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COMPLEX PATTERNS IN GENDER HCI:  

A DATA MINING STUDY OF FACTORS LEADING TO END-USER 

DEBUGGING SUCCESS FOR FEMALES AND MALES 

1. INTRODUCTION 

1.1. Gender HCI: Motivation and Overview 

Research from several domains has shown gender differences that are relevant 

to computer usage (Beckwith, Burnett and Wiedenbeck, et al. 2005), (Busch 1995), 

(Huff 2002). Although there has been a fairly wide interest in gender differences in 

computing professions and education, as well as in gaming, there has not been much 

research on how gender differences interact with end users’ use of purportedly gender-

neutral software features. 

Beckwith and Burnett first defined the term Gender HCI in 2004 (Beckwith 

and Burnett 2004).  Gender HCI is a subfield of Human-Computer Interaction that 

focuses on design and evaluation of interactive systems for humans, with emphasis on 

differences in how males and females interact with computers. It investigates ways in 

which attributes of software (or even hardware) can interact with gender differences. 

Beckwith et al. began a line of Gender HCI work whose focus is on features in 

tools used for end-user software development, aiming to learn how to design end-user 

programming environments that support end-user programmers of both genders. This 

thesis continues this effort through two studies on gender differences in feature usage 

in end-user programming environments. Our analyses were conducted using data 

mining. 

http://www.sigchi.org/cdg/cdg2.html#2_1
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1.2. Data Mining: Motivation and Overview 

Most of our work so far in this area has followed a theory-driven approach, in 

which theories from psychology, education, and HCI have been used to generate 

hypotheses which have then been investigated via empirical studies. However, a 

disadvantage in deriving empirical hypotheses from only established theories is that 

these theories do not take into account the specific needs and issues that arise in end-

user programming. Research situations such as this are often referred to as ―ill-

structured‖ problems (Simon 1973). Such problems contain uncertainty about which 

concepts, rules, and principles are pertinent to it. Further, the ―best‖ solutions to ill-

structured problems depend on the priorities underlying the situation. In such 

problems, in addition to hypothesis testing and application, there is also the need for 

hypothesis generation. Such problems are candidates for ultimately deriving new 

theories from data and patterns. 

Toward this aim, our research group previously used manual qualitative 

analysis techniques (Strauss and Corbin 1998), inspecting data on software feature 

usage in search of useful patterns leading to hypotheses. Although the results of these 

efforts have been fruitful, still, as humans we are fallible, especially given large 

amounts of detailed data. We suspected that there may be important information that 

we were overlooking. Therefore, we employed a methodology change: turning to data 

mining techniques to find feature usage patterns that we may have missed; we 

conducted two Gender HCI data mining studies. 

In Study 1, we reported the results of revisiting data we had already analyzed 

in a previous study, using a data mining approach. Our aim was to derive new 

hypotheses about females’ and males’ strategies, adding to the growing foundation for 
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understanding gender differences in end-user programming situations—by ―listening‖ 

to the participants, through their data, from the ground up (Grigoreanu, et al. 2006). 

In Study 2, we further applied data mining algorithms to describe, summarize, 

segment, and find other interesting patterns in our data (see Chapter 3). Briefly, the 

main goals of Study 2 were to: (1) use a bigger set of data, (2) employ different data 

mining methods, (3) decrease the amount of grouping, and (4) employ statistical 

methods to validate the trustworthiness of the resulting models.  

Employing data mining techniques to analyze Gender HCI data should provide 

a deeper understanding of hidden patterns and relationships that would otherwise be 

hard to hypothesize about. These patterns will help Gender HCI researchers better 

understand how females and males problem-solve differently. 

1.3. Using a Standardized Model 

A further difference between Study 1 and Study 2 is that we chose to use a 

standardized data mining process model for Study 2. The general data mining steps are 

agreed upon by researchers and many perform these steps in a similar order without 

following a standard data mining process model. My reasons for using a standardized 

data mining process model in Study 2 are that: (1) standardized processes help both 

experts and non-experts alike by providing a checklist of steps to not overlook and (2) 

this checklist doubles as a set of guidelines for conducting data mining studies.  

In addition, this process allowed me to create a specific instance of the process 

model for future Gender HCI researchers to employ. The data mining process model 

that we customized to fit the needs of Study 2 is called the Cross Industry Process 

Model for Data Mining and is described in the next section.  
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1.3.1. The CRISP-DM Standardized Model 

A standardized six-step model for data mining processes exists, with minor 

variations in some cases. The Cross Industry Process Model for Data Mining is the 

most prevalent of such models (KDnuggets 2002). CRISP-DM was developed by 

DaimlerChrysler AG, SPSS, NCR, and OHRA (Wirth and Hipp 2000). A very similar 

process model is described by SQL Server Books Online. Figure 1 below shows both 

of these models. 
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Figure 1. The CRISP-DM model (top) and the SQL Server Analysis Services model 

(bottom).  

 

Our reason for including the SQL Server model here, alongside CRISP-DM, is 

that we used MS SQL Server Analysis Services 2005 for this study (see Section 5.1.4. 

for more information about the software we used). The SQL Server model was created 
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with the added goal of showing which of their products and services can help users at 

the various stages of the data mining process. While slight differences exist between 

the two models, they are very similar overall.  

1.3.2 CRISP-DM Steps 

This thesis is built around these process models. Notice that most of this thesis’ 

chapter headings start with the data mining process model step that it pertains to. Here 

is a brief overview of each step.  

Business Understanding (Defining the Problem). The first phase of a data 

mining project is to define the problem that a business wishes to address. In research 

studies, related work and research questions fit under this step. This is when a 

preliminary project plan is designed, with the project objectives and requirements in 

mind (see Chapters 2, 4, 5). 

Data Understanding (Exploring the Data). The second phase includes first 

collecting the data and then exploring and becoming familiar with them. Exploration 

techniques include methods like calculating the mean, median, minimums, and 

maximums, and looking at the distribution of data (see Chapters 6, 7, 8, and Appendix 

B). 

Data Preparation. Data preparation includes data consolidation and data 

cleaning. The data may be scattered among several studies or parts of a company (this 

is where consolidation comes in). Furthermore, there might be inconsistencies in the 

protocols by which data were recorded, compacted, or ―scored‖ (which is why 

cleaning is needed). This step gets rid of the inconsistencies in the combined dataset 

(see Chapters 7, 8, and Appendix A). 

Modeling (Building Models). After the data are combined and cleaned, 

models can be built using them. The data first need to be split into a training set and a 
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testing set. If the original dataset is big enough, it is better to split it into three sets: 

training, validation, and testing. This is not the case for either Study 1 or Study 2, 

since the datasets are too small. Competing models are then built on the training set, 

using different algorithms and parameter choices (see Chapters 3, 8, 9, Appendix C, 

and Appendix D). 

Evaluation (Validating Models). Often, more than one model is created. This 

step evaluates which model performs best and determines how well that model 

performs. The testing set can be used to validate the models built on the training set. 

This step also determines whether the model properly answers the research questions 

posed in the first step (see Chapter 9). 

Deployment (Deploying and Updating Models). Once the best model is 

picked, the results need to be deployed. The deployment step can range from writing a 

report to implementing a package that allows the data mining process to be directly 

repeated from within an application (all chapters). 

Almost every step in this model is heavily tied to the others. The steps can be 

repeated multiple times and in various orders. For example, preparing data leads to a 

better understanding of them. A resulting mining model can produce a better problem 

definition, which helps build a better model. Building a model can also point out data 

that we missed in the preparation phase. During studies, it is recommended to 

explicitly allot time for three iterations of each step, with the second taking half the 

time of the first, and the third taking a quarter of the time of the first (Wirth and Hipp 

2000). As with all data analysis, findings from one study will raise many other related 

research questions to be addressed in future studies. Thus, once a project is deployed, 

this often results in more specific research questions and the cycle repeats.  
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In addition to each chapter being titled with the step that it refers to, each 

chapter will also begin with a table similar to Figure 2. The part that is highlighted is 

the section that the chapter relates to. We have highlighted the Deployment step here 

as an example since the deployment phase consists of writing a report (this entire 

thesis). 

 

Figure 2: These are the six steps of the CRISP-DM data mining process model and the 

subparts and their outputs. This thesis is a final report of two Gender HCI data mining 

studies and the deployment phase is highlighted here as an example. 
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2. (BUSINESS UNDERSTANDING) GENDER HCI 

BACKGROUND AND RELATED WORK 

Gender HCI research has been conducted in the following areas (among 

others): the effects of confidence and self-efficacy on both genders’ interactions with 

software, the design of gender-specific software, such as video games created for girls, 

the design of display screen sizes and how they affect both genders, and the design of 

gender-neutral problem-solving software.  

The subfield of Gender HCI is a highly interdisciplinary area. Findings from 

fields such as Psychology, Computer Science, Marketing, Neuroscience, Education, 

and Economics strongly suggest that males and females problem solve, communicate, 

and process information differently. Gender HCI investigates whether these 

differences need to be taken into account in the design of software and hardware. The 

term Gender HCI was first coined in 2004 by Beckwith and Burnett, but research 

relevant to that topic predates the term.  

Some of the findings of Gender HCI research are related to male and female 

confidence in dealing with computer software (or computer self-efficacy). Self-

efficacy is measured using a standard pre-study questionnaire. For example, for 

spreadsheet problem-solving tasks, (1) female end users had significantly lower self-

efficacy (a task-specific form of confidence) than males and (2) females with low self-

efficacy were significantly less likely to work effectively with problem-solving 

features available in the software. In contrast, males’ self-efficacy did not impact their 

effectiveness with these features (Beckwith, Burnett and Wiedenbeck, et al. 2005). 
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In a study of the computer attitudes and self-efficacy of 147 college students, 

gender differences existed in self-efficacy for complex tasks (such as word processing 

and spreadsheet software), but not simpler tasks. Also, male students had more 

experience working with computers and reported more encouragement from parents 

and friends (Busch 1995). 

Another category of findings relate to what kinds of features were used in 

software systems. For example, in spreadsheet problem-solving tasks, female end 

users took significantly longer before trying out unfamiliar features (Beckwith, 

Burnett and Wiedenbeck, et al. 2005). Also, females significantly more often agreed 

with the statement, ―I was afraid I would take too long to learn the [untaught feature].‖ 

Even if they tried it once, females were significantly less likely to adopt new features 

for repeated use. For females, unlike for males, self-efficacy predicted the amount of 

effective feature usage. There was no significant difference in the task success of the 

two genders or in learning how the features worked, implying that females’ low self-

efficacy about their usage of new features was not an accurate assessment of their 

problem-solving potential, but rather became a self-fulfilling prophecy about their use 

of features (Beckwith, Burnett and Wiedenbeck, et al. 2005). 

There is also a ―how‖ part to software feature usage. In spreadsheet problem-

solving tasks, tinkering (playfully experimenting) with features was done by males 

more often than females. Males were comfortable with this behavior; in fact, some did 

it to excess. For females, the amount of tinkering predicted success, but for males, 

excessive tinkering hurt them. Pauses after any action were predictive of better 

understanding for both genders (Beckwith, Kissinger, et al. 2006). 

Another finding related to the participants’ behavior is that males viewed 

machines as a challenge, something to be mastered, overcome, and be measured 
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against. They were risk-takers, and they demonstrated this by eagerly trying new 

techniques and approaches. Females rejected the image of the male hacker as 

alienating and depersonalizing. Their approach to computers was ―soft;‖ tactile, 

artistic, and communicative (Turkle 1988). 

Much of the research in Gender HCI has been about video games. Several 

findings were reported about girls’ interests that relate to video games, with 

implications for the video game software industry (Gorriz and Medina 2000). 

Researchers explored what girls seek in video games, and implications for video game 

designers. Among the implications were collaboration vs. competition preferences, 

and use of non-violent rewards versus death and destruction as rewards. These works 

argue both sides of the question as to whether or not to design games specifically for 

girls (Cassell 1998) (Cassell and Jenkins 1998). 

Not all of the findings have been about software; Gender HCI research has also 

been conducted in the hardware realm. Larger displays helped reduce the gender gap 

in navigating virtual environments. With smaller displays, males’ performance was 

better than females’. With larger displays, females’ performance improved and males’ 

performance was not negatively affected (Czerwinski, Tan and Robertson 2002), (Tan, 

Czerwinski and Robertson 2003). 

Other studies have been related to Internet behavior and perceptions. For 

example, in a study of the way people interacted with conversational software agents 

in relation to the sex of the agent, the female virtual agent received many more violent 

and sexual overtures than either the male one or the gender-free one (a robot) (De 

Angeli and Brahnam 2006). Other examples are that males and females had different 

perceptions for whether a webpage would be appropriate for his/her home country, 
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and that females more often than males preferred more information on all web pages 

viewed during a study (S. Simon 2001). 

In the home, where many appliances are programmable to some extent, 

different categories of appliance were found to be more likely to be programmed by 

men (e.g. entertainment devices) than by women (e.g. kitchen appliances). There was 

often one member of a household who assumes responsibility for programming a 

particular device, with a "domestic economy" accounting for this task (Rode, Toye 

and Blackwell 2004). 
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3. (MODELING) STUDY 1: PRELIMINARY GENDER HCI 

DATA MINING STUDY 

Study 1 was our first Gender HCI data mining study. In this study, we applied 

sequential pattern mining to our log files to search for potentially interesting patterns 

in data that had previously been collected. This data came from the Summer 2005 

Gender Tinkering study’s Treatment group. To get more information on the setup for 

that study and a detailed description of the events mentioned in this chapter, see 

Section 6.2.2.  

Using a data mining approach, we focused on gender differences in how 

features are used, with the aim of gaining new insights into our previous reports of 

when and how much. Our aim was to derive new hypotheses about females’ and 

males’ strategies, adding to the growing foundation for understanding the gender 

differences in end-user programming situations—by ―listening‖ to the participants, 

through their data, from the ground up. 

3.1. Study 1: The Pattern Mining Process 

In this study, we looked at how features were used by finding patterns in 

common sequences of events used by participants. We considered each user action as 

an event. This abstraction transformed the data into sequences of events. Participants 

in our empirical studies can perform several events to help test and debug their 

spreadsheets: Tooltips, Checkmarks, X-Marks, Arrow Operations, Value and Formula 

Edits, and Help Me Test. See Chapter 6 for details about the testing and debugging 



14 

 

 

 

features available in our Forms/3 research spreadsheet software. Thus, one example of 

a sequence of user events is: (Tooltip Showing, Checkmark, Checkmark). 

3.1.1. Preprocessing into Debugging Sessions  

Following the procedure of (Ruthruff, Burnett and Rothermel 2005), we used 

the notion of debugging sessions to break the sequence of events into subsequences. 

