

AN ABSTRACT OF THE DISSERTATION OF

Baigong Zheng for the degree of Doctor of Philosophy in Computer Science presented

on November 7, 2018.

Title: Approximation Schemes in Planar Graphs

Abstract approved:

Glencora Borradaile

There are growing interests in designing polynomial-time approximation schemes (PTAS)

for optimization problems in planar graphs. Many NP-hard problems are shown to admit

PTAS in planar graphs in the last decade, including Steiner tree, Steiner forest, two-

edge-connected subgraphs and so on. We follow this research line and study several NP-

hard problems in planar graphs, including minimum three-vertex-connected spanning

subgraph problem, minimum three-edge-connected spanning subgraph problem, relaxed

minimum-weight subset three-edge-connected subgraph problem and minimum feedback

vertex set problem. For the first three problems, we give the first PTAS results, and for

the last problem, we give a PTAS result based on local search and a practical heuristic

algorithm that provides a trade-off between running time and solution quality like a

PTAS.

c©Copyright by Baigong Zheng
November 7, 2018

All Rights Reserved

Approximation Schemes in Planar Graphs

by

Baigong Zheng

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented November 7, 2018

Commencement June 2019

Doctor of Philosophy dissertation of Baigong Zheng presented on November 7, 2018.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Baigong Zheng, Author

ACKNOWLEDGEMENTS

I would like to thank my parents, my advisor Dr. Glencora Borradaile and my colleague

Dr. Hung Le.

CONTRIBUTION OF AUTHORS

Dr. Hung Le was involved with the design and analysis of the local search algorithm in

Chapter 4, and assisted the implementation of the balanced separator part in Chapter 5.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Graphs . 1

1.2 Planar Graphs . 1

1.3 Polynomial-time Approximation Schemes 2

1.3.1 Balanced Separator . 3

1.3.2 Shifting Technique . 5

1.3.3 Bidimensionality . 7

1.3.4 Local Search . 9

1.3.5 Spanner Framework . 10

1.3.6 Beyond Planar Graphs . 12

1.4 Contributions of This Thesis . 13

2 PTAS for Relaxed Minimum-weight Subset Three-edge-connected Subgraph in

Planar Graphs 16

2.1 Overview . 17

2.1.1 Overview of 2-EC PTAS . 17

2.1.2 Reduction to Vertex Connectivity 22

2.2 Vertex-connectivity Basics . 25

2.2.1 Ear Decompositions . 25

2.2.2 Removable Edges . 26

2.2.3 Properties of Minimal (Q, r)-vertex-connected Graphs 27

2.2.4 Cycles Must Contain Terminals 29

2.3 Connectivity Separation . 30

2.3.1 The Tree Cycle Theorem Implies the Connectivity Separation The-

orem . 32

2.3.2 Proof of Tree Cycle Theorem . 38

2.4 Correctness of Spanner . 57

2.4.1 Mortar Graph, Bricks and Portals 58

2.4.2 Proof of the Structure Theorem 59

2.5 Dynamic Programming for k-ECP on Graphs with Bounded Branchwidth . 69

3 PTASes for Minimum Three-edge-connected Spanning Subgraph and Minimum

Three-vertex-connected Spanning Subgraph in Planar Graphs 75

3.1 Overview . 76

TABLE OF CONTENTS (Continued)
Page

3.2 Preliminaries . 79

3.3 PTAS for 3-ECSS . 85

3.4 PTAS for 3-VCSS . 92

3.5 Dynamic Programming for Minimum-Weight 3-ECSS on Graphs with Bounded

Branchwidth . 98

4 Local Search PTAS for Minimum Feedback Vertex Set in Minor-free Graphs 103

4.1 Overview . 104

4.2 Preliminaries . 106

4.3 Exchange Graph Implies PTAS by Local Search 107

4.4 Exchange Graph Construction . 109

4.5 Negative Results . 112

5 Practical PTAS and Heuristics for Minimum Feedback Vertex Set in Planar

Graphs 115

5.1 Overview . 116

5.2 The Algorithms for FVS in Planar Graphs 118

5.2.1 The 2-Approximation Algorithm 118

5.2.2 Kernelization Algorithm . 118

5.2.3 Polynomial-Time Approximation Scheme 122

5.2.4 Heuristics . 126

5.3 Experiments . 128

5.3.1 The 2-Approximation Algorithm and Optimal Solution 129

5.3.2 The PTAS and 2-Approximation Algorithm 130

5.3.3 Heuristic Approximation Scheme 132

5.4 Detailed Experimental Results . 135

6 Conclusion 142

6.1 Frontiers . 143

Bibliography 145

LIST OF FIGURES
Figure Page

1.1 A balanced separator. 3

1.2 Example for shifting technique. 6

1.3 Illustration of graph Γ4. 8

1.4 Example for the first two steps in the spanner framework. 11

2.1 Issues for 3-EC problem. 22

2.2 Example for cleaving. 23

2.3 Example for triconnectivity. 24

2.4 Illustration of C(T). 39

2.5 Examples for Lemma 2.30. 40

2.6 Examples for Lemma 2.30. 42

2.7 Illustration of Property (d) . 47

2.8 Illustration of two cycles in Property (d) 48

2.9 Illustration of Lemma 2.40 . 50

2.10 Illustration of Claim 2.43. 53

2.11 Construction of paths for Lemma 2.44. 53

2.12 Illustrations of Lemma 2.27 and 2.45. 55

2.13 Illustration of Lemma 2.29. 57

2.14 Illustration of three edge-disjoint paths. 63

2.15 Cleaving examples. 65

3.1 Issues for maintaining strong connectivity. 77

3.2 Example for levels. 80

3.3 Examples for double layers. 81

LIST OF FIGURES (Continued)
Figure Page

3.4 Example for subgraph Ha
i . 82

3.5 Illustration of Lemma 3.20. 87

3.6 Illustrations of tree structure. 89

3.7 Illustration of Claim 3.22. 90

4.1 Counterexamples for local search on odd cycle transversal and subset feed-

back vertex set problem. 114

5.1 Illustration of reduction rule 8. 121

5.2 Results of PTAS implementation. 131

5.3 Local search affected by parameter t. 133

5.4 Improvement and number of iterations affected by parameter t. 135

5.5 Results of our heuristic algorithms. 136

LIST OF TABLES
Table Page

1.1 Summary of PTAS results in planar graphs. 4

5.1 Results of our heuristic algorithms. 136

5.2 Compare the 2-approximation algorithm with the optimal solutions. . . . 137

5.3 Solutions of PTAS variants. 138

5.4 Running time of PTAS variants. 139

5.5 Solutions of heuristic algorithms. 140

5.6 Running time of heuristic algorithms. 141

LIST OF ALGORITHMS
Algorithm Page

1 PTAS by Local Search . 9

2 A PTAS for 3-ECSS in planar graphs 85

3 A PTAS for 3-VCSS in planar graphs 92

4 PTAS for FVS by Local Search . 104

Chapter 1: Introduction

1.1 Graphs

A graph in this thesis is a kind of mathematical structure, which consists of two parts:

a set of vertices and a set of edges. Each edge connects two vertices; the two vertices

may be identical, and in this case the edge is called a loop. The study of graphs began

with Leonhard Euler’s paper on the Seven Bridges of Königsberg in 1736 [13], and this

branch of mathematics is called graph theory.

Graphs can be used to model different types of structures in the areas of computer

science, linguistics, chemistry, sociology and biology. For example, in computer science

we can represent the link structure of a website by a graph, where the vertices represent

the web pages and each (directed) edge represents a link from one page to another; in

computational linguistics we can represent the syntactic structure of a sentence by a

special kind of graphs, called trees, where the vertices indicate the words in the sentence

and the edges are defined by some context-free grammar; in chemistry we can model

a molecule by a graph where vertices and edges correspond to atoms and bonds; in

sociology graphs can be used to model people’s relationships to understand some social

issues; and, in biology we can model the physical interactions between an organism’s

proteins by a graph, where proteins will be the vertices.

1.2 Planar Graphs

A graph is planar if it can be drawn on the plane such that its edges intersect only at

their endpoints. Kuratowski [92] provides a characterization of planar graphs in terms

of subdivision (that is to insert vertices into edges):

Theorem 1.1 (Kuratowski’s Theorem). A finite graph is planar if and only if it does not

contain a subgraph as a subdivision of the complete graph K5 or the complete bipartite

graph K3,3.

2

After that, Wagner [117] gives a characterization of planar graphs in terms of minor

(that is a graph results from edge deletion, edge contraction and vertex deletion from

the original graph):

Theorem 1.2 (Wagner’s Theorem). A finite graph is planar if and only if it does not

have K5 or K3,3 as a minor.

There is a long tradition of the research on optimization problems in planar graphs.

People are interested in this theme for three main reasons. First, many optimization

problems in planar graphs arise in distinct application areas. These include VLSI, image

processing problems and geographic problems such as travelling time in a road map and

network design problems. Second, people find that exploring the planarity of graphs

can result in faster and more accurate algorithms. For example, the best algorithm for

maximum s-t flow problem in general graphs runs in O(mn) time by combining the

algorithms of King et al. [85] and Orlin [104], where m and n are the numbers of edges

and vertices in the graph, while in planar graphs there is an O(n log n) algorithm for this

problem by Borradaile and Klein [21]. Third, the study on problems in planar graphs

drives many interesting algorithmic techniques.

1.3 Polynomial-time Approximation Schemes

A polynomial-time approximation scheme (PTAS) is an algorithm that for any given

constant ε > 0, finds a (1 + ε)-approximation for the minimization problem (or a (1 −
ε)-approximation for maximization problem) in polynomial time. Papadimitriou and

Yannakakis [105] proved that there are problems that do not have PTAS unless P = NP ,

one of which is the maximum independent set. However, Lipton and Tarjan [96] gave

a PTAS for this problem in planar graphs, and this is also the first PTAS for an NP-

hard problem in planar graphs. After that, more problems have been shown to admit

PTAS in planar graphs, including minimum vertex cover [6], travelling salesman problem

(TSP) [4, 88], Steiner tree [23], and two-edge-connected spanning subgraph [12]. Further,

with the development of algorithmic techniques, more efficient PTASes have appeared.

An approximation scheme is efficient if its running time is a polynomial whose degree

is fixed and independent of the error parameter ε. This kind of improvement goes back

to the work of Baker [6], who introduced the shifting technique, now known as Baker’s

3

technique.

In the following sections, we briefly review the commonly used approaches to design

PTASes for NP-hard problems in planar graphs, including the balanced-separator tech-

nique, Baker’s shifting technique, the bidimensionality theory, the local search method,

and Klein’s spanner framework. To illustrate these techniques, we will use maximum in-

dependent set as an example problem (except for the spanner framework). For complete-

ness, we summarize many planar PTAS results based on these approaches in Table 1.1

(where the work of this thesis is also highlighted).

1.3.1 Balanced Separator

A separator is a set of vertices whose removal separates the remaining vertices into two

disjoint parts such that there is no edge between these two parts. We say a separator

is balanced if every part has size at most a constant fraction of the size of the original

graph. This can be generalized to the setting where vertices are weighted. Lipton and

Tarjan [95] first proved there is a balanced separator of size O(
√
n) for any n-vertex

planar graph, and this can be found in linear time. See Figure 1.1.

Figure 1.1: A balanced separator. Left: the dashed curve passes through a separator.
Right: the separator divides the graph into two parts.

Planar separators are a powerful tool that has ample algorithmic applications, in-

cluding data structures for dynamic graph algorithms [50], faster algorithms for shortest

path in planar graphs [71], and construction of nearest neighbor graphs [60]. The first

PTAS for maximum independent set in planar graphs [96], TSP in edge-weighted planar

4

Table 1.1: Summary of PTAS results in planar graphs. P stands for PTAS and E
stands for EPTAS. U stands for “unweighted version of the problem” and W stands for
“weighted version of the problem”. Our work is highlighted.

Approaches

Problem Separator Shifting Spanner Local
Search

Bidimensionality

Independent Set EU [96] EW [6] PU [29] EU [55]

Vertex Cover EW [6] PU [29] EU [55]

Connected Vertex Cover PW [34] EU [55]

Dominating Set EW [6] PU [29] EU [55]

Connected Dominating Set PW [34] EU [55]

Feedback Vertex Set PW [34]
EU [25]

EU [25] PU [94] EU [55]

TSP PW [4] EW [88]

Steiner Tree EW [23]

Steiner Forest EW [8, 49]

Planar Group Steiner Tree EW [7]

Two-Edge-Connected
Spanning Subgraph

PU [37] PW [12]

Relaxed Two-Edge-
Connected Subset Sub-
graph

EW [22]

Three-Edge-Connected
Spanning Subgraph

EU [122]

Relaxed Three-Edge-
Connected Subset Sub-
graph

EW [26]

k-Means P [35]

k-Median P [35]

Uncapacitated Facility Lo-
cation

PU [35]

5

graphs [4] and minimum-weight connected dominating set [34] are all based on balanced

separators. In these algorithms, balanced separator is used in a recursive way to decom-

pose the original graph into small pieces in which the target problem can be computed

efficiently. The error in these algorithms is usually caused by the separators, so if we

can bound that by an ε-fraction of an optimal solution, we can obtain a PTAS for the

target problem.

Consider the maximum independent set problem in a planar graph G. We can obtain

a set of small pieces by recursively applying balanced separators. The total size of the

separators P can be bounded by an ε
4 -fraction of the size of G if we bound the size of each

piece by a function of ε. We can solve the problem in each piece by exhaustive search

and obtain a union S of those solutions, which will be the output of the algorithm. This

union S is an independent set for graph G, so we only need to show its size is at least

(1−ε)-fraction of an optimal solution OPT (G). Since S is the union of optimal solutions

on each piece, we know that |S| ≥ |OPT (G) \ P | ≥ |OPT (G)| − |P |. By the four-color

theorem [110], the size of a maximum independent set in G is at least one fourth of the

size of G. So the total size of the separator can be bounded by an ε-fraction of |OPT (G)|,
implying that |S| ≥ (1− ε)|OPT (G)|.

1.3.2 Shifting Technique

Shifting technique is introduced by Baker [6], so it is also known as Baker’s technique.

By this technique, Baker gives EPTAS for a set of problems, including maximum inde-

pendent set, minimum vertex cover, minimum dominating set and so on. This technique

first partition the vertices into levels according to their distances to the outer boundary,

then group constant number (depending on ε) adjacent levels into a piece. See Figure 1.2

for an example. Baker proved that the treewidth of each piece can be bounded by a func-

tion of the number of its levels, which only depends on ε. Since many NP-hard problems

can be solved optimally in polynomial time in a graph of bounded treewidth, we can

compute the optimal solution in each piece efficiently.

When grouping the levels into pieces, two pieces can share one or two levels depending

on the specific problems, and this introduces error into the solution. By the pigeonhole

principle, there exists a way to group levels such that the shared levels only contain an

ε fraction of the optimal solution. Since there are at most constant number of ways to

6

Figure 1.2: Example for shifting technique. The horizontal lines represent levels and
the shaded regions represent the pieces. Each piece has at most 4 levels. Two adjacent
pieces share one level. The pieces in the right figure can be obtained by shifting the
pieces in the left figure once.

group those levels, we can try all the possible ways and output the best solution among

them. By grouping more levels into a piece, the error will decrease but the running time

will increase, resulting in the trade-off between the precision and running time.

We can illustrate this technique by the maximum independent set problem. If we

want to obtain a (1 − ε)-approximation solution for this problem in graph G, then we

will group k = d1/εe+ 1 adjacent levels into a piece such that two adjacent pieces share

one level. Since there are only k levels in each piece, we can obtain k − 1 distinct ways

of grouping. For each way of grouping, we will remove all the shared levels and then

solve the problem in each remaining piece by dynamic programming efficiently (since the

treewidth of such a piece is at most a function of k), which gives us a union of those

solutions. The output will be the minimum union from different groupings. Since the

error of this algorithm is caused by those removed levels, we only need to show there

is one way of grouping such that the shared levels contain at most an ε-fraction of an

optimal solution, implying that the corresponding union of solutions is at least (1− ε)-
fraction of the optimal solution. Note that there are k− 1 ways to group the pieces, and

each way defines a distinct set of shared levels. So all the k − 1 = d1/εe different sets of

shared levels define a partition of graph G. By the pigeonhole principle, there exists one

set of shared levels that contains at most an ε-fraction of an optimal solution in G.

7

1.3.3 Bidimensionality

Bidimensionality strengthens the separator technique and shifting technique, and it can

be applied in more general families of graphs such as H-minor free graphs. It was first

introduced by Demaine et al. [40] to design sub-exponential algorithms for problems inH-

minor free graphs. Demaine and Hajiaghayi [42] extended this theory to design PTASes

for bidimensional problems, including connected dominating set and feedback vertex set.

Later, Fomin et al. [55] redesigned the framework to obtain EPTASes. There are two

kinds of bidimensional problems: minor-bidimensional problems (such as vertex cover

and feedback vertex set) and contraction-bidimensional problems (such as dominating

set and independent set).

A graph is a minor of a graph G if it can be obtained from G by a sequence of edge

contractions, edge deletions and vertex deletions. A problem is minor-bidimensional if

it satisfies the following:

(1) For any minor H of G, the size of an optimal solution in H cannot be larger than

that in G.

(2) There is a constant c such that the size of an optimal solution in grid gt is at least

ct2.

A graph is a contraction of a graph G if it can be obtained fro G by a sequence

of edge contractions. To define the contraction-bidimensionality, we need to define a

triangulated grid Γt based on grid gt. Let Γt be the graph obtained from gt by first

triangulating all internal faces of gt such that all internal vertices have degree 6 and all

non-corner boundary vertices have degree 4, and then one corner vertex of degree two is

connected to all boundary vertices. One example Γ4 is given in Figure 1.3. A problem

is contraction-bidimensional if it satisfies the following:

(1) For any contraction H of G, the size of an optimal solution in H cannot be larger

than that in G.

(2) There is a constant c such that the size of an optimal solution in graph Γt is at least

ct2.

To obtain PTAS for a bidimensional problem, we need one additional property: the

separation property. Assume we can partition a graph G into three parts L, R and S

8

Figure 1.3: Graph Γ4.

such that there is no edge between L and R. Then the separation property says the

optimal solution in L (or R) cannot be larger than the remaining part of the global

optimal solution in L (or R) plus the size of S. Intuitively, this property means when

we partition the graph, the sum of optimal solutions in all parts can be bounded by the

global optimal solution plus constant times of the separator set.

If a problem is bidimensional and has the separation property, then it can be shown

that given a graph G and an ε > 0, there is a set of vertices X such that (1) removing

X from G results in a graph with treewidth bounded by a function of ε and (2) the size

of X is bounded by an ε fraction of the size of an optimal solution. Further, such a set

X can be computed in polynomial time (based on a constant approximation solution of

the problem or a sublinear treewidth bound). The algorithm starts by computing such

vertex set X, and then removes it to obtain a bounded treewidth graph. After solving

the problem in the resulting graph by dynamic programming, the algorithm combine the

solution and the set X to obtain its final solution. By removing more vertices, the error,

which is the size of set X, will increase but the treewidth will decrease, resulting in a

trade-off between the precision and running time.

Consider the maximum independent set problem in a planar graph G as an example.

The algorithm first computes a set of vertices S, whose size is at most a constant times

of the size of an optimal solution, such that removing S results in a graph with constant

treewidth. Based on this S, the algorithm can find the set X which can be bounded

9

by a small fraction of S. Then this X will be removed from G to obtain a graph with

bounded treewidth, in which we can solve the problem efficiently. The output will be

the solution obtained from this new graph. The error is caused by the set X, which can

be bounded by a small fraction of the size of S and then an ε-fraction of the size of an

optimal solution.

1.3.4 Local Search

Local search was first used to obtain PTASes for geometric problems (e.g. Chan and

Har-Peled [30], and Mustafa and Ray [102]). Cabello and Gajser [29] gave the first PTAS

by local search for optimization problems in H-minor-free graphs, including maximum

independent set, minimum vertex cover and minimum dominating set. Cohen-Addad,

Klein and Mathieu [35] showed that local search yields PTAS for k-means, k-median and

uniform uncapacitated facility location in H-minor-free graphs.

Algorithm 1 PTAS by Local Search

Input: an instance and a constant c
Let S be an arbitrary solution.
while there is a solution S′ such that |S \S′| ≤ c, |S′ \S| ≤ c and cost(S′) < cost(S)
do

S = S′
return S

Different from previous approaches, the PTASes by local search are often simple to

implement and do not rely on planarity. See Algorithm 1 for a prototypical local search

algorithm. Given a constant c = f(ε) depending on ε, the algorithm starts with an

arbitrary solution, and tries to improve this solution by changing at most c vertices or

edges. If it cannot improve the solution in this way, then the current solution is output.

Since the algorithm needs to check all the combinations of the c vertices or edges, its

running time is O(nf(ε)), so not efficient.

The underlying tool for analyzing the PTAS by local search is an r-division, which

is closely related to balanced separators and in fact obtained by applying balanced sep-

arators recursively. Given a constant r, an r-division decomposes the graph into a set

of regions such that each region has at most r vertices, each region has at most O(
√
r)

boundary vertices, and the number of boundary vertices, summing over all regions in

10

an r-division, is bounded by O(n/
√
r), where n is the number of vertices in the graph.

This concept is due to Frederickson [54] in the context of planar graphs, but it is easy

to extend it to any family of graphs that has sublinear-size balanced separators. The

analysis for the PTAS by local search starts from constructing a graph, called exchange

graph, which is usually a minor of the original graph, consisting of vertices in the two

solutions: the optimal solution and the solution by local search. With an r-division of

the exchange graph, it can be shown that the difference between the two solutions is

bounded by a constant times of the total size of the boundary vertices. By carefully

setting r as a function of ε, the size of boundary vertices can be bounded by an ε fraction

of the size of the exchange graph, and this is used as the error bound for the solution of

local search.

We can illustrate this kind of analysis by the maximum independent set problem in a

planar graph G. For this problem, the exchange graph X is the subgraph induced by the

union of an optimal solution O and the solution L obtained by local search algorithm.

Now we find an r-division of X, such that each region has at most c = O(1/ε2) vertices.

Then the boundary of this r-division has at most O(|X|/ε) vertices. We can obtain a

new solution by exchange the vertices of L in one region with the vertices of O strictly

inside of the same region. Since each region has at most c vertices, we know this new

solution cannot be larger than solution L, otherwise we can improve L further by the

local search algorithm. This can give us a bound for the size of L in any region R:

|L ∩ R| ≥ |O ∩ int(R)| where int(R) represents the interior of R. Summing over all

the regions, we obtain a bound of L: |L| ≥ |O| − |B| where B will be the multiset of

boundary vertices. Since |B| is at most O(|X|/ε), we can obtain that |L| ≥ (1 + ε)|O|
by setting the constant appropriately.

1.3.5 Spanner Framework

In this subsection, we consider edge-weighted graphs. In the literature, a spanner is a

subgraph that approximates the distance between any pair of vertices. We call such

subgraph as distance spanner. Here we refer to a more general version of a spanner

with respect to an optimization problem. A spanner for a minimization problem has the

following two properties:

(1) its weight is bounded by constant times of the weight of an optimal solution;

11

Figure 1.4: Example for the first two steps in the spanner framework. Left: the original
graph. Middle: a spanner of the original graph. Right: a decomposition of the spanner.

(2) it contains a (1 + ε)-approximate solution.

The spanner framework was designed to handle classes of problems not amenable to

the previous techniques, such as TSP and Steiner tree problem in edge-weighted planar

graphs. Arora et al. [4] first used distance spanner as a spanner to obtain a PTAS for

TSP in edge-weighted planar graphs. Their PTAS combines the distance spanner and

separator technique and runs in O(n1/ε
2
) time. Klein [88] improve the above result into

an EPTAS running in linear time by applying the shifting technique in the dual graph of

the distance spanner. A general framework is abstracted from Klein’s work, and is used

to obtain PTAS for other problems in planar graphs, including Steiner tree [23], Steiner

forest [8, 49] and planar group Steiner tree [7]. The framework contains the following

steps. (Figure 1.4 shows the first two steps in this frame work.)

Step 1: Construct a spanner.

Step 2: Decompose the spanner into a set of pieces, such that each piece has bounded

treewidth and the weight of all shared edges is an ε fraction of the weight of the

spanner.

Step 3: Solve the problem optimally in each piece by dynamic programming.

Step 4: Convert the optimal solutions from the previous step to a solution for the

original graph.

12

For most problems, the first step is the most challenging since when we construct

the spanner with small weight, we may loose the nearly optimal solution. So different

problems require different techniques to prove the existence of a nearly optimal solution

in the spanner constructed. For example, the PTAS for Steiner tree problem relies

on a structure theorem to prove its correctness, which shows the existence of the nearly

optimal solution in the spanner. The second step could be seen as applying the separator

or shifting technique in the dual graph of the spanner. For shifting technique, it can be

shown that the shared levels form a set of cycles, whose addition to the solution from

Step 3 guarantees the connectivity of the final solution. The third step can be done by

standard dynamic programming, and the last step usually combines those solutions and

add some edges in the shared levels. The error from this framework usually consists of

two parts: the first part is from the use of spanner instead of the original graph, and the

second part is from the additional edges added in the last step, which is similar to the

error introduced by the separator or shifting technique.

1.3.6 Beyond Planar Graphs

In this section, we briefly introduce how to generalize some of the previous PTAS tech-

niques to two more general graph classes: bounded-genus graphs andH-minor-free graphs.

When we draw a non-planar graph on a plane, we can remove a crossing in the

drawing by adding a “handle”. The genus of a graph is the minimum number of handles

needed to draw the graph without introducing any crossing. Since any planar graph can

be drawn without any handle, it has genus 0. A class of graphs has bounded-genus if

every graph in that class has genus at most g for a fixed g.

Recall that a minor of a graph G is obtained from G by a sequence of edge contrac-

tions, edge deletions and vertex deletions. A graph class is minor-closed if any minor

of any graph in this class is also a member of this class. A graph class is H-minor-free

if it is minor-closed and excludes some fixed graph H. Note that the minor-free graph

families include bounded-genus graphs since bounded-genus graphs are minor-closed and

there exist graphs that are excluded in this class (i.e. those have larger genus).

Generalizing PTAS results from planar graphs to bounded-genus graphs is not imme-

diate but possible. Since bounded-genus graphs can be drawn in a surface with bounded

genus, it is natural to try to reduce the problems to planar graphs. And this is the

13

general idea to obtain PTAS results in bounded-genus graphs. There are different ways

to reduce the problems. For the spanner framework, we only need to compute a planar

spanner from the bounded-genus graph, and then we can solve the problem as in planar

graphs. Based on this idea, Borradaile et al. [18] generalize the spanner framework for

subset connectivity-problems, including subset TSP, Steiner tree and Steiner forest, to

bounded-genus graphs. Specifically, they show that it is possible to find a light subgraph

such that if we cut along the graph, we can obtain a planar graph in which we compute

a spanner using planar techniques. For the separator technique, we may be able to find

a light subgraph such that if we remove this subgraph, we can obtain a planar graph

where the weight of separator can be bounded easier than in the original graph. The

PTAS results of Cohen-Addad et al. [34] for the vertex-weighted connected dominating

set and vertex-weighted feedback vertex set problem exemplify this idea.

Some approaches described in previous sections are shown to be able to generalize to

H-minor-free graphs. For example, Formin et al. [55] show bidimensionality theory can

be used to obtain EPTAS for a set of problems in H-minor-free graphs. Most existing

local search PTAS results are given for the H-minor-free graphs. To generalize shifting

technique from planar graphs to H-minor-free graphs, people give two kinds of decom-

position: (vertex or edge) deletion decomposition and (edge) contraction decomposition.

Demaine et al. [41] first give the deletion decomposition for H-minor-free graphs to gen-

eralize the shifting technique and obtain PTAS results for a set of problems, such as

independent set. Later, they [43] give the contraction decomposition for H-minor-free

graphs and obtain PTAS results for contraction-closed problems, such as TSP. To gen-

eralize spanner techniques to H-minor-free graphs seems harder, and this is because the

structures of H-minor-free graphs are much more complicated than planar graphs. The

existing spanner results are for TSP [24] by Borradaile et al. and subset TSP [93] by Le.

1.4 Contributions of This Thesis

Following this research line, we expand the existing PTAS design approaches to some new

problems, including minimum three-edge-connected spanning subgraph [122], minimum

three-vertex-connected spanning subgraph [122], relaxed minimum-weight subset three-

edge-connected subgraph [26] and minimum feedback vertex set in planar graphs.

There exist PTASes for the minimum two-edge-connected spanning subgraph prob-

14

lem [37, 12] and the relaxed minimum-weight subset two-edge-connected subgraph prob-

lem [22]. However, these PTASes cannot be immediately or simply generalized to

stronger connectivity like three-edge-connectivity and three-vertex-connectivity. This

is because when we want to maintain two-edge-connectivity or two-vertex-connectivity,

a cycle will be enough; but beyond that, there is no obvious structure to maintain the

stronger connectivity. We present the first PTAS for the relaxed minimum-weight sub-

set three-edge-connected subgraph problem in planar graphs, which runs in O(n log n)

time. This algorithm is based on the spanner framework and some structural proper-

ties of the optimal solution. Different from previous subset-connectivity problems, our

work currently cannot be generalized to bounded-genus graphs by the framework given

by Borradaile et al. [18]. To generalize that, we may need stronger structural result.

This work was previously published [26]. We also give the first PTASes for the mini-

mum three-edge-connected spanning subgraph and the minimum three-vertex-connected

spanning subgraph problem in planar graphs. These algorithms run in O(n) time and

are based on Baker’s shifting techniques. This work [122] is submitted to Journal of

Graph Algorithms and Applications.

The minimum feedback vertex set problem asks for a minimum set of vertices in a

given graph such that removing this set will result in a forest. There exist PTASes for this

problem in planar graphs based on balanced separators [34] and bidimensionality [55].

However, these algorithms are very complicated to implement and hard to apply in

practice. We give a PTAS for this problem in H-minor-free graphs by local search,

which is very simple to implement. For a given error parameter ε, our algorithm runs in

nO(1/ε2) time.

Although the algorithm by local search is simple to implement, its running time is not

efficient compared to other techniques. We ask:is there a practical PTAS for minimum

feedback vertex set problem in planar graphs? If not, can we design a practical heuristic

algorithm that works like a PTAS? We present an O(n log n) PTAS using a linear kernel

and balanced separators, and a heuristic algorithm using kernelization and local search.

We implemented these algorithms and compared their performance with Becker and

Geiger’s 2-approximation algorithm [10]. We observe that while our PTAS is competitive

in terms of solution quality with the 2-approximation algorithm on large planar graphs,

its running time is much longer. Further, our heuristic algorithm can produce better

solutions than the 2-approximation algorithm on most large planar graphs and provide

15

a trade-off between running time and solution quality, i.e. a PTAS behavior.

16

Chapter 2: PTAS for Relaxed Minimum-weight Subset

Three-edge-connected Subgraph in Planar Graphs

The survivable network design problem aims to find a low-weight subgraph that con-

nects a subset of vertices and will remain connected despite edge failures, an important

requirement in the field of telecommunications network design. This problem can be

formalized as the I-edge connectivity problem for an integer set I as follows: for an

edge-weighted graph G with a requirement function on its vertices r : V (G)→ I, we say

a subgraph H is a feasible solution if for any pair of vertices u, v ∈ V (G), H contains

min{r(u), r(v)} edge-disjoint u-to-v paths; the goal is to find the cheapest such subgraph.

In the relaxed version of the problem, H may contain multiple (up to max I) copies of

G’s edges (H is a multi-subgraph) in order to achieve the desired connectivity, paying

for the copies according to their multiplicity; otherwise we refer to the problem as the

strict version. Thus I = {1} corresponds to the minimum spanning tree problem and

I = {0, 1} corresponds to the minimum Steiner tree problem. Here our focus is when

max I ≥ 2.

This problem and variants have a long history. The I-edge connectivity problem,

except when I = {1} and I = {0}, is MAX-SNP-hard [39]. There are constant-factor

approximation algorithms for the strict {k}-edge-connectivity problem: for k = 2, Fred-

erickson and Jájá [59] gave a 3-approximation for this problem, and Sebő and Vygen [112]

gave a 4/3-approximation for this problem in unweighted graphs; for any k, Khuller and

Vishkin [84] gave a 2-approximation for this problem. Klein and Ravi [108] gave a

2-approximation for the strict {0, 1, 2}-edge-connectivity problem. For general require-

ments, Jain [77] gave a 2-approximation for both the strict and relaxed versions of the

problem.

In planar graphs, the I-edge connectivity problem, except when I = {1} and I =

{0}, is NP-hard (by reduction from Hamiltonian cycle). Berger, Czumaj, Grigni, and

Zhao [11] gave a PTAS for the relaxed {1, 2}-edge-connectivity problem, and Berger

and Grigni [12] gave a PTAS for the strict {2}-edge-connectivity problem. Borradaile

and Klein [20] gave an EPTAS for the relaxed {0, 1, 2}-edge-connectivity problem. The

17

only planar-specific algorithm for non-spanning, strict edge-connectivity is a PTAS for

the following problem: given a subset R of edges, find a minimum weight subset S of

edges, such that for every edge in R, its endpoints are two-edge-connected in R∪S [89];

otherwise, the best known results for the strict versions of the edge-connectivity problem

when I contains 0 and 2 are the constant-factor approximations known for general graphs.

In this chapter, we give an EPTAS for the relaxed {0, 1, 2, 3}-edge-connectivity prob-

lem in planar graphs. This is the first PTAS for connectivity beyond 2-connectivity in

planar graphs:

Theorem 2.1. For any ε > 0 and any planar graph instance of the relaxed {0, 1, 2, 3}-
edge connectivity problem, there is an O(n log n)-time algorithm that finds a solution

whose weight is at most 1 + ε times the weight of an optimal solution.

2.1 Overview

In the this section, we overview the spanner framework for network design problems

in planar graphs [22] that we use for the relaxed {0, 1, 2, 3}-edge connectivity problem.

In this overview we highlight the technical challenges that arise from handling 3-edge

connectivity. We then overview why we use properties of vertex connectivity to address

an edge connectivity problem and state our specific observations about triconnected

planar graphs that we require for the PTAS framework to apply. In the remainder, 2-EC

refers to “relaxed {0, 1, 2}-edge-connectivity” and 3-EC refers to “relaxed {0, 1, 2, 3}-
edge-connectivity”.

2.1.1 Overview of 2-EC PTAS

The spanner framework grew out of a PTAS for travelling salesperson problem [88]

and has been used to give PTASes for Steiner tree [19, 23], Steiner forest [8] and 2-

EC [22] problems. For simplicity of presentation, we follow the PTAS whose running

time is doubly exponential in 1/ε [19]; this can be improved to singly exponential as for

Steiner tree [23]. Note that for all these problems (except Steiner forest, which requires a

preprocessing step to the framework), the optimal value OPT of the solution is within a

constant factor of the optimal value of a Steiner tree on the same terminal set where we

refer to vertices with non-zero requirement as terminals. In the following, Oε-notation

18

hides factors depending on ε.

The spanner framework for a planar connectivity problem in graph G consists of

the following steps. We describe the steps in terms of the relaxed I-edge connectivity

problem, which, at this high level, are easy to generalize from the application of this

framework to Steiner tree [19] and 2-EC [22]:

Step 1: Find the spanner subgraph H (described below) having the properties:

(S1) w(H) = Oε(OPT), and

(S2) H contains a feasible solution to the connectivity problem of value at most

(1 + ε)OPT .

To find a (1 + O(ε))-approximate solution in G, it is sufficient to find a (1 + ε)-

approximate nearly-optimal solution in H by (S2).

Step 2: Decompose the spanner into a set of subgraphs, called slices, such that:

(A1) each slice has branchwidth Oε(1),

(A2) the boundary of a slice is a set of cycles and every cycle bounds exactly two

slices,

(A3) the weight of all boundary edges is at most εOPT.

The slice boundaries correspond to every kth breadth-first level in the dual graph;

this gives property (A2). By choosing k = Oε(1), we get property (A1). Property

(A3) follows from (S1) for k sufficiently large.

Step 3: Add artificial terminals to slice boundaries and assign connectivity requirements

so that:

(B1) For each slice, there is a feasible solution over the original and artificial ter-

minals whose weight is bounded by the weight of the slice boundary plus the

weight of the optimal solution in the slice.

(B2) The union of these slice solutions is a feasible solution for the original original.

19

This can be done by adding a terminal to a boundary cycle if the cycle separates

any two original terminals and assigning this terminal a connectivity requirement

equal to the maximum connectivity requirement the cycle separates (e.g. 2 if the

cycle separates two terminals each having a connectivity requirement of 2); this

process and the fact that edge connectivity is transitive guarantees property (B2).

Property (B1) is guaranteed by property (A3) as seen by adding 2 max I copies of

the slices to a solution in H.

Step 4: Solve the problem with respect to original and artificial terminals in each slice.

By property (A1), we can do this by dynamic programming over the branch decom-

position.

Step 5: Return the union of the slice solutions.

We apply this framework to the 3-EC problem. Algorithmically, the modifications needed

for 3-EC (as compared to 2-EC or Steiner tree) are limited to Step 4; in Section 2.5,

we give an Oε(n)-time dynamic program for the I-edge connectivity problem on graphs

with branchwidth Oε(1), which is inspired by that for the k-vertex-connectivity spanning

subgraph problem in Euclidean space given by Czumaj and Lingas in [38, 39]. We will

argue that the spanner construction (with larger constants) is the same as used for

Steiner tree and 2-EC; this argument is the bulk of the technical challenge of this work.

Borradaile, Klein and Mathieu show that Step 1 can be done in Oε(n log n) time [23, 22]

and Steps 2 and 3 can be done in O(n) time. Therefore, we will achieve an Oε(n log n)

running time for 3-EC.

Spanners for connectivity problems The spanner construction for Steiner tree and

2-EC [23] (and, as we will argue, for 3-EC) starts with finding the mortar graph MG

of the input graph G. The mortar graph is a grid-like subgraph of G that spans all the

terminals and has total weight bounded by Oε(1) times the minimum weight of a Steiner

tree spanning all the terminals (i.e. weight Oε(OPT)). To construct the mortar graph,

we first find an approximate Steiner tree connnecting all terminals and recursively add

some short paths. Each face of MG is bounded by four (1 + ε) approximations to short

paths; the subgraph of G that is enclosed by a face of MG is called a brick.

A structure theorem shows that there is a nearly optimal solution for Steiner tree and

2-EC whose intersection with each brick is a set of non-crossing trees with Oε(1) leaves

20

that are portals (a subset of Oε(1) designated vertices of the boundary of the brick) [22].

Each such tree can be computed efficiently since each is a Steiner tree with vertices on

the boundary of a planar graph (a brick) [51].

We compute the spanner subgraph H by starting with the mortar graph, assigning

Oε(1) vertices of each brick boundary to be portals and adding to the spanner all Steiner

trees for each subset of portals in each brick. Since there are Oε(1) Steiner trees per

brick and each has weight at most the boundary of the brick, the spanner has weight

Oε(OPT). By the structure theorem, it is sufficient to solve the given problem in the

spanner.

Extension to the 3-EC problem To prove that the spanner framework extends to

3-edge connectivity, we need to show this construction results in a spanner for 3-EC, that

is, that H contains a (1 + ε)-approximate solution to 3-EC. This is the main technical

challenge of this work. We will prove:

Theorem 2.2 (Structure Theorem for 3-EC). For any ε > 0 and any planar graph

instance (G,w, r) of the 3-EC problem, there exists a feasible solution S in the spanner

H such that

• the weight of S is at most (1 + cε)OPT where c is an absolute constant, and

• the intersection of S with the interior of any brick is a set of Oε(1) trees whose

leaves are on the boundary of the brick and each tree has Oε(1) leaves.

