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COMPLEX PATTERNS IN GENDER HCI:
A DATA MINING STUDY OF FACTORS LEADING TO END-USER
DEBUGGING SUCCESS FOR FEMALES AND MALES

1. INTRODUCTION

1.1. Gender HCI: Motivation and Overview

Research from several domains has shown gender differences that are relevant
to computer usage (Beckwith, Burnett and Wiedenbeck, et al. 2005), (Busch 1995),
(Huff 2002). Although there has been a fairly wide interest in gender differences in
computing professions and education, as well as in gaming, there has not been much
research on how gender differences interact with end users’ use of purportedly gender-

neutral software features.

Beckwith and Burnett first defined the term Gender HCI in 2004 (Beckwith
and Burnett 2004). Gender HCI is a subfield of Human-Computer Interaction that
focuses on design and evaluation of interactive systems for humans, with emphasis on
differences in how males and females interact with computers. It investigates ways in

which attributes of software (or even hardware) can interact with gender differences.

Beckwith et al. began a line of Gender HCI work whose focus is on features in
tools used for end-user software development, aiming to learn how to design end-user
programming environments that support end-user programmers of both genders. This
thesis continues this effort through two studies on gender differences in feature usage
in end-user programming environments. Our analyses were conducted using data

mining.


http://www.sigchi.org/cdg/cdg2.html#2_1

1.2. Data Mining: Motivation and Overview

Most of our work so far in this area has followed a theory-driven approach, in
which theories from psychology, education, and HCI have been used to generate
hypotheses which have then been investigated via empirical studies. However, a
disadvantage in deriving empirical hypotheses from only established theories is that
these theories do not take into account the specific needs and issues that arise in end-
user programming. Research situations such as this are often referred to as “ill-
structured” problems (Simon 1973). Such problems contain uncertainty about which
concepts, rules, and principles are pertinent to it. Further, the “best” solutions to ill-
structured problems depend on the priorities underlying the situation. In such
problems, in addition to hypothesis testing and application, there is also the need for
hypothesis generation. Such problems are candidates for ultimately deriving new

theories from data and patterns.

Toward this aim, our research group previously used manual qualitative
analysis techniques (Strauss and Corbin 1998), inspecting data on software feature
usage in search of useful patterns leading to hypotheses. Although the results of these
efforts have been fruitful, still, as humans we are fallible, especially given large
amounts of detailed data. We suspected that there may be important information that
we were overlooking. Therefore, we employed a methodology change: turning to data
mining techniques to find feature usage patterns that we may have missed; we

conducted two Gender HCI data mining studies.

In Study 1, we reported the results of revisiting data we had already analyzed
in a previous study, using a data mining approach. Our aim was to derive new

hypotheses about females’ and males’ strategies, adding to the growing foundation for



understanding gender differences in end-user programming situations—by “listening”

to the participants, through their data, from the ground up (Grigoreanu, et al. 2006).

In Study 2, we further applied data mining algorithms to describe, summarize,
segment, and find other interesting patterns in our data (see Chapter 3). Briefly, the
main goals of Study 2 were to: (1) use a bigger set of data, (2) employ different data
mining methods, (3) decrease the amount of grouping, and (4) employ statistical
methods to validate the trustworthiness of the resulting models.

Employing data mining techniques to analyze Gender HCI data should provide
a deeper understanding of hidden patterns and relationships that would otherwise be
hard to hypothesize about. These patterns will help Gender HCI researchers better

understand how females and males problem-solve differently.

1.3. Using a Standardized Model

A further difference between Study 1 and Study 2 is that we chose to use a
standardized data mining process model for Study 2. The general data mining steps are
agreed upon by researchers and many perform these steps in a similar order without
following a standard data mining process model. My reasons for using a standardized
data mining process model in Study 2 are that: (1) standardized processes help both
experts and non-experts alike by providing a checklist of steps to not overlook and (2)

this checklist doubles as a set of guidelines for conducting data mining studies.

In addition, this process allowed me to create a specific instance of the process
model for future Gender HCI researchers to employ. The data mining process model
that we customized to fit the needs of Study 2 is called the Cross Industry Process

Model for Data Mining and is described in the next section.



1.3.1. The CRISP-DM Standardized Model

A standardized six-step model for data mining processes exists, with minor
variations in some cases. The Cross Industry Process Model for Data Mining is the
most prevalent of such models (KDnuggets 2002). CRISP-DM was developed by
DaimlerChrysler AG, SPSS, NCR, and OHRA (Wirth and Hipp 2000). A very similar
process model is described by SQL Server Books Online. Figure 1 below shows both
of these models.
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Figure 1. The CRISP-DM model (top) and the SQL Server Analysis Services model
(bottom).

Our reason for including the SQL Server model here, alongside CRISP-DM, is
that we used MS SQL Server Analysis Services 2005 for this study (see Section 5.1.4.

for more information about the software we used). The SQL Server model was created



with the added goal of showing which of their products and services can help users at
the various stages of the data mining process. While slight differences exist between
the two models, they are very similar overall.

1.3.2 CRISP-DM Steps
This thesis is built around these process models. Notice that most of this thesis’
chapter headings start with the data mining process model step that it pertains to. Here

is a brief overview of each step.

Business Understanding (Defining the Problem). The first phase of a data
mining project is to define the problem that a business wishes to address. In research
studies, related work and research questions fit under this step. This is when a
preliminary project plan is designed, with the project objectives and requirements in
mind (see Chapters 2, 4, 5).

Data Understanding (Exploring the Data). The second phase includes first
collecting the data and then exploring and becoming familiar with them. Exploration
techniques include methods like calculating the mean, median, minimums, and
maximums, and looking at the distribution of data (see Chapters 6, 7, 8, and Appendix
B).

Data Preparation. Data preparation includes data consolidation and data
cleaning. The data may be scattered among several studies or parts of a company (this
is where consolidation comes in). Furthermore, there might be inconsistencies in the
protocols by which data were recorded, compacted, or “scored” (which is why
cleaning is needed). This step gets rid of the inconsistencies in the combined dataset
(see Chapters 7, 8, and Appendix A).

Modeling (Building Models). After the data are combined and cleaned,

models can be built using them. The data first need to be split into a training set and a



testing set. If the original dataset is big enough, it is better to split it into three sets:
training, validation, and testing. This is not the case for either Study 1 or Study 2,
since the datasets are too small. Competing models are then built on the training set,
using different algorithms and parameter choices (see Chapters 3, 8, 9, Appendix C,
and Appendix D).

Evaluation (Validating Models). Often, more than one model is created. This
step evaluates which model performs best and determines how well that model
performs. The testing set can be used to validate the models built on the training set.
This step also determines whether the model properly answers the research questions
posed in the first step (see Chapter 9).

Deployment (Deploying and Updating Models). Once the best model is
picked, the results need to be deployed. The deployment step can range from writing a
report to implementing a package that allows the data mining process to be directly

repeated from within an application (all chapters).

Almost every step in this model is heavily tied to the others. The steps can be
repeated multiple times and in various orders. For example, preparing data leads to a
better understanding of them. A resulting mining model can produce a better problem
definition, which helps build a better model. Building a model can also point out data
that we missed in the preparation phase. During studies, it is recommended to
explicitly allot time for three iterations of each step, with the second taking half the
time of the first, and the third taking a quarter of the time of the first (Wirth and Hipp
2000). As with all data analysis, findings from one study will raise many other related
research questions to be addressed in future studies. Thus, once a project is deployed,

this often results in more specific research questions and the cycle repeats.



In addition to each chapter being titled with the step that it refers to, each
chapter will also begin with a table similar to Figure 2. The part that is highlighted is
the section that the chapter relates to. We have highlighted the Deployment step here
as an example since the deployment phase consists of writing a report (this entire
thesis).

Business ‘ Data Data - . ‘
I I Modeli: I Evaluati I Deployment I
Understanding Understanding Preparation oceing vaation .

Determine Collect Initial Data Data Set Select Modeling

Initial Data Collection | Data Set Description Technique
Report Modeling Technigue

Select Data Modeling Assumpti

Plan Deployment
Deployment Plan

Plan Monitoring and

Describe Data Rationals for Inclusion / Maintenance
Data Description Report | Exelusion Generate Test Design | Approved Modsls Monitoring and
Test Design Maintenance Flan
Explore Data Clean Data Review Process
s | Data Explovation Report | Data Cleaning Report | Build Model Review of Process Produce Final Report
Paramstar Settings Final Report
Verify Data Quality Construct Data M Determine Next Steps TPICL T TEDernion
Data Quality Report Derived Attributes 1 Description List of Possible Actions
Risis and Contingencigs Gengrated Records Decision Review Project
Terminology Assess Model Experiance
Costs and Benefits Integrate Data Modsl Assessment Documentation
Merged Data Revised Favameter
Determine Setfings

Data Mi

ning Goals Format Data
L Reformattad Data

Tools and Technigues

Figure 2: These are the six steps of the CRISP-DM data mining process model and the
subparts and their outputs. This thesis is a final report of two Gender HCI data mining
studies and the deployment phase is highlighted here as an example.



2. (BUSINESS UNDERSTANDING) GENDER HCI
BACKGROUND AND RELATED WORK

Gender HCI research has been conducted in the following areas (among
others): the effects of confidence and self-efficacy on both genders’ interactions with
software, the design of gender-specific software, such as video games created for girls,
the design of display screen sizes and how they affect both genders, and the design of

gender-neutral problem-solving software.

The subfield of Gender HCI is a highly interdisciplinary area. Findings from
fields such as Psychology, Computer Science, Marketing, Neuroscience, Education,
and Economics strongly suggest that males and females problem solve, communicate,
and process information differently. Gender HCI investigates whether these
differences need to be taken into account in the design of software and hardware. The
term Gender HCI was first coined in 2004 by Beckwith and Burnett, but research

relevant to that topic predates the term.

Some of the findings of Gender HCI research are related to male and female
confidence in dealing with computer software (or computer self-efficacy). Self-
efficacy is measured using a standard pre-study questionnaire. For example, for
spreadsheet problem-solving tasks, (1) female end users had significantly lower self-
efficacy (a task-specific form of confidence) than males and (2) females with low self-
efficacy were significantly less likely to work effectively with problem-solving
features available in the software. In contrast, males’ self-efficacy did not impact their

effectiveness with these features (Beckwith, Burnett and Wiedenbeck, et al. 2005).
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In a study of the computer attitudes and self-efficacy of 147 college students,
gender differences existed in self-efficacy for complex tasks (such as word processing
and spreadsheet software), but not simpler tasks. Also, male students had more
experience working with computers and reported more encouragement from parents
and friends (Busch 1995).

Another category of findings relate to what kinds of features were used in
software systems. For example, in spreadsheet problem-solving tasks, female end
users took significantly longer before trying out unfamiliar features (Beckwith,
Burnett and Wiedenbeck, et al. 2005). Also, females significantly more often agreed
with the statement, “I was afraid [ would take too long to learn the [untaught feature].”
Even if they tried it once, females were significantly less likely to adopt new features
for repeated use. For females, unlike for males, self-efficacy predicted the amount of
effective feature usage. There was no significant difference in the task success of the
two genders or in learning how the features worked, implying that females’ low self-
efficacy about their usage of new features was not an accurate assessment of their
problem-solving potential, but rather became a self-fulfilling prophecy about their use
of features (Beckwith, Burnett and Wiedenbeck, et al. 2005).

There is also a “how” part to software feature usage. In spreadsheet problem-
solving tasks, tinkering (playfully experimenting) with features was done by males
more often than females. Males were comfortable with this behavior; in fact, some did
it to excess. For females, the amount of tinkering predicted success, but for males,
excessive tinkering hurt them. Pauses after any action were predictive of better

understanding for both genders (Beckwith, Kissinger, et al. 2006).

Another finding related to the participants’ behavior is that males viewed

machines as a challenge, something to be mastered, overcome, and be measured
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against. They were risk-takers, and they demonstrated this by eagerly trying new
techniques and approaches. Females rejected the image of the male hacker as
alienating and depersonalizing. Their approach to computers was “soft;” tactile,

artistic, and communicative (Turkle 1988).

Much of the research in Gender HCI has been about video games. Several
findings were reported about girls’ interests that relate to video games, with
implications for the video game software industry (Gorriz and Medina 2000).
Researchers explored what girls seek in video games, and implications for video game
designers. Among the implications were collaboration vs. competition preferences,
and use of non-violent rewards versus death and destruction as rewards. These works
argue both sides of the question as to whether or not to design games specifically for
girls (Cassell 1998) (Cassell and Jenkins 1998).

Not all of the findings have been about software; Gender HCI research has also
been conducted in the hardware realm. Larger displays helped reduce the gender gap
in navigating virtual environments. With smaller displays, males’ performance was
better than females’. With larger displays, females’ performance improved and males’
performance was not negatively affected (Czerwinski, Tan and Robertson 2002), (Tan,
Czerwinski and Robertson 2003).

Other studies have been related to Internet behavior and perceptions. For
example, in a study of the way people interacted with conversational software agents
in relation to the sex of the agent, the female virtual agent received many more violent
and sexual overtures than either the male one or the gender-free one (a robot) (De
Angeli and Brahnam 2006). Other examples are that males and females had different

perceptions for whether a webpage would be appropriate for his/her home country,
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and that females more often than males preferred more information on all web pages

viewed during a study (S. Simon 2001).

In the home, where many appliances are programmable to some extent,
different categories of appliance were found to be more likely to be programmed by
men (e.g. entertainment devices) than by women (e.g. kitchen appliances). There was
often one member of a household who assumes responsibility for programming a
particular device, with a "domestic economy" accounting for this task (Rode, Toye
and Blackwell 2004).
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3. (MODELING) STUDY 1: PRELIMINARY GENDER HCI
DATA MINING STUDY

Study 1 was our first Gender HCI data mining study. In this study, we applied
sequential pattern mining to our log files to search for potentially interesting patterns
in data that had previously been collected. This data came from the Summer 2005
Gender Tinkering study’s Treatment group. To get more information on the setup for
that study and a detailed description of the events mentioned in this chapter, see
Section 6.2.2.

Using a data mining approach, we focused on gender differences in how
features are used, with the aim of gaining new insights into our previous reports of
when and how much. Our aim was to derive new hypotheses about females’ and
males’ strategies, adding to the growing foundation for understanding the gender
differences in end-user programming situations—by “listening” to the participants,

through their data, from the ground up.

3.1. Study 1: The Pattern Mining Process

In this study, we looked at how features were used by finding patterns in
common sequences of events used by participants. We considered each user action as
an event. This abstraction transformed the data into sequences of events. Participants
in our empirical studies can perform several events to help test and debug their
spreadsheets: Tooltips, Checkmarks, X-Marks, Arrow Operations, Value and Formula

Edits, and Help Me Test. See Chapter 6 for details about the testing and debugging
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features available in our Forms/3 research spreadsheet software. Thus, one example of

a sequence of user events is: (Tooltip Showing, Checkmark, Checkmark).

3.1.1. Preprocessing into Debugging Sessions

Following the procedure of (Ruthruff, Burnett and Rothermel 2005), we used
the notion of debugging sessions to break the sequence of events into subsequences.
As with Ruthruff et al.’s definition, a debugging session ends with a formula edit (or at
the end of the experiment), which presumably represents an attempt to fix a bug.
However, unlike Ruthruff et al.’s definition, in which a debugging session began with
the placement of an X-mark, our debugging sessions begin as soon as the previous one
ends (or at the beginning of the experiment), so that all actions could be considered—
not just the subset following an X-mark. In some cases participants edited the same
formula multiple times consecutively. Since such edits were obviously a continuation
of fixing the same bug, we included them in the preceding debugging session. Based

on this definition, we broke each log file into debugging sessions.

3.1.2. Sequential Pattern Mining
We used the SLPMiner program (Seno and Karypis 2002) to search for

patterns of the form (A, B, C), where A, B, and C are events that happened in the
specified order. A debugging session was considered to contain the pattern (A, B, C) if
it had at least one occurrence of events A, B, and C in that order, but the events did not
need to be consecutive. For instance, one of the patterns that appeared in 68 debugging
sessions is (checkmark, arrowon, arrowoff, postformula), meaning that the user placed
a checkmark, worked with arrows and then opened a formula, with some other actions
in between.We refer to the percentage of all debugging sessions that contained a

pattern as the support of the pattern.
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SLPMiner searches for all sequential patterns whose support exceeds a pre-
specified threshold, and these patterns are referred to as frequent patterns. To avoid
redundancy due to the fact that any subsequence of a frequent pattern will also be a
frequent pattern, the software output the maximal patterns, i.e., patterns that are not
subsequences of other frequent patterns. We chose the support threshold to be 10%,
i.e., a pattern had to be contained in more than 10% of the 641 debugging sessions to
be output by SLPMiner. This relatively low threshold was chosen because it allowed
us to find patterns that were common to multiple users while still containing some of
the interesting but less frequently used features such as X-marks and Arrow
operations. The threshold did however get rid of some of the patterns that were
“flukes”. We focused our attention on patterns of limited size, in particular of length
between one and four, because without limitations there would simply be too many
patterns to process, and longer patterns often contained cyclic behavior and were

difficult to interpret.

