then we show that 
∞ 

∗ wt(s, a) = rt(s, a) + pt(j|s, a)u (j) (B.1)t 
j=0 

is superadditive or subadditive. 

Remark 1. For (B.1), superadditive(subadditive) means that 

wt(s, a +) − wt(s, a −) 

+ −is non-decreasing(non-increasing) in s, where a .a− ∈ Ast and a < a+ . 

We can see that by proving (B.1) is superadditive(subadditive), we are able to conclude 

that there is an optimal policy for the finite-horizon problem, which is monotonically 

increasing(decreasing) in s. 

In order to prove (B.1) is superadditive(subadditive), we first show some lemmas. 

' Lemma 2. Let {xj }, {x } be real-valued non-negative sequences satisfying j 

∞ ∞ 
' xj ≥ xj 

j=k j=k 

for all k, with equality holding for k = 0. 

Suppose vj+1 ≥ vj for j = 0, 1, ..., then we can say 

∞ ∞ 
' vj xj ≥ vj xj 

j=0 j=0 

where limits exists but maybe infinite. 
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Proof. Let k be arbitrary and v−1 = 0. Then 

∞ ∞ j ∞ ∞ 

vjxj = xj (vi − vi−1) = (vj − vj−1) xi
 
j=0 j=0 i=0 j=0 i=j
 

∞ ∞ ∞ ∞ ∞ ∞ 
' ' = (vj − vj−1) xi + v0 xi ≥ (vj − vj−1) xi + v0 xi 

j=1 i=j i=0 j=1 i=j i=0 

∞
 
'
 = vj xj .
 

j=0
 

∗Lemma 2 gives us the ability to prove the optimal value function u is monotone. Now t 
∗we provide condition for proving u is monotone. t 

∗Lemma 3. By using u defined in Definition 2. and if we have t 

1). rt(s, a) is non-decreasing(non-increasing) in s for all k ∈ S, a ∈ A, and t = 1, ..., N − 

1. 

2). qt(k|s, a) is non-decreasing in s for all k ∈ S, a ∈ A, and t = 1, ..., N − 1. 

3). rN (s) is non-decreasing(non-increasing) in s. 

∗Then u (s) is non-decreasing(non-increasing) in s for t = 1, ..., N .t 

Proof. We use backward induction method to prove this lemma. We only show the non­
∗decreasing case, since the proof of non-increasing case is identical. We know uN (s) = 

∗ ∗ rN (s) and by assumption rN (s) is non-decreasing, so base case hold. 
∗Now, we assume that u (s) is non-decreasing for n = t + 1, ..., N . By assumption, n

∗there exists an a ∈ A which attains the maximum in s ⎧⎨
 ∞ 
⎫⎬
 

∗ ∗ ut (s) = max 
a∈A 

rt(s, a) + pt(j|s, a)ut+1(j)⎩
 ⎭
 
j=0 

so that 
∞ 

∗ ∗ ∗ ∗ ut (s) = rt(s, a s) + pt(j|s, a s)ut+1(j) 
j=0 
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' Now we let s ≥ s. By 1) and 2), the induction hypothesis, and Lemma 2 applied with 
' ∗ ' ∗ ∗ x = pt(j|s, a ), xj = pt(j|s , a ) and vj = ut+1(j), we have j s s

∞ 
∗ ' ∗ ' ∗ ∗ ut (s) ≤ rt(s , a s) + pt(j|s , a s)ut+1(j) 

j=0 ⎧⎨
 
⎫⎬
∞ 

' ' ∗ ∗ ' )≤ max
 rt(s , a) + pt(j|s , a)ut+1(j) = u (st⎩
 ⎭
a∈A 
j=0 

∗Thus we can say that u (s) is non-decreasing. t 

Now we give the proof of Theorem 1 stated in Section 5.4, under which there exists 

monotone optimal policies. 

Proof. Here we only show the superadditive case, which means wt(s, a), defined in (B.1), 
− +is superadditive when qt(j|s, a) and rt(s, a) are also superadditive. Let s ≤ s and 

k ∈ S we have 

∞ ∞ 
− + − +[pt(j|s , a −) + pt(j|s , a +)] ≥ [pt(j|s , a +) + pt(j|s , a −)] 

j=k j=k 

From Lemma 3, we know that ut ∗ (s) is non-decreasing in s for all t, so by applying 

Lemma 2 gives us 

∞ ∞
 
− + − +
[pt(j|s , a −) + pt(j|s , a +)]ut(j) ≥ [pt(j|s , a +) + pt(j|s , a −)]ut(j). 

j=k j=k  ∞Thus for each t, j=0 pt(j|s, a)ut(j) is superadditive.
 