The interior of a brick is the set of brick edges that are not on the boundary of the

brick (that is, not in MG). We denote the interior of a brick B by int(B). Consider a

brick B of G whose boundary is a face of MG and consider the intersection of OPT with

the interior of this brick, OPT ∩ int(B). To prove the Structure Theorem, we will show

that:

(P1) OPT ∩ int(B) can be partitioned into a set of trees T whose leaves are on the

boundary of B.

(P2) If we replace any tree in T with another tree spanning the same leaves, the result

is a feasible solution.

21

(P3) There is another set of O(1) trees T ′ and a set of brick boundary edges B′ that

costs at most a 1 + ε factor more than T , such that each tree of T ′ has O(1) leaves

and (OPT \ T) ∪ T ′ ∪B′ is a feasible solution.

Property P1 implies that we can decompose an optimal solution into a set of trees

inside of bricks plus some edges of MG. Property P2 shows that we can treat those trees

independently with regard to connectivity, and this gives us hope that we can replace

OPT ∩ int(B) with some Steiner trees with terminals on the boundary which we can

efficiently compute in planar graphs [51]. Property P3 shows that we can compute an

approximation to OPT ∩ int(B) by guessing O(1) leaves.

For the Steiner tree problem, P1 and P2 are nearly trivial to argue; the bulk of the

work is in showing P3 [19].

For the 2-EC problem, P1 depends on first converting G and OPT into G′ and

OPT′ such that OPT′ biconnects (two-vertex connects) the terminals requiring two-edge

connectivity and using the relatively easy-to-argue fact that every cycle of OPT′ contains

at least one terminal. By this fact, a cycle in OPT′ must contain a vertex of the brick’s

boundary (since MG spans the terminals), allowing the partition of OPT′ ∩ int(B) into

trees. P2 and P3 then require that two-connectivity across the brick is maintained.

For the 3-EC problem, P1 is quite involved to show, but further to that, showing

Property P2 is also involved; the issues are illustrated in Figure 2.1 and are the focus

of Sections 2.2 and 2.3. As with 2-EC, we convert OPT into a vertex connected graph

to simplify the arguments. Given Properties P1 and P2, we illustrate Property P3 by

following a similar argument as for 2-EC; since this requires reviewing more details of

the PTAS framework, we cover this in Section 2.4.

Non-planar graphs We point out that, while previously-studied problems that admit

PTASes in planar graphs (e.g. independent set and vertex cover [6], TSP [88, 87, 4],

Steiner tree [23] and forest [8], 2-EC [22]) generalize to surfaces of bounded genus [18],

it is not clear how to generalize the method presented here for 3-EC to higher genus

surfaces. In the generalization to bounded genus surfaces, the graph is preprocessed (by

removing some provably unnecessary edges) so that one can compute a mortar graph

whose faces bound disks. This guarantees that even though the input graph is not planar,

the bricks are; this is sufficient for proving above-numbered properties in the case of TSP,

22

Figure 2.1: If the bold red tree (left) is OPT ∩ int(B) (where B is denoted by the
rectangle), replacing the tree with another tree spanning the same leaves (right) could
destroy 3-connectivity between t1 and t2. We will show that such a tree cannot exist in
a minimally connected graph.

Steiner tree and forest and 2-EC. However, for 3-ECP, in order to prove P2, we require

global planarity, not just planarity of the brick. To the authors’ knowledge, this is the

only problem that we know to admit a PTAS in planar graphs that does not naturally

generalize to toroidal graphs.

2.1.2 Reduction to Vertex Connectivity

Now we overview how we use vertex connectivity to argue about the structural properties

of edge-connectivity required for the spanner properties.

We require a few definitions. Vertices x and y are k-vertex-connected in a graph G

if G contains k pairwise vertex disjoint x-to-y paths. If k = 3 (k = 2), then x and y are

also called triconnected (biconnected). For a subset Q of vertices in G and a requirement

function r : Q→ {2, 3}, subgraph H is said to be (Q, r)-vertex-connected if every pair of

vertices x, y in Q is k-vertex-connected where k = min{r(x), r(y)}. We call the vertices

of Q terminals. If r(x) = 3 (r(x) = 2) for all x ∈ Q, we say H is Q-triconnected (Q-

biconnected). We say a (Q, r)-vertex-connected graph is minimal, if no edge or vertex

can be deleted without violating the connectivity requirements.

We cleave vertices to transform edge-connectivity into vertex-connectivity. Infor-

mally, cleaving a vertex is splitting the vertex into two copies and adding a zero-

weight edge between the copies; incident edges choose between the copies in a planarity-

23

Figure 2.2: Vertex v is cleaved into vertices v1 and v2. The edges incident to v are
partitioned into two sets A and B to become incident to distinct copies.

preserving way (Figure 2.2). We show in Section 2.4.2.2 how to cleave the vertices of

OPT, creating OPT′, so that if two terminals are k-edge-connected in OPT, there are

corresponding terminals in OPT′ that are k-vertex-connected. We will prove that OPT′

satisfies Properties P1 and P2 and since OPT′ is obtained from OPT by cleavings, these

two properties also hold for OPT.

To prove that OPT′ satisfies Property P1, we show that every cycle in OPT′ contains

at least one terminal (Section 2.2). To prove that OPT′ satisfies Property P2, we define

the notion of a terminal-bounded component: a connected subgraph is a terminal-bounded

component if it is an edge between two terminals or obtained from a maximal terminal-

free subgraph S (a subgraph containing no terminals), by adding edges from S to its

neighbors (which are all terminals by maximality of S). In Section 2.3, we prove that in

a minimal Q-triconnected graph any terminal-bounded component is a tree whose leaves

are terminals as well as:

Theorem 2.3 (Connectivity Separation Theorem). Given a minimal (Q, r)-vertex-connected

planar graph, for any pair of terminals x and y that require triconnectivity (biconnectiv-

ity), there are three (two) vertex disjoint paths from x to y in G such that any two of

them do not contain edges of the same terminal-bounded tree.

Corollary 2.4. Given a minimal (Q, r)-vertex-connected planar graph, for any pair of

terminals x and y that require triconnectivity (biconnectivity), there exist three (two)

vertex disjoint x-to-y paths such that any path that connects any two of those x-to-y

paths contains a terminal.

This corollary can be viewed as a generalization of the following by Borradaile and Klein

for 2-ECP [22]:

24

Theorem 2.5. (Theorem 2.8 [22]). Given a graph that minimally biconnects a set of

terminals, for any pair of terminals x and y and for any two vertex disjoint x-to-y paths,

any path that connects these paths must contain a terminal.

Note that Theorem 2.5 holds for general graphs while we only know Corollary 2.4 to

hold for planar graphs, underscoring why our PTAS does not generalize to higher-genus

graphs. Further “for any” is sufficient for biconnectivity (Theorem 2.5) whereas “there

exists” is necessary for triconnectivity (Corollary 2.4) as illustrated by the example in

Figure 2.3. Higher connectivity comes at a price.

Figure 2.3: A minimal Q-triconnected graph. The bold vertices are terminals. The
dashed path connects two x-to-y paths but it does not contain any terminal.

For OPT′, Corollary 2.4 implies Property P2. Consider the set of disjoint paths

guaranteed by Corollary 2.4. If any tree replacement in a brick merges any two disjoint

paths, say P1 and P2, in the set (the replacement in Figure 2.1 merges three paths),

then the replaced tree must contain at least one vertex of P1 and one vertex of P2. This

implies the replaced tree contains a P1-to-P2 path P such that each vertex in P has

degree at least two in the replaced tree. Further, P contains a terminal by Corollary 2.4.

However, all the terminals are in the mortar graph, which forms the boundaries of the

bricks. So P must have a common vertex with the boundary of the brick. By Property

P1, the replaced tree, which is in the intersection of OPT′ with the interior of the brick,

can only contain leaves on the boundary of the brick. Therefore, the replaced tree can

not contain such a P1-to-P2 path, otherwise there is a vertex in P that has degree one

in the tree. We give the complete proof of this implication in Section 2.4.

25

2.2 Vertex-connectivity Basics

In this section, we consider minimal (Q, r)-vertex-connected graphs for a subset Q of

vertices and a requirement function r : Q → {2, 3}. We use the properties given in this

section throughout the proof of the Connectivity Separation Theorem.

Lemma 2.6. A minimal (Q, r)-vertex-connected graph is biconnected.

Proof. For a contradiction, assume that a minimal (Q, r)-vertex-connected graph H has

a cut-vertex u and let the subgraphs be Hi for 0 < i ≤ k and k ≥ 2 after removing u.

Then for any vertex x ∈ Hi and y ∈ Hj (i 6= j), every x-to-y path must contain u. If

Hi and Hj (i 6= j) both have terminals, then terminals in those different subgraphs do

not achieve the required vertex-connectivity. It follows that there exists one subgraph

Hi∪{u} that contains all the terminals. For any two terminals x, y ∈ Hi∪{u}, the paths

witnessing their connectivity are simple and so can only visit u once. Therefore, Hi∪{u}
is a smaller subgraph that is (Q, r)-vertex-connected, contradicting the minimality.

2.2.1 Ear Decompositions

An ear decomposition of a graph is a partition of its edges into a sequence of cycles

and paths (the ears of the decomposition) such that the endpoints of each ear belong to

the union of earlier ears in the decomposition. An ear is open if its two endpoints are

distinct from each other. An ear decomposition is open if all ears but the first are open.

A graph containing more than one vertex is biconnected if and only if it has an open ear

decomposition [118]. Ear decompositions can be found greedily starting with any cycle

as the first ear. It is easy to see that a more general ear decomposition can start with

any biconnected subgraph:

Observation 2.7. For any biconnected subgraph H of a biconnected graph G, there

exists an open ear decomposition E1, E2, . . . , Ek of G such that H =
⋃
i≤j Ei for some

j ≤ k.

Let G be a minimal (Q, r)-vertex-connected graph, and let H be a minimal Q3-

triconnected subgraph of G where Q3 = r−1(3). Then more strongly, we can assume

that each ear of G that is within the parts of G\H contains a terminal. (G is biconnected

by Lemma 2.6.) We do so by starting with an open ear decomposition of H and then for

26

each terminal that is not yet spanned in turn, we add an ear through it; such an ear exists

because these terminals require biconnectivity and must have two disjoint paths to the

partially constructed ear decomposition. Any remaining edges after the terminals have

been spanned would contradict the minimality of G. Formally and more specifically:

Observation 2.8. For G and H, there is an open ear decomposition E1, E2, . . . , Ek of

G such that for any component χ of G \ H, χ =
⋃b
i=aEi for some a ≤ b ≤ k and Ei

contains a terminal for i = a, . . . , b.

Lemma 2.9. For G and H, there is an open ear decomposition E1, E2, . . . , Ek of G

such that for any component χ =
⋃b
i=aEi of G \H, any path in χ (or χ \Ea) with both

endpoints in H (or H ∪ Ea) strictly contains a vertex of Q.

Proof. We prove the lemma for the path in χ with endpoints in H; the other case can

be proved similarly. We prove this by induction on the index of the ear decomposition

guaranteed by Observation 2.8. A path P in G \H with both endpoints in H belongs

to a component χ of G \H. Suppose that the lemma is true for every H-to-H path in⋃c
i=aEi; we prove the lemma true for such a path in

⋃c+1
i=a Ei. Since Ec+1 is an open ear,

any path with two endpoints in H that uses an edge of Ec+1 would have to contain the

entirety of Ec+1, which contains a terminal.

2.2.2 Removable Edges

Holton, Jackson, Saito and Wormald study the removability of edges in triconnected

graphs [72]. For an edge e = uv of a simple, triconnected graph G, removing e consists

of (i) deleting uv from G, (ii) if u or v now have degree 2, contracting incident edges,

and (iii) deleting parallel edges. The resulting graph is denoted by G 	 e. If G 	 e is

triconnected, then e is said to be removable. We use the following theorems of Holton

et al. [72].

Theorem 2.10 (Theorem 1 [72]). Let G be a triconnected graph of order at least six

and e ∈ E(G). Then e is nonremovable if and only if there exists a set S containing

exactly two vertices such that G \ {e, S} has exactly two components A,B with |A| ≥ 2

and |B| ≥ 2.

In the above theorem, we call (e, S) a separating pair. For a separating pair (e, S) of

G, we say S is the separating set for e.

27

Theorem 2.11 (Theorem 2 [72]). Let G be a triconnected graph of order at least six, and

let (e, S) be a separating pair of G. Let e = xy, and let A and B be the two components

of G \ {e, S}, x ∈ A, and y ∈ B. Then every edge joining S and {x, y} is removable.

Theorem 2.12 (Theorem 6 part (a) [72]). Let G be a triconnected graph of order at

least six and C be a cycle of G. Suppose that no edges of C are removable. Then there

is an edge yz in C and a vertex x of G such that xy and xz are removable edges of G,

dG(y) = dG(z) = 3 and dG(x) ≥ 4.

2.2.3 Properties of Minimal (Q, r)-vertex-connected Graphs

For a Q-triconnected graph H, we can obtain another graph H ′ by contracting all the

edges incident to the vertices of degree two in H. We say H ′ is the contracted version

of H and, alternatively, is contracted Q-triconnected.

Lemma 2.13. A contracted minimal Q-triconnected graph is triconnected.

Proof. For a contradiction, we assume that a contracted minimal Q-triconnected graph

H has a pair of cut-vertices {u, v} and let the subgraphs be Hi for 0 < i ≤ k and

k ≥ 2 after removing {u, v}. Then for any vertices x ∈ Hi and y ∈ Hj (i 6= j), every

x-to-y path must use either u or v. If Hi and Hj (i 6= j) both contain terminals, then

terminals in those different subgraphs do not satisfy the triconnectivity. It follows there

exists one strict subgraph Hi∪{u, v} containing all the terminals. For any two terminals

x, y ∈ Hi ∪ {u, v}, the paths witnessing their connnectivity are simple and can only

visit u and v once. So Hi ∪ {u, v} is a smaller subgraph that is Q-triconnected, which

contradicts the minimality.

Lemma 2.14. If H is a minimal Q-triconnected graph, then the contracted version of

H is also a minimal Q-triconnected graph.

Proof. Let H ′ be the contracted Q-triconnected graph obtained from H. For a con-

tradiction, assume H ′ is not minimal Q-triconnected. Then we can delete at least one

edge, say e, in H ′ while maintaining Q-triconnectivity. Then e corresponds a path in H,

deleting which will not affect the Q-triconnectivity. This contradicts the minimality of

H.

28

Lemma 2.15. For |Q| = 3, a contracted minimal Q-triconnected graph is simple or

is a triangle with three pairs of parallel edges. For |Q| > 3, a contracted minimal Q-

triconnected graph is simple.

Proof. Let H be a minimal Q-triconnected graph, and H ′ the contracted graph. We

have the following observation.

Observation 2.16. If there are parallel edges between any pair of vertices in H ′, the

paths witnessing the vertex-connectivity between any other pair of terminals can only use

one of the parallel edges.

By the above observation, the parallel edges can only be between terminals in H ′.

Claim 2.17. For |Q| > 2, there can not exist three parallel edges between any two

terminals in H ′.

Proof. Let t1, t2 and t3 be three terminals and assume there are three parallel edges, say

e1, e2 and e3, between t1 and t2. Let P1 be the path in H corresponding to e1. We will

argue that H \ P1 is Q-triconnnected by showing that H ′ − e1 is Q-triconnected. There

must be a path in H ′ from t1 to t3 that does not use e1, e2 and e3 by Observation 2.16

and a path in H ′ from t2 to t3 that does not use e1, e2 and e3. These paths witness a

t1 to t2 path R in H ′ that does not use e1, e2 and e3. So after deleting e1, t1 and t2 are

still triconnected by e2, e3 and R. By Observation 2.16, deleting e1 does not affect the

triconnectivity of other pairs of terminals.

We first prove the first statement of Lemma 2.15. Let t1, t2 and t3 be the three

terminals, and suppose H ′ is not simple; let e1 and e2 be parallel edges w.l.o.g. between

t1 and t2. By Observation 2.16, there must be two disjoint paths in H ′ from t1 to t3 that

do not use e1 and e2. Therefore, there is a simple cycle, called C13, through t1 and t3.

Similarly, there is another cycle, called C23, through t2 and t3. If C13 and C23 have only

one common vertex t3, then C13∪C23∪{e1, e2} is a subgraph of H ′ that is Q-triconnected,

and must be a triangle with three pairs of parallel edges by the minimality of H ′ and

Lemma 2.14. If C13 and C23 have more than one common vertex, then C13∪C23 contains

a simple cycle through t1 and t2. So H ′ − e1 will be a smaller Q-triconnected graph,

contradicting the minimality of H ′.

29

Now we prove the second statement. For any four terminals t1, t2, t3, t4 ∈ Q, without

loss of generality, assume there are two parallel edges e1 and e2 between t1 and t2 in

H ′ by Claim 2.17. We will prove that H ′ − e1 is also Q-triconnected, contradicting the

minimality of H. To prove this, we argue that t1 and t2 are four-vertex-connected in H ′

and biconnected in H ′ \ {e1, e2}.
For a contradiction, we assume t1 and t2 are simply connected but not biconnected

in H ′ \ {e1, e2}. By Claim 2.17, every other pair of terminals is at least biconnected in

H ′ \ {e1, e2}. Consider the block-cut tree of H ′ − e1, the tree whose vertices represent

maximal biconnected components and whose edges represent shared vertices between

those components [52].

The biconnectivity of t1 and t3 implies t1 and t3 are in a common block B13 in the

block-cut tree. Likewise, t2 and t3 are in a common block B23. If t2 ∈ B13 then t1 and

t2 are biconnected, a contradiction. Now we have B13 ∩B23 = {t3}. The biconnectivity

of t1 and t4 implies that t1 and t4 are in the same block. Since t3 is a cut for t1 and t2,

t3 is also a cut for t4 and t2, which contradicts the biconnectivity of t2 and t4. So t1 and

t2 are biconnected in H ′ \ {e1, e2}.

Lemma 2.18. Let H be a contracted minimal Q-triconnected simple graph. Then for

any e ∈ E(H), if neither of the two endpoints of e are terminals, e is nonremovable.

Proof. By Lemma 2.13, H is triconnected. Let e ∈ H be an edge, neither of whose

endpoints are terminals. For a contradiction, suppose e is removable, then H 	 e is

triconnected. Since neither of the two endpoints of e are terminals, Q ⊆ V (H 	 e). So

H 	 e is a smaller Q-triconnected graph than H, contradicting minimality of H.

2.2.4 Cycles Must Contain Terminals

Borradaile and Klein proved that in a minimal Q-biconnected graph, every cycle contains

a terminal (Theorem 2.5 [22]). We prove the following:

Lemma 2.19. Let H be a contracted minimal Q-triconnected graph. Then every cycle

in H contains a vertex of Q.

Proof. H is triconnected by Lemma 2.13. If H is not simple, then either |Q| = 2 or

|Q| = 3. If |Q| = 2, then by the minimality of H, H consists of three parallel edges. If

|Q| = 3, then by Lemma 2.15, H is a triangle with three pairs of parallel edges.

30

Now we assume H is a simple graph and by Lemma 2.15, |Q| ≥ 3. For a contradiction,

assume there is a cycle C in H on which there is no terminal. Since H is simple, by

Lemma 2.18, every edge on C will be nonremovable. Since |C| ≥ 3 and |Q| ≥ 3, |V (H)| ≥
6. By Theorem 2.12 if there is no removable edges on C, then there exists an edge yz

on C and another vertex x of H such that xy and xz are removable, dH(y) = dH(z) = 3

and dH(x) ≥ 4. In H − xy, y is the only possible degree 2 vertex, and contracting yz

does not introduce any parallel edges, so H	xy contains Q and is Q-triconnected, which

contradicts the minimality of H.

Theorem 2.20. For a requirement function r : Q → {2, 3}, let G be a minimal (Q, r)-

vertex-connected graph. Then every cycle in G contains a vertex of Q.

Proof. Let G′ be a minimal Q-triconnected graph that is a supergraph of G. Let G′′

be the contracted minimal Q-triconnected graph obtained from G′. Then by Lemma

2.19, every cycle in G′′ contains a vertex of Q; G′ also has this property since G′ is a

subdivision of G′′ and clearly, G as a subgraph of G′, also has this property.

Lemma 2.21. Let H be a contracted minimal Q-triconnected graph. If a cycle in H

only contains one vertex v of Q, then one edge of that cycle incident to v is removable.

Proof. For a contradiction, assume both edges in the cycle incident to v are nonremov-

able. By Lemma 2.18 all the other edges in the cycle are also nonremovable, so all the

edges in the cycle are nonremovable. By Theorem 2.12, there is an edge yz in the cy-

cle and a vertex x in H such that xy and xz are removable, dH(y) = dH(z) = 3 and

dH(x) ≥ 4. Then one of y and z can not be in Q. W.l.o.g. assume y is not in Q. In

H − xy, y is the only possible degree 2 vertex, and contracting yz does not introduce

any parallel edges, so H 	 xy contains Q and is Q-triconnected, which contradicts the

minimality of H.

2.3 Connectivity Separation

In this section we continue to focus on vertex connectivity and prove the Connectivity

Separation Theorem. The Connectivity Separation Theorem for biconnectivity follows

easily from Theorem 2.5. To see why, consider two paths P1 and P2 that witness the

31

biconnectivity of two terminals x and y. For an edge of P1 to be in the same terminal-

bounded component as an edge of P2, there would need to be a P1-to-P2 path that is

terminal-free. However, such a path must contain a terminal by Theorem 2.5. Herein

we mainly focus on triconnectivity.

For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-connected

planar graph. We say a subgraph is terminal-free if it is connected and does not contain

any terminals. It follows from Theorem 2.20 that any terminal-free subgraph of G is

a tree. We partition the edges of G into terminal-bounded components as follows: a

terminal-bounded component is either an edge connecting two terminals or is obtained

from a maximal terminal-free tree T by adding the edges from T to its neighbors, all

of which are terminals. Theorem 2.22 will show that any terminal-bounded subgraph is

also a tree.

For a connected subgraph χ of G and an embedding of G with outer face containing

no edge of χ, let C(χ) be the simple cycle that strictly encloses the fewest faces and

all edges of χ, if such a cycle exists. (Note that C(χ) does not exist if there is no

aforementioned choice for an outer face.) In order to prove the Connectivity Separation

Theorem for bi- and triconnectivity, we start with the following theorem:

Theorem 2.22 (Tree Cycle Theorem). Let T be a terminal-bounded component in a

minimal Q-triconnected planar graph H. Then T is a tree and C(T) exists with the

following properties

(a) The internal vertices of T are strictly inside of C(T).

(b) All vertices strictly inside of C(T) are on T .

(c) All leaves of T are in C(T).

(d) Any pair of distinct maximal terminal-free subpaths of C(T) does not contain vertices

of the same terminal-bounded tree.

We can also obtain an interesting property by this theorem.

Theorem 2.23. In a planar graph that minimally pairwise triconnects a set of terminal

vertices, every cycle contains at least two terminals.

32

Proof. For a contradiction, assume there is a cycle in H that only containing one termi-

nal, then there is a terminal-bounded component containing that cycle, which can not

be a tree, contradicting the Tree Cycle Theorem.

We give the proof the Tree Cycle Theorem in Subsection 2.3.2. First, let us see how

the Tree Cycle Theorem implies the Connectivity Separation Theorem.

2.3.1 The Tree Cycle Theorem Implies the Connectivity Separation

Theorem

For a requirement function r : Q → {2, 3}, let G be a minimal (Q, r)-vertex-connected

planar graph. Let Q3 be the set of terminals requiring triconnectivity, and let H be a

minimal Q3-triconnected subgraph of G. Let Q2 = Q\Q3. We will prove the theorem for

different types of pairs of terminals, based on their connectivity requirement. Lemma 2.9

allows us to focus on H when considering terminals in H (note that terminals of Q2 may

be in H), for a simple corollary of Lemma 2.9 is that if two trees are terminal-bounded

in H, then they cannot be subtrees of the same terminal-bounded tree in G. Note

that if we consider a subset of the terminals in defining free-ness of terminals, the same

properties will hold for Q, as adding terminals only further partitions terminal-bounded

trees. Consider two terminals x and y.

2.3.1.1 Connectivity Separation for x,y ∈ Q3

For now, we consider only Q3 to be terminals. We say connected components share a

terminal-bounded tree if they contain edges (and so internal vertices) of that tree. We

prove the following lemma which can be seen as a generalization of Connectivity Separa-

tion for contracted triconnected graphs. We use this generalization to prove Connectiv-

ity Separation for terminals both of which may not be in Q3. Connectivity Separation

for terminals in Q3 follows from this lemma by considering three vertex disjoint paths

matching A to B where A = {x, x, x} and B = {y, y, y}. Note that the lemma may swap

endpoints of paths; in particular, for vertex disjoint a-to-b and c-to-d paths, the lemma

may only guarantee a-to-d and c-to-b paths that do not share terminal-bounded trees.

33

Lemma 2.24. If two multisets of vertices A and B (where |A| = |B| = 2, resp. 3) satisfy

the following conditions, then there are two (resp. three) internally vertex-disjoint paths

from A to B such that no two of them share the same terminal-bounded tree.

1. Distinct vertices in A are in distinct terminal-bounded trees and distinct vertices

in B are in distinct terminal-bounded trees.

2. There are two (resp. three) vertex-disjoint paths from A to B.

Proof. We prove the lemma for three paths as the two-paths version is proved by the

first case of three-paths version. Let P1, P2 and P3 be the three vertex disjoint paths

whose endpoints are in different terminal-bounded trees. For i = 1, 2, 3, let ai and bi be

the endpoints of Pi. Let T be the collection of terminal-bounded trees shared by two or

more of P1, P2 and P3. We prove, by induction on the size of T , that we can modify the

paths to satisfy Connectivity Separation. We pick a tree T ∈ T shared by (w.l.o.g.) P1

and modify the paths so that T is not shared by the new paths; further, we show that

the terminal-bounded trees shared by the new paths are a subset of T \ {T}.
We order the vertices of Pi from ai to bi for i = 1, 2, 3. Among all the trees in T shared

by P1, let T be the tree sharing the first vertex from a1 to b1 along P1. Without loss of

generality, assume that T is shared by P2. (P3 may also share T .) Let C be the cycle

guaranteed by the Tree Cycle Theorem for T in H. Since x and y are terminals, they are

not strictly enclosed by C (property (b)). Further, P1 and P2 must both contain vertices

of C because P1 and P2 both contain internal vertices of T and the internal vertices of

T are strictly enclosed by C (property (a)).

Augmenting the paths First we augment each path to simplify the construction, but

may make the paths non-simple. If there is a terminal-bounded tree shared by only Pi

and C (and not Pj , j 6= i), then there is a terminal-free path from Pi to C; add two

copies of this path to Pi (Pi travels back and forth along this path). We repeat this

for every possible shared tree and i = 1, 2, 3. We let P1, P2, P3 be the resulting paths.

Note that adding such paths does not introduce any new shared terminal-bounded trees

between P1, P2, P3 and P1, P2, P3 are still vertex-disjoint.

Let ui and vi be the first and last vertex of Pi that is in C. There are two cases:

Case 1: P3 is disjoint from C. In this case there were no applicable augmentations to

P3 as described above (and u3 and v3 are undefined). Since T is the first tree in T along

34

P1, u1 and u2 cannot be internal vertices of the same terminal-bounded tree. Further,

by planarity and disjointness of the three paths, {u1, v1} and {u2, v2} do not interleave

around C. Let Ci be the ui-to-vi subpath of C disjoint from {u3−i, v3−i} for i = 1, 2:

C1 and C2 are disjoint. By construction, P1 ∪ P2 ∪ C1 ∪ C2 \ {P1[u1, v1], P2[u2, v2]} (by

P [a, b] or T [a, b] we denote the a-to-b subpath of path P or tree T) contains two disjoint

A-to-B paths; these paths replace P1 and P2. By the definition of ui and vi for i = 1, 2

and the above-described path augmentation, if Ci shares a terminal-bounded tree with

another path, then that tree was already in T . Therefore we have reduced the number

of shared terminal-bounded trees (since T is no longer shared) without introducing any

new shared terminal-bounded trees.

Case 2: P3 and C have at least one common vertex. In this case, P3 may or may

not contain internal vertices of T . By planarity and disjointness of the paths, the sets

{u1, u2, u3} and {v1, v2, v3} do not interleave around C. Let Cu and Cv be the minimal

subpaths of C that span {u1, u2, u3} and {v1, v2, v3}, respectively. Let C1 and C2 be

the components of C \ {Cu, Cv}. Then C1 and C2 are disjoint paths that connect two

vertices of {u1, u2, u3} to two vertices of {v1, v2, v3}.
By planarity and disjointness of the paths, there must be a leaf of T that is an internal

vertex of Cu in order for paths to reach T from that leaf of T ; the same property holds

for Cv. Let C3 be the simple path from the middle vertex of {u1, u2, u3} to the middle

vertex of {v1, v2, v3} in Cu ∪ Cv ∪ T . Then the to-C prefices of Pi, Ci and the from-C

suffices of Pi (for i = 1, 2, 3) together form three vertex-disjoint paths between the same

endpoints.

The resulting path that contains C3 is the only of the three resulting paths that

contains internal vertices of T since C1 and C2 do not share the same terminal-bounded

tree because the endpoints of C3 ∩ T are terminals (property (d) of the Tree Cycle

Theorem).

By the definition of ui and vi and the above-described path augmentation, if Ci

shares a terminal-bounded tree with another path, then that tree was already in T .

Therefore we have reduced the number of shared terminal-bounded trees (since T is no

longer shared) without introducing any new shared terminal-bounded trees.

35

2.3.1.2 Connectivity Separation for x,y ∈ H ∩Q

Note that H may span vertices of Q2. Let P1 and P2 be vertex-disjoint x-to-y paths. The

first and last edges of P1 and P2 are in different terminal-bounded trees, since x and y are

terminals. If either P1 or P2 is an edge, then we could obtain Connectivity Separation for

x and y. Otherwise, let x1 and x2 be x’s neighbors on P1 and P2 respectively; similarly

define y1 and y2. Let P ′1 and P ′2 be the paths guaranteed by Lemma 2.24 when applied

to P1[x1, y1] and P2[x2, y2]. Then P ′1 ∪ P ′2 ∪ {xx1, xx2, yy1, yy2} contain vertex disjoint

x-to-y paths that satisfy the requirements of Connectivity Separation Theorem.

2.3.1.3 Connectivity Separation for x ∈ Q2 \H,y ∈ Q

Since x and y only require biconnectivity, we will prove that there exists a simple cycle

C containing x and y, such that every C-to-C path strictly contains a terminal, from

which Connectivity Separation follows as argued in the beginning of Section 2.3. The

following claim gives a sufficient condition for such cycle C.

Claim 2.25. If every terminal-bounded tree of H and every component of G \ E(H)

contain at most one strict subpath of C, then every C-to-C path contains a terminal.

Proof. Let P be a C-to-C path and let Cχ be the subpath of C in the component χ of

G \H. Then Cχ has two endpoints in H and it must contain a terminal by Lemma 2.9.

Every subpath of P in χ has endpoints in H ∪Cχ. We can take Cχ as the first ear for χ,

and then every subpath of P in χ contains a terminal by Lemma 2.9. So if P contains

an edge of χ, we have the claim.

If P does not contain an edge in G \H, then P ⊆ H. Further, if P does not contain

any terminal, then it must be in some terminal-free tree T by condition of the claim T

contains only one subpath CT of C. Since P is a C-to-C path, CT and P form a cycle

in T , which contradicts T is a tree. So P must contain a terminal.

The following claim will allow us to use Lemma 2.24 on parts of the x-to-y paths.

Claim 2.26. Each connected component of G \H has at most one non-terminal vertex

in common with any terminal-bounded tree of H.

Proof. For a contradiction, suppose a and b are two non-terminal vertices of component

χ of G \ H that are both in some terminal-bounded tree T of H. Let P be an a-to-b

36

path in χ and let R be a maximal suffix of T [a, b] every internal vertex of which has

degree 2 in G. We show that deleting R maintains the required connectivity of G and

this contradicts minimality of G.

Let H ′ = (H \ R) ∪ P . First we show that H ′ is Q3-triconnected. Since a and b

are not terminals, they are not leaves of T . Then (T \ R) ∪ P is a tree that contains

all the terminals of T as leaves. Since H satisfies Connectivity Separation, as argued

(Section 2.3.1.1 and 2.3.1.2), any two terminals have three vertex disjoint paths, no two

of which contain edges from the same terminal-bounded tree. Therefore replacing T with

(T \R) ∪ P will preserve the connectivity.

To prove G \ R is biconnected, we construct an open ear decomposition. Let R′ be

the maximal superpath of R in H every internal vertex of which has degree 2 in H.

(Note that the endpoints of R need not have degree > 2 in H.) Since the contracted

version of H is triconnected, the endpoints of R′ are triconnected in H and R′ becomes

an edge in the contracted version of H. Therefore H \ R′ is biconnected. Consider an

ear decomposition of G that starts with an ear decomposition of H \ R′ as guaranteed

by Observation 2.7. Since every internal vertex of R has degree 2 in G and since the

endpoints of R have degree > 2 in G, we can greedily select ears of (G \H)∪ (R′ \R) to

span the resting vertices.

Let χ be the component of G \H that contains x, and let a and b be two vertices of

χ ∩H. Then a and b are in distinct terminal-bounded trees of H: if either of a and b is

terminal, then it could be in at least two terminal-bounded trees; otherwise by Claim 2.26

they can not be in the same terminal-bounded tree. We consider an ear decomposition

of G that is guaranteed by Lemma 2.9, starting with an ear decomposition of H with

consecutive ears composing χ. There are two cases.

Case 1: y ∈ H In this case we construct a simple cycle C to satisfy Claim 2.25 containing

x and y as follows. We first find an a-to-b path P1 of H that contains y: add another

new vertex t and two new edges ta and tb into H, then H ∪ {ta, tb} is biconnected and

there exist two vertex disjoint paths from t to y through a and b respectively. So there

exist two disjoint paths Pa and Pb from A = {y, y} and B = {a, b}, and let P1 = Pa∪Pb.
Let P2 be the a-to-b path that is taken as the first ear of χ. If Pa and Pb share any

terminal-bounded trees, we could modify the two paths by Lemma 2.24 for A = {y, y}
and B = {a, b} such that the new paths P ′a and P ′b from A to B are vertex disjoint

37

and do not share any terminal-bounded tree. Further, we shortcut P ′a and P ′b such that

they have at most one subpath in each terminal-bounded tree. Since y is a terminal,

C = P ′a∪P ′b∪P2 satisfies the conditions of Claim 2.25, giving the Connectivity Separation.

Case 2: y ∈ G \H In this case x and y may or may not be in the same component of

G \H.

Suppose x and y are in the same component χ of G \H.

If there is an a-to-b path P1 in χ that contains both of x and y, we take P1 as the

first ear of χ. Let P2 be an a-to-b path in H. We shortcut P2 in each terminal-bounded

tree such that each terminal-bounded tree contains at most one subpath of P2. Let the

cycle C be composed by P1 and P2. Then by Claim 2.25, every C-to-C path contains a

terminal, giving the Connectivity Separation.

If there is no such P1, we take as the first ear of χ an a-to-b path that contains x,

and take the second ear containing y. Then there is a cycle C containing x and y in the

first two ears. Let P be any C-to-C path. Since any pair of vertices in χ ∩ H are not

in the same terminal-bounded tree (as argued for a and b), P will contain a terminal

if it contains an edge in H. If P does not contain an edge of H, then P will contain a

terminal by a similar proof of Lemma 2.9. So P always contains a terminal, giving the

Connectivity Separation.

Suppose x and y are not in the same component. Let χ′ be the component of G \H
that contains y and let a′ and b′ be two common vertices of χ′ and H. Then a′ and b′ are

not in the same terminal-bounded tree of H as previously argued. We argue there exist

two disjoint paths from A = {a, b} to B = {a′, b′} in H: add two new vertices s and t,

and four new edges sa, sb, ta′ and tb′ into H, then H ∪ {sa, sb, ta′, tb′} is biconnected

and there are two vertex disjoint paths from s to t that contains two paths Pa and Pb

from A to B. Let P1 (or P2) be the a-to-b (or a′-to-b′) path that is taken as the first

ear of χ (or χ′). If Pa and Pb share any terminal-bounded trees, we can modify them

by Lemma 2.24 for A and B such that the new paths P ′a and P ′b from A to B are vertex

disjoint and share no terminal-bounded tree. Further, we can shortcut P ′a and P ′b such

that each terminal-bounded tree contains at most one subpath of P ′a and P ′b. Let the

cycle C be composed by P ′a, P
′
b, P1 and P2. Then every terminal-bounded tree of H and

every component of G \H contain at most one strict subpath of C. By Claim 2.25 every

C-to-C path contains a terminal, giving the Connectivity Separation.

This completes the proof of the Connectivity Separation Theorem.

38

2.3.2 Proof of Tree Cycle Theorem

Let G be a minimal Q3-triconnected planar graph. We prove the Tree Cycle Theorem

for the contracted Q3-triconnected graph H obtained from G. If the theorem is true for

H, then it is true for G since subdivision will maintain the properties of the theorem.

By Lemmas 2.14 and 2.15, if there are parallel edges in H, then either |Q3| = 2 and H

consists of three parallel edges or |Q3| = 3 and H is a triangle with three pairs of parallel

edges. The Tree Cycle Theorem is trivial for these two cases.

Proof Overview We focus on a maximal terminal-free tree T ∗, rooted arbitrarily, of

H and the corresponding terminal-bounded component T (that is, T ∗ ⊂ T). We view

T ∗ as a set P of root-to-leaf paths. We show that we find a cycle for each path in

P that strictly encloses only vertices on the paths. The outer cycle of the cycles for

all the paths in P defines C(T). See Figure 2.4. Property (a) directly follows from

the construction. Property (b) is proved by induction on the number of root-to-leaf

paths of T : when we add a new cycle for a path from P, the new outer cycle will only

strictly enclose vertices of the root-to-leaf paths so far considered. After that, we show

any two terminals are triconnected when T is a tree: by modifying the three paths

between terminals in a similar way to Lemma 2.24, only one path will require edges in

T . Since T is connected, this proves T is a tree by minimality of H. Combining the

above properties and triconnectivity of H, we can obtain property (c). Property (d) is

proved by contradiction: if there is another terminal-bounded tree T ′ that shares two

terminal-free paths of C(T), then there is a terminal-free path in T ′. We can show there

is a removable edge in this path of T ′, contradicting Lemma 2.18.

Property (a) To prove that C(T) exists, we will prove the following after proving some

lemmas regarding terminal-free paths (Section 2.3.2.1), which guarantees that there is a

drawing of H such that T ∗ is enclosed by some cycle:

Lemma 2.27. There is a face of H that does not touch any internal vertex of T ∗.

We will also prove the following two lemmas in Section 2.3.2.1:

Lemma 2.28. For any terminal-free path P , there is a drawing of H in which there is

a simple cycle that strictly encloses all the vertices of P and only the vertices of P .

39

Lemma 2.29. Let C1 and C2 be two nested simple cycles of H such that the edges of C1

are enclosed by C2, and C1 and C2 share at most one subpath. Let xy be an edge strictly

enclosed by C2 and not enclosed by (or on) C1. If H satisfies the following conditions,

then xy is removable:

1. C(xy) is vertex-disjoint with the common subpath of C1 and C2, and consists of two

vertex-disjoint C1-to-C2 paths, a subpath of C1 and a subpath of C2 respectively.

2. For every neighbor z of xy in C(xy) \ {C1, C2}, there is a z-to-Ci path that shares

only z with C(xy) (for i = 1 or i = 2).

Taking the face of H guaranteed by Lemma 2.27 as the infinite face, for any path

of T ∗ this drawing guarantees a cycle as given by Lemma 2.28. Arbitrarily root T ∗ and

let P be a collection of root-to-leaf paths that minimally contains all the edges of T ∗.