3.1.3. Output and Post-processing

From the 641 debugging sessions, SLPMiner found 107 patterns of length one
(such as “HMT”) through four (such as “Post Formula, Edit Value, Checkmark, Hide
Formula”). Note that SLPMiner (and other sequential pattern mining algorithms) can
only find “frequent” patterns, i.e., those satisfying the minimum support criterion,
which was 10% in our case. It was up to us to determine which of the found patterns

were interesting to our research goal.

Toward this aim, for each pattern, we computed its occurrence frequency for
each user as the percentage of that user’s debugging sessions that contained the
pattern. For example, if user A had 20 debugging sessions and 10 of them contained

pattern p, the occurrence frequency of pattern p for user A was 50%. As a result, we
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obtained a pattern occurrence frequency table, which provided a comprehensive
description of the distribution of the pattern occurrence among all users. We then
analyzed these pattern occurrence frequencies in relation to the gender, task

performance, and self-efficacy of the participants who used them.

To help analyze the pattern occurrence frequencies in an organized manner and
gain a high-level understanding of the patterns, we categorized the found patterns such
that each category contained patterns centered on a certain set of features. We then
grouped them based on the features that they contained. When patterns contained more
than one event of interest, we created a new category for it to make sure that the
categories did not overlap. This process resulted in 9 categories. Figure 3 shows how
the 107 patterns fell into these nine non-overlapping categories. For example, a pattern
that contains arrow events, formula events, and tooltip events, would fall under the
“Arrow, Formula & Tooltip” category, but not the “Arrow & Formula” category. See
Table 1 for examples of patterns and their categories. Our analysis described in the

following sections will be presented based on these categories.



X-Mark HMT

Checkmark
Arrow,
Edit Value & Formula &
Checkmark Tooltip

Arrow &
Formula

Arrow &
Checkmark

Figure 3: We grouped the 107 patterns into these 9 categories. The categories, based
on the patterns’ content, are focused on the debugging and other features available in
the environment.
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Table 1: Each of the nine categories contained patterns that only had the features
mentioned in the category name as a part of them. For example, the Arrow & Formula
category contained patterns such as “Arrow Off, Post Formula, Hide Formula, Post
Formula.” If one of the events in the pattern was a Tooltip event, however, then the
pattern now fell into the “Arrow, Formula & Tooltip” category.

Category

Example Pattern

Help Me Test (HMT)

(HMT)

Arrow, Formula & Tooltip

(Tooltip Showing, Arrow On, Arrow Off, Edit Formula)

Arrow & Formula

(Arrow Off, Post Formula, Hide Formula, Post Formula)

Arrow Only

(Arrow On, Arrow On)

Arrow & Checkmark

(Hide Formula, Checkmark, Arrow On)

Edit Value

(Edit Value, Edit Value)

Edit Value & Checkmark

(Post Formula, Edit Value, Checkmark, Hide Formula)

Checkmark

(Checkmark, Tooltip Showing, Tooltip Showing, Checkmark)

X-Mark

(Hide Formula, X-Mark, Post Formula, Edit Formula)

3.2. Study 1: Results about How Each Gender Pursued Success

How did the successful versus unsuccessful females and males go about

debugging? “How” in this question means the counts of each type of pattern, rather

than the count of events performed (or the “what”).

To investigate this question, we divided the 39 participants (16 males and 23

females) into four groups by gender and number of bugs fixed. We considered a

participant “successful” if they fixed at least 7 of the 10 bugs, where 6 was the median

number of bugs fixed. See Table 2 for the distribution of subjects by bugs fixed. The




19

groups and number of participants are displayed in Table 3. Arrow counts are also
displayed in the table. Since earlier studies were about what features are used and how
much, we did not look for that in this study, where we just looked at how features were
used. Sometimes, feature counts helped us better understand pattern usage however.
We will return to these later in this chapter.

Table 2: Distribution of participants by number of bugs fixed.

Nr. of Bugs
Fixed

Nr. of
Participants

Table 3: What (not How): The median number of arrows turned on and off during the
experiment by gender and debugging success (count of feature usage). There is an
especially big difference between the successful and unsuccessful males.

Group Number of |Arrows
participants

Successful 8 175

Females

Unsuccessful 15 24

Females

Successful Males |10 12

Unsuccessful 6 25.5

Males
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3.2.1. Just Like Males: A Female Success Strategy?

Strikingly, in Figure 4 the unsuccessful females and successful males showed
the most similar frequency of pattern usage (“how”) profiles for each of the five
categories on the left half of the graph (from Edit Value to HMT)—all of which are
testing-oriented activities. (We follow the software engineering definition of “testing”
here: judging the correctness of the values produced by the program’s execution.) The
pattern usage was also similar between successful males and unsuccessful females for

the other categories.

HMT

Arrow, Formula &

X-Mark \ Tooltip
Checkmark == Arrow & Formula
S aull

N
Edit Value & /
Checkmark N4 Arrow Only
Edit Value Arrow & Checkmark

Figure 4: How (count of pattern usage) by success group. Successful: solid line,
unsuccessful: dashed line, females: light, males: dark. (Each category is represented
by an axis line radiating from the center. Where the polygon crosses an axis represents
the frequency of that pattern.)

This suggests that the ways males successfully went about their debugging task
are the very ways that did not work out well for the females, leading to the following

hypothesis:

Hypothesis: The debugging and testing strategies that help with males’

success are not the right ones for females’ success.

While there is a clear difference between successful and unsuccessful

behaviors for males, this difference disappears for females.
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3.2.2. Unsuccessful Males Like Arrows

Turning to the right half of Figure 4, which represents arrow-oriented patterns,
the successful and unsuccessful females converge with the successful males.
Interestingly, regarding this “how” aspect of arrows, there was a striking difference in
the number of arrow patterns between successful and unsuccessful males. This
difference is further illustrated by Figure 5, which shows that, unsuccessful males used
“Arrow Only” patterns far more frequently (in more debugging sessions, on average)
than the successful males.

The higher frequency of arrow patterns for unsuccessful males coincides with a
higher raw count of arrows used. As Table 3 shows, successful males used a median of

12 arrows, whereas unsuccessful males used more than twice as many, 25.5.

Hypothesis: Unsuccessful males overdo use of arrows—unlike successful

males, successful females, or unsuccessful females.

3.2.3. Unsuccessful Males: Tinkering Addicts?

We suspected that gender differences in tinkering behavior may be a factor in
observed pattern differences. In particular, the unsuccessful males’ more frequent use
of arrows and their greater variety of arrow-related patterns is suggestive of a larger

picture of unsuccessful males tinkering with arrows, to their detriment.

In fact, in previous work, we reported results in which males were found to do
more unproductive tinkering, using a different environment (Beckwith, Kissinger, et
al. 2006). However, the definition of tinkering used in that paper was necessarily
simple—and its simplicity prevented it from capturing the excessive exploring/playing
the unsuccessful males did. Based on patterns found via mining that data, we are now
able to identify more complex tinkering behavior of unsuccessful males in this

environment, which we failed to notice in our previous study.
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Figure 5: How: Percentage of debugging sessions that contained “Arrow Only”
patterns in the by successful versus unsuccessful males.

For example, referring to Figure 5, notice the large differences in “Arrow
Only” pattern usage for unsuccessful versus successful males. This category contains
patterns that involve only arrow operations. Two representative patterns in this
category were (Arrow Off, Arrow On) and (Arrow Off, Arrow Off). Unsuccessful
males used these patterns often—in one out of every four debugging sessions for the

unsuccessful males versus only one out of 20 for the successful males.

Hypothesis: Unsuccessful males have a tendency to tinker excessively with
the features themselves rather than using the features to accomplish their
task.

3.3. Study 1: Results about Self-Efficacy
Self-efficacy measures a person’s belief in his or her ability to perform a
particular task (Bandura 1986). Half of the 12 high self-efficacy females were

successful but only two out of 11 low self-efficacy females were successful. However,
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it was not true for males: seven out of 10 high self-efficacy males were successful and
half of the low self-efficacy males were successful.

How do high and low self-efficacy females and males go about debugging?
Since self-efficacy did not give the same groupings of the participants as given by task
success, it is useful to consider how self-efficacy related to pattern choices.

To investigate the question of whether self-efficacy played a role in pattern
usage, we divided the participants into four groups based on their self-efficacy scores.
In particular, we considered a participant to have high (low) self-efficacy if her or his
score was higher (lower) than the median of all participants. See Table 4 for the

grouping of the participants.

We turned to median raw counts of the number of features used (the “what”) to
better understand the reasons behind the patterns that we were seeing (the “how”).
Low self-efficacy female feature counts (Table 4) revealed that low self-efficacy

females were the highest usage group for all of the features—except the checkmark.
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Table 4: What by self-efficacy group. These are about the number of features used,
rather than how they were used, to supplement our understanding of the sequential
patterns. We divided the participants into four groups based upon their gender and pre-
task self-efficacy. The rest of the table shows median raw counts of the number of
testing features used during the experiment.

Group Numb_er of |Arrow X-mark |Checkmark [HMT
participants

High Females |12 10.5 3 65.5 5

Low Females |11 24 8 45 8

High Males |10 20 2 52 15

Low Males |6 20 55 39 3

High feature usage by low self-efficacy females may at first seem to contradict
our previous results, which showed that for females, high self-efficacy predicted more
effective use of features (as measured by the overall testedness of the spreadsheet),
which in turn led to greater debugging success (Beckwith, Burnett and Wiedenbeck, et
al. 2005). We proposed that offering greater support in the environment would
encourage low self-efficacy females to use the features more. The current study used
the High-Support Environment, which included features designed to fix that very
problem. Our results show that they worked—the low self-efficacy females did indeed
use the features in this version! But our current study suggests that quantity of feature
adoption is misleading in isolation: feature adoption must be considered in conjunction

with how the features are used.

How were the checkmarks, so popular with the high self-efficacy females,
used? Remarkably, the checkmark usage fell into the same number of patterns for the

high and low self-efficacy females (and in fact for both groups of males as well). This
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suggests that the checkmark only strategies used, which relate to systematic testing,
were the same for both groups (Figure 6), but the amount they were used (Table 4)
was different. There are many prior studies indicating that using this feature is directly
tied to success (e.g., (Beckwith, Burnett and Wiedenbeck, et al. 2005), (Beckwith,
Kissinger, et al. 2006)), and in this study, high self-efficacy females used it more and
indeed succeeded more.

Other than the checkmark-related patterns, Figure 6 shows that high and low
self-efficacy females had pattern frequency profiles that are very distinct from one
another, suggesting that self-efficacy made a difference with females. However, the

males’ self-efficacy did not appear to matter much in their pattern choices.
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Figure 6: How by self-efficacy group. High self-efficacy: solid line, low self-efficacy:

dashed line.

High and low self-efficacy females diverged in both counts and patterns.
Notice in Figure 6 how many different patterns the low self-efficacy females used
compared to high self-efficacy females, except for the checkmark and arrow &
checkmark. As suggested by self-efficacy theory, people with high self-efficacy are
more likely to abandon faulty strategies faster than those with low self-efficacy

(Bandura 1986). Our results were consistent with this. For patterns other than the

checkmark patterns, the high self-efficacy females were willing to try out and quickly

abandon many patterns in order to settle upon the ones they liked, whereas the low
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self-efficacy females were more likely to try a pattern again and again before
ultimately moving on. Figure 7 shows this tendency for unsuccessful females to use a
bigger set of patterns more often, whereas successful females stick with a smaller set
of frequent patterns. For example, 54 patterns were only used 5-10% of the time by
high self-efficacy females, but only 16 were abandoned so quickly by the low self-
efficacy females. This leads to the following hypothesis:

Hypothesis: Females with lower self-efficacy are likely to struggle longer to use

a strategy that is not working well, before moving on to another strategy.
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Figure 7: How: The high self-efficacy females (solid line) had more patterns fall in the
frequency range of 5-10%, whereas the low self-efficacy females had more of their
patterns fall in a higher number of debugging sessions (10-15%).
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MINING STUDY
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Figure 8: These are the six steps of the CRISP-DM data mining process model and the
subparts and their outputs. Chapters 4 and 5 are about understanding the business
understanding step.

In this second Gender HCI data mining study, we aimed to treat several aspects

of the data mining process differently from Study 1. We did so in the hopes of further
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advancing the subfield of Gender HCI, by getting one step closer to understanding
successful male and female problem-solving behavior. The four aspects that we
addressed differently in this study are: (1) arriving at statistically-significant results,
(2) increasing the size and complexity of the dataset, (3) decreasing the amount of

grouping, and (4) differentiating between “strategies” and “complex behavior.”

4.1. Arriving at Statistically-Significant Results, Rather Than
Hypotheses

Study 1 resulted in several hypotheses about male and female feature usage
patterns. We did not run statistical tests, since we were reanalyzing old data and only
using part of them. In Study 2, we followed the recommendation of Thomas Green, a
psychology researcher, of going after statistically-significant results. After having
discussed the possibility of running statistics on the results from Study 1 with
statisticians, we were not able to come up with a good way of doing so. We were set

on doing so in Study 2, however.

Many practitioners and researchers fail to create good data mining models
because they do not place enough importance on statistical significance, and therefore
overfit the model to the specific dataset that they have available (Elkan 2001).
Existing methods guard against this by measuring how well the model created on part
of the data (the training set) fits a second set (validation and/or testing sets). Splitting
the data into multiple sets increases the probability that the models developed on the
training dataset generalize to any new set of data. This is important both when data

mining is used for data exploration and also when it is used for predictive purposes.

Another common data mining practice is to use several data mining algorithms

and to compare the accuracy of the resulting models. We compared and evaluated the
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competing models’ performance through the use of lift charts and classification

matrices.

4.2. Increasing the Size and Complexity of the Dataset

The more data we use, the richer the resulting models will be. In our original
data mining study, we only used the Treatment Group participants of the Summer
2005 Gender HCI study. In order to get patterns at the right granularity (as well as
because of certain software and algorithm limitations), we had to narrow our log file
and questionnaire data down to the events in the order that they happened, the
participant’s gender, whether their pre self-efficacy was high or low, and whether they

fixed more or fewer bugs than the median.

Using More Available Data per Study. For the Study 2, we used as much of
the contextual data as possible: background questionnaire answers, information
specific to the task, information specific to the spreadsheets, information about the
cells that are touched, etc. With richer data, we can take more factors into account,
thereby getting a deeper understanding of female and male factors that lead to success

in debugging spreadsheets.

Using more information for each participant made it harder to organize the
data in such a way that the algorithms output meaningful results; the data have to be
organized into hierarchies so that the mining algorithms can understand how the
pieces of data relate to each other. Data preprocessing steps were also more arduous,

since we had a much larger and more varied dataset to clean and standardize.

The software tool that we selected to find patterns gave dependable models
resulting from the analysis of several tables of varied and interconnected data. While
this process was harder, it resulted in links between complex behavior and subject

characteristics.
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Gathering Data from Multiple Studies. In addition to using more of the data
that we had available for each participant, we also decided to get more “data points.”
The data that we analyzed came from three earlier studies. Having more participants to
examine increased the statistical power of the results. Furthermore, since these
patterns span three slightly different environments, the resulting findings are that
much stronger than if they would have only occurred in one environment. This
combination of data also made the data preprocessing steps more involved. We had to
find out about the similarities and differences between the three studies and how those
affected both the data and the resulting patterns. While collecting, combining, and
standardizing the data were time-consuming, the richness of the results was worth this

extra effort.

4.3. Decreasing the Amount of Grouping

Input Data Grouping. Due to the data mining algorithms used and because of
the low number of individuals in the target group, a certain amount of grouping of the
data was required. During our sequential pattern analysis, we grouped participants into
the dichotomous groups of “Successful” and “Unsuccessful” (depending on whether
they fixed more bugs than the median, or not) and “Low Self-Efficacy” or “High Self-
Efficacy” (depending on whether their pre-task self-efficacy score was higher than the
median or not). Dividing into more groups or modeling the success variable as
continuous data (between 0 and 100% of bugs fixed) did not result in dependable
patterns since we had too little participant data to actually look for these types of

patterns.