As with Ruthruff et al.’s definition, a debugging session ends with a formula edit (or at 

the end of the experiment), which presumably represents an attempt to fix a bug. 

However, unlike Ruthruff et al.’s definition, in which a debugging session began with 

the placement of an X-mark, our debugging sessions begin as soon as the previous one 

ends (or at the beginning of the experiment), so that all actions could be considered—

not just the subset following an X-mark. In some cases participants edited the same 

formula multiple times consecutively. Since such edits were obviously a continuation 

of fixing the same bug, we included them in the preceding debugging session. Based 

on this definition, we broke each log file into debugging sessions. 

3.1.2. Sequential Pattern Mining  

We used the SLPMiner program (Seno and Karypis 2002) to search for 

patterns of the form (A, B, C), where A, B, and C are events that happened in the 

specified order. A debugging session was considered to contain the pattern (A, B, C) if 

it had at least one occurrence of events A, B, and C in that order, but the events did not 

need to be consecutive. For instance, one of the patterns that appeared in 68 debugging 

sessions is (checkmark, arrowon, arrowoff, postformula), meaning that the user placed 

a checkmark, worked with arrows and then opened a formula, with some other actions 

in between.We refer to the percentage of all debugging sessions that contained a 

pattern as the support of the pattern.  
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SLPMiner searches for all sequential patterns whose support exceeds a pre-

specified threshold, and these patterns are referred to as frequent patterns. To avoid 

redundancy due to the fact that any subsequence of a frequent pattern will also be a 

frequent pattern, the software output the maximal patterns, i.e., patterns that are not 

subsequences of other frequent patterns. We chose the support threshold to be 10%, 

i.e., a pattern had to be contained in more than 10% of the 641 debugging sessions to 

be output by SLPMiner. This relatively low threshold was chosen because it allowed 

us to find patterns that were common to multiple users while still containing some of 

the interesting but less frequently used features such as X-marks and Arrow 

operations. The threshold did however get rid of some of the patterns that were 

―flukes‖. We focused our attention on patterns of limited size, in particular of length 

between one and four, because without limitations there would simply be too many 

patterns to process, and longer patterns often contained cyclic behavior and were 

difficult to interpret.  

3.1.3. Output and Post-processing 

From the 641 debugging sessions, SLPMiner found 107 patterns of length one 

(such as ―HMT‖) through four (such as ―Post Formula, Edit Value, Checkmark, Hide 

Formula‖). Note that SLPMiner (and other sequential pattern mining algorithms) can 

only find ―frequent‖ patterns, i.e., those satisfying the minimum support criterion, 

which was 10% in our case. It was up to us to determine which of the found patterns 

were interesting to our research goal.  

Toward this aim, for each pattern, we computed its occurrence frequency for 

each user as the percentage of that user’s debugging sessions that contained the 

pattern. For example, if user A had 20 debugging sessions and 10 of them contained 

pattern p, the occurrence frequency of pattern p for user A was 50%. As a result, we 
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obtained a pattern occurrence frequency table, which provided a comprehensive 

description of the distribution of the pattern occurrence among all users. We then 

analyzed these pattern occurrence frequencies in relation to the gender, task 

performance, and self-efficacy of the participants who used them. 

To help analyze the pattern occurrence frequencies in an organized manner and 

gain a high-level understanding of the patterns, we categorized the found patterns such 

that each category contained patterns centered on a certain set of features. We then 

grouped them based on the features that they contained. When patterns contained more 

than one event of interest, we created a new category for it to make sure that the 

categories did not overlap. This process resulted in 9 categories.  Figure 3 shows how 

the 107 patterns fell into these nine non-overlapping categories. For example, a pattern 

that contains arrow events, formula events, and tooltip events, would fall under the 

―Arrow, Formula & Tooltip‖ category, but not the ―Arrow & Formula‖ category. See 

Table 1 for examples of patterns and their categories. Our analysis described in the 

following sections will be presented based on these categories. 
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Figure 3: We grouped the 107 patterns into these 9 categories. The categories, based 

on the patterns’ content, are focused on the debugging and other features available in 

the environment.  
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Table 1: Each of the nine categories contained patterns that only had the features 

mentioned in the category name as a part of them. For example, the Arrow & Formula 

category contained patterns such as ―Arrow Off, Post Formula, Hide Formula, Post 

Formula.‖ If one of the events in the pattern was a Tooltip event, however, then the 

pattern now fell into the ―Arrow, Formula & Tooltip‖ category. 

Category Example Pattern 

Help Me Test (HMT) (HMT) 

Arrow, Formula & Tooltip (Tooltip Showing, Arrow On, Arrow Off, Edit Formula) 

Arrow & Formula (Arrow Off, Post Formula, Hide Formula, Post Formula) 

Arrow Only (Arrow On, Arrow On) 

Arrow & Checkmark (Hide Formula, Checkmark, Arrow On) 

Edit Value (Edit Value, Edit Value) 

Edit Value & Checkmark (Post Formula, Edit Value, Checkmark, Hide Formula) 

Checkmark (Checkmark, Tooltip Showing, Tooltip Showing, Checkmark) 

X-Mark (Hide Formula, X-Mark, Post Formula, Edit Formula) 

 

 

3.2. Study 1: Results about How Each Gender Pursued Success 

How did the successful versus unsuccessful females and males go about 

debugging? ―How‖ in this question means the counts of each type of pattern, rather 

than the count of events performed (or the ―what‖).  

To investigate this question, we divided the 39 participants (16 males and 23 

females) into four groups by gender and number of bugs fixed. We considered a 

participant ―successful‖ if they fixed at least 7 of the 10 bugs, where 6 was the median 

number of bugs fixed. See Table 2 for the distribution of subjects by bugs fixed. The 
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groups and number of participants are displayed in Table 3. Arrow counts are also 

displayed in the table. Since earlier studies were about what features are used and how 

much, we did not look for that in this study, where we just looked at how features were 

used. Sometimes, feature counts helped us better understand pattern usage however. 

We will return to these later in this chapter.  

Table 2: Distribution of participants by number of bugs fixed. 

Nr. of Bugs 

Fixed 
0 1 2 3 4 5 6 7 8 9 10 

Nr. of 

Participants 
3 1 1 3 4 4 5 5 7 4 2 

 

Table 3: What (not How): The median number of arrows turned on and off during the 

experiment by gender and debugging success (count of feature usage). There is an 

especially big difference between the successful and unsuccessful males.  

Group Number of  

participants 

Arrows 

Successful 

Females 

8 17.5 

Unsuccessful 

Females 

15 24 

Successful Males  10 12 

Unsuccessful 

Males 

6 25.5 
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3.2.1. Just Like Males: A Female Success Strategy? 

Strikingly, in Figure 4 the unsuccessful females and successful males showed 

the most similar frequency of pattern usage (―how‖) profiles for each of the five 

categories on the left half of the graph (from Edit Value to HMT)—all of which are 

testing-oriented activities. (We follow the software engineering definition of ―testing‖ 

here: judging the correctness of the values produced by the program’s execution.) The 

pattern usage was also similar between successful males and unsuccessful females for 

the other categories. 

HMT

Arrow, Formula &

Tooltip

Arrow & Formula

Arrow Only

Arrow & CheckmarkEdit Value

Edit Value &

Checkmark

Checkmark

X-Mark

 

Figure 4: How (count of pattern usage) by success group. Successful: solid line, 

unsuccessful: dashed line, females: light, males: dark. (Each category is represented 

by an axis line radiating from the center. Where the polygon crosses an axis represents 

the frequency of that pattern.) 

This suggests that the ways males successfully went about their debugging task 

are the very ways that did not work out well for the females, leading to the following 

hypothesis: 

Hypothesis: The debugging and testing strategies that help with males’ 

success are not the right ones for females’ success. 

While there is a clear difference between successful and unsuccessful 

behaviors for males, this difference disappears for females. 
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3.2.2. Unsuccessful Males Like Arrows  

Turning to the right half of Figure 4, which represents arrow-oriented patterns, 

the successful and unsuccessful females converge with the successful males. 

Interestingly, regarding this ―how‖ aspect of arrows, there was a striking difference in 

the number of arrow patterns between successful and unsuccessful males. This 

difference is further illustrated by Figure 5, which shows that, unsuccessful males used 

―Arrow Only‖ patterns far more frequently (in more debugging sessions, on average) 

than the successful males.  

The higher frequency of arrow patterns for unsuccessful males coincides with a 

higher raw count of arrows used. As Table 3 shows, successful males used a median of 

12 arrows, whereas unsuccessful males used more than twice as many, 25.5.  

Hypothesis: Unsuccessful males overdo use of arrows—unlike successful 

males, successful females, or unsuccessful females. 

3.2.3. Unsuccessful Males: Tinkering Addicts? 

We suspected that gender differences in tinkering behavior may be a factor in 

observed pattern differences. In particular, the unsuccessful males’ more frequent use 

of arrows and their greater variety of arrow-related patterns is suggestive of a larger 

picture of unsuccessful males tinkering with arrows, to their detriment.  

In fact, in previous work, we reported results in which males were found to do 

more unproductive tinkering, using a different environment (Beckwith, Kissinger, et 

al. 2006). However, the definition of tinkering used in that paper was necessarily 

simple—and its simplicity prevented it from capturing the excessive exploring/playing 

the unsuccessful males did. Based on patterns found via mining that data, we are now 

able to identify more complex tinkering behavior of unsuccessful males in this 

environment, which we failed to notice in our previous study. 
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Figure 5: How: Percentage of debugging sessions that contained ―Arrow Only‖ 

patterns in the by successful versus unsuccessful males.   

 

For example, referring to Figure 5, notice the large differences in ―Arrow 

Only‖ pattern usage for unsuccessful versus successful males. This category contains 

patterns that involve only arrow operations. Two representative patterns in this 

category were (Arrow Off, Arrow On) and (Arrow Off, Arrow Off). Unsuccessful 

males used these patterns often—in one out of every four debugging sessions for the 

unsuccessful males versus only one out of 20 for the successful males.  

Hypothesis: Unsuccessful males have a tendency to tinker excessively with 

the features themselves rather than using the features to accomplish their 

task.  

3.3. Study 1: Results about Self-Efficacy  

Self-efficacy measures a person’s belief in his or her ability to perform a 

particular task (Bandura 1986). Half of the 12 high self-efficacy females were 

successful but only two out of 11 low self-efficacy females were successful. However, 
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it was not true for males: seven out of 10 high self-efficacy males were successful and 

half of the low self-efficacy males were successful.  

How do high and low self-efficacy females and males go about debugging? 

Since self-efficacy did not give the same groupings of the participants as given by task 

success, it is useful to consider how self-efficacy related to pattern choices.  

To investigate the question of whether self-efficacy played a role in pattern 

usage, we divided the participants into four groups based on their self-efficacy scores. 

In particular, we considered a participant to have high (low) self-efficacy if her or his 

score was higher (lower) than the median of all participants. See Table 4 for the 

grouping of the participants.  

We turned to median raw counts of the number of features used (the ―what‖) to 

better understand the reasons behind the patterns that we were seeing (the ―how‖). 

Low self-efficacy female feature counts (Table 4) revealed that low self-efficacy 

females were the highest usage group for all of the features—except the checkmark. 
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Table 4: What by self-efficacy group. These are about the number of features used, 

rather than how they were used, to supplement our understanding of the sequential 

patterns. We divided the participants into four groups based upon their gender and pre-

task self-efficacy. The rest of the table shows median raw counts of the number of 

testing features used during the experiment. 

Group Number of  

participants 

Arrow  

 

X-mark Checkmark  HMT  

High Females 12 10.5 3 65.5 5 

Low Females 11 24 8 45 8 

High Males 10 20 2 52 1.5 

Low Males 6 20 5.5 39 3 

 

High feature usage by low self-efficacy females may at first seem to contradict 

our previous results, which showed that for females, high self-efficacy predicted more 

effective use of features (as measured by the overall testedness of the spreadsheet), 

which in turn led to greater debugging success (Beckwith, Burnett and Wiedenbeck, et 

al. 2005). We proposed that offering greater support in the environment would 

encourage low self-efficacy females to use the features more. The current study used 

the High-Support Environment, which included features designed to fix that very 

problem. Our results show that they worked—the low self-efficacy females did indeed 

use the features in this version! But our current study suggests that quantity of feature 

adoption is misleading in isolation: feature adoption must be considered in conjunction 

with how the features are used. 

How were the checkmarks, so popular with the high self-efficacy females, 

used? Remarkably, the checkmark usage fell into the same number of patterns for the 

high and low self-efficacy females (and in fact for both groups of males as well).  This 
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suggests that the checkmark only strategies used, which relate to systematic testing, 

were the same for both groups (Figure 6), but the amount they were used (Table 4) 

was different. There are many prior studies indicating that using this feature is directly 

tied to success (e.g., (Beckwith, Burnett and Wiedenbeck, et al. 2005), (Beckwith, 

Kissinger, et al. 2006)), and in this study, high self-efficacy females used it more and 

indeed succeeded more.  

Other than the checkmark-related patterns, Figure 6 shows that high and low 

self-efficacy females had pattern frequency profiles that are very distinct from one 

another, suggesting that self-efficacy made a difference with females. However, the 

males’ self-efficacy did not appear to matter much in their pattern choices. 
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(a) Female 
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(b) Male 

Figure 6: How by self-efficacy group. High self-efficacy: solid line, low self-efficacy: 

dashed line. 

 

High and low self-efficacy females diverged in both counts and patterns. 

Notice in Figure 6 how many different patterns the low self-efficacy females used 

compared to high self-efficacy females, except for the checkmark and arrow & 

checkmark. As suggested by self-efficacy theory, people with high self-efficacy are 

more likely to abandon faulty strategies faster than those with low self-efficacy 

(Bandura 1986). Our results were consistent with this. For patterns other than the 

checkmark patterns, the high self-efficacy females were willing to try out and quickly 

abandon many patterns in order to settle upon the ones they liked, whereas the low 
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self-efficacy females were more likely to try a pattern again and again before 

ultimately moving on. Figure 7 shows this tendency for unsuccessful females to use a 

bigger set of patterns more often, whereas successful females stick with a smaller set 

of frequent patterns. For example, 54 patterns were only used 5-10% of the time by 

high self-efficacy females, but only 16 were abandoned so quickly by the low self-

efficacy females. This leads to the following hypothesis: 

Hypothesis: Females with lower self-efficacy are likely to struggle longer to use 

a strategy that is not working well, before moving on to another strategy. 
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Figure 7: How: The high self-efficacy females (solid line) had more patterns fall in the 

frequency range of 5-10%, whereas the low self-efficacy females had more of their 

patterns fall in a higher number of debugging sessions (10-15%). 
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4. (BUSINESS UNDERSTANDING) STUDY 2: A NEW DATA 

MINING STUDY 

 

Figure 8: These are the six steps of the CRISP-DM data mining process model and the 

subparts and their outputs. Chapters 4 and 5 are about understanding the business 

understanding step. 