For path P ∈ P, let CP be the cycle that is guaranteed by Lemma 2.28 which encloses

the fewest faces. By the maximality of T ∗, the neighbors of P ’s endpoints in CP are

terminals. Since P is a path of T ∗ and T ∗ is a maximal terminal-free tree and since, by

Lemma 2.28, CP strictly encloses only the vertices of P , the neighbors of P on CP are

either terminals or vertices of T ∗.

We construct C(T) from
⋃
P∈P CP . Consider any order P1, P2, . . . , P|P| of the paths

in P. Let C1 = CP1 and let Ci be the cycle bounding the outer face of Ci−1 ∪ CPi for

i = 2, . . . , |P |. Inductively, Ci−1 bounds a disk, and strictly encloses P1, . . . , Pi−1. Also,

CPi bounds a disk that overlaps Ci−1’s disk. We define C(T) = C |P|. It follows that

C(T) strictly encloses T ∗ (giving property (a)). That C(T) encloses the fewest faces will

follow from properties (b) and (c). An example is given in Figure 2.4.

Figure 2.4: Illustration of C(T). The dashed cycle is CP for P from l0 to l1 and the
dotted cycle is CP ′ for P ′ from l0 to l2. The outer boundary forms C(T).

40

Property (b) We prove the following lemma and Property (b) follows from C(T) =

C |P|.

Lemma 2.30. Ci strictly encloses only the vertices of
⋃
j≤i Pj and encloses fewest faces.

Proof. We prove this lemma by induction by assuming the lemma is true for Ci−1. The

base case (C1) follows from Lemma 2.28. Refer to Figure 2.5 (a). Since all the paths

in P share the root r of T ∗ as one endpoint, Ci−1 and CPi both strictly enclose r and

so must enclose a disk enclosing r. This disk is bounded by a cycle C consisting of four

subpaths: two vertex-disjoint subpaths R1 and R2 of Ci−1∩CPi and subpaths R3 ⊆ Ci−1

and R4 ⊆ CPi each connecting R1 and R2.

Figure 2.5: Examples for Lemma 2.30. (a) The dotted cycle is CPi and the dashed cycle
is Ci−1. The two red paths are R3 and R4. R1 is trivial. The shaded region represents
the common faces enclosed by Ci−1 and CPi . (b) The bold path is P ∗ and y is strictly
inside of C. (c) If R1 is a vertex, then the bold cycle only contains one terminal: R1,
which has two neighbors in

⋃
j≤i Pj . (d) The dotted paths represent possible y-to-R3

paths inside of C that is different from Pi.

Notice that R3 must be enclosed by CPi and contains a vertex of T ∗, since Ci−1

strictly encloses only
⋃
j<i Pj and so is crossed by Pi at some vertex in R3. Similarly, R4

must be enclosed by Ci−1 and contains a vertex in T ∗. So there is an R4-to-R3 path P ∗

in
⋃
j≤i Pj enclosed by C. Let xy be the first edge in P ∗ with x ∈ R4 (Figure 2.5 (b)).

Then we have the following observations about xy:

Observation 2.31. Edge xy is nonremovable (since neither x nor y are terminals,

Lemma 2.18).

Observation 2.32. Vertex y is strictly enclosed by C.

41

Proof. Let s be the endpoint of P ∗ in R3. Then s ∈ Pi since s is an internal vertex of

R3 and strictly enclosed by CPi . The r-to-s path Ψ1 of T ∗ is strictly enclosed by CPi , so

Ψ1 is a subpath of Pi. The r-to-x path Ψ2 of T ∗ is strictly enclosed by Ci−1, so Ψ2 is

a subpath of
⋃
j<i Pj . Note the lowest common ancestor LCAT ∗(x, s) of x and s in T ∗

is in Ψ1 ∩ Ψ2. So LCAT ∗(x, s) 6= x since LCAT ∗(x, s) ∈ Ψ1 ⊆ Pi and LCAT ∗(x, s) 6= s

since LCAT ∗(x, s) ∈ Ψ2 ⊆
⋃
j<i Pj . See Figure 2.5 (b). It follows LCAT ∗(x, s) is strictly

enclosed by C. Since y is between x and LCAT ∗(x, s) in P ∗, we know y /∈ R3 and the

claim follows.

We argue that R1 and R2 must each contain at least one edge and so it will follow

that R3 and R4 are vertex-disjoint. For a contradiction, assume R1 is a vertex. Refer

to Figure 2.5 (c). Consider the cycle C∗ formed by
⋃
j≤i Pj , a subpath of R3, R1 and

a subpath of R4. By Theorem 2.20, C∗ must contain a terminal. By construction, any

terminal in C∗ must be in R1. So R1 is a terminal t. Since t is the crossing of Ci−1 and

CPi , t’s degree is at least four. By Lemma 2.21, there is an edge in C incident to t that

is removable, which contradicts the minimality of H. The same argument holds for R2.

By the same reasoning, we have the following observation.

Observation 2.33. Any vertex in (Ci−1 ∪ CPi) \
⋃
j≤i Pj has at most one neighbor in⋃

j≤i Pi.

Next, we will prove by contradiction that the subpath S = CPi \E(
⋃
j Rj) only shares

endpoints with Ci−1. This will imply that Ci strictly encloses only vertices of Pi and

vertices strictly inside of Ci−1. Further, this will also imply that Ci encloses fewest faces.

If there is another cycle CI that strictly encloses all vertices of
⋃
j≤i Pj and fewer faces

than Ci, then there is some face that is enclosed by Ci but not enclosed by CI . If that

face is inside of Ci−1, then Ci−1 is not the cycle that encloses
⋃
j<i Pj and fewest faces,

contradicting our inductive hypothesis; if that face is inside of CPi , then CPi is not the

cycle that encloses Pi and fewest face, contradicting our choice of CPi . So there can not

be such cycle CI , giving the lemma.

To prove that S only shares endpoints with Ci−1, we first have some claims.

Claim 2.34. The y-to-R3 subpath of Pi is the only one y-to-R3 path whose edges are

strictly enclosed by C.

42

Proof. By Observation 2.32, y is strictly enclosed by C. For a contradiction, assume

there is another y-to-R3 path Ψ enclosed by C that is not a subpath of Pi. Notice that

the endpoint of Ψ in R3 can not be an endpoint of R3, for otherwise this endpoint of R3

has two neighbors in
⋃
j≤i Pj , contradicting Observation 2.33. Then we know Ψ ⊆ T ∗,

and we have two y-to-R3 paths in T ∗, which together with R3 form a cycle without any

terminals, contradicting Theorem 2.20. See Figure 2.5 (d).

Figure 2.6: Examples for Lemma 2.30. (a) The bold cycle is C(xy). (b) C(xy) bounds
the shaded region contains. The dotted paths are some possible examples for Φ. (c) The
dotted path is S, which shares a subpath with Ci−1. The bold cycle is C ′. R3 and R4

are disjoint. Π contains R1. (d) Π does not contain R1, and the endpoint w of R1 has
two neighbors in

⋃
j≤i Pj .

Claim 2.35. C(xy) consists of two vertex-disjoint R1-to-R2 paths, a subpath of R1 and

a subpath of R2.

Proof. We show the two x-to-y subpaths of C(xy) share at least an edge with R1 and R2

respectively, that implies C(xy) must contain two disjoint R1-to-R2 paths: one through

x and the other through y.

We first argue that the two x-to-y paths in C(xy) must each contain at least one

terminal in R1 ∪ R2. C(xy) ∪ xy contains two cycles whose intersection is xy. By

Theorem 2.20, each of these cycles must contain a terminal. Since neither x nor y are

terminals, each of the x-to-y paths in C(xy) must contain a terminal. Note that C(xy)

is enclosed by C and there is no terminal strictly enclosed by C. Further, since R3 is

enclosed by CPi , all its internal vertices are not terminals. Similarly, all internal vertices

of R4 are not terminals. So all the terminals in C are either in R1 or R2, and each x-to-y

path in C(xy) contains at least one terminal in R1 ∪R2.

43

Next, we show the two terminals can not be both in R1 or R2, which implies the

two paths must share vertices with R1 and R2 respectively. Notice that P ∗ divides the

region inside of C into two parts, each of which has R1 and R2 in the bounding cycle

respectively. If C(xy) only contains vertices in R1 or R2, then C(xy) must cross P ∗ and

there is another cycle that encloses xy and fewer faces than C(xy), contradicting the

definition of C(xy). Then C(xy) must contain two R1-to-R2 paths: one through x and

the other through y.

Both of C(xy)∩R1 and C(xy)∩R2 can not be a vertex, for otherwise the vertex has

two neighbors in
⋃
j≤i Pj , contradicting Observation 2.33. So the two R1-to-R2 paths

are vertex disjoint.

We then argue that C(xy) could only share one subpath with R1, and the same

argument holds for R2. For a contradiction, assume there are more than one subpath of

C(xy) in R1. Then let Φ1 and Φ2 be two such subpaths that are connected by a subpath

Φ3 of C(xy) that is not in R1. Refer to Figure 2.6 (a). Notice that Φ3 is enclosed by

a cycle C ′ consisting of R1, an x-to-R1 subpath of C(xy), an y-to-R1 subpath of C(xy)

and edge xy. Let Φ′3 be the subpath of R1 that has the same endpoints as Φ3. If Φ3 is an

edge, then (Ci−1 ∪Φ3) \Φ′3 is a cycle that strictly encloses
⋃
j<i Pj and fewer faces than

Ci−1, contradicting our inductive hypothesis. If Φ3 contains an internal vertex s, then

s ∈
⋃
j<i Pj since it is strictly enclosed by Ci−1. So there is an s-to-x path in

⋃
j<i Pj

whose edges must be enclosed by C ′. And then by replacing the x-to-R1 subpath of

C(xy) with the s-to-x path, we obtain a cycle that encloses xy and fewer faces than

C(xy), contradicting the definition of C(xy).

Claim 2.36. For every neighbor z of xy in C(xy) \ {R1, R2}, there is a z-to-(Ci ∪R1)

path that shares only z with C(xy).

Proof. If any neighbor z of xy in C(xy) is not in R1∪R2, then z must be on an R1-to-R2

subpath of C(xy), whose internal vertices are in
⋃
j≤i Pj . We construct a z-to-(Ci ∪R1)

path Φ as follows: first find a z-to-Ci−1 subpath Φ1 through
⋃
j<i Pj , and then find a

subpath Φ2 of Ci−1 that connects Φ1 with Ci ∪R1 and is disjoint with C(xy). Let t be

the endpoint of Φ1 in Ci−1. If z ∈ Ci−1, then Φ1 is empty and t = z. If t ∈ Ci ∪ R1,

then Φ2 is empty. We define Φ = Φ1 ∪ Φ2. In the following, we first argue that if Φ1 is

not empty then it only shares z with C(xy), and then show that if Φ2 is not empty, then

Φ only shares z with C(xy).

44

Assume Φ1 is not empty. Since H is triconnected and C(xy) encloses fewest faces,

there exists a path Φ1 from z to Ci−1 that is outside of C(xy). Since (Φ1\{t}) ⊆
⋃
j<i Pj ,

Φ1 can not share any internal vertex with C(xy). Further, Φ1 and C(xy) can not share t,

for otherwise t will be an endpoint of C(xy)∩R1 or C(xy)∩R2 and it has two neighbors

in
⋃
j≤i Pj : one via Φ1 and the other via C(xy), contradicting Observation 2.33. So Φ1

only shares z with C(xy).

Consider the possible position of t in Ci−1. If it is in Ci ∪ R1, then Φ2 is empty. If

not, then it will be strictly enclosed by Ci. Refer to Figure 2.6 (b). There are two cases.

Case 1. If t is in R3, then we choose as Φ2 a subpath of R3.

Note that in this case z could only be y’s neighbor by planarity and Claim 2.35.

Consider the position of z.

If z /∈ R3, we argue R3 and C(xy) are vertex-disjoint, which will imply that there

always exists a t-to-Ci subpath of R3. For a contradiction, assume R3 and C(xy)

are not disjoint. Then C(xy) must contains a y-to-R3 subpath by planarity. Fur-

ther, {yz} ∪ Φ1 witnesses another y-to-R3 path whose edges are strictly enclosed

by C, contradicting Claim 2.34. So R3 and C(xy) are vertex-disjoint.

If z ∈ R3, we argue R3 contains a z-to-(Ci ∪ R1) subpath, which shares only z

with C(xy). By Claim 2.35, C(xy) contains two R1-to-R2 paths, one of which

contains y. Then there are two y-to-C subpaths of C(xy): an y-to-R1 subpath and

an y-to-R2 subpath, which are in distinct regions divided by P ∗ and enclosed by

C. By Claim 2.34, there is only one y-to-R3 path whose edges are strictly enclosed

by C. So only one of the y-to-C subpath of C(xy) shares vertices with R3, and

the other one is vertex-disjoint with R3. If the y-to-Ri subpath is disjoint with R3

for i = 1 or i = 2, then there is a z-to-Ri subpath of R3 that shares only z with

C(xy). Since R2 ⊆ Ci, we have the z-to-(Ci ∪R1) subpath of R3 that shares only

z with C(xy).

Case 2. If t is not in R3, then we choose as Φ2 the t-to-Ci subpath of Ci−1 that is

enclosed in Ci. This subpath always exists and is disjoint with C(xy).

Now we prove that S only shares endpoints with Ci−1. For a contradiction, assume

S has an internal vertex that is in Ci−1. Then by construction Ci would enclose either

45

R1 or R2; w.l.o.g. assume R1 is enclosed by Ci. Let Π be the minimal subpath of Ci−1

that is enclosed by Ci and connects an internal vertex u of S with the common endpoint

v of R1 and S. Let w be the other endpoint of R1. There is a simple cycle C ′ consisting

of two u-to-v subpaths: one is Π and the other is a subpath of S. See Figure 2.6 (c).

Further, Π, and also C ′, contains R1, for otherwise R3 and R4 share w as an endpoint

and w has two neighbors in
⋃
j≤i Pj : one via R3 and the other via R4, contradicting

Observation 2.33. See Figure 2.6 (d). It follows that R3 and R4 are vertex disjoint

C ′-to-Ci paths.

We argue H and xy satisfy the conditions of Lemma 2.29 with C1 = C ′ and C2 = Ci,

which shows xy is removable, giving a contradiction to Observation 2.31:

Condition 1. Note that C1 and C2 could only share at most one vertex which is u and

shown in Figure 2.6 (d). Since CPi is simple, u 6= w, so u /∈ C. Since C(xy) is

enclosed by C, u /∈ C(xy). So C(xy) does not contain the common vertex of C1

and C2. Then the first condition in Lemma 2.29 follows from Claim 2.35.

Condition 2. Since R1 ⊆ C1, the second condition follows from Claim 2.36. Note that

the z-to-Ci path Φ constructed in Claim 2.36 may contain a z-to-C1 subpath, which

shares only z with C(xy).

T is a tree To prove this, we show that when T is a tree, H is Q3-triconnected. That

is, for any pair of terminals x and y, there are three x-to-y internally vertex-disjoint

paths only one of which contains internal vertices of T when T is a tree. Since T is

connected, this implies T can not contain any cycle, for otherwise H is not minimal.

The proof is similar to that of Lemma 2.24 but simpler: we modify the paths between x

and y such that only one of them contains internal vertices of T while maintaining them

internally vertex-disjoint.

Let R1, R2 and R3 be three x-to-y disjoint paths. If there is only one path containing

internal vertices of T , then it is sufficient for T to be simply connected for triconnectivity

between x and y. So we assume there are at least two paths containing internal vertices

of T . By Lemma 2.30, C(T) strictly encloses all internal vertices of T , so any path that

contains an internal vertex of T must touch C(T). We order the vertices of the three

46

paths from x to y. Let ui and vi be the first and last vertex of Ri that is in C(T)

for i = 1, 2, 3. If Ri is disjoint from C(T), we say ui and vi is undefined. Let C1 and

C2 be the disjoint minimum paths of C(T) that connect {u1, u2, u3} and {v1, v2, v3}. If

there are only two paths, say R1 and R2, containing vertices of C(T), we can replace

R1[u1, v1]∪R2[u2, v2] with C1 ∪C2. Then the new paths are disjoint and do not contain

any internal vertex of T . If all the three paths contain vertices of C(T), then let C3 be

the simple path from the middle vertex of {u1, u2, u3} to the middle vertex of {v1, v2, v3}
in (C(T)∪T)\ (C1∪C2). Now the to-C(T) prefices of Ri, Ci and the from-C(T) suffices

of Ri (for i = 1, 2, 3) together form three vertex-disjoint paths between x and y. Further,

among the three resulting paths, only the path containing C3 contains internal vertices

of T . Therefore, it is sufficient for T to be simply connected for H to be Q3-triconnected.

Property (c) By triconnectivity, every leaf of T ∗ has at least two neighbors on T

that are terminals. So each leaf of T ∗ can not be a leaf of T and then all leaves of T

are terminals. By Lemma 2.30, C(T) only strictly encloses all vertices of T ∗. So all

its neighbors, which are terminals in T by the maximality of T ∗, are on C(T), giving

property (c).

Since each terminal-bounded component is a tree, any terminal on T must be a leaf

by the construction of terminal-bounded component. Therefore, we have the following

lemma.

Lemma 2.37. A vertex of a terminal-bounded tree T is a terminal if and only if it is a

leaf of T .

Property (d) Let T1 be any terminal-bounded tree. For a contradiction, assume

there is a terminal-bounded tree T2 whose vertices are in distinct maximal terminal-free

paths of C(T1). By Lemma 2.37, the leaves of T2 are terminals. So each component of

C(T1) ∩ T2 is a terminal-to-terminal path and contains at most one maximal terminal-

free path. Then by the assumption for the contradiction, there are two vertex-disjoint

non-trivial components (paths) Π1 and Π2 of C(T1) ∩ T2.
Since C(T2) strictly encloses only internal vertices of T2, the interiors of C(T2) and

C(T1) overlap, and so C(T2) ∩ T1 6= ∅. Then C(T2) ∩ T1 contains only paths whose

endpoints are terminals on C(T1). Let R be the set consisting of all maximal paths

47

of C(T2) ∩ T1. Refer to Figure 2.7 (a) and (b). Since C(T2) is simple, and since the

endpoints of paths in R are leaves of T1, we have

Observation 2.38. Any two paths in R are vertex disjoint.

Note that if T1 is an edge or a star, |R| ≤ 1 and so we would already have our

contradiction.

For any path Ri ∈ R with endpoints ui and vi, there is an ui-to-vi subpath R′i of

C(T1) such that Ri and R′i form a cycle enclosing a region that is enclosed by both

of C(T1) and C(T2). Since C(T1) and C(T2) only strictly enclose edges of T1 and T2

respectively, and since T1 6= T2, this region must be a face. Notice that any path of

C(T1) ∩ T2 could only be subpath of R′i for some Ri ∈ R for C(T2) encloses T2. By the

following observation, there exist R1 and R2 such that Π1 ⊆ R′1 and Π2 ⊆ R′2.

Figure 2.7: (a) The dashed tree is T2 and there are two paths Π1 and Π2 of T2 on C(T1).
The blue vertices are terminals. (b) The two shaded cycles are (T1) and C(T2), which
shares two regions enclosed by Ri and R′i for i = 1, 2. (c) The dashed subtree is in T2.
R′i contains two subpaths of T2 and two terminals ta and tb are enclosed.

Observation 2.39. Every R′i contains at most one maximal path of T2.

Proof. For a contradiction, assume there is a path R′i that contains more than one

maximal path of T2. Let Πa and Πb be two successive such paths. By the concept of

terminal-bounded tree, there is a terminal-free path Φ of T2 connecting Πa with Πb that

only share endpoints with C(T1). Refer to Figure 2.7 (c). So Φ, Ri and R′i (which

contains two Ri-to-Φ paths) witness a cycle C that strictly encloses an endpoint ta of

48

Πa and an endpoint tb of Πb. Since the endpoints of Πa and Πb are leaves of T2, ta and

tb should be in C(T2) by Property (c). So there is a subpath P of C(T2) that is enclosed

by C such that ta ∈ P . Since the region enclosed by C is divided into two parts by a

subpath Φ′ of R′i (which have the same endpoints as Φ), and since one of the two parts

is the face enclosed by Ri and R′i, we know P could only be in the region bounded by Φ′

and Φ. However, P can not cross Φ by Property (a) since Φ is terminal-free and every

vertex of Φ is an internal vertex of T2; and P can not cross any internal vertex of Φ′ for

otherwise P will enter the face enclosed by Ri and R′i. Therefore, P and Ri can not be

connected, contradicting P is a subpath of C(T2).

Figure 2.8: (a) The dotted cycle is C(T2). The bold cycles C1 and C2 share P1. (b) An
example for Simplified C1 and C2 in (a). The dotted cycle is C(T2) and the outer cycle
is C2. C1 and C2 share P1.

Next, we construct two cycles C1 and C2 that share a subpath. Refer to Figure 2.8

(a). Since T1 is a tree and R1 and R2 are vertex disjoint by Observation 2.38, there is an

R1-to-R2 subpath P1 in T1. Since C(T2) is simple and contains R1 and R2, C(T1) ∪ P1

contains two simple cycles C1 and C2 whose intersection is P1. W.l.o.g. assume C1 is

enclosed by C2.

Since T2 is a tree and Π1 and Π2 are vertex disjoint, there is a Π1-to-Π2 path P2 in

T2. Note that P2 is terminal-free, since P2 does not contain any leaf of T2 and terminals

in T2 are leaves by Lemma 2.37. Let xy be an edge of P2. Then by Lemma 2.18, xy

is nonremovable. However, H and xy also satisfy Lemma 2.29 with C1 and C2, which

shows xy is removable, giving a contradiction.

49

Condition 1. Note that C(xy) is enclosed by the cycle C consisting of Π1, Π2, and

two Π1-to-Π2 subpaths of C(T2): one is of C1 and the other is of C2. Refer to

Figure 2.8 (a) and (b). Since C is disjoint with the common subpath P1 of C1 and

C2, C(xy) is also disjoint with P1.

Showing the remainder of the first condition of Lemma 2.29 is similar to that of

Claim 2.35 if we replace R1 and R2 with the two Π1-to-Π2 subpaths of C1 and C2.

Note that we have a stronger version of Observation 2.33 here, since T2 is a tree.

Condition 2. If any neighbor z of xy in C(xy) is not in C1 ∪ C2, it will be a non-leaf

vertex in T2, since all leaves of T2 are in C(T2) ⊆ C1∪C2. Then z is not a terminal

by Lemma 2.37. We find a subpath Φ in T2 from z to C(T2) ⊆ C1 ∪ C2 such that

Φ only shares z with C(xy). By triconnectivity, there are at least three disjoint

paths from z to C(T2). Since C(xy) contains two such paths and encloses the

fewest faces, there is a path Φ from z to C(T2) outside of C(xy). If Φ shares any

vertex with C(xy) other than z, then Φ and the C1-to-C2 path that contains z

witness a cycle in T2, a contradiction.

This proves the Tree Cycle Theorem.

2.3.2.1 Terminal-free Paths

Let P be a terminal-free a-to-b path of H such that there exists a cycle that strictly

encloses the internal vertices of P . Then a, b ∈ C(P), since H is triconnected by

Lemma 2.13. Let P1(P) and P2(P) be the two a-to-b subpaths of C(P).

Lemma 2.40. If for every edge e ∈ P there is a separating set Se ∈ C(P), then all the

vertices inside of C(P) are in P .

Proof. For a contradiction, assume there is a vertex u strictly inside of C(P) that is not

on P . There can not be more than one path from u to C(P) disjoint from P , otherwise

there will be another cycle which encloses fewer faces than C(P) (Figure 2.9 (a)). By

Lemma 2.13, H is triconnected, so there are at least two disjoint paths R1 and R2 from

u to v1 and v2 on P disjoint from C(P) (Figure 2.9 (b)). For an edge e on P between v1

and v2, every separating set for e must include a vertex on the path R1 ∪ R2, however,

this contradicts the assumption that there is a separating set for e in C(P).

50

Figure 2.9: (a) If vertex u has two paths to v1 and v2 on C(P) that are disjoint from
P , then there is a smaller cycle (dotted) through v1, u, v2 that encloses P . (b) The
separating set for an edge e on P between v1 and v2 must include a vertex of the path
(dotted) strictly enclosed by C(P), contradicting there is a separating set for e in C(P).

Lemma 2.41. No pair of adjacent vertices in P has a common neighbor in C(P).

Proof. For a contradiction, assume there are adjacent vertices u and v with a common

neighbor z in C(P). Since u, v, z forms a cycle, Suv must contain z. Therefore, by

Theorem 2.11, uz is removable. Further, both components of H \{uv, Suv} must contain

a vertex distinct from u and v and each of those vertices must have vertex disjoint paths

to Suv and uv; therefore the degree of z is at least 4. Therefore, removing uz will not

result in contracting any edges incident to z and so will preserve triconnectivity of the

terminals, contradicting the minimality of H.

For a separating pair (e, Se), let Σ(e, Se) be a closed curve that only intersects the

drawing of H in an interior point of e and two vertices of Se and partitions the plane

according to the components of H \ ({e}∪Se). Each portion of Σ(e, Se) \H is contained

in a face of H. Since this is true for any Σ(e, Se), for two separating pairs (e1, Se1) and

(e2, Se2) we may assume that the curves Σ(e1, Se1) and Σ(e2, Se2) are drawn so they

cross each other at most 3 times. Σ(e1, Se1) and Σ(e2, Se2) cross either at a point that is

interior to a face of H or at one vertex of Se1 ∪Se2 . Since they are simple closed curves,

they cross each other twice or not at all.

Lemma 2.42. For every edge e in P , there exists a separating set for e in C(P).

Proof. We prove by induction on the subpaths of P : we assume the lemma is true for

every strict subpath of P . The base case is when P is one edge xy: Sxy must include

51

one vertex of P1(xy) and one vertex of P2(xy) but does not include x or y, giving the

lemma.

Let xy be any edge of P . Without loss of generality, we assume x 6= a and y /∈ P [a, x].

By the inductive hypothesis, there exists a separating set Sxy = {s1, s2} in C(P [x, b]).

The following claim simplifies our proof, which we prove after using this claim to prove

that Sxy ∈ C(P).

Claim 2.43. Sxy does not contain an internal vertex of P .

There are two cases:

1. If b ∈ Sxy, w.l.o.g. assume b = s1. Then we only need to show s2 is in C(P). By

the induction hypothesis, s2 ∈ C(P [x, b]). By Claim 2.43, s2 can not be internal

vertex of P [a, y], so a and x must be in the same component of H \{xy, Sxy}. Then

C(P [a, y]) must contain s2 since C(P [a, y]) must intersect Σ(xy, Sxy) in vertices of

Sxy. Therefore, s2 is in both of C(P [a, y]) and C(P [x, b]). By planarity, it must

be in C(P), for otherwise there will be other cycles which enclose fewer faces than

C(P [a, y]) and C(P [x, b]) and do not contain s2.

2. If b /∈ Sxy, by Claim 2.43, Sxy is not in P , so a and b are in the distinct components

of H \ {xy, Sxy} since they are connected to x and y by P [a, x] and P [y, b] respec-

tively. That is, b is strictly inside of Σ(xy, Sxy) and a is outside of Σ(xy, Sxy).

Then C(P) must intersect Σ(xy, Sxy) twice in vertices of Sxy. Because C(P) is

simple, it can not intersect Σ(xy, Sxy) in the same vertex of Sxy. Therefore, both

vertices of Sxy are in C(P).

This completes the proof of Lemma 2.42.

Proof of Claim 2.43. For a contradiction, assume s1 is an internal vertex of P . Then it

must in P [a, x] since Sxy is in C(P [x, b]). Further, s2 can not be also in P [a, x] since x

and y are triconnected to C(P), and then C(P) and the paths from x and y to C(P)

contains a path from x to y disjoint from P [a, x].

Since a and x are on different sides of Σ(xy, Sxy), C(P [a, x]) must cross Σ(xy, Sxy)

twice. Σ(xy, Sxy) could only intersect H at xy and Sxy, so C(P [a, x]) must cross

Σ(xy, Sxy) at xy and s2, for s1 is in P [a, x] and C(P [a, x]) is simple; w.l.o.g. assume

P1(P [a, x]) contains s2.

52

In P [s1, x], there must be a vertex between s1 and x, for otherwise by Theorem 2.11

edge s1x is removable, which contradicts Lemma 2.18. Let zx be an edge of P [s1, x].

Then there exists a separating set Szx for zx in C(P [a, x]) by induction hypothesis. We

claim Σ(zx, Szx) must intersect P1(P [a, x]) between s2 and x. If not, then it will intersect

P1(P [a, x]) outside of Σ(xy, Sxy). However, the z-to-s2 path, together with the s2-to-x

subpath of P1(P [a, x]) and edge zx form a cycle inside of Σ(xy, Sxy). See Figure 2.10

(a). Since Σ(zx, Szx) must cross the edge zx, it must intersect the described cycle twice.

Note that cycle is disjoint from P2(P [a, x]). So Σ(zx, Szx) will intersect the drawing of H

four times: twice at the described cycle inside of Σ(xy, Sxy), once at P1(P [a, x]) outside

of Σ(xy, Sxy) and once at P2(P [a, x]). This contradicts the definition of Σ(zx, Szx). Let

s be the vertex of Szx in P1(P [a, x]). By the above argument, s is between s2 and x.

There are two cases.

1. If s = s2, the only vertex of P1(P [a, x]) inside both of Σ(zx, Szx) and Σ(xy, Sxy)

is s2. Then there is a path between z and s2 edge disjoint from C(P [a, x]) and

P . By Lemma 2.40, all vertices inside of C(P [a, x]) are in P [a, x], so z and s2

are adjacent and this edge is the only path between z and s2 disjoint from P

in Σ(xy, Sxy). Consider C(P [z, b]). It must intersect Σ(xy, Sxy) at s1 and s2.

Then edge zs2 must be in C(P [z, b]) since it is the only path between z and s2

disjoint from P in Σ(xy, Sxy). By Lemma 2.40, the x-to-s2 path disjoint from P in

Σ(xy, Sxy) is an edge. However, the two edges zs2 and xs2 contradict Lemma 2.41.

2. If s 6= s2, Szx must contain vertex a, for otherwise Σ(zx, Szx) will intersect P1[a, x]

between a and s2, which is the second intersection for Σ(zx, Szx) and P1[a, x]

and the fourth for Σ(zx, Szx) and H. Then s1 and z are both connected to s

by paths edge disjoint from C(P [a, x]) and P since they are inside of Σ(zx, Szx).

By Lemma 2.40 they are both adjacent to s. See Figure 2.10 (c). However, this

contradicts Lemma 2.41.

Lemma 2.44. Let u1 and u2 be the neighbors of an endpoint of P on C(P). Then there

is a u1-to-u2 path whose internal vertices are strictly outside of C(P).

Proof. Without loss of generality, let ui be the neighbor of a on Pi(P), i = 1, 2. Let

{s1, s2} be the separating set for ac ∈ P such that si ∈ Pi(P), i = 1, 2, as guaranteed by

Lemma 2.42.

53

Figure 2.10: Σ(xy, Sxy) is the dashed cycle and Σ(zx, Szx) is the dotted cycle. (a) The
bold cycle must be intersected by Σ(zx, Szx) twice. (b) Σ(zx, Szx) intersects the drawing
of H at s2. (c) Σ(zx, Szx) intersects the drawing of H at s and a.

If ui = si, i = 1, 2, then the component of H \ {ac, s1, s2} that contains a must

contain another vertex x and x must have three vertex-disjoint paths to a, s1 and s2.

The latter two of these witness the u1-to-u2 path that gives the lemma.

If u1 6= s1 and u2 = s2, then the component of H \ {ac, s1, s2} that contains u1 must

have three vertex-disjoint paths to a, s1 and s2 and the latter of these paths witness the

u1-to-u2 path that gives the lemma. The case u1 = s1 and u2 6= s2 is symmetric.

Figure 2.11: The construction of paths for Lemma 2.44. Σ(ac, {s1, s2}) is the dashed
cycle. The u2 side of the cycle that separates u2 and s1 is shaded. The path witnessing
the lemma is bold and is formed by the u2-to-s1 and u1-to-s2 paths that avoid edges u1a
and u2a.

If ui 6= si, i = 1, 2, then the component of H \ {ac, s1, s2} that contains u1 and u2

must have three vertex-disjoint paths from ui to a, s1 and s2 for i = 1, 2. The first of

these, we may assume is the edge uia. Consider the u1-to-s2 path; together with the

edges u1a and ac and the s2-to-ac portion of Σ(ac, {s1, s2}) that does not contain s1,

these form a closed curve in the plane that separates u2 and s1 (see Figure 2.11). The

54

above-described u2-to-s1 path must therefore cross the u1-to-s2 path; these paths witness

the u1-to-u2 path that gives the lemma.

Lemma 2.45. For any terminal-free path P , there is a drawing of H such that all

internal vertices of P are strictly enclosed by a simple cycle.

Proof. For a contradiction, assume there is a terminal-free path P whose internal vertices

is not strictly enclosed by any cycle for any choice of infinite face of H: that is, every

face of H contains an internal vertex of P . Let P be a minimal such path, let a and b

be P ’s endpoints, and let c be a’s neighbor on P . Note that b 6= c, for otherwise P is an

edge and H would have at most two faces (each containing P), but every triconnected

graph has at least three faces.

First observe that there is a face f whose bounding cycle strictly encloses all internal

vertices of P [c, b]. Let f1 and f2 be the two faces that contains edge ac: f is one of f1

and f2. One of f1 and f2 only contains one internal vertex, namely c, of P , for otherwise

both faces would contain at least two internal vertices of P and every face of H would

contain an internal vertex of P [c, b], contradicting the minimality of P .

Take f , defined in the previous paragraph, to be the infinite face of H. Since f ’s

bounding cycle strictly encloses the internal vertices of P [c, b], C(P [c, b]) exists. Let u

and v be c’s neighbors in C(P [c, b]). Note that ac may or may not be in C(P [c, b]).

By Lemma 2.44, there is a u-to-v path R whose internal vertices are strictly outside of

C(P [c, b]), so there is a drawing of H so that R ∪ C(P [c, b]) \ {cu, cv} is a cycle that

strictly encloses internal vertices of P , a contradiction. See Figure 2.12 (a).

Proof of Lemma 2.27. If T ∗ is an edge, then this claim is trivial. Suppose otherwise.

For a contradiction, assume every face of H contains an internal vertex of T ∗. Let ac

be a leaf edge of T ∗, where a is a leaf of T ∗. Recall that if a terminal-bounded component

is not an edge, then it is obtained from a maximal terminal-free tree. By the maximality

of T ∗, the two neighbors, t1 and t2, of a on C(ac) are terminals. By Lemma 2.44, there

exists a t1-to-t2 path P ′ whose internal vertices are strictly outside of C(ac). Choose

P ′ such that C ′ = P ′ ∪ {at1, at2} encloses the fewest faces. Then C ′ does not strictly

enclose any vertex since H is triconnected by Lemma 2.13. By the assumption for the

contradiction and the choice of P ′, P ′ must contain an internal vertex b of T ∗.

55

Figure 2.12: (a) The dashed paths show two possible u-to-v paths R outside of C(P [c, b]).
The cycle R ∪ C(P [c, b]) \ {cu, cv} strictly encloses a face that does not contain any
internal vertex of P for an appropriate choice of infinite face. (b) The dotted path is P ′

and dashed path is P ′′. Note that d may or may not be in P ′. (c) The bold cycle is
C(P ′′) and it crosses P ′.

Let P ∗ be the a-to-d path of T ∗ containing vertex b. Note that d may or may not be

in P ′ (see Figure 2.12 (b)). By Lemma 2.45, C(P ∗) exists and by Lemmas 2.40 and 2.42,

C(P ∗) strictly encloses only internal vertices of P ∗. Then C ′ and C(P ∗) must cross

each other and there exists a subpath of C(P ∗) that is strictly enclosed by C ′, which

contradicts that C ′ encloses fewest faces. See Figure 2.12 (c).

Proof of Lemma 2.28. By Lemma 2.45, C(P) exists. Then P1(P) and P2(P) both con-

tain a terminal, for otherwise there is a cycle composed by P and one of P1(P) and

P2(P) that does not contain any terminal, contradicting Theorem 2.20. We first prove

that at least one of P1(P) and P2(P) contains more than one internal vertex, and then

construct the cycle strictly enclosing P . By Lemma 2.40 and 2.42, all vertices inside

of C(P) are in P . If P1(P) and P2(P) both only contain one internal vertex, then the

endpoints of the first edge of P are both adjacent to the internal vertex of P1(P) or

P2(P), which contradicts Lemma 2.41. Let xa and ya (or xb and yb) be the neighbors

of a (or b) in P1(P) and P2(P) respectively. Then at least one of {xa, xb} and {ya, yb}
contains two distinct vertices.

By Lemma 2.44, there is an xa-to-ya path whose internal vertices are strictly outside

of C(P). We choose such an xa-to-ya path Ra such that the cycle Ra ∪ {axa, aya}
encloses fewest faces. Then this cycle does not strictly enclose any vertex, for otherwise

56

the vertex strictly inside of the cycle is triconnected to the cycle and we can find another

cycle through that vertex which could enclose fewer faces, contradicting the choice of Ra.

Similarly, for xb and yb, we can find an xb-to-yb path Rb such that Rb ∪ {bxb, byb} does

not strictly enclose any vertex. Since at least one of {xa, xb} and {ya, yb} contains two

distinct vertices, R1 and R2 are distinct. So the cycle (Ra∪Rb∪C(P))\{axa, bxb, aya, byb}
strictly encloses all the vertices of P and only the vertices of P .

Proof of Lemma 2.29. For a contradiction, assume edge xy is nonremovable and consider

Σ(xy, Sxy).

First note that Σ(xy, Sxy) must be enclosed by C2 and not enclosed by C1 for oth-

erwise, Σ(xy, Sxy) would intersect C1 and C2 in more than one point, and since C1 and

C2 share at most one common subpath that is vertex disjoint from C(xy) (by condition

of the lemma), this would result in |Sxy| ≥ 3, a contradiction. Therefore Sxy contains,

w.l.o.g., two vertices of the C1-to-C2 path through C(xy); let a be the vertex of Sxy on

the x-to-C1 path. Refer to Figure 2.13.

Next note that a must be a neighbor of x. For otherwise the neighbor z of x must be

on the x side of Σ(xy, Sxy). By condition of the lemma, there is a path from z to C1 or

C2 that is disjoint from C(xy), however, the only way to cross Σ(xy, Sxy) is via a vertex

of C(xy), a contradiction. Therefore a is a neighbor of x.

Then a has degree 2 in the part of H on the x side of Σ(xy, Sxy): one degree is given

by the edge ax and the other is given by the existence of a vertex v 6= x on the x side

of Σ(xy, Sxy) which has vertex disjoint paths to x and each vertex in Sxy. For the same

reason, x has degree 4: degree 2 via the C1-to-C2 path, degree 1 via y and degree 1 via

the v-to-x path.

Further we will argue that a has degree 2 on the y side of Σ(xy, Sxy) as well; a then

has degree 4. By Theorem 2.11, xa is removable. Since x and a both have degree 4,

removing xa will not result in any edge contractions; this maintains the triconnectivity

of the terminals, and contradicts the minimality of H.

To show that a has degree 2 on the y side of Σ(xy, Sxy), we have two cases. If a ∈ C1,

then this follows from the two edges of C1 incident to a. If a /∈ C1, then by condition of

the lemma, there is a path from a to C1 or C2 that is disjoint from C(xy) and so must

be on the y side of Σ(xy, Sxy) and is notably disjoint from the 3 edges incident to a on

the C1-to-C2 path of C(xy) and on the v-to-a path.

57

Figure 2.13: The bold cycle is C(xy) and the dashed cycle is Σ(xy, Sxy).

