
IDENTIFYING AND MINIMIZING THE EFFECTS OF MALICIOUS
BEHAVIOR IN SERF

Sandeep Natarajan

School Of Electrical Engineering and Computer Science
Oregon State University.

Major Professor: Dr. Jonathan L. Herlocker

ABSTRACT
 Collaborative filtering (CF) algorithms are used in a wide range of internet applications. However
the chief objective of using CF algorithms across most of these applications is to discover items that might
be of interest to its users. CF algorithms work by obtaining feedback from users on the items that they
browse and utilize that feedback to suggest recommendations to other users with similar tastes. CF
algorithms rely heavily on input provided by humans and thus it is vital to verify that this information is
appropriate. In this paper, we analyze various mechanisms by which users can enter malicious data to a CF
system called SERF (System for Electronic Recommendation Filtering). We explore how bad data can be
propagated through the system and can be used to manipulate the quality of recommendations. We also
explore some techniques to counter the effects of bad data on the system. We report the results of our
experiment with two simulated systems - a reputation system that utilizes a user’s agreement and
disagreement history to predict the trust that can be attributed to a user and a word weighting scheme based
on word co-occurrence.

1. INTRODUCTION
 The internet has enormous amounts of information and finding information specific to one's need
is a difficult task. Search engines play an important role in bridging the gap between an information
seeker’s quest for information and the actual source of information.

To match an information need to the right information source, search engines use metadata,
information that describes the information source. To collect metadata search engines use a variety of
methods like explicit link analysis and implicit link analysis [6]. However the internet has sources of
information that do not support this kind of metadata. Other means of obtaining metadata for these
information sources will make finding them easier.

The goal of SERF is to involve humans in the automated process of finding information sources to
improve the quality of information returned by a search engine. SERF uses feedback provided by users on
search results to recommend information sources to requests with similar information need. SERF does this
by integrating functionality commonly associated with a question answering (QA) system and a
collaborative filtering (CF) system into an innovative new search engine.

In a QA system the user expresses her information need with a detailed and well formed question
and the system returns an answer specific to that question. The key advantage a QA system gives its
implementers is that the information need is specified precisely and grammatically, thus giving more
information context. Similarly in SERF we encourage the users to specify their information need with a
detailed question.

In a CF system, users with similar interests are matched and the preferences of one user are
recommended to others in the group. This process of explicitly obtaining a users opinion on items in the
system is called relevance feedback. The idea is that by getting relevance feedback, the system can easily
eliminate the bad items from consideration and promote the good items. In SERF we recommend the
information sources that have a positive feedback to other members with similar information need. The
notion is that if most users find an information source to be relevant to an information need then a new user
might also find it relevant to a similar information need.

In SERF we store both the information need (question) specified by the user and her feedback on
the results that are generated for that information need. When some other user asks a question with similar
information need we use the feedback provided by the previous user to either recommend interesting
information sources or to remove the sources of information that are not useful from the search results.
Here we have assumed two things. First is that the users provide genuine and meaningful questions using

 1

the QA interface. Second is that the users provide honest feedback on the information sources that they are
looking at.

It turns out that these assumptions do not always hold true. We have cases when users provide
questions that are inappropriate for a number of reasons. We also have cases where users provide feedback
for their own personal benefit or mistakenly provide misleading feedback. The chief objective of this paper
is to identify what the goals might be for such a behavior and use this knowledge to minimize the effect of
such actions on the system.

In this paper, we outline the nature of data that lends to manipulated recommendations. We
classify them into different categories based on their effect on the system. We believe that studying and
discretizing malicious user behavior will illustrate the complexities of building a robust system. We also
initially explore solutions to different types of attacks on the system.

1.1 Terminology
 In the rest of this paper we will use the following terminology:

i) Question: The information need of a user represented as a meaningful question. These questions
are better expressed than the keyword based searches often used in search engines.

ii) Document: The information source that provides answers to some question.
iii) Rating: The relevance feedback given by a user denoting if a document answered a question.
iv) Metadata/Meta-information: Information that describes information. In this paper we consider the

questions and ratings to be the meta-information about the document.

1.2 Interaction Interface
 For the purposes of this paper we will consider those interfaces of SERF that can be used by the
user to input information into the system. We identified two components in the interface that directly
affected the recommendation algorithm.

i) Question box: Users provide their questions in a question box as shown in Figure 1. The interface
encourages the user to provide a detailed question through the use of a large text box.

ii) Rating buttons: Users rate the documents as relevant or irrelevant to the question that they
provided. Thus each rating corresponds to a question-document pair i.e., a document is either
relevant or irrelevant to the question. We use a binary rating system to keep the interface simpler.
Figure 2 shows the rating interface.

 Figure 2 also shows the results page that is generated in response to a user’s question. The results
page contains documents generated both from the search engine and the documents recommended by
SERF. The documents recommended by SERF are marked using a star in front of them.

Figure 1: SERF Question Box

 2

Figure 2: SERF Rating Buttons

1.3 Challenges

For SERF to work efficiently, we need users to actively interact with the various components of
the system. In our attempt to convince the users to continuously interact with the system, we faced the
following challenges:

i) Motivating users to provide questions that precisely and completely reflect their information need.
ii) Correctly matching information needs of different questions to make good recommendations.

iii) Motivating the users to rate documents as relevant or irrelevant to their information need.
iv) Maintaining the correctness of meta-information obtained from the users over a period of time.

It can be seen that each of the above mentioned challenges deals with a different aspect of SERF.

The chief goal of this paper is to analyze the last challenge− maintaining the authenticity of the meta-
information provided by the users. We try to capture and eliminate data that falls in to one of the following
categories:

i) Tampered questions: Some users try to fiddle with the system by providing questions that either
have content that is undesirable for others to see or by providing questions that have been
tampered to manipulate the recommendations that other users get.

ii) Misleading ratings: The ratings provided by a user can be incorrect either because the user tried to
cheat the system or because the user made a mistake. We analyze the incentives and strategies
available to the users who try to deceive the system.

iii) Time sensitive data: Both questions and documents may lose their relevance as time passes.
Keeping track of what information is still valid and what is obsolete is challenging. We provide an
interface that would help the system to capture time sensitive data.

In this paper we analyze each of these issues in detail. We also propose a simple meta-rating

system that promises better system performance compared to the automated defense mechanisms that we
will discuss later in this paper.

 3

2. RELATED WORK
There are a large number of internet portals that use CF algorithms and Reputation Systems to

improve and regulate the quality of their services. Some popular online portals that use these techniques
include eBay, Amazon, Yahoo Launchcast, Epinions, Bizrate and Slashdot. There is a significant amount of
research on these systems.