The statisticians that we consulted about how to get statistical significance
recommended keeping the individual the center of attention, rather than immediately

splitting participants up into dichotomous groups. They recommended not losing the
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person effect, unless we first show that there are roughly no differences between
participants who would get grouped together. For example, instead of using a box plot,
they recommended using a scatter plot, which also shows the sample size.

In Study 2, increasing the number of participant data allowed us to keep more
of a continuum of information for certain fields (like self-efficacy). Though some
grouping was still necessary, we varied its amount to see which helped us best

understand participants’ behavior.

4.4. Differentiating Between “Strategies” and “Complex Behaviors”

Marian Petre, a psychology researcher, pointed out that patterns only give us
information about the participants’ behavior, not their strategies. We can only know
what a participant’s strategies are by acquiring statements about their intentions (such
as through open-ended survey questions or a think-aloud study). However, patterns
allow us to notice more obscure links between a participant’s background, their

behavior, and their success at the problem-solving task.

With this in mind, and knowing that only one of my datasets has some
information about participants’ strategy choices, we will differentiate between
“strategies” and “complex behavior” in this paper. Examining how those mental
strategy choices relate to the complex behavioral patterns that we find is beyond the
scope of this paper. Future studies should be conducted to explore links between
participants’ self-proclaimed strategies (or explanations for why they take certain

actions) and their observed behavioral patterns.
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5. (BUSINESS UNDERSTANDING) CONTEXT, OBJECTIVES,
AND SUCCESS CRITERIA

5.1. Data Mining Study Context

A data mining context is the first step in mapping a generic data mining
process model to a specialized study. The context of a data mining project can be
thought of as being made up of four parts: (1) the application domain, (2) the data
mining problem type, (3) the technical aspects, and (4) tool and technique (Chapman,
et al. 2000). Together, these parts also help create a good general overview of this

study.

5.1.1. Application Domain

We applied data mining techniques to the domain of Gender HCI. Gender HCI
deals with differences in how males and females interact with software. In particular,
our data come from studies conducted with the research spreadsheet environment
Forms/3 (Burnett, et al. 2001), which employs the What You See Is What You Test
(WYSIWYT) testing methodology (Rothermel, et al. 2001).

5.1.2. Data Mining Problem Types

Various problem types exist in data mining. A data mining study can aim to
solve more than one type of problem. The problem types of this study are both ones
for finding interesting patterns and associations in the data and for seeing what factors
combine to predict debugging success: data description and summarization,

segmentation, concept description, and classification.
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Data description and summarization can be a self-standing data mining
project. However, it is often used in combination with other problems, as a part of the
data understanding step of data mining. Data description and summarization consist of
a thorough exploration of the data, combined with simple descriptive statistical and
visualization techniques, to provide insights into hidden information in the data early
on. The difference among calculating maximums and minimums, finding statistically
significant connections between background factors and success, and creating models
that predict success based on background and behavioral characteristics, is simply the
level at which the data is described and summarized, ranging from less to more

complex interactions.

Segmentation types of studies divide data into subgroups with interesting ties
and similar characteristics. In some studies, the detection of groups can be the main
goal of the study. Segmentation is also often a part of a more involved (higher end)
data mining study. It is often used to make data set sizes more manageable. Another
use of segmentation in data mining studies is to come up with more meaningful
models, based on more homogeneous groups. As with all statistical analysis
techniques, when datasets are big, various factors from different groups can overlap
and counteract each other. It is often both more meaningful and easier to look for
patterns in interesting segments of the population. In Study 2, we used segmentation to

find interesting homogeneous groupings of our participants.

Concept description is highly tied to the two aforementioned problem types.
While segmentation problems provide classes, concept description provides an
understandable description of each class. Its goal is also to provide a deeper
understanding of relationships within the data, rather than creating dependable
prediction models. In this case, the concepts (or classes) that were especially

interesting were successful males and successful females. From the description of
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what factors relate to male success and what factors relate to female success, we can
already make some inferences about what to focus on in the software. The result will
therefore be a set of guidelines for spreadsheet testing tool design: some coming from
only females, some only from males, and others from both.

Classification type studies are predictive studies. As with concept description,
a set of classes of individuals is created. Classification maps every participant to a
grouping of individuals through prediction. Unlike with concept description, those
classes do not have to be understood. The group names can be arrived at through
segmentation. They can also be arrived at by discretizing continuous values from
predictive models into class labels. Techniques for solving Classification problems
include discriminant analysis, rule induction methods, decision trees, neural networks,

k-nearest neighbors, case-based reasoning, and genetic algorithms.

5.1.3. Technical Aspects

Technical aspects are details that will be encountered during the development
of the data mining model and are sprinkled about the sections they pertain to. Such
details include what to do with missing values, deciding whether or not to keep
outliers in, and other such choices. Details about these technical aspects are included

in the sections that they pertain to, throughout the thesis.

5.1.4. Tools and Techniques

In addition to the usual analysis tools (Excel, Access, and S-Plus), we used
Microsoft’s SQL Server 2005 and its Analysis Services (SSAS) data mining
algorithms in the Business Intelligence Development Studio. The data that we
collected from the three studies came in the form of Excel files and text files which

were very close to CSV form. It was advantageous to migrate from Excel to a database
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(Access and SQL Server) since database tools facilitate cleaning large amounts of data

and, in the process, also allow for a better understanding of the data.

We used all six of the SSAS data mining algorithms (techniques) that applied
to our type of data to build competing models: association rules, cluster analysis,

neural networks, decision trees, naive bayes, and logistic regression.

5.2. Objectives and Success Criteria
5.2.1. Business Objective
In order to avoid the situation of finding right answers to the wrong questions,

a researcher first needs to come up with a clear objective for the data mining study.

My business objective was to find relationships between static
(background and self-efficacy scores), behavioral, study-
specific, and success Gender HCI data that, if taken into

consideration, will ultimately make spreadsheet software more

gender-neutral.

Research questions related to my objective include:

e What combinations of static, study specifics, and action

characteristics lead to female success at fixing bugs?

e What combinations of static, study specifics, and action

characteristics lead to male success at fixing bugs?
e Do unsuccessful females exhibit any common characteristics?

e Do unsuccessful males exhibit any common characteristics?
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5.2.2. Business Success Criteria

The business objective has been properly met if the study results in any
findings that help us better understand the differences in how males and females
successfully problem-solve and what differences exist between the two genders.
Finding useful relationships between various behavioral, background, study, and
success variables would mean that the goal has been achieved. These results will not
have to be new, since the data we analyzed has been previously analyzed in multiple
ways for Gender HCI with the same goal in mind. Therefore, it would be just as useful
to triangulate by finding patterns that simply verify previous Gender HCI findings
through this different analysis method.

In order to be useful, these findings need to be actionable. This means that, as
Gender HCI researchers, we can generate hypothetical solutions to help make
problem-solving software more gender-neutral based on this study’s results. The

usefulness of these patterns will be verified by Gender HCI researchers.

5.2.3. Data Mining Goal
A data mining goal differs from its business equivalent only in the terms used

to describe it.

The data mining goal in this study is to find statistical patterns
specific to homogeneous groups that the data will be divided
into through clustering and other methods. In other words, the
goal is to find out which combinations of static, behavioral, and
task characteristics relate to debugging success for females and

males.
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The outputs for this study are a set of understandable homogeneous groupings
based on several characteristics. Association rules will also be derived to find out what
factors are tied to male and female success.

5.2.4. Data Mining Success Criteria

In order to choose between models, we created lift charts to determine how
well each model fits a new set of data (see Chapter 9). While there are no clear cut-
offs for what makes for a “good model” vs. a “bad model”, the closer to 100% fit, the
better. Since we had two possible outcomes (successful or unsuccessful), a 50% fit
would be achieved by random chance. A 60% fit already means that the model is onto
something. For human data, a 70% fit is considered a very good performance. We
considered models who predicted more than 70% of the participants’ success correctly

to be satisfactory.

5.3. Rejected Objectives
While this thesis did not address them, the domain of Gender HCI would also

benefit from answers to the two data mining problem types below.

Dependency analysis is often followed by predictive types of problems and
acts as a set up for them. In Gender HCI, the dependency analysis problem would be
to create a model that ties behavioral events and background information to the
success of both genders in problem-solving tasks. Unlike for Concept Description,
models imply having a comprehensible class for every data point (for example,

“successful females”, “successful males”, “unsuccessful females™, and “unsuccessful

males”).

Prediction type algorithms only differ from classification algorithms in that the
target class is continuous. For example, instead of seeing whether a user will be

successful or unsuccessful, prediction algorithms would classify a user as fixing 70%
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of bugs. Time series algorithms are for forecasting prediction problems. The other
types are usually called regression algorithms and employ algorithms such as linear
regression and logistic regression. They are often used for tasks such as predicting the

expected revenue of a company.

The Gender HCI domain can be translated into any of these three types of
problems as well. While these objectives had to be rejected for this study due to time
constraints, using techniques particular to these problems in the future could further
help us understand just what males and females are doing when they problem-solve
and what kind of support would help their efficiency and effectiveness at debugging

spreadsheets.



6. (DATA UNDERSTANDING) WHERE WE GOT OUR DATA
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Figure 9: These are the six steps of the CRISP-DM data mining process model and the
subparts and their outputs. Chapter 6 is about understanding the data.

6.1. Criteria for Selecting Studies
Since it is always advantageous to train models on as big a dataset as possible,
we selected several studies that had previously been conducted within the Forms/3

research group and combined their data. My criteria in selecting those studies were:
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1. They had at least 25 participants (so that the effort needed to combine
datasets did not exceed the reward from having a few additional
participants) and

2. Their setups and recorded data were similar enough to be combined to give
Gender HCI related patterns.

Four quantitative empirical studies had been conducted that fit the first
criterion (Spring2002Assertions, Winter2004FaultLoc, Summer2005GenderTinkering,
and Summer2006GenderStrategies). Spring2002Assertions, unfortunately, did not
meet the second criterion: it lacked any data on the gender of the participants.
Fall2006Explanations and Fall2003HighlIntensitylnterruptions were studies that met
the second criterion, but not the first. In addition, there were several studies that did

not meet the second criterion and therefore were eliminated right away.

We built the models using the following types of data that the three studies had
in common: questionnaire data on the participants (including gender, confidence, and
academic data), data about the study (what cells were formula cells, which were value
cells, what events the participants could perform, what types of events those were,
etc.), data about their behavior during the study (log files), and data about their success
(how many bugs they found, how many bugs they fixed, and how well they

understood the features).

6.2. Chosen Studies Background

The three chosen studies were:
1. Winter 2004 Fault Localization (Ruthruff, Phalgune, et al. 2004),
2. Summer 2005 Gender Tinkering (Beckwith, Kissinger, et al. 2006), and

3. Summer 2006 Gender Strategies (Beckwith, Grigoreanu, et al. 2007)
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Since these studies were experimentally set up to answer different research
questions, this section provides an overview of the goals of the three studies, their

setup, and their results.

6.2.1. Winter 2004 Fault Localization

The dataset from the Winter 2004 Fault Localization dataset had 54
participants. 24 of those participants were from the Control Group, which contained 9
females and 15 males, and 30 were from the Treatment Group, which contained 14

females and 16 males.

Goals. The Winter 2004 Fault Localization study (Ruthruff, Phalgune, et al.
2004) was conducted to get a better understanding of the impact of rewards in the
Surprise-Explain-Reward methodology. The participants were divided into two
groups, both of which provided them with the same amount of feature functionality.
One group, however, got more feedback that could be perceived as rewards for using

fault localization techniques than the other group.

Experimental Setup. The researchers first looked for rewards and
punishments relating to the fault localization device in the spreadsheet environment
used. The fault localization device is a part of the “What You See Is What You Test”
(WYSIWYT) testing methodology (Rothermel, Burnett, et al., A Methodology for
Testing Spreadsheets 2001). They then implemented two versions of the environment

with varying amounts of perceivable rewards and punishments.

The features used in this study were also used in the following studies. It is
important to understand what some of these features do, since we counted the number
of times that they showed up in log files and built mining models using those counts.
When a checkmark is placed, cell borders change colors to show how tested a cell is.

A cell with red borders means that it has not been tested yet. A cell with blue borders
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means that all of its situations have been tested. A purple border means that the cell is
somewhere between 0% and 100% tested. At the cost of placing a checkmark on a
cell, a user is thereby provided the visual feedback about the progress made in testing
the spreadsheet, which can be considered a perceived reward.

Forms/3 gives this testedness progress feedback in three ways. The first is at
the cell level, as already mentioned, by coloring the cell border. This feedback is also
provided at the sub-expression level through arrows. When arrows are brought up to
see the relationship between cells in the spreadsheet, the arrows are colored with the
same red-purple-blue color scheme to depict how tested the relationship between those
two cells is. Furthermore, posting a formula breaks the arrow into the number of sub-
expressions that the formula has, to show how tested each sub-expression relationship
is. A third testedness progress feedback mechanism is an overall testedness bar that

shows the cumulative percentage of the spreadsheet that has been tested.

Other than allowing the user to keep track of how much they have tested each
cell, more tangible rewards can also follow: in wanting to make testing progress, a

user might notice that a cell does not return an expected value and might therefore be

buggy.

When a user notices an incorrect value, they can place an X-mark in the cell’s
decision box. Similarly to checkmarks, placing x-marks also provide visual feedback
that can be perceived as a reward. When an x-mark is placed, the interior of all of the
cells that contribute to that cell’s value get colored in different shades of orange
(ranging from light to dark). The darker the interior coloring of the cell, the more
likely it is that it contains a bug. The reward here is that the user gets a clearer picture

of where errors are likely to hide in the spreadsheet.
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There were three differences between the low-reward environment used by one
group and the high-reward environment used by the other. (1) The first was to remove
the testedness progress of a cell when it was found to be potentially buggy. This is
because end-user programmers often get confused about the difference between
testing a cell based on a set of input values and deciding that a cell’s formula is
“correct.” Thus, a cell that provides conflicting feedback might confuse some users.
For the low-reward environment, the testedness feedback was removed, but both the
testedness and fault likelinood feedback were left in the high-reward environment. (2)
The first change affected a second change: the explanations that are given for cell
borders and arrow testedness. Since how tested the cell was did not actually change
(only the visual feedback did), the explanations that pop up when users hover over the
borders and arrows would still give conflicting feedback, when compared to the
colors. Thus, those explanations were removed for the low-reward group. (3) The third
change was that a fault localization bar was added to the high-reward group’s
environment, similar to the overall spreadsheet testedness bar. This was so that the
rewards from using checkmarks are not out of balance with the rewards from using x-

marks.

Results. The study’s results were that the group that had a higher reward
structure fixed significantly more bugs in the harder of the two given tasks (Payroll)
and also had a better comprehension of how the fault localization features worked.
The conclusion of the paper was therefore that it is not sufficient to make features that
work well and to explain how they should be used, but that it is also important to
increase the perceivable rewards of using those features, in order for participants to be

more successful at using the features.
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6.2.2. Summer 2005 Gender Tinkering

The Summer 2005 Gender Tinkering study provided 76 participants. 37 of
those participants were from the Control Group, which contained 17 females and 20
males, and 39 were from the Treatment Group, which contained 23 females and 16

males.

Goals. The Summer 2005 Gender Tinkering study (Beckwith, Kissinger, et al.
2006) was conducted based on design changes proposed in an earlier Gender HCI
study. Two environments were compared to look for the effect of the changes on

tinkering behavior and on self-efficacy.

Experimental Setup. As in the Winter 2004 Fault Localization study, the
debugging features present were part of WYSIWYT (“What You See Is What You
Test”).

For this study, a high-support environment (for the treatment group) was
designed based on previous findings and was compared to the earlier version of the
environment, which was low-cost in terms of tinkering (control group). The treatment
high-support environment had several additions. It included 4-tuple confidence marks,

expandable tooltips, and Help Me Test.

The control group users had two choices of marks to place in a cell’s decision
box: a checkmark or an x-mark. To place a checkmark, a user had to left-click and, to
place an x-mark, right-click. In the high-support environment, a user had four choices
of marks: a high-confidence checkmark, a low-confidence checkmark, a high-
confidence x-mark, or a low-confidence x-mark. The only difference between a high-
and a low-confidence mark is the transparency of the colored feedback (high-

confidence feedback has a much darker shade than low-confidence). In this study, we
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grouped low- and high-confidence marks together, since high-confidence marks were
not available for one third of the data.