2.4 Correctness of Spanner

In this section, we prove the correctness of our spanner. Let OPT be the weight of an

optimal solution for 3-ECP. Then the correctness requires two parts: (1) bounding its

weight by O(OPT) and (2) showing it contains a (1 + ε)-approximation of the optimal

solution. The weight of our spanner is bounded by the weight of mortar graph, which

we briefly introduce in Subsection 2.4.1.

The following Structure Theorem guarantees that there is a nearly-optimal solution

in our spanner and completes the correctness of our spanner:

Theorem 2.46 (Structure Theorem). For any ε > 0 and any planar graph instance

(G,w, r) of 3-ECP, there exists a feasible solution S in our spanner such that

• the weight of S is at most (1 + cε)OPT where c is an absolute constant, and

• the intersection of S with the interior of any brick is a set of trees whose leaves are

on the boundary of the brick and each tree has a number of leaves depending only

on ε.

We prove the Structure Theorem in Subsection 2.4.2. The idea is similar to that

for 2-ECP, that is we transform an optimal solution to a feasible solution satisfying the

theorem. Throughout we indicate where the transformation for 3-ECP departs from

those of 2-ECP. In the following, we denote by Q the set of terminals, which are the

vertices with positive requirement.

58

2.4.1 Mortar Graph, Bricks and Portals

First we introduce some properties of the mortar graph and bricks. For a brick B, let

∂B be its boundary and int(B) = E(B) \E(∂B) be its interior. A path is ε-short if the

distance between every pair of vertices on that path is at most (1 + ε) times the distance

between them in G. Bricks have the following properties.

Lemma 2.47. (Lemma 6.10 [23] rewritten) The boundary of a brick B, in counterclock-

wise order, is the concatenation of four paths WB, SB, EB and NB (west, south, east

and north) such that:

1. Every vertex of Q ∩B is in NB ∪ SB.

2. NB is 0-short and every proper subpath of SB is ε-short.

The paths that form eastern and western boundaries of bricks are called supercolumns,

and the weight of all edges in supercolumns is at most εOPT (Lemma 6.6 [23]).

The Mortar graph is a grid-like subgraph of G that (1) spans Q and (2) has weight

at most 9ε−1 times the weight of a minimum Steiner tree that spans Q. Since the

weight of minimum Steiner tree is no more than OPT, the weight of mortar graph is

no more than 9ε−1OPT. A brick B is the subgraph of G that is enclosed by a face of

the mortar graph (including the boundary of the face); it has boundary ∂B and interior

int(B) = G[E(B) \ E(∂B)] (a subgraph induced by S ⊆ V (G) or S ⊆ E(G) in G is

denoted by G[S]). Further, bricks have the following property:

Lemma 2.48. (Lemma 6.10 [23]) The boundary of a brick B, in counterclockwise order,

is the concatenation of four paths WB, SB, EB and NB (west, south, east and north)

such that:

1. The set of edges B \ ∂B is nonempty.

2. Every vertex of Q ∩B is in NB and SB.

3. NB is 0-short and every proper subpath of SB is ε-short.

4. There exists a number t ≤ κ(ε) and vertices s0, s1, . . . , st ordered from west to east

along SB such that for any vertex x of SB[si, si+1), the distance from x to si along

SB is less than ε times the distance from x to NB in B.

59

For the above lemma, a path is ε-short if the distance between every pair of vertices on

that path is at most (1+ε) times the distance between them inG and κ(ε) = 4ε−2(1+ε−1).

The paths that forms eastern and western boundaries of bricks are called supercolumns,

and further satisfy:

Lemma 2.49. (Lemma 6.6 [23]) The sum of the weight of all edges in supercolumns is

at most εOPT.

To obtain the spanner, we add a set of Steiner trees in each brick B whose terminals

are vertices of ∂B. The terminals are drawn from a subset of portal vertices evenly

spaced on the boundary of each brick. We bound the number of portals per brick by

θ(ε) = O(ε−2α(ε)) and α(ε) in turn depends on the number of connections required to

allow a nearly optimal solution, which is bounded by o(ε−5.5). The portals satisfy:

Lemma 2.50. (Lemma 7.1 [23]) For any vertex x on ∂B, there is a portal y such that

the weight of x-to-y subpath of ∂B is at most 1/θ(ε) times the weight of ∂B.

Since the weight of each Steiner tree in a brick B can be bounded by the weight of

the weight of ∂B, and since there are only constant number (that is 2θ(ε)) of such Steiner

trees, the weight of all trees we add in B is at most f(ε) times the weight of ∂B. So the

total weight of our spanner is bounded by (2f(ε) + 9ε−1) times the weight of MG, which

is O(OPT).

2.4.2 Proof of the Structure Theorem

We transform OPT for the instance (G,Q, r) so that it satisfies the following properties

(repeated from the introduction):

P1: OPT ∩ int(B) can be partitioned into a set of trees T whose leaves are on the

boundary of B.

P2: If we replace any tree in T with another tree spanning the same leaves, the result

is a feasible solution.

P3: There is another set of O(1) trees T ′ that costs at most a 1 + ε factor more than T ,

such that each tree of T ′ has O(1) leaves and (OPT \ T)∪T ′ is a feasible solution.

60

To argue about the leaves of trees on the boundary of bricks, we use the following

definition:

Definition 2.51. (Joining vertex [22]). Let H be a subgraph of G and P be a subpath

of ∂G. A joining vertex of H with P is a vertex of P that is the endpoint of an edge of

H − P .

The transformation consists of the following steps:

Augment We add four copies of each supercolumn; we take two copies each to be

interior to the two adjacent bricks. After this, connectivity between the east and

west boundaries of a brick will be transformed to that between the north and south

boundaries.

By Lemma 2.49, this only increases the weight by an small fraction of OPT.

Cleave By cleaving a vertex, we split it into multiple copies while keeping the connec-

tivity as required by adding artificial edges of weight zero between two copies and

maintaining a planar embedding. We call the resulting solution OPTC . In this

step, we turn k-edge-connectivity into k-vertex-connectivity for k = 1, 2, 3. By

Theorem 2.20, we can obtain Property P1: OPTC ∩ int(B) can be partitioned into

a set T of trees whose leaves are in ∂B. By Corollary 2.4, we can obtain Property

P2: we can obtain another feasible solution by replacing any tree in T with another

tree spanning the same leaves.

Flatten For each brick B, we consider the connected components of OPTC ∩ int(B).

If the component only spans vertices in the north or south boundary, we replace

it with the minimum subpath of the boundary that spans the same vertices. This

will not increase the weight much by the ε-shortness of the north and south bound-

aries. Note that vertex-connectivity may bread as a result, but edge-connectivity

is maintained. In the remainder, we only maintain edge-connectivity. We call the

resulting solution OPTF .

Restructure For each brick B, we consider the connected components of OPTF ∩
int(B). We replace each component with a subgraph through a mapping φ. The

new subgraph may be a tree or a subgraph Ĉ given by Lemma 2.53. The mapping

φ has the following properties:

61

1. For any component χ of OPTF ∩ int(B), φ(χ) is connected and spans χ∩∂B.

2. For two components χ1 and χ2 of OPTF ∩ int(B), if φ(χi) 6= Ĉ for at least

one of i = 1, 2, then φ(χ1) and φ(χ2) are edge-disjoint, taking into account

edge multiplicities.

3. The new subgraph φ(OPTM ∩ int(B)) has α(ε) = o(ε−5.5) joining vertices

with ∂B.

We can prove that the total weight is increased by at most εOPTF , giving Property

P3. We call the resulting solution OPTR.

Redirect We connect each joining vertex j of OPTR ∩ int(B) to the nearest portal p

on ∂B by adding multiple copies of the short j-to-p subpath of ∂B. We call the

resulting solution ÔPT .

We give more details of these transformations in the following subsections and argue

that the transformations guarantee the required connectivity as we do so. These details

are very similar to that used for 2-ECP; we note the differences. The Restructure step

which requires a different structural lemma than used for Borradaile and Klein’s PTAS

for 2-ECP [22]; the difference between Lemma 2.53 and that used by Borradaile and Klein

is that Ĉ need only be a cycle for the 2-ECP, whereas to maintain 3-edge connectivity,

a more complicated subgraph Ĉ is required. We borrow the following lemma from [23]

to prove Lemma 2.53.

Lemma 2.52. (Simplifying a tree with one root, Lemma 10.4 [23]). Let r be a vertex

of T . There is another tree T̂ that spans r and the vertices of T
⋂
P such that w(T̂) ≤

(1 + 4ε)w(T) and T̂ has at most 11ε−1.45 joining vertices with P .

Lemma 2.53. Let F be a set of non-crossing trees whose leaves are joining vertices with

ε-short paths P1 and P2 on the boundary of the graph, and each tree in F has leaves on

both paths. Then there is a subgraph or empty set Ĉ, a set F̂ of trees, and a mapping

φ : F → F̂ ∪ Ĉ with the following properties

• For every tree T in F , φ(T) spans T ’s leaves.

• For two trees T1 and T2 in F , if φ(Ti) 6= Ĉ for at least one of i = 1, 2 then φ(T1)

and φ(T2) are edge-disjoint (taking into account edge multiplicities).

62

• The subgraph
⋃
F̂ ∪ {Ĉ} has o(ε−2.5) joining vertices with P1 ∪ P2.

• w(Ĉ) + w(F̂) ≤ 6w(P2) + (1 + d · ε)w(F), where d is an absolute constant.

• Any two vertices of Ĉ ∩ (P1 ∪ P2) are three-edge-connected.

• For any three pairs of vertices of Ĉ ∩ (P1 ∪ P2) (where vertices may be repeated),

Ĉ contains three edge-disjoint paths connecting them respectively.

Proof. Call P1 the top path and P2 the bottom path. Order the trees of F : T1, T2, . . . , Tk

according to their leaves on P2 from left-to-right; the trees are well ordered since they

are non-crossing and have leaves on both paths. There are two cases:

k > ε−1: In this case we reduce the number of trees by incorporating a subgraph Ĉ.

Let a be the smallest index such that w(Ta) ≤ εw(F) and b the largest index such

that w(Tb) ≤ εw(F). We replace trees Ta, Ta+1, . . . , Tb with a subgraph Ĉ. Let P ′1
be the minimal subpath of P1 that spans all the leaves of tree Ti for a ≤ i ≤ b.

P ′2 is likewise the minimal subpath on P2. Let ui and vi be P ′i ’s endpoints (with

ui the left end) for i = 1, 2. Let Pa (Pb) be the u1-to-u2 (v1-to-v2) subpath in Ta

(Tb). Since P1 is ε-short, we have

w(P ′1) ≤ (1 + ε)w(Pa ∪ Pb ∪ P ′2).

Let Ĉ be the multisubgraph {Pa, Pa, Pb, P ′1, P ′1, P ′2, P ′2}. We replace
⋃b
i=a Ti with

Ĉ and set φ(Ti) = Ĉ for a ≤ i ≤ b.

k ≤ ε−1: In this case, the number of trees is already bounded and we set Ĉ = ∅.

In both cases, we transform the remaining trees Ti (i 6= a, a+ 1, . . . , b) as follows. Let T ′i
be a minimal subtree of Ti that spans all leaves of Ti on P1 and exactly one vertex r on

P2. Let Ri be the minimal subpath on P2 that spans all leaves of Ti on P2. By Lemma

2.52, there is another tree, say T ′′i , for T ′i with root r and path P1. We replace Ti with

T̂i = T ′′i ∪Ri, and set φ(Ti) = T̂i for i 6= a, . . . , b. Then T̂i spans all leaves of Ti.

Ĉ (if non-empty) has six joining vertices with P1 ∪ P2. Each tree T̂i has one joining

vertex with P2 and by Lemma 2.52 o(ε−1.5) joining vertices with P1. By the choice of a

and b, there are at most ε−1 trees mapped to T̂i. So F̂ ∪{Ĉ} has totally at most o(ε−2.5)

joining vertices with P1 ∪ P2.

63

The total weight of Ĉ is

w(Ĉ) ≤ 2w(P ′1) + 2w(P ′2) + 2w(Pa) + w(Pb)

≤ 2(1 + ε)[w(Pa) + w(Pb) + w(P ′2)] + 2w(P ′2) + 2w(Pa) + w(Pb)

≤ (4 + 2ε)w(Pa) + (3 + 2ε)w(Pb) + (4 + 2ε)w(P ′2)

≤ (7 + 4ε)ε · w(F) + (4 + 2ε)w(P ′2).

And the total weight of T̂i is

∑
i=1,...,a−1,b+1,...,k w(T̂i) ≤

∑
i=1,...,a−1,b+1,...,k(w(Ri) + (1 + 4ε)w(Ti)).

Since all the trees in F are non-crossing, Ri and P ′2 are disjoint. The total weight of our

replacement is at most 6w(P2) + (1 +O(ε))w(F).

Now we prove the connectivity properties for Ĉ. By its construction, Ĉ spans all the

leaves of tree Ti for a ≤ i ≤ b and vertices of Ĉ ∩ (P1 ∪P2) are three-edge-connected. So

we only need to prove Ĉ contains three edge-disjoint paths connecting any three pair of

vertices of Ĉ ∩ (P1 ∪ P2) respectively. This can be seen by case analysis, as described

and illustrated below. Let P ∗ = Pa ∪ P ′1 ∪ P ′2, then every edge of P ∗ has multiplicity of

two in Ĉ by construction.

We first consider the case that any two pairs do not contain identical vertex. For

i = 1, 2 let xi, yi and zi be the three pair of vertices. If there are two pairs of vertices are

not interleaving in P ∗, then we could connect these two pairs by P ∗∪Pb, which is a cycle.

And the other pair could be connected by a subpath of P ∗ which is edge-disjoint from the

other two paths in Ĉ. Otherwise, we have the two sets, {xi, yj , zl} and {x3−i, y3−j , z3−l},
which do not interleave each other and appear in the same order in P ∗. See Figure 2.14:

there are three edge-disjoint paths connecting the three pairs respectively.

Figure 2.14: If every two pairs of the three interleave, there are three edge-disjoint paths,
shown in different colors, connecting them respectively in Ĉ.

64

If there are two pairs containing identical vertices, we could connect these two pairs

by P ∗ ∪ Pb and then connect the other pair by another subpath of P ∗. Since every edge

in P ∗ is multiple in Ĉ, these paths are edge-disjoint.

2.4.2.1 Augment

For each supercolumn P common to two bricks B1 and B2, we do the following:

• Add four copies of P , P1, P2, P3, P4 to OPT. We consider P1 and P2 to be internal

to B1, and P3 and P4 to be internal to B2. We also cut open the graph along P ,

creating a new face between P2 and P3. Call the result OPT′A.

• Remove edges from OPT′A until what remains a minimal subgraph satisfying the

connectivity requirements. Similar to the argument illustrated in Figure 2.14,

maintaining connectivity in the presence of this new face is achievable.

Let the resulting solution be OPTA. By this construction, OPTA has no joining

vertices with internal vertices of the supercolumns:

Lemma 2.54. For every brick B, the joining vertices of OPTA ∩ B with ∂B belong to

NB and SB.

2.4.2.2 Cleave

In this part, we call the vertices with positive requirement terminals. Given a vertex v

with a non-interleaving bipartition A and B of the edges incident to v, we define cleaving

v as the following: split v into two copies v1 and v2, such that all the edges in A (B)

are incident to v1 (v2); and then we add one zero-weight edge between v1 and v2. See

Figure 2.15. We have two types of cleavings:

Simplifying cleavings Let C be a non-self-crossing, non-simple cycle that visits

vertex v twice. For 1 ≤ i ≤ 4, let ei be the edge of C incident to v such that e1, e2, e3

and e4 are embedded clockwise and e1 and e4 are in the same subcycle of C. Define a

bipartition A, B of the edges incident to v as follows: given the clockwise embedding of

those edges, let A contain e1, e2 and all the edges between them clockwise.

Lengthening cleavings Let C be a cycle and v a vertex on C. Let e1 and e2 be the

edges incident to v strictly inside of C, and let e′1 and e′2 be the edges of C incident to v.

65

Define a bipartition A and B of the edges incident to v as follows: given the embedding

of those edges with e1, e2, e
′
2 and e′1 in the clockwise order, A contains e1, e

′
1 and all the

edges from e′1 to e1 clockwise.

Figure 2.15: Cleaving examples. The bipartition of edges incident to v is illustrated
by solid edges A and dashed edges B, and the added artificial edge is illustrated by
the dotted edge. (a) and (b) give an example before and after a cleaving. (c) and (d)
illustrate a simplifying cleaving. (e) and (f) show a lengthening cleaving.

We perform simplifying cleavings for all the non-simple cycles of OPTA until every cy-

cle is simple and call the resulting solution OPT′S and the resulting graph GS . Note that

after simplifying cleaving a terminal, we take only one copy that is in the mortar graph

as the terminal. These cleavings will reduce edge-connectivity to vertex-connectivity by

the following lemmas.

Lemma 2.55. For the cleaved vertex v, the copies of v are three-edge-connected in

OPT′S.

Proof. The original cycle will give two edge-disjoint paths between the two copies. And

the artificial edge will be the third path.

Lemma 2.56. Let Ĥ be the graph obtained from H by a simplifying cleaving a vertex

v. Then for k = 1, 2, 3, if a vertex u and v are k-edge-connected in H, then u and any

copy of v are k-edge-connected in Ĥ.

Proof. If u and v are k-edge-connected, then there are k edge-disjoint paths from u to

{v1, v2}. Since k is no more than three, and v1 and v2 are three-edge-connected by

66

Lemma 2.55, u and v1 are k-edge-connected. Similarly, u and v2 are k-edge-connected.

Corollary 2.57. For k = 1, 2, 3, if two vertices are k-edge-connected in OPTA, then

any of their copies are k-edge-connected in OPT′S.

We then remove edges from OPT′S until the rest is a minimal subgraph satisfying

the connectivity requirement. We call the resulting solution OPTS . Since every cycle in

OPTS is simple, we have the following lemma:

Lemma 2.58. For k = 1, 2, 3, if two terminals are k-edge-connected in OPTA, then they

are k-vertex-connected OPTS.

Let Q23 be set of terminals whose requirement is at least two and H be the minimal

(Q23, r)-vertex-connected subgraph in OPTS . Since every cycle in OPTS is simple, we

know that H also has this property. It follows that the degree of any vertex v of H is no

more than three, since H is biconnected by Lemma 2.6: for otherwise, let the first ear (a

cycle) contain v and let the second and third ear start with the next two edges incident

to v – from these ears it is easy to construct two cycles that only meet at v, witnessing

a non-simple cycle.

We perform lengthening cleavings w.r.t. the boundary of each brick and the edges of

OPTS that are incident to a boundary vertex in that brick until the vertices of the brick

boundaries have at most one edge in the solution in the interior of each incident brick.

We add the introduced zero-length edges to the solution. Call the new solution OPTC

and the new graph and mortar graph GC and MGC , respectively.

For each cleaved terminal, we assign only one copy to be the terminal: we pick the

copy of highest degree in OPTC to be the terminal; note that terminals are still in

the mortar graph. Although the flatten, restructure and redirect steps may break the

vertex connectivity guaranteed by Lemma 2.55, the following lemmas will guarantee that

edge-connectivity will not be preserved.

Lemma 2.59. For k = 1, 2, 3, if terminals are k-vertex-connected in OPTS, then they

are k-vertex-connected OPTC . Further, OPTC is minimal.

Proof. Borradaile and Klein prove (Lemma 5.9 [22]) that lengthening cleavings maintain

biconnectivity, so we need only argue that terminals a and b that are triconnected in

OPTS have terminal copies a′ and b′ that are triconnected in OPTC .

67

Consider three, vertex-disjoint a-to-b paths P1, P2, P3 in OPTS . As argued earlier,

the degrees of a and b in OPTS are three. The terminal copy a′ of a likewise has degree

3 in OPTC : if a is lengthening cleaved, then there is a copy of a that has degree 3.

The paths P1, P2, P3 map to paths P ′1, P
′
2, P

′
3 between copies of a and b in OPTC :

if an internal vertex of Pi is lengthening cleaved, then include the introduced edge in

the path. The endpoints of P ′i that map to copies of, w.l.o.g., a are likewise connected

by introduced edges (if a is subject to a lengthening cleaving). Let a′ be the terminal

copy of a; we augment the paths P ′i to connect to a′ via an introduced, zero-weight edge.

Doing so for b′ as well gives three vertex disjoint a′-to-b′ paths in OPTC .

That OPTC is minimal follows directly from the fact that OPTS is minimal.

The following lemma was proved by Borradaile and Klein for 2-ECP (Lemma 5.10 [22]);

their proof only relied on the fact that every cycle contains a terminal. Since this is true

for the 3-ECP too (Theorem 2.20), we get the same lemma:

Lemma 2.60. Let B be a brick in GC with respect to MGC . The intersection OPTC ∩
int(B) is a forest whose joining vertices with ∂B are all the leaves of the forest.

Lemma 2.61. Let x and y be two terminals in OPTC such that k = min{r(x), r(y)} ≥ 2

and let B be a brick. There exist k vertex-disjoint paths from x to y such that for any

two such paths P1 and P2, any connected component of P1 ∩ int(B) and any connected

component of P2 ∩ int(B) belong to distinct components of OPTC ∩ int(B).

Proof. Let HC be the minimal (Q23, r)-vertex-connected subgraph in OPTC . Then each

connected component of OPTC \HC is a tree and is connected to HC by one edge. By

Corollary 2.4, there are min{r(x), r(y)} vertex-disjoint paths from x to y in HC (and

then in OPTC) such that any path connecting any two of those x-to-y paths contains

a terminal. Let P1 and P2 be any two such x-to-y paths. Since all terminals are on

the boundaries of bricks, any P1-to-P2 path in int(B) will be divided into two subpaths

by some lengthening cleaving. So any connected component of OPTC ∩ int(B) can not

contain the components of both P1 ∩ int(B) and P2 ∩ int(B).

2.4.2.3 Flatten

This step is the same as described by Borradaile and Klein for 2-ECP [22]. For each brick

B, consider the edges of OPTC ∩ int(B). By Lemma 2.60, the connected components of

68

OPTC ∩ int(B) are trees. By Lemma 2.54, every leaf is either on NB or SB. For every

tree whose leaves are all on NB (SB), we replace the tree with the minimal subpath of NB

(SB) that contains all its leaves. Let the resulting solution be OPTF . By Lemma 2.61,

this guarantees 2- and 3-edge-connectivity between terminals as required; trees may be

flattened against a common ε-short path that is the northern boundary of one brick and

the southern boundary of another, so vertex-connectivity gets broken at this stage.

2.4.2.4 Restructure

This step is the same as described by Borradaile and Klein for 2-ECP [22], except we

apply our 3-ECP specific lemma (Lemma 2.53). Restructuring replaces OPTF ∩ int(B),

which is a set of non-crossing trees (Lemma 2.60) with leaves on the ε-short north and

south brick boundaries (Lemma 2.54), with subgraphs guaranteed by Lemma 2.53. The

resulting solution is OPTR.

Let Pxy be a set of 2 (3) vertex disjoint paths in OPTF for terminals x, y requiring

bi- (tri-)connectivity. Each path in Pxy is broken into a sequence of small paths, each

of which is either entirely in the interior of a brick or entirely in the mortar graph. Let

P ′xy be the set of these path sequences.

We define a map φ̂ for the paths in P ′xy. For a path P of P ′xy, if P is on mortar

graph, we define φ̂(P) = P ; otherwise we define φ̂(P) = φ(T) where T is the tree in

OPTM containing P . Since φ(T) spans all leaves of T , φ̂(P) also spans leaves of T and

connects endpoints of P .

Let P1 and P2 be any two paths from distinct path-sequences inside of the same brick

B. By Lemma 2.61, P1 and P2 can not belong to the same component of OPTM ∩int(B).

So if φ̂(P1) 6= φ̂(P2), then φ̂(P1) and φ̂(P2) are edge disjoint by the constructions of φ and

φ̂. Otherwise, we know the image is a subgraph Ĉ which guarantees triconnectivity for

all vertices of Ĉ ∩∂B by Lemma 2.53. However, there may be more than one paths from

any path-sequence whose image is Ĉ, and the new x-to-y paths may not be edge-disjoint

in Ĉ. For this situation, we could shortcut the paths in Ĉ such that each new x-to-y

path only contain one subpath in Ĉ. Since there are at most three such subpaths and

there endpoints are in ∂B, Ĉ contains edge-disjoint paths connecting the endpoints of

those subpaths by the last property of Lemma 2.53.

Therefore, the restructure step maintains that if terminals were 1-, 2- or 3-edge

69

connected in OPTF , then they still are in OPTR. We also see that, by construction of

Lemma 2.53, the intersection OPTR with the interior of a brick B is a set of trees with

leaves on ∂B. Since the Redirect step will only add edges of ∂B, this property does not

change, proving one of the guarantees of the Structure Theorem.

Further, the number of joining vertices is guaranteed by Lemma 2.53 and the con-

struction that is used for 2-ECP. The number of joining vertices is on the same order as

for 2-ECP, which depends only on ε as required.

2.4.2.5 Redirect

For every joining vertex j of OPTR ∩ B with ∂B for a brick B, we add the path from

j to the nearest portal p on ∂B. This guarantees that the trees guaranteed by the

Restructure step have leaves that are portals: this allows us to efficiently enumerate

all possible Steiner trees in bricks whose terminals are portals to compute the spanner

graph.

2.4.2.6 Analysis of weight increase

The analysis of the weight increase is exactly the same as for 2-ECP by Borradaile and

Klein; the only difference are the weight in Lemma 2.53 which is on the order of the

weight in the equivalent Lemma used in 2-ECP.

This completes the proof of the Structure Theorem.

2.5 Dynamic Programming for k-ECP on Graphs with Bounded

Branchwidth

In this section, we give a dynamic program to compute the optimal solution of k-ECP

problem on graphs with bounded branchwidth. This is inspired by the work of Czumaj

and Lingas [38, 39]. Note that such graphs need not be planar. This can be used in our

PTAS after the contraction step of the framework.

A branch decomposition of a graph G = (V (G), E(G)) is a hierarchical clustering of

E(G). It can be represented by a binary tree, called the decomposition tree, the leaves of

which are in bijection with the edges of G. After deleting an edge e of this decomposition

70

tree, E(G) is partitioned into two parts E1 and E2 according to the edges mapped to

the leaves of the two subtrees. All the vertices common to E1 and E2 comprise the

separator corresponding to e in the decomposition. The width of the decomposition is

the maximum size of the separator in that decomposition. The branchwidth of G is the

minimum width of any branch decomposition of G.

Let G = (V (G), E(G), r) be an instance of k-ECP. Then r ∈ {0, 1, · · · , k}. We call

a vertex a terminal if its requirement is positive. We first augment G such that each

edge becomes k parallel edges. Our dynamic programming will work on this new graph

G. Given a branch decomposition of G, root the decomposition tree T at an arbitrary

leaf. For any node q in T , let L be the separator corresponding to its parent edge, and

E1 be the subset of E(G) mapped to the leaves in the subtree rooted at q. Let H be a

subgraph of G[E1] such that it contains all terminals in G[E1]. An separator completion

of L is a multiset of edges between vertices of L, each of which may appear up to k

times. A configuration of a terminal v of H in L is a tuple (A,B, r(v)), where A is a

tuple (a1, a2, . . . , a|L|), representing that there are ai edge-disjoint paths from v to the

ith vertex of L in H, and B is a set of tuples (xi, yi, bi), representing that there are bi

edge-disjoint paths between the vertices xi and yi of L in H. All the
∑|L|

i=1 ai+
∑

i bi paths

in a configuration are mutually edge-disjoint in H. We adapt a definition of Czumaj and

Lingas [38, 39]:

Definition 2.62. For any pair of terminals u and v in H, let ComH(u, v) be the set of

separator completions of H each of which augments H to a graph where u and v satisfy

the edge-connectivity requirement. For each terminal v in H, let PathH(v) be a set of

configurations of v on L. Let PathH be the set of all the non-empty B in which all tuples

can be satisfied in H. Let CH be the set consisting of one value in each ComH(u, v) for

all pairs of terminals u and v in H, and PH be the set consisting of one value in each

PathH(v) for all terminal v in H. We call the tuple (CH , PH , PathH) the connectivity

characteristic of H, and denote it by Char(H).

Let w be the width of the decomposition. Then |L| ≤ w. Note thatH may correspond

to multiple CH and PH , so H may have multiple connectivity characteristics. Further,

each value in PH represents at least one terminal. For any L, there are at most kO(w2)

distinct separator completions (O(w2) pairs of vertices, each of which can be connected

by at most k parallel edges) and at most 2k
O(w2)

distinct sets CH of separator completions.

71

For any L, there are at most kO(w2) different configurations for any terminal in H since

the number of different sets A is at most kw, the number of different sets B is at most

kO(w2) (the same as the number of separator completions) and k different choices for

r(v). So there are at most 2k
O(w2)

different sets of configurations PH , and at most 2k
O(w2)

different sets B. Therefore, there are at most 2k
O(w2)

distinct connectivity characteristics

for a fixed L.

Definition 2.63. A configuration of v on L is connecting if for any terminal u in

V (G)\V (H) the inequality
∑|L|

i=1 ai ≥ min{r(v), r(u)} holds where ai is the ith coordinate

in A. That is, there are enough edge-disjoint paths from v to the separator which can

connect u and v. Char(H) is connecting if all configurations in its PH set are connecting.

H is connecting if at least one of Char(H) is connecting. In the following, we only

consider connecting connectivity characteristics and subgraphs.

In the following, we need as a subroutine an algorithm to solve the following problem:

when given a set of demands (xi, yi, bi) and a multigraph, we want to decide if there exist

bi edge-disjoint paths between vertices xi and yi in the graph and all the
∑

i bi paths are

mutually edge-disjoint. Although we do not have a polynomial time algorithm for this

problem, we only need to solve this on graphs with O(w) vertices, O(kw2) edges and

O(w2) demands. So even an exponential time algorithm is acceptable for our purpose

here. Let ALG be an algorithm for this problem, whose running time is bounded by a

function f(k,w), which may be exponential in both k and w.

For a node p of degree three in the decomposition tree T , let q1 and q2 be its two

children and q be its parent. Let Ti be the subtree of T rooted at qi, let Ei be the subset

of E(G) corresponding to Ti and let Li be the separator corresponding to the edge pqi for

i = 1, 2. Let L be the separator corresponding to pq. For i = 1, 2, let Hi be a subgraph

of G[Ei] that contains all the terminals. Let H = H1 ∪H2. Then we have the following

lemma.

Lemma 2.64. For any pair of Char(H1) and Char(H2), all the possible Char(H) that

could be obtained from Char(H1) and Char(H2) can be computed in O(kw
2
f(k,w) +

kw
2kw

2

) time.

Proof. We compute all the possible sets for the three components of Char(H).

72

Compute all possible CH CH contains two parts: the first part covers all pairs of

terminals in the same Hi for i = 1, 2 and the second part covers all pairs of terminals

from distinct subgraphs.

For the first part, we generalize each value C ∈ CHi for i = 1, 2 into a possible set XC .

Notice that each separator completion can be represented by a set of demands (x, y, b).

For a candidate separator completion C ′ on L, we combine C ′ with each B ∈ PathH3−i

to construct a graph H ′ and define the demand set the same as C. By running ALG on

this instance, we can check if C ′ is a legal generalization for C. This may be computed

in kO(w2)w2 + kO(w2)f(k,w) time for each C. All the legal generalizations for C form

XC .

Now we compute the second part. For any pair of configurations (A1, B1, r(u)) ∈ PH1

and (A2, B2, r(v)) ∈ PH2 for u ∈ H1 and v ∈ H2, we compute possible ComH(u, v). Let

L′ = L1 ∩ L2. We first count how many edge-disjoint paths between u and v could go

through L′ by checking A1 and A2, and then check if a candidate separator completion

C ′ on L can provide the remaining paths. All those C ′ that are capable of providing

enough paths form ComH(u, v). This can be computed in w2kO(w2) time for each pair

of values.

A possible CH consists of each value in XC for every C ∈ CHi for i = 1, 2 and each

value in ComH(u, v) for all pairs of configurations of PH1 and PH2 . To compute all the

sets, we need at most kO(w2)w2 + kO(w2)f(k,w) time. There are at most kO(w2) sets and

each may contain at most kO(w2) values. Therefore, to generate all the possible CH from

those sets, we need at most kw
2kO(w2)

time.

Compute all possible PH We generalize each configuration (A,B, r(v)) of v in PHi
into a possible set Yv. For each set B′ in PathH3−i , we construct a graph H ′ by A, B

and B′ on vertex set L1∪L2∪{v}: if there are b disjoint paths between a pair of vertices

represented in A, B or B′, we add b parallel edges between the same pair of vertices

in H ′, taking O(w2) time. For a candidate value (A∗, B∗, r(v)) corresponding to L, we

define a set of demands according to A∗ and B∗ and run ALG on all the possible H ′

we construct for sets in PathH3−i . If there exists one such graph that satisfies all the

demands, then we add this candidate value into Yv. We can therefore compute each set

Yv in kO(w2)w2 + kO(w2)f(k,w) time. A possible PH consists of each value in Yv. There

are at most kO(w2) such sets and each may contain at most kO(w2) values. So we can

generate all possible PH from those sets in kw
2kO(w2)

time.

73

Compute PathH For each pair of B1 ∈ PathH1 and B2 ∈ PathH2 , we construct a

graph H ′ on vertex set L1 ∪ L2: if two vertices are connected by b disjoint paths, we

add b parallel edges between those vertices in H ′. Since each candidate B′ on L can

be represented by a set of demands, we only need to run ALG on all possible H ′ to

check if B′ can be satisfied. We add all satisfied candidates B′ into PathH . This can be

computed in kO(w2)w2 + kO(w2)f(k,w) time.

Therefore, the total running time is O(kw
2
f(k,w)+kw

2kw
2

). For each component we

enumerate all possible cases, and the correctness follows.

Our dynamic programming is guided by the decomposition tree T from leaves to root.

For any node q in T , let Tq be the subtree of T rooted at q and Lq be the separator cor-

responding q’s parent edge. Let Eq be the subset of E(G) corresponding to Tq. For each

node q, our dynamic programming table is indexed by all the possible connectivity char-

acteristics on the corresponding separator Lq. Each entry indexed by the connectivity

characteristic Char in the table is the weight of the minimum-weight subgraph of G[Eq]

that contains all the terminals in G[Eq] and has Char as its connectivity characteristic.

Base case For each leaf of T , the only subgraph H is the edge uv contained in the

leaf and the separator only contains its endpoints u and v. There are three cases.

1. Both u and v are not terminals. ComH(u, v) contains all subsets of the multiset

of edge uv (up to k times), including the empty set. PH is empty since there is no

terminal. PathH contains one set: {(u, v, 1)}.

2. Only one of u and v is a terminal. W.l.o.g. assume u is the terminal. ComH(u, v)

contains all subsets of the multiset of edge uv (up to k times), including the

empty set. PathH(u) contains two configurations: ((k, 0), {(u, v, 1)}, r(u)) and

((k, 1), ∅, r(u)). PathH contains one set: {(u, v, 1)}.

3. Both u and v are terminals. ComH(u, v) contains the multisets of edge uv that

appears at least min{r(u), r(v)} − 1 times. PathH(u) contains two configura-

tions: ((k, 0), {(u, v, 1)}, r(u)) and ((k, 1), ∅, r(u)), and PathH(v) contains two con-

figurations: ((0, k), {(u, v, 1)}, r(v)) and ((1, k), ∅, r(v)). PathH contains one set:

{(u, v, 1)}.

74

For each non-leaf node q in T , we combine every pair of connectivity characteristics

from its two children to fill in the dynamic programming table for q. The root can be

seen as a base case, and we can combine it with the computed results. The final result

will be the entry indexed by (∅, ∅, ∅) in the table of the root. If E(G) = km, then the size

of the decomposition tree T is O(km). By Lemma 2.64, we need O(kw
2
f(k,w)+kw

2kw
2

)

time to combine each pair of connectivity characteristics. Since there are at most 2k
O(w2)

connectivity characteristics for each node, the total time will be O(2k
w2

kw
2
f(k,w)m +

2k
w2

kw
2kw

2

m).

Correctness The separator completions guarantee the connectivity for the terminals

in H, and the connecting configurations enumerate all the possible ways to connect

terminals in H and terminals of V (G)\V (H). So the connectivity requirement is satisfied

. The correctness of the procedure follows from Lemma 2.64.

75

Chapter 3: PTASes for Minimum Three-edge-connected Spanning

Subgraph and Minimum Three-vertex-connected Spanning

Subgraph in Planar Graphs

Given an undirected unweighted graph G, the minimum k-edge connected spanning sub-

graph problem (k-ECSS) asks for a spanning subgraph of G that is k-edge connected

(remains connected after removing any k − 1 edges) and has a minimum number of

edges. The minimum k-vertex connected spanning subgraph problem (k-VCSS) asks for a

k-vertex connected (remains connected after removing any k− 1 vertices) spanning sub-

graph of G with minimum number of edges. These are fundamental problems in network

design and have been well studied. When k = 1, the solution is simply a spanning tree

for both problems. For k ≥ 2, the two problems both become NP-hard [62, 31], so peo-

ple put much effort into achieving polynomial-time approximation algorithms. Cheriyan

and Thurimella [31] give algorithms with approximation ratios of 1 + 1/k for k-VCSS

and 1 + 2/(k+ 1) for k-ECSS for simple graphs. Gabow and Gallagher [61] improve the

approximation ratio for k-ECSS to 1 + 1/(2k) +O(1/k2) for simple graphs when k ≥ 7,

and they give a (1 + 21/(11k))-approximation algorithm for k-ECSS in multigraphs.

Some researchers have studied these two problems for the small connectivities k, espe-

cially k = 2 and k = 3, and obtained better approximations. The best approximation

ratio for 2-ECSS in general graphs is 4/3 of Sebő and Vygen [112], while for 2-VCSS

in general graphs, the best ratio is 9/7 of Gubbala and Raghavachari [67]. Gubbala

and Raghavachari [68] also give a 4/3-approximation algorithm for 3-ECSS in general

graphs. Neither k-ECSS nor k-VCSS have a PTAS even in graphs of bounded degree

for k = 2 unless P = NP [39]. Czumaj et al. [37] show that there are PTASes for both

of 2-ECSS and 2-VCSS in planar graphs. Both problems are NP-hard in planar graphs

(by a reduction from Hamiltonian cycle). Later, Berger and Grigni improved the PTAS

for 2-ECSS to run in linear time [12].

Following their PTASes for 2-ECSS and 2-VCSS, Czumaj et al. [37] ask the following:

can we extend the PTAS for 2-ECSS to a PTAS for 3-ECSS in planar graphs? A PTAS

76

for 3-VCSS in planar graphs is additionally listed as an open problem in the Handbook

of Approximation Algorithms and Metaheuristics (Section 51.8.1) [65]. In this chapter,

we answer these questions affirmatively by giving the first PTASes for both 3-ECSS and

3-VCSS in planar graphs. Our main results are the following theorems.

Theorem 3.1. For 3-ECSS, there is an algorithm that, for any ε > 0 and any undirected

planar graph G, finds a (1 + ε)-approximate solution in linear time.

Theorem 3.2. For 3-VCSS, there is an algorithm that, for any ε > 0 and any undirected

planar graph G, finds a (1 + ε)-approximate solution in linear time.

In the following, we assume there are no self-loops in the input graph for both of 3-

ECSS and 3-VCSS. For 3-ECSS, we allow parallel edges in G, but at most 3 parallel edges

between any pair of vertices are useful in a minimal solution. For 3-VCSS, parallel edges

are unnecessary, so we assume the input graph is simple. Since three-vertex connectivity

(triconnectivity) and three-edge connectivity can be verified in linear time [111, 101], we

assume the input graph G contains a feasible solution. W.l.o.g. we also assume ε < 1.