From condition (3), rt(s, a) is superadditive and the sum of superadditive functions is
 

superadditive. Thus we have wt(s, a) is superadditive.
 

Lemma 4. Suppose g is a superadditive function on X × Y and for each x ∈ X, 

max g(x, y) exists. Then 
y∈Y 

' f(x) = max y ∈ arg max g(x, y) 
y∈Y 



48 

is monotone non-decreasing in x.
 

Proof. Let x+ ≥ x− and choose y ≤ f(x−). Then, by the definition of f ,
 

− g(x −, f(x −)) − g(x , y) ≥ 0, 

and by the definition of superadditive, we have 

− + g(x , y) + g(x +, f(x −)) ≥ g(x −, f(x −)) + g(x , y). 

Then we rearrange the equation, we have 

+ − g(x +, f(x −)) ≥ g(x , y) + 
� 
g(x −, f(x −)) − g(x , y) 

� 
now we combine this with first inequality above, we have 

+ g(x +, f(x −)) ≥ g(x , y) 

for all y ≤ f(x−), Thus, f(x+) ≥ f(x−) 

Hence, we combine Lemma 4 and wt(s, a) is superadditive, we have mono­

tone policy. 

Remark 2. There might exist other optimal policies which are not monotone. 
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B.2 Infinite-Horizon 

Similar to the finite horizon-problem, certain infinite-horizon problem also has a mono­

tone optimal policy. [2] focuses on giving proof that under certain circumstances that 

infinite-horizon Markov decision problem with two actions has an optimal threshold pol­

icy. In this section, we give the proof for optimality of threshold policy in infinite-horizon 

MDP. 

Notation and Definition 

First we give the notations and definitions for our Markov decision process. 

i. S is the state space and it is partially ordered, 

ii. A = {0, 1} is the action space, 

iii. p(s2|s1, a) is the one-step transition probability from s1 to s2 by taking action a, 

iv. r(s, a) is the one-step reward in state s if action a is taken, 

v. β is the one-step discount factor, 0 ≤ β < 1. 

Also we denote π = {π0, π1, ...} is the policy, where πt is the policy at time t. 

Definition 3. Let 

n−1 

βtV π(s) = Eπ 

_
r(St, At)|S0 = s 

_ 
, s ∈ S, n ≥ 1,n 

t=0 

be the n-stage value function and when n →∞ we let 

∞ 

βtV π(s) = Eπ 

_ 
r(St, At)|S0 = s 

_ 
, s ∈ S, 

t=0 

be the value function for the infinite-horizon MDP. 

Definition 4. Let 

Jn(s, a) = r(s, a) + βE[Vn(S1)|S0 = s, A0 = a] 
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and when n →∞ we let 

J(s, a) = r(s, a) + βE[V (S1)|S0 = s, A0 = a] 

Remark 3. In order to prove there is an optimal threshold policy for such MDP problem 

in infinite-horizon, we need to show that J(s, a) is submodular(subadditive) in S × A. 

It means that J(s, 0) − J(s, 1) is non-decreasing in s. If such condition meets, we can 

conclude that the optimal policy for certain MDP is monotonically decreasing in s. 

Conditions 

In [2], the author gives five conditions for proving J(s, a) is an submodular function 

in S × A. However, there is a shortcut given in the paper that one only needs three 

conditions to establish the proof. In this section, we list such three conditions, because 

our problem is qualified for taking the shortcut. This is the same as Theorem ??. 

i. The transition probability is stochastically monotone, that is for s1 ≥ s2 and a ∈ A,
 

E[f(S1)|S0 = s1, A0 = a] ≥ E[f(S1)|S0 = s2, A0 = a],
 

where f is an arbitrary non-decreasing function f : S → R for which the expectation 

is well-defined. 

ii. r(s, a) is submodular, which is r(s, 0) − r(s, 1) is non-decreasing in s. 

iii. If action 0 and 1 are permutable, that is 

E[f(S2)|S0 = s, A0 = 0, A1 = 1] = E[f(S2)|S0 = s, A0 = 1, A1 = 0] 

for all s ∈ S and all functions f : S → R such that the expectation is well-defined.
 