These systems can be classified based on the type of values they accept for the ratings. Systems
that allow only two values for the ratings are called binary rating systems [3]. These ratings are usually in
the form of true/false, good/bad, relevant/irrelevant etc. These systems sometimes also have a third level of
rating which signifies that the rated item is neither good nor bad. eBay is a typical binary rating system
which allows its buyers and sellers to give positive, negative or neutral ratings.

These online portals can also be classified as unidirectional and bidirectional systems based on
whether or not they allow their users to be rated by other users [1]. Systems that allow the users to be rated
are called bidirectional rating systems while systems that allow only the services/products to be rated are
called unidirectional rating system. eBay is a bidirectional rating system and Amazon is a unidirectional
rating system. There are also systems like Epinions that allow both the users and their services to be rated.
SERF uses unidirectional rating mechanism.

2.4.1 Attacks on Collaborative Filtering Systems

Any attempt by a user to manipulate the order of items in the recommendation list is considered to
be a potential attack on the system. O’Mahony et al. [10] have done a robustness analysis on CF algorithms
and proposed metrics to measure the effects of attacks on the system. They have also proposed two types of
attacks viz. product push/nuke attacks and random attacks on CF Systems.

Riedl et al. [8] have built on the work by O’Mahony et al. [10] and experimentally explored
affects of different attacks on various well known CF algorithms. They have also identified properties of
items that are easier to attack and are more frequently attacked.

While these studies concentrate on the effects of various anomalies on the system, we study how
these anomalies can be introduced into the system. We use this knowledge to propose solutions to minimize
the effects of these attacks.

2.4.2 Reputation Systems for Collaborative Filtering Systems

Every CF System has an inherent Reputation System in it. The Reputation System is the one that
collects ratings on the items and decides on how these ratings are employed in the recommendation
process. It makes decisions like what weight can be given to each user’s rating and how these are combined
to evaluate the true worth of an item.

The reputation systems can either be automated or non-automated. In automated reputation
systems, the system analyzes all the ratings given by a user and builds a trust value for the user that
signifies how much the user can be trusted. This trust value is then used to weigh the user ratings while
providing recommendations to other users. In non-automated reputation systems, the system just displays
the feedbacks gathered on a user or service/item/product and the active user makes a decision whether the
resource under question is useful or can be trusted based on viewing the feedback.

Dellarocas [3] has analyzed the behavior of sellers and buyers in a binary rating system namely
eBay and has shed light on how effective the binary rating system is in inducing efficient outcomes. While
Dellarocas studied this in the eBay market place which does not predict the user trust automatically, we
study how an automated reputation system i.e., SERF responds to a unidirectional rating system which
employs a binary rating mechanism.

Chen et al. [1] have proposed a hierarchical reputation system and used the reputations generated
by this system to evaluate the rated objects. Donovan et al. [4] have argued that profile similarity alone
cannot yield good recommendations and proposed a reputation system based on profile-level and item-level
trust and used this to weigh the ratings provided by a user. Massa et al. [9] have proposed a mechanism of
propagating the trust values between users and analyze the potential contribution of trust metrics in
increasing the performances of Recommender Systems. Dellarocas [2] has proposed and evaluated a set of
mechanisms which eliminates or significantly reduces the negative effects of fraudulent behavior.

All of these studies concentrate on developing reputation systems to generate trust values for the
user which can be used to weigh the ratings provided by them. We are concerned about how a reputation
system reacts to attacks from malicious users.

 4

3. UNDESIRABLE DATA
 The main goal of SERF is to help users find information sources that are difficult to locate using
regular search engines, by obtaining meta-information about these sources of information from the user
community. Thus SERF maintains a lot of user provided meta-information. Filtering out those data which
do not truly describe the information source is important to ensure the robust working of the system. To
identify what constitutes ambiguous data let us first look at how SERF works.

3.1 SERF Architecture
 SERF has two important components: a question matching system and a recommendation system.
The question matching system identifies questions with similar information need. The recommendation
system collects feedback in the form of ratings from the users and uses it to recommend documents to
questions that were identified as similar by the question matching system.

3.1.1 Question Matching System (QMS)

To match questions based on information need we require a procedure to identify these
information needs. In the absence of context or any such information about the questions, the best approach
to identify the information need would be to recognize those words in the question that convey the
information need more precisely than other words in the question. One approach to doing this is to use
word frequencies to develop a weighting scheme on the words. In SERF we use normalized term
frequency and inverse question frequency to weigh words. These word weights are then incorporated into
the widely known vector-space model to calculate the similarity between two questions. That model works
as follows: let wi,q be the weight of a word i in question q. Then

iqiqi iqftfw *,, =

Here tfi,q is the normalized term frequency of word i in question q and idfi is the inverse question

frequency for word i across all the words that have ever appeared in a question. Term frequency (tf)
measures the importance of a word relative to other words in the question. Inverse question frequency (iqf)
measures the importance of a word relative to all the words that have been seen in questions recorded by
the system.

qll

qi
qi freq

freq
tf

,

,
, max
=

i
i n

Niqf log=

freqi is the frequency of word i in question q, freql,q is frequency of the word that occurred most

frequently in question q. N is the number of words seen across all observed questions and ni is the
frequency of word i across all the questions recorded by the system so far. Figure 3 shows the inverse
question frequency of all the words captured by the system.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

Most Frequent Word / Word Frequency

In
ve

rs
e

Q
ue

ry
 F

re
qu

en
cy

 (I
Q

F)

Figure 3: Inverse Question Frequency of words in SERF

 5

The value of tf lies between 0 and 1, 0 being least significant and 1 being highly significant. A
word that occurs most frequently in a question has a tf of 1. This approach rewards words that occur more
frequently in a question. The iqf rewards those words that help in differentiating the questions in our
collection. It penalizes the words that appear in many questions – thus words that have little value in
differentiating between potentially similar questions. The log term in iqf is used to account for the fact that
words that occur in 10 questions are not 100 times more significant than words that occur in 1000 questions
(Figure 3 In other words it reduces the range of values that the iqf takes from [0, N] to [0, log N]. The word
that has occurred only once across all questions recorded so far has an iqf of log N. In section 3.2 we will
discuss how these factors can be used to manipulate recommendations.