The expandable tooltips are variations on the explanations that come up when
a user hovers over any feature in the environment. In addition to the regular tooltips,
users in the high-support environment also had the option of expanding the tooltip to
read additional information about that feature. Also present in the environment was the
“Help Me Test” (HMT) feature. Sometimes it can be difficult to find test values that
will cover the untested logic in a collection of related formulas, and HMT tries to find
inputs that will lead to coverage of untested logic in the spreadsheet, upon which users
can then make testing decisions. While the users had these features available, we did
not use either tooltip or HMT data in this study. Tooltip data was ignored because we
do not trust those data: tooltips pop up all the time and it is impossible to differentiate
between the tooltips that participants wanted to bring up and those that came up just
because of where they left their mouse. We also ignored HMT data because only half

of the overall dataset had that feature available to them.

Results. Males in the low-cost environment tinkered significantly more than
everyone else. That environment made it easier to tinker by requiring only one click to
place a mark in the decision box. Tinkering behavior, in general, was positive, except
for the low-cost males. The low-cost males did more mindless tinkering, since they did

not take the time to pause and think about the feedback.

6.2.3. Summer 2006 Gender Strategies
The Summer 2006 Gender Strategies study (Beckwith, Grigoreanu, et al. 2007)
is a study in progress, though all of the data has been collected for it. It provided 61

participants: 37 females and 24 males.
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Goals. The goals of this study were to quantitatively and qualitatively go after
the differences in strategies that males and females employ while problem solving
(debugging spreadsheets, in particular).

Experimental Setup. The main difference in the set up between this study and
the Treatment group from the Summer 2005 Gender Tinkering study is that, in this
study, the cells were laid out in a grid-like pattern to give them an Excel-like
appearance, since participants were familiar with Excel. Another difference was that
cells were rearranged to remove confounds in cell orders. We looked for several
orders in which users traversed the spreadsheet: dataflow, western reading order,
column order, description order, and example order. Dataflow order could not overlap
with western reading order, for example, because we then would not know exactly

which of the two they were following.

As in the Summer 2005 study treatment group, users had the choice of placing
either low-confidence or high-confidence marks. They also had the opportunity of
using Help Me Test, if they wanted. Arrows, border colors, and cell interior coloring
were as in previous studies. Tooltips were available to explain all of the features.
Unlike in Summer 2005 treatment group, they were no longer expandable, but only

provided the shortened explanations provided to the Summer 2005 control group.

Another change major change made in the setup of this study was to the
study’s tutorial. During each session with the participants, we give them a tutorial that
typically lasts about 25 minutes. This tutorial gives participants a chance to learn
about the features and to explore them before having to use them for an actual task.
Usually, we told participants both what the tools are and also how to use them. In this

study, however, we did not want to bias participants’ behavior, since we were looking
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for the strategies that males and females employ to problem solve. This, this time

around, the tutorial was simply a “tour of features.”

Results. There were significant gender differences in the strategies that
successful males and successful females used to debug spreadsheets. While
spreadsheet debugging tools best support users that approach the problem from a
depth-first dataflow perspective, females rarely used depth-first dataflow strategies.
Both genders used testing as a strategy, but mainly females used code inspection,
either by itself or in conjunction with testing. This study also revealed strategies used
by the participants that are virtually unsupported in spreadsheet environments.
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DATA COLLECTION, INTEGRATION AND STRUCTURING
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Figure 10: These are the six steps of the CRISP-DM data mining process model and

the subparts and their outputs. Chapter 7 is about understanding and preparing the

data.
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The data used in this study came from the three studies mentioned in Chapter
6. This chapter is about the low-level similarities and differences between those three
sets. This knowledge helped with accurately integrating them, making decisions about

how to best apply the mining algorithms, and interpreting the resulting models.

Each study provided four types of data: (1) log files of the actions that
participants took while working with the software, (2) a set of questionnaire data plus
various calculations resulting from them, (3) spreadsheet characteristics, and (4)
study-specific decisions about what events got logged. The first dataset is addressed in
Section 1, the second in Section 2, and the third and fourth are addressed in Section 3
of this chapter. For the complete tables that resulted from the collection-integration-
structuring process, as well as descriptions and examples for each of the variables, see

Appendix A.

Some of the data available from the previous studies were calculations derived
from the raw data (such as totals of bugs fixed and results from scripts counting the
amount of tinkering or how much a certain cell order was followed). We collected and
integrated the raw data only, and redid some of the calculations that we needed (like

bugs fixed) later in the process.

The data preparation consisted of three steps: (1) collecting them, (2)
combining/integrating data from the three studies, and (3) standardizing them. The
data collection step resulted in 14 tables: see Figure 11. The combination step
consisted of reducing the 14 tables to four (one for each type of data). The
standardization step involved making sure that the values in any field for one study

were comparable to the values in the same field for a different study.
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Summer2005Background_local
Summer2005Cells
Summer2005CantrolEvents_local
Summer2005LogFiles_local
Summer2005TreatmentEvents_local
Summer2006Background_local
Summer2006Cells_local

Summer2006Events_local

Summer2006LogFiles_local
Winter2004Cells
Winter2004ControlBackground_local
Winter2004Events_local

Winter2004LogFiles_local

e i O O e O

Winter2004TreatmentBackground_local

Figure 11: All of the data from the different studies, in a format that Access likes on
the table scale. These were later combined into only four tables.

7.1. Log Files Data
7.1.1. Collection

Each subject included in this study had two log files in the original studies’
directories: one for the Gradebook task and one for the Payroll task. The Winter2004
and the Summer2005 studies had a Control and a Treatment group. There were times
when log files were available for subjects who were not listed in the questionnaire and
background data tables. Those subjects’ log files therefore had to be dropped from the

dataset.

7.1.2. Combination

The log file combination consisted of seeing what differences there were in the
structure of the log files between the three studies. We then created an overall
structure that would fit all three studies. Examples of differences among the files
included: the addition of low and high confidence checkmarks and x-marks in the

Summer 2005 and Summer 2006 studies, the addition of keyboard shortcuts in the
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Summer 2005 study, and adding an “undo” field to the “Checkbox Clicked” event that
was changed to “T” for the Summer2006 study.

7.1.3. Standardization

Our log files are semi-structured since different fields mean different things,
depending on the user or system event. Data mining algorithms need structured data to
come up with sensible models (i.e. each column heading is the same for all of the rows
in the log files). At least two solutions exist when going from a semi-structured to a
structured dataset: (1) to throw away most of the data, keeping only structured bits for
analysis, or (2) spend time structuring the data to take advantage of having more data

available to mine.

In Study 1, we stuck with the first choice, keeping only the event name for
analysis (as well as a few extra details from one of the fields, which we concatenated
to the event name). For example, we have an “Edit” event. When a user edits a cell,
they can either be editing a formula (which got changed to “Edit Formula™) or simply
editing a value (which got changed to “Edit Value”). Similarly, “Checkbox Clicked”
was changed to either “Checkmark” or “X-Mark”. The rest of the log file information

was ignored.

In this study, we chose to take the second approach, by structuring the log files
in such a way that the fields were the same across all events and across the three
studies. For the purposes of data mining, we also had to add some additional
information that was not previously in the log files which included the log file that the
data came from, the subject identification number, the task that the user was on, a

“Seconds” field, and the line number in the log file.

Some other fields that we added to the records were the status of system

events. Our log files record two types of events: System Events and User Events. One
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example of a system event is displaying how tested the total spreadsheet is. The
system events are most interesting in terms of their status when a user event is
performed. We therefore moved the system events from their own records into fields
for the user events. We added a field for each user event that says how tested the
spreadsheet was when they performed any one event (for example, placing a
checkmark). Similarly, we added fields for how the cell’s testedness, the cell’s fault-
likelihood, whether the formula is open for that cell, and what time the formula was

opened at.

This process resulted in a log file table that contained the same information as
the original log files, but was now structured. For the analysis of this data, we linked it
to static data about the users (questionnaire answers and performance data per subject)
and task-specific data (event data and spreadsheet data), both of which we cover in the

next two sections.

7.2. Questionnaire and Performance Data
7.2.1. Collection

The per-subject questionnaire and performance data came from multiple files.
The questionnaire data included: actual data from the questionnaires (e.g. individual
SE scores), calculations based on those answers (e.g. total pre SE), data coming from
other files (e.g. bugs fixed), calculations made based on data from other files (e.g. total
bugs fixed), and scores resulting from scripts being run (e.g. western reading order
score). In our study directories, these data are in three types of Excel files:

Questionnaire files, BugsFixedFound files, and AllData files.

7.2.2. Combination
For each of the types of data, we did two types of combinations: one within

each study and one between studies. This questionnaire and performance data were the
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most complex to combine because, even within one study, they came from different
files.

In combining the data from the three separate studies, the first decision was
how to deal with data that was not available for all studies. For example, one study
had a questionnaire question specific to that study that the others did not have or some
studies recorded all of the individual self-efficacy scores, while others only recorded
the total. In data mining, the more data is available, the better. Combining the columns
this way made us realize that we could get some of the missing data from other files

saved in the original studies’ directories.

Unfortunately, the studies had very little data recorded in common. Of my
gigantic table of 291 columns, only a mere five fields contained data for all three
studies! The big combined set included everything from answers to the questionnaires,
to script outputs about tinkering, number of bugs fixed, counts of dumb vs. smart
mistakes, comprehension scoring, and feature usage statistics. The ones that all three
studies had in common were: Participant 1D, Study, Gender, GPA, and Total Pre Self-
Efficacy.

7.2.3. Standardization

There was little in common among the three studies’ “All Data” spreadsheet
files (files that are usually created from the raw data during the analysis of the data,
which include a diverse set of relevant data). Some of the information that was
missing from some studies’ All Data file was lying around in other files in the
directory. We looked up both data that we could not do without and data that were
low-hanging fruit. This brought the total number of common fields up to 46. In order
to make sure that the values within a column were comparable for all three studies, we

standardized success measure scores, graded the spreadsheet experience and
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programming experience of the users, and made sure that the format of the entries was
the same throughout for all columns.

7.3. Forms/3 Details: Cell Data and Events
7.3.1. Collection

The cell data and the events data are particular to each study’s setup. These
data are important for eliminating confounds so that they might give an even deeper
understanding of what participants are doing. The data collected included information
about which cells contained bugs in the beginning of the task for cell data, where cells
were located, which were formulas and which were values, and all of the possible

events that participants could have used.

7.3.2. Combination

We created a table with all of the events that occurred in any one of the three
studies. The goal of this events table was to list each possible event as a system, user,
or HMT event. The Summer 2005 “All Data” spreadsheet file contained all of the
events that were allowed in the other studies and more. The combined table was
therefore the same as Summer 2005’s. We used these data to write scripts that
reorganized the log files data into a more structured dataset. We first moved system
events like spreadsheet testedness, cell testedness, and cell fault-likelihood from log
file rows into columns. Though system event analysis would be interesting to look
after in future studies, we did not pursue this beyond the data preparation phase in this
study. In this study, we analyzed only the lines of the log files that were user events
(taking out system events and events like “Edit Formula” that were generated by Help

Me Test).

The cell data table contained information about the layout and formula content

of the cells, as well as data about what order those cells were in on the handouts that
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we gave out (spreadsheet description and sample values). Both the layout of the
spreadsheet and the order in which cells were listed on the various handouts differed
among the studies. These data are also now preprocessed and available for future
studies. In this study’s analyses, the main cell data information that we used included
whether a cell was a value or a formula, what the cell’s name was, and what its ID

number was.

7.3.3. Standardization
No standardization was needed for either the event or the cell data.
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Figure 12: These are the six steps of the CRISP-DM data mining process model and
the subparts and their outputs. This chapter is about exploring and preparing the data
and then using them to create competing data mining models.
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To reiterate our goal in this Gender HCI study:

Our business objective was to find trustworthy relationships
between static (gender, GPA, self-efficacy, etc.), behavioral
(event counts), study-specific (cell characteristics, number of
bugs per task, user events permitted, etc.), and success
(percentage of bugs fixed) Gender HCI data that, if taken into
consideration, will ultimately make spreadsheet software more

gender-neutral.

Research questions related to our objective were:

e What combinations of background, study specifics, and action

characteristics lead to female success at fixing bugs?

e What combinations of background, study specifics, and action

characteristics lead to male success at fixing bugs?
e Do unsuccessful females exhibit any common characteristics?
e Do unsuccessful males exhibit any common characteristics?

In order for the algorithms to be able to answer our research questions, they
needed to (1) be able to be used as predictive algorithms and (2) give some kind of
insight about their rationale in predicting success. The goal of our final model is to see
what combinations of questionnaire data and event counts could predict the number of

bugs fixed.

8.1. OLAP Cubes
We used OLAP cubes to organize the data. Like data mining, OLAP cubes are

a business intelligence approach for data reporting and forecasting. Thus, in the
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process of organizing the data this way, we also explored them. The descriptive
statistics resulting from that phase can be found in Appendix B.

An Online Analytical Processing (OLAP) cube is similar to a two-dimensional
spreadsheet that has been extended to three or more dimensions. OLAP cubes have
dimensions and measures. Each dimension of an OLAP cube is a category by which
all of the data can be viewed (similar to a heading that might categorize a set of
column or row headings). Each dimension is also broken up into its members. For
example, “Gender” is one dimension of our cube and “Male” and “Female” are that
dimension’s members. Other dimensions in the Gender HCI data included Study,
Subject, Workbook (the task, either Gradebook or Payroll), Line (line number in the
log files), Time (time that the event was performed at), CellName, CellID, Event, and
EventType. A dimension is the descriptive attribute of a measure. Thus, a measure
(usually numeric) is a set of values, based on an attribute. They are the values that are
being aggregated and analyzed. An example of a measure is “Event Counts”. Events
can be counted by line, by gender, by workbook, etc. See Figure 13 for an example of

a three-dimensional OLAP cube.
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Arrows Off 7 6
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E Checkbox Clicked 27 25
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Figure 13: This is a sample three-dimensional OLAP cube for Gender HCI data. The
three dimensions are Gender (members: Male and Female), Event Type (members are
events that the participants can perform: Arrow Erased, Arrows Off, etc.), and
Workbook (members are the two spreadsheet tasks: Gradebook and Payroll). The
measures are event counts, which populate the cells. For example, in this OLAP cube,
males had an average of four Arrow Erased events in the Gradebook workbook.

8.2. Modeling Technique

Since different modeling algorithms are better at predicting some measures
than others, we ran all of the relevant algorithms on the input data described in the
previous chapter (all non-time series algorithms that worked on discretized data).
Those six algorithms were: Association Rules, Clustering, Neural Networks, Decision
Trees, Naive Bayes Networks, and Logistic Regression. See Appendix D for the

parameter settings we used for each model.

The way of viewing slices of the OLAP cube is by creating pivot table views -

these are a variety of summary tables. My source data for the mining models was a
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combination of the resulting pivot table view of the OLAP cube that showed event
count per cell type (value or formula) per task (Gradebook or Payroll) per participant,
data from the questionnaires, and success data (see Figure 14).
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Figure 14: Fields from which competing models for predicting success at fixing bugs
were built. The variable names should be pretty self-descriptive. They include static
data, counts of events in Gradebook (GB) and Payroll (PR) tasks, and success data.
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In order for all of the algorithms to be applicable, we discretized the
continuous variables (such as GPA) into the maximum number of groupings possible.
For the percentage of bugs fixed, after multiple unsuccessful attempts at creating
models that accurately predicted participant success at a low level of granularity (10,
5, and 3 equally-sized buckets), we had to settle for the categorizations of “successful”
and “unsuccessful”, split at the median (two buckets of equal sizes). With more
buckets, too few cases fell into the different success groupings, which did not give the

model enough examples to dependably train the models.

8.3. Test Design

In order to test the validity of my models, we separated all of the data we had
into two groups: a training set (randomly selected 70% of entries) and a testing set
(randomly selected 30% of entries). We then verified the accuracy of the models using

lift charts and classification matrices to see how well each model predicted bugs fixed.

When deciding on the percentage of entries to allocate to each set, we had to
consider the tradeoff between building a better defined model, based on a bigger
training set, and getting a better evaluation of its performance with a bigger testing set.
Because 191 participants is still a relatively small group for data mining purposes, we
had to take the safe route of building the models on a bigger set of data and hoping
that they would be able to accurately predict the smaller sets of predictable values.
Training and testing set size range anywhere from 50/50 (not too common) to 90/10
(fairly common). Since the dataset is small, we could not have a testing set with just
20 total participants, yet we also did not want to build the models on only 100 of our
participants. This 70/30 split was therefore a reasonable one, falling halfway between

the two extremes.
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In terms of the predictive power of our models, we were aiming for the highest
fit possible. Since participants could either be successful or unsuccessful, random
guessing would lead to a 50% fit. With a 60% fit, the model is likely onto something.
Especially with human data, even a 60% predictive power is good. It is common
practice, however, to consider 70% as a good fit. We aimed for this percentage to
reduce the possibility that the results were caused by random chance.