Then we only need
 

E[r(s, 0)+βr(S1, 1)|S0 = s, A0 = 0, A1 = 1]−E[r(s, 1)+βr(S1, 0)|S0 = s, A0 = 1, A1 = 0]
 

is non-decreasing in s.
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Remark 4. Since the goal for us is to prove Jn(s, a) is submodular, which is Jn(s, 0) − 

Jn(s, 1) is non-decreasing in s. If we denote 

ξ(s) = r(s, 0) + βE[Jn(S1, 1)|S0 = s, A0 = 0] − r(x, 1) − βE[Jn(S1, 0)|S0 = s, A0 = 1] 

Later we show that if Jn(s, a) is submodular and ξ(x) is also submodular, then Jn+1(s, a) 

is submodular. However, it is often hard to show that ξ(s) is submodular. The assumption 

of condition iii gives us an easier to way to show that ξ(s) is submodular. If we expand 

the expression of ξ(x), we have 

ξ(s) =E[r(s, 0) + βr(S1, 1) + β2Vn(S2)|S0 = s, A0 = 0, A1 = 1] 

− E[r(s, 1) + βr(S1, 0) + β2Vn(S2)|S0 = s, A0 = 1, A1 = 0], (B.2) 

then if we have action 0 and 1 are permutable, which is 

E[f(S2)|S0 = s, A0 = 0, A1 = 1] = E[f(S2)|S0 = s, A0 = 1, A1 = 0] 

Hence if we put the above equation back to (B.2), we only need that 

E[r(s, 0)+βr(S1, 1)|S0 = s, A0 = 0, A1 = 1]−E[r(s, 1)+βr(S1, 0)|S0 = s, A0 = 1, A1 = 0] 

is non-decreasing in s, which is condition iii. 

Proof of Optimality 

We show optimality of threshold holding policy by inductively showing Jn(s, a) is sub-

modular in S × A. 

Proof. Since 

Jn(s, a) = r(s, a) + βE[Vn(S1)|S0 = s, A0 = a] 

i. For base case, we have condition ii, which is r(s, a) is submodular. Hence J0(s, a) is 

submodular by assumption of r(s, a). 
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ii. Let 

ξ(s) = r(s, 0) + βE[Jn(S1, 1)|S0 = s, A0 = 0] − r(x, 1) − βE[Jn(S1, 0)|S0 = s, A0 = 1] 

then we expand this expression 

ξ(s) =E[r(s, 0) + βr(S1, 1) + β2Vn(S2)|S0 = s, A0 = 0, A1 = 1] 

− E[r(s, 1) + βr(S1, 0) + β2Vn(S2)|S0 = s, A0 = 1, A1 = 0] 

By condition iii, we can say that ξ(s) is non-decreasing. Now we assume that Jn(s, a) 

is submodular, then we have 

Jn+1(s, 0) − Jn+1(s, 1) 

=r(s, 0) + βE[Vn+1(S1)|S0 = s, A0 = 0] − r(s, 1) − βE[Vn+1(S1)|S0 = s, A0 = 1] 

=r(s, 0) + βE[max{Jn(S1, 0), Jn(S1, 1)}|S0 = s, A0 = 0] 

− r(s, 1) − βE[max{Jn(S1, 0), Jn(S1, 1)}|S0 = s, A0 = 1] 

=r(s, 0) + βE[Jn(S1, 0) + max{−Jn(S1, 0) + Jn(S1, 1), 0}|S0 = s, A0 = 0] 

− r(s, 1) − βE[Jn(S1, 0) + max{−Jn(S1, 0) + Jn(S1, 1), 0}|S0 = s, A0 = 1] 

=r(s, 0) + βE[Jn(S1, 0)|S0 = s, A0 = 0] − r(s, 1) − βE[Jn(S1, 0)}|S0 = s, A0 = 1] 

+ βE[max{−Jn(S1, 0) + Jn(S1, 1), 0}|S0 = s, A0 = 0] 

+ βE[min{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 1] 

=r(s, 0) + βE[Jn(S1, 1)|S0 = s, A0 = 0] − r(s, 1) − βE[Jn(S1, 0)}|S0 = s, A0 = 1] 

+ βE[Jn(S1, 0) − Jn(S1, 1)|S0 = s, A0 = a] 

+ βE[max{−Jn(S1, 0) + Jn(S1, 1), 0}|S0 = s, A0 = 0] 

+ βE[min{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 1] 

=r(s, 0) + βE[Jn(S1, 1)|S0 = s, A0 = 0] − r(s, 1) − βE[Jn(S1, 0)}|S0 = s, A0 = 1] 

+ βE[max{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 0] 

+ βE[min{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 1] 
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=ξ(s) 

+ βE[max{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 0] 

+ βE[min{Jn(S1, 0) − Jn(S1, 1), 0}|S0 = s, A0 = 1] 

By assumption, the three lines of last equality are all non-decreasing in s. Therefore 

Jn+1(s, 0) − Jn+1(s, 1) is non-decreasing in s. Thus Jn+1(s, a) is submodular. 

iii. Hence by i. and ii. we can conclude that Jn(s, a) is submodular for all n ∈ N . 

Remark 5. Let n →∞, we can say that this proof still holds. Therefore such conditions 

work for infinite-horizon MDP problem on discrete time scale. 