The QMS treats each question as a vector in an n-dimensional space, where n is the number of
words that have been recorded by the system so far. The component of the vector along each axis is the
word weight for the word that axis represents. The similarity between two questions is calculated by
calculating the angle between the vectors representing those questions. A smaller angle between the vectors
signifies that the questions are similar. The angle between the vectors is calculated using dot product. If we
have two questions q1 and q2, then the similarity between these questions is calculated as:

∑∑

∑

==

===
t

i
qi

t

i
qi

t

i
qiqi

ww

ww

qq
qqqqsim

1

2
,

1

2
,

1
,,

21

21
21

21

21
*

.),(rr

Here 1,qiw represents the weight of the ith word in question q1. This equation gives a scalar value in

[0, 1] for the similarity between two questions. A value of 1 denotes that the questions are exactly the same.

3.1.2 Recommendation System
 The Recommendation System takes in two questions: an active question - the question asked by
the current user - and a past question - the question which was previously asked by someone and is
computed to be similar to the active question. It takes the documents that were rated as relevant to the past
question and recommends them for the active question. The Recommendation System calculates the
relevance of a document to the active question as the average of the ratings given to that document by users
who asked that past question. If the number of users who rated the document as relevant to the past
question is more than the number of users who rated the document as irrelevant to the past question, then
the document is considered relevant to that past question. The ratings have to be on the exact same
question.
 To deal with malicious data in SERF we have to deal with the vulnerabilities of both the QMS and
the RS. In the rest of section 3 we look at what constitutes a malicious data.

3.2 Misleading Questions

Questions represent the information need of a user. A malformed question does not denote the
right information need and can lead to poor recommendations both to the current user and to future users.
Maintaining the quality and precision of questions is important to better match information needs and to
make recommendations. A malicious user can tamper with the contents of a question to promote or demote
a specific document or to damage the system or just arrange for certain questions to be placed in front of
people. In this section we discuss what constitutes a misleading question.
 In the word weighting scheme that we discussed earlier, though there are two factors, namely
normalized term frequency and inverse question frequency - the first factor almost always takes on the
value 1 in SERF. The reason is that the words in most of the questions do not repeat in that question. If the
question had just one repetitive word then the tf for that word would be 1 and the tf for all the other words
in the question would be 0.5. If the question had two repetitive words then that word would have a tf of 1
and all the other words would have a tf of 0.34. Though tf takes a value of one in most of the cases we still
include it in our formulation to serve questions that have repetitive words.

Since most questions do not have repetitive words, the question matching system relies heavily on
the second factor to distinguish or equate two questions. A word that has occurred only once in the history
of the system has the highest iqf of log N. A word that has occurred just two times in the history of the

 6

system has the next highest iqf of log (N/2).Someone who understands this mechanism can easily
manipulate the output of the QMS. We will show how this can be done in the next section.

For the purposes of this paper we will consider an intuitive measure called entropy for each
question. A question that describes its information need precisely has high entropy and a question that only
gives a vague description of its information need has low entropy.

3.2.1 Low Entropy Questions
 A Low Entropy question is one which comprises mostly of words that appear semi-frequently
across all questions and have moderate iqf. Moreover, these words are generic and communicate little
meaning on their own but enhance the meaning of the words with which they occur. Since these words are
generic and semi-frequent, the probability that they will match with a good number of questions and
information needs is high. It is undesirable to recommend questions that match only the generic words.
Examples of these words are website (iqf=2.16), information (iqf=0.79), help (iqf=3.03), time (iqf=2.3394)
etc. Consider the question “Where can I find information on website help”. This question has three generic
words help, information and website. This question partially matches the information need of any question
containing one of these words. Any document rated relevant to this question is recommended to active
questions with one of these three words even though the question is meaningless. Since these questions
neither contain stop words nor derogatory words, automatic detection of these questions is a challenging
task.

3.2.2 High Entropy Questions
 High Entropy questions are those that are targeted towards a precise information need. They
contain words that have high iqf. For example if the information need under consideration is library, then a
high entropy question would contain words like library (iqf=1.28), book (iqf=3.32), article (iqf=3.72),
journal (iqf=2.62) etc. When someone asks a question on that information need, these high entropy
questions provide a better match because they contain words with high iqf for that information need. An
example question is “Where can I find books and journal articles in the library”. Any document that is
rated relevant to this high entropy question would appear in the recommendation list for all the questions
within that information need.

3.2.3 Multiple Questions
 In both the previous categories of questions, a single question and the knowledge about how the
system works can be used to make the question match with all the questions related to a specific
information need. Another scenario that might reduce the performance of the system is multiple questions
with slight variations in their contents. For example consider the three questions “When does recreational
center open”, “What time does the recreational center open” and “What is the opening time for
recreational center”. The advantage of having such multiple questions is that we now have multiple
representations of the same information need and thus have a higher probability of matching a question
with this information need. The disadvantage is that it leads to duplicate questions recommended to users.

3.2.4 Inappropriate Questions
 The system is also prone to questions that either have inappropriate language or content. These
questions are detrimental because questions are displayed to the user and if inappropriate questions are
displayed then the user might lose trust from past uses with the system. Automatic identification of some
questions with inappropriate language is possible by matching regular expressions. But identifying
questions with inappropriate content is challenging. For example, consider the question “Is Dr.Galor a
loser”. This question will match with all the questions that have the words “Dr.Galor” and would be
displayed to all the users who ask a question about “Dr.Galor”. To identify such questions we need an
admin to review all the questions before they are entered to the system, which is infeasible.
 Table 1 shows a list of examples for the different types of problematic questions.

 7

 Question Type Problem Example Matches
1 Low Entropy

Questions
− Contain generic,

moderate iqf words.
− Match with questions

with different
information needs.

− Where is the
information on
contact numbers?

− What is Mary’s phone
number?

− Where can I find
information on contacts
in business school?

2 High Entropy
Questions

− Contain specific, high
iqf words.

− Match question with a
precise information
need.

− Where can I find
information on books
and journal articles
in library?

− Where is Linus
Pauling’s journal articles
located in the library?

− Are science fiction
books available in the
library?

3 Multiple
Questions

− Multiple
representations of the
same information need

− Duplicate
recommendations

− When does Dixon
open?

− What time does
Dixon open?

− What are the hours at
Dixon?

- What time does Dixon
open?

This question matches all
the three questions.

4 Inappropriate
Questions

− Derogatory content.
− Inappropriate to

display to the users.

− Is Mary a loser?

− Who is Mary?
− What is Mary’s phone

number?
− Where is Mary’s office?