 

In this second Gender HCI data mining study, we aimed to treat several aspects 

of the data mining process differently from Study 1. We did so in the hopes of further 
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advancing the subfield of Gender HCI, by getting one step closer to understanding 

successful male and female problem-solving behavior. The four aspects that we 

addressed differently in this study are: (1) arriving at statistically-significant results, 

(2) increasing the size and complexity of the dataset, (3) decreasing the amount of 

grouping, and (4) differentiating between ―strategies‖ and ―complex behavior.‖ 

4.1. Arriving at Statistically-Significant Results, Rather Than 

Hypotheses 

Study 1 resulted in several hypotheses about male and female feature usage 

patterns. We did not run statistical tests, since we were reanalyzing old data and only 

using part of them. In Study 2, we followed the recommendation of Thomas Green, a 

psychology researcher, of going after statistically-significant results. After having 

discussed the possibility of running statistics on the results from Study 1 with 

statisticians, we were not able to come up with a good way of doing so. We were set 

on doing so in Study 2, however. 

Many practitioners and researchers fail to create good data mining models 

because they do not place enough importance on statistical significance, and therefore 

overfit the model to the specific dataset that they have available (Elkan 2001). 

Existing methods guard against this by measuring how well the model created on part 

of the data (the training set) fits a second set (validation and/or testing sets). Splitting 

the data into multiple sets increases the probability that the models developed on the 

training dataset generalize to any new set of data. This is important both when data 

mining is used for data exploration and also when it is used for predictive purposes. 

Another common data mining practice is to use several data mining algorithms 

and to compare the accuracy of the resulting models. We compared and evaluated the 
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competing models’ performance through the use of lift charts and classification 

matrices. 

4.2. Increasing the Size and Complexity of the Dataset 

The more data we use, the richer the resulting models will be. In our original 

data mining study, we only used the Treatment Group participants of the Summer 

2005 Gender HCI study. In order to get patterns at the right granularity (as well as 

because of certain software and algorithm limitations), we had to narrow our log file 

and questionnaire data down to the events in the order that they happened, the 

participant’s gender, whether their pre self-efficacy was high or low, and whether they 

fixed more or fewer bugs than the median.  

Using More Available Data per Study. For the Study 2, we used as much of 

the contextual data as possible: background questionnaire answers, information 

specific to the task, information specific to the spreadsheets, information about the 

cells that are touched, etc. With richer data, we can take more factors into account, 

thereby getting a deeper understanding of female and male factors that lead to success 

in debugging spreadsheets.  

Using more information for each participant made it harder to organize the 

data in such a way that the algorithms output meaningful results; the data have to be 

organized into hierarchies so that the mining algorithms can understand how the 

pieces of data relate to each other. Data preprocessing steps were also more arduous, 

since we had a much larger and more varied dataset to clean and standardize.  

The software tool that we selected to find patterns gave dependable models 

resulting from the analysis of several tables of varied and interconnected data. While 

this process was harder, it resulted in links between complex behavior and subject 

characteristics. 
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Gathering Data from Multiple Studies. In addition to using more of the data 

that we had available for each participant, we also decided to get more ―data points.‖ 

The data that we analyzed came from three earlier studies. Having more participants to 

examine increased the statistical power of the results. Furthermore, since these 

patterns span three slightly different environments, the resulting findings are that 

much stronger than if they would have only occurred in one environment. This 

combination of data also made the data preprocessing steps more involved. We had to 

find out about the similarities and differences between the three studies and how those 

affected both the data and the resulting patterns. While collecting, combining, and 

standardizing the data were time-consuming, the richness of the results was worth this 

extra effort. 

4.3. Decreasing the Amount of Grouping 

Input Data Grouping. Due to the data mining algorithms used and because of 

the low number of individuals in the target group, a certain amount of grouping of the 

data was required. During our sequential pattern analysis, we grouped participants into 

the dichotomous groups of ―Successful‖ and ―Unsuccessful‖ (depending on whether 

they fixed more bugs than the median, or not) and ―Low Self-Efficacy‖ or ―High Self-

Efficacy‖ (depending on whether their pre-task self-efficacy score was higher than the 

median or not). Dividing into more groups or modeling the success variable as 

continuous data (between 0 and 100% of bugs fixed) did not result in dependable 

patterns since we had too little participant data to actually look for these types of 

patterns. 

The statisticians that we consulted about how to get statistical significance 

recommended keeping the individual the center of attention, rather than immediately 

splitting participants up into dichotomous groups. They recommended not losing the 
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person effect, unless we first show that there are roughly no differences between 

participants who would get grouped together. For example, instead of using a box plot, 

they recommended using a scatter plot, which also shows the sample size. 

In Study 2, increasing the number of participant data allowed us to keep more 

of a continuum of information for certain fields (like self-efficacy). Though some 

grouping was still necessary, we varied its amount to see which helped us best 

understand participants’ behavior. 

4.4. Differentiating Between “Strategies” and “Complex Behaviors” 

Marian Petre, a psychology researcher, pointed out that patterns only give us 

information about the participants’ behavior, not their strategies. We can only know 

what a participant’s strategies are by acquiring statements about their intentions (such 

as through open-ended survey questions or a think-aloud study). However, patterns 

allow us to notice more obscure links between a participant’s background, their 

behavior, and their success at the problem-solving task.  

With this in mind, and knowing that only one of my datasets has some 

information about participants’ strategy choices, we will differentiate between 

―strategies‖ and ―complex behavior‖ in this paper. Examining how those mental 

strategy choices relate to the complex behavioral patterns that we find is beyond the 

scope of this paper. Future studies should be conducted to explore links between 

participants’ self-proclaimed strategies (or explanations for why they take certain 

actions) and their observed behavioral patterns.
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5. (BUSINESS UNDERSTANDING) CONTEXT, OBJECTIVES, 

AND SUCCESS CRITERIA 

5.1. Data Mining Study Context 

 A data mining context is the first step in mapping a generic data mining 

process model to a specialized study. The context of a data mining project can be 

thought of as being made up of four parts: (1) the application domain, (2) the data 

mining problem type, (3) the technical aspects, and (4) tool and technique (Chapman, 

et al. 2000). Together, these parts also help create a good general overview of this 

study. 

5.1.1. Application Domain 

We applied data mining techniques to the domain of Gender HCI. Gender HCI 

deals with differences in how males and females interact with software. In particular, 

our data come from studies conducted with the research spreadsheet environment 

Forms/3 (Burnett, et al. 2001), which employs the What You See Is What You Test 

(WYSIWYT) testing methodology (Rothermel, et al. 2001).  

5.1.2. Data Mining Problem Types 

Various problem types exist in data mining. A data mining study can aim to 

solve more than one type of problem. The problem types of this study are both ones 

for finding interesting patterns and associations in the data and for seeing what factors 

combine to predict debugging success: data description and summarization, 

segmentation, concept description, and classification.  
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Data description and summarization can be a self-standing data mining 

project. However, it is often used in combination with other problems, as a part of the 

data understanding step of data mining. Data description and summarization consist of 

a thorough exploration of the data, combined with simple descriptive statistical and 

visualization techniques, to provide insights into hidden information in the data early 

on. The difference among calculating maximums and minimums, finding statistically 

significant connections between background factors and success, and creating models 

that predict success based on background and behavioral characteristics, is simply the 

level at which the data is described and summarized, ranging from less to more 

complex interactions.  

Segmentation types of studies divide data into subgroups with interesting ties 

and similar characteristics. In some studies, the detection of groups can be the main 

goal of the study. Segmentation is also often a part of a more involved (higher end) 

data mining study. It is often used to make data set sizes more manageable. Another 

use of segmentation in data mining studies is to come up with more meaningful 

models, based on more homogeneous groups. As with all statistical analysis 

techniques, when datasets are big, various factors from different groups can overlap 

and counteract each other. It is often both more meaningful and easier to look for 

patterns in interesting segments of the population. In Study 2, we used segmentation to 

find interesting homogeneous groupings of our participants.  

Concept description is highly tied to the two aforementioned problem types. 

While segmentation problems provide classes, concept description provides an 

understandable description of each class. Its goal is also to provide a deeper 

understanding of relationships within the data, rather than creating dependable 

prediction models. In this case, the concepts (or classes) that were especially 

interesting were successful males and successful females. From the description of 
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what factors relate to male success and what factors relate to female success, we can 

already make some inferences about what to focus on in the software. The result will 

therefore be a set of guidelines for spreadsheet testing tool design: some coming from 

only females, some only from males, and others from both. 

Classification type studies are predictive studies. As with concept description, 

a set of classes of individuals is created. Classification maps every participant to a 

grouping of individuals through prediction. Unlike with concept description, those 

classes do not have to be understood. The group names can be arrived at through 

segmentation. They can also be arrived at by discretizing continuous values from 

predictive models into class labels. Techniques for solving Classification problems 

include discriminant analysis, rule induction methods, decision trees, neural networks, 

k-nearest neighbors, case-based reasoning, and genetic algorithms. 

5.1.3. Technical Aspects 

Technical aspects are details that will be encountered during the development 

of the data mining model and are sprinkled about the sections they pertain to. Such 

details include what to do with missing values, deciding whether or not to keep 

outliers in, and other such choices. Details about these technical aspects are included 

in the sections that they pertain to, throughout the thesis. 

5.1.4. Tools and Techniques 

In addition to the usual analysis tools (Excel, Access, and S-Plus), we used 

Microsoft’s SQL Server 2005 and its Analysis Services (SSAS) data mining 

algorithms in the Business Intelligence Development Studio. The data that we 

collected from the three studies came in the form of Excel files and text files which 

were very close to CSV form. It was advantageous to migrate from Excel to a database 
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(Access and SQL Server) since database tools facilitate cleaning large amounts of data 

and, in the process, also allow for a better understanding of the data. 

We used all six of the SSAS data mining algorithms (techniques) that applied 

to our type of data to build competing models: association rules, cluster analysis, 

neural networks, decision trees, naïve bayes, and logistic regression. 

5.2. Objectives and Success Criteria 

5.2.1. Business Objective 

In order to avoid the situation of finding right answers to the wrong questions, 

a researcher first needs to come up with a clear objective for the data mining study. 

My business objective was to find relationships between static 

(background and self-efficacy scores), behavioral, study-

specific, and success Gender HCI data that, if taken into 

consideration, will ultimately make spreadsheet software more 

gender-neutral. 

Research questions related to my objective include: 

 What combinations of static, study specifics, and action 

characteristics lead to female success at fixing bugs? 

 What combinations of static, study specifics, and action 

characteristics lead to male success at fixing bugs? 

 Do unsuccessful females exhibit any common characteristics? 

 Do unsuccessful males exhibit any common characteristics? 
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5.2.2. Business Success Criteria 

The business objective has been properly met if the study results in any 

findings that help us better understand the differences in how males and females 

successfully problem-solve and what differences exist between the two genders. 

Finding useful relationships between various behavioral, background, study, and 

success variables would mean that the goal has been achieved. These results will not 

have to be new, since the data we analyzed has been previously analyzed in multiple 

ways for Gender HCI with the same goal in mind. Therefore, it would be just as useful 

to triangulate by finding patterns that simply verify previous Gender HCI findings 

through this different analysis method.  

In order to be useful, these findings need to be actionable. This means that, as 

Gender HCI researchers, we can generate hypothetical solutions to help make 

problem-solving software more gender-neutral based on this study’s results. The 

usefulness of these patterns will be verified by Gender HCI researchers. 

5.2.3. Data Mining Goal 

A data mining goal differs from its business equivalent only in the terms used 

to describe it.  

The data mining goal in this study is to find statistical patterns 

specific to homogeneous groups that the data will be divided 

into through clustering and other methods. In other words, the 

goal is to find out which combinations of static, behavioral, and 

task characteristics relate to debugging success for females and 

males. 



38 

 

 

 

The outputs for this study are a set of understandable homogeneous groupings 

based on several characteristics. Association rules will also be derived to find out what 

factors are tied to male and female success. 

5.2.4. Data Mining Success Criteria 

In order to choose between models, we created lift charts to determine how 

well each model fits a new set of data (see Chapter 9). While there are no clear cut-

offs for what makes for a ―good model‖ vs. a ―bad model‖, the closer to 100% fit, the 

better. Since we had two possible outcomes (successful or unsuccessful), a 50% fit 

would be achieved by random chance. A 60% fit already means that the model is onto 

something. For human data, a 70% fit is considered a very good performance. We 

considered models who predicted more than 70% of the participants’ success correctly 

to be satisfactory. 

5.3. Rejected Objectives 

While this thesis did not address them, the domain of Gender HCI would also 

benefit from answers to the two data mining problem types below. 

Dependency analysis is often followed by predictive types of problems and 

acts as a set up for them. In Gender HCI, the dependency analysis problem would be 

to create a model that ties behavioral events and background information to the 

success of both genders in problem-solving tasks. Unlike for Concept Description, 

models imply having a comprehensible class for every data point (for example, 

―successful females‖, ―successful males‖, ―unsuccessful females‖, and ―unsuccessful 

males‖).  

Prediction type algorithms only differ from classification algorithms in that the 

target class is continuous. For example, instead of seeing whether a user will be 

successful or unsuccessful, prediction algorithms would classify a user as fixing 70% 
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of bugs. Time series algorithms are for forecasting prediction problems. The other 

types are usually called regression algorithms and employ algorithms such as linear 

regression and logistic regression. They are often used for tasks such as predicting the 

expected revenue of a company. 

The Gender HCI domain can be translated into any of these three types of 

problems as well. While these objectives had to be rejected for this study due to time 

constraints, using techniques particular to these problems in the future could further 

help us understand just what males and females are doing when they problem-solve 

and what kind of support would help their efficiency and effectiveness at debugging 

spreadsheets. 
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6. (DATA UNDERSTANDING) WHERE WE GOT OUR DATA 

 

Figure 9: These are the six steps of the CRISP-DM data mining process model and the 

subparts and their outputs. Chapter 6 is about understanding the data. 

 

6.1. Criteria for Selecting Studies 

Since it is always advantageous to train models on as big a dataset as possible, 

we selected several studies that had previously been conducted within the Forms/3 

research group and combined their data. My criteria in selecting those studies were: 
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1. They had at least 25 participants (so that the effort needed to combine 

datasets did not exceed the reward from having a few additional 

participants) and 

2. Their setups and recorded data were similar enough to be combined to give 

Gender HCI related patterns. 