8.4. Building the Models

For each of the six applicable algorithms mentioned earlier, we set the key to
be the “Subject” (or participant ID). We set Percentage of Bugs Fixed to be
“PredictOnly.” We ignored the percentage of bugs fixed in Payroll, bugs found in
Payroll, bugs fixed in Gradebook, and bugs found in Gradebook, since those could not
be used as input when predicting the overall bugs fixed and bugs found (they would

have made the prediction trivial).

In addition to those six models, we also created an additional three models
using the clustering algorithm, based on some hypotheses that resulted from earlier
data exploration (see Figure 15 for all nine of these models). It seemed that female
success in the number of bugs fixed was highly dependent on static factors alone (data
from the background and self-efficacy questionnaires). We also hypothesized that
male success could be derived fairly reasonably from dynamic behavioral data alone.
These hypotheses resulted from an early attempt at mining only the static data (see
Appendix C). We therefore created one of each of those models: one with only static
data (CABackground) and one with mostly behavioral data (CA2). In addition to
those, we also created a model using only those variables that linear regression tests
found to be related to bugs fixed in a statistically significant manner (see Appendix

B); significant static ones for females and significant dynamic ones for males
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(CAEvents). The reason why we decided to use the clustering algorithm for these
additional three models is that this algorithm type gives a lot of information about how
it came up with its patterns (unlike algorithms like neural networks and Bayesian

networks) and it also often does a good job of predicting output variables.

The “Key”, “Input”, and “PredictOnly” variables used to build the different
models can be seen in Figure 15. These nine models are evaluated in Chapter 9 to see
which best predicts participant success at fixing bugs.
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Figure 15: Each column is a model contending to be our “best” model for predicting success at fixing

bugs. Each row is a variable and the role that it played in each competing model.
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9. (MODELING AND EVALUATION) RESULTS AND
VALIDATION: THE BEST MODEL FOR PREDICTING BUGS
FIXED
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Figure 16: These are the six steps of the CRISP-DM data mining process model and
the subparts and their outputs. This chapter evaluates the performance of the
competing models and further creating an even better model.

One model often outperforms the other models in predicting a success variable.

Occasionally, different models perform better under differing circumstances (such as
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power in predicting female success vs. power in predicting male success). This chapter
evaluates the models to see which best predicts success at fixing bugs and under what

circumstances this happens.

As mentioned in the previous chapter, the median percentage of bugs fixed for
the overall population was 60%. Any participants who fixed 60% or more of the bugs
were considered “successful” at bug fixing. Otherwise, they were “unsuccessful”.
Thus, wherever “success” or “success at fixing bugs” is mentioned in this chapter, it
means the binary value of “successful” or “unsuccessful” (as opposed to the actual

percentage of bugs fixed).

9.1. The Best Models for Predicting Success at Fixing Bugs

Table 5 shows how well each of the models fared for the different population
groups (listed in the columns). The NB Naive Bayes model, the CAEvents cluster
analysis model (created with the statistically significant attributes — static ones that
were significant for the females and event count ones that were significant for the
males), and the LoR logistic regression model performed best in predicting success by
the overall population. All three of these correctly predicted whether the participant
was successful or not at fixing bugs for 73% of the population, which is a very good
prediction rate. The best models for predicting success by males were the NN Neural
Network model and the CAEvents cluster analysis model. For females, the best model

was the DT Decision Tree model.
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Table 5: Percentage of the target population (column headings) for which each of the
mining models (row headings) correctly predicted success at fixing bugs.

Overall Males Females
Association Rules Model 46% 36% 53%
Clustering Model (CA) 50% 64% 40%
Neural Networks Model 69% 82% 60%
Clustering Model (CA2) 46% 54% 33%
Decision Tree Model 57% 54% 73%
Naive Bayes Model 73% 64% 60%
Clustering (CABackground) 50% 64% 40%
Clustering (CAEvents) 73% 82% 66%
Logistic Regression Model 73% 73% 60%

Thus, there are five models (all built on both male and female data) performing
at the top for some population: CAEvents, DT, NB, LoR, and NN (see Table 5).
While Naive Bayes, Logistic Regression, and Neural Network models performed very
well in predicting success at fixing bugs, it is hard to understand the logic that they
used to arrive at their classification rules. Cluster Analysis and Decision Trees, on the
other hand, have very clear ways of showing why they classified a particular
participant as either successful or unsuccessful, based on the number of bugs fixed.
Since my goal for this thesis is not only to predict success at fixing bugs, but also to
get a better understanding of the factors that lead to it for males and females, these two

models warrant further scrutiny, which we do in the reminder of this chapter.
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9.2. Predicting Bugs Fixed By Females

As was shown in Table 5, the Decision Tree model (DT) did the best job of
predicting female success at fixing bugs (73%), although it did only slightly better
than random for male success (54%). Thus, if we want to know what leads to female

success and the lack thereof, the decision tree model is interesting to look at.

Decision trees pick the attribute that best explains the bugs fixing success for
the overall population, which in this case, is “PR Edit Formula” (see Figure 17). This
model was very simple, with only one level. If participants did between 9 and 13
formula edits in Payroll (inclusive), they were very likely to be successful at fixing
more bugs than the median (see Figure 18).

Some might think that this model has no explanatory power. It is a simple
model and the story it tells is easy to believe: if participants actually worked on fixing
the bugs without getting lost, then they were successful. We would not want to
discount this model as not being useful, however. This model raises all kinds of
interesting questions that will further help us design better tools. Why is this simple
model about edit formulas the model that best predicted bugs fixed for females? Could
software somehow notice unproductive behavior with formula edits in problem-
solving environments? Why did this model not work for males? Is it because males’

ranges are higher or lower? Or are other factors more important for males?



71

Total Fixed Perc

Figure 17: The number of formula edits performed in Payroll positively predicts the
success at fixing bugs. A “reasonable” number of formula edits (9-13) in Payroll
positively predicted a success at fixing bugs. Though the model was created using all
of the participants, it only performs well in predicting female success at fixing bugs.

PR Edit Formula == 9 and

< 14
—
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Figure 18: The darker sections of the bars depict the number of participants who fixed
at least 60% of the bugs (“successful”) and the lighter sections of the bars are the
number of participants who fixed fewer than 60% of the bugs (“unsuccessful”) per tree
node. This model was run on the training data. It says that 34 out of the 41 participants
who edited between 9 and 13 formulas (inclusive) were successful at fixing bugs.
Also, 58 out of the 98 participants who did either fewer than 9 edits or more than 13
edits were unsuccessful at fixing bugs.

This information alone correctly predicted 73% of the female population’s
success at fixing bugs. Before data mining, we had not thought of seeing if there was
anything other than a linear relationship between the number of formulas edited and
the success at fixing bugs. Data mining helped us find this pattern, which makes sense.

When a participant is faced with a complex task, such as debugging the Payroll
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spreadsheet, editing either too few or too many formulas can be a sign that the user is
lost. When a user is not editing many, they may be having a hard time deciding on
what formulas to edit or how to edit them. While the minimum number of edits for
fixing all of the bugs in Payroll was four, participants are not often able to fix all of the
formulas correctly their first try. When a user is instead making many formula edits, it
may be a sign that they may be having a hard time with the syntax or that they are
making many changes without pausing enough to think beforehand.

Result 1: Performing either too many or too few edit formulas in complex tasks
negatively predicted success at fixing bugs for females. It, not feature usage or
background, was the only factor that differentiated the unsuccessful participants from
the successful ones. This is shown by model “DT”, which correctly predicts female
success at fixing bugs 73% of the time.

9.3. Predicting Bugs Fixed By Males

The CAEvents cluster analysis model, which had an overall prediction rate of
73%, predicted male success at fixing bugs even more correctly (at a rate of 82%).
Clustering algorithms divide the population into several groups that have similar
attributes. Figure 19 shows what CAEvents looks like. Because of the CAEvents
model’s transparency and because it performed so well, this is a good model to look

into in order to see which attributes led to male success and failure at fixing bugs.

As mentioned in the previous chapter, we built the CAEvents model as a
competing model to the model that uses all of the inputs (model CA). Since unrelated
input variables weaken the models, we decided to use only variables that we thought
were highly related to success at fixing bugs. The criterion for “highly related” was
whether regression analysis resulted in an input variable predicting bugs fixed in a

significant manner. From an earlier modeling exploration (see Appendix C), we also
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hypothesized that static data (like background factors and self-efficacy scores) would
matter for females, while dynamic data (such as event counts) would matter for males.
We used the same reasoning for picking the “important” variables to include in this
model, only ignoring those statistically significant input values that were highly
related to other input values. Table 5 shows that this model greatly outperformed
model CA, for the overall population, for males only, and for females only. Figure 20
gives details about the values of each attribute for each of these four clusters.

Cluster 3

Cluster 2

Cluster 1

Figure 19. The darker the cluster, the more highly populated it is. The darker the line
between the clusters, the more highly related those two clusters are.
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Figure 20: This is the distribution of values for each of the variables (in the rows) per
cluster in the CAEvents model (in the columns).
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To determine whether an attribute is of interest in a particular cluster, we
compared the cluster distribution of the values for that variable to the overall
distribution. Since this model worked best for the males, we analyze it only in terms of
how it predicts male success at fixing bugs. Cluster 1 had a few more males than
females (59% males), Cluster 2 was mostly female (73% females), Cluster 3 had more
males than females (55% male), and Cluster 4 was almost completely male (98%

male).

We will use the concept of “advanced features” in interpreting these clusters.
Placing and taking away X-Marks and performing Arrow Erased events are
“advanced” features in our studies. As mentioned in Chapter 6, X-Marks are available
for users to place in cells for which they believe the value is wrong. While we told the
participants that this feature existed, we did not tell them anything about the meaning
of the feedback they received when performing such an action or how to act on that
feedback.

After bringing up all of the arrows for a cell, a participant can pick arrows off
one by one by performing an Arrow Erased event. This allows them to hide
relationships between cells that they find unimportant. This feature is not conducive to
playful tinkering, since it is physically a little tricky to pick off the arrow and, once the
arrow is gone, it cannot be easily brought back. Arrow Erased also does not provide
additional feedback or color changes, as the other features do. This feature is
especially useful when looking at a cell with its formula open. Whether the formula is
open or not, using it commits the participant to a choice of which relationships to
pursue (an advanced concept that was not addressed in our tutorials). So while taking
off all of the arrows for a cell (which is a different action from Arrow Erased) is easy

to do, Arrow Erased can be considered an advanced feature in the environment.
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Cluster 1 had 59% males. They were fairly average in terms of GPA, Year in
School, Pre Self-Efficacy, and Edit VValue. They did, however, have a high usage of
the advanced features. While this group learned a lot about the features, as shown by
their high Comprehension scores, they had the most unsuccessful participants out of
the four clusters. One possible reason for this was that their goal may have been to
learn about the features, rather than to use them to fix bugs in this new environment.
Learning how to best use new features does mean that they will have less time to fix
bugs. With tasks only about half an hour, this behavior could have a negative impact
on their performance. However, this group of people might have turned out to be
successful debuggers in the real world, where more time would be allowed for fixing

bugs.

Cluster 2 is 73% female. These females had the lowest self-efficacy out of all
of the groups. There is only a small group of males that this cluster used to predict the
success of. The cluster is also not great at predicting success, with about half the group
being successful and the other half unsuccessful. What this cluster does say is that
there was a low self-efficacy group of people (mostly female) who were average in
terms of all other static factors and in terms of Edit Values, but that stayed away from
advanced features. (Editing values is a necessary part of testing.) While this group had
slightly fewer successful participants than clusters 3 and 4, the difference was slight,
which means that lack of self-efficacy in combination with low advanced feature
usage did not necessarily lead to fewer bugs fixed, provided that they were still

testing.

Cluster 3 was the most successful at fixing bugs out of the three groups. The
population is made up mostly of juniors and seniors of both genders with high self-

efficacy. While they used the advanced features only slightly, this group had high
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feature comprehension scores. Another distinctive characteristic of this group is that
they had very high Edit Value counts.

Finally, there is Cluster 4. This cluster, like Cluster 2, jumps out in terms of
gender differences. It had 98% male seniors with low GPA and average self-efficacy.
100% had less than a 2.73 GPA, yet most were successful at fixing bugs. Like Cluster
1, this group had high advanced feature usage. What differentiates them from Cluster
1 (which was unsuccessful at fixing bugs) is that they also had a high number of Edit

Values (testing).

Result 2: For males, an emphasis on testing was important, with both clusters that
were best at fixing bugs doing the most value edits. High advanced feature usage led
to fewer bugs fixed when value edits were few. Unlike for females, some males with

very low GPA were successful at fixing bugs.

9.4. Improving Prediction of Bugs Fixed By Males and Females

The CAEvents model was also the one that performed best for predicting the
success at fixing bugs for all participants. However, it was much better at predicting
males’ success (82%) than females’ (66%) success. We therefore tried to improve the
model’s efficiency by making a change: switching the unsupervised CAEvents model
to a supervised model. We named this model CAPredictBugsFixed (see Figure 21 and
Figure 22). In order to switch from unsupervised to supervised, we changed the
Percentage of Bugs Fixed variable (which had values of “>=60%" and “<60%") from
“PredictOnly” to “Predict”. This means that the bugs fixed variable was now also
going to be used in training the model, not just for evaluating the model’s predictive

power, as before.

This modification improved the power in predicting success at fixing bugs

from 73% to 77%. Note that prediction of overall male success was the same with




78

both models (82%). What increased was the correct prediction of females’ success at
fixing bugs. Overall, it rose from 66% to 73% (see Table 6).

Overall Males Females
CAEvents 73% 82% 66%
CAPredictBugsFixed | 77% 82% 73%

Table 6: This shows the percentage of each population grouping (column headings) by
model (row headings). CAEvents was the unsupervised model and
CAPredictBugsFixed was the supervised model.

Cluster 4

Cluster 3 Cluster 2

Figure 21. This is the CAPredictBugsFixed model. Darker clusters have more
members and the link between Clusters 2 and 3 was the strongest.
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Once again, the clustering model has four groups. This time, two were mostly
female (Clusters 1 and 4) and two were mostly male (Clusters 2 and 3). This tells us

that gender is an important factor in finding patterns that led to success at fixing bugs.

Result 3: The combination of factors that led to success at fixing bugs for males is
different from the combination of factors that led to female success at fixing bugs.

Cluster 1 was 61% female. They were average in almost every way, except for
one main difference: they used no X-Marks in Payroll and very few Arrow Erased in
Gradebook (i.e. low usage of advanced features). Yet, the cluster was above average in

terms of success at fixing bugs.

Cluster 4 was the other female cluster (100% female), which was also above
average in terms of success at fixing bugs. These were graduate students with high
GPA and slightly higher self-efficacy than average. Another interesting fact about
these females is that most were in sessions that started with the easier Gradebook task.
They also used few advanced features, though not as few as Cluster 1. They had above

average value edits in Payroll.

Result 4: Both female clusters had very low advanced feature usage and above
average success. The cluster that used a few more advanced features did not perform
any better than the group who did not. This suggests that the available advanced
features are fairly inconsequential in terms of helping females with their debugging.

Other factors matter more.

Cluster 2 was a very high advanced feature usage cluster and was mostly male
(81%). This group also performed a lot of edit values. They were all over the place in

terms of GPA, but had very high self-efficacy and they had more graduate students
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than Cluster 1 and Cluster 3. This group had the greatest percentage of successful
participants at fixing bugs.

Cluster 3 was another male group (66% male). This group did many fewer edit
values than any other group. They also used fewer X-Marks than the other male group
(though more than the female clusters), but more Arrow Erased events than any other
cluster. Most of these participants were in sessions that started with the Payroll task.
They had low self-efficacy going into the first task. All were unsuccessful at fixing
bugs.

Result 5: For the two male groups, background factors like GPA did not seem to
affect either the advanced features they used or their success at fixing bugs. What
really seemed to help them was doing a lot of edit values (testing) and X-Marks
(advanced testing).

Note that Cluster 3 was 1/3 female and 2/3 males. What characterized this
cluster was a combination of low self-efficacy, starting with the Payroll task, and
doing few value edits (despite using advanced testing features) led to all of these
participants being unsuccessful. Because 1/3 of the group was female, we do not have
evidence that SE impacted the males’ success; it could be that the low amount of

testing (value edits) was the determining factor for the males’ lack of success.