Table 1: Examples of different types of misleading questions

3.3 Misleading Ratings:
 Relevance ratings serve as a means by which a user can express her satisfaction or dissatisfaction
on the documents that are being presented to her with respect to her current information need. A document
can either be rated relevant to a question or irrelevant to a question. A document can also be rated relevant
to one question and irrelevant to some other question. The relevance ratings represent a mapping from
questions to documents. To maintain the quality of the recommendations, the recommendation system has
to be robust to incorrect ratings. The relevance ratings can be interpreted in one of the following ways:

i) True relevance: The document is relevant to the question and the user rates it as relevant.
ii) False relevance: The document is irrelevant to the question but the user rates it as relevant.

iii) True irrelevance: The document is irrelevant to the question and the user rates it irrelevant.
iv) False irrelevance: The document is relevant to the question but the user rates it irrelevant.

True Relevance and True Irrelevance ratings result in desired behavior but False Relevance and
False Irrelevance ratings result in undesired behavior. False Relevance ratings cause a document to appear
lower in the recommendation list than its desired position and False Irrelevance ratings cause a document
to appear at a higher position.
 To understand what comprises misleading ratings let us consider the different rating scenarios
possible. Table 2 shows the input to the recommendation system and its interpretation. We consider pairs of
contiguous ratings given to a question-document pair.

 Successive Ratings Interpretation

1 Relevant, Relevant Consistent behavior.

2 Irrelevant, Irrelevant Consistent behavior.

3 Relevant, Irrelevant
If both the ratings are true, it represents a subjective difference
in opinion.
Otherwise it represents an incorrect rating by one of the users.

4 Irrelevant, Relevant
If both the ratings are true, it represents a subjective difference
in opinion.
Otherwise it represents an incorrect rating by one of the users.

Table 2: SERF Relevance rating scenarios

 8

Here cases 1 and 2 represent desired behavior. If most of the successive ratings for a question
document pair are consistent then it suggests that all the users who are viewing the question-document pair
agree on the relevance. But if we get a significant variance in the successive ratings it means that we either
have a subjective difference in opinion, an error, or a malicious rating. If it is a subjective difference in
opinion it might signify that the question does not clearly state the information need. But if it is not a
subjective difference in opinion then it represents a malicious rating or an error and we would like to flag it
or remove it from the system.

In our discussion on successive ratings, we have assumed that the relevance ratings we get are on
the exact same question-document pair. But in reality the chances that we will get the exact same question
from two users is small. In most of the scenarios users provide the same information need using different
question representations. Thus even if the ratings are on a bunch of similar questions and a document, it is
hard to tell if the questions represent the same information need.

3.4 Time Sensitive Data:

There is a separate class of data that we need to account for. Some ratings data are time sensitive
and can go obsolete over time. We call this time sensitive data. It is important to distinguish between those
ratings data that are malicious and those ratings data that are time sensitive.

For example consider the question “Who teaches CS 411”. The answer to this question would
change based on the term the question is asked in. Thus a document which is relevant to the question in fall
might be irrelevant in spring and become relevant again the following fall.

4. MALICIOUS BEHAVIOR
 In CF Systems there may be some users who try to meddle with the working of the system to
attain some gain from the system. In this section we try to identify those incentives and strategies that
might motivate a user to tamper with the system. We expect that understanding the attack and the attacker
will help us lead to identifying a defense mechanism against the attack.

4.1 Attack Incentives

O’Mahony et al. [10] have discussed the various attacks on CF Systems. They have proposed three
different types of attacks viz. product push/nuke and random attacks. We adapt and redefine their
classification to match SERF. We propose that there are three types of attack based on the potential
incentives: boost a document, sink a document and damage the system.
 We redefine these attacks here because the systems in [10] and [8] are significantly different from
our system. In SERF the user inputs two types of data viz. questions and ratings that the system processes
to generate recommendations. In the systems defined in [10] and [8], only the user ratings are processed to
generate recommendations. Though these categories signify the same type of attacks the actual formulation
of these attacks in our system would be significantly different from theirs.

For the purpose of further discussion we will use the terms target question and target document to
refer to a question which is being attacked i.e., the recommendation list is being modified and a document
which is being attacked i.e., the relevance value to the target question is being modified respectively.

4.1.1 Boost a Document:

The core product of SERF is a document or information source. The goal of the system is to
recommend documents to questions that meet the information needs of those questions. Attackers might
want to have a document recommended to a question to which the document is not the most relevant source
of information. Thus the system has to face scenarios where the predicted relevance of the document might
be amplified. We call this type of attack boosting a document because it involves increasing the predicted
relevance of a document through illicit means.

To boost a target document, the relevance of the target document to the target question has to be
manipulated to a higher value relative to other documents. This relevance value has to be higher than the
relevance values for other documents that are computed to be relevant to the target question. Such a
scenario involves a false relevance for the target question-target document pair or a false irrelevance rating
for the target question and other competing documents.

 9

4.1.2 Sink a Document:
Attackers might also want a document to not show up in a recommendation list when it is a

relevant source of information for a question or a group of questions. The attacker might use techniques to
lessen the predicted relevance of a document. We call this type of attack sinking a document. It can be seen
that boosting a document automatically causes some other document or documents to sink and vice versa.

To sink a document, the relevance of the target document to the target question has to be modified
to a lower value relative to the relevance values for other documents that are computed to be relevant to the
target question. This involves either a false irrelevance for the target question-target document pair or a
false relevance to the target question and other documents.

In both boosting a document and sinking a document, in a system that gives equal weight to all the
ratings, every false rating can be counter balanced by a true rating and vice versa.

4.1.3 Damage the System:

While there are attacks that are motivated to modify the predicted relevance of a document, there
are other attacks that can reduce the performance of the system. One approach to doing this is by tampering
the questions displayed to users, which has a direct impact on the performance of the system since we use
questions to match information needs.

4.2 Attack Strategies
 Given that we know what comprises malicious data and why someone might be motivated to
attack the system, the task now is to identify strategies that an attacker would use to seed malicious data to
the system to achieve one of the discussed incentives. Let us look at some of the possible strategies that an
attacker could use to attack the system. Here we are concerned only about those types of attacks which
involve an attacker or a group of attackers using the system interface. We are not concerned about network
level attacks like denial of service.

4.2.1 Multiple Profiles
 CF systems work by delegating the task of filtering out unwanted items to the users of the system.
Each user provides feedback on the items that she comes across which is then stored in her profile and used
both to recommend items to her and to other users. Thus in order to get meaningful results from the system
the user needs to create a profile. In the absence of a definitive way of authenticating the user as who she
claims to be, it is possible that a user might create multiple profiles. Since each user’s profile is used to
recommend items to other users, an attack can be scattered across multiple profiles.