Four quantitative empirical studies had been conducted that fit the first 

criterion (Spring2002Assertions, Winter2004FaultLoc, Summer2005GenderTinkering, 

and Summer2006GenderStrategies). Spring2002Assertions, unfortunately, did not 

meet the second criterion: it lacked any data on the gender of the participants. 

Fall2006Explanations and Fall2003HighIntensityInterruptions were studies that met 

the second criterion, but not the first. In addition, there were several studies that did 

not meet the second criterion and therefore were eliminated right away. 

We built the models using the following types of data that the three studies had 

in common: questionnaire data on the participants (including gender, confidence, and 

academic data), data about the study (what cells were formula cells, which were value 

cells, what events the participants could perform, what types of events those were, 

etc.), data about their behavior during the study (log files), and data about their success 

(how many bugs they found, how many bugs they fixed, and how well they 

understood the features). 

6.2. Chosen Studies Background 

The three chosen studies were:  

1. Winter 2004 Fault Localization (Ruthruff, Phalgune, et al. 2004),  

2. Summer 2005 Gender Tinkering (Beckwith, Kissinger, et al. 2006), and  

3. Summer 2006 Gender Strategies (Beckwith, Grigoreanu, et al. 2007)  
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Since these studies were experimentally set up to answer different research 

questions, this section provides an overview of the goals of the three studies, their 

setup, and their results.  

6.2.1. Winter 2004 Fault Localization 

The dataset from the Winter 2004 Fault Localization dataset had 54 

participants. 24 of those participants were from the Control Group, which contained 9 

females and 15 males, and 30 were from the Treatment Group, which contained 14 

females and 16 males.  

Goals. The Winter 2004 Fault Localization study (Ruthruff, Phalgune, et al. 

2004) was conducted to get a better understanding of the impact of rewards in the 

Surprise-Explain-Reward methodology. The participants were divided into two 

groups, both of which provided them with the same amount of feature functionality. 

One group, however, got more feedback that could be perceived as rewards for using 

fault localization techniques than the other group.  

Experimental Setup. The researchers first looked for rewards and 

punishments relating to the fault localization device in the spreadsheet environment 

used. The fault localization device is a part of the ―What You See Is What You Test‖ 

(WYSIWYT) testing methodology (Rothermel, Burnett, et al., A Methodology for 

Testing Spreadsheets 2001). They then implemented two versions of the environment 

with varying amounts of perceivable rewards and punishments. 

The features used in this study were also used in the following studies. It is 

important to understand what some of these features do, since we counted the number 

of times that they showed up in log files and built mining models using those counts. 

When a checkmark is placed, cell borders change colors to show how tested a cell is. 

A cell with red borders means that it has not been tested yet. A cell with blue borders 
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means that all of its situations have been tested. A purple border means that the cell is 

somewhere between 0% and 100% tested. At the cost of placing a checkmark on a 

cell, a user is thereby provided the visual feedback about the progress made in testing 

the spreadsheet, which can be considered a perceived reward. 

Forms/3 gives this testedness progress feedback in three ways. The first is at 

the cell level, as already mentioned, by coloring the cell border. This feedback is also 

provided at the sub-expression level through arrows. When arrows are brought up to 

see the relationship between cells in the spreadsheet, the arrows are colored with the 

same red-purple-blue color scheme to depict how tested the relationship between those 

two cells is. Furthermore, posting a formula breaks the arrow into the number of sub-

expressions that the formula has, to show how tested each sub-expression relationship 

is. A third testedness progress feedback mechanism is an overall testedness bar that 

shows the cumulative percentage of the spreadsheet that has been tested. 

Other than allowing the user to keep track of how much they have tested each 

cell, more tangible rewards can also follow: in wanting to make testing progress, a 

user might notice that a cell does not return an expected value and might therefore be 

buggy.  

When a user notices an incorrect value, they can place an x-mark in the cell’s 

decision box. Similarly to checkmarks, placing x-marks also provide visual feedback 

that can be perceived as a reward. When an x-mark is placed, the interior of all of the 

cells that contribute to that cell’s value get colored in different shades of orange 

(ranging from light to dark). The darker the interior coloring of the cell, the more 

likely it is that it contains a bug. The reward here is that the user gets a clearer picture 

of where errors are likely to hide in the spreadsheet. 
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There were three differences between the low-reward environment used by one 

group and the high-reward environment used by the other. (1) The first was to remove 

the testedness progress of a cell when it was found to be potentially buggy. This is 

because end-user programmers often get confused about the difference between 

testing a cell based on a set of input values and deciding that a cell’s formula is 

―correct.‖ Thus, a cell that provides conflicting feedback might confuse some users. 

For the low-reward environment, the testedness feedback was removed, but both the 

testedness and fault likelihood feedback were left in the high-reward environment. (2) 

The first change affected a second change: the explanations that are given for cell 

borders and arrow testedness. Since how tested the cell was did not actually change 

(only the visual feedback did), the explanations that pop up when users hover over the 

borders and arrows would still give conflicting feedback, when compared to the 

colors. Thus, those explanations were removed for the low-reward group. (3) The third 

change was that a fault localization bar was added to the high-reward group’s 

environment, similar to the overall spreadsheet testedness bar. This was so that the 

rewards from using checkmarks are not out of balance with the rewards from using x-

marks. 

Results. The study’s results were that the group that had a higher reward 

structure fixed significantly more bugs in the harder of the two given tasks (Payroll) 

and also had a better comprehension of how the fault localization features worked. 

The conclusion of the paper was therefore that it is not sufficient to make features that 

work well and to explain how they should be used, but that it is also important to 

increase the perceivable rewards of using those features, in order for participants to be 

more successful at using the features.  
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6.2.2. Summer 2005 Gender Tinkering 

The Summer 2005 Gender Tinkering study provided 76 participants. 37 of 

those participants were from the Control Group, which contained 17 females and 20 

males, and 39 were from the Treatment Group, which contained 23 females and 16 

males.  

Goals. The Summer 2005 Gender Tinkering study (Beckwith, Kissinger, et al. 

2006) was conducted based on design changes proposed in an earlier Gender HCI 

study. Two environments were compared to look for the effect of the changes on 

tinkering behavior and on self-efficacy. 

Experimental Setup. As in the Winter 2004 Fault Localization study, the 

debugging features present were part of WYSIWYT (―What You See Is What You 

Test‖).  

For this study, a high-support environment (for the treatment group) was 

designed based on previous findings and was compared to the earlier version of the 

environment, which was low-cost in terms of tinkering (control group). The treatment 

high-support environment had several additions. It included 4-tuple confidence marks, 

expandable tooltips, and Help Me Test.  

The control group users had two choices of marks to place in a cell’s decision 

box: a checkmark or an x-mark. To place a checkmark, a user had to left-click and, to 

place an x-mark, right-click. In the high-support environment, a user had four choices 

of marks: a high-confidence checkmark, a low-confidence checkmark, a high-

confidence x-mark, or a low-confidence x-mark. The only difference between a high- 

and a low-confidence mark is the transparency of the colored feedback (high-

confidence feedback has a much darker shade than low-confidence). In this study, we 
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grouped low- and high-confidence marks together, since high-confidence marks were 

not available for one third of the data.  

The expandable tooltips are variations on the explanations that come up when 

a user hovers over any feature in the environment. In addition to the regular tooltips, 

users in the high-support environment also had the option of expanding the tooltip to 

read additional information about that feature. Also present in the environment was the 

―Help Me Test‖ (HMT) feature. Sometimes it can be difficult to find test values that 

will cover the untested logic in a collection of related formulas, and HMT tries to find 

inputs that will lead to coverage of untested logic in the spreadsheet, upon which users 

can then make testing decisions. While the users had these features available, we did 

not use either tooltip or HMT data in this study. Tooltip data was ignored because we 

do not trust those data: tooltips pop up all the time and it is impossible to differentiate 

between the tooltips that participants wanted to bring up and those that came up just 

because of where they left their mouse. We also ignored HMT data because only half 

of the overall dataset had that feature available to them. 

Results. Males in the low-cost environment tinkered significantly more than 

everyone else. That environment made it easier to tinker by requiring only one click to 

place a mark in the decision box. Tinkering behavior, in general, was positive, except 

for the low-cost males. The low-cost males did more mindless tinkering, since they did 

not take the time to pause and think about the feedback. 

6.2.3. Summer 2006 Gender Strategies 

The Summer 2006 Gender Strategies study (Beckwith, Grigoreanu, et al. 2007) 

is a study in progress, though all of the data has been collected for it. It provided 61 

participants: 37 females and 24 males. 
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Goals. The goals of this study were to quantitatively and qualitatively go after 

the differences in strategies that males and females employ while problem solving 

(debugging spreadsheets, in particular).  

Experimental Setup. The main difference in the set up between this study and 

the Treatment group from the Summer 2005 Gender Tinkering study is that, in this 

study, the cells were laid out in a grid-like pattern to give them an Excel-like 

appearance, since participants were familiar with Excel. Another difference was that 

cells were rearranged to remove confounds in cell orders. We looked for several 

orders in which users traversed the spreadsheet: dataflow, western reading order, 

column order, description order, and example order. Dataflow order could not overlap 

with western reading order, for example, because we then would not know exactly 

which of the two they were following. 

As in the Summer 2005 study treatment group, users had the choice of placing 

either low-confidence or high-confidence marks. They also had the opportunity of 

using Help Me Test, if they wanted. Arrows, border colors, and cell interior coloring 

were as in previous studies. Tooltips were available to explain all of the features. 

Unlike in Summer 2005 treatment group, they were no longer expandable, but only 

provided the shortened explanations provided to the Summer 2005 control group. 

Another change major change made in the setup of this study was to the 

study’s tutorial. During each session with the participants, we give them a tutorial that 

typically lasts about 25 minutes. This tutorial gives participants a chance to learn 

about the features and to explore them before having to use them for an actual task. 

Usually, we told participants both what the tools are and also how to use them. In this 

study, however, we did not want to bias participants’ behavior, since we were looking 
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for the strategies that males and females employ to problem solve. This, this time 

around, the tutorial was simply a ―tour of features.‖ 

Results. There were significant gender differences in the strategies that 

successful males and successful females used to debug spreadsheets. While 

spreadsheet debugging tools best support users that approach the problem from a 

depth-first dataflow perspective, females rarely used depth-first dataflow strategies. 

Both genders used testing as a strategy, but mainly females used code inspection, 

either by itself or in conjunction with testing. This study also revealed strategies used 

by the participants that are virtually unsupported in spreadsheet environments. 
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7. (DATA UNDERSTANDING AND PREPARATION)  

DATA COLLECTION, INTEGRATION AND STRUCTURING 

 

Figure 10: These are the six steps of the CRISP-DM data mining process model and 

the subparts and their outputs. Chapter 7 is about understanding and preparing the 

data. 
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The data used in this study came from the three studies mentioned in Chapter 

6. This chapter is about the low-level similarities and differences between those three 

sets. This knowledge helped with accurately integrating them, making decisions about 

how to best apply the mining algorithms, and interpreting the resulting models. 

Each study provided four types of data: (1) log files of the actions that 

participants took while working with the software, (2) a set of questionnaire data plus 

various calculations resulting from them, (3) spreadsheet characteristics, and (4) 

study-specific decisions about what events got logged. The first dataset is addressed in 

Section 1, the second in Section 2, and the third and fourth are addressed in Section 3 

of this chapter. For the complete tables that resulted from the collection-integration-

structuring process, as well as descriptions and examples for each of the variables, see 

Appendix A. 

Some of the data available from the previous studies were calculations derived 

from the raw data (such as totals of bugs fixed and results from scripts counting the 

amount of tinkering or how much a certain cell order was followed). We collected and 

integrated the raw data only, and redid some of the calculations that we needed (like 

bugs fixed) later in the process.  

The data preparation consisted of three steps: (1) collecting them, (2) 

combining/integrating data from the three studies, and (3) standardizing them. The 

data collection step resulted in 14 tables: see Figure 11. The combination step 

consisted of reducing the 14 tables to four (one for each type of data). The 

standardization step involved making sure that the values in any field for one study 

were comparable to the values in the same field for a different study. 
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Figure 11: All of the data from the different studies, in a format that Access likes on 

the table scale. These were later combined into only four tables. 

7.1. Log Files Data 

7.1.1. Collection 

Each subject included in this study had two log files in the original studies’ 

directories: one for the Gradebook task and one for the Payroll task. The Winter2004 

and the Summer2005 studies had a Control and a Treatment group. There were times 

when log files were available for subjects who were not listed in the questionnaire and 

background data tables. Those subjects’ log files therefore had to be dropped from the 

dataset. 

7.1.2. Combination 

The log file combination consisted of seeing what differences there were in the 

structure of the log files between the three studies. We then created an overall 

structure that would fit all three studies.  Examples of differences among the files 

included: the addition of low and high confidence checkmarks and x-marks in the 

Summer 2005 and Summer 2006 studies, the addition of keyboard shortcuts in the 
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Summer 2005 study, and adding an ―undo‖ field to the ―Checkbox Clicked‖ event that 

was changed to ―T‖ for the Summer2006 study. 

7.1.3. Standardization 

Our log files are semi-structured since different fields mean different things, 

depending on the user or system event. Data mining algorithms need structured data to 

come up with sensible models (i.e. each column heading is the same for all of the rows 

in the log files). At least two solutions exist when going from a semi-structured to a 

structured dataset: (1) to throw away most of the data, keeping only structured bits for 

analysis, or (2) spend time structuring the data to take advantage of having more data 

available to mine.  

In Study 1, we stuck with the first choice, keeping only the event name for 

analysis (as well as a few extra details from one of the fields, which we concatenated 

to the event name). For example, we have an ―Edit‖ event. When a user edits a cell, 

they can either be editing a formula (which got changed to ―Edit Formula‖) or simply 

editing a value (which got changed to ―Edit Value‖). Similarly, ―Checkbox Clicked‖ 

was changed to either ―Checkmark‖ or ―X-Mark‖. The rest of the log file information 

was ignored. 

In this study, we chose to take the second approach, by structuring the log files 

in such a way that the fields were the same across all events and across the three 

studies. For the purposes of data mining, we also had to add some additional 

information that was not previously in the log files which included the log file that the 

data came from, the subject identification number, the task that the user was on, a 

―Seconds‖ field, and the line number in the log file. 

Some other fields that we added to the records were the status of system 

events. Our log files record two types of events: System Events and User Events. One 
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example of a system event is displaying how tested the total spreadsheet is. The 

system events are most interesting in terms of their status when a user event is 

performed. We therefore moved the system events from their own records into fields 

for the user events. We added a field for each user event that says how tested the 

spreadsheet was when they performed any one event (for example, placing a 

checkmark). Similarly, we added fields for how the cell’s testedness, the cell’s fault-

likelihood, whether the formula is open for that cell, and what time the formula was 

opened at. 