3.1 Overview

Our PTASes follow the spanner framework. For most applications of this framework,

the challenging step is to illustrate the existence of a spanner subgraph. However, for

3-ECSS and 3-VCSS, we could simply obtain a spanner from the input graph G by

deleting additional parallel edges since by planarity there are at most O(n) edges in G

and the size of an optimal solution is at least n, where n = |V (G)|. So, different from

those previous applications, the real challenge for our problems is to illustrate the slicing

step and the combining step. For the slicing step, we want to identify a set of slices

that have two properties: (1) three-edge-connectivity for 3-ECSS or triconnectivity for

3-VCSS, and (2) bounded branchwidth. With these two properties, we can solve 3-ECSS

or 3-VCSS on each slice efficiently. For the combining step, we need to show that we

can obtain a nearly optimal solution from the optimal solutions of all slices found in

slicing step and the shared edges of slices, that means the solution should satisfy the

connectivity requirement and its size is at most 1 + ε times of the size of an optimal

solution for the original input graph.

77

To identify slices, we generalize a decomposition used by Baker [6]. Before sketching

our method, we briefly mention the difficulty in applying previous techniques. The PTAS

for TSP [88] identifies slices in a spanner G′ by doing a breadth-first search in its planar

dual to decompose the edge set into some levels, and any two adjacent slices could only

share all edges of the same level, which form a set of edge-disjoint simple cycles. This

is enough to achieve simple connectivity or biconnectivity between vertices of different

slices. But our problems need stronger connectivity for which one cycle is not enough.

For example, we may need a non-trivial subgraph outside of slice H to maintain the

triconnectivity between two vertices in slice H. See Figure 3.1 (a).

Figure 3.1: (a) The bold cycle encloses a sliceH. To maintain the triconnectivity between
two vertices u and v in H, we need the dashed path outside of H. (b) The bold cycle
encloses a 3EC slice H. The dashed edges divide the outer face of H into distinct regions,
which may contain contracted nodes. (c) The bold cycle encloses a 3EC slice H. The
dashed path P between w1 and w2 will be contracted to obtain a node x. A solution for
3-ECSS on H may contain x but not the dashed edge between u and v. Then the union
S of feasible solutions on all 3EC slices is not feasible if it does not contain path P .

For 3-ECSS, we construct a graph called 3EC slice. We contract each component of

the spanner that is not in the current 3EC slice. Since contraction can only increase edge-

connectivity, this will give us the 3EC slices that are three-edge connected (Lemma 3.18

in Section 3.3). However, if we directly apply this contraction method in the slicing step

of the PTAS for TSP, the branchwidth of the 3EC slice may not be bounded. This is

because there may be many edges that are not in the slice but have both endpoints in

the slice, and such edges may divide the faces of the slice into distinct regions, each of

which may contain a contracted node. See Figure 3.1 (b). To avoid this problem, we

apply the contractions in the decomposition used by Baker [6], which define a slice based

78

on the levels of vertices instead of edges. We can prove that each 3EC slice has bounded

branchwidth in this decomposition (Lemma 3.16 in Section 3.2).

Although each 3EC slice is three-edge connected, the union S of their feasible solu-

tions may not be three-edge connected. Consider the following situation. In a solution

for a slice, a contracted node x is contained in all vertex-cuts for a pair of vertices u and

v. But in S, the subgraph induced by the vertex set X corresponding to x may not be

connected. Therefore, u and v may not satisfy the connectivity requirement in S. See

Figure 3.1 (c).

In their paper, Czumaj et al. [37] proposed a structure called bicycle. A bicycle

consists of two nested cycles, and all in-between faces visible from one of the two cy-

cles. This can be used to maintain the three-edge-connectivity between those connecting

endpoints in cycles. This motivates our idea: we want to combine this structure with

Baker’s shifting technique so that two adjacent slices shared a subgraph similar to a bi-

cycle. In this way, we could maintain the strong connectivity between adjacent slices by

including all edges in this shared subgraph, whose size could be bounded by the shifting

technique. Specifically, we define a structure called double layer for each level i based on

our decomposition, which intuitively contains all the edges incident to vertices of level

i and all edges between vertices of level i + 1. Then we define a 3EC slice based on a

maximal circuit such that any pair of 3EC slices can only share edges in the double layer

between them. In this way, we can obtain a feasible solution for 3-ECSS by combining

the optimal solutions for all the slices and all the shared double layers (Lemma 3.21 in

Section 3.3). By applying shifting technique on double layers, we can prove that the

total size of the shared double layers is a small fraction of the size of an optimal solution.

So we could add those shared double layers into our solution without increasing its size

by much, and this gives us a nearly optimal solution.

For 3-VCSS, we construct a 3VC slice based on a simple cycle instead of a circuit.

The construction is similar to that of 3EC slices. However, contraction does not maintain

vertex connectivity. So we need to prove each 3VC slice is triconnected (Lemma 3.25

in Section 3.4). Then similar to 3-ECSS, we also need to prove that the union of the

optimal solutions of all 3VC slices and all shared double layers form a feasible solution

(Lemma 3.27 in Section 3.4).

For dynamic-programming step, we need to solve a minimum-weight 3-ECSS problem

in each 3EC slice and a minimum-weight 3-VCSS problem in each 3VC slice. This is

79

because we need to carefully assign weights to edges in a slice so that we can bound the

size of our solution. We provide a dynamic program for the minimum-weight 3-ECSS

problem in graphs of bounded branchwidth in Section 3.5, which is similar to that in the

works of Czumaj and Lingas [38, 39]. A dynamic program for minimum-weight 3-VCSS

can be obtained in a similar way. Then we have the following theorem.

Theorem 3.3. Minimum-weight 3-ECSS problem and minimum-weight 3-VCSS problem

both can be solved on a graph G of bounded branchwidth in O(|E(G)|) time.

Remark 3.4. We point out that, for edge-weighted planar graphs, our PTAS fails at the

Spanner step. That is, we cannot find a spanner for 3-ECSS or 3-VCSS for weighted

planar graphs. If we can find a spanner for edge-weighted planar graphs for 3-ECSS or

3-VCSS, then our algorithm can give a PTAS for the corresponding problem. And it

will be interesting to know if there is a PTAS for 3-ECSS and 3-VCSS in edge-weighted

planar graphs.

3.2 Preliminaries

Let G be an undirected planar graph with vertex set V (G) and edge set E(G). We denote

by G[S] the subgraph of G induced by S where S is a vertex subset or an edge subset.

We simplify |E(G)| to |G|. We assume we are given an embedding of G in the plane.

We denote by ∂(G) the subgraph induced by the edges on the outer boundary of G in

this embedding. A circuit is a closed walk that may contain repeated vertices but not

repeated edges. A simple cycle is a circuit that contains no repetition of vertices, other

than the repetition of the starting and ending vertex. A simple cycle bounds a finite

region in the plane that is a topological disk. We say a simple cycle encloses a vertex,

an edge or a subgraph if the vertex, edge or subgraph is embedded in the topological

disk bounded by the cycle. We say a circuit encloses a vertex, edge or subgraph if the

vertex, edge or subgraph is enclosed by a simple cycle in the circuit.

The level of a vertex of G is defined as follows [6]: a vertex has level 0 if it is on the

infinite face of G; a vertex has level i if it is on the infinite face after deleting all the

vertices of levels less than i. Let Vi be the set of vertices of level i. Let Ei be the edge

set of G in which each edge has both endpoints in level i. Let Ei,i+1 be the edge set

of G where each edge has one endpoint in level i and one endpoint in level i + 1. See

80

Figure 3.2: The three horizontal lines in the right figure show the three levels in the left
figure. In this example, V0 = {a, b, c, d, e}, V1 = {f, g, h, i, j} and V2 = {k, l,m, n}.

Figure 3.2 as an example. Then we have the following observations.

Observation 3.5. For any level i ≥ 0, the boundary of any non-trivial two-edge con-

nected component in G[∪j≥iVj] is a maximal circuit in ∂(G[Vi]).

Observation 3.6. For any level i ≥ 0, the boundary of any non-trivial biconnected

component in G[∪j≥iVj] is a simple cycle in ∂(G[Vi]).

For any i ≥ 0, we define the ith double layer

Di = Ei−1,i ∪ Ei ∪ Ei,i+1 ∪ Ei+1

as the set of edges in G[Vi−1 ∪ Vi ∪ Vi+1] \ Ei−1. See Figure 3.3

Let k be a constant that depends on ε. For j = 0, 1, . . . , k−1, let Rj = ∪i mod k=jDi.

Let t = argminj |Rj | and R = Rt. Since
∑k−1

j=0 |Rj | ≤ 2|G|, we have the following upper

bound for the size of R.

|R| ≤ 2/k · |G| (3.1)

Let f(i) = ik − k + t for integer i ≥ 0. If ik − k + t < 0 for any i, we let f(i) = 0.

Let Gi = G[∪f(i)−1≤j≤f(i+1)+1Vj] be the subgraph of G induced by vertices in level

[f(i)− 1, f(i+ 1) + 1] and Hi = Gi \Ef(i)−1 be a subgraph of Gi. See Figure 3.3. Note

that Hi contains exactly the edges of double layers Df(i) through Df(i+1). Therefore, so

long as k ≥ 2, we have Hi ∩ Hi+1 = Df(i+1) ⊆ R, and Hi ∩ Hj = ∅ for any j 6= i and

81

Figure 3.3: The horizontal lines represent edge set in the same level and slashes and
counter slashes represent the edge set between two adjacent levels. Left: there are three
double layers: Di, Di+1 and Di+2 represented by the shaded regions. Right: Gi contains
all edges in this figure, but Hi, represented by shaded region, does not contain Ef(i)−1.

|i− j| ≥ 2. So for any j 6= i we have

(Hi \R) ∩ (Hj \R) = ∅. (3.2)

For each i ≥ 0 and each maximal circuit Ca in ∂(G[Vf(i)]), we construct a graph

Ha
i , called a 3EC slice, from G as follows. (See Figure 3.4.) Let U be the subset of

vertices of Hi \ (Vf(i)−1∪Vf(i+1)+1) that are enclosed by Ca. We contract each connected

component of G \ U into a node. After all the contractions, we delete self-loops and

additional parallel edges if there are more than three parallel edges between any pair

of vertices. The resulting graph is the 3EC slice Ha
i . We call these contracted vertices

nodes to distinguish them from the original vertices of G. We call a contracted node

inner if it is obtained by contracting a component that is enclosed by Ca; otherwise it

is outer. Note that a 3EC slice is still planar, and two 3EC slices only share edges in

a double layer: the common edges of two 3EC slices Ha
i and Hb

i+1 must be in the set

Ef(i+1)−1,f(i+1) ∪Ef(i+1) ∪Ef(i+1),f(i+1)+1, while the common edges of Ha
i and Hc

i must

be in the set Ef(i). In the similar way, we can construct a simple graph Ha
i , called 3VC

slice, for each i ≥ 0 and each simple cycle Ca in ∂(G[Vf(i)]).

Remark 3.7. There can be a 3EC slice Ha
i containing only two vertices in Vf(i). Then

82

Figure 3.4: Example for the construction of Ha
i . Left: a component of Gi. The bold

cycles represent maximal circuits in ∂(G[Vf(i)]). Right: an example of Ha
i . The nodes

represent the contracted nodes. The cycles inside of Ca must belong to Ef(i+1).

the slice must contain at least two parallel edges between the two vertices in Vf(i). But

any 3EC slice Ha
i cannot contain only one vertex in Vf(i) since we define 3EC slice based

on a maximal circuit and we assume there is no self-loop in G. Similarly, any 3VC slice

Ha
i contains at least three vertices in Vf(i).

Lemma 3.8. If G is two-edge connected (biconnected), then each 3EC (3VC) slice ob-

tained from G has at most one outer node.

Proof. We first prove the following claims, and then by these claims we prove the lemma.

Claim 3.9. For any l ≥ 0, subgraph G[∪0≤j≤lVj] is connected.

Proof. We prove by induction on l that subgraph G[∪0≤j≤lVj] is connected for any l ≥ 0.

The base case is l = 0. Since V0 is the set of vertices on the boundary of G, and since G

is connected, subgraph G[V0] is connected. Assume subgraph G[∪0≤j≤lVj] is connected

for l ≥ 0. Then we claim subgraph G[∪0≤j≤l+1Vj] is connected. This is because for each

connected component X of G[Vl+1], there exists at least one edge between X and G[Vl],

otherwise graph G cannot be connected. Since subgraph G[∪0≤j≤lVj] is connected, we

have G[∪0≤j≤l+1Vj] is connected.

83

Claim 3.10. If G is two-edge connected, then for any two distinct maximal circuits Ca

and Cb in ∂(G[Vl]), there is a path between Cb and G[Vl−1] that is vertex disjoint from

Ca.

Proof. Note that Ca and Cb are vertex-disjoint, otherwise Ca is not maximal. We argue

that there cannot be two edge-disjoint paths between Ca and Cb in G[Vl]. If there are

such two edge-disjoint paths, say P1 and P2, then Ca cannot be a maximal circuit in

∂(G[Vl]): if P1 and P2 have the same endpoint in Ca, then Ca is not maximal; otherwise

there is some edge of Ca that cannot be in ∂(G[Vl]). So we know that any vertex in

Ca and any vertex in Cb cannot be two-edge connected in G[Vl]. Since G is two-edge

connected and since G[Vl−1] must be outside of Ca and Cb, vertices in Ca and those in Cb

must be connected through G[Vl−1]. Therefore, there exists a path from Cb to G[Vl−1]

that does not contain any vertex in Ca.

Similarly, we can obtain the following claim.

Claim 3.11. If G is biconnected, then for any two distinct simple cycles Ca and Cb in

∂(G[Vl]), there is a path between Cb and G[Vl−1] that is vertex disjoint from Ca.

Now we prove the lemma. Let H be a 3EC slice based on some maximal circuit

Ca in ∂(G[Vl]) for some l ≥ 0. Let W = ∪0≤j<lVj be the set of all vertices of G that

have levels less than l, and Q be a two-edge connected component in G[Vl] disjoint from

H. Then the boundary of Q is a maximal circuit C in ∂(G[Vl]). Note that Q could be

trivial and then C is also trivial. Since G is connected, each simple cycle must enclose

a connected subgraph of G. So circuit C must enclose a connected subgraph of G. By

Claim 3.10, there is a path between C and G[Vl−1] disjoint from Ca. Since G[∪0≤j<lVj]
is connected by Claim 3.9, the set of vertices that are not enclosed by Ca induces a

connected subgraph of G, giving the lemma for H. For 3VC slice, we can obtain the

lemma in the same way by Claim 3.9 and Claim 3.11.

Using this lemma, we show how to construct all the 3EC slices in linear time. First we

compute the levels of all vertices in linear time by using an appropriate representation

of the planar embedding such as that used by Lipton and Tarjan [95]. We construct

all 3EC slices Ha
i from Gi in O(|V (Gi)|) time. We first contract all the edges between

vertices of level f(i + 1) + 1. Next, we identify all two-edge connected components in

84

G[Vf(i)], which can be done in linear time by finding all the edge cuts by the result of

Tarjan [114]. Each such component contains a maximal circuit in ∂(G[Vf(i)]). Based on

these two-edge connected components of G[Vf(i)], we could identify V (Ha
i) \ {rai } for all

3EC slices Ha
i in O(|V (Gi)|) time, where rai is the outer contracted node for Ha

i . This

is because the inner contracted nodes of a 3EC slice Ha
i is the same as those contracted

in Gi if they are enclosed by Ca. Then for each 3EC slice Ha
i we add the outer node

rai , and for each vertex u ∈ V (Ca) we add an edge between rai and u if there is an edge

between u and some vertex v that is not enclosed by Ca. To add those edges, we only

need to traverse all the edges of subgraph Gi[Vf(i)−1 ∪ Vf(i)]. Since all these steps run

in O(|V (Gi)| time, and since
∑

i≥0 |V (Gi)| = O(|V (G)|), we can obtain the following

lemma.

Lemma 3.12. All 3EC slices can be constructed in O(|V (G)|) time.

Since we can compute all the biconnected components in G[Vf(i)] in linear time based

on depth-first search by the result of Hopcroft and Tarjan [74], we can obtain a similar

lemma for 3VC sllices in a similar way.

Lemma 3.13. All 3VC slices can be constructed in O(|V (G)|) time.

We review the definition of branchwidth given by Seymour and Thomas [113]. A

branch decomposition of a graphG is a hierarchical clustering of its edge set. We represent

this hierarchy by a binary tree, called the decomposition tree, where the leaves are in

bijection with the edges of the original graph. If we delete an edge α of this decomposition

tree, the edge set of the original graph is partitioned into two parts Eα and E(G) \ Eα
according to the leaves of the two subtrees. The set of vertices in common between the

two subgraphs induced by Eα and E(G) \ Eα is called the separator corresponding to

α in the decomposition. The width of the decomposition is the maximum size of the

separator in that decomposition, and the branchwidth of G is the minimum width of any

branch decomposition of G. We borrow the following lemmas from Klein and Mozes [86],

which are helpful in bounding the branchwidth of our graphs.

Lemma 3.14. (Lemma 14.5.1 [86]) Deleting or contracting edges does not increase the

branchwidth of a graph.

85

Lemma 3.15. (Lemma 14.6.1 [86] rewritten) There is a linear-time algorithm that, given

a planar embedded graph G, returns a branch-decomposition whose width is at most twice

of the depth of a rooted spanning tree of G.

Lemma 3.16. If G is two-edge connected (biconnected), the branchwidth of any 3EC

(3VC) slice is O(k).

Proof. We prove this lemma for 3EC slices when G is two-edge connected; by the same

proof we can obtain the lemma for 3VC slices when G is biconnected. Let Ha
i be a 3EC

slice. By Lemma 3.8, there is at most one outer contracted node r for Ha
i . Let the level

of r be f(i) − 1, and the level of all inner contracted nodes be f(i + 1) + 1. Now we

add edges to ensure that every vertex of level l has a neighbor of level l − 1 for each

f(i) ≤ l ≤ f(i) + 1, while maintaining planarity. Call the resulting graph Ka
i . Then

the branchwidth of Ha
i is no more than that of Ka

i by Lemma 3.14. Now we can find a

breadth-first-tree of Ka
i rooted at r that has depth at most k + 3. By Lemma 3.15, the

branchwidth of Ka
i is O(k) and that of Ha

i is at most O(k).

3.3 PTAS for 3-ECSS

In this section, we prove Theorem 3.1. Our PTAS for 3-ECSS is shown in Algorithm 2.

Algorithm 2 A PTAS for 3-ECSS in planar graphs

Input: a 3EC planar graph G and ε > 0
Output: a (1 + ε)-approximate 3-ECSS for G
Remove additional edges so that there are at most three parallel edges between any
pair of vertices
Compute shared edge set R and all 3EC slices by Lemma 3.12 for k = 36/ε
Define edge weights for each slice Ha

i : assign weight 0 to edges in Df(i) ∪Df(i+1) and
weight 1 to other edges
Solve the minimum-weight 3-ECSS in each slice by Theorem 3.3
Output the union of R and solutions from all slices

W.l.o.g. we assume G has at most three parallel edges between any pair of vertices.

Then G is our spanner. Let O(G) be an optimal solution for G. Since each vertex in

86

O(G) has degree at least three, we have

2|O(G)| ≥ 3|V (G)|. (3.3)

If G is simple, then by planarity the number of edges is at most three times of the number

of vertices. Since there are at most three parallel edges between any pair of vertices, we

have

|G| ≤ 9|V (G)|. (3.4)

Combining (3.3) and (3.4), we have |G| ≤ 6|O(G)|.
In this section, we only consider 3EC slices. So when we say slice, we mean 3EC slice

in this section. We construct all the slices from G. By (3.1), we have the following

|R| ≤ 2/k · |G| ≤ 12/k · |O(G)|. (3.5)

We borrow the following lemma from Nagamochi and Ibaraki [103].

Lemma 3.17. (Lemma 4.1 (2) [103] rewritten) Let G be a k-edge connected graph with

more than 2 vertices. Then after contracting any edge in G, the resulting graph is still

k-edge connected.

Recall that our slices are obtained from G by contractions and deletions of self-loops.

By the above lemma, we have the following lemma.

Lemma 3.18. If G is three-edge connected, then any slice is three-edge connected.

Since we can include all the edges in shared double layers, they are “free” to us. So

we would like to include those edges as many as possible in the solution for each slice.

This can be achieved by defining an edge-weight function w for each slice Ha
i : assign

weight 0 to edges in Df(i) ∪Df(i+1) and weight 1 to other edges. By Lemma 3.18, any

slice is three-edge connected. We solve the minimum-weight 3-ECSS problem on Ha
i in

linear time by Theorem 3.3. Let Sol(Ha
i) be a feasible solution for the minimum-weight

3-ECSS problem on Ha
i . Then it is also a feasible solution for 3-ECSS on Ha

i . Let

Ow(Ha
i) be an optimal solution for the minimum-weight 3-ECSS problem on Ha

i . Then

we have the following observation.

87

Observation 3.19. The weight of any solution Sol(Ha
i) is the same as the number of

its common edges with Ha
i \R, that is

w(Sol(Ha
i)) = |Sol(Ha

i) ∩ (Ha
i \R)|.

Let Ci be the set of all maximal circuits in ∂(G[Vf(i)]). Then we have the following

lemmas.

Lemma 3.20. For any i ≥ 0, let Si =
⋃
Ca∈Ci Ow(Ha

i). Then we can bound the number

of edges in Si by the following inequality

|Si| ≤ |O(G) ∩ (Hi \R)|+ |Df(i)|+ |Df(i+1)|.

Proof. We show that O(G) ∩Ha
i is a feasible solution for the minimum-weight 3-ECSS

problem on Ha
i , and then we bound the size of Si. Let Y a

i be the set of vertices of Ha
i

that are not contracted nodes. We first contract connected components of O(G) \ Y a
i

just as constructing Ha
i from G. Then we need to identify any two contracted nodes,

if their corresponding components in O(G) are in the same connected component in

G \ Y a
i . See Figure 3.5. Finally, we delete all the self-loops and extra parallel edges if

Figure 3.5: The bold cycle encloses Y a
i . The dashed edge is in G but not in O(G). Its

two endpoints will be identified, since the dashed edge will be contracted to obtain Ha
i

but it will not be contracted when contracting connected components of O(G) \ Y a
i .

there are more than three parallel edges between any two vertices. The resulting graph is

a subgraph of O(G)∩Ha
i and spans V (Ha

i). Since identifying two nodes maintains edge-

connectivity, and since contractions also maintain edge-connectivity by Lemma 3.17,

the resulting graph is three-edge connected. So O(G) ∩ Ha
i is a feasible solution for

minimum-weighted 3-ECSS problem on Ha
i . Then by the optimality of Ow(Ha

i), we

88

have w(Ow(Ha
i)) ≤ w(O(G) ∩Ha

i). And by Observation 3.19, we have

|Ow(Ha
i) ∩ (Ha

i \R)| ≤ |(O(G) ∩Ha
i) ∩ (Ha

i \R)| = |O(G) ∩ (Ha
i \R)|. (3.6)

Note that for any slice Ha
i , we have E(Ha

i) ⊆ E(Hi) and (Ha
i ∩ R) ⊆ (Hi ∩ R) ⊆

(Df(i) ∪Df(i+1)). Since for distinct (vertex-disjoint) maximal circuits Ca and Cb in Ci,
subgraphs Ha

i \R and Hb
i \R are vertex-disjoint, we have the following equalities.

Hi \R =
⋃

Ca∈Ci
(Ha

i \R) (3.7)

Si ∩ (Hi \R) =
⋃

Ca∈Ci
(Ow(Ha

i) ∩ (Ha
i \R)) (3.8)

Then
|Si ∩ (Hi \R)| =

∣∣⋃
Ca∈Ci(Ow(Ha

i) ∩ (Ha
i \R))

∣∣ by (3.8)

≤
∑

Ca∈Ci |Ow(Ha
i) ∩ (Ha

i \R)|
≤
∑

Ca∈Ci |O(G) ∩ (Ha
i \R)| by (3.6)

≤ |O(G) ∩ (Hi \R)|. by (3.7)

So we have |Si| = |Si∩(Hi\R)|+|Si∩(Hi∩R)| ≤ |O(G)∩(Hi\R)|+|Df(i)|+|Df(i+1)|.

Lemma 3.21. The union
(⋃

i≥0,Ca∈Ci Sol(H
a
i)
)
∪R is a feasible solution for G.

Proof. For any i ≥ 0 and any maximal circuit Ca ∈ Ci, let Ma
i be the graph obtained

from Ha
i by uncontracting all its inner contracted nodes. See Figure 3.6. By Lemma 3.8,

there is at most one outer node rai for each slice Ha
i .

Define a tree T based on all the slices: each slice is a node of T , and two nodes Ha
i

and Hb
j are adjacent if they share any edge and |i − j| = 1. Root T at the slice Ha

0 ,

which contains the boundary of G. Let T (Ha
i) be the subtree of T that roots at slice

Ha
i . See Figure 3.6 as an example. For each child Hb

i+1 of Ha
i , let Cb be the boundary

of Hb
i+1 \ {rbi+1}. Then Cb is the maximal circuit in Ci+1 that is shared by Ha

i and Hb
i+1.

Further, by the construction of Ha
i , graph M b

i+1 \ {rbi+1} is a subgraph of Ma
i .

We prove the lemma by induction on this tree T from leaves to root. Assume for

each child Hb
i+1 of Ha

i , there is a feasible solution Sb for the graph M b
i+1 such that Sb =(⋃

H∈T (Hb
i+1)

Sol(H)
)
∪
(
M b
i+1 ∩

(⋃
j≥i+1Df(j+1)

))
. We prove that there is a feasible

89

Figure 3.6: (a) A slice Ha
i : the bold cycle is a maximal circuit Ca in Ci and the nodes

represent all the contracted nodes. (b) The graphMa
i obtained fromHa

i by uncontracting
inner nodes of Ha

i . (c) The subtree T (Ha
i).

solution Sa for Ma
i such that Sa =

(⋃
H∈T (Ha

i)
Sol(H)

)
∪
(
Ma
i ∩

(⋃
j≥iDf(j+1)

))
. For

the root Ha
0 of T , we have Ma

0 ∩
(⋃

j≥0Df(j+1)

)
⊆ R, and then the lemma follows from

the case i = 0.

The base case is that Ha
i is a leaf of T . When Ha

i is a leaf, there is no inner contracted

node in Ha
i and we have Ma

i = Ha
i . So Sol(Ha

i) is a feasible solution for Ma
i .

Recall thatHa
i andHb

i+1 only share edges of (Ef(i+1)−1,f(i+1)∪Ef(i+1)∪Ef(i+1),f(i+1)+1) ⊆
Df(i+1) and vertices of Vf(i+1). Let x be any inner contracted node of Ha

i and X be the

vertex set of the connected component of G corresponding to x. We need the following

claim.

Claim 3.22. If X ⊆M b
i+1 for some Hb

i+1, then (Sb ∪Df(i+1)) ∩G[X] is connected.

Proof. By the construction of levels, all the vertices on the boundary of G[X] have level

f(i+ 1) + 1. See Figure 3.7. Then all the edges of ∂(G[X]) are in Ef(i+1)+1 ⊆ Df(i+1).

So subgraph (Sb ∪Df(i+1)) ∩ ∂(G[X]) is connected. Let u be any vertex in X and let v

be any vertex in M b
i+1 that has level f(i+ 1). Then v is not in X. Since Sb is a feasible

solution for M b
i+1, there exists a path from u to v in Sb. This path must intersect

∂(G[X]) by planarity. So u and any vertex on the boundary of G[X] are connected in

(Sb ∪Df(i+1)) ∩G[X], giving the claim.

Let u and v be any two vertices of Ma
i . To prove the feasibility of Sa, we prove u and

v are three-edge connected in Sa. Let M =
(⋃

Hb
i+1 is a child of Ha

i
V (M b

i+1 \ {rbi+1})
)

90

Figure 3.7: The dashed subgraph is the boundary of G[X]. All the vertices in the dashed
subgraph are in level f(i+ 1) + 1, and all its edges are in Ef(i+1)+1.

and Y a
i = V (Ha

i)\{ inner contracted nodes of Ha
i }. Then V (Ma

i) = Y a
i ∪M . Depending

on the locations of u and v, we have three cases.

Case 1: u,v ∈ Ya
i . Note that we could construct Sa in the following way. Initially we

have S∗ = Sol(Ha
i) ∪ (Df(i+1) ∩ Ha

i). For any inner contracted node x of Ha
i ,

let X be the vertex set of its corresponding connected component in G. Then

there exists a child Hb
i+1 of Ha

i such that X ⊆ V (M b
i+1), and we replace x with

(Sb∪Df(i+1))∩G[X] in S∗. We do this for all inner contracted nodes of Ha
i . Finally

we add some edges of Df(i+1) into the resulting graph such that Df(i+1) ⊆ S∗. Then

the resulting S∗ is the same as Sa by the definition of Sa. We prove that any pair of

the remaining vertices in V (Ha
i) are three-edge connected during the construction.

This includes the remaining inner contracted nodes of Ha
i during the process, but

after all the replacements, there is no such inner contracted nodes, proving the

case.

By the definition of Sol(Ha
i), any pair of vertices of Ha

i are three-edge connected in

Sol(Ha
i). Assume after the first k replacements, any pair of the remaining vertices

in V (Ha
i) are three-edge connected in the resulting graph S∗. Let x be the next

inner contracted node to be replaced, X be the vertex set of its corresponding

component and S′ be the resulting graph after replacing x. Let Hb
i+1 be the child

of Ha
i such that X ⊆ V (M b

i+1). Let C be the simple cycle in ∂(M b
i+1 \ {rbi+1}) that

encloses X. Then all vertices of C have level f(i + 1) and are shared by Ha
i and

Hb
i+1. Further, C ⊆ Ha

i ∩Df(i+1) ⊆ S′. Let u and v be any two remaining vertices

91

of V (Ha
i). There are three edge-disjoint u-to-x paths and three edge-disjoint v-to-x

paths in S∗, all of which must intersect C. So there exist three edge-disjoint u-to-X

paths and three edge-disjoint v-to-X paths in S′. Now we delete two edges in S′. If

these two edges are not both in C, then the vertices of C are still connected. Then

one remaining u-to-C path and one remaining v-to-C path together with the rest

of C witness the connectivity between u and v. If the two deleted edges are both

in C, then there exist one u-to-X path and one v-to-X path after the deletion.

By Claim 3.22, subgraph (Sb ∪ Df(i+1)) ∩ G[X] is connected. So all vertices of

X are connected in S′. Then u and v are connected after the deletion. Finally,

after replacing all the inner contracted nodes, we only add edges of Df(i+1) into

S∗, which will not break three-edge-connectivity between any pair of vertices. This

finishes the proof of Case 1.

Case 2: u,v ∈M. Let M b1
i+1 be the graph contains u and M b2

i+1 be the graph contains

v. (The two graphs could be identical.) Let Cu (resp. Cv) be the simple cycle

in ∂(M b1
i+1 \ {r

b1
i+1}) (resp. ∂(M b2

i+1 \ {r
b2
i+1})) that enclose u (resp. v). (The two

cycles Cu and Cv could be identical.) Since Sb1 is three-edge connected, there

are three edge-disjoint paths from u to some vertex of Cu in Sb1 . All these three

paths must intersect Cu, so there are three edge-disjoint paths from u to Cu in

(Sb1 \ {rb1i+1}) ⊆ Sa. Similarly, there are three edge-disjoint paths from v to Cv in

(Sb2 \ {rb2i+1}) ⊆ Sa. Now we delete any two edges in Sa. After the deletion, there

exist one u-to-w1 path and one v-to-w2 path where w1 ∈ Cu and w2 ∈ Cv. Since

all vertices in V (Cu ∪ Cv) have level f(i + 1) and are in Y a
i , they are three-edge

connected in Sa by Case 1. This means there exists a path from w1 to w2 after

the deletion. Therefore, u and v are connected after deleting any two edges in Sa,

giving the three-edge-connectivity.

Case 3: u ∈ Ya
i and v ∈M. Let M b

i+1 be the graph containing v. Then there is a

vertex w in Y a
i ∩ (M b

i+1 \ {rbi+1}). By Case 1, vertices u and w are three-edge

connected, and by Case 2, vertices v and w are three-edge connected. Then vertices

u and v are three-edge connected by the transitivity of three-edge-connectivity.

This completes the proof of Lemma 3.21.

Proof of Theorem 3.1. We first prove correctness of our algorithm, and then prove its

92

running time. By Lemma 3.21, S =
(⋃

i≥0,Ca∈Ci Ow(Ha
i)
)
∪ R is a feasible solution.

Thus

|S| ≤
∣∣∣(⋃i≥0,Ca∈Ci Ow(Ha

i)
)∣∣∣+ |R|

≤
∑

i≥0
∣∣⋃

Ca∈Ci Ow(Ha
i)
∣∣+ |R|

≤
∑

i≥0
(
|O(G) ∩ (Hi \R)|+ |Df(i)|+ |Df(i+1)|

)
+ |R| by Lemma 3.20

≤
∑

i≥0 |O(G) ∩ (Hi \R)|+ |R|+ |R|+ |R|
≤ |O(G)|+ 3|R| by (3.2)

≤ |O(G)|+ 36/k · |O(G)| by (3.5)

≤ (1 + 36/k)|O(G)|

Let k = 36/ε, and then we obtain |S| ≤ (1 + ε)|O(G)|.
Let n = |V (G)| be the number of vertices of graph G. We could find R and construct

all slices in O(n) time by Lemma 3.12. By Lemma 3.16, each slice has branchwidth O(k).

So by Theorem 3.3, we could solve the minimum-weight 3-ECSS on each slice in linear

time for fixed k. Based on those optimal solutions for all slices, we could construct our

solution in O(n) time. Therefore, our algorithm runs in O(n) time.

3.4 PTAS for 3-VCSS

In this section, we prove Theorem 3.2. Our PTAS for 3-VCSS is shown in Algorithm 3.

Algorithm 3 A PTAS for 3-VCSS in planar graphs

Input: a 3VC planar graph G and ε > 0
Output: a (1 + ε)-approximate 3-VCSS for G
Remove additional parallel edges so that the resulting graph is simple
Compute shared edge set R and all 3VC slices by Lemma 3.13 for k = 12/ε
Define edge weights for each slice Ha

i : assign weight 0 to edges in Ha
i ∩(Df(i)∪Df(i+1))

and weight 1 to other edges
Solve the minimum-weight 3-VCSS in each slice by Theorem 3.3
Output the union of R and solutions from all slices

W.l.o.g. we assume G has at most three parallel edges between any pair of vertices.

Then G is our spanner. Let O(G) be an optimal solution for G. Since each vertex in

O(G) has degree at least three, W.l.o.g. assume G is simple. Then G is our spanner. Let

93

O(G) be an optimal solution for G. Since G is simple and planar, we have |G| ≤ 3|V (G)|.
Then by (3.3) we have |G| ≤ 2|O(G)|. In this section, we only consider 3VC slices. So in

the following, we simplify 3VC slice to slice. We first construct slices from G. By (3.1),

we have the following

|R| ≤ 2/k · |G| ≤ 4/k · |O(G)|. (3.9)

Similar to 3-ECSS, we want to solve a minimum-weight 3-VCSS problem on each

slice. But before defining the weights for this problem on each slice, we first need to

show any slice is triconnected. The following lemma is proved by Vo [116], we provide a

proof for completeness.

Lemma 3.23. ([116]) Let C be a simple cycle of G that separates G \C into two parts:

A and B. Let H be any connected component of A. If G is triconnected, then G/H, the

graph obtained from G by contracting H, is triconnected.

Proof. Let x be the contracted node of G/H. Then x and any other vertex of G/H are

triconnected since G is triconnected. Let u and v be any two vertices of G/H distinct

from x. To prove the lemma, we show u and v are triconnected. Since x and u are

triconnected, there are three vertex-disjoint paths between u and x. Note that all the

three paths must intersect cycle C since V (C) form a cut for x and all the other vertices

in G/H. Similarly, there are three vertex-disjoint paths between v and x, all of which

intersect cycle C. Now we delete any two vertices different from u and v in G/H. If

the two deleted vertices are both in C, then there exist one u-to-x path and one v-to-x

path after the deletion, which witness the connectivity between u and v. If the two

deleted vertices are not both in C, the remaining vertices in C are connected and then

the remaining u-to-C path and the remaining v-to-C path together with the rest of edges

in C witness the connectivity between u and v. So u and v are triconnected.

By the same proof, we can obtain the following lemma.

Lemma 3.24. Let C be a simple cycle of G. Let u and v be two vertices of G \C whose

neighbors in G are all in C. Then if G is triconnected, the graph obtained from G by

identifying u and v is triconnected.

Let Ci be the set of all simple cycles in ∂(G[Vf(i)]). Then we have the following

lemma.

94

Lemma 3.25. For any i ≥ 0 and any simple cycle Ca ∈ Ci, the slice Ha
i is triconnected.

Proof. Let Y a
i be the set of vertices of Ha

i that are not contracted nodes. We could

obtain Ha
i by contracting each connected component of G \ Y a

i into a node. Each time

we contract a connected component H of G\Y a
i , there is a simple cycle C that separates

H and other vertices: if H is outside of Ca, then C = Ca; otherwise C is some simple cycle

in Ci+1 that encloses H. Then by Lemma 3.23 the resulting graph is still triconnected

after each contraction. Therefore, the final resulting graph Ha
i is triconnected.

Now we define the edge-weight function w on a slice Ha
i : we assign weight 0 to edges

in Ha
i ∩ (Df(i) ∪ Df(i+1)) and weight 1 to other edges. Then we solve the minimum-

weight 3-VCSS problem on slice Ha
i by Theorem 3.3. Let Sol(Ha

i) be a feasible solution

for the minimum-weight 3-VCSS problem on Ha
i . Then it is also a feasible solution for

3-ECSS on Ha
i . Let Ow(Ha

i) be an optimal solution for this problem on Ha
i . Then we

can prove the following two lemmas, whose proofs follow the same outlines of the proofs

of Lemmas 3.20 and 3.21 respectively.

Lemma 3.26. For any i ≥ 0, let Si =
⋃
Ca∈Ci Ow(Ha

i). Then we can bound the number

of edges in Si by the following inequality

|Si| ≤ |O(G) ∩ (Hi \R)|+ |Df(i)|+ |Df(i+1)|.

Proof. We first show O(G) ∩ Ha
i is a feasible solution for minimum-weighted 3-VCSS

problem on any slice Ha
i . Let Y a

i be the set of vertices of Ha
i that are not contracted

nodes. We first contract each component of O(G) \Y a
i into a node. The resulting graph

after each contraction is still triconnected by Lemma 3.23. After all the contractions, we

identify any two contracted nodes x1 and x2 if their corresponding components in O(G)

are connected in G \ Y a
i . This implies there exists a simple cycle C in Ci or Ci+1 such

that all neighbors of x1 and x2 are in C. So by Lemma 3.24 the resulting graph after

each identification is also triconnected. Finally we delete parallel edges and self-loops if

possible. After identifying all possible nodes, the resulting graph has the same vertex

set as Ha
i and is triconnected. Since the resulting graph is a subgraph of O(G)∩Ha

i , we

know O(G) ∩Ha
i is a feasible solution for minimum-weighted 3-VCSS problem on Ha

i .

Note that for any slice Ha
i , we have (Ha

i ∩ R) ⊆ (Hi ∩ R) ⊆ (Df(i) ∪ Df(i+1)). By

the optimality of Ow(Ha
i), we have w(Ow(Ha

i)) ≤ w(O(G)∩Ha
i). Since all the nonzero-

95

weighted edges are in Ha
i \R, Observation 3.19 still holds. Then we have

|Ow(Ha
i) ∩ (Ha

i \R)| ≤ |(O(G) ∩Ha
i) ∩ (Ha

i \R)| = |O(G) ∩ (Ha
i \R)|. (3.10)

Since for distinct (edge-disjoint) simple cycles Ca and Cb in Ci, subgraphs Ha
i \ R and

Hb
i \R are vertex-disjoint, we have the following equalities.