4.2.2 Questions as a Tool
 In SERF we recommend documents based on questions and not profiles. A question describes an
information need. Through ratings, questions are linked to documents to become meta-information about
the information sources. Thus the recommendation a user gets depends on how the user formulates her
information need as questions and how other users formulated their questions for the same information
need. If an attacker wanted to boost a document or sink a document for a particular information need, the
attacker would have to formulate the question in such a way that it matches the potential questions for that
information need and recommend the target document as the relevant source of information to the target
question. Similarly to show inappropriate questions to other users, the attacker can use similar mechanisms.

We have already discussed the different mechanisms of formulating a question in section 3.2. The
combination of a set of malicious questions and multiple profiles can make the task of detecting an attack
hard.

4.2.3 Ratings as a Tool

Ratings are the attestation given by users which establishes that the document actually represents
the information need described by the question. In other words, ratings serve as a mapping from questions
to documents. The strength of this mapping depends on who provided the ratings and how many ratings
were provided.
 The strength of a mapping between a question and a document denotes how close a document is in
answering the question. We assume that if many users rate a document as relevant to a question then other
users would also find the document to be relevant to that question. But considering the number of ratings to
be an indicator of the relevance of a document to a question involves a risk factor.

 10

 An attacker could give multiple ratings on a question-document pair in order to boost a document
or sink a document. Thus ratings can be used to modify the mapping between a question-document pair. A
motivated attacker could also use a combination of multiple profiles, question variations and multiple
ratings to design an attack. This type of attack is very hard to detect.

4.3 Defense Mechanisms
 We now have some insight into the incentives and strategies that would steer an attack on the
system. In this section we will discuss what are the possible solutions to each of these attacks and what are
the costs associated with these defense mechanisms.

4.3.1 Multiple Profiles
 Most CF Systems face the problem of attacks using multiple profiles. Current systems tackle this
by increasing the cost of creating multiple profiles by associating the profiles with something unique and
authenticable. Some of the things that can be used to authenticate a user are Social Security Number,
Driving License Number, Credit Card information etc. We could do this in SERF by requiring users to
authenticate using ONID accounts. Anybody associated with OSU has a unique ONID account. A multiple
profile attacker would then need to create multiple ONID accounts which is relatively harder. Another
approach could be to have each profile creation approved by a moderator.

4.3.2 Defending Against Tampered Questions
 Questions are used to match information needs and to generate recommendation list. They are the
link between a user’s information need and the recommendation list that they get, and hence are more
prone to attacks. We need mechanisms of identifying high entropy questions, low entropy questions and
inappropriate questions. If we could identify them, then we could design mechanisms to filter them from
the question matching process or the recommendation list. In section 3.2, we saw that the high entropy
questions consisted of specific words that had high iqf and the low entropy questions had generic words
that had moderate iqf.

One approach to build a better word matching scheme that is robust to attacks would be by using a
thesaurus. A thesaurus can be used to identify words that convey the same information need. For example if
we can identify that the words ‘situated’ and ‘located’ mean almost the same thing then we can identify that
the questions “Where is Library located” and “Where is Library situated” mean the same thing. Thus we
could prevent attacks designed using multiple questions.

We could also defend against inappropriate questions using regular expression matching. This is
used in many modern systems to filter out inappropriate words. Another approach to defending against
tampered questions would be to have moderators review all the questions.

4.3.3 Defending Against Misleading Ratings
 In SERF, single ratings are less harmful than multiple ratings because a single false rating can be
counter balanced by a true rating from another user but if there are multiple false ratings then we need at
least an equal number of true ratings to counter the false ratings. The challenge is in tackling the situation
where an attacker gives multiple false ratings. In SERF we limit the number of ratings that a user can give
on the same question-document pair to one. But an attacker could give multiple ratings on variations of a
question and the target document. One approach to preventing this would be to have an administrator
approve all the ratings. But this is infeasible when the size of the ratings received is very high.

In a situation where the attacker is using variations of the same question, an approach where the
administrator approves each question may not work because the number of questions is high. Another
approach would be to collect and analyze the counter ratings to build a reputation system. A reputation
system automatically analyzes the rating patterns and predicts a trust value for the users. These trust values
can be used to infer situations when somebody may be trying to attack the system.

To summarize this section Table 3 shows the various attack strategies and defense mechanisms.
The defense mechanisms listed in the table are not exhaustive but show the most popular approaches.

 11

 Attack Strategies Defense Strategies

1 Multiple Profiles

Multiple login ids − Higher cost for creating
profiles.

− Approval of account
creation by a moderator

High Entropy Questions
Low Entropy Questions
Inappropriate Questions 2 Tampered Questions
Derogatory Questions

− Thesaurus generation
− Regular expression

matching
− Approval of all the

questions by a moderator
False Relevance
False Irrelevance 3 Misleading Ratings
Random Ratings

− Reputation Systems
− Approval of all the ratings

by a moderator
Table 3: Summary of Malicious behaviors in SERF

5. EXPERIMENTS ON AUTOMATED DEFENSE STRATEGIES
 In sections 3 and 4 we discussed the various data vulnerabilities and the various mechanisms by
which an attacker could use the susceptible data to attack the system. These vulnerabilities arose due to the
weaknesses in the question matching system and the recommendation system. We discussed how the
question matching system can be tricked to believe that two questions are similar, by exploiting the word
weights in those questions. We also saw how the recommendation system can be tricked to believe that the
ratings were not malicious by giving ratings from multiple profiles or on multiple questions. In this section
we analyze two automated defense mechanisms that could potentially be used to defend against these
attacks. The first one is a word weighting scheme based on word co-occurrence that could be used to
identify questions as high entropy or low entropy. The second one is a reputation system that predicts a
numeric value for the amount of trust that can be placed on a user and could be used to weigh the user’s
ratings.

5.1 Word Weighting based on Co-occurrence
 The word weighting schemes and the vector-space model that we currently use in SERF are the
most popular techniques among information retrieval systems. The vector-space model in general is used to
match questions with documents, unlike in SERF where we use it to match a question with other questions.
A question typically contains about 5 to 10 words where as a document may contain words in the order of
thousands. Since the number of words in a question is very small compared to the number of words in a
document, it is relatively easier to manipulate questions using the words they contain.
 Another popular approach to content matching among information retrieval systems is to weigh
words based on word co-occurrence. The algorithms in this category presume that words which occur
together are not independent of each other. The assumption is that occurrence of one word increases or
decreases the probability of occurrence of some other words. In this section, we will analyze such an
approach for SERF.

In section 3.2, we discussed how an attacker could mislead the system by using the knowledge
about word weights to formulate misleading questions. The words in these misleading questions have a
distinctive property. The words in high entropy questions are specific, have relatively higher iqf and relate
to different information needs. The words in low entropy questions are generic, have moderate iqf and do
not relate to any information need but tend to occur in a lot of questions.