This process resulted in a log file table that contained the same information as 

the original log files, but was now structured. For the analysis of this data, we linked it 

to static data about the users (questionnaire answers and performance data per subject) 

and task-specific data (event data and spreadsheet data), both of which we cover in the 

next two sections.  

7.2. Questionnaire and Performance Data 

7.2.1. Collection 

The per-subject questionnaire and performance data came from multiple files. 

The questionnaire data included: actual data from the questionnaires (e.g. individual 

SE scores), calculations based on those answers (e.g. total pre SE), data coming from 

other files (e.g. bugs fixed), calculations made based on data from other files (e.g. total 

bugs fixed), and scores resulting from scripts being run (e.g. western reading order 

score). In our study directories, these data are in three types of Excel files: 

Questionnaire files, BugsFixedFound files, and AllData files. 

7.2.2. Combination 

For each of the types of data, we did two types of combinations: one within 

each study and one between studies. This questionnaire and performance data were the 
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most complex to combine because, even within one study, they came from different 

files.  

In combining the data from the three separate studies, the first decision was 

how to deal with data that was not available for all studies. For example, one study 

had a questionnaire question specific to that study that the others did not have or some 

studies recorded all of the individual self-efficacy scores, while others only recorded 

the total. In data mining, the more data is available, the better. Combining the columns 

this way made us realize that we could get some of the missing data from other files 

saved in the original studies’ directories. 

Unfortunately, the studies had very little data recorded in common. Of my 

gigantic table of 291 columns, only a mere five fields contained data for all three 

studies! The big combined set included everything from answers to the questionnaires, 

to script outputs about tinkering, number of bugs fixed, counts of dumb vs. smart 

mistakes, comprehension scoring, and feature usage statistics. The ones that all three 

studies had in common were: Participant ID, Study, Gender, GPA, and Total Pre Self-

Efficacy.  

7.2.3. Standardization 

There was little in common among the three studies’ ―All Data‖ spreadsheet 

files (files that are usually created from the raw data during the analysis of the data, 

which include a diverse set of relevant data). Some of the information that was 

missing from some studies’ All Data file was lying around in other files in the 

directory. We looked up both data that we could not do without and data that were 

low-hanging fruit. This brought the total number of common fields up to 46. In order 

to make sure that the values within a column were comparable for all three studies, we 

standardized success measure scores, graded the spreadsheet experience and 
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programming experience of the users, and made sure that the format of the entries was 

the same throughout for all columns. 

7.3. Forms/3 Details: Cell Data and Events 

7.3.1. Collection 

The cell data and the events data are particular to each study’s setup. These 

data are important for eliminating confounds so that they might give an even deeper 

understanding of what participants are doing. The data collected included information 

about which cells contained bugs in the beginning of the task for cell data, where cells 

were located, which were formulas and which were values, and all of the possible 

events that participants could have used. 

7.3.2. Combination 

We created a table with all of the events that occurred in any one of the three 

studies. The goal of this events table was to list each possible event as a system, user, 

or HMT event. The Summer 2005 ―All Data‖ spreadsheet file contained all of the 

events that were allowed in the other studies and more. The combined table was 

therefore the same as Summer 2005’s. We used these data to write scripts that 

reorganized the log files data into a more structured dataset. We first moved system 

events like spreadsheet testedness, cell testedness, and cell fault-likelihood from log 

file rows into columns. Though system event analysis would be interesting to look 

after in future studies, we did not pursue this beyond the data preparation phase in this 

study. In this study, we analyzed only the lines of the log files that were user events 

(taking out system events and events like ―Edit Formula‖ that were generated by Help 

Me Test). 

The cell data table contained information about the layout and formula content 

of the cells, as well as data about what order those cells were in on the handouts that 
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we gave out (spreadsheet description and sample values). Both the layout of the 

spreadsheet and the order in which cells were listed on the various handouts differed 

among the studies. These data are also now preprocessed and available for future 

studies. In this study’s analyses, the main cell data information that we used included 

whether a cell was a value or a formula, what the cell’s name was, and what its ID 

number was. 

7.3.3. Standardization 

No standardization was needed for either the event or the cell data.
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8. (DATA UNDERSTANDING AND PREPARATION, AND 

MODELING) BUILDING THE COMPETING MODELS 

 

Figure 12: These are the six steps of the CRISP-DM data mining process model and 

the subparts and their outputs. This chapter is about exploring and preparing the data 

and then using them to create competing data mining models. 
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To reiterate our goal in this Gender HCI study: 

Our business objective was to find trustworthy relationships 

between static (gender, GPA, self-efficacy, etc.), behavioral 

(event counts), study-specific (cell characteristics, number of 

bugs per task, user events permitted, etc.), and success 

(percentage of bugs fixed) Gender HCI data that, if taken into 

consideration, will ultimately make spreadsheet software more 

gender-neutral. 

Research questions related to our objective were: 

 What combinations of background, study specifics, and action 

characteristics lead to female success at fixing bugs? 

 What combinations of background, study specifics, and action 

characteristics lead to male success at fixing bugs? 

 Do unsuccessful females exhibit any common characteristics? 

 Do unsuccessful males exhibit any common characteristics? 

In order for the algorithms to be able to answer our research questions, they 

needed to (1) be able to be used as predictive algorithms and (2) give some kind of 

insight about their rationale in predicting success. The goal of our final model is to see 

what combinations of questionnaire data and event counts could predict the number of 

bugs fixed. 

8.1. OLAP Cubes 

We used OLAP cubes to organize the data. Like data mining, OLAP cubes are 

a business intelligence approach for data reporting and forecasting. Thus, in the 
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process of organizing the data this way, we also explored them. The descriptive 

statistics resulting from that phase can be found in Appendix B.  

An Online Analytical Processing (OLAP) cube is similar to a two-dimensional 

spreadsheet that has been extended to three or more dimensions. OLAP cubes have 

dimensions and measures. Each dimension of an OLAP cube is a category by which 

all of the data can be viewed (similar to a heading that might categorize a set of 

column or row headings). Each dimension is also broken up into its members. For 

example, ―Gender‖ is one dimension of our cube and ―Male‖ and ―Female‖ are that 

dimension’s members. Other dimensions in the Gender HCI data included Study, 

Subject, Workbook (the task, either Gradebook or Payroll), Line (line number in the 

log files), Time (time that the event was performed at), CellName, CellID, Event, and 

EventType. A dimension is the descriptive attribute of a measure. Thus, a measure 

(usually numeric) is a set of values, based on an attribute. They are the values that are 

being aggregated and analyzed. An example of a measure is ―Event Counts‖. Events 

can be counted by line, by gender, by workbook, etc. See Figure 13 for an example of 

a three-dimensional OLAP cube. 
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Figure 13: This is a sample three-dimensional OLAP cube for Gender HCI data. The 

three dimensions are Gender (members: Male and Female), Event Type (members are 

events that the participants can perform: Arrow Erased, Arrows Off, etc.), and 

Workbook (members are the two spreadsheet tasks: Gradebook and Payroll). The 

measures are event counts, which populate the cells. For example, in this OLAP cube, 

males had an average of four Arrow Erased events in the Gradebook workbook.  

 

8.2. Modeling Technique 

Since different modeling algorithms are better at predicting some measures 

than others, we ran all of the relevant algorithms on the input data described in the 

previous chapter (all non-time series algorithms that worked on discretized data). 

Those six algorithms were: Association Rules, Clustering, Neural Networks, Decision 

Trees, Naïve Bayes Networks, and Logistic Regression. See Appendix D for the 

parameter settings we used for each model. 

The way of viewing slices of the OLAP cube is by creating pivot table views - 

these are a variety of summary tables. My source data for the mining models was a 

Gender 

Male            Female 

Arrow Erased 

Arrows Off 
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Hide Formula 
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combination of the resulting pivot table view of the OLAP cube that showed event 

count per cell type (value or formula) per task (Gradebook or Payroll) per participant, 

data from the questionnaires, and success data (see Figure 14). 
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Figure 14: Fields from which competing models for predicting success at fixing bugs 

were built. The variable names should be pretty self-descriptive. They include static 

data, counts of events in Gradebook (GB) and Payroll (PR) tasks, and success data. 
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In order for all of the algorithms to be applicable, we discretized the 

continuous variables (such as GPA) into the maximum number of groupings possible. 

For the percentage of bugs fixed, after multiple unsuccessful attempts at creating 

models that accurately predicted participant success at a low level of granularity (10, 

5, and 3 equally-sized buckets), we had to settle for the categorizations of ―successful‖ 

and ―unsuccessful‖, split at the median (two buckets of equal sizes). With more 

buckets, too few cases fell into the different success groupings, which did not give the 

model enough examples to dependably train the models. 

8.3. Test Design 

In order to test the validity of my models, we separated all of the data we had 

into two groups: a training set (randomly selected 70% of entries) and a testing set 

(randomly selected 30% of entries). We then verified the accuracy of the models using 

lift charts and classification matrices to see how well each model predicted bugs fixed.  

When deciding on the percentage of entries to allocate to each set, we had to 

consider the tradeoff between building a better defined model, based on a bigger 

training set, and getting a better evaluation of its performance with a bigger testing set. 

Because 191 participants is still a relatively small group for data mining purposes, we 

had to take the safe route of building the models on a bigger set of data and hoping 

that they would be able to accurately predict the smaller sets of predictable values. 

Training and testing set size range anywhere from 50/50 (not too common) to 90/10 

(fairly common). Since the dataset is small, we could not have a testing set with just 

20 total participants, yet we also did not want to build the models on only 100 of our 

participants. This 70/30 split was therefore a reasonable one, falling halfway between 

the two extremes. 
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In terms of the predictive power of our models, we were aiming for the highest 

fit possible. Since participants could either be successful or unsuccessful, random 

guessing would lead to a 50% fit. With a 60% fit, the model is likely onto something. 

Especially with human data, even a 60% predictive power is good. It is common 

practice, however, to consider 70% as a good fit. We aimed for this percentage to 

reduce the possibility that the results were caused by random chance. 

8.4. Building the Models 

For each of the six applicable algorithms mentioned earlier, we set the key to 

be the ―Subject‖ (or participant ID). We set Percentage of Bugs Fixed to be 

―PredictOnly.‖ We ignored the percentage of bugs fixed in Payroll, bugs found in 

Payroll, bugs fixed in Gradebook, and bugs found in Gradebook, since those could not 

be used as input when predicting the overall bugs fixed and bugs found (they would 

have made the prediction trivial). 

In addition to those six models, we also created an additional three models 

using the clustering algorithm, based on some hypotheses that resulted from earlier 

data exploration (see Figure 15 for all nine of these models). It seemed that female 

success in the number of bugs fixed was highly dependent on static factors alone (data 

from the background and self-efficacy questionnaires). We also hypothesized that 

male success could be derived fairly reasonably from dynamic behavioral data alone. 

These hypotheses resulted from an early attempt at mining only the static data (see 

Appendix C). We therefore created one of each of those models: one with only static 

data (CABackground) and one with mostly behavioral data (CA2). In addition to 

those, we also created a model using only those variables that linear regression tests 

found to be related to bugs fixed in a statistically significant manner (see Appendix 

B); significant static ones for females and significant dynamic ones for males 
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(CAEvents). The reason why we decided to use the clustering algorithm for these 

additional three models is that this algorithm type gives a lot of information about how 

it came up with its patterns (unlike algorithms like neural networks and Bayesian 

networks) and it also often does a good job of predicting output variables. 

The ―Key‖, ―Input‖, and ―PredictOnly‖ variables used to build the different 

models can be seen in Figure 15. These nine models are evaluated in Chapter 9 to see 

which best predicts participant success at fixing bugs.  
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9. (MODELING AND EVALUATION) RESULTS AND 

VALIDATION: THE BEST MODEL FOR PREDICTING BUGS 

FIXED 

 

Figure 16: These are the six steps of the CRISP-DM data mining process model and 

the subparts and their outputs. This chapter evaluates the performance of the 

competing models and further creating an even better model. 

 

One model often outperforms the other models in predicting a success variable. 

Occasionally, different models perform better under differing circumstances (such as 
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power in predicting female success vs. power in predicting male success). This chapter 

evaluates the models to see which best predicts success at fixing bugs and under what 

circumstances this happens. 

As mentioned in the previous chapter, the median percentage of bugs fixed for 

the overall population was 60%. Any participants who fixed 60% or more of the bugs 

were considered ―successful‖ at bug fixing. Otherwise, they were ―unsuccessful‖. 

Thus, wherever ―success‖ or ―success at fixing bugs‖ is mentioned in this chapter, it 

means the binary value of ―successful‖ or ―unsuccessful‖ (as opposed to the actual 

percentage of bugs fixed). 

9.1. The Best Models for Predicting Success at Fixing Bugs 

Table 5 shows how well each of the models fared for the different population 

groups (listed in the columns). The NB Naïve Bayes model, the CAEvents cluster 

analysis model (created with the statistically significant attributes – static ones that 

were significant for the females and event count ones that were significant for the 

males), and the LoR logistic regression model performed best in predicting success by 

the overall population. All three of these correctly predicted whether the participant 

was successful or not at fixing bugs for 73% of the population, which is a very good 

prediction rate. The best models for predicting success by males were the NN Neural 

Network model and the CAEvents cluster analysis model. For females, the best model 

was the DT Decision Tree model. 



69 

 

 

 

Table 5: Percentage of the target population (column headings) for which each of the 

mining models (row headings) correctly predicted success at fixing bugs.  

 Overall Males Females 

Association Rules Model 46% 36% 53% 

Clustering Model (CA) 50% 64% 40% 

Neural Networks Model 69% 82% 60% 

Clustering Model (CA2) 46% 54% 33% 

Decision Tree Model 57% 54% 73% 

Naïve Bayes Model 73% 64% 60% 

Clustering (CABackground) 50% 64% 40% 

Clustering (CAEvents) 73% 82% 66% 

Logistic Regression Model 73% 73% 60% 

 

Thus, there are five models (all built on both male and female data) performing 

at the top for some population: CAEvents, DT, NB, LoR, and NN (see Table 5).  

While Naïve Bayes, Logistic Regression, and Neural Network models performed very 

well in predicting success at fixing bugs, it is hard to understand the logic that they 

used to arrive at their classification rules. Cluster Analysis and Decision Trees, on the 

other hand, have very clear ways of showing why they classified a particular 

participant as either successful or unsuccessful, based on the number of bugs fixed. 