9.5. Discussion of the Results

What we learned about factors leading to female success at fixing bugs:

e Performing either too many or too few edit formulas in complex tasks

positively predicted that few bugs would be fixed.

e Different factors led to male success at fixing bugs than female success

at fixing bugs (shown both by the clusters being characterized by a
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specific gender and by different models performing better for the
different genders).

e Females used fewer advanced features than males in general. Also,
these advanced features did not seem to help the female cluster who
used it more, since both clusters were above average in terms of bugs
fixed.

What we learned about factors leading to male success at fixing bugs:

e Anemphasis on testing through value edits was an important factor that

led to male success at fixing bugs.

e Unlike for females, some very low-GPA (<2.73) males were successful
at fixing bugs. (All of the participants with GPA that low were males.

GPA predicted bugs fixed for females, however.)

e X-Marks were positively related to success at bugs fixing, while Arrow

Erased was negatively related to success at bug fixing.

Data mining was useful, since we were able to find nonlinear relationships that
we had not thought of checking before and we were also able to find complex
relationships between several variables. All three final models also meet both the
business and the data mining objectives. Getting a 73%, 82%, and 77% fit is quite

good for human data.
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10. CONCLUSION

This thesis has contributed several new results to the emerging area of Gender

HCI. In this chapter, we situate our new results in the context of other findings in this

area.

First we consider findings relating background factors to debugging success.

So far, we have found the most important background factor to be self-efficacy.

Findings related to self-efficacy include:

Female end users had significantly lower self-efficacy (a task-specific form
of confidence) than males (Beckwith, Burnett and Wiedenbeck, et al.

2005). (Other researchers have reported similar results.)

For females, low self-efficacy was predictive of how effectively they
worked with problem-solving features available in the software, unlike
males (Beckwith, Burnett and Wiedenbeck, et al. 2005). This finding

generalized to the MS Excel environment (Beckwith, Inman, et al. 2007).

There was no significant difference in the success of the two genders or in
learning how the features worked, implying that females’ low self-efficacy
about their usage of new features was not an accurate assessment of their
problem-solving potential, but rather became a self-fulfilling prophecy
(Beckwith, Burnett and Wiedenbeck, et al. 2005). This finding also

generalized to the MS Excel environment (Beckwith, Inman, et al. 2007).
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New evidence-based hypothesis: Females with lower self-efficacy are
likely to struggle longer to use a strategy that is not working well before
moving on to another strategy (Study 1).

Other findings relate to background factors other than self-efficacy:

Unlike for females, some males with very low GPA were successful at

fixing bugs (Study 2).

For the male groups, background factors like GPA did not seem to affect
either the advanced features they used or their success at fixing bugs. What
really seemed to help them was doing a lot of edit values (testing) and X-
Marks (advanced testing) (Study 2).

Factors that relate to the features available in the environment and how those

features are used by participants were also found to relate to participant success. One

set of these results focuses on whether the particular feature used was of type familiar

(formula edits) or type unfamiliar:

Females significantly more often agreed with the statement, “I was afraid I
would take too long to learn the [untaught feature]” (Beckwith, Burnett and
Wiedenbeck, et al. 2005).

Female end users were significantly slower to try out unfamiliar features,
instead used the Type Familiar feature of formula edits (Beckwith, Burnett
and Wiedenbeck, et al. 2005). This finding generalized to the MS Excel

environment in an analogous form (Beckwith, Inman, et al. 2007).

Females were significantly less likely to initially approach new features
(Beckwith, Burnett and Wiedenbeck, et al. 2005).
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Even if they tried it once, females were less likely to engage in regular use
of new features (Beckwith, Burnett and Wiedenbeck, et al. 2005).

Performing either too many or too few edit formulas in complex tasks

negatively predicted success at fixing bugs for females (Study 2).

While participants came in with knowledge about editing formulas, they were

taught several features in a tutorial and were also encouraged to explore using some

untaught features.

New evidence-based hypothesis: Unsuccessful males overdo use of arrows
— unlike successful males, successful females, and unsuccessful females
(Study 1).

The female clusters had very low advanced feature usage. The cluster that
used a few more advanced features did not perform any better than the
group who did not. This suggests that the available advanced features are
fairly inconsequential in terms of helping females with their debugging.

Other factors matter more (Study 2).

Partial evidence: Providing ways to express uncertain or tentative
judgments seems to equalize female and male usage of testing features

(Beckwith, Gender HCI Issues in End-User Programming 2007).

Partial evidence: Providing female/male video explanations of strategy
hints seems promising in guiding females’ strategies and encouraging more

effective use of the environment (Subrahmaniyan, et al. 2007).

While some participants stick to the features they know how to use, others

playfully experiment with the new features throughout the task:
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e Tinkering (playfully experimenting) with features was done by males more
often than females when the environment was conducive to tinkering.
(Beckwith, Kissinger, et al. 2006).

e Males were comfortable with tinkering; in fact, some did it to excess
(Beckwith, Kissinger, et al. 2006).

e New evidence-based hypothesis: Unsuccessful males have a tendency to
tinker excessively with the features rather than using the features to
accomplish their task (Study 1).

e For females, the amount of tinkering predicted success, but for males,

excessive tinkering hurt them (Beckwith, Kissinger, et al. 2006).

e Pauses after any action were predictive of better understanding for both
genders (Beckwith, Kissinger, et al. 2006).

e Females paused significantly more than the males did (Beckwith,
Kissinger, et al. 2006).

The use of testing also mattered, at least to males. The most direct measure of

testing in our environment is value edits.

e For males, an emphasis on testing was important, with clusters that were

best at fixing bugs doing the most value edits (Study 2).

e For males, value edits mattered more than advanced testing feature usage.
In fact, high advanced feature usage led to fewer bugs fixed if value edits

were few (Study 2).

One last set of results is the overall picture that these findings paint: they have

shown that different factors lead to male and female success at fixing bugs. A new
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evidence-based hypothesis from Study 1 suggests that the debugging and testing
strategies that help with males’ success are not the right ones for female success. Then
Study 2 showed that the combination of factors that led to success at fixing bugs for
males was indeed different from the combination of factors that led to female success
at fixing bugs. Thus, these strategies’ data mining results add to the growing body of
evidence that it is important to take gender differences into account when designing

problem-solving software for end users.
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APPENDIX A. (DATA PREPARATION) DATA TABLES
These are what the tables looked like for my data source. We created several

data source views which we mined. Those views were created using combinations of

subsets of data from the original tables in this Appendix.

Events Table

Field Name | Description Notes
EventID One number for each event. For faster access.
Event The name of the event performed | This is the primary key for this
in a line of a log file. table. Examples of events: arrows
on, cell-FL-changed, HMT,
checkmark.
Type The type of the event. Each type | The three types: User, System,

has characteristics particular to it.

HMT.

Table 7: Event fields, description, and notes about them.
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Cell Data
Field Name Description Notes
CellName What the cell was named as. This is the primary key for this
table. Examples of cell names:
Course_Avg, Quiz2,
DentallnsurancePremium, D3,
G18.
CelllD This is a unique 1D for each Examples of cell IDs:
cell that gets created. Because | CELL32684231-3568,
the Summer2006 study CELL32521762-4768.
required the cells to be moved
around, each cell with a
specific ID might have up to
two different cell names.
OriginalCelllD | Unfortunately, when cells got | The three cells which were
moved around for the recreated instead of being moved:
Summer2006 data, three of CELL33617219-8238,
them got recreated, which CELL33617219-8241, and
generated a new ID for them. CELL33617219-8239.
In this field, the ID of those
three cells is the ID that they These three cells were new formula
d have had. had th | cells that appear only in
‘k’)"ou a"% a o a h €YONY | summer2006: CELL33617219-
een Too‘l’e o IR TEN 9307, CELL33617219-8168, and
recreated. CELL33617219-8236.
Workbook The forms spreadsheet that the | This is either Gradebook or Payroll
participant had to debug. in all cases.
TypeEdit When a user “edits” a cell, it is | The two types of cells are value

sometimes useful to know
whether the cell is a formula
cell or simply a value.

cells and formula cells. Value cells
contain constants, while formula
cells contain references to other
cells.
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WO The Western Reading Order of | For the Summer2005 and
the cell in the spreadsheet. If Winter2004 studies, the cells have
we list the cells starting from values between 1 and 19 for
the top left, moving right and Gradebook and 1 and 24 for
then down a row, continue Payroll. For Summer 2006, the
right, and so on, this is the values for Gradebook range from 1
place that the cell occupies in | to 22 (because of the three new
this list. formula cells) and also 1 to 24 for

Payroll.

CO Column Order is a similar One difference here is that two
rating. If the list were now cells shared the same column in the
made starting from the top left, | Payroll spreadsheets used by
first going down, then up and | Winter2004 and Summer2005.
right and down the next There are therefore two cells that
column, this is the location that | placed 7" in that line. So, the
the particular cell would fall in | values go from 1 to 23 in Payroll
that list. for those two studies.

ShortestDist This is the shortest distance The values for shortest distance
between an input cell and the range from 0 to 3: 0 meaning that
cell that the value is listed for. | this cell is an input cell, 1 meaning
It is a measure of how many it references an input cell, etc.
levels away the inputs are.

Buggy The Buggy field tells us The possible entries for this field
whether or not this cell’s are: TRUE (the cell was buggy)
formula contained a bug at the | and FALSE (the cell formula did
beginning of the task. not contain a bug).

Row The row that the cell is in. For Summer2005 and Winter2006,

there were a total of four rows in
Gradebook and six rows in Payroll.
In the Summer2006 data, the
values range from 1 to 15 (though
value/formula cells were only in
rows 3, 9, and 15) in Gradebook
and 1 through 18 in Payroll
(though value/formula cells were
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only in rows 3, 8, 13, and 18).

Column

The column that the cell is in.

There were 6 columns in
Gradebook and 6 columns in
Payroll for Winter2004 and
Summer2005. The Medicare cell in
Payroll was listed as in column 2.5,
since it shared column 2 with
another cell. For Summer2006,
there were 13 in Gradebook and 8
in Payroll.

Input Middle
Output

Is it an input cell, middle, or
output cell?

Input cells are all of the value cells
(are not dependent on any other
cells). Middle cells are those cells
that both reference another cell and
are also referenced by at least one
other cell. Output cells are those
cells that are not referenced by any
other cells.

Sink1

Does this cell affect Sink1’s
value? (The output cells are the
sinks.)

We do not know how to use this
sink data.

Sink2

Does this cell affect Sink2’s
value?

DescriptionO.

The order in which cells are
listed on the description
handout.

Summer2006 did not have a
specific description order, though
people following description order
could still be identified
qualitatively.

ExampleO.

The order in which cells are
listed on the example handout.

There is no such order for the
Summer2006 study.

Table 8: Cell data fields, descriptions of those fields, and notes about them.
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Static Data
Field Name Description Notes
ID The participant’s ID This is the primary key:
number. the ID number is unique
to each participant.
Study The study that the data | The data comes from
was collected for. three studies:
Winter2004,
Summer2005, and
Summer1006.
Gender The participant’s M or F.
gender.
Major The participant’s major. | Popular majors were

Business, Animal
Science, and Forestry.

YearlnSchool

The participant’s year in
college or graduate
school.

Possible values:
Freshman, Sophomore,
Junior, Senior, Post
Bac., Graduate.

GPA

Participant’s current
cumulative grade point
average.

Range: 2 to 4.

CSExpRating

This is a rating of the
amount of programming
experience that the
participant has.

The raw data was a set
of three numbers for the
amount of years that the
participant programmed
for (in high school,
college, or
professionally). This
number ranged from O
to 12.
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We gave the participant
a rating based on that
number. The possible
ratings were as follows:
None (0), Some (>0 but
<4), and Many (>=4).

ProgLang The programming This data is not
languages that some available for
participants used inthe | Winter2004 entries.
past. Examples: HTML, VB,

G, G,

ProfEUProgOrProgExp Did the participant state | Yes or No.
that they had
professional experience
as an end-user
programmer (HTML,

MatLab, etc.) or actual
programming
experience (C++, Java,
etc.)?
SSExpRating This is a rating of the The raw data was a set

amount of spreadsheet
experience that the
participant has.

of four numbers for the
amount of spreadsheets
that the participant
created (in high school,
college, professionally,
or for personal use).
This number ranged
from 0 to 450.

We gave the participant
a rating based on that
number. The possible
ratings were as follows:
Few (<5), Some (>=5
but <20), Several (>=20
but <50), and Many
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(>50).

ProfSSExp?

Did the participant state
that they had
professional experience
in spreadsheet usage?

Yes or No.

English?

Is English the
participant’s first
language?

Yes or No.

NrEnglishYears

If English is not the
participant’s first
language, this is the
number of years that
they have spoken

These values range from
1to 25.

English for.

TotalPreSE The participant’s total The lowest total pre
Self-Efficacy before the | self-efficacy score was
first task. 25 and the highest was

50.
TotalPostSE The participant’s total Winter2004 records do

Self-Efficacy score after
the second task.

not include this data.

The lowest total post
self-efficacy score was

23 and the highest 50
again.
E15(Curved_Midterm3)Found Did the participant find | 1 if Yes, O if No.
the curved midterm3
bug?
E15(Curved_Midterm3)Fixed Did the participant fix 1if Yes, 0 if No.
the curved midterm3
bug?
F15Found Did the participant find | 1 if Yes, 0 if No.
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the 15 bug?

This bug was in one of
the additional cells
introduced during the
Summer2006 study; it is
in neither Summer2005
nor Winter2004.

F15Fixed

Did the participant fix
the 15 bug?

1if Yes, 0O if No.

This bug was in one of
the additional cells
introduced during the
Summer2006 study; it is
in neither Summer2005

nor Winter2004.
115(Course_Avg)Found Did the participant find | 1 if Yes, O if No.
the course average bug?
115(Course_Avg)Fixed Did the participant fix 1if Yes, 0 if No.
the course average bug?
K9(Quiz_Avg)Found Did the participant find | 1 if Yes, O if No.
the quiz average bug?
K9(Quiz_Avg)Fixed Did the participant fix 1if Yes, 0 if No.
the quiz average bug?
L9(Midterm_Avg)Found Did the participant find | 1 if Yes, O if No.
the midterm average
bug?
L9(Midterm_Avg)Fixed Did the participant fix 1if Yes, 0 if No.
the midterm average
bug?
M9(Exam_Avg)Found Did the participant find | 1 if Yes, O if No.
the exam average bug?
M9(Exam_Avg)Fixed Did the participant fix 1if Yes, 0 if No.
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the exam average bug?

GBFound The total number of These values range from
bugs found by the 0to 6.
DAL oIy 1 e Only the Summer2006
Gradebook spreadsheet. Gra()j/ebo ok spreadsheet
contained the sixth bug,
however.
GBFixed The total number of These values range from

bugs fixed by the
participant in the

Gradebook spreadsheet.

0to 6.

Only the Summer2006
Gradebook spreadsheet
contained the sixth bug,
however.

B8-1(SocSec-1)Found

Did the participant find
the first social security
bug?

1if Yes, 0O if No.

B8-1(SocSec-1)Fixed

Did the participant fix
the first social security
bug?

1if Yes, 0O if No.

B8-2(SocSec-2)Found

Did the participant find
the second social
security bug?

1if Yes, 0 if No.

B8-2(SocSec-2)Fixed

Did the participant fix
the second social
security bug?

1if Yes, 0 if No.

C18(AdjustedGrossPay)Found

Did the participant find
the adjusted gross pay
bug?

1if Yes, 0 if No.

C18(AdjustedGrossPay)Fixed

Did the participant fix
the adjusted gross pay

1if Yes, 0 if No.
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bug?

D3(SingleWithHold)Found

Did the participant find
the single withhold bug?

1if Yes, O if No.

D3(SingleWithHold)Fixed

Did the participant fix
the single withhold bug?

1if Yes, 0O if No.

E3(MarriedWithhold)Found

Did the participant find
the married withhold
bug?

1if Yes, 0O if No.

E3(MarriedWithhold)Fixed

Did the participant fix
the married withhold
bug?

1if Yes, 0O if No.

PRFound The total number of Ranges between 0 and
bugs found by the 5.
participant in the
Payroll spreadsheet.

PRFixed The total number of Ranges between 0 and
bugs fixed by the 5.
participant in the
Payroll spreadsheet.

TotalFound The total number of Ranges between 0 and

bugs found by the
participant over both
tasks.