To withstand attacks designed using misleading questions we design and analyze an approach
based on the co-occurrence of words to calculate word weights. We define a dependence factor for all the
words captured by the system. The objective of using a dependence factor is to identify the generic words
that appear in low-entropy questions and specific words that appear in high entropy questions. This
approach of using a dependence factor was motivated from the item-based co-occurrence algorithm
discussed in [7]. We take into account the following aspects to calculate the dependence factor:

i) Words that co-occur in a large number of questions should have a higher dependence factor
because the occurrence of one word increases the chances of occurrence of the other.

 12

ii) Words that do not co-occur in a large number of questions should have a lower dependence
factor because the occurrence of one word decreases the chances of occurrence of the other.

iii) Dependence factor should also take into account the iqf of each word, which is a measure of
how important a word is in distinguishing questions.

 We divide the dependence factor into two sub-factors− a conditional probability factor (cpf) and
an inverse question factor (iqf). We use the following notations for in our model:

QT Target Question. Question for which we want to find similar questions.
QC Candidate Question. Questions that might be similar to the Target Question.
wt Target Word. Word for which we want to find the correlation with other words.
wc Candidate Word. Words with which wt co-occurs.

The dependence of a word wt in the target question to a word wc in the candidate question is

calculated as:
iqfcpfwwdf ct *),(=

)(
),()|(

t

tc
tc wfreq

wwfreqwwPcpf ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
log*

)(
log

ct wfreq
N

wfreq
Niqf

Given the above word weights we could calculate the similarity between two questions as:

2

,

,

),(

),(
),(

∑

∑

∈∈

∈∈=

ct

ct

QcQt
ct

QcQt
ct

cT
wwdf

wwdf
QQsim

5.1.1 Results:
 We simulated this model over the SERF dataset which was obtained over the past 2 years. The
dataset consisted of 941 questions with about 1141 keywords. We omitted the stop words like the, is, a etc.
from our analyses.
 Our simulation showed that the dependence factor which was based on word co-occurrence,
assigned values as follows:

− Higher values to pairs of words that frequently co-occurred and had high iqf.
− Lower values to pairs of words that did not co-occur frequently but had high iqf.
− Lower values to pairs of words with moderate iqf.

This word weighting scheme based on co-occurrence was able to achieve the goals that we set for

the dependence factor. It was able to distinguish words that co-occur and words that do not co-occur. It was
also able to discriminate words based on the iqf. Appendix A shows some example questions and
dependence factors that were calculated by this scheme.

Though the dependence factor showed improvement over the previous weighting scheme, using
the dependence factor to match questions is a challenging task. As can be seen from our formulation, in
order to match questions using word correlations we would have to calculate the correlation of each word
in the target question to every word in the candidate question. This would be of time complexity (m*n)
where m and n are the number of words in the target and candidate questions respectively. If there are q
questions in the system then to match questions we would have to do (m*n*q) operations every time. This
is expensive and we would need a better approach to use dependence factor.

 13

5.2 Reputation System
Reputation Systems are used to predict a value for the trust that can be attributed to a user’s

feedback based on the reliability of feedbacks provided by her in the past. The assumption is that users who
provided bad data in the past have a higher probability of providing bad data again either due to malicious
intent or due to mistake. We presume that past behavior serves as an indicator of future behavior. We
hypothesize that by weighing the input from a user based on her trust calculated from her past behavior, the
impact of inappropriate data can be minimized.

Reputation systems can be classified into automated and non-automated reputation systems based
on whether they calculate a trust value from the ratings or not. Automated reputation systems can be further
classified into two types− relative trust systems and absolute trust systems, depending on the mechanism
they use to calculate the trust values. In relative trust systems, the trust is calculated from the perspective of
a user. Thus a user might have a high trust value from the perspective of one user and a low trust value
from the perspective of some other user. In absolute trust systems each user has only one trust value, which
is from the perspective of the system.

We simulated an absolute trust system to determine if it would be possible to capture the user
behavior by predicting a trust value based on her rating pattern. In our model the system assigns a trust
value for a user based on how she rates an item and how others rate that item.

We propose that the trust on a user should exhibit the following properties:
i) Trust should be directly proportional to the agreement of the user with the rest of the

community.
ii) Trust should be inversely proportional to the disagreement of the user with the rest of the

community.

We hypothesize that users with higher agreement with the community, serve the community better

than users with lower agreement. In SERF we have the following entities:
U Set of all users. {u1, u2…, un}
Q Set of all questions. {q1, q2…, qn}
D Set of all documents. {d1, d2…, dn}

We will use the following terms for further discussion:
ua The active user for whom we are predicting the trust value.
QD Set of question-document pairs rated by the user ua

QDowner The set of qd’s rated by ua, for which ua is the first rater.
T A trust value assigned to each user

Initially we assume that each user has a trust value of 0.5 which means the system neither fully

trust nor fully distrusts a user. Given the ratings specified by the user ua for the set of documents in QDowner
and a value for trust for other users in the community, we calculate the agreement and disagreement that the
user ua receives from the rest of the community as follows:

∑
∈

=
owneri QDqd i

ia

qdvotedwhopeopleoftrustTotal
qdonuuserwithagreewhopeopleofTrustAgree

∑
∈

=
owneri QDqd i

ia

qdvotedwhopeopleoftrustTotal
qdonuuserwithdisagreewhopeopleofTrustDisagree

These two variables− (Agree, Disagree) are normalized over the number of documents that the

user has rated and the average agreement and disagreement for the user is calculated.

|| QD
AgreeAgreeavg =

|| QD
DisagreeDisagreeavg =

 14

We use these Agreeavg and Disagreeavg factors to generate a trust value for a user which reflects the
properties of trust that we defined earlier.

avgDisagree
avgAgreeT =

 Agreeavg takes values in [0, 1] and Disagreeavg takes values in [0, 1]. Thus the value for trust also
lies in [0, 1]. Note that the sum of Agreeavg and Disagreeavg is equal to 1. In this equation the value of trust
would be high if Agreeavg is high and the value for trust would be low if Disagreeavg is high (Figure 4). The
intuition for using this equation is based on the properties of trust that we proposed earlier.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Agreement/ Avg. Disagreement

Tr
us

t

Avg. Agreement Avg. Disagreement

Figure 4: Trust vs. Average Agreement and Average Disagreement

 We assume that the trust of a user depends only on the agreement and disagreement on the
documents for which the user is the first ratings provider. We do this to avoid users from building a high
trust by rating the question-document pairs that are already rated. Thus to build a high reputation with the
system a user has to provide new recommendations and get good ratings on them.