Since my goal for this thesis is not only to predict success at fixing bugs, but also to 

get a better understanding of the factors that lead to it for males and females, these two 

models warrant further scrutiny, which we do in the reminder of this chapter. 
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9.2. Predicting Bugs Fixed By Females 

 As was shown in Table 5, the Decision Tree model (DT) did the best job of 

predicting female success at fixing bugs (73%), although it did only slightly better 

than random for male success (54%). Thus, if we want to know what leads to female 

success and the lack thereof, the decision tree model is interesting to look at. 

 Decision trees pick the attribute that best explains the bugs fixing success for 

the overall population, which in this case, is ―PR Edit Formula‖ (see Figure 17). This 

model was very simple, with only one level. If participants did between 9 and 13 

formula edits in Payroll (inclusive), they were very likely to be successful at fixing 

more bugs than the median (see Figure 18). 

 Some might think that this model has no explanatory power. It is a simple 

model and the story it tells is easy to believe: if participants actually worked on fixing 

the bugs without getting lost, then they were successful. We would not want to 

discount this model as not being useful, however. This model raises all kinds of 

interesting questions that will further help us design better tools. Why is this simple 

model about edit formulas the model that best predicted bugs fixed for females? Could 

software somehow notice unproductive behavior with formula edits in problem-

solving environments? Why did this model not work for males? Is it because males’ 

ranges are higher or lower? Or are other factors more important for males? 
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Figure 17: The number of formula edits performed in Payroll positively predicts the 

success at fixing bugs. A ―reasonable‖ number of formula edits (9-13) in Payroll 

positively predicted a success at fixing bugs. Though the model was created using all 

of the participants, it only performs well in predicting female success at fixing bugs. 

 

 

Figure 18: The darker sections of the bars depict the number of participants who fixed 

at least 60% of the bugs (―successful‖) and the lighter sections of the bars are the 

number of participants who fixed fewer than 60% of the bugs (―unsuccessful‖) per tree 

node. This model was run on the training data. It says that 34 out of the 41 participants 

who edited between 9 and 13 formulas (inclusive) were successful at fixing bugs. 

Also, 58 out of the 98 participants who did either fewer than 9 edits or more than 13 

edits were unsuccessful at fixing bugs. 

 

This information alone correctly predicted 73% of the female population’s 

success at fixing bugs. Before data mining, we had not thought of seeing if there was 

anything other than a linear relationship between the number of formulas edited and 

the success at fixing bugs. Data mining helped us find this pattern, which makes sense. 

When a participant is faced with a complex task, such as debugging the Payroll 
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spreadsheet, editing either too few or too many formulas can be a sign that the user is 

lost. When a user is not editing many, they may be having a hard time deciding on 

what formulas to edit or how to edit them. While the minimum number of edits for 

fixing all of the bugs in Payroll was four, participants are not often able to fix all of the 

formulas correctly their first try. When a user is instead making many formula edits, it 

may be a sign that they may be having a hard time with the syntax or that they are 

making many changes without pausing enough to think beforehand. 

Result 1: Performing either too many or too few edit formulas in complex tasks 

negatively predicted success at fixing bugs for females. It, not feature usage or 

background, was the only factor that differentiated the unsuccessful participants from 

the successful ones. This is shown by model ―DT‖, which correctly predicts female 

success at fixing bugs 73% of the time. 

9.3. Predicting Bugs Fixed By Males 

 The CAEvents cluster analysis model, which had an overall prediction rate of 

73%, predicted male success at fixing bugs even more correctly (at a rate of 82%). 

Clustering algorithms divide the population into several groups that have similar 

attributes. Figure 19 shows what CAEvents looks like. Because of the CAEvents 

model’s transparency and because it performed so well, this is a good model to look 

into in order to see which attributes led to male success and failure at fixing bugs.  

As mentioned in the previous chapter, we built the CAEvents model as a 

competing model to the model that uses all of the inputs (model CA). Since unrelated 

input variables weaken the models, we decided to use only variables that we thought 

were highly related to success at fixing bugs. The criterion for ―highly related‖ was 

whether regression analysis resulted in an input variable predicting bugs fixed in a 

significant manner. From an earlier modeling exploration (see Appendix C), we also 
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hypothesized that static data (like background factors and self-efficacy scores) would 

matter for females, while dynamic data (such as event counts) would matter for males. 

We used the same reasoning for picking the ―important‖ variables to include in this 

model, only ignoring those statistically significant input values that were highly 

related to other input values. Table 5 shows that this model greatly outperformed 

model CA, for the overall population, for males only, and for females only. Figure 20 

gives details about the values of each attribute for each of these four clusters. 

 

 

Figure 19. The darker the cluster, the more highly populated it is. The darker the line 

between the clusters, the more highly related those two clusters are.  
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Figure 20: This is the distribution of values for each of the variables (in the rows) per 

cluster in the CAEvents model (in the columns).  
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 To determine whether an attribute is of interest in a particular cluster, we 

compared the cluster distribution of the values for that variable to the overall 

distribution. Since this model worked best for the males, we analyze it only in terms of 

how it predicts male success at fixing bugs. Cluster 1 had a few more males than 

females (59% males), Cluster 2 was mostly female (73% females), Cluster 3 had more 

males than females (55% male), and Cluster 4 was almost completely male (98% 

male).  

 We will use the concept of ―advanced features‖ in interpreting these clusters. 

Placing and taking away X-Marks and performing Arrow Erased events are 

―advanced‖ features in our studies. As mentioned in Chapter 6, X-Marks are available 

for users to place in cells for which they believe the value is wrong. While we told the 

participants that this feature existed, we did not tell them anything about the meaning 

of the feedback they received when performing such an action or how to act on that 

feedback.  

After bringing up all of the arrows for a cell, a participant can pick arrows off 

one by one by performing an Arrow Erased event. This allows them to hide 

relationships between cells that they find unimportant. This feature is not conducive to 

playful tinkering, since it is physically a little tricky to pick off the arrow and, once the 

arrow is gone, it cannot be easily brought back. Arrow Erased also does not provide 

additional feedback or color changes, as the other features do. This feature is 

especially useful when looking at a cell with its formula open. Whether the formula is 

open or not, using it commits the participant to a choice of which relationships to 

pursue (an advanced concept that was not addressed in our tutorials). So while taking 

off all of the arrows for a cell (which is a different action from Arrow Erased) is easy 

to do, Arrow Erased can be considered an advanced feature in the environment. 
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Cluster 1 had 59% males. They were fairly average in terms of GPA, Year in 

School, Pre Self-Efficacy, and Edit Value. They did, however, have a high usage of 

the advanced features. While this group learned a lot about the features, as shown by 

their high Comprehension scores, they had the most unsuccessful participants out of 

the four clusters. One possible reason for this was that their goal may have been to 

learn about the features, rather than to use them to fix bugs in this new environment. 

Learning how to best use new features does mean that they will have less time to fix 

bugs. With tasks only about half an hour, this behavior could have a negative impact 

on their performance. However, this group of people might have turned out to be 

successful debuggers in the real world, where more time would be allowed for fixing 

bugs. 

Cluster 2 is 73% female. These females had the lowest self-efficacy out of all 

of the groups. There is only a small group of males that this cluster used to predict the 

success of. The cluster is also not great at predicting success, with about half the group 

being successful and the other half unsuccessful. What this cluster does say is that 

there was a low self-efficacy group of people (mostly female) who were average in 

terms of all other static factors and in terms of Edit Values, but that stayed away from 

advanced features. (Editing values is a necessary part of testing.) While this group had 

slightly fewer successful participants than clusters 3 and 4, the difference was slight, 

which means that lack of self-efficacy in combination with low advanced feature 

usage did not necessarily lead to fewer bugs fixed, provided that they were still 

testing. 

Cluster 3 was the most successful at fixing bugs out of the three groups. The 

population is made up mostly of juniors and seniors of both genders with high self-

efficacy. While they used the advanced features only slightly, this group had high 
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feature comprehension scores. Another distinctive characteristic of this group is that 

they had very high Edit Value counts. 

Finally, there is Cluster 4. This cluster, like Cluster 2, jumps out in terms of 

gender differences. It had 98% male seniors with low GPA and average self-efficacy. 

100% had less than a 2.73 GPA, yet most were successful at fixing bugs. Like Cluster 

1, this group had high advanced feature usage. What differentiates them from Cluster 

1 (which was unsuccessful at fixing bugs) is that they also had a high number of Edit 

Values (testing). 

Result 2: For males, an emphasis on testing was important, with both clusters that 

were best at fixing bugs doing the most value edits. High advanced feature usage led 

to fewer bugs fixed when value edits were few. Unlike for females, some males with 

very low GPA were successful at fixing bugs. 

9.4. Improving Prediction of Bugs Fixed By Males and Females 

The CAEvents model was also the one that performed best for predicting the 

success at fixing bugs for all participants. However, it was much better at predicting 

males’ success (82%) than females’ (66%) success. We therefore tried to improve the 

model’s efficiency by making a change: switching the unsupervised CAEvents model 

to a supervised model. We named this model CAPredictBugsFixed (see Figure 21 and 

Figure 22). In order to switch from unsupervised to supervised, we changed the 

Percentage of Bugs Fixed variable (which had values of ―>=60%‖ and ―<60%‖) from 

―PredictOnly‖ to ―Predict‖. This means that the bugs fixed variable was now also 

going to be used in training the model, not just for evaluating the model’s predictive 

power, as before. 

 This modification improved the power in predicting success at fixing bugs 

from 73% to 77%. Note that prediction of overall male success was the same with 
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both models (82%). What increased was the correct prediction of females’ success at 

fixing bugs. Overall, it rose from 66% to 73% (see Table 6). 

 Overall Males Females 

CAEvents 73% 82% 66% 

CAPredictBugsFixed 77% 82% 73% 

Table 6: This shows the percentage of each population grouping (column headings) by 

model (row headings). CAEvents was the unsupervised model and 

CAPredictBugsFixed was the supervised model. 

 

Figure 21. This is the CAPredictBugsFixed model. Darker clusters have more 

members and the link between Clusters 2 and 3 was the strongest. 
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Figure 22. These are the distribution of values for each of the variables (in the rows) 

per cluster in the CAPredictBugsFixed model (in the columns). 
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 Once again, the clustering model has four groups. This time, two were mostly 

female (Clusters 1 and 4) and two were mostly male (Clusters 2 and 3). This tells us 

that gender is an important factor in finding patterns that led to success at fixing bugs. 

Result 3: The combination of factors that led to success at fixing bugs for males is 

different from the combination of factors that led to female success at fixing bugs.   

 Cluster 1 was 61% female. They were average in almost every way, except for 

one main difference: they used no X-Marks in Payroll and very few Arrow Erased in 

Gradebook (i.e. low usage of advanced features). Yet, the cluster was above average in 

terms of success at fixing bugs. 

 Cluster 4 was the other female cluster (100% female), which was also above 

average in terms of success at fixing bugs. These were graduate students with high 

GPA and slightly higher self-efficacy than average. Another interesting fact about 

these females is that most were in sessions that started with the easier Gradebook task. 

They also used few advanced features, though not as few as Cluster 1. They had above 

average value edits in Payroll. 

Result 4: Both female clusters had very low advanced feature usage and above 

average success. The cluster that used a few more advanced features did not perform 

any better than the group who did not. This suggests that the available advanced 

features are fairly inconsequential in terms of helping females with their debugging. 

Other factors matter more. 

 Cluster 2 was a very high advanced feature usage cluster and was mostly male 

(81%). This group also performed a lot of edit values. They were all over the place in 

terms of GPA, but had very high self-efficacy and they had more graduate students 
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than Cluster 1 and Cluster 3. This group had the greatest percentage of successful 

participants at fixing bugs.  

 Cluster 3 was another male group (66% male). This group did many fewer edit 

values than any other group. They also used fewer X-Marks than the other male group 

(though more than the female clusters), but more Arrow Erased events than any other 

cluster. Most of these participants were in sessions that started with the Payroll task. 

They had low self-efficacy going into the first task. All were unsuccessful at fixing 

bugs. 

Result 5: For the two male groups, background factors like GPA did not seem to 

affect either the advanced features they used or their success at fixing bugs. What 

really seemed to help them was doing a lot of edit values (testing) and X-Marks 

(advanced testing).  

Note that Cluster 3 was 1/3 female and 2/3 males. What characterized this 

cluster was a combination of low self-efficacy, starting with the Payroll task, and 

doing few value edits (despite using advanced testing features) led to all of these 

participants being unsuccessful. Because 1/3 of the group was female, we do not have 

evidence that SE impacted the males’ success; it could be that the low amount of 

testing (value edits) was the determining factor for the males’ lack of success. 

9.5. Discussion of the Results 

What we learned about factors leading to female success at fixing bugs: 

 Performing either too many or too few edit formulas in complex tasks 

positively predicted that few bugs would be fixed. 

 Different factors led to male success at fixing bugs than female success 

at fixing bugs (shown both by the clusters being characterized by a 
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specific gender and by different models performing better for the 

different genders). 

 Females used fewer advanced features than males in general. Also, 

these advanced features did not seem to help the female cluster who 

used it more, since both clusters were above average in terms of bugs 

fixed. 

What we learned about factors leading to male success at fixing bugs: 

 An emphasis on testing through value edits was an important factor that 

led to male success at fixing bugs. 

 Unlike for females, some very low-GPA (<2.73) males were successful 

at fixing bugs. (All of the participants with GPA that low were males. 

GPA predicted bugs fixed for females, however.) 

 X-Marks were positively related to success at bugs fixing, while Arrow 

Erased was negatively related to success at bug fixing.  

Data mining was useful, since we were able to find nonlinear relationships that 

we had not thought of checking before and we were also able to find complex 

relationships between several variables. All three final models also meet both the 

business and the data mining objectives. Getting a 73%, 82%, and 77% fit is quite 

good for human data. 
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10. CONCLUSION 

This thesis has contributed several new results to the emerging area of Gender 

HCI. In this chapter, we situate our new results in the context of other findings in this 

area.  

First we consider findings relating background factors to debugging success. 

So far, we have found the most important background factor to be self-efficacy. 

Findings related to self-efficacy include: 

 Female end users had significantly lower self-efficacy (a task-specific form 

of confidence) than males (Beckwith, Burnett and Wiedenbeck, et al. 

2005). (Other researchers have reported similar results.) 

 For females, low self-efficacy was predictive of how effectively they 

worked with problem-solving features available in the software, unlike 

males (Beckwith, Burnett and Wiedenbeck, et al. 2005). This finding 

generalized to the MS Excel environment (Beckwith, Inman, et al. 2007). 