11.

Only the Summer2006
students could have
gotten 11. The others
had a maximum of 10
bugs found or fixed.

In particular, the values
ranged from O to 10 for
the Summer2005 study,
from 1 to 11 for the
Summer2006 study, and
from 3 to 10 for the
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Winter2004 study.

TotalFixed

The total number of
bugs fixed by the
participant over both
tasks.

Ranges between 0 and
11.

Only the Summer2006
students could have
gotten 11. The others
had a maximum of 10
bugs found or fixed.

In particular, the values
ranged from O to 10 for
the Summer2005 study,
0 to 11 for the
Summer2006 study, and
from 0O to 9 for the
Winter2004 study.

Taskl1

This is the first task that
the participant was
given.

Possible values are
Gradebook and Payroll.

Table 9: Static data fields, description, and notes about them.
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Log Files Data

Field Name Description

Index This is particular to the database use. An automatically
generated number that we used as the primary key for the
table. This means that each one of the records had a unique
index.

Study Which study did the log files come from initially:
Winter2004, Summer2005, or Summer2006? This
information was added in by me.

Subject The participant’s subject number was also added in by me.
These ID’s are the same ones that appear in the
background data table.

Workbook What workbook were they working on: Gradebook or
Payroll? This information comes directly from the log
files.

Seconds The time in the log files is saved in the form: hh:mm:ss.
We changed it into seconds and subtracted the first time
from all of them to be able to compare the progress of
different participants, even if they did not start at the same
time.

CellName The cell name was taken directly from the log file.

CelllD The cell ID was taken directly from the log file.

Event The event is the action performed by the user, this is also
taken directly from the log file. System events, however,
we took out of the records and stuck them into their own
field, as we will see in a bit.

PercentTested This used to be one of the system events. Whenever a

change was made, this information would come up as a
new record. In order to be able to best analyze how the
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users’ events related to this change, we decided to stick
this information in a field. This way, we know what the
spreadsheet testedness was when the participant performed
certain actions.

CTC

This is the cell testedness for the particular cell that the
user event was performed on. Turning the system events
into additional fields for each user event becomes even
more important for cases like this one and the cell fault-
likelihood. It might be interesting, for example to know
whether a checkmark was placed on a cell that was the
least tested.

CFC

This is the cell’s fault-likelihood when a particular user
event was performed on the cell. Was the darkest cell’s
formula edited, for example? This information was also
taken from the log file, though we had to write a script to
turn it into a field for all user events.

FormulaStatus

When this particular event was performed, was the
formula for this cell open or closed? This is one of the user
events from the log files, but it needed a bit of massaging
to get this information at any point in time.

OpenAt

If the status of the formula is “Open”, then when was that
formula opened? We also massaged data from the log files
a bit to get this.

CellWO

For the particular cell that is being touched, what does the
cell data table say its Western Reading Order (not score)
is? We added this field to make it easy to debug the
Western Reading Order score calculation. We used
information from the log files and the cell data table to get
this information.

CellCO

For the particular cell that is being touched, what does the
cell data table say its Column Order (not score) is? We
added this field to make it easy to debug the Column Order
score calculation. We used information from the log files
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and the cell data table to get this information.

Buggy In the beginning of the task, did this cell contain a bug?
We used information from the log files and the cell data
table to get this information.

ShortestDistance What level is that cell on in dataflow order? We used

information from the log files and the cell data table to get
this information.

Table 10: Log file data fields, descriptions of those fields, and notes about them.
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APPENDIX B. (DATA UNDERSTANDING) DESCRIPTIVE
STATISTICS AND REGRESSION ANALYSES

The research questions we had in mind while conducting this data exploration
were:

1. What do females’ and males’ use of the Forms/3 features look like over time?

2. What happens when testing features, formula operations, and value operations are
looked at separately?

3. How similar are these feature usage profiles between the two tasks (Gradebook
and Payroll)?

4. How does feature usage relate to bugs fixed?

This exploration involved a series of calculations and data visualization
iterations to get a better understanding of successful male and female behavior. In
addition to helping with the understanding of successful behavior, calculations like

counts of events by time period also help with the understanding of the data itself.
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Figure 23: Counts of all events in both workbooks.
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H Arrows On 13.72 19.66 16.66
=ICheckbox Clicked 72.12 80.56 76.14
Checkmark Placed 58.84 59.93 59.36
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All Events In Gradebook

Figure 24: Counts of all events in Gradebook.
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Grand Total 160.52 166.01 163.14



109

All Events In Payroll

70.00

60.00
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mF
g E E g -\
© £ = ©
a 3 = o
A R
-
o1 5
6 D
Arrow Arrows |Arrows On Checkbox Clicked Edit Hide Post
Erased Off Formula | Formula
User
Event Type
Waorkbook PAYROLL
EventCount Column Labels E]
Row Labels (=] F M  Grand Total
=User 221.86 239.29 230.16
* Arrow Erased 5.36 6.84 6.11
# Arrows Off 10.72 15.67 13.18
* Arrows On 9.66 14.02 11.80
=ICheckbox Clicked 47.29 53.64 50.31
Checkmark Placed 38.39 39.32 38.83
Undo Checkmark 6.48 7.13 6.79
Undo ¥-Mark 223 473 3.69
K-Mark Placed 4.64 790 6.38
Edit 28.62 27.66 28.16
Hide Formula 62.64 63.15 62.88
Post Formula 63.81 64.24 64.02
Grand Total 221.86 239.20 230.16

Figure 25: Counts of all events in Payroll.
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Figure 26: Graph of event counts over time in Gradebook for males and females.
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Figure 27: Graph of event counts over time in Payroll for males and females.
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Workbook  PAYROLL
Hierarchy (Multiple Items)

Workbook ~ GRADEBOOK

T [Multipleltems} EventCount Column Labels E|

Row Lahels F M Grand Total
EventCount Column Labels [~| =0 26.51 29.27 27.83
Row Labels -7 F M Grand Total | ®'1 26.45 28.56 27.46
=0 4127 4410 a5 P2 30.53 30.91 30.71
w1 33.36 34.48 33.89 3 34.21 32.07 33.19
) 33.78 37.16 35.38 | ¥4 35.97 38.01 36.94
#3 37.13 37.60 37.35 | #3 35.41 39.12 37.20
+4 16.07 17.43 16.69 | *0 32.92 37.14 34.97
Grand Total 160.00 165.87 162.80 |Grand Total 219.64 234.68 226.81

Figure 28: Counts of events in Gradebook and Payroll by males and females.
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Figure 29: User activity in Gradebook per minute by males and females.
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Figure 30: User activity in Payroll per minute by males and females.
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Figure 31: User activity in Gradebook in the first two minutes by males and females.
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Figure 32: User activity in Payroll in the first two minutes by males and females.

Results About Testing Features
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Figure 33: Testing feature activity in Gradebook by males and females.
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Testing Feature Usage In Payroll
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Figure 34: Testing feature activity in Payroll by males and females.



Waorkbook GRADEBOOK -
Hierarchy (Multiple ltems) |7

EventCount Column Labels |~

Row Labels -7 F

0 6.00
1 8.40
2 8.20
+3 10.06
44 5.31
Grand Total 32.78
Waorkbook PAYROLL -
Hierarchy (Multiple Items) |=7
EventCount Column Labels |~
Row Labels -7 F

0 6.50
1 8.51
+2 10.24
3 11.33
4 12.38
*5 13.19
+H 12.30
Grand Total 66.17

Figure 35: Gradebook and Payroll testing feature activity in 5-minute intervals by

males and females.
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Workbook ~ GRADEBOOK
Hierarchy Checkmark Placed
CellType All E]
EventCount  Column Labels E]
Row Labels 7] F M GrandTotal Checkmark In Gradebook
=0 4,01 4.30 4.15 5.00
1 491 4.97 4.94 E 7.00
2 5.31 6.70 5.96 2 600
®3 6.34 6.43 6.38 £ 500 -
4 420 4.27 4.23 g 400 1
Grand Total 20.60 20.78 20.68 2 300 4 uF
z
2.00 LY
&
E 1.00 -
5 0o -
o 1 2 3 4
5-Minute Interval

Figure 36: Checkmarks in Gradebook.

Workbook ~ PAYROLL
Hierarchy Checkmark Placed
EventCount  Column Labels [~ Checkmark In Payroll
Row Labels|-7|F M  Grand Total 500
0 417 3.95 4.07 E 500
1 534 5.18 5.25 & 700
@2 671 5.86 6.31 £ 600
3 642 6.09 6.26 g 500
#4 7.56 8.10 7.82 % 400 - mE
@5 7.87 7.92 7.90 £ 300 4
2.00 4 M

6 675 7.37 7.03 Eo oo
Grand Total 37.90 38.11 38.00 g

= 00 -

a 1 2 3 4 5 5]
5-Minute Interval

Figure 37: Checkmarks in Payroll.



117

Workbook GRADEBOOK

CellType All

Hierarchy Undo Checkmark

=

EventCount  Column Labels E]

Row Labels |7 F M  Grand Total
o 2.00 2.33 2.16
1 2.08 1.96 2.02
2 1.80 2.16 1.98
3 1.92 2.52 218
4 1.78 2.71 2.19
Grand Total 3.89 4.34 411

Undo Checkmark In Gradebook

Figure 38: Undo checkmarks in Gradebook.

Waorkbook PAYROLL

Hierarchy Undo Checkmark

EventCount  Column Labels
Row Labels -7/ F

82

M  Grand Total

*0 1.44 1.33 1.39
=1 2.36 2.05 2,22
=2 2.22 2.09 2.16
*3 1.93 2.78 2.30
=4 2.60 2.28 245
5 2.69 3.22 2.96
HE 2.13 2.79 2.47
Grand Total 6.41 7.03 6.70

Figure 39: Undo checkmarks in Payroll.
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RADEBOOK

Hierarchy X-Mark Placed

CellType Al

I B

EventCount  Column Labels E]
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Row Labels 7] F M  Grand Total
EN 1.67 1.40 1.54
#1 2.00 2.40 222
2 1.83 2.17 2.02
#3 1.60 1.92 1.76
EL! 145 2.07 1.81
Grand Total 2.57 4.25 3.03

Figure 40: X-marks in Gradebook.

Workbook  PAYROLL
Hierarchy ¥-Mark Placed

EventCount  Col

lumn Labels B

Row Labels [-7| F M  Grand Total
#0 2.15 2.43 2.32
#1 1.67 2.52 212
#2 2.14 3.07 2.67
#3 1.76 1.96 1.87
"4 1.70 2.77 2.35
#5 2.06 3.52 2.98
w6 1.65 2.59 2.19
Grand Total 4.61 7.87 6.35

Figure 41: X-marks in Payroll.
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Workbook ~ GRADEBOOK
Hierarchy Undo X-Mark
CellType All

5

EventCount  Column Labels E]

Figure 43: Undo X-marks in Payroll.

Row Labels -7 F TR Undo X-Mark In Gradebook
=0 1.50 1.25 1.33 250
1 1.40 2.25 1.92 8
=2 1.40 2.08 1.89 £ 2.00
3 1.00 1.67 1.50 £ 150
=4 1.00 1.75 1.60 2
Grand Total 1.92 3.00 2.68 5 1.00 - mF
z
% o M
g
5 00 -
a 1 2 3 4
5-Minute Interval
Figure 42: Undo X-marks in Gradebook.
Workbook  PAYROLL
Hierarchy Undo X-Mark
EventCount  Column Labels [~ Undo X-Mark In Payroll
Row Labels 7] F M  Grand Total 250
=0 1.60 1.57 1.58 s
il g 3.00
=1 1.00 1.63 1.43 H
b =~ 250
@2 1.38 2.85 2.29 s
@3 1.00 1.62 1.44 g 200
=4 1.67 1.65 1.65 % 150 ur
l@s 1.67 3.13 2.60 2 100 .
6 1.71 2.06 1.96 B
Grand Total 2.19 4.68 3.65 g
4 00
i a 1 2 3 4 5 6
T 5-Minute Interval
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Figure 44: Arrow Erased in Gradebook.

Workbook
Hierarchy

PAYROLL
Arrow Erased

CellType All E]

EventCount  Column Labels E]

Row Labels -7/ F M  Grand Total
0 3.25 2.40 2.64
E1 2.83 3.08 2.97
=2 2.23 2.25 2.24
=3 2.00 2.48 2.31
=4 3.10 2.56 2.84
Grand Total 4.43 4.19 4.28

EventCount  Column Labels E]

Row Labels -7 F M  Grand Total
o 3.50 2.25 2.50
1 244 1.71 2.13
®2 4.00 3.18 3.44
3 3.13 2.64 2.92
=4 2.22 5.20 3.79
5 2.17 3.05 2.57
#H6 6.27 3.45 4.45
Grand Total 5.34 6.75 6.05

Figure 45: Arrow Erased in Payroll.
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Results about Event Activity on Value Cells



Workbook ~ GRADEBOOK
Hierarchy Edit
CellType Value

EventCount Column Labels E]

Row Labels <7 F M  Grand Total
T 8.00 7.99 7.99
1 5.25 5.64 5.43
2 6.71 7.16 6.93
3 7.88 8.26 8.05
T 3.76 6.04 4.67
Grand Total 21.37 21.84 21.59

Figure 46: Value Edits in Gradebook.

Workbook ~ PAYROLL
Hierarchy Edit
CellType Value
EventCount  Column Labels E]
Row Labels -7 F M  Grand Total
) 3.09 4.04 3.86
1 3.51 418 3.79
2 3.70 3.95 3.81
3 4.63 3.86 4.28
=4 448 4.96 4.69
#5 4.44 5,58 4.96
6 478 6.78 5.69
Grand Total 18.33 19.08 18.69

Figure 47: Value Edits in Payroll.
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CellType Value

Workbook  GRADEBOOK
Hierarchy Post Formula

EventCount  Column Labels E]

122

PostValue In Gradebook

Rowl.abelsF M Grand Total
0 833 871 8.51 _ 1000
w1 464 458 a.61 § 900
3 558 6.53 6.03 g 8w
= .00
w3 6.89 6.73 6.82 £ oo
4 3.20 4.07 3.55 2 .o
b
Grand Total 20.97 21.16 21.06 5 400 mE
5 300 _
8 200
E 100
5
o 00
0 1 2 3 1
5-Minute Interval
Figure 48: Post Value in Gradebook.
Workbook ~ PAYROLL
Hierarchy Post Formula
CellType Value
EventCount  Column Labels E]
Row Labels [-7|F M  Grand Total PostValue In Payroll
®0 4.02 429 4.16 _ 600
1 2.81 3.52 3.13 g
E 500
2 3.17 3.28 3.22 £
3 4.03 3.37 3.73 £ 400 1
4 3.59 412 3.82 & 200
#5 3.43 405 3.74 s 200 mF
6 3.30 5.00 2,08 z - Y
Grand Total 16.35 17.63 16.96 E“ 1.00 -
5 oo -
1 2 3 4 5 6
5-Minute Interval

Figure 49: Post Value in Payroll.




Workbook  GRADEBOOK
Hierarchy Hide Formula
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CellType Value
EventCount  Column Labels E] .
Row Labels -7 F e Hide Value In Gradebook
=0 7.98 3.00 7.99 _ 900
®1 424 457 4.40 g 800
2 5.28 6.61 5.90 & 700
3 6.36 6.89 6.60 £ 6.00
4 3.58 3.66 3.61 2 s00
Grand Total 20.15 20.31 20.23 s :'Eg ur
E R
g 200 oM
E 1.00
« 00
0 1 2 3 4
5-Minute Interval
Figure 50: Hide Value in Gradebook.
Workbook  PAYROLL
Hierarchy Hide Formula
CellType Value
EventCount  Column Labels E] .
Row Labels 7| F M  Grand Total Hide Value In Payroll
=0 3.73 3.95 3.84 _ 600
®1 272 3.76 3.16 g
E soo
®2 3.36 3.38 3.37 g‘
3 3.88 3.57 3.74 £ 400
) 3.61 4.16 3.85 & s00
#5 3.44 413 3.76 L] 200 mF
L 3.64 4.4 419 z = o
Grand Total 15.79 16.97 16.35 g" 1.00
5 00
0 1 2 3 4 5 &
5-Minute Interval

Figure 51: Hide Value in Payroll.
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Results about Event Activity on Formula Cells

Workbook  GRADEBOOK
Hierarchy Edit
CellType Formula
EventCount  Column Labels E] .
Row Labels -7 F 00 e Formula Edits In Gradebook
0 234 232 2.33 4.00
®1 3.29 3.73 3.49 8 550
3 3.51 3.14 3.34 € 300 -
w3 3.31 3.39 3.34 £ 550 |
=4 2.17 216 2.16 & 2004
b
Grand Total 11.50 11.10 11.31 5 150 - mE
z
1.00 + mm
3
50 -
5 00 -
0 1 2 3 4
5-Minute Interval

Figure 52: Formula Edits in Gradebook.