5.2.1 Experiment Design
 To test the robustness of this model we defined five types of users in the system:

− Regular Users: These users always give the true rating for a question document pair with an
error rate of 2%.

− Attackers: These users are trying to attack the system for one of the incentives already discussed
in the earlier sections. In order to make the attack more powerful we assumed an error rate of
2% for these attackers, except on the list of target documents which they are attacking, in which
case they give false ratings deliberately. Moreover we assumed that an attacker provides ratings
at least four times the ratings of a regular user. We assume four type of attackers:

o Boost Attackers: These users try to boost one or more documents for a question.
o Sink Attackers: These users try to sink one or more documents for a question.
o Group Attackers: These are set of users who are trying to either boost or sink one or more

documents.
o Random Attackers: These users give random ratings on all documents. They don’t have

any specific target documents which they want to attack.

To keep the simulation simple, we assume each question-document pair to be an item. Thus
ratings are obtained on items rather than question-document pairs. For each item we randomly define a true
rating. True rating is the rating that would satisfy most of the users in the community. Additionally we
made the following assumptions for the simulation which were based on the usage statistics for SERF:

− Number of users: 100, 200, 300.
− Number of items: 300, 600, 900 respectively.
− Number of votes: 100, 2000, 3000.

 15

Further we assumed that 1 in every 5 users was an attacker of one of the proposed types and the
attacker could attack up to 5 documents. These two assumptions were arbitrary and were made to imitate a
realistic situation. We start with a reputation value of 0.5 for each user which reflects the fact that the
system neither trusts nor distrusts the user initially.

5.2.2 Results
 The trust values predicted for the different types of users are shown in the Figure 5. In the bar
graph, the x-axis shows the number of documents that each user attacked. The y-axis shows the trust on the
user. Average values of trust for the five categories of users are calculated. The average value of trust for a
user with no attacks is 0.91. The following can be inferred from the graph:

− The average trust of random attackers is always less than the average trust of all users in the
system.

− The average trust of boost and sink attackers seem to be random but are close to the average
trust of all users.

− The average trust of group attackers is almost always higher than the average trust of all users
in the system.

In our simulation random attackers where correctly identified. These attackers consistently

received a trust value lower than the rest of the community. The reason is that random attacks take place
with no knowledge of the system. Since the attacker randomly rates the documents the number of
disagreements with other users is almost equivalent to the number of agreements.

Trust vs Number of Attacked Documents

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of Attacked Documents

Tr
us

t

All Users Random Attackers Boost Attackers Sink Attackers Group Attackers

Figure 5: Trust vs. Number of attacks

The reputation system could not identify the boost and sink attackers. Their trust values were as
high as the regular users. This happened because these attackers carried out a planned attack. They gave
true ratings for all the documents except the documents that were being attacked. Thus they could achieve
agreements as high as regular users and received trust values equivalent to the regular users.

Group attackers were the most difficult to identify. The group attackers all attacked the same set of
documents and thus received agreement from each other. Moreover these attackers gave true ratings for the
documents that were not the target of the attack. As a result these users had agreement far higher than the
rest of the community.

Since the reputation system uses agreement and disagreement history of a user to calculate trust,
malicious users with a planned attack were able to extract higher agreement from the community by giving
true ratings on most of the items. In a real world scenario this is possible by rating the items are
recommended by the system as relevant. In fact this problem is faced by most of the reputation systems
where the user behaves honestly over a period of time to build high trust and then uses this trust for
malicious activities.

Thus absolute trust systems might be helpful in identifying random attackers but do not seem to
detect other types of attackers. Weighing the ratings of a user using the trust values returned by an absolute
trust system does not seem to add much value to the system. We believe the problem is that the reputation
system has no means of predicting the true relevance of the items except through user ratings. It would be

 16

interesting to see if the performance of the reputation system can be improved by using it in combination
with some other mechanism to predict the true relevance of the question-document pair. One such approach
would be natural language processing. It would also be interesting to see if relative trust systems are able to
perform better than the absolute trust systems in filtering out boost, sink and group attackers.

6. OUR APPROACH

The automated reputation systems that we discussed in the previous section do not seem to be of
much help in detecting attackers and undesirable data in the system. A good defense strategy needs to
address all the problems that we pointed out in section 4.2. Let us revisit these problems and look at what
damages these attacks cause to the system rather than trying to identify the attacks and the attackers. We
will try to minimize the damages these attacks cause to the system and to its users rather than trying to
eliminate the effects of these attacks.

6.1 Defense against boosting a document:

Assume that an attacker has designed an attack to boost a document. An attacker could seed the
system with multiple variations of the target question and rate the target document as relevant to those
questions using multiple profiles to make the attack hard to detect. The damage this attack causes is that all
the users who ask a question that is similar to the target question would be recommended the target
document. An ideal system should be able to filter the target question-target document pair before any user
sees it.

An acceptable defense mechanism to this problem would be to provide a means by which the first
user who sees the target question-target document pair should be able to flag it as inappropriate. This rating
should have a higher weight than the regular relevance ratings given to the system. We call this type of
rating a meta-rating. Thus in order to boost a document to the recommendation list the user would have to
give multiple relevance ratings. But to remove a question-document pair from the recommendation list a
user just needs to give one meta-rating since the meta-ratings are given more weight than the regular
ratings.

If we provide an interface such that the first user who sees the target question-target document
pair can flag it using a meta-rating then the other users wouldn’t have to see it.

6.2 Defense against sinking a document:

Consider an attack designed to sink a document. In the worst case, the attacker would provide
multiple negative ratings for the target question-target document pair. In SERF we take into account
negative ratings only for the recommendation list but not on the regular search results. Thus a user can only
sink a document from the recommendation list but not from the search results and hence the information
source is still available to the user. It is probable that this document would receive more relevance ratings
and climb up the recommendation list again. The worst damage this type of attack can cause to the system
is that it would reduce the quality of the system to its underlying search engine.

6.3 Defense against damaging the system:

The other category of attack consists of those attacks designed to damage the system as a whole.
These attacks include either inappropriate questions or malicious ratings or both. Inappropriate questions
comprises of high entropy questions, low entropy questions and derogatory questions. The link between a
user’s current question and her recommendation list is the target question. Thus to reduce the damages
caused by the target question we would have to break the link between the current question and the
recommendation list generated due to the target question. We can do this by providing a meta-rating
system that could be used to rate displayed questions and their associated ratings instead of question
document pairs.
 Thus when an inappropriate question is displayed to a user the user would flag the inappropriate
question using the meta-rating. Since the target document is tied to the target question, the target document
would automatically be filtered out.