Hi \R =
⋃

Ca∈Ci
(Ha

i \R) (3.11)

Si ∩ (Hi \R) =
⋃

Ca∈Ci
(Ow(Ha

i) ∩ (Ha
i \R)) (3.12)

Then
|Si ∩ (Hi \R)| =

∣∣⋃
Ca∈Ci(Ow(Ha

i) ∩ (Ha
i \R))

∣∣ by (3.12)

≤
∑

Ca∈Ci |Ow(Ha
i) ∩ (Ha

i \R)|
≤
∑

Ca∈Ci |O(G) ∩ (Ha
i \R)| by (3.10)

≤ |O(G) ∩ (Hi \R)|. by (3.11)

So we have |Si| = |Si∩(Hi\R)|+|Si∩(Hi∩R)| ≤ |O(G)∩(Hi\R)|+|Df(i)|+|Df(i+1)|.

Lemma 3.27. The union
(⋃

i≥0,Ca∈Ci Sol(H
a
i)
)
∪R is a feasible solution for G.

Proof. For any i ≥ 0 and any simple cycle Ca ∈ Ci, let Ma
i be the graph obtained from

slice Ha
i by uncontracting all the inner contracted nodes of Ha

i . By Lemma 3.8, there is

at most one outer contracted node rai for any slice Ha
i .

Define a tree T based on all the slices: each slice is a node of T , and two nodes Ha
i

and Hb
j are adjacent if they share any edge and |i − j| = 1. Root T at the slice Ha

0 ,

which contains the boundary of G. Let T (Ha
i) be the subtree of T that roots at slice

Ha
i . For each child Hb

i+1 of Ha
i , let Cb be the simple cycle in Ci+1 that is shared by Ha

i

and Hb
i+1. Then Cb is the boundary of Hb

i+1 \ {rbi+1}.
We prove the lemma by induction on this tree from leaves to root. Assume for each

child Hb
i+1 of Ha

i , there is a feasible solution Sb for the graph M b
i+1 such that Sb =(⋃

H∈T (Hb
i+1)

Sol(H)
)
∪
(
M b
i+1 ∩

(⋃
j≥i+1Df(j+1)

))
. We prove that there is a feasible

solution Sa for Ma
i such that Sa =

(⋃
H∈T (Ha

i)
Sol(H)

)
∪
(
Ma
i ∩

(⋃
j≥iDf(j+1)

))
. For

the root Ha
0 of T , we have Ma

0 ∩
(⋃

j≥0Df(j+1)

)
⊆ R, and then the lemma follows from

96

the case i = 0.

The base case is that Ha
i is a leaf of T . When Ha

i is a leaf, there is no inner contracted

node in Ha
i and we have Ma

i = Ha
i . So Sol(Ha

i) is a feasible solution for Ma
i .

We first need a claim the same as Claim 3.22. Note that any inner contracted node

of Ha
i is enclosed by some cycle Cb. Let x be any inner contracted node of Ha

i that is

enclosed by Cb, and X be the vertex set of the connected component of G corresponding

to x. Then we have the following claim, whose proof is the same as that of Claim 3.22.

Claim 3.28. If X ⊆M b
i+1 for some Hb

i+1, then (Sb ∪Df(i+1)) ∩G[X] is connected.

Now we ready to prove Sa is a feasible solution for Ma
i . That is, we prove it is

triconnected. Let u and v be any two vertices ofMa
i . Let Y a

i = V (Ha
i)\{ inner contracted

nodes of Ha
i }. Since V (Ma

i) = Y a
i ∪

(⋃
Hb
i+1 is a child of Ha

i
V (M b

i+1 \ {rbi+1})
)

, we have

four cases.

Case 1: u,v ∈ Ya
i . For any contracted component X in G that corresponds to an inner

contracted node of Ha
i , by Claim 3.28 all vertices in X are connected in (Sb ∪

Df(i+1)) ∩G[X] if X ⊆M b
i+1. Then all vertices of X are connected in Sa ∩G[X],

since for any child Hb
i+1 of Ha

i we have (Sb∪Df(i+1)) ⊆ Sa. By the triconnectivity

of Sol(Ha
i), there are three vertex-disjoint paths between u and v in Sol(Ha

i).

Since each inner contracted node of Ha
i could be in only one path witnessing

connectivity, the three vertex-disjoint u-to-v paths in Sol(Ha
i) could be transferred

into another three vertex-disjoint u-to-v paths in Sa by replacing each contracted

inner contracted node x with a path in the corresponding component X. So u and

v are triconnected in Sa.

Case 2: u,v ∈Mb
i+1 \ {rbi+1}. Since V (Cb) is a cut for vertices enclosed by Cb and

those not enclosed by Cb, by the triconnectivity of G we have |V (Cb)| ≥ 3. By

inductive hypothesis, Sb is a feasible solution for M b
i+1, so there are three vertex-

disjoint u-to-rbi+1 paths in Sb. All these three paths must intersect Cb by planarity,

so there are three vertex-disjoint u-to-Cb paths in (Sb \ {rbi+1}) ⊆ Sa. Similarly,

there are three vertex-disjoint v-to-Cb paths in (Sb \ {rbi+1}) ⊆ Sa. If we delete

any two vertices in Sa, then there exist at least one u-to-w1 path and one v-to-w2

path for some vertices w1, w2 ∈ Cb. Since all vertices in Cb have level f(i+1), they

are in Y a
i . Then by Case 1, vertices w1 and w2 are triconnected in Sa, so they are

97

connected after deleting any two vertices. Therefore, u and v are also connected

after the deletion.

Case 3: u ∈ Ya
i and v ∈Mb

i+1 \ {rbi+1}. If one of u and v is in Cb, they are tricon-

nected by Case 1 or 2. So w.l.o.g. we assume u is not enclosed by Cb and v is

strictly enclosed by Cb. Since G is triconnected, we have |V (Cb)| ≥ 3. We could

delete any two vertices in Sa and there exists at least one vertex w in Cb. By Case

1, vertices u and w are connected after the deletion, and by Case 2, vertices v and

w are connected after the deletion. So u and v are connected after the deletion.

Case 4: u ∈Mb1
i+1 \ {r

b1
i+1} and v ∈Mb2

i+1 \ {r
b2
i+1}. W.l.o.g. assume u is strictly en-

closed by Cb1 and v is strictly enclosed by Cb2 , otherwise, by Case 3 they are

triconnected. Since G is triconnected, we have |V (Cb1)| ≥ 3. After deleting any

two vertices in Sa, there exists a vertex w ∈ Cb1 . By Case 2, vertices u and w

are connected after deletion, and by Case 3 vertices v and w are connected after

deletion. So u and v are connected after deletion.

This completes the proof of Lemma 3.27.

Proof of Theorem 3.2. We first prove the correctness, and then prove the running time.

Let the union S =
(⋃

i≥0,Ca∈Ci Ow(Ha
i)
)
∪ R be our solution. By Lemma 3.27, the

solution S is feasible for G. Then we have

|S| =
∣∣∣(⋃i≥0,Ca∈Ci Ow(Ha

i)
)
∪R

∣∣∣
=
∣∣∣(⋃i≥0,Ca∈Ci Ow(Ha

i)
)∣∣∣+ |R|

≤
∑

i≥0
∣∣⋃

Ca∈Ci Ow(Ha
i)
∣∣+ |R|

≤
∑

i≥0
(
|O(G) ∩ (Hi \R)|+ |Df(i)|+ |Df(i+1)|

)
+ |R| by Lemma 3.26

≤
∑

i≥0 |O(G) ∩ (Hi \R)|+ |R|+ |R|+ |R|
≤ |O(G)|+ 3|R| by (3.2)

≤ (1 + 12/k)|O(G)|. by (3.9)

We set k = 12/ε and then we have |S| ≤ (1 + ε)|O(G)|.
Let n = |V (G)| be the number of vertices in graph G. We could find the edge set R

in linear time. By Lemma 3.13 we could construct all slices in O(n) time. So the slicing

step runs in linear time. By Lemma 3.16, the branchwidth of each slice is O(k) = O(1/ε).

98

Therefore, we could solve the minimum-weight 3-VCSS problem on each slice in linear

time by Theorem 3.3. Based on the optimal solutions for all the slices, we could construct

our final solution S in linear time. So our algorithm runs in linear time.

3.5 Dynamic Programming for Minimum-Weight 3-ECSS on Graphs

with Bounded Branchwidth

In this section, we give a dynamic program to compute the optimal solution of minimum-

weighted 3-ECSS problem on a graph G with bounded branchwidth w. This will prove

Theorem 3.3 for the minimum-weight 3-ECSS problem. Our algorithm is inspired by the

work of Czumaj and Lingas [38, 39]. Note that G need not be planar.

Given a branch decomposition of G, we root its decomposition tree T at an arbitrary

leaf. For any edge α in T , let Lα be the separator corresponding to it, and Eα be the

subset of E(G) mapped to the leaves in the subtree of T \ {α} that does not include

the root of T . Let H be a spanning subgraph of G[Eα]. We adapt some definitions of

Czumaj and Lingas [38, 39]. An separator completion of α is a multiset of edges between

vertices of Lα, each of which may appear up to 3 times.

Definition 3.29. A configuration of a vertex v of H for an edge α of T is a pair (A,B),

where A is a tuple (a1, a2, . . . , a|Lα|), representing that there are ai edge-disjoint paths

from v to the ith vertex of Lα in H, and B is a set of tuples (xi, yi, bi), representing that

there are bi edge-disjoint paths between the vertices xi and yi of Lα in H. (We only need

those configurations where |ai| ≤ 3 for all 0 ≤ i ≤ |Lα| and |bi| ≤ 3 for all i ≥ 0.) All

the
∑|Lα|

i=1 ai +
∑

i bi paths in a configuration should be mutually edge-disjoint in H.

Definition 3.30. For any pair of vertices u and v in H, let ComH(u, v) be the set of

separator completions of α each of which augments H to a graph where u and v are

three-edge connected. For each vertex v in H, let PathH(v) be a set of configurations of

v for α. Let PathH be the set of all the non-empty B in which all tuples can be satisfied

in H. Let CH be the set consisting of one value in each ComH(u, v) for all pairs of

vertices u and v in H, and PH be the set consisting of one value in each PathH(v) for

all vertices v in H. We call the tuple (CH , PH , PathH) the connectivity characteristic

of H, and denote it by Char(H).

Note that |Lα| ≤ w for any edge α. Subgraph H may correspond to multiple CH

99

and PH , so H may have multiple connectivity characteristics. Further, each value in

PH represents at least one vertex. For any edge α, there are at most 4O(w2) distinct

separator completions (O(w2) pairs of vertices, each of which can be connected by at

most 3 parallel edges) and at most 24
O(w2)

distinct sets CH of separator completions. For

any edge α, there are at most 4O(w2) different configurations for any vertex in H since

the number of different sets A is at most 4w, the number of different sets B is at most

4O(w2) (the same as the number of separator completions). So there are at most 24
O(w2)

different sets of configurations PH , and at most 24
O(w2)

different sets B. Therefore, there

are at most 24
O(w2)

distinct connectivity characteristics for any edge α.

Definition 3.31. A configuration (A,B) of vertex v for α is connecting if the inequality∑|L|
i=1 ai ≥ 3 holds where ai is the ith coordinate in A. That is, there are enough edge-

disjoint paths from v to the corresponding separator Lα which can connect v and vertices

outside Lα. Char(H) is connecting if all configurations in its PH set are connecting.

Subgraph H is connecting if at least one of Char(H) is connecting. In the following, we

only consider connecting subgraphs and their connecting connectivity characteristics.

In the following, we need as a subroutine an algorithm to solve the following problem:

when given a set of demands (xi, yi, bi) and a multigraph, we want to decide if there exist

bi edge-disjoint paths between vertices xi and yi in the graph and all the
∑

i bi paths

are mutually edge-disjoint. Although we do not have a polynomial time algorithm for

this problem, we only need to solve this on graphs with O(w) vertices, O(w2) edges and

O(w2) demands. So even an exponential time algorithm is acceptable for our purpose

here. Let ALG be an algorithm for this problem, whose running time is bounded by a

function f(w), which may be exponential in w.

For an edge α in the decomposition tree T , let β and γ be its two child edges. Let

H1 (H2) be a spanning subgraph of G[Eβ] (G[Eγ]). Let H = H1 ∪ H2. Then we have

the following lemma.

Lemma 3.32. For any pair of Char(H1) and Char(H2), all the possible Char(H),

that could be obtained from Char(H1) and Char(H2), can be computed in O(4w
2
f(w) +

4w
24w

2

) time.

Proof. We compute all the possible sets for the three components of Char(H).

100

Compute all possible CH Each CH contains two parts: the first part covers all pairs

of vertices in the same Hi for i = 1, 2 and the second part covers all pairs of vertices

from distinct subgraphs.

For the first part, we generalize each value C ∈ CHi for i = 1, 2 into a possible set

XC . Notice that each separator completion can be represented by a set of demands

(x, y, b) where x and y are in the separator. For a candidate separator completion C ′

of α, we combine C ′ with each B ∈ PathH3−i to construct a graph H ′ and define the

demand set the same as C. By running ALG on this instance, we can check if C ′ is a

legal generalization for C. This could be computed in 4O(w2)w2 + 4O(w2)f(w) time for

each C. All the legal generalizations for C form XC .

Now we compute the second part. Let (A1, B1) ∈ PH1 and (A2, B2) ∈ PH2 be

the configurations for some pair of vertices u ∈ H1 and v ∈ H2 respectively. We will

compute possible ComH(u, v). We first construct a graph H ′ on Lβ ∪Lγ ∪ {u, v} by the

two configurations: add i parallel edges between two vertices if there are i paths between

them represented in the configurations. Then we check for each candidate separator

completion C ′ if u and v are three-edge connected in H ′ ∪ C ′. We need O(w3) for this

checking if we use Orlin’s max-flow algorithm [104]. All those C ′ that are capable of

providing three-edge-connectivity with H ′ form ComH(u, v). This can be computed in

4O(w2)w3 time for each pair of configurations.

A possible CH consists of each value in XC for every C ∈ CHi for i = 1, 2 and each

value in ComH(u, v) for all pairs of configurations of PH1 and PH2 . To compute all the

sets, we need at most 4O(w2)w3 + 4O(w2)f(w) time. There are at most 4O(w2) sets and

each may contain at most 4O(w2) values. Therefore, to generate all the possible CH from

those sets, we need at most 4w
24O(w2)

time.

Compute all possible PH We generalize each configuration (A,B) of v in PHi (i = 1, 2)

into a set Yv of possible configurations. For each set B′ in PathH3−i , we construct a graph

H ′ by A, B and B′ on vertex set Lβ ∪ Lγ ∪ {v}: if there are b disjoint paths between

a pair of vertices represented in A, B or B′, we add b parallel edges between the same

pair of vertices in H ′, taking O(w2) time. For a candidate value (A∗, B∗) for α, we

define a set of demands according to A∗ and B∗ and run ALG on all the possible H ′

we construct for sets in PathH3−i . If there exists one such graph that satisfies all the

demands, then we add this candidate value into Yv. We can therefore compute each set

Yv in 4O(w2)w2 + 4O(w2)f(w) time. A possible PH consists of each value in Yv for all

101

v ∈ V (H). There are at most 4O(w2) such sets and each may contain at most 4O(w2)

values. So we can generate all possible PH from those sets in 4w
24O(w2)

time.

Compute PathH For each pair of B1 ∈ PathH1 and B2 ∈ PathH2 , we construct a

graph H ′ on vertex set Lβ ∪ Lγ : if two vertices are connected by b disjoint paths, we

add b parallel edges between those vertices in H ′. Since each candidate B′ for α can

be represented by a set of demands, we only need to run ALG on all possible H ′ to

check if B′ can be satisfied. We add all satisfied candidates B′ into PathH . This can be

computed in 4O(w2)w2 + 4O(w2)f(w) time.

Therefore, the total running time is O(4w
2
f(w) + 4w

24w
2

). For each component we

enumerate all possible cases, and the correctness follows.

Our dynamic programming is guided by the decomposition tree T from leaves to

root. For each edge α, our dynamic programming table is indexed by all the possible

connectivity characteristics. Each entry indexed by the connectivity characteristic Char

in the table is the weight of the minimum-weight spanning subgraph of G[Eα] that has

Char as its connectivity characteristic.

Base case For each leaf edge uv of T , the only subgraph H is the edge uv and the

separator only contains the endpoints u and v. ComH(u, v) contains the multisets of edge

uv that appears twice. PathH(u) contains two configurations: ((3, 0), {(u, v, 1)}) and

((3, 1), ∅), and PathH(v) contains two configurations: ((0, 3), {(u, v, 1)}) and ((1, 3), ∅).
PathH contains one set: {(u, v, 1)}.

For each non-leaf edge α in T , we combine every pair of connectivity characteristics

from its two child edges to fill in the dynamic programming table for α. The root

can be seen as a base case, and we can combine it with the computed results. The

final result will be the entry indexed by (∅, ∅, ∅) in the table of the root. Let m =

|E(G)|. Then the size of the decomposition tree T is O(m). By Lemma 3.32, we need

O(4w
2
f(w) + 4w

24w
2

) time to combine each pair of connectivity characteristics. Since

there are at most 24
O(w2)

connectivity characteristics for each node, the total running

time will be O(24
w2

f(w)m + 4w
24w

2

m). Since the branchwidth w of G is bounded, the

running time will be O(|E(G)|).

102

Correctness The separator completions guarantee the connectivity for the vertices in

H, and the connecting configurations enumerate all the possible ways to connect vertices

in H and vertices of V (G) \ V (H). So the connectivity requirement is satisfied. The

correctness of the procedure follows from Lemma 3.32.

103

Chapter 4: Local Search PTAS for Minimum Feedback Vertex Set

in Minor-free Graphs

Given an undirected graph, the minimum feedback vertex set problem (FVS) asks for a

minimum set of vertices such that after removing this set, the resulting graph has no

cycle. This problem arises in a variety of applications, including deadlock resolution,

circuit testing, artificial intelligence, and analysis of manufacturing processes [53]. Be-

cause of its importance, the FVS problem has been studied for a long time in algorithms

. It is one of Karp’s 21 original NP-Complete problems [80] and is NP-hard even in pla-

nar graphs [120]. The current best approximation ratio for the FVS problem in general

graphs is 2 due to Becker and Geiger [10] and Bafna, Berman and Fujito [5].

There exist some PTAS results for this problem in some special classes of graphs.

Kleinberg and Kumar [90] gave the first PTAS for the FVS problem in planar graphs,

and Cohen-Addad, Colin de Verdière, Klein, Mathieu, and Meierfrankenfeld [34] gave

a PTAS for the weighted version of this problem in bounded-genus graphs. Demaine

and Hajiaghayi [42] gave an EPTAS for single-crossing-minor-free graphs. Fomin, Lok-

shtanov, Rauman and Saurabh [55] gave an EPTAS for H-minor-free graphs. However,

their algorithm for H-minor-free graphs relies on a tree decomposition construction and

other algorithmic tools based on bounded treewidth, such as Courcelle’s theorem [36] or

the similar result of Borie, Parker and Tovey [17], which makes the algorithm hard to

apply in practice [78]. On the other hand, local search is a simple heuristic and there

have been several experimental works on applying local search to FVS problem in gen-

eral graphs, which show that local search gave good approximate solutions [121, 107].

However, no theoretical analysis of local search for the FVS problem was known before.

In this chapter, we show that a simple local search algorithm is a PTAS for the FVS

problem in H-minor-free graphs. The algorithm is depicted in Algorithm 4. Intuitively,

the local search algorithm starts with an arbitrary solution for the problem and tries to

change a constant number (depending on ε) of vertices in the current solution to obtain

a better solution. The algorithm outputs the current solution when it cannot obtain a

better solution in this way.

104

Algorithm 4 PTAS for FVS by Local Search

Input: graph G and error parameter ε
S ← an arbitrary solution of G
c← a constant depending on ε
while there is a solution S′ such that |S \ S′| ≤ c, |S′ \ S| ≤ c and |S′| < |S| do

S ← S′

Output S

Theorem 4.1. For any fixed ε > 0, there is a local search algorithm that finds a (1 + ε)-

approximate solution for the FVS problem in H-minor-free graphs with running time

O(nc) where c = poly(|V (H)|)
ε2

.

To complement our positive result, we provide several negative results. First, we

show that the FVS problem is APX-hard in 1-planar graphs. That implies the FVS

problem is unlikely to have a PTAS beyond H-minor-free graphs. Our negative result

contrasts with the positive results of Har-Peled and Quanrud [70], who show that local

search provides PTASes for many problems including vertex cover, independent set,

dominating set and connected dominating set, in graphs with polynomial expansion,

which generalize 1-planar graphs and H-minor-free graphs. Second, we show that two

closely related variants of the FVS problem, namely: odd cycle transversal and subset

feedback vertex set, do not have such simple local search PTASes even in planar graphs.

The odd cycle transversal (also called bipartization) problem asks for a minimum set of

vertices in an undirected graph whose removal results in a bipartite graph. Given an

undirected graph and a subset U of vertices, the subset feedback vertex set problem asks

for a minimum set S of vertices such that after removing S the resulting graph contains

no cycle that passes through any vertex of U . We show by examples, that the simple

local search with constant exchanges cannot give a constant approximation in planar

graphs.

4.1 Overview

Local search has been used before to obtain PTASes for other problems in H-minor-free

graphs. Cabello and Gajser [29] gave a local search PTAS for the maximum indepen-

dent set problem, the minimum vertex cover problem and the minimum dominating set

105

problem in H-minor-free graphs. Cohen-Addad, Klein and Mathieu [35] showed that

local search yields PTASes for k-means, k-median and uniform uncapacitated facility

location in H-minor-free graphs. All their analyses relies on the exchange graph, a graph

constructed from the optimal solution1 O and the local search solution L. For indepen-

dent set and vertex cover, the exchange graph is simply the subgraph induced by O∪L,

and for the other problems, the exchange graph is built by contracting other vertices to

nearest vertices in O ∪ L. Then the local properties of these problems naturally appear

in the exchange graphs: if we consider a small neighborhood R in the exchange graph

and replace the vertices of L in R with the vertices of O in R and the boundary of

R, the resulting vertex set is still a feasible solution for the original graph. Then by

decomposing the exchange graph into small neighborhoods, we can bound the size of L

by the size of O and all the boundaries of those neighborhoods.

However, the FVS problem does not have such local property if we construct exchange

graph only by deletion or only by contraction. This is because for a cycle C in the original

graph, the vertex of L that covers C may be inside of some neighborhood but the vertex

of O that covers C may be outside of that neighborhood. One may try to argue the

boundary of the neighborhood could cover C. But unfortunately, the boundary may not

be helpful since the crossing vertices of C and the boundary may not be in both solutions

and then they may be deleted or contracted to other vertices.

To solve this problem, we will construct an exchange graph with the following prop-

erty: for any cycle C of the original graph, in our exchange graph there is either a vertex

in O∩L∩C, or an edge between a vertex in O∩C and a vertex in L∩C, or another cycle

C ′ such that vertices in C ′ is a subset of vertices in C and C ′∩(O∪L) = C∩(O∪L). To

achieve this goal, we will apply both deletion and contraction to construct our exchange

graph. Furthermore, we need to introduce vertices that are not in both solutions into

the exchange graph, which is different from all previous exchange graph constructions.

Meanwhile, we need to guarantee that the number of such vertices is linear in the size

of O ∪ L. The linear size bound is essential to the correctness of our algorithm and we

prove this size bound by a structural lemma which may be of independent interest.

1For k-means and k-median, the exchange graph is constructed from L and a nearly optimal solution
O′, which is obtained by removing some vertices of O.

106

4.2 Preliminaries

For a graph G, we denote the vertex set and the edge set of G by V (G) and E(G),

respectively. For a subgraph X of G, the boundary of X is the set of vertices that are in

X but have at least one incident edge that is not in X. We denote by int(X) the set of

vertices of X that are not in the boundary of X. The degree of a vertex is the number

of its incident edges.

Recall that a graph H is a minor of G if H can be obtained from G by a sequence

of vertex deletions, edge deletions and edge contractions. G is H-minor-free if G does

not contain a fixed graph H as a minor. The following theorem of Mader shows that

H-minor-free graph is sparse.

Theorem 4.2 (Mader [98]). An H-minor-free graph of n vertices has O(σHn) edges

where σH = |V (H)|
√

log |V (H)|.

Recall that a balanced separator of a graph is a set of vertices whose removal partitions

the graph roughly in half. A separator theorem typically provides bounds for the size

of each part and the size of the balanced separator. Usually, the size of the balanced

separator is sublinear w.r.t. the size of the graph. Separator theorems have been found

for planar graphs [47, 46, 63, 95], bounded-genus graphs [48, 64, 83], and minor-free

graphs [2, 14, 82, 109, 119]. An r-division is a decomposition of a graph, which was

first introduced by Frederickson [54] for planar graphs to speed up planar shortest path

algorithm.

Definition 4.3. For an integer r, an r-division of a graph G is a collection of edge-

disjoint subgraphs of G, called regions, with the following properties.

1. Each region contains at most r vertices.

2. The number of regions is at most cd
n
r .

3. The number of boundary vertices, summed over all regions, is at most cd
n√
r
.

where cd is a constant.

We say a graph is r-divisible if it has an r-division. Frederickson [54] gave a con-

struction for the r-division of a planar graph which only relies on the separator theorem

107

in planar graphs [95]. It is straightforward to extend the construction to any family of

graphs with balanced separator of sublinear size. Since H-minor-free graphs are known

to have balanced separators (Alon, Seymour, and Thomas [2]), we have:

Theorem 4.4 (Alon, Seymour, and Thomas [2] + Frederickson [54]). Minor-free graphs

are r-divisible with cd = poly(|V (H)|).

4.3 Exchange Graph Implies PTAS by Local Search

In this section, we show that if for an H-minor-free graph G, we can construct another

graph, called an exchange graph, that it is r-divisible, then Algorithm 4 is a PTAS for the

FVS problem. Let O be an optimal solution of the FVS problem and L be the output

of the local search algorithm. We say a vertex u a solution vertex if u ∈ O ∪ L and a

Steiner vertex otherwise. Unlike prior works [29, 70], we allow Steiner vertices in our

exchange graphs.

Definition 4.5. A graph Ex is an exchange graph for the optimal solution O and the

local solution L of the FVS problem in a graph G if it satisfies the following properties:

(1) L ∪O ⊆ V (Ex) ⊆ V (G).

(2) |V (Ex)| ≤ ce(|L|+ |O|) for some constant ce.

(3) For every cycle C of G, there is (3a) a vertex of C in O ∩ L or (3b) an edge

uv ∈ E(Ex) between a vertex u ∈ L and a vertex v ∈ O in C or (3c) a cycle C ′ of

Ex such that V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L).

Theorem 4.6. If graph G has an r-divisible exchange graph for an optimal solution O

and a local solution L, then Algorithm 4 is a polynomial-time approximation scheme for

the FVS problem in G, whose running time is nO(1/ε2).

Proof. We set the constant c in Algorithm 4 as 1/δ2 where δ = ε
2cdce(2+ε)

= O(ε
cdce

).

Note that cd and ce are constants in Definition 4.3 and Definition 4.5, respectively. Since

in each iteration, the size of the solution is reduced by at least one, there are at most

n iterations. Since each iteration can be implemented in nO(c) time by enumerating all

possibilities, the total running time is nO(c) = nO(1/ε2). We now show that the output L

has size at most (1 + ε)|O|.

108

Let Ex be an r-divisible exchange graph for O and L. Since Ex is r-divisible, we can

find an r-division of Ex for r = c = d1/δ2e. Let B be the multi-set containing all the

boundary vertices in the r-division. By the third property of r-division, |B| is at most

cd
|V (Ex)|√

r
. By the second property of exchange graph, |V (Ex)| ≤ ce(|O|+ |L|). Thus, we

have:

|B| ≤ cdceδ(|O|+ |L|) (4.1)

In the following, we will show that:

|L| ≤ |O|+ 2|B| (4.2)

Then by Equation 4.1, we have:

|L| ≤ |O|+ 2cdceδ(|O|+ |L|) = |O|+ ε

2 + ε
(|O|+ |L|)

that implies |L| ≤ (1 + ε)|O|.
To prove Equation (4.2), we need to study some properties of Ex. For any region Ri

of the r-division, let Bi be the boundary of Ri and Mi be the union of L \ Ri, O ∩ Ri
and Bi.

Claim 4.7. Mi is a feedback vertex set of G.

Proof. For a contradiction, assume that there is a cycle C of G that is not covered by

Mi. Then C does not contain any vertex of L \ Ri, O ∩ Ri and Bi. So C can only be

covered by some vertices of (L \ O) ∩ int(Ri) and some vertices of O \ (L ∪ Ri). This

implies that C does not contain any vertex of O∩L and there is no edge in Ex between

C ∩O and C ∩L. By the third property of exchange graph, there must be a cycle C ′ in

Ex such that V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L). Let u be the vertex of

(L \O)∩ int(Ri) in C and v be the vertex of O \ (L∪Ri) in C. Then cycle C ′ contains

both u and v, which implies C ′ crosses the boundary of Ri, that is C ′ ∩ Bi 6= ∅. Let w

be a vertex in C ′ ∩Bi, then w also belongs to C in G. This implies Mi contains a vertex

of C, a contradiction.

By the construction of Mi, we know the difference between L and Mi is bounded by

109

the size of the region Ri, that is r. Recall that c = r = 1/δ2. Since L is the output of

Algorithm 4, we know L cannot be improved by changing at most r vertices. So we have

|L| ≤ |Mi|. By the construction of Mi, this implies

|L ∩Ri| ≤ |Mi ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi|.

That implies

|L ∩ int(Ri)| ≤ |L ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi|.

Since int(Ri) and int(Rj) are vertex-disjoint for any two distinct i and j, by summing

over all regions in the r-division, we can have

|L| − |B| ≤
∑
i

|L ∩ int(Ri)| ≤
∑
i

(|O ∩ int(Ri)|+ |Bi|) ≤ |O|+ |B|.

This proves Equation (4.2).

4.4 Exchange Graph Construction

Recall that σH = |V (H)|
√

log |V (H)| is the sparsity of H-minor-free graphs. In this

section, we will show that:

Theorem 4.8. H-minor-free graphs have exchange graphs for the FVS problem with

ce = O(σH).

Observe that Theorem 4.1 immediately follows from Theorem 4.8 and Theorem 4.6.

The running time is nO(c) where c = poly(|V (H)|)
ε2

since both cd and ce are polynomial in

|V (H)|.
We construct the exchange graph in three steps:

Step 1 We delete all edges in G that are incident to vertices of O∩L. We then remove

all components that do not contain any solution vertex. Note that the removed

components are acyclic.

Step 2 We contract edges that have an endpoint that is not a solution vertex and has

degree at most two until there is no such an edge left. Since L and O are both

feedback vertex set of G, every cycle after the contraction must contain a vertex

110

from L and a vertex from O. Since edges incident to vertices of O∩L are removed,

there is no self-loop after this step.

Step 3 We keep the graph simple by removing all but one edge in each maximal set of

parallel edges.

Let K be the resulting graph. We now show that K satisfies three properties in

Definition 4.5. Property (1) is obvious because we never delete a vertex in L ∪ O from

K. To show property (3), let C be a cycle of G. If any edge of C is removed in Step 1, C

must contain a vertex in O ∩ L; implying (3a). Thus, we can assume that no edge of C

is deleted after Step 1. Since contraction does not destroy cycles, after the contraction

in Step 2, there is a cycle C ′ such that V (C ′) ⊆ V (C). If |V (C ′)| = 2 (C ′ is a cycle of

two parallel edges), then (3b) holds. Thus, we can assume that every edge of C ′ remains

intact after removing parallel edges. But that implies (3c) since we never remove solution

vertices from G. Thus, K satisfies property (3).

It remains to show K satisfies property (2) in Definition 4.5, that is, |V (K)| ≤
O(σH)(|L|+ |O|). By Step 2 we can have the following observation.

Observation 4.9. Every Steiner vertex of K has degree at least 3.

Since O ∪ L is a feedback vertex set of K, K \ (O ∪ L) is a forest F containing only

Steiner vertices. For each tree T in F , we define the degree of T , denoted by degK(T), as

the number of edges in K between T and O∪L. Let `(T) be the number of leaves of T . By

Observation 4.9, every internal vertex of T has degree at least 3. Thus, |V (T)| ≤ 2`(T).

That implies:

|V (T)| ≤ 2 degK(T). (4.3)

We contract each tree T of F into a single Steiner vertex sT . Let K ′ be the resulting

graph. Then we have the following observation.

Observation 4.10. Graph K ′ is simple.

Proof. Since every cycle of K must contains a vertex from L and a vertex from O, there

cannot be any solution vertex in K that is incident to more than one vertex of a tree T

of F . So there cannot be parallel edges in K ′.

111

To bound the size of K ′, we need the following structural lemma. We remark that

this lemma holds for general graphs.

Lemma 4.11. For a graph G and its two disjoint nonempty vertex subsets A and B, let

D = V (G) \ (A∪B). If (i) D is an independent set, (ii) every vertex in D has degree at

least 3 in G and (iii) for every cycle C in G, we have C ∩ A 6= ∅ and C ∩ B 6= ∅, then

we have |V (G)| ≤ 2(|A|+ |B|).

Proof. We remove every edge that only has endpoints in A ∪ B and let the resulting

graph be G′. Then G′ is a bipartite graph with A ∪ B in one side and D in the other

side since D is an independent set. Let DA (DB) be the subset of D only containing the

vertices that have at least two neighbors in A (B). Since every vertex of D has degree

at least 3, we have DA ∪DB = D.

Let HA be the subgraph of G′ induced by A∪DA. Then HA is acyclic since otherwise

every cycle of HA would correspond to a cycle in G that does not contain any vertex

in B. We now construct a graph H∗A on vertex set A. For each vertex v ∈ DA, we

arbitrarily choose its two neighbors x and y in A and add an edge between x and y in

H∗A. By construction, there is a one-to-one mapping between edges of H∗A and vertices

of DA.

Since HA is acyclic, H∗A is also acyclic. Thus, |E(H∗A)| ≤ V (H∗A) = |A|. That

implies |DA| ≤ |A|. By a similar argument, we can show that |DB| ≤ |B|. Thus,

|D| = |DA ∪DB| ≤ |A|+ |B|, and the lemma follows.

Let Z be an arbitrary component of K ′ that contains at least one Steiner vertex.

Then the two sets V (Z) ∩O and V (Z) ∩ L must be disjoint since any vertex in O ∩ L

is isolated in K ′. And each of the two sets cannot be empty since there must be a cycle

in Z through the Steiner vertex which also contains a vertex of O and a vertex of L

respectively. Let X be the set of Steiner vertices in Z. By the construction of K ′, vertex

set X is an independent set of Z. By Observation 4.9, every vertex of X has degree

at least 3. So we can apply Lemma 4.11 for Z, V (Z) ∩ O and V (Z) ∩ L, and obtain

|V (Z)| ≤ 2(|V (Z)∩O|+ |V (Z)∩L|) = 2(|V (Z)∩O|+ |V (Z)∩ (L \O)|). Note that this

bound holds trivially if Z does not contain any Steiner vertex. Thus, summing over all

components of K ′, we have |V (K ′)| ≤ 2(|V (K ′)∩O|+ |V (K ′)∩ (L \O)|) ≤ 2(|O|+ |L|).

112

Since K ′ is a minor of G , it is also H-minor-free. By Theorem 4.2, we have

|E(K ′)| = O(σH |V (K ′)|)
= O(σH)(|O|+ |L|)

(4.4)

We now ready to bound the size of V (K). We have:

|V (K) \ (O ∪ L)| =
∑

T∈F |V (T)|
≤ 2

∑
T∈F degK(T) (Equation (4.3))

= 2
∑

T∈F degK′(sT)

≤ 2|E(K ′)| ({sT |T ∈ F} is an independent set)

= O(σH)(|O|+ |L|) (Equation (4.4))

This implies V (K) ≤ O(σH)(|O|+ |L|). Thus K satisfies property (2) in Definition 4.5

with ce = O(σH), thereby, implying Theorem 4.8.

4.5 Negative Results

In this section, we show some negative results for the FVS problem and its variants. A

graph is 1-planar if it can be drawn in the Euclidean plane such that every edge has at

most one crossing, where it crosses a single additional edge. We first show that FVS

is APX-hard in 1-planar graphs. Then for the two variants, odd cycle transversal and

subset feedback vertex set, we construct examples where local search with constant-size

exchanges cannot give a constant approximation in planar graphs.

Theorem 4.12. Given a graph G, we can construct a 1-planar graph H in polynomial

time, such that G has a feedback vertex set of size at most k if and only if H has a

feedback vertex set of size at most k.

Proof. Consider a drawing of non-planar G on the plane where each pair of edges can

cross at most once. For each crossed edge e in G, we subdivide e into edges so that there

is exactly one crossing per new edge. Let H be the resulting graph. By construction,

graph H is 1-planar.

Let n be the size of G. Since there are at most O(n2) crossings per edge in the

drawing, the size of H is at most O(n4). Sine we only subdivide edges, there is a one-

113

to-one mapping between cycles of G and cycles of H. It is straightforward to see that

any feedback vertex set of G is also a feedback vertex set of H.

Let S be a feedback vertex set of H. If S ⊆ V (H) ∩ V (G), then it is also a feedback

vertex set for G. Otherwise, let v ∈ V (H) \ V (G) be a vertex in S. Then v must be

added to subdivide an edge, say e, in G. We remove v from S and add an arbitrary

endpoint of e in G to S. Then S is still a feedback vertex set for H. We repeat this

process until S is a subset of V (H) ∩ V (G). Observe that S is a feedback vertex set of

size at most k for G. Thus, the lemma holds.

Since the FVS problem is APX-hard in general graphs (by an approximation preserv-

ing reduction [80] from vertex cover problem, which is APX-hard [45]), Theorem 4.12

implies that FVS is APX-hard in 1-planar graphs.

To show that simple local search cannot give a constant approximation for the odd

cycle transversal problem and the subset feedback vertex set problem, we construct a

counter-example from a k× k grid as shown in Figure 4.1. The grid could be arbitrarily

large. We add one edge in some diagonal cells of the grid. We first consider the odd

cycle transversal problem. In the left figure, circles represent vertices of the optimal

solution, and triangles represent vertices of the local search solution. The grid could be

arbitrarily large. We add one edge in some diagonal cells of the grid. Since any grid

is bipartite and does not contain any odd cycle, any odd cycle in the example must

contain an edge in the diagonal cell. All the vertices in the diagonal, represented by

triangles, give a solution that is locally optimal, that is, we cannot improve this solution

by changing a small number of vertices. This is because each triangle vertex and each

new edge, together with some other edges, can form at least one odd cycle in the graph.

For a constant c that is smaller than the size of optimal solution, if we remove c triangle

vertices, say V ′, in the locally optimal solution, there will be c vertex-disjoint odd cycles

in the resulting graph, each of which contains one removed triangle. Thus, there is no

subset of size less than c that can replace V ′. Then the ratio between the two solutions

could be arbitrarily big if the gird is arbitrarily big and the number of added diagonal

edges is super-constant and sublinear to the size of the diagonal. For subset feedback

vertex set, the diamonds in the right figure represent the vertices in the given set U .

Similarly, any cycle through a given vertex must contain the two edges in the diagonal

cell. By the same reason, the local search solution cannot be improved.

114

Figure 4.1: Counterexamples for local search on odd cycle transversal (left) and subset
feedback vertex set (right). Circles represent vertices of the optimal solution, and trian-
gles represent vertices of the local search solution. The grid could be arbitrarily large.
We add one edge in some diagonal cells of the grid.