Workbook  PAYROLL
Hierarchy Edit
CellType Formula
EventCount Column Labels E] .
Row Labels (3] F R ——— Formula Edits In Payroll
=0 1.50 1.77 1.85 3.00
@1 2.20 1.98 211 8

£ 250
#2 2.57 1.95 226 g;
#3 1.84 2.22 2.03 € 2.00 7
=4 2.68 2.19 2.4 g 150
EH 2.51 1.83 2.20 ] uF

v 1.00
El] 2.63 2.23 2.45 z M
Grand Total 10.02 8.29 9.20 E" B

5 00 -

a 1 2 3 4 5 &
5-Minute Interval

Figure 53: Formula Edits in Payroll.
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Workbook ~ GRADEBOOK
Hierarchy Post Formula
CellType Formula
EventCount  Column Labels E]
Row Labels (3 F T PostFormula In Gradebook
0 6.22 7.05 6.61 _ 800
1 7.00 6.44 6.74 8 7.00 -
2 6.16 5.63 5.91 & 500 -
3 5.55 5.26 5.41 £ oo -
4 291 3.06 2.98 £ 400
Grand Total 26.80 25.62 26.24 T 300 - uF

E 2.00 - LY

€ 100 -

2 0!

0 1 2 3 4
5-Minute Interval

Figure 54: Post Formula in Gradebook.
Workbook  PAYROLL
Hierarchy Post Formula
CellType Formula
EventCount  Column Labels E]
Row Labels [T F T —— Post Formula In Payroll
) 6.17 5.99 6.08 _ 900
®1 6.69 6.62 6.66 g 800
3 7.20 6.85 7.03 £ 700
®3 7.76 6.74 7.27 £ 6.00 1
4 7.05 6.81 6.94 & 5.00 1
®5 6.98 6.93 6.96 K :'EE 1 mE
T 6.01 6.27 6.14 zZ Y
Grand Total 46.88 45.78 46.36 E“ 100 4

2 !

0 1 2 3 1 5 &
5-Minute Interval

Figure 55: Post Formula in Payroll.
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Workbook  GRADEBOCK
Hierarchy Hide Formula
CellType Formula
EventCount  Column Labels E] .
Row Labels [-7] F T —— Hide Formula In Gradebook
) 550 6.39 5.91 8.00
@1 674 6.29 6.53 8 700
32 6.03 5.61 5.83 € 500
3 5.50 5.33 5.46 £ 500
w4 318 3.34 3.26 g 2.00
Grand Total 26.28 25.31 25.82 © 300 [ 13

=z

2.00 =M

3

£ 100

2 o

a 1 2 3 4
5-Minute Interval

Figure 56: Hide Formula in Gradebook.
Workbook ~ PAYROLL
Hierarchy Hide Formula
CellType Formula
EventCount  Column Labels E] .
Row Labels -7/ F T e T Hide Formula In Payroll
0 555 5.60 5.57 2.00
®1 6.59 6.42 6.51 § 800
3 7.03 6.91 6.97 & 700 4
3 7.87 6.69 7.31 £ 6.00 1
4 7.31 6.95 7.13 £ 5.00 1
#5 7.09 6.72 6.91 s :'EE ] uF
= z T
6 6.34 6.40 6.37 Z 200 -
Grand Total 46.38 45.10 a45.77 £ 100 -

2 00!

a 1 2 3 4 5 1
5-Minute Interval

Figure 57: Hide Formula in Payroll.
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Statistically Significant From Regression Analysis

The traditional way we have used to measure participants’ success is by seeing
how many bugs they fixed. This is the most important measure of success, since the
ultimate goal of each user in our task is to find and fix the bugs that were planted into
their spreadsheets. Thus, for males and females, what background data and feature
usage data was predicted with the number of bugs fixed?
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Gradebook

Payroll

Arrow Erased (p=0.023) “-*
Edit Value (p=0.000) “+”
Hide Value (p=0.003) “+”
Post Value (p=0.001) “+”

Professional End-User
Programming or Programming
Experience (p=0.037) “+”

Total Pre Self-Efficacy (p=0.001)
“+”

The First Task (p=0.025)

Males
X-Mark Placed (p=0.009) «“-*
Undo X-Mark (p=0.004) «-*
Edit Value (p=0.034) “+”
Hide Value (p=0.036) “+”
Post Value (p=0.026) “+”
Study (p=0.001)
Major (p=0.010)
GPA (p=0.041) “+> Year In School (p=0.015) “+”
Spreadsheet Experience (p=0.039) “+” GPA (p=0.007) “+>
Total Pre Self-Efficacy (p=0.014) “+” :I"o’t,al Pre Self-Efficacy (p=0.017)
Females .

Arrows Off (p=0.026) “-*
Undo Checkmark (p=0.035) “-*
Edit Value (p=0.000) “+”
Hide Value (p=0.001) “+”
Post Value (p=0.001) “+”

The First Task (p=0.020)
Arrow Erased (p=0.005) “-*
Undo X-Mark (p=0.009) «“-«

Table 11: The variables that were had significant p-values, using regression analysis,
in predicting the number of bugs fixed in Gradebook and Payroll by males and
females. “+” means that the factor positively predicted the number of bugs fixed in
Gradebook or Payroll (column headings) by Males or Females (row headings).
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APPENDIX C. (MODELING) INITIAL MODELS OF STATIC DATA

Before beginning our full-scale model-building effort, we built models for the
purposes of exploring the data and finding homogeneous groupings in the static data
alone (background, self-efficacy scores, and success). Input variables and whether
they were set as “Key”, “Input”, or “PredictOnly”, can be seen in Figure 58 below.
These were the same for all four models. The one thing that did differ among them
was the parameter setting of the number of clusters. For CA, it was the default setting
of “10”. For CA2, we changed that value to 0 (see Figure 59). A value of O for the
cluster count parameter divides the data up into its natural number of groupings. This
natural number of clusters was 4. We therefore also created CA3 (with Cluster_Count
set to 3) and CA 4 (with Cluster_Count set to 5), to see if either increasing or
decreasing the natural number of clusters would lead to a better statistical fit for the
testing

set.
Struckure 4 Ca_DiscTrainBackgroundPerc Caz_DiscTrainBackgroundPerc Ca3_DiscTrainBackground CAd_DiscTrainBackground
: Microsoft_Clustering ";,“ Microsoft_Clustering ";,“ Microsoft_Clustering ";,“ Microsoft_Clustering
% CSExp Rating 4] Input 4] Input 4] Input 4] Input
£ Gender %Z] Input %Z] Input %Z] Input %Z] Input
£ GPA 45| Input 45] Input 45] Input 45] Input
£\ Major Type %Z] Input %Z] Input %Z] Input %Z] Input
% 55Exp Rating 4] Input 4] Input 4] Input 4] Input
ﬁ Std Camprehension ,\;‘j PredictOnly ,\;‘j PredictOnly ,\;‘j PredictOnly ,\;‘j PredictOnly
Zh Study 42] Input 4] Input 4] Input 42] Input
;@ Subject I 5 Key 5 Key 5 Key 5 Key
£} Total Fixed Perc djj PredictOnly djj PredictOnly djj PredictOnly djj PredictOnly
ﬁ Total Found Perc ,\fj PredictOnly ,\fj PredictOnly ,\fj PredictOnly ,\fj PredictOnly
£} Total Pre SE %] Input %] Input %] Input %] Input
[ Vear In School 4] Input 2] Input 2] Input =] Input

Figure 58: The four competing clustering models built using only static data

(background and self-efficacy scores).
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Parameters:

Parameter Yalue Default Range
CLUSTER_COLNT ] 10 [m,...3
CLUSTER,_SEED ] [a,..1
CLUSTERING_METHOD: 1 1,2,3,4
MARIMUM_TNPUT_ATTRIBUTES 755 [0,65535]
MAXIMUM_STATES 100 0,[2,65535]
MINIMUM _SUPPORT 1 (0,0
MODELLIMNG_CARDINALITY 10 [1,50]
SAMPLE_SIZE S0o0a 0,[100,...)
STOPFIMNG_TOLERANCE 10 0.

Figure 59: The parameter settings for the CA2 cluster analysis model. The
CLUSTER_COUNT parameter was the only one that differed in these first four
competing models.

Unlike in the models built in Study 2, where “successful” meant above the
median in bug fixing, the participants were split into five equally-sized buckets for
these models. The top performing model for predicting success at fixing 80%-100% of
bugs, finding 90%-100% of bugs, and scoring 75%-100% on the comprehension test
was CA2. Recall that CA2 was the one with the Cluster Count parameter set to “0”

for the natural number of groupings.

The reason why we decided to divide the participants into only two groups
based on success in Study 2 (rather than the five groups like in this attempt) was that
the datasets were too small to dependably build models predicting success in bug
fixing at this level of detail. The training set highest-success group had 25 participants
(12 females and 13 males, out of a total of 139) and there were only 8 such
participants (3 females and 5 males) in the testing set (out of a total of 52). This is why
the results from this chapter were only used as hypotheses to inform our design of

possible competing models in Study 2.
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CA2 divided the population into four homogeneous groupings (or clusters).
There were high performers in each of these clusters. The attributes for each of those
clusters are in Figure 60.
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Attributes Cluster profiles

Cluster 4

Variables States Size: 22

Populatio... | Clusker 1 Cluster 2 Cluster 3
Size: 139 Size: 44 Size: 41 Size: 32

i@ MNone
Some
Mary
rnizsing

F
&l
mizzing

| C5 Exp Rating

Gender

4.00
337
202

GRA

Business
Science
Social Studies
Enaineering
Other

Major Type

Some
Several
Few
Marm
Other

50-61.54
£1.54-75
37.5-50
=75
Other

Summer2005
Summer2006
Winter2004
mizzing

55 Exp Rating

Std Comprehension

Study

05-07
07-08
0.272727273-0
=08

Other

0727272727 -0
»=09

06 - 07272727
<06

Other

4500 1 I

4016 ? T
28.00

Senior
Junior
Graduate
Sophamare

Other

Total Fixed Perc

Tokal Found Perc

Bl Bl Bl B B EE e
Bl Bl B B m
Bl Bl B B e
Il BN N B B m — = .
B BN BN B B B -

0000 90908 0000 0000e NS DEBEE =)

Tokal Pre SE

—p =
—n
—0-

‘ear In School

Figure 60: The distributions of the values of the static characteristics (row headings)
for each one of the clusters in CA2 (column headings).
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Since including variables that do not add anything to the model’s efficiency
only weaken it, we decided to further trim the number of input variables used. From
previous Gender HCI studies, we already know that gender and self-efficacy are
important background factors. We therefore created a cluster analysis model that only
took these two input variables into account when predicting bugs fixed, bugs found,
and comprehension scores (CA5). Using only “Gender” and “Total Pre Self-Efficacy”,
the model was able to predict 75% of the target group (80%-100% of bugs fixed).
Adding “GPA” to the mix increases the accuracy of a new model, CAG, to CA2’s 88%
prediction. See Figure 61 for the distribution of these values among the different
clusters. Furthermore, adding any other one input variable to “Gender”, “Self-

Efficacy”, and “GPA” reduces the accuracy.

Hypothesis: For optimal prediction of high success at bug fixing, the only static input
variables should be “Gender”, “Self-Efficacy”, and “GPA”. Adding others weakens

the model.
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Attributes Cluster profiles
- Populatio... | Clusker 1 Clusker 3 Clusker 2 Clusker 4
Yartelo. 22 States Size: 139 | Size: 51 Size: 39 Size: 35 Size: 14
m B B B
Gender [
Pl missing
= 400 - = 1 1 1
| . L |
202 I
§ 50-61.54
_ E1 5475 [ [ [ [ | [ |
Std Comprehension @ 75-50
8 % = E = = =
§  Other
8 05-07 | | | | |
Tokal Fixed Perc . 02%2?2?2?3 -0
® 06 - - = F -
§  Other
Q727272727 -0 - - - [ | -
Tokal Found Perc 2 >=03
8 0B-07272727
@ <us [ | [ | — - [ |
B Other
§  43.00 1 1 1 | 1
Tokal Pre SE 40,16 I
| | I | |

Figure 61: Cluster characteristics of four groupings in the population, for the top
performing and most efficient model, CAG6.

Recall that bugs fixed was only used as a measure after the models were built —
not in building the models. One interesting observation is that the two mostly female
clusters are very different in terms of bugs fixed (cluster 2 is above average, while
cluster 1 is below average). The two male clusters, on the other hand, were similar in
terms of success. Thus, females with similar background characteristics do similarly
well at fixing bugs, while, just because males have similar patterns in background

characteristics, it does not mean that they will fix a similar number of bugs.
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Hypothesis: Background data is important in predicting female success at bug fixing.
For males, other factors (other background data, behavioral data, situational data, or

maybe something else altogether) play a more important role.

Since the sample population was too small to reliably verify the validity of
these hypotheses, we do not consider them to be findings of this study. Instead, we

used them to build a competing model for predicting success at fixing bugs in Study 2.
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APPENDIX D. (MODELING) PARAMETER SETTING FOR THE

MODELS

The default values provided by SSAS 2005 are conservative. We therefore
only changed one of the parameters: for a cluster analysis model, we changed the

number of clusters to “0”, which provides the natural number of clusters that the data

splits up into. My complete parameter settings are in the figures that follow.

Parameter Yalue

MEXIMUM_ITEMSET _COUNT
MARIMUM_ITEMSET_SIZE
MARIMUM_SUPPORT
MIMIMUM_IMPORTAMNCE
MINIMUM_ITEMSET _SIZE
MIMIMUM_PROBABILITY
MINIMUM_SUPPORT

Default
200000
3

1.0
-999990099
1

0.4

0.03

Figure 62: Association Rules parameters.

Parameter Yalue

CLUSTER _COUNT 1}
CLUSTER._SEED

CLUSTERIMNG_METHOD

MAXIMUM_IMPUT _ATTRIBUTES
MAXIMUM_STATES

MINIMUM_SUPPORT
MODELLING_CARDIMNALITY

SAMPLE_SIZE

STOPPING_TOLERANCE

Figure 63: Clustering parameters.

Default
10

]

1

255

100

1

10
S0000
10

Range
(10
[0,500]
{0.0,...0
Lo
[1,500]
[0.0,1.0]
[0.0,...7

Range
[@,...)
[@,...2
1,2,3,4
[0,65535]
0,[2,65535]
(..}
[1,50]
0,[100,...)
(@,..)



Parameter Yalue

HIDDEM_MODE_RATIO
HOLDOUT_PERCEMTAGE
HOLDOUT_SEED
MAXIMUM_INPUT_ATTRIBUTES
MAAIMUM_OUTPUT_ATTRIBUTES
MaXIMUM_STATES

SAMPLE_SIZE

Figure 64: Neural Network parameters.

Parameter Walue

COMPLERITY _PEMALTY
FORCE_REGRESSOR
MARIMUM_IMPUT_ATTRIBUTES
MaIMUM_OUTPUT _ATTRIBUTES
MINIMUM_SUPPORT
SCORE_METHOD

SPLIT_METHOD

Figure 65: Decision Tree parameters.

Parameter Yalue

MAXIMUM_INPUT _ATTRIBUTES
MAXIMUIM_OUTPUT_ATTRIBUTES
MAXIMUM_STATES
MINIMUM_DEPEMDEMNCY _PROBABILITY

Figure 66: Naive Bayes parameters.

Default

4.0
30

0

255
255
100
10000

Default

255
255
10.0

Defaule
255
255

100

Range
0.0
(0,100)
(o]
[0,65535]
[0,65535]
0,[2,65535]
0.0

Range
{0.0,1.0)

[0,65535]
[0,65535]
(0.0,...0
1,3,4
[1,3]

Range
[0,65535]
[0,65535]
0,[2,65535]
0,13
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Parameter Walue

HOLDOLUT_PERCENTAGE
HOLDOUT _SEED
MARIMUM_INPUT _ATTRIBUTES
MAXIMUM_OUTPUT _ATTRIBEUTES
MAXIMUM_STATES

SAMPLE_SIZE

Default

30

0

255
255
100
10000

Figure 67: Logistic Regression parameters.
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Range
(0,100}

! ]
[0,65535]
[0,65535]
0,[2,65535]
[0,...