 There was no significant difference in the success of the two genders or in 

learning how the features worked, implying that females’ low self-efficacy 

about their usage of new features was not an accurate assessment of their 

problem-solving potential, but rather became a self-fulfilling prophecy 

(Beckwith, Burnett and Wiedenbeck, et al. 2005). This finding also 

generalized to the MS Excel environment (Beckwith, Inman, et al. 2007). 
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 New evidence-based hypothesis: Females with lower self-efficacy are 

likely to struggle longer to use a strategy that is not working well before 

moving on to another strategy (Study 1).  

Other findings relate to background factors other than self-efficacy: 

 Unlike for females, some males with very low GPA were successful at 

fixing bugs (Study 2). 

 For the male groups, background factors like GPA did not seem to affect 

either the advanced features they used or their success at fixing bugs. What 

really seemed to help them was doing a lot of edit values (testing) and X-

Marks (advanced testing) (Study 2). 

Factors that relate to the features available in the environment and how those 

features are used by participants were also found to relate to participant success. One 

set of these results focuses on whether the particular feature used was of type familiar 

(formula edits) or type unfamiliar: 

 Females significantly more often agreed with the statement, ―I was afraid I 

would take too long to learn the [untaught feature]‖ (Beckwith, Burnett and 

Wiedenbeck, et al. 2005). 

 Female end users were significantly slower to try out unfamiliar features, 

instead used the Type Familiar feature of formula edits (Beckwith, Burnett 

and Wiedenbeck, et al. 2005). This finding generalized to the MS Excel 

environment in an analogous form (Beckwith, Inman, et al. 2007). 

 Females were significantly less likely to initially approach new features 

(Beckwith, Burnett and Wiedenbeck, et al. 2005). 
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 Even if they tried it once, females were less likely to engage in regular use 

of new features (Beckwith, Burnett and Wiedenbeck, et al. 2005). 

 Performing either too many or too few edit formulas in complex tasks 

negatively predicted success at fixing bugs for females (Study 2). 

While participants came in with knowledge about editing formulas, they were 

taught several features in a tutorial and were also encouraged to explore using some 

untaught features. 

 New evidence-based hypothesis: Unsuccessful males overdo use of arrows 

– unlike successful males, successful females, and unsuccessful females 

(Study 1). 

 The female clusters had very low advanced feature usage. The cluster that 

used a few more advanced features did not perform any better than the 

group who did not. This suggests that the available advanced features are 

fairly inconsequential in terms of helping females with their debugging. 

Other factors matter more (Study 2). 

 Partial evidence: Providing ways to express uncertain or tentative 

judgments seems to equalize female and male usage of testing features 

(Beckwith, Gender HCI Issues in End-User Programming 2007). 

 Partial evidence: Providing female/male video explanations of strategy 

hints seems promising in guiding females’ strategies and encouraging more 

effective use of the environment (Subrahmaniyan, et al. 2007). 

While some participants stick to the features they know how to use, others 

playfully experiment with the new features throughout the task: 
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 Tinkering (playfully experimenting) with features was done by males more 

often than females when the environment was conducive to tinkering. 

(Beckwith, Kissinger, et al. 2006). 

 Males were comfortable with tinkering; in fact, some did it to excess 

(Beckwith, Kissinger, et al. 2006).  

 New evidence-based hypothesis: Unsuccessful males have a tendency to 

tinker excessively with the features rather than using the features to 

accomplish their task (Study 1).  

 For females, the amount of tinkering predicted success, but for males, 

excessive tinkering hurt them (Beckwith, Kissinger, et al. 2006). 

 Pauses after any action were predictive of better understanding for both 

genders (Beckwith, Kissinger, et al. 2006). 

 Females paused significantly more than the males did (Beckwith, 

Kissinger, et al. 2006). 

The use of testing also mattered, at least to males. The most direct measure of 

testing in our environment is value edits. 

 For males, an emphasis on testing was important, with clusters that were 

best at fixing bugs doing the most value edits (Study 2).  

 For males, value edits mattered more than advanced testing feature usage. 

In fact, high advanced feature usage led to fewer bugs fixed if value edits 

were few (Study 2). 

One last set of results is the overall picture that these findings paint: they have 

shown that different factors lead to male and female success at fixing bugs. A new 
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evidence-based hypothesis from Study 1 suggests that the debugging and testing 

strategies that help with males’ success are not the right ones for female success. Then 

Study 2 showed that the combination of factors that led to success at fixing bugs for 

males was indeed different from the combination of factors that led to female success 

at fixing bugs. Thus, these strategies’ data mining results add to the growing body of 

evidence that it is important to take gender differences into account when designing 

problem-solving software for end users.
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APPENDIX A. (DATA PREPARATION) DATA TABLES 

These are what the tables looked like for my data source. We created several 

data source views which we mined. Those views were created using combinations of 

subsets of data from the original tables in this Appendix. 

 

Events Table 

Field Name Description Notes 

EventID One number for each event. For faster access. 

Event The name of the event performed 

in a line of a log file. 

This is the primary key for this 

table. Examples of events: arrows 

on, cell-FL-changed, HMT, 

checkmark. 

Type The type of the event. Each type 

has characteristics particular to it. 

The three types: User, System, 

HMT. 

Table 7: Event fields, description, and notes about them. 
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Cell Data 

Field Name Description Notes 

CellName What the cell was named as. This is the primary key for this 

table. Examples of cell names: 

Course_Avg, Quiz2, 

DentalInsurancePremium, D3, 

G18. 

CellID This is a unique ID for each 

cell that gets created. Because 

the Summer2006 study 

required the cells to be moved 

around, each cell with a 

specific ID might have up to 

two different cell names. 

Examples of cell IDs: 

CELL32684231-3568, 

CELL32521762-4768. 

 

OriginalCellID Unfortunately, when cells got 

moved around for the 

Summer2006 data, three of 

them got recreated, which 

generated a new ID for them. 

In this field, the ID of those 

three cells is the ID that they 

would have had, had they only 

been moved, rather than 

recreated. 

The three cells which were 

recreated instead of being moved: 

CELL33617219-8238, 

CELL33617219-8241, and 

CELL33617219-8239. 

These three cells were new formula 

cells that appear only in 

Summer2006: CELL33617219-

9307, CELL33617219-8168, and 

CELL33617219-8236. 

Workbook The forms spreadsheet that the 

participant had to debug. 

This is either Gradebook or Payroll 

in all cases. 

TypeEdit When a user ―edits‖ a cell, it is 

sometimes useful to know 

whether the cell is a formula 

cell or simply a value.  

The two types of cells are value 

cells and formula cells. Value cells 

contain constants, while formula 

cells contain references to other 

cells. 
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WO The Western Reading Order of 

the cell in the spreadsheet. If 

we list the cells starting from 

the top left, moving right and 

then down a row, continue 

right, and so on, this is the 

place that the cell occupies in 

this list. 

For the Summer2005 and 

Winter2004 studies, the cells have 

values between 1 and 19 for 

Gradebook and 1 and 24 for 

Payroll. For Summer 2006, the 

values for Gradebook range from 1 

to 22 (because of the three new 

formula cells) and also 1 to 24 for 

Payroll. 

CO Column Order is a similar 

rating. If the list were now 

made starting from the top left, 

first going down, then up and 

right and down the next 

column, this is the location that 

the particular cell would fall in 

that list. 

One difference here is that two 

cells shared the same column in the 

Payroll spreadsheets used by 

Winter2004 and Summer2005. 

There are therefore two cells that 

placed 7
th

 in that line. So, the 

values go from 1 to 23 in Payroll 

for those two studies. 

ShortestDist This is the shortest distance 

between an input cell and the 

cell that the value is listed for. 

It is a measure of how many 

levels away the inputs are. 

The values for shortest distance 

range from 0 to 3: 0 meaning that 

this cell is an input cell, 1 meaning 

it references an input cell, etc. 

Buggy The Buggy field tells us 

whether or not this cell’s 

formula contained a bug at the 

beginning of the task. 

The possible entries for this field 

are: TRUE (the cell was buggy) 

and FALSE (the cell formula did 

not contain a bug). 

Row The row that the cell is in.  For Summer2005 and Winter2006, 

there were a total of four rows in 

Gradebook and six rows in Payroll. 

In the Summer2006 data, the 

values range from 1 to 15 (though 

value/formula cells were only in 

rows 3, 9, and 15) in Gradebook 

and 1 through 18 in Payroll 

(though value/formula cells were 
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only in rows 3, 8, 13, and 18). 

Column The column that the cell is in. There were 6 columns in 

Gradebook and 6 columns in 

Payroll for Winter2004 and 

Summer2005. The Medicare cell in 

Payroll was listed as in column 2.5, 

since it shared column 2 with 

another cell. For Summer2006, 

there were 13 in Gradebook and 8 

in Payroll. 

Input Middle 

Output 

Is it an input cell, middle, or 

output cell? 

Input cells are all of the value cells 

(are not dependent on any other 

cells). Middle cells are those cells 

that both reference another cell and 

are also referenced by at least one 

other cell. Output cells are those 

cells that are not referenced by any 

other cells. 

Sink1 Does this cell affect Sink1’s 

value? (The output cells are the 

sinks.)  

We do not know how to use this 

sink data. 

Sink2 Does this cell affect Sink2’s 

value? 

 

DescriptionO. The order in which cells are 

listed on the description 

handout. 

Summer2006 did not have a 

specific description order, though 

people following description order 

could still be identified 

qualitatively. 

ExampleO. The order in which cells are 

listed on the example handout. 

There is no such order for the 

Summer2006 study. 

Table 8: Cell data fields, descriptions of those fields, and notes about them. 
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Static Data 

Field Name Description Notes 

ID The participant’s ID 

number. 

This is the primary key: 

the ID number is unique 

to each participant. 

Study The study that the data 

was collected for. 

The data comes from 

three studies: 

Winter2004, 

Summer2005, and 

Summer1006. 

Gender The participant’s 

gender. 

M or F. 

Major The participant’s major. Popular majors were 

Business, Animal 

Science, and Forestry. 

YearInSchool The participant’s year in 

college or graduate 

school. 

Possible values: 

Freshman, Sophomore, 

Junior, Senior, Post 

Bac., Graduate. 

GPA Participant’s current 

cumulative grade point 

average. 

Range: 2 to 4. 

CSExpRating This is a rating of the 

amount of programming 

experience that the 

participant has. 

The raw data was a set 

of three numbers for the 

amount of years that the 

participant programmed 

for (in high school, 

college, or 

professionally). This 

number ranged from 0 

to 12. 
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We gave the participant 

a rating based on that 

number. The possible 

ratings were as follows: 

None (0), Some (>0 but 

<4), and Many (>=4). 

ProgLang The programming 

languages that some 

participants used in the 

past. 

This data is not 

available for 

Winter2004 entries. 

Examples: HTML, VB, 

C, C++. 

ProfEUProgOrProgExp Did the participant state 

that they had 

professional experience 

as an end-user 

programmer (HTML, 

MatLab, etc.) or actual 

programming 

experience (C++, Java, 

etc.)? 

Yes or No. 

SSExpRating This is a rating of the 

amount of spreadsheet 

experience that the 

participant has. 

The raw data was a set 

of four numbers for the 

amount of spreadsheets 

that the participant 

created (in high school, 

college, professionally, 

or for personal use). 

This number ranged 

from 0 to 450. 

We gave the participant 

a rating based on that 

number. The possible 

ratings were as follows: 

Few (<5), Some (>=5 

but <20), Several (>=20 

but <50), and Many 
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(>50). 

ProfSSExp? Did the participant state 

that they had 

professional experience 

in spreadsheet usage? 

Yes or No. 

English? Is English the 

participant’s first 

language? 

Yes or No. 

NrEnglishYears If English is not the 

participant’s first 

language, this is the 

number of years that 

they have spoken 

English for. 

These values range from 

1 to 25. 

TotalPreSE The participant’s total 

Self-Efficacy before the 

first task.  

The lowest total pre 

self-efficacy score was 

25 and the highest was 

50. 

TotalPostSE The participant’s total 

Self-Efficacy score after 

the second task. 

Winter2004 records do 

not include this data. 

The lowest total post 

self-efficacy score was 

23 and the highest 50 

again. 

E15(Curved_Midterm3)Found Did the participant find 

the curved midterm3 

bug? 

1 if Yes, 0 if No. 

E15(Curved_Midterm3)Fixed Did the participant fix 

the curved midterm3 

bug? 

1 if Yes, 0 if No. 

F15Found Did the participant find 1 if Yes, 0 if No. 
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the f15 bug? This bug was in one of 

the additional cells 

introduced during the 

Summer2006 study; it is 

in neither Summer2005 

nor Winter2004. 

F15Fixed Did the participant fix 

the f15 bug? 

1 if Yes, 0 if No. 

This bug was in one of 

the additional cells 

introduced during the 

Summer2006 study; it is 

in neither Summer2005 

nor Winter2004. 

I15(Course_Avg)Found Did the participant find 

the course average bug? 

1 if Yes, 0 if No. 

I15(Course_Avg)Fixed Did the participant fix 

the course average bug? 

1 if Yes, 0 if No. 

K9(Quiz_Avg)Found Did the participant find 

the quiz average bug? 

1 if Yes, 0 if No. 

K9(Quiz_Avg)Fixed Did the participant fix 

the quiz average bug? 

1 if Yes, 0 if No. 

L9(Midterm_Avg)Found Did the participant find 

the midterm average 

bug? 

1 if Yes, 0 if No. 

L9(Midterm_Avg)Fixed Did the participant fix 

the midterm average 

bug? 

1 if Yes, 0 if No. 

M9(Exam_Avg)Found Did the participant find 

the exam average bug? 

1 if Yes, 0 if No. 

M9(Exam_Avg)Fixed Did the participant fix 1 if Yes, 0 if No. 
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the exam average bug? 

GBFound The total number of 

bugs found by the 

participant in the 

Gradebook spreadsheet. 

These values range from 

0 to 6. 

Only the Summer2006 

Gradebook spreadsheet 

contained the sixth bug, 

however. 

GBFixed The total number of 

bugs fixed by the 

participant in the 

Gradebook spreadsheet. 

These values range from 

0 to 6. 

Only the Summer2006 

Gradebook spreadsheet 

contained the sixth bug, 

however. 

B8-1(SocSec-1)Found Did the participant find 

the first social security 

bug? 

1 if Yes, 0 if No. 

B8-1(SocSec-1)Fixed Did the participant fix 

the first social security 

bug? 

1 if Yes, 0 if No. 

B8-2(SocSec-2)Found Did the participant find 

the second social 

security bug? 

1 if Yes, 0 if No. 

B8-2(SocSec-2)Fixed Did the participant fix 

the second social 

security bug? 

1 if Yes, 0 if No. 