115

Chapter 5: Practical PTAS and Heuristics for Minimum Feedback

Vertex Set in Planar Graphs

Researchers have proposed some heuristic algorithms for FVS and evaluated their per-

formance in experiments. For example, Pardalos et al. [106] developed a greedy random-

ized adaptive search procedure for FVS, Brunetta et al. [28] proposed a system based

on local search and a branch-and-cut algorithm, Zhang et al. [121] presented a variable

depth-based local search algorithm with a randomized scheme, and Qin and Zhou [107]

introduced a simulated annealing local search algorithm for FVS. However, all of these

works focus on general graphs. Brunetta et al. [28] included planar graphs in their ex-

periments, but their test planar graphs were not very large, having at most one thousand

of vertices. So it is natural to ask the following question:

which algorithm is preferred for FVS on large planar graphs in practice?

One potential answer to this question is a PTAS. There are two reasons supporting this

choice: theoretically, PTASes can provide the best approximation ratio; practically, it

has been shown that PTASes can be made practical for the minimum dominating set

problem [99], the Steiner tree problem [115] and the traveling salesman problem (TSP) [9]

in large planar graphs. Unfortunately, we find that a simple PTAS for FVS does not find

a more accurate solution than the 2-approximation algorithm in most real-world graphs

and some synthetic graphs. For those test graphs where it can find better solutions, the

improvement is less than 1 percent. Furthermore, the PTAS is much slower than the

2-approximation algorithm. So another question to ask is

can we obtain a practical algorithm that can find more accurate solutions than

the 2-approximation algorithm in large planar graphs?

To answer this question, we propose a heuristic algorithm and show that it can out-

perform the 2-approximation algorithm in real-world graphs and most large synthetic

graphs.

116

5.1 Overview

To answer the first question, we implemented Becker and Geiger’s 2-approximation al-

gorithm [10] as our baseline, which is simpler than the algorithm of Bafna, Berman and

Fujito [5]. In Section 5.3.1, we evaluate this implementation on some graphs where we

can obtain optimal solutions or good lower bounds for the optimal solutions. We find

that the 2-approximation algorithm finds solutions that are very close to the optimal in

these instances.

To outperform this baseline, in Section 5.2.3 we propose a simple-to-implement

O(n log n) PTAS for FVS in planar graphs, which starts with a linear kernel for FVS

(see Section 5.2.2) and then uses a balanced separator (see Section 5.2.3.1) applied re-

cursively to decompose the graph into a set of small subgraphs in which we will solve

the problem optimally. The approach based on balanced separators has been applied

to obtain PTASes for the maximum independent set problem [96] and the minimum

vertex cover problem [32] in planar graphs. However, this approach is criticized in lit-

erature for two reasons: (1) a good approximation ratio can only be obtained in very

large graphs [33, 6, 42], and (2) it needs the size of the optimal solution to be linear

w.r.t. the size of input graph [66]. We overcome both issues. For the first, we relate

the error parameter ε to the largest size of the decomposed graphs instead of the size

of the original graph, and the algorithm can provide good approximation ratio for any

graph in this way. For the second, we use a linear kernel as a proxy to achieve the linear

bound for the optimal solution. Since many problems [56, 57, 15] admit linear kernels in

minor-free graphs, which is a more general graph family and admits balanced separators

of sublinear size [2], we believe this approach could be applied more generally.

Other PTASes for planar FVS that have been proposed are either complicated to im-

plement (relying on dynamic programming over tree decompositions) or not sufficiently

efficient (having running time of the form nO(1/ε)). Compared to those, our PTAS has

some obvious advantages: (1) it only relies on some simple algorithmic components like

the kernelization algorithm, which consists of a sequence of simple reduction rules, and

balanced separators, which are known to be practical [1, 73, 58]; (2) it has very few pa-

rameters to optimize; (3) the constants behind the big O notation are small enough and

(4) its running time is theoretically faster than previous PTASes. Performance of this

PTAS on different large planar graphs is discussed in Section 5.3.2. We also incorporated

117

heuristic steps (Section 5.2.4.1) to improve its solution and analyzed the influence of the

parameters of the heuristic. However, counter to the success stories for the Steiner tree

and TSP PTASes, we find that the solution found by this PTAS does not outperform

the precision of the 2-approximation algorithm significantly.

Although our PTAS does not outperform the 2-approximation algorithm significantly,

we use it as inspiration to engineer a PTAS-like heuristic we call a Heuristic Approxima-

tion Scheme (HAS), that is a heuristic with a running-time/precision trade-off. Our HAS

has two main steps. The first step (see Section 5.2.4.2) is a hybrid algorithm that alter-

nates the reduction rules of the linear kernel and the greedy step of the 2-approximation

algorithm. The second step (see Section 5.2.4.3) is a variant of local search. Many local

search heuristics start with a feasible solution and repeatedly construct a smaller solu-

tion by replacing a subset A of the original solution with another smaller subset of the

non-solution vertices, if it is feasible. We notice that this could be inefficient, since there

are too many ways to replace the subset A and so only very small values of |A| can be

handled. Instead, we use a fixed-parameter tractable (FPT) algorithm to determine the

replacement for A. An algorithm is FPT if it can solve a given problem optimally in

running time f(k) · nO(1), where k is given as a fixed parameter (such as the size of the

optimal solution, as for FVS) and f is an arbitrary computable function. This kind of

algorithm is very efficient when the parameter k is small. Now given a feasible solution,

our local search heuristic will repeatedly improve the solution by selecting a set A from

the solution, constructing a graph as the union of the non-solution vertices and set A,

solving the problem in this graph optimally with the FPT algorithm, and replacing A

with the obtained optimal solution.

We implemented and evaluated HAS on different large planar graphs and analyzed the

effects of its parameters (Section 5.3.3). Our result shows that even its first step is able

to find better solutions than the 2-approximation algorithm on most of our test graphs

and its second step improves these solutions further. As a result, the total improvement

for all real-world graphs is at least 5 percent, which is more than 30000 vertices in the

largest test graph.

We find that HAS is very flexible and provides a kind of “PTAS behavior”. Its first

step is competitive w.r.t. the running time so we can obtain a good solution quickly.

And its second step can be applied for a longer time to obtain a better solution when

the running time is not strictly limited. Thus, it can provide a trade-off between the

118

running time and the solution quality by choices of the number of local search iterations.

Therefore, we believe this algorithm will be a better choice in practice.

5.2 The Algorithms for FVS in Planar Graphs

In this section, we briefly summarize the FVS algorithms we implemented for planar

graphs: the 2-approximation algorithm of Becker and Geiger [10], Bonamy and Kowa-

lik’s linear kernel [16] for FVS in planar graphs (with optimizing modifications that we

designed), our new PTAS using this linear kernel and balanced planar separators, and

our proposed Heuristic Approximation Scheme.

5.2.1 The 2-Approximation Algorithm

Becker and Geiger’s 2-approximation algorithm [10] works for vertex-weighted FVS in

general graphs and consists of two steps: (1) computes a greedy solution and (2) removes

vertices to obtain a minimal solution. In the first step, the algorithm assigns a score for

each vertex (weight of the vertex divided by its degree), and repeatedly removes a vertex

with minimum score from the graph and adds it to the greedy solution. Each time

a vertex is removed, the scores of its neighbors are updated. In the second step, the

algorithm tries to remove the vertices from the greedy solution in the reverse order in

which they were added, to obtain a minimal feasible solution.

5.2.2 Kernelization Algorithm

A parameterized decision problem with a parameter k admits a kernel if there is a

polynomial time algorithm (where the degree of the polynomial is independent of k),

called a kernelization algorithm, that outputs a decision-equivalent instance whose size

is bounded by some function h(k). If the function h(k) is linear in k, then we say the

problem admits a linear kernel.

Bonamy and Kowalik’s linear kernel for planar FVS [16] consists of a sequence of 17

reduction rules. Each rule replaces a particular subgraph with another (possibly empty)

subgraph, and possibly marks some vertices that must be in an optimal solution. The

first 12 rules are simple and sufficient to obtain a 15k-kernel [16]. Since the remaining

119

rules do not improve the kernel by much, and since Rule 12 is a rejecting rule (that is to

return a trivial no-instance for the decision problems when the resulting graph has more

than 15k vertices), we only implement the first 11 rules (provided in the appendix), all of

which are local and independent of the parameter k. The algorithm starts by repeatedly

applying the first five rules to the graph and initializes two queues: queue Q1 contains

some vertex pairs that are candidates to check for Rule 6 and queue Q2 contains vertices

that are candidates to check for the last five rules. While Q1 is not empty, the algorithm

repeatedly applies Rule 6, reducing |Q1| in each step. Then the algorithm repeatedly

applies the remaining rules in order, reducing |Q2| until Q2 is empty. After applying any

rule, the algorithm updates both queues as necessary, and will apply the first five rules

if applicable.

We list the reduction rules we applied in our implementation. The original Rule

10 has two parts, and we list it as two independent rules here. We denote the set of

neighbors of a vertex x by N(x) and the degree of x in a multigraph by deg(x).

Rule 1. If there is a loop at a vertex v, then remove v and add it to the optimal solution.

Rule 2. Delete vertices of degree at most one.

Rule 3. If a vertex u is of degree two, with incident edges uv and uw, then delete u and

add the edge vw. (Note that if v = w then a loop is added.)

Rule 4. If a vertex u has exactly two neighbors v and w, edge uv is double, and edge

uw is simple, then delete v and u and add v into the optimal solution.

Rule 5. If there are at least three edges between a pair of vertices, remove all but two

of the edges.

Rule 6. Assume that there are five vertices a, b, c, v, w such that 1) both v and w are

neighbors of each of a, b, c and 2) each vertex x ∈ {a, b, c} is incident with at most

one edge xy such that y /∈ {v, w}. Then remove all the five vertices and add v and

w into the optimal solution.

Rule 7. If a vertex u has exactly three neighbors v, w and x, vertex v is also adjacent

to w and x, and both edges uw and ux are simple, then contract uv and add an

edge wx (increasing its multiplicity if it already exists). If edge uv was not simple,

add a loop at v.

120

Rule 8. Assume there are seven vertices v1, v2, v3, u1, u2, w1, w2, such that N(u1) =

{w1, w2, u2}, N(v1) = {w1, w2, v2}, N(v2) = {w1, v1, v3}, and deg(v2) = deg(u1) =

3. Then contract the edge v1v2 to a new vertex y and add an edge w1v3.

Rule 9. Assume u1u2u3u4 is an induced path such that for two vertices w1, w2 outside

the path, N(u1) = {u2, w1, w2}, N(u2) = {u1, u3, w1} and N(u3) = {u2, u4, w2},
deg(u3) = 3, and min{deg(u1), deg(u2)} = 3. Then remove u1 and u2 and add a

new vertex y, simple edges yu3 and u3w1, and double edges yw1 and yw2.

Rule 10. Assume there are five vertices v1, v2, u, w1, w2 such that N(v1) = {v2, w1, w2},
{w1, w2} ⊆ N(u), there is at most one edge incident to v2 and a vertex outside

{w1, w2, v1}, and there is at most one edge incident to u and a vertex outside

{w1, w2}. Then remove w1 and add it to the optimal solution.

Rule 11. Assume there are five vertices u1, u2, u3, w1, w2 such thatN(u1) = {w1, w2, u2},
{u1, u3} ⊆ N(u2) ⊆ {w1, w2, u1, u3}, and there is at most one edge incident to u3

and a vertex outside {w1, w2, u2}. Moreover, the edges v1v2 and v2v3 are simple.

Then remove w1 and add it to the optimal solution.

Rule 12. Assume there is an induced path with endpoints u and v and with six in-

ternal vertices v1, . . . , v6 such that for some vertices w1, w2 outside the path

N({v1, . . . , v6})\{u, v} = {w1, w2}. If |N(w1)∩{v1, . . . , v6}| ≥ |N(w2)∩{v1, . . . , v6}|,
then remove w1 and add it to the optimal solution.

We remark that in the original paper [16], the algorithm runs in expected O(n)

time, and each rule can be detected in O(1) time for each candidate with a hash table.

However, we choose to use a balanced binary search tree instead of a hash table for a

better practical performance.

The original algorithm works for the decision problem, so when applying it to the

optimization problem, we need an additional step, called lifting, to convert a kernel

solution to a feasible solution for the original graph. If a reduction rule does not introduce

new vertices, then the lifting step for it will be trivial. Otherwise, we need to handle the

vertices introduced by reduction steps, if they appear in the kernel solution. Among all

the reduction rules, there are two rules, namely Rule 8 and Rule 9, that will introduce new

vertices into the graph. For Rule 8, the following observation, whose proof is provided

in the appendix, shows that the new vertex can be avoided.

121

Observation 5.1. The new vertex introduced by Rule 8 can be replaced by a vertex from

the original graph.

Figure 5.1: Reduction rule 8 replaces the left subgraph with the right subgraph. All
dashed edges are optional, and all incident edges of black vertices are drawn as solid or
dashed, while the white vertices may have other edges in the graph not drawn in the
figure.

Proof. Rule 8 is illustrated in Figure 5.1, which will not modify the size of the optimal

solution. We will show the new vertex y can be replaced by the vertex v1 in the resulting

graph after applying this rule. Let G and G′ be the graph before and after applying Rule

8, and let S′ be an FVS solution for G′. We only need to prove the following: if y ∈ S′,
then (S′ \ {y}) ∪ {v1} is an FVS solution for G; otherwise S′ is an FVS solution for G.

Assume y ∈ S′. Then we claim that any FVS solution for G′ \ {y} is also an FVS

solution for G \ {v1}. This is because we can obtain G′ \ {y} from G \ {v1} by applying

Rule 3 (that is, if a vertex has degree two and its incident edges are not parallel edges,

we remove this vertex and add an edge between its two neighbors) to vertex v2, which

will not affect the size of the optimal solution. Then we know G \ ({v1} ∪ (S′ \ {y})) is

a forest, which implies (S′ \ {y}) ∪ {v1} is an FVS for G.

Now assume y /∈ S′. Then we know w1 ∈ S′ since there are parallel edges between y

and w1. We claim that any FVS solution for G′ \ {w1} that does not contain y is also an

FVS for G \ {w1}. This is because after applying Rule 3 to v2 in G \ {w1} the resulting

graph is the same as G′ \ {w1} except that the label for the vertex v1 is y in G′ \ {w1}.
Since y /∈ S′, we know S′ \ {w1} is an FVS for G \ {w1}, which implies S′ is an FVS for

G.

For Rule 9, we record in a structure the related vertices for each application of this

rule, and store the structures in a list in the same order as we apply the rule. To lift the

122

solution to the original graph, we store all the vertices of the solution in a balanced search

tree and then check the structures in the reverse order to see if the recorded vertices in

a structure are also in the solution. If there are involved vertices in the solution, we

modify the solution according to the reversed Rule 9. Since Rule 9 decreases the size of

the graph, it can be applied at most O(n) times. So there are at most O(n) structures to

check, each of which contains only constant number of vertices. To check if a vertex in the

solution we need O(log n) time, so the total replacement can be done in O(n log n) time.

Then the lifting step first adds back all vertices marked by the kernelization algorithm

which can be done in linear time and then replaces the introduced new vertices with

original vertices, which needs at most O(n log n) time. So lifting can be accomplished in

O(n log n) time.

5.2.3 Polynomial-Time Approximation Scheme

In this section, we introduce a PTAS for FVS in planar graphs, using linear kernel and

balanced separator.

5.2.3.1 Balanced Separator

A separator is a set of vertices, removing which will partition the graph into two parts.

A separator is α-balanced if those two parts both have at most an α-fraction of the

original vertex set. Lipton and Tarjan [95] first introduced a separator theorem for

planar graphs, which says a planar graph with n vertices admits a 2
3 -balanced separator

of size at most 2
√

2n, and they gave a linear-time algorithm to compute such a balanced

separator. This algorithm starts by computing a breadth-first search (BFS) tree for the

graph, partitioning the vertices into levels. Then it tries to find the separator in three

phases:

(P1) if there is any BFS level satisfying the requirements, then it is returned as a result;

(P2) if there is no such level, then the algorithm tries to find two BFS levels that can

form a balanced separator together;

(P3) if both previous phases fail, then the algorithm identifies two BFS levels and con-

123

structs a fundamental cycle1 to separate the subgraph between these two levels,

such that the union of these two levels and the fundamental cycle form a balanced

separator.

Though we followed a textbook version [91] of this separator algorithm, our imple-

mentation still guarantees the 2
√

2n bound for the size of the separator. We remark that

we did not apply heuristics in our implementation for the separator algorithm. This is

because we did not observe separator size improvement by some simple heuristics in the

early stage of this work, and these heuristics may slow down the separator algorithm.

Since our test graphs are large (up to 2 million vertices) and we will apply the algorithm

recursively in our PTAS, these heuristics may slow down our PTAS even more.

5.2.3.2 PTAS for Planar FVS

Lipton and Tarjan [96] designed a PTAS for maximum independent set in planar graphs

using their balanced separator, which depends on the fact that the input is already a

constant-factor approximation to the maximum independent set and contains the optimal

solution. Here we use the linear kernel as a proxy for the constant factor approximation

that can be used to obtain a nearly optimal solution for FVS and relate the error pa-

rameter ε to the largest size of decomposed graphs instead of the size of the input graph

as previous works [96, 32]. This idea can be used for other problems admitting linear

kernels in graph families admitting balanced separators:

(1) Compute a linear kernel H for the original graph G, that is, |V (H)| is at most

c1|OPT (H)| for some constant c1.

(2) Decompose the kernel H by recursively applying the separator algorithm and remove

the separators until each resulting graph has at most r vertices for some constant r.

The union of all the separators has at most c2|V (H)|/
√
r = ε|OPT (H)| vertices for

r chosen appropriately.

(3) Solve the problem optimally for all the resulting graphs.

1Given a spanning tree for a graph, a fundamental cycle consists of a non-tree edge and a path in the
tree connecting the two endpoints of that edge.

124

(4) Let UH be the union of all separators and all solutions of the resulting graphs. Lift

UH to a solution UG for the original graph.

We can prove the following theorem.

Theorem 5.2. There is an O(n log n) time PTAS for FVS in planar graphs.

We need the following lemma to prove Theorem 5.2.

Lemma 5.3. Given any FVS solution UH for a linear kernel H obtained by Bonamy

and Kowalik’s algorithm, we can obtain an FVS solution UG for the original graph G

such that |UG| − |UH | ≤ |OPT (G)| − |OPT (H)|.

Proof. We can classify the reduction rules in Bonamy and Kowalik’s kernelization algo-

rithm into three types according to their effects on the optimal solution.

• Do not affect the optimal solution, such as removing vertices of degree one.

• Remove some vertices from the graph that must be in the optimal solutionOPT (G),

such as removing vertices with self-loops.

• Add some new vertices into the graph without changing the size of the optimal

solution, such as replacing a subgraph with another subgraph that has some new

vertices.

When lifting the solution of H to that of G, we have their corresponding effects:

• Do not change the current solution.

• Add some new vertices to the current solution.

• Replace some vertices in the current solution with other vertices without increasing

its size.

The rules of the third type will maintain the size of optimal solution unchanged, so we

know x = |OPT (G)| − |OPT (H)| is equal to the total number of vertices added by the

second type of rules. Since the rules of the third type cannot increase the size of the

solution during the lifting step, we know the size difference after applying a reverse rule

of the third type is non-positive. That is, when we apply any reverse rule of the third

125

type to a solution U0 and obtain a new solution U1, we have |U1|− |U0| ≤ 0. Let y be the

sum of size differences over all third type rules applied during the lifting step. Then we

know y is also non-positive. Note that the rules of the second type will only add vertices

that is not in the kernel, so it contributes the same vertices to OPT (G) as to any other

solution UG. Therefore, we know |UG| − |UH | = x+ y, which implies the lemma.

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. We first give a bound for the size of the final solution. For an

integer i > 0, let Hi be a resulting graph after the decomposition step. Note that these

graphs are vertex-disjoint. Let OPT (H) and OPT (G) be an optimal solution for H and

G respectively. We know OPT (H)∩Hi is a solution for FVS in Hi since Hi is a subgraph

of H and OPT (H) is an optimal solution for H. So we have |OPT (Hi)| ≤ |OPT (H)∩Hi|
and then ∑

i>0

|OPT (Hi)| ≤
∑
i>0

|OPT (H) ∩Hi| ≤ |OPT (H)|. (5.1)

Let S be the union of all separators found in the second step and n be the size of V (H).

Recall that parameter r is the largest size of Hi. Lipton and Tarjan [96] showed that

the size of S is at most c2n/
√
r for some constant c2. If we choose r = c21c

2
2/ε

2, then we

have

|S| ≤ c2n/
√
r = εn/c1 ≤ ε|OPT (H)|. (5.2)

Since UH is the union of S and OPT (Hi) for all i > 0, by combining (5.1) and (5.2), we

have

|UH | = |S|+
∑
i>0

|OPT (Hi)| ≤ (1 + ε)|OPT (H)|.

Since the kernelization algorithm can only decrease the size of the optimal solution, we

have |OPT (H)| ≤ |OPT (G)|. By Lemma 5.3, we have |UG| − |UH | ≤ |OPT (G)| −
|OPT (H)|. Then we obtain the size bound for UG:

|UG| ≤ |UH |+ |OPT (G)| − |OPT (H)| ≤ (1 + ε)|OPT (G)|.

126

Bonamy and Kowalik [16] showed that a linear kernel for planar FVS can be con-

structed in O(n log n) deterministic time. Each balanced separator can be computed in

linear time by Lipton and Tarjan’s algorithm [95], so we can finish the second step in

O(n log n) time as done in [96]. The third step can be finished in O(2cn) time since each

subgraph has size at most c = r = O(1/ε2). And the last step can be done in O(n log n)

time as we described in Section 5.2.2. So the total running time of this algorithm is

O(2cn+ n log n) where c = O(1/ε2).

5.2.4 Heuristics

In this subsection, we introduce some heuristics that can help improve the quality of

the FVS solution. We first provide two heuristics that improve the quality of our PTAS

solutions. Then we introduce a hybrid algorithm that combines the greedy method of

the 2-approximation algorithm and the reduction rules of the kernelization algorithm.

Finally, we use local search to improve the solution from any algorithm. Our proposed

Heuristic Approximation Scheme is a combination of the hybrid algorithm and the local

search heuristic.

5.2.4.1 Heuristic Improvements to PTAS

The solution from our PTAS may not be a minimal one, so we use the post-processing

step from the 2-approximation algorithm to convert the final solution of the PTAS to

a minimal one. This involves iterating through the vertices in the solution and trying

to remove redundant vertices from the solution while maintaining feasibility. In fact,

we only need to iterate through the vertices in separators, since vertices in the optimal

solutions of small graphs are needed for feasibility.

We additionally apply the kernelization algorithm right after we compute a separator

in Step (2). Note that there is a decomposition tree corresponding to the decomposition

step, where each node corresponds to a subgraph in the decomposition step. To apply

the second heuristic, we need to record the whole decomposition tree with all the corre-

sponding separators such that we can lift the solutions in the right order. For example,

if we want to lift a solution for a subgraph Gw corresponding to some node w in the

decomposition tree, we first need to lift all solutions for the subgraphs corresponding to

127

the children of node w in the decomposition tree.

5.2.4.2 Hybrid Algorithm

We notice the cost for detecting applicable reduction rules for a candidate vertex is

relatively low (O(log n) time), and each of these rules can reduce either the size of the

graph or the size of the optimal solution. It is beneficial, therefore, to apply them as

much as possible. When there are no applicable reductions in the current graph, we can

remove a vertex greedily just as the 2-approximation algorithm does, and this will change

the current graph such that there may be applicable reductions again. Based on this

idea, we propose a hybrid algorithm which interleaves the 2-approximation algorithm

and the kernelization algorithm:

(i) Compute a temporary solution by repeating the following two steps until the graph

is empty.

(a) Apply reduction rules from the kernelization algorithm in order until there are

no applicable rules.

(b) Remove a vertex of highest degree from the graph and add it into the temporary

solution.

(ii) Lift the temporary solution to a feasible solution for the original graph and then

compute a minimal solution by removing redundant vertices from this solution.

The running time of the first step is similar to the running time of the kernelization

algorithm since the greedy step can be seen as another “rule” added into the kernelization

algorithm and it can be done in O(log n) time if we store the degree information in a

binary search tree. So the first step runs in O(n log n) time. The lifting step needs

O(n log n) time, and to compute a minimal solution we need O(n log n) time as done in

Becker and Geiger’s 2-approximation algorithm. So the total running time of our hybrid

algorithm is O(n log n).

5.2.4.3 Local Search

In Chapter 4, we show that local search gives a PTAS for FVS in H-minor-free graphs.

The algorithm is not practical, with running time nO(1/ε2). We modify the algorithm

128

here. Assume we are given a feasible FVS solution U for a planar graph G, and we would

like to improve this solution. To achieve this goal, we propose a local search heuristic.

Assume we have a fixed parameter tractable (FPT) algorithm FA for the FVS problem

(either for planar graphs or for general graphs). Then our local search with size k consists

of the following two steps.

(S1) Select a subset X of size k from U randomly.

(S2) Run the algorithm FA on graph G \ (U \X). Stop FA if a solution is not found in

a reasonable amount of time. If FA finds a solution Y in graph G \ (U \X), then

return (U \X) ∪ Y ; otherwise return U .

The solution (U \X)∪ Y is a feasible solution for graph G since (G \ (U \X)) \ Y is

a forest and (G \ (U \X)) \ Y = G \ ((U \X) ∪ Y).

5.3 Experiments

In this section, we evaluate the performance of the algorithms described in the last

section. We implemented those algorithms in C++ and the code is compiled with g++

(version 4.8.5) on the CentOS (version 7.3.1611) operating system. Our PTAS imple-

mentation is built on Boyer’s implementation2 of Boyer and Myrvold’s planar embed-

ding algorithm [27]. In our experiments, we also use the implementation3 of Iwata and

Imanishi for FVS in general graphs, which is implemented in java and includes a linear-

time kernel [75] and a branch-and-bound based FPT algorithm [76] for FVS in general

graphs. The java version in our machine is 1.8.0 and our experiments were performed

on a machine with Intel(R) Xeon(R) CPU (2.30GHz) running CentOS (version 7.3.1611)

operating system.

To test the algorithms, we collect five different classes of graphs:

• pace are the planar graphs used in PACE (The Parameterized Algorithms and

Computational Experiments Challenge) 2016 Track B: Feedback Vertex Set;

• random are random planar graphs generated by LEDA (version 6.4) [100];

2http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3/planarity.zip
3https://github.com/wata-orz/fvs

129

• triangu are triangulated random graphs generated by LEDA, whose outer faces are

not triangulated;

• grid are rectangular grid graphs;

• The graphs NY, BAY, COL, NW, CAL, FLA, LKS, NE, E and W are road

networks used in the 9th DIMACS Implementation Challenge-Shortest Paths [44].

We interpret each graph as a straight-line embedding and we add vertices whenever

two edges intersect geometrically.

Since we are interested in the performance of the algorithms in large planar graphs,

the synthetic graphs we generated have at least 450000 vertices. And the real network

graphs have at least 260000 vertices. Although the pace graphs are smaller than that,

we only use them to evaluate the 2-approximation algorithm since we can obtain optimal

solutions of those small graphs. All the detailed experimental results, including solution

sizes and running time, are also provided in the appendices.

5.3.1 The 2-Approximation Algorithm and Optimal Solution

To evaluate Becker and Geiger’s 2-approximation algorithm [10], we compare its solution

with the optimal solution on graphs up to size 2000000. The optimal solution is obtained

by applying the kernelization algorithm first and then the FPT algorithm implemented by

Iwata and Imanishi. For each test graph, we run Iwata and Imanishi’s implementation for

30 seconds and stop it if it cannot terminate. Among all the test graphs, this method can

solve 21 graphs of the 31 pace graphs, 9 graphs of the 10 random graphs. Although we

cannot solve the large rectangular grid graphs by this method, we can apply Luccio’s [97]

lower bound for the optimal solution in rectangular grids here. We observe that the

solutions obtained by 2-approximation algorithm are very close to the optimal solutions

for these test graphs. For pace graphs, the 2-approximation algorithm can solve 14

graphs optimally and the difference between the two solutions is at most three. The

approximation ratio over all these graphs is at most 1.143, and this ratio is at most

1.001 for the grid graphs and at most 1.006 for these random graphs.

130

5.3.2 The PTAS and 2-Approximation Algorithm

Recall that the third step of our PTAS is to solve the problem on all the decomposed

graphs optimally, which needs an exact algorithm for the problem. The trivial exact

algorithm that enumerates each possible vertex subset can only solve a graph of size about

25 in a few seconds, with which the PTAS may not be able to give competitive solutions

for large graphs. So we apply the exact algorithm described in the last subsection, which

combines the kernelization algorithm and the FPT algorithm implemented by Iwata and

Imanishi. In the early stage of this work, this exact algorithm did not find a solution

for a pace graph of size 66 in 30 seconds. So we first set as 60 the largest size r of

the decomposed graphs and let the FPT algorithm run for at most 15 seconds. In this

setting, all the decomposed graphs can be solved optimally in our experiments and we

can evaluate the heuristics proposed for our PTAS. To do that, we compare three variants

of our PTAS:

• the vanilla variant is the vanilla version of our PTAS, for which no heuristic is

applied;

• the minimal variant applies the post processing heuristic to our PTAS, which will

remove redundant vertices in separators;

• the optimized variant applies both heuristics to our PTAS, which will apply

kernelization algorithm whenever each separator is computed and removed during

the decomposition step and always returns a minimal final solution.

The result is illustrated in Figure 5.2, where the solution size is normalized by the

2-approximation algorithm solutions. We observe that for the road network graphs,

random graphs and triangu graphs, the optimized variant provides the best solutions

among the three algorithms, which implies the two heuristics both help improve the

solutions. However, for the grid graphs, the minimal variant gives the best results,

which means the kernelization algorithm is not very helpful. We think this is because

a large rectangular grid graph itself is already a 4k-kernel by the lower bound for the

optimal solution [97], and the kernelization algorithm can only remove four vertices from

such graphs. For the random graphs (not pictured in Figure 5.2), the improvement

from the two heuristics is mild, but the obtained solutions are already very close to the

131

optimal solutions, that is the differences are less than 60 vertices when the solutions have

more than 190000 vertices. We also find that the post processing heuristic will not affect

the running time by much, while the kernelization heuristic can increase the running

time at most by a factor of 5.

1.00

 0.97

 1.07

 1.17

 1.27

N
Y

B
A

Y

C
O

L

N
W

C
A

L

F
LA

LK
S

N
E E W

tr
ia

ng
u1

tr
ia

ng
u2

tr
ia

ng
u3

tr
ia

ng
u4

tr
ia

ng
u5

gr
id

1

gr
id

2

gr
id

3

gr
id

4

gr
id

5

vanilla

minimal

optimized

best

1.00

 0.99

 1.01

 1.03

 1.05

 1
0

 3
0

 5
0

 7
0

 9
0

 1
10

NY

NW

triangu1

Figure 5.2: Results of our PTAS implementation. The Y axis represents the solution
size normalized by the solutions of 2-approximation algorithm. Left: solutions of the
three variants of our PTAS with r = 60 and the best solutions of our PTAS with largest
possible values of r. Right: effect of parameter r on the solution sizes where X axis
represents the value of r.

Recall that the largest size r of the decomposed graphs is the only parameter in our

PTAS. Now we analyze the effect of this parameter on the performance of our PTAS.

Since the optimized variant works best for most of the test graphs, we focus on its

performance affected by parameter r. We start with r = 20 and each time increase it

by 5 until our implementation cannot compute a feasible solution, which is caused by

the fact that the FPT implementation cannot solve some decomposed graphs of size r

in the given time. The result is shown in Figure 5.2. We can see in the figure that our

implementation can solve the instance for relatively large value of r, and the solution is

improved when the parameter r increases. This is because when r is bigger, the total

size of the separators, which is the error part of our PTAS, is smaller. Since we set a

time limit for the FPT implementation, the effect of parameter r on the running time is

not significant, although we observed a mildly increasing tendency on the running time

when r increases.

132

Now we can compare our PTAS with the 2-approximation algorithm. Based on the

above results, we know the largest value of r may be different for different graphs. So to

get the best result, we start with r = 60 and each time increase it by 5 until we cannot

find feasible solution. Since different variants work best for different graph classes, we

choose the best variant for each graph class, that is, we apply the minimal variant

for grid graphs, and the optimized variant for other graphs. The largest value r we

find varies from 80 to 125 for our test graphs. The final result is plotted in Figure 5.2

marked as best. We can see that although our PTAS implementation is competitive with

the 2-approximation algorithm on all graphs, it cannot outperform the 2-approximation

solution on most road network graphs. The reason is that the subgraphs for which we

can solve the problem optimally are still not large enough, which results in a fact that

the separator fraction in the solution is large. On the grid graphs, the 2-approximation

algorithm outperforms our PTAS by about 2 percent. On four of the five triangu graphs,

our PTAS is slightly better than the 2-approximation algorithm, where the difference

for each graph is less than 1 percent. While on the random graphs the improvement is

mild, the final solutions are very close to the optimal. We also find the running time of

our PTAS is much longer than the 2-approximation algorithm. Specifically, the running

time of the 2-approximation algorithm varies from a few seconds to a few minutes for

our test graphs, while our PTAS needs a few hours to finish for the large graphs, where

most time is spent on running the FPT algorithm.

5.3.3 Heuristic Approximation Scheme

We evaluate the performance of the following two algorithms and compare them with

the 2-approximation algorithm (2approx).

• The hybrid algorithm combines the kernelization reduction rules and the greedy

step of the 2approx to find a solution, and then lifts it to a minimal feasible

solution for the original graph.

• HAS first computes a solution by the hybrid algorithm and then applies the local

search heuristic with an FPT algorithm to improve the solution quality.

In our following experiments, the FPT algorithm used in the local search consists of

two parts: Bonamy and Kowalik’s linear kernelization algorithm and Iwata and Iman-

133

 0

 800

 1600

 2400

 3200

 0 300 600 900 1200

t = 3

t = 6

t = 12

t = 30
 0

 300

 600

 900

 1200

 0 175 350 525 700

t = 6

t = 12

t = 30

Figure 5.3: Local search improvement affected by different values of t. The X axis
represents the number of local search iterations and the Y axis represents the number
of vertices the initial solution is improved by. Left: results for graph triangu1. Right:
results for graph COL.

ishi’s implementation, which is run for at most 15 seconds.

Before showing the final comparison of these algorithms, we first need to optimize

their parameters. For the hybrid algorithm, there is a potential parameter: how often

should the kernelization reduction rules be applied? We evaluated different values from

1 to 100 for this frequency parameter to understand its effect on the solution size. We

find that for the road network graphs the difference is at most 0.2 percent of the solution

size and for the other test graphs the difference is less than 0.01 percent. So we only

consider the road network graphs to optimize this parameter. Although we did not find

an optimal value for this parameter that could always give smallest solution, we can avoid

some values that always give larger solutions. For this goal, we choose the frequency as

41 in our later experiments, that means we apply the reduction rules after removing 41

vertices greedily.

For the local search heuristic in HAS, the only parameter we need to optimize is

the size k of the random set. We choose this parameter as a 1/t fraction of the solution

size for an integer t, so that we only need to optimize the value of t. We evaluated

four different values (3, 6, 12, 30) for t and terminate the process when there is no

improvement for twelve consecutive search rounds. Figure 5.3 shows the results for two

graphs. We can see in the figures that the total improvement is not always monotone

with t in this range. For the synthetic graphs like triangu1, the total improvement for

t = 3 is the largest, while for most road network graphs, the largest total improvement is

134

obtained for t = 12. The former phenomenon can be explained by the result in Chapter 4,

which shows local search is a PTAS for FVS in minor-free graphs so the solution will be

better when the size of the random set replaced is larger. However, this will not hold

when the FPT algorithm cannot solve the problem in a reasonable amount of time for

large random set, which corresponds to the smaller t, and then the improvement will be

limited. This could explain the results for the road network graphs. Moreover, while

local search with larger value of k tends to give better improvements, the number of

local search iterations is bigger for smaller value of k, which implies the improvement is

consecutive and stable. Based on these observations, we will iterate through the values

of t in an increasing order to maximize the improvement in our later experiments, that

is, we will increase the value of t by 3 when there are six consecutive search rounds that

find no improvement. The range of t is still from 3 to 30.

To better understand the local search heuristic, we illustrate the improvement frac-

tion and running time fraction distributed on different values of t in Figure 5.4, where

the running time is represented by the number of local search iterations. We observe that

for the synthetic graphs, represented by triangu5 in the figure, the total improvement

comes from the search with t = 3, while for the road network graphs, the improvement

distributes on different small values of t. The distribution of the running time has the

similar tendency as the improvement.

We notice that the local search heuristic in HAS can give us a “PTAS behavior”,

that is we can obtain better solutions if we spend more time doing so. So one natural

question to ask is how long can that improvement process last? To answer this, we tried

looping the values of t in the range [3, 30], and found that only one iteration over the

range is enough, and that additional iterations only give minor improvement.

Now we can set the parameters and compare these algorithms. For each graph, we

run HAS five times, each of which is run with a different random seed, and compute the

average of the five solutions. Figure 5.5 illustrates the results where each solution size

is normalized by the 2approx solution. We can see in the figure that for most graphs,

hybrid finds better solutions than 2approx, and HAS gives the best solutions. The

improvement of HAS for all road network graphs is more than 5 percent, which could be

over 30000 vertices for large graphs like W. For all triangu graphs the improvement of

HAS is at least 3 percent. For random graphs the improvement is not very significant,

this is because the final solutions are already very close to the optimal solutions. Since

135

 0

 0.25

 0.5

 0.75

 1

3 6 9 12

FLA

NW

W

triangu5

 0

 0.2

 0.4

 0.6

 0.8

3 6 9 12 15 18

FLA

NW

W

triangu5

Figure 5.4: Local search improvement and number of iterations distributed on different
values of t. The X axis is the value of t. Left: the Y axis represents the fraction of total
improvement. Right: the Y axis represents the fraction of the total iterations.

the 2approx works very well on the grid graphs as shown before, it is hard to outperform

it on these graphs though our heuristics is able to find competitive solutions on these

graphs.

We report the running time and the solution size of hybrid and HAS on some

graphs in Table 5.1. Additionally, we show the running time in second per improved

vertex for these graphs. We notice the running time of HAS is relatively long compared

with hybrid. For example, hybrid can terminate in a few minutes for graph W, but

HAS needs more than 35 hours to terminate for this graph. However, the time spend

per improved vertex is relatively short for these graphs. And this also reflects that the

longer running time is the result of larger improvement, which is the “PTAS behavior”

that people can utilize to balance the running time and the solution quality by setting a

proper number of local search iterations.

5.4 Detailed Experimental Results

136

1.00

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1.01

N
Y

B
A

Y
C

O
L

N
W

C
A

L
F

LA
LK

S
N

E E W
tr

ia
ng

u1
tr

ia
ng

u2
tr

ia
ng

u3
tr

ia
ng

u4
tr

ia
ng

u5
ra

nd
om

1
ra

nd
om

2
ra

nd
om

3
ra

nd
om

4
ra

nd
om

5
ra

nd
om

6
ra

nd
om

7
ra

nd
om

8
ra

nd
om

9
ra

nd
om

10
gr

id
1

gr
id

2
gr

id
3

gr
id

4
gr

id
5

hybrid

HAS

Figure 5.5: Results of hybrid and HAS. The Y axis represents the solution sizes nor-
malized by the solutions of the 2-approximation algorithms. The solution of HAS is the
average over the five runs with different random seeds.