6.4 Defense against Time-sensitive Data:

In section 3.4, we also mentioned time sensitive data in our discussion about malicious data. The
system should be able to differentiate between data which is malicious and data which is time sensitive.

 17

The ideal system should provide an interface to rate time-sensitive question-document pairs differently
from other question-document pairs. A question-document pair that is rated time sensitive can then be
reviewed by a moderator.

Figure 6: SERF Meta-Rating System

6.5 The Meta-rating System:

To solve these problems we designed a meta-rating system (Figure 6). The meta-rating system
provides a separate rating interface to do the following:

i) Rate a question as inappropriate.
ii) Rate a rating as inappropriate.

iii) Flag the mapping between a question and a document as time sensitive.

When a question is rated inappropriate we report the question to a group of administrators who can

then review the question for any anomalies. When a rating is rated inappropriate we break the link between
the question and the document and remove the question form the recommendation list. When a question-
document pair is flagged we have an administrator look at the question and document and take the required
action.

Another advantage that meta-rating system has over the regular relevance rating system is that the
ratings obtained by a meta-rating system are over the exact same question and document that were rated by
someone else. But in a relevance rating system the ratings we obtain are over a document and similar
questions.

7. CONCLUSION
 The contributions of this paper are three fold. Firstly, we have identified what constitutes a
malicious data, what incentives might provoke a user to introduce malicious data into the system and the
strategies available at the user’s disposal to attack the system. Secondly we simulated two automated
strategies – a word co-occurrence based weighting scheme and a reputation system, to find out if it would
be possible to defend against these attacks. We observed that while the new word weighting scheme does
provide improvement by identifying words that co-occur, using this word weighting scheme to match
questions is a difficult task. Our simulations on the reputation system show that while it is possible to
identify random attacks, identifying planned attacks is much more difficult. Finally we have proposed a
meta-rating system which could minimize the effects of attacks on the system.

 18

 The work in this paper can be further extended by simulating a relative trust system and testing it
on real dataset. Identification of better robust similarity matching techniques could also be pursued as an
extension to this paper.

ACKOWLEDGEMENTS
 I am grateful to my major professor Dr. Jonathan Herlocker for the valuable guidance and constant
encouragement that he provided over the past one and half years. I would like to express my sincere thanks
to Dr. Timothy Budd and Dr. Zhongfeng Wang for sparing their valuable time and accepting to be on my
committee. I would also like to thank Seikyung Jung for her valuable feedback during the course of this
project.

REFERENCES
[1] Mao Chen and Jaswinder Pal Singh. Computing and Using Reputations for Internet Ratings. In ACM

Conference on Electronic Commerce October 2001.
[2] Chrysanthos Dellarocas. Immunizing Online Reputation Systems Against Unfair Ratings and

Discriminatory Behavior. In ACM Conference on Electronic Commerce October 2000.
[3] Chrysanthos Dellarocas. Analyzing the Economic Efficiency of eBay-like Online Reputation

Reporting Mechanisms. In ACM Conference on Electronic Commerce October 2001.
[4] John O’Donovan and Barry Smyth. Trust in Recommender Systems. In ACM International

Conference on Intelligent User Interfaces January 2005.
[5] R.Guha and Ravi Kumar. Propagation of Trust and Distrust. In The International World Wide Web

Conference, May 2004.
[6] Seikyung Jung, Kevin Harris, Janet Webster and Jonathan Herlocker. SERF: Integrating Human

Recommendations with Search. In ACM Conference on Information and Knowledge Management
November 2004.

[7] George Karypis. Evaluation of Item-Based Top-N Recommendation Algorithms. Technical report,
University of Minnesota, Department of Computer Science / Army HPC Research Center,
Minneapolis, USA, 2000.

[8] Shyong K. Lam and Jon Riedl. Shilling Recommender Systems for Fun and Profit. In The
International World Wide Web Conference, May 2004.

[9] Paolo Massa and Paolo Avesani. Trust Aware Collaborative Filtering for Recommender Systems. In
Springer-Verlag Berlin HeidelBerg, 2004.

[10] Michael O’Mahony, Neil Hurley, Nicholas Kushmerick and Guenole Silverstre. Collaborative
Recommendation: A Robustness Analysis. In ACM Transactions on Internet Technology November
2004.

[11] Gail L.Rein. Reputation Information Systems: Reference Model. In Proceedings of the Annual Hawaii
International Conference on System Sciences, 2005.

[12] Paul Resnick, Richard Zeckhauser, Eric Friedman and Ko Kuwabara. Reputation Systems. In
Communications of the ACM, December 2004.

[13] Gerald Salton and Christopher Buckley. Term-Weighting Approaches in Automatic Text Retrieval.
[14] Ricardo Baeza-Yates and Berther Ribeiro-Neto. Modern Information Retrieval.
[15] Bin Yu and Muninar P.Singh. Detecting Deception in Reputation Management. In The International

Conference on Autonomous Agents and Multiagent Systems July 2003.

 19

APPENDIX A: WORD WEIGHTING BASED ON CO-OCCURRENCE

The co-occurrence based word weighting scheme was simulated on the dataset obtained from
SERF. Table 4 shows the dependence factor of the words in three arbitrarily picked questions:

− Where can I find information about long term research?
− Find Willamette Basin information?
− Where is information services website?

Table 4 shows only those words that do not fall in the category stop-words. The following things

can be deduced from the table:
− The word information has lower dependence factor on other words
− All the words have high dependence factor on the word information.

The occurrence of the word information in the target question does not increase the weight of any

words in the candidate question as much as the occurrence of one of the other words in the target question
increases the weight of the word information in the candidate question.

Target Word Candidate Word Dependence Factor
basin basin 7.36572
willamette willamette 7.36572
basin willamette 3.68286
willamette basin 3.68286
research research 1.68941
website website 1.68941
services services 1.02233
basin information 0.608382
willamette information 0.608382
research long 0.484177
research term 0.284161
information information 0.195976
research information 0.145682
website services 0.06571
services website 0.041069
information research 0.036421
website information 0.029136
services information 0.028332
information long 0.020876
information basin 0.01521
information willamette 0.01521
information term 0.012252
information services 0.011333
information website 0.007284

Table 4: Correlation Index

 20

APPENDIX B: CLASS DIAGRAM FOR REPUTATION SYSTEM

Figure 6: Class diagram for the implementation of Reputation System

 21