C18(AdjustedGrossPay)Found Did the participant find 

the adjusted gross pay 

bug? 

1 if Yes, 0 if No. 

C18(AdjustedGrossPay)Fixed Did the participant fix 

the adjusted gross pay 

1 if Yes, 0 if No. 
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bug? 

D3(SingleWithHold)Found Did the participant find 

the single withhold bug? 

1 if Yes, 0 if No. 

D3(SingleWithHold)Fixed Did the participant fix 

the single withhold bug? 

1 if Yes, 0 if No. 

E3(MarriedWithhold)Found Did the participant find 

the married withhold 

bug? 

1 if Yes, 0 if No. 

E3(MarriedWithhold)Fixed Did the participant fix 

the married withhold 

bug? 

1 if Yes, 0 if No. 

PRFound The total number of 

bugs found by the 

participant in the 

Payroll spreadsheet. 

Ranges between 0 and 

5. 

PRFixed The total number of 

bugs fixed by the 

participant in the 

Payroll spreadsheet. 

Ranges between 0 and 

5. 

TotalFound The total number of 

bugs found by the 

participant over both 

tasks. 

Ranges between 0 and 

11. 

Only the Summer2006 

students could have 

gotten 11. The others 

had a maximum of 10 

bugs found or fixed. 

In particular, the values 

ranged from 0 to 10 for 

the Summer2005 study, 

from 1 to 11 for the 

Summer2006 study, and 

from 3 to 10 for the 



102 

 

 

 

Winter2004 study. 

TotalFixed The total number of 

bugs fixed by the 

participant over both 

tasks. 

Ranges between 0 and 

11. 

Only the Summer2006 

students could have 

gotten 11. The others 

had a maximum of 10 

bugs found or fixed. 

In particular, the values 

ranged from 0 to 10 for 

the Summer2005 study, 

0 to 11 for the 

Summer2006 study, and 

from 0 to 9 for the 

Winter2004 study. 

Task1 This is the first task that 

the participant was 

given. 

Possible values are 

Gradebook and Payroll. 

Table 9: Static data fields, description, and notes about them. 
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Log Files Data 

Field Name Description 

Index This is particular to the database use. An automatically 

generated number that we used as the primary key for the 

table. This means that each one of the records had a unique 

index.  

Study Which study did the log files come from initially: 

Winter2004, Summer2005, or Summer2006? This 

information was added in by me. 

Subject The participant’s subject number was also added in by me. 

These ID’s are the same ones that appear in the 

background data table. 

Workbook What workbook were they working on: Gradebook or 

Payroll? This information comes directly from the log 

files. 

Seconds The time in the log files is saved in the form: hh:mm:ss. 

We changed it into seconds and subtracted the first time 

from all of them to be able to compare the progress of 

different participants, even if they did not start at the same 

time. 

CellName The cell name was taken directly from the log file. 

CellID The cell ID was taken directly from the log file. 

Event The event is the action performed by the user, this is also 

taken directly from the log file. System events, however, 

we took out of the records and stuck them into their own 

field, as we will see in a bit. 

PercentTested This used to be one of the system events. Whenever a 

change was made, this information would come up as a 

new record. In order to be able to best analyze how the 



104 

 

 

 

users’ events related to this change, we decided to stick 

this information in a field. This way, we know what the 

spreadsheet testedness was when the participant performed 

certain actions. 

CTC This is the cell testedness for the particular cell that the 

user event was performed on. Turning the system events 

into additional fields for each user event becomes even 

more important for cases like this one and the cell fault-

likelihood. It might be interesting, for example to know 

whether a checkmark was placed on a cell that was the 

least tested. 

CFC This is the cell’s fault-likelihood when a particular user 

event was performed on the cell. Was the darkest cell’s 

formula edited, for example? This information was also 

taken from the log file, though we had to write a script to 

turn it into a field for all user events. 

FormulaStatus When this particular event was performed, was the 

formula for this cell open or closed? This is one of the user 

events from the log files, but it needed a bit of massaging 

to get this information at any point in time. 

OpenAt If the status of the formula is ―Open‖, then when was that 

formula opened? We also massaged data from the log files 

a bit to get this. 

CellWO For the particular cell that is being touched, what does the 

cell data table say its Western Reading Order (not score) 

is? We added this field to make it easy to debug the 

Western Reading Order score calculation. We used 

information from the log files and the cell data table to get 

this information. 

CellCO For the particular cell that is being touched, what does the 

cell data table say its Column Order (not score) is? We 

added this field to make it easy to debug the Column Order 

score calculation. We used information from the log files 
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and the cell data table to get this information. 

Buggy In the beginning of the task, did this cell contain a bug? 

We used information from the log files and the cell data 

table to get this information. 

ShortestDistance What level is that cell on in dataflow order? We used 

information from the log files and the cell data table to get 

this information. 

Table 10: Log file data fields, descriptions of those fields, and notes about them.
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APPENDIX B. (DATA UNDERSTANDING) DESCRIPTIVE 

STATISTICS AND REGRESSION ANALYSES 

The research questions we had in mind while conducting this data exploration 

were: 

1. What do females’ and males’ use of the Forms/3 features look like over time? 

2. What happens when testing features, formula operations, and value operations are 

looked at separately? 

3. How similar are these feature usage profiles between the two tasks (Gradebook 

and Payroll)? 

4. How does feature usage relate to bugs fixed? 

This exploration involved a series of calculations and data visualization 

iterations to get a better understanding of successful male and female behavior. In 

addition to helping with the understanding of successful behavior, calculations like 

counts of events by time period also help with the understanding of the data itself.  
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Results about All Events 

 

 

Figure 23: Counts of all events in both workbooks. 
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Figure 24: Counts of all events in Gradebook. 
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Figure 25: Counts of all events in Payroll. 
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Figure 26: Graph of event counts over time in Gradebook for males and females. 

 

 

Figure 27: Graph of event counts over time in Payroll for males and females. 
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Figure 28: Counts of events in Gradebook and Payroll by males and females. 

 

 

Figure 29: User activity in Gradebook per minute by males and females.  
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Figure 30: User activity in Payroll per minute by males and females.  

 

  

Figure 31: User activity in Gradebook in the first two minutes by males and females.  
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Figure 32: User activity in Payroll in the first two minutes by males and females.  

 

Results About Testing Features 

 

Figure 33: Testing feature activity in Gradebook by males and females.  



114 

 

 

 

 

 

Figure 34: Testing feature activity in Payroll by males and females.  
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Figure 35: Gradebook and Payroll testing feature activity in 5-minute intervals by 

males and females. 
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Figure 36: Checkmarks in Gradebook. 

 

 

Figure 37: Checkmarks in Payroll. 
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Figure 38: Undo checkmarks in Gradebook. 

 

 

Figure 39: Undo checkmarks in Payroll. 
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Figure 40: X-marks in Gradebook. 

 

 

Figure 41: X-marks in Payroll. 
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Figure 42: Undo X-marks in Gradebook. 

 

 

Figure 43: Undo X-marks in Payroll. 
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Figure 44: Arrow Erased in Gradebook. 

 

 

Figure 45: Arrow Erased in Payroll. 

 

 

Results about Event Activity on Value Cells 
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Figure 46: Value Edits in Gradebook. 

 

 

Figure 47: Value Edits in Payroll. 
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Figure 48: Post Value in Gradebook. 

 

 

Figure 49: Post Value in Payroll. 
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Figure 50: Hide Value in Gradebook. 

 

 

Figure 51: Hide Value in Payroll. 
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Results about Event Activity on Formula Cells 

 

 

Figure 52: Formula Edits in Gradebook. 

 

 

Figure 53: Formula Edits in Payroll. 
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Figure 54: Post Formula in Gradebook. 

 

 

Figure 55: Post Formula in Payroll. 
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Figure 56: Hide Formula in Gradebook. 

 

 

Figure 57: Hide Formula in Payroll. 
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Statistically Significant From Regression Analysis 

 

The traditional way we have used to measure participants’ success is by seeing 

how many bugs they fixed. This is the most important measure of success, since the 

ultimate goal of each user in our task is to find and fix the bugs that were planted into 

their spreadsheets. Thus, for males and females, what background data and feature 

usage data was predicted with the number of bugs fixed? 
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 Gradebook Payroll 

Males 

Arrow Erased (p=0.023) ―-― 

Edit Value (p=0.000) ―+‖ 

Hide Value (p=0.003) ―+‖ 

Post Value (p=0.001) ―+‖ 

Professional End-User 

Programming or Programming 

Experience (p=0.037) ―+‖ 

Total Pre Self-Efficacy (p=0.001) 

―+‖ 

The First Task (p=0.025) 

X-Mark Placed (p=0.009) ―-― 

Undo X-Mark (p=0.004) ―-― 

Edit Value (p=0.034) ―+‖ 

Hide Value (p=0.036) ―+‖ 

Post Value (p=0.026) ―+‖ 

Females 

Study (p=0.001) 

Major (p=0.010) 

GPA (p=0.041) ―+‖ 

Spreadsheet Experience (p=0.039) ―+‖ 

Total Pre Self-Efficacy (p=0.014) ―+‖ 

Arrows Off (p=0.026) ―-― 

Undo Checkmark (p=0.035) ―-― 

Edit Value (p=0.000) ―+‖ 

Hide Value (p=0.001) ―+‖ 

Post Value (p=0.001) ―+‖ 

Year In School (p=0.015) ―+‖ 

GPA (p=0.007) ―+‖ 

Total Pre Self-Efficacy (p=0.017) 

―+‖ 

The First Task (p=0.020) 

Arrow Erased (p=0.005) ―-― 

Undo X-Mark (p=0.009) ―-― 

Table 11: The variables that were had significant p-values, using regression analysis, 

in predicting the number of bugs fixed in Gradebook and Payroll by males and 

females. ―+‖ means that the factor positively predicted the number of bugs fixed in 

Gradebook or Payroll (column headings) by Males or Females (row headings).
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APPENDIX C. (MODELING) INITIAL MODELS OF STATIC DATA 

 

Before beginning our full-scale model-building effort, we built models for the 

purposes of exploring the data and finding homogeneous groupings in the static data 

alone (background, self-efficacy scores, and success). Input variables and whether 

they were set as ―Key‖, ―Input‖, or ―PredictOnly‖, can be seen in Figure 58 below. 

These were the same for all four models. The one thing that did differ among them 

was the parameter setting of the number of clusters. For CA, it was the default setting 

of ―10‖. For CA2, we changed that value to 0 (see Figure 59). A value of 0 for the 

cluster count parameter divides the data up into its natural number of groupings. This 

natural number of clusters was 4. We therefore also created CA3 (with Cluster_Count 

set to 3) and CA 4 (with Cluster_Count set to 5), to see if either increasing or 

decreasing the natural number of clusters would lead to a better statistical fit for the 

testing 

set.

Figure 58: The four competing clustering models built using only static data 

(background and self-efficacy scores). 
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Figure 59: The parameter settings for the CA2 cluster analysis model. The 

CLUSTER_COUNT parameter was the only one that differed in these first four 

competing models. 

 

Unlike in the models built in Study 2, where ―successful‖ meant above the 

median in bug fixing, the participants were split into five equally-sized buckets for 

these models. The top performing model for predicting success at fixing 80%-100% of 

bugs, finding 90%-100% of bugs, and scoring 75%-100% on the comprehension test 

was CA2. Recall that CA2 was the one with the Cluster_Count parameter set to ―0‖ 

for the natural number of groupings.  

The reason why we decided to divide the participants into only two groups 

based on success in Study 2 (rather than the five groups like in this attempt) was that 

the datasets were too small to dependably build models predicting success in bug 

fixing at this level of detail. The training set highest-success group had 25 participants 

(12 females and 13 males, out of a total of 139) and there were only 8 such 

participants (3 females and 5 males) in the testing set (out of a total of 52). This is why 

the results from this chapter were only used as hypotheses to inform our design of 

possible competing models in Study 2. 
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CA2 divided the population into four homogeneous groupings (or clusters). 

There were high performers in each of these clusters. The attributes for each of those 

clusters are in Figure 60. 
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Figure 60: The distributions of the values of the static characteristics (row headings) 

for each one of the clusters in CA2 (column headings). 
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Since including variables that do not add anything to the model’s efficiency 

only weaken it, we decided to further trim the number of input variables used. From 

previous Gender HCI studies, we already know that gender and self-efficacy are 

important background factors. We therefore created a cluster analysis model that only 

took these two input variables into account when predicting bugs fixed, bugs found, 

and comprehension scores (CA5). Using only ―Gender‖ and ―Total Pre Self-Efficacy‖, 

the model was able to predict 75% of the target group (80%-100% of bugs fixed). 

Adding ―GPA‖ to the mix increases the accuracy of a new model, CA6, to CA2’s 88% 

prediction. See Figure 61 for the distribution of these values among the different 

clusters. Furthermore, adding any other one input variable to ―Gender‖, ―Self-

Efficacy‖, and ―GPA‖ reduces the accuracy.  

Hypothesis: For optimal prediction of high success at bug fixing, the only static input 

variables should be ―Gender‖, ―Self-Efficacy‖, and ―GPA‖. Adding others weakens 

the model. 
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Figure 61: Cluster characteristics of four groupings in the population, for the top 

performing and most efficient model, CA6. 

 

Recall that bugs fixed was only used as a measure after the models were built – 

not in building the models. One interesting observation is that the two mostly female 

clusters are very different in terms of bugs fixed (cluster 2 is above average, while 

cluster 1 is below average). The two male clusters, on the other hand, were similar in 

terms of success. Thus, females with similar background characteristics do similarly 

well at fixing bugs, while, just because males have similar patterns in background 

characteristics, it does not mean that they will fix a similar number of bugs. 
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Hypothesis: Background data is important in predicting female success at bug fixing. 

For males, other factors (other background data, behavioral data, situational data, or 

maybe something else altogether) play a more important role. 

 Since the sample population was too small to reliably verify the validity of 

these hypotheses, we do not consider them to be findings of this study. Instead, we 

used them to build a competing model for predicting success at fixing bugs in Study 2.  
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APPENDIX D. (MODELING) PARAMETER SETTING FOR THE 

MODELS 

The default values provided by SSAS 2005 are conservative. We therefore 

only changed one of the parameters: for a cluster analysis model, we changed the 

number of clusters to ―0‖, which provides the natural number of clusters that the data 

splits up into. My complete parameter settings are in the figures that follow. 

 

Figure 62: Association Rules parameters. 

 

 

Figure 63: Clustering parameters. 
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Figure 64: Neural Network parameters. 

 

 

Figure 65: Decision Tree parameters.  

 

 

Figure 66: Naïve Bayes parameters. 
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Figure 67: Logistic Regression parameters. 

 