Table 5.1: Results on the running time and solution size of hybrid and HAS on some
graphs. The running time of HAS is averaged over five runs of HAS with different random
seeds.

graph vertices edges hybrid
runtime

hybrid
solu-
tion

HAS
runtime

HAS
solu-
tion

time
per im-
proved
vertex

NY 264953 366250 1m 28s 40868 1h 6m 30s 39582 0.330s
BAY 322694 400233 1m 9s 33372 54m 53s 32492 0.273s
CAL 1898842 2331204 7m 32s 187610 6h 10m 28s 182282 0.245s
E 3608115 4372928 14m 23s 333997 16h 49m 22s 324286 0.163s
W 6286759 7608797 23m 46s 579822 35h 41m 39s 562687 0.135s
triangu1 600000 1799963 1m 46s 228711 1h 32m 37s 225802 0.534s
triangu2 800000 2399961 1m 58s 304288 2h 11m 39s 300443 0.494s
random1 699970 2000000 1m 54s 193071 6m 54s 192908 0.543s
random4 1999760 5600000 5m 12s 538958 21m 2s 538533 0.447s
random5 2199977 6400000 5m 58s 618238 30m 15s 617674 0.387s

137

Table 5.2: Compare the 2-approximation algorithm solutions and the optimal solutions.
The italic numbers are lower bounds from [97].

graph vertices edges 2approx opt approx ratio

pace1 49 107 15 15 1.0
pace2 118 179 18 18 1.0
pace3 62 78 7 7 1.0
pace4 118 179 18 18 1.0
pace5 59 104 16 16 1.0
pace6 70 85 8 8 1.0
pace7 48 64 6 6 1.0
pace8 74 92 8 8 1.0
pace9 67 83 9 8 1.125
pace10 90 103 8 7 1.143
pace11 55 81 12 11 1.091
pace12 110 147 16 15 1.067
pace13 66 127 24 21 1.143
pace14 153 177 12 12 1.0
pace15 149 193 16 16 1.0
pace16 73 95 10 10 1.0
pace17 45 64 8 8 1.0
pace18 145 186 17 16 1.063
pace19 158 189 15 15 1.0
pace20 61 78 8 7 1.143
pace21 4960 9462 898 898 1.0
grid1 450000 1796400 149527 149401 1.001
grid2 600000 2396800 199552 199468 1.001
grid3 1000000 3996000 332669 332668 1.0
grid4 1680000 6714800 559252 559134 1.001
grid5 2100000 8394200 699285 699034 1.001
random1 699970 2000000 193601 192902 1.004
random2 1197582 3000000 285550 284195 1.005
random3 1399947 4000000 387216 385813 1.004
random4 1999760 5600000 540550 538524 1.004
random6 873280 1200000 87300 86796 1.006
random7 1061980 1500000 111973 111324 1.006
random8 1227072 1700000 125374 124635 1.006
random9 1520478 2200000 167709 166737 1.006
random10 2050946 3300000 270981 269315 1.006

138

Table 5.3: Summary of the solution sizes of different PTAS variants and the 2-
approximation algorithm. The results for the three variants (“vanilla”, “minimal” and
“optimized”) of the PTAS are computed for r = 60. The results for “best” are computed
for different values of r by different variants of PTAS depending on the graphs. For grid
graphs, “minimal” variant is applied for “best” results, and for other graphs “optimized”
variant is applied.

graph vertices edges vanilla minimal optimized best 2approx

NY 264953 366250 52487 44178 43159 42790 41709
BAY 322694 400233 41264 35518 34877 34612 34211
COL 437294 524437 45831 40142 39445 39201 39205
NW 1214463 1423402 111149 97627 95951 95362 95735
FLA 1074167 1351411 147632 128941 126869 126361 125841
CAL 1898842 2331204 230712 198924 195303 194379 192465
LKS 2763392 3407840 342592 290065 284034 282972 277196
NE 1528387 1941840 222569 188936 185115 183916 181336
E 3608115 4372928 414132 354444 347418 345891 342371
W 6286759 7608797 705851 611351 600898 598667 594943
triangu1 600000 1799963 260475 238502 235796 232695 233958
triangu2 800000 2399961 348305 318058 314257 310034 311349
triangu3 1000000 2999955 434793 396644 392045 387690 387908
triangu4 1200000 3599966 521141 474683 468072 462865 463157
triangu5 1400000 4199957 606425 551194 544006 538496 537270
random1 699970 2000000 192970 192925 192925 192907 193601
random2 1197582 3000000 284195 284195 284195 284195 285550
random3 1399947 4000000 385928 385837 385866 385818 387216
random4 1999760 5600000 538620 538556 538573 538529 540550
random5 2199977 6400000 617940 617761 617768 617681 619710
random6 873280 1200000 86796 86796 86796 86796 87300
random7 1061980 1500000 111324 111324 111324 111324 111973
random8 1227072 1700000 124635 124635 124635 124635 125374
random9 1520478 2200000 166737 166737 166737 166737 167709
random102050946 3300000 269315 269315 269315 269315 270981
grid1 450000 1796400 165650 156071 161462 152515 149527
grid2 600000 2396800 219589 206563 215920 205189 199552
grid3 1000000 3996000 363242 344549 360783 340078 332669
grid4 1680000 6714800 621736 585211 604861 572608 559252
grid5 2100000 8394200 760797 723507 759568 719410 699285

139

Table 5.4: Summary of the running time of different variants of our PTAS. The parameter
r is set as 60 for all PTAS variants.

graph vertices edges vanilla minimal optimized 2approx

NY 264953 366250 5m 45s 5m 39s 13m 46s 9s
BAY 322694 400233 4m 25s 4m 17s 10m 9s
COL 437294 524437 5m 8s 4m 56s 10m 46s 13s
NW 1214463 1423402 13m 21s 12m 49s 26m 2s 37s
FLA 1074167 1351411 16m 38s 16m 37s 34m 18s 33s
CAL 1898842 2331204 35m 36s 33m 2s 1h 12m 20s 58s
LKS 2763392 3407840 1h 26s 1h 1m 46s 2h 48m 44s 1m 31s
NE 1528387 1941840 41m 13s 43m 32s 1h 53m 1s 48s
E 3608115 4372928 1h 39m 17s 1h 40m 7s 3h 34m 25s 1m 52s
W 6286759 7608797 3h 44m 38s 3h 43m 26s 7h 39m 21s 3m 15s
triangu1 600000 1799963 1h 6m 23s 55m 39s 1h 56m 32s 55s
triangu2 800000 2399961 2h 28m 7s 1h 57m 15s 4h 15m 24s 1m 7s
triangu3 1000000 2999955 4h 17m 57s 3h 41m 50s 6h 47m 30s 1m 22s
triangu4 1200000 3599966 6h 42m 30s 5h 48m 12s 9h 59m 24s 1m 39s
triangu5 1400000 4199957 9h 20m 14s 8h 14m 59s 14h 16m 45s 1m 58s
random1 699970 2000000 50m 40s 53m 18s 1h 22m 10s 1m 20s
random2 1197582 3000000 1h 19m 18s 1h 22m 27s 1h 37m 57s 1m 58s
random3 1399947 4000000 2h 42m 55s 2h 25m 9s 2h 5m 3s 2m 34s
random4 1999760 5600000 4h 1m 48s 4h 30m 10s 3h 32m 19s 3m 53s
random5 2199977 6400000 4h 57m 53s 5h 38m 16s 4h 39m 10s 4m 24s
random6 873280 1200000 14m 9s 16m 8s 13m 8s 58s
random7 1061980 1500000 19m 54s 22m 33s 18m 10s 1m 5s
random8 1227072 1700000 21m 44s 24m 29s 19m 41s 1m 14s
random9 1520478 2200000 30m 52s 35m 13s 28m 9s 1m 33s
random10 2050946 3300000 1h 1m 1h 10m 29s 55m 41s 2m 20s
grid1 450000 1796400 25m 41s 24m 28s 1h 13m 18s 24s
grid2 600000 2396800 35m 24s 34m 48s 1h 58m 24s 29s
grid3 1000000 3996000 1h 11m 9s 1h 6m 49s 4h 56m 29s 48s
grid4 1680000 6714800 2h 56m 47s 2h 18m 7s 10h 7m 46s 1m 25s
grid5 2100000 8394200 3h 48m 16s 3h 0m 23s 15h 1m 48s 1m 44s

140

Table 5.5: Summary of the solution sizes of different heuristic algorithms. HAS (avg)
is the solution size averaged over five runs of HAS with different random seeds. HAS
(min) is the minimum size among the five values. The improv value is computed as
1-HAS(avg)/2approx.

graph vertices edges 2approx hybrid HAS
(avg)

HAS
(min)

improv

NY 264953 366250 41709 40868 39582 39537 0.051
BAY 322694 400233 34211 33372 32492 32446 0.050
COL 437294 524437 39205 38141 37167 37141 0.052
NW 1214463 1423402 95735 93272 90844 90816 0.051
FLA 1074167 1351411 125841 122521 119211 119163 0.053
CAL 1898842 2331204 192465 187610 182282 182191 0.053
LKS 2763392 3407840 277196 270651 262041 261917 0.055
NE 1528387 1941840 181336 177101 171742 171619 0.053
E 3608115 4372928 342371 333997 324286 324056 0.053
W 6286759 7608797 594943 579822 562687 562606 0.054
triangu1 600000 1799963 233958 228711 225802 225791 0.035
triangu2 800000 2399961 311349 304288 300443 300430 0.035
triangu3 1000000 2999955 387908 379251 374485 374468 0.035
triangu4 1200000 3599966 463157 452692 447236 447206 0.034
triangu5 1400000 4199957 537270 525416 519361 519229 0.033
random1 699970 2000000 193601 193071 192908 192904 0.004
random2 1197582 3000000 285550 284340 284198 284195 0.005
random3 1399947 4000000 387216 386095 385818 385815 0.004
random4 1999760 5600000 540550 538958 538533 538526 0.004
random5 2199977 6400000 619710 618238 617674 617671 0.003
random6 873280 1200000 87300 86809 86802 86796 0.006
random7 1061980 1500000 111973 111343 111326 111324 0.006
random8 1227072 1700000 125374 124655 124641 124636 0.006
random9 1520478 2200000 167709 166762 166739 166739 0.006
random102050946 3300000 270981 269378 269319 269318 0.006
grid1 450000 1796400 149527 149511 149511 149511 0.001
grid2 600000 2396800 199552 199506 199506 199506 0.001
grid3 1000000 3996000 332669 332847 332847 332847 -0.001
grid4 1680000 6714800 559252 559298 559298 559298 -0.001
grid5 2100000 8394200 699285 699195 699195 699195 0.001

141

Table 5.6: Summary of the running time of different heuristic algorithms. HAS (avg)
is the running time averaged over five runs of HAS with different random seeds. HAS
(min) is the running time for the HAS run with minimum solution size.

graph vertices edges 2approx hybrid HAS (avg) HAS (min)

NY 264953 366250 9s 1m 28s 1h 6m 30s 1h 12m 33s
BAY 322694 400233 9s 1m 9s 54m 53s 1h 8m 2s
COL 437294 524437 13s 1m 19s 51m 22s 1h 10m 49s
NW 1214463 1423402 37s 3m 28s 2h 18m 40s 2h 24m 32s
FLA 1074167 1351411 33s 4m 12s 3h 57m 25s 4h 7m 32s
CAL 1898842 2331204 58s 7m 32s 6h 10m 28s 6h 12m 30s
LKS 2763392 3407840 1m 31s 11m 38s 13h 21m 22s 14h 35m 33s
NE 1528387 1941840 48s 7m 10s 5h 52m 16s 6h 49m 51s
E 3608115 4372928 1m 52s 14m 23s 16h 49m 22s 16h 27m 17s
W 6286759 7608797 3m 15s 23m 46s 35h 41m 39s 38h 10m 5s
triangu1 600000 1799963 55s 1m 46s 1h 32m 37s 1h 39m 7s
triangu2 800000 2399961 1m 7s 1m 58s 2h 11m 39s 2h 35m
triangu3 1000000 2999955 1m 22s 2m 20s 2h 33m 5s 2h 42m 50s
triangu4 1200000 3599966 1m 39s 2m 55s 3h 15m 9s 3h 54m 12s
triangu5 1400000 4199957 1m 58s 3m 30s 4h 38m 3h 23m 16s
random1 699970 2000000 1m 20s 1m 54s 6m 54s 7m 31s
random2 1197582 3000000 1m 58s 2m 26s 7m 47s 8m 57s
random3 1399947 4000000 2m 34s 3m 31s 15m 5s 15m 24s
random4 1999760 5600000 3m 53s 5m 12s 21m 2s 21m 53s
random5 2199977 6400000 4m 24s 5m 58s 30m 15s 32m 43s
random6 873280 1200000 58s 1m 17s 1m 45s 2m 12s
random7 1061980 1500000 1m 5s 1m 31s 2m 4s 1m 55s
random8 1227072 1700000 1m 14s 1m 42s 2m 25s 2m 13s
random9 1520478 2200000 1m 33s 2m 17s 3m 17s 3m 18s
random10 2050946 3300000 2m 20s 3m 29s 5m 10s 5m 56s
grid1 450000 1796400 24s 3m 49s 1h 1m 16s 1h 2m 26s
grid2 600000 2396800 29s 5m 19s 1h 18m 18s 1h 18m 54s
grid3 1000000 3996000 48s 8m 48s 1h 55m 10s 1h 56m 43s
grid4 1680000 6714800 1m 25s 14m 47s 3h 1m 44s 3h 4m 5s
grid5 2100000 8394200 1m 44s 17m 44s 3h 52m 47s 3h 42m 23s

142

Chapter 6: Conclusion

Approximation algorithms for NP-hard problems in graphs have been studied for decades.

Among those, a polynomial-time approximation scheme (PTAS) is the best polynomial-

time approximation algorithm that we can hope for such problems. This is because when

given any fixed approximation ratio α, a PTAS can find an α-approximation solution in

polynomial time. Unfortunately, there are some problems that do not admit PTASes in

general graphs unless P = NP , such as the maximum independent set problem [105] and

the traveling salesperson problem (TSP) [81]. However, we can obtain PTASes for some

of these problems when restricted to planar graphs, including the above two problems.

In the last decade, we see many PTAS results in planar graphs appear with some exciting

algorithmic techniques.

In this thesis, we summarized the commonly used approaches to design PTAS for

NP-hard problems in planar graphs. Based on these approaches, we presented the first

PTAS results for some NP-hard problems in planar graphs that require strong connec-

tivity, including relaxed minimum-weight subset three-edge-connected subgraph prob-

lem, minimum three-edge-connected spanning subgraph problem and minimum three-

vertex-connected spanning subgraph problem. For the first problem, our PTAS runs

in O(n log n) time, and for the other two problems, our PTAS runs in O(n) time. We

also gave two different PTASes for minimum feedback vertex set problem (FVS): one

for minor-free graphs that runs in O(n1/ε
2
) time based on local search, and the other for

planar graphs that runs in O(n log n) time based on linear kernel and balanced separa-

tors.

To understand the performance of PTASes in large planar graphs, we implemented

ourO(n log n)-time PTAS for FVS and compare it with Becker and Geiger’s 2-approximation

algorithm [10]. Our results show that our PTAS is competitive in terms of solution qual-

ity with the 2-approximation algorithm in most large planar graphs. We then presented

a heuristic algorithm for FVS, which is based on the reduction rules in the linear ker-

nelization algorithm and the idea in our local search PTAS. This heuristic algorithm

can provide a trade-off between the running time and the solution quality, just like

143

a PTAS. We find that our heuristic algorithm can produce better solutions than the

2-approximation on both synthetic planar graphs and real-world planar graphs.

6.1 Frontiers

Many open problems remain, which relate to or could be built on the works of this thesis.

In the following, we describe some of the open problems, that we think are most exciting,

in this field.

PTAS for nonuniform facility location problem Uncapacitated facility location

problem is a widely studied model in the discrete facility location problem. In this

model, given a finite metric space d, a set of points C and a cost function f , we want

to find a set S of points that minimizes the total cost
∑

i∈S f(i) +
∑

j∈C mini∈S d(i, j).

The problem is uniform if every point in C has the same cost, that is f(i) = f(j) for

any i and j in C, otherwise nonuniform. Both of uniform facility location (UFL) and

nonuniform facility location (NFL) are NP-hard in planar graphs [69, 79]. Cohen-Addad,

Klein and Mathieu [35] gave the first PTAS for uniform facility location (UFL) in minor-

free graphs by local search. Can we obtain a PTAS for NFL in planar graphs? Since the

local search method is hard to generalize to vertex weight, it seems we need a different

method for NFL PTAS. The only clustering problem that admits (bicriteria) PTAS in

vertex-weighted planar graphs is the k-center problem. However, it is not clear how to

apply those techniques to NFL.

PTAS for k-minimum spanning tree problem (k-MST) The k-MST asks for

a tree subgraph of minimum weight that spans any subset of exactly k vertices. This

problem admits PTAS when the input consists of points in the Euclidean plane [3]. For

many problems, including TSP, Steiner tree and Steiner forest, PTAS results are first

developed for the Euclidean plane and then developed for planar graphs. This is because

the techniques for the latter are often inspired by the techniques for the former. So it is

natural to ask: is there a PTAS for k-MST in planar graphs?

PTAS for minimum-weight subset two-edge-connected subgraph problem

(subset 2-EC) Subset 2-EC asks for a minimum-weight subgraph that maintains two-

144

edge-connectivity for a set of given vertices. This problem can be seen as a stronger

version of Steiner tree problem, since it requires stronger connectivity for a vertex sub-

set. Borradaile and Klein [22] gave an EPTAS for a relaxed version of this problem in

planar graphs, where each edge can be used multiple times. And the only planar-specific

algorithm for non-spanning, strict edge-connectivity is a PTAS for the following prob-

lem: given a subset R of edges, find a minimum weight subset S of edges, such that for

every edge in R, its endpoints are two-edge-connected in R ∪ S [89]; otherwise, the best

known results for the strict version of subset 2-EC is the constant-factor approximations

known for general graphs. Can we obtain a PTAS for subset 2-EC in planar graphs?

We note that all the PTASes mentioned above are based on the spanner framework, and

the challenge part to apply this framework to subset 2-EC is to construct a spanner: it

is still not clear how to maintain the two-edge-connectivity and the weight bound of the

spanner. We think the PTAS for the spanning version of this problem [12] could provide

some inspiration: it does not construct a complete spanner, but a partial spanner, which

does not contain a nearly optimal solution but has some properties that can be used to

construct a nearly optimal solution by a dynamic programming.

EPTAS for minimum-weight connected dominating set problem (CDS) CDS

asks for a minimum-weight vertex set in a vertex-weighted graph such that it induces

a connected subgraph and every vertex in the graph is either in the set or adjacent to

some vertex in the set. This problem is NP-hard in planar graphs [62] and is shown

to admit PTAS by separator techniques in planar graphs [34]. But this PTAS is not

efficient. Can we obtain an EPTAS for CDS in planar graphs? One potential technique

for this problem is the shifting technique. This is because the shifting technique can be

seen as an alternative way to find a set of separators efficiently. And we have seen this

kind of improvement appears for TSP and maximum independent set problem in planar

graphs. However, it is not clear how to bound the error in the shifting technique.

PTAS Engineering In Chapter 5, we designed and implemented an O(n log n) time

PTAS for the minimum feedback vertex set problem (FVS) in planar graphs based on

linear kernel and balanced separators. In fact, we can also obtain an O(n log n) time

PTAS by applying the shifting techniques instead of balanced separators. To implement

this PTAS, we will need to compute a branch decomposition and apply dynamic pro-

145

gramming for the resulting graph. This method is used in previous PTAS engineering

works [115, 9]. Does this PTAS outperform the 2-approximation algorithm and our algo-

rithms? Further, in our experimental work, we only focus on FVS. However, we believe

the ideas behind our heuristics can also work for other problems. For example, the idea

of combining reduction rules and another approximation algorithm can also be applied to

other problems like dominating set and vertex cover. Similarly, our local search heuristic

can also be generalized to new problems if there are FPT algorithms for them. So we

think it will be interesting to see their performance on different problems.

146

Bibliography

[1] Lyudmil Aleksandrov, Hristo Djidjev, Hua Guo, and Anil Maheshwari. Partition-
ing planar graphs with costs and weights. Journal of Experimental Algorithmics
(JEA), 11:1–5, 2007.

[2] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar
graphs. Journal of the American Mathematical Society, 3(4):801–808, 1990.

[3] Sanjeev Arora. Polynomial-time approximation schemes for Euclidean TSP and
other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

[4] Sanjeev Arora, Michelangelo Grigni, David R Karger, Philip N Klein, and An-
drzej Woloszyn. A polynomial-time approximation scheme for weighted planar
graph TSP. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 33–41, 1998.

[5] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm
for the undirected feedback vertex set problem. SIAM Journal on Discrete Math-
ematics, 12(3):289–297, 1999.

[6] Brenda S Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM (JACM), 41(1):153–180, 1994.

[7] MohammadHossein Bateni, Erik D Demaine, MohammadTaghi Hajiaghayi, and
Dániel Marx. A PTAS for planar group Steiner tree via spanner bootstrapping
and prize collecting. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, pages 570–583. ACM, 2016.

[8] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Ap-
proximation schemes for Steiner forest on planar graphs and graphs of bounded
treewidth. J. ACM, 58(5):21, 2011.

[9] Amariah Becker, Eli Fox-Epstein, Philip N Klein, and David Meierfrankenfeld.
Engineering an approximation scheme for traveling salesman in planar graphs. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 75, 2017.

[10] Ann Becker and Dan Geiger. Optimization of Pearl’s method of conditioning and
greedy-like approximation algorithms for the vertex feedback set problem. Artificial
Intelligence, 83(1):167–188, 1996.

147

[11] André Berger, Artur Czumaj, Michelangelo Grigni, and Hairong Zhao. Approxi-
mation schemes for minimum 2-connected spanning subgraphs in weighted planar
graphs. In Proceedings of the 13th European Symposium on Algorithms, volume
3669 of Lecture Notes in Computer Science, pages 472–483, 2005.

[12] André Berger and Michelangelo Grigni. Minimum weight 2-edge-connected span-
ning subgraphs in planar graphs. In Proceedings of the 34th International Collo-
quium on Automata, Languages and Programming, volume 4596 of Lecture Notes
in Computer Science, pages 90–101, 2007.

[13] Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory 1736-1936.
Oxford University Press, 1986.

[14] Punyashloka Biswal, James R Lee, and Satish Rao. Eigenvalue bounds, spectral
partitioning, and metrical deformations via flows. Journal of the ACM, 57(3):13,
2010.

[15] Hans L Bodlaender, Fedor V Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket
Saurabh, and Dimitrios M Thilikos. (Meta) kernelization. Journal of the ACM
(JACM), 63(5):44, 2016.

[16] Marthe Bonamy and Lukasz Kowalik. A 13k-kernel for planar feedback vertex set
via region decomposition. Theoretical Computer Science, 645:25–40, 2016.

[17] Richard B Borie, R Gary Parker, and Craig A Tovey. Automatic generation of
linear-time algorithms from predicate calculus descriptions of problems on recur-
sively constructed graph families. Algorithmica, 7(1-6):555–581, 1992.

[18] Glencora Borradaile, Erik D Demaine, and Siamak Tazari. Polynomial-time ap-
proximation schemes for subset-connectivity problems in bounded-genus graphs.
Algorithmica, 68(2):287–311, 2014.

[19] Glencora Borradaile, Claire Kenyon-Mathieu, and Philip Klein. A polynomial-
time approximation scheme for Steiner tree in planar graphs. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, volume 7, pages
1285–1294, 2007.

[20] Glencora Borradaile and Philip Klein. The two-edge connectivity survivable net-
work problem in planar graphs. In Proceedings of the 35th International Colloquium
on Automata, Languages and Programming, pages 485–501, 2008.

[21] Glencora Borradaile and Philip Klein. An O(n log n) algorithm for maximum st-
flow in a directed planar graph. Journal of the ACM, 56(2):1–30, 2009.

148

[22] Glencora Borradaile and Philip Klein. The two-edge connectivity survivable-
network design problem in planar graphs. ACM Transactions on Algorithms,
12(3):30, 2016.

[23] Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(n log n) approxima-
tion scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms,
5(3):1–31, 2009.

[24] Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Minor-free graphs
have light spanners. In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 767–778, 2017.

[25] Glencora Borradaile, Hung Le, and Baigong Zheng. Designing practical PTASes
for minimum feedback vertex set in planar graphs. CoRR, abs/1804.07869, 2018.

[26] Glencora Borradaile and Baigong Zheng. A PTAS for three-edge-connected surviv-
able network design in planar graphs. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017,
August 16-18, 2017, Berkeley, CA, USA, pages 3:1–3:13, 2017.

[27] John M Boyer and Wendy J Myrvold. On the cutting edge: Simplified O(n)
planarity by edge addition. J. Graph Algorithms Appl., 8(2):241–273, 2004.

[28] Lorenzo Brunetta, Francesco Maffioli, and Marco Trubian. Solving the feedback
vertex set problem on undirected graphs. Discrete Applied Mathematics, 101(1-
3):37–51, 2000.

[29] Sergio Cabello and David Gajser. Simple PTAS’s for families of graphs excluding
a minor. Discrete Applied Mathematics, 189(C):41–48, 2015.

[30] Timothy M Chan and Sariel Har-Peled. Approximation algorithms for maximum
independent set of pseudo-disks. In Proceedings of the Twenty-fifth Annual Sym-
posium on Computational Geometry, SocG’09, pages 333–340, 2009.

[31] Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size
k-connected spanning subgraphs via matching. SIAM Journal on Computing,
30(2):528–560, 2000.

[32] Norishige Chiba, Takao Nishizeki, and Nobuji Saito. Applications of the Lipton and
Tarjan’s planar separator theorem. Journal of information processing, 4(4):203–
207, 1981.

[33] Norishige Chiba, Takao Nishizeki, and Nobuji Saito. An approximation algorithm
for the maximum independent set problem on planar graphs. SIAM Journal on
Computing, 11(4):663–675, 1982.

149

[34] Vincent Cohen-Addad, Éric Colin de Verdière, Philip N Klein, Claire Mathieu,
and David Meierfrankenfeld. Approximating connectivity domination in weighted
bounded-genus graphs. In Proceedings of the 48th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 584–597. ACM, 2016.

[35] Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields
approximation schemes for k-means and k-median in Euclidean and minor-free
metrics. In Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’ 16, 2016.

[36] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs. Information and computation, 85(1):12–75, 1990.

[37] Artur Czumaj, Michelangelo Grigni, Papa Sissokho, and Hairong Zhao. Approxi-
mation schemes for minimum 2-edge-connected and biconnected subgraphs in pla-
nar graphs. In Proceedings of the fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 496–505. Society for Industrial and Applied Mathematics,
2004.

[38] Artur Czumaj and Andrzej Lingas. A polynomial time approximation scheme for
Euclidean minimum cost k-connectivity. In Automata, Languages and Program-
ming, pages 682–694. Springer, 1998.

[39] Artur Czumaj and Andrzej Lingas. On approximability of the minimum cost
k-connected spanning subgraph problem. In Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 281–290, 1999.

[40] Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M
Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and
H-minor-free graphs. Journal of the ACM (JACM), 52(6):866–893, 2005.

[41] Erik D Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Al-
gorithmic graph minor theory: Decomposition, approximation, and coloring. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 637–646, 2005.

[42] Erik D Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: New connec-
tions between FPT algorithms and PTASs. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’05, pages 590–601, 2005.

[43] Erik D Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Con-
traction decomposition in H-minor-free graphs and algorithmic applications. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pages
441–450, 2011.

150

[44] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. Implementation
challenge for shortest paths. In Encyclopedia of Algorithms, pages 1–99. Springer,
2008.

[45] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex
cover. Annals of mathematics, pages 439–485, 2005.

[46] Hristo N Djidjev and Shankar M Venkatesan. Reduced constants for simple cycle
graph separation. Acta Informatica, 34:231–243, 1997.

[47] Hristo Nicolov Djidjev. On the problem of partitioning planar graphs. SIAM
Journal on Algebraic Discrete Methods, 3(2):229–240, 1982.

[48] Hristo Nicolov Djidjev. A linear algorithm for partitioning graphs of fixed genus.
Serdica. Bulgariacae mathematicae publicationes, 11(4):369–387, 1985.

[49] David Eisenstat, Philip Klein, and Claire Mathieu. An efficient polynomial-time
approximation scheme for Steiner forest in planar graphs. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 626–
638. SIAM, 2012.

[50] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Thomas H Spencer. Separator
based sparsification: I. Planarity testing and minimum spanning trees. Journal of
Computer and System Sciences, 52(1):3–27, 1996.

[51] Ranel E Erickson, Clyde L Monma, and Arthur F Veinott Jr. Send-and-split
method for minimum-concave-cost network flows. Mathematics of Operations Re-
search, 12:634–664, 1987.

[52] Kapali P Eswaran and R Endre Tarjan. Augmentation problems. SIAM Journal
on Computing, 5(4):653–665, 1976.

[53] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin. Approximating min-
imum subset feedback sets in undirected graphs with applications. SIAM Journal
on Discrete Mathematics, 13(2):255–267, 2000.

[54] Greg N Federickson. Fast algorithms for shortest paths in planar graphs with
applications. SIAM Journal on Computing, 16:1004–1022, 1987.

[55] Fedor V Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidi-
mensionality and EPTAS. In Proceedings of the Twenty-second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’11, pages 748–759, 2011.

151

[56] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos.
Bidimensionality and kernels. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 503–510, 2010.

[57] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Lin-
ear kernels for (connected) dominating set on H-minor-free graphs. In Proceedings
of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
82–93, 2012.

[58] Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and Christian
Sommer. Short and simple cycle separators in planar graphs. Journal of Experi-
mental Algorithmics (JEA), 21:2–2, 2016.

[59] Greg N Frederickson and Joseph Jájá. Approximation algorithms for several graph
augmentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

[60] Alan M Frieze, Gary L Miller, and Shang-Hua Teng. Separator based parallel divide
and conquer in computational geometry. In Proceedings of the fourth annual ACM
symposium on Parallel algorithms and architectures, pages 420–429, 1992.

[61] Harold N Gabow and Suzanne R Gallagher. Iterated rounding algorithms for
the smallest k-edge connected spanning subgraph. SIAM Journal on Computing,
41(1):61–103, 2012.

[62] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. WH Freeman & Co., 1979.

[63] Hillel Gazit and Gary L Miller. Planar separators and the Euclidean norm. Algo-
rithms, pages 338–347, 1990.

[64] John R Gilbert, Joan P Hutchinson, and Robert Endre Tarjan. A separator theo-
rem for graphs of bounded genus. Journal of Algorithms, 5(3):391–407, 1984.

[65] Teofilo F Gonzalez. Handbook of Approximation Algorithms and Metaheuristics.
CRC Press, 2007.

[66] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms.
Combinatorica, 23(4):613–632, 2003.

[67] Prabhakar Gubbala and Balaji Raghavachari. Approximation algorithms for the
minimum cardinality two-connected spanning subgraph problem. In Integer Pro-
gramming and Combinatorial Optimization, pages 422–436. Springer, 2005.

152

[68] Prabhakar Gubbala and Balaji Raghavachari. A 4/3-approximation algorithm for
minimum 3-edge-connectivity. In Algorithms and Data Structures, pages 39–51.
Springer, 2007.

[69] Yuri Gurevich, Larry Stockmeyer, and Uzi Vishkin. Solving NP-hard problems
on graphs that are almost trees and an application to facility location problems.
Journal of the ACM (JACM), 31(3):459–473, 1984.

[70] Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-
expansion and low-density graphs. SIAM Journal on Computing, 46(6):1712–1744,
2017.

[71] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. Journal of Computer and System Sci-
ences, 55(1):3–23, 1997.

[72] Derek A Holton, Bill Jackson, Akira Saito, and Nicholas C Wormald. Removable
edges in 3-connected graphs. J. Graph Theory, 14:465–475, 1990.

[73] Martin Holzer, Frank Schulz, Dorothea Wagner, Grigorios Prasinos, and Chris-
tos Zaroliagis. Engineering planar separator algorithms. Journal of Experimental
Algorithmics (JEA), 14:5, 2009.

[74] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph
manipulation. Commun. ACM, 16(6):372–378, June 1973.

[75] Yoichi Iwata. Linear-time kernelization for feedback vertex set. arXiv preprint
arXiv:1608.01463, 2016.

[76] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-
branching, and FPT algorithms. SIAM Journal on Computing, 45(4):1377–1411,
2016.

[77] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner net-
work problem. Combinatorica, 2001(1):39–60, 21.

[78] David S. Johnson. The NP-completeness column: An ongoing guide. Journal of
Algorithms, 8(3):438–448, 1987.

[79] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location
problems. I: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–
538, 1979.

[80] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

153

[81] Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability
bounds for TSP. Journal of Computer and System Sciences, 81(8):1665–1677,
2015.

[82] Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed
classes. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pages 153–162, 2010.

[83] Jonathan A Kelner. Spectral partitioning, eigenvalue bounds, and circle packings
for graphs of bounded genus. SIAM Journal on Computing, 35(4):882–902, 2006.

[84] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM, 41(2):214–235, 1994.

[85] Valerie King, Satish Rao, and Rorbert Tarjan. A faster deterministic maximum
flow algorithm. In Proceedings of the third annual ACM-SIAM symposium on
Discrete algorithms, pages 157–164, 1992.

[86] Philip Klein and Shay Mozes. Optimization algorithms for planar graphs. In
preparation, manuscript at http://planarity.org.

[87] Philip N Klein. A subset spanner for planar graphs, with application to subset
TSP. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 749–756, 2006.

[88] Philip N Klein. A linear-time approximation scheme for TSP in undirected planar
graphs with edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008.

[89] Philip N Klein, Claire Mathieu, and Hang Zhou. Correlation clustering and two-
edge-connected augmentation for planar graphs. In Ernst W. Mayr and Nicolas
Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2015), volume 30 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 554–567. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2015.

[90] Jon Kleinberg and Amit Kumar. Wavelength conversion in optical networks. Jour-
nal of Algorithms, 38:25–50, 2001.

[91] Dexter C Kozen. The design and analysis of algorithms. Springer Science &
Business Media, 2012.

[92] Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie. Funda-
menta Mathematicae, 15:271–283, 1930.

154

[93] Hung Le. A PTAS for subset TSP in minor-free graphs. arXiv preprint
arXiv:1804.01588, 2018.

[94] Hung Le and Baigong Zheng. Local search is a PTAS for feedback vertex set in
minor-free graphs. CoRR, abs/1804.06428, 2018.

[95] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[96] Richard J Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM journal on computing, 9(3):615–627, 1980.

[97] Flaminia L Luccio. Almost exact minimum feedback vertex set in meshes and
butterflies. Inf. Process. Lett., 66(2):59–64, 1998.

[98] W. Mader. Homomorphiesätze für graphen. Mathematische Annalen, 178(2):154–
168, 1968.

[99] Marjan Marzban, Qian-Ping Gu, and Xiaohua Jia. Computational study on planar
dominating set problem. Theoretical Computer Science, 410(52):5455–5466, 2009.

[100] Kurt Mehlhorn, Stefan Näher, and Christian Uhrig. The LEDA platform for com-
binatorial and geometric computing. In International Colloquium on Automata,
Languages, and Programming, pages 7–16. Springer, 1997.

[101] Kurt Mehlhorn, Adrian Neumann, and Jens M Schmidt. Certifying 3-edge-
connectivity. Algorithmica, 77(2):309–335, 2017.

[102] Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set
problems. Discrete & Computational Geometry, 44(4):883–895, 2010.

[103] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–
66, 1992.

[104] James B Orlin. Max flows in O(nm) time, or better. In Proceedings of the forty-fifth
Annual ACM Symposium on Theory of Computing, pages 765–774. ACM, 2013.

[105] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 229–234. ACM, 1988.

[106] Panos M Pardalos, Tianbing Qian, and Mauricio GC Resende. A greedy random-
ized adaptive search procedure for the feedback vertex set problem. Journal of
Combinatorial Optimization, 2(4):399–412, 1998.

155

[107] Shao-Meng Qin and Hai-Jun Zhou. Solving the undirected feedback vertex set
problem by local search. The European Physical Journal B, 87(11):273, 2014.

[108] R Ravi and Philip Klein. When cycles collapse: A general approximation technique
for constraind two-connectivity problems. In Proceedings of the 3rd International
Conference on Integer Programming and Combinatorial Optimization, pages 39–
55, 1993.

[109] Bruce Reed and David R Wood. A linear-time algorithm to find a separator in a
graph excluding a minor. ACM Transactions on Algorithms, 5(4):39, 2009.

[110] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-
colour theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997.

[111] Jens M Schmidt. Contractions, removals, and certifying 3-connectivity in linear
time. SIAM Journal on Computing, 42(2):494–535, 2013.

[112] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation
for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected sub-
graphs. Combinatorica, 34(5):597–629, 2014.

[113] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combina-
torica, 14(2):217–241, 1994.

[114] Robert Endre Tarjan. A note on finding the bridges of a graph. Information
Processing Letters, 1974.

[115] Siamak Tazari and Matthias Müller-Hannemann. Dealing with large hidden con-
stants: Engineering a planar Steiner tree PTAS. Journal of Experimental Algo-
rithmics (JEA), 16(3–6), 2011.

[116] Kiem-Phong Vo. Finding triconnected components of graphs. Linear and multi-
linear algebra, 13(2):143–165, 1983.

[117] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische An-
nalen, 114:570–590, 1937.

[118] Hassler Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34:339–362, 1932.

[119] Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free
graphs with applications. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 37–46, 2011.

156

[120] Mihalis Yannakakis. Node-and edge-deletion NP-complete problems. In Proceed-
ings of the tenth annual ACM symposium on Theory of computing, pages 253–264,
1978.

[121] Zhiqiang Zhang, Ansheng Ye, Xiaoqing Zhou, and Zehui Shao. An efficient local
search for the feedback vertex set problem. Algorithms, 6(4):726–746, 2013.

[122] Baigong Zheng. Linear-time approximation schemes for planar minimum three-
edge connected and three-vertex connected spanning subgraphs. arXiv preprint
arXiv:1701.08315, 2017.

	Introduction
	Graphs
	Planar Graphs
	Polynomial-time Approximation Schemes
	Balanced Separator
	Shifting Technique
	Bidimensionality
	Local Search
	Spanner Framework
	Beyond Planar Graphs

	Contributions of This Thesis

	PTAS for Relaxed Minimum-weight Subset Three-edge-connected Subgraph in Planar Graphs
	Overview
	Overview of 2-EC PTAS
	Reduction to Vertex Connectivity

	Vertex-connectivity Basics
	Ear Decompositions
	Removable Edges
	Properties of Minimal (Q,r)-vertex-connected Graphs
	Cycles Must Contain Terminals

	Connectivity Separation
	The Tree Cycle Theorem Implies the Connectivity Separation Theorem
	Proof of Tree Cycle Theorem

	Correctness of Spanner
	Mortar Graph, Bricks and Portals
	Proof of the Structure Theorem

	Dynamic Programming for k-ECP on Graphs with Bounded Branchwidth

	PTASes for Minimum Three-edge-connected Spanning Subgraph and Minimum Three-vertex-connected Spanning Subgraph in Planar Graphs
	Overview
	Preliminaries
	PTAS for 3-ECSS
	PTAS for 3-VCSS
	Dynamic Programming for Minimum-Weight 3-ECSS on Graphs with Bounded Branchwidth

	Local Search PTAS for Minimum Feedback Vertex Set in Minor-free Graphs
	Overview
	Preliminaries
	Exchange Graph Implies PTAS by Local Search
	Exchange Graph Construction
	Negative Results

	Practical PTAS and Heuristics for Minimum Feedback Vertex Set in Planar Graphs
	Overview
	The Algorithms for FVS in Planar Graphs
	The 2-Approximation Algorithm
	Kernelization Algorithm
	Polynomial-Time Approximation Scheme
	Heuristics

	Experiments
	The 2-Approximation Algorithm and Optimal Solution
	The PTAS and 2-Approximation Algorithm
	Heuristic Approximation Scheme

	Detailed Experimental Results

	Conclusion
	Frontiers

	Bibliography

